ASoC: wm_adsp: Don't overwrite fwf_name with the default
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
c33c7948 9 *
1c80b990
AK
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
c33c7948
RR
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
1c80b990 19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
799fb82a 27 * tools/mm/page-types when running a real workload.
c33c7948 28 *
1c80b990 29 * There are several operations here with exponential complexity because
c33c7948
RR
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
1c80b990 32 * has non linear complexity with the number. But since memory corruptions
c33c7948 33 * are rare we hope to get away with this. This avoids impacting the core
1c80b990 34 * VM.
6a46079c 35 */
96f96763
KW
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
3f07c014 42#include <linux/sched/signal.h>
29930025 43#include <linux/sched/task.h>
96c84dde 44#include <linux/dax.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011 51#include <linux/migrate.h>
5a0e3ad6 52#include <linux/slab.h>
bf998156 53#include <linux/swapops.h>
7af446a8 54#include <linux/hugetlb.h>
20d6c96b 55#include <linux/memory_hotplug.h>
5db8a73a 56#include <linux/mm_inline.h>
6100e34b 57#include <linux/memremap.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
a3f5d80e 60#include <linux/pagewalk.h>
a7605426 61#include <linux/shmem_fs.h>
8cbc82f3 62#include <linux/sysctl.h>
014bb1de 63#include "swap.h"
6a46079c 64#include "internal.h"
97f0b134 65#include "ras/ras_event.h"
6a46079c 66
8cbc82f3 67static int sysctl_memory_failure_early_kill __read_mostly;
6a46079c 68
8cbc82f3 69static int sysctl_memory_failure_recovery __read_mostly = 1;
6a46079c 70
293c07e3 71atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 72
67f22ba7 73static bool hw_memory_failure __read_mostly = false;
74
b79f8eb4
JY
75static DEFINE_MUTEX(mf_mutex);
76
1a7d018d 77void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
78{
79 atomic_long_inc(&num_poisoned_pages);
5033091d 80 memblk_nr_poison_inc(pfn);
d027122d
NH
81}
82
1a7d018d 83void num_poisoned_pages_sub(unsigned long pfn, long i)
d027122d
NH
84{
85 atomic_long_sub(i, &num_poisoned_pages);
5033091d
NH
86 if (pfn != -1UL)
87 memblk_nr_poison_sub(pfn, i);
d027122d
NH
88}
89
44b8f8bf
JY
90/**
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
93 */
94#define MF_ATTR_RO(_name) \
95static ssize_t _name##_show(struct device *dev, \
96 struct device_attribute *attr, \
97 char *buf) \
98{ \
99 struct memory_failure_stats *mf_stats = \
100 &NODE_DATA(dev->id)->mf_stats; \
101 return sprintf(buf, "%lu\n", mf_stats->_name); \
102} \
103static DEVICE_ATTR_RO(_name)
104
105MF_ATTR_RO(total);
106MF_ATTR_RO(ignored);
107MF_ATTR_RO(failed);
108MF_ATTR_RO(delayed);
109MF_ATTR_RO(recovered);
110
111static struct attribute *memory_failure_attr[] = {
112 &dev_attr_total.attr,
113 &dev_attr_ignored.attr,
114 &dev_attr_failed.attr,
115 &dev_attr_delayed.attr,
116 &dev_attr_recovered.attr,
117 NULL,
118};
119
120const struct attribute_group memory_failure_attr_group = {
121 .name = "memory_failure",
122 .attrs = memory_failure_attr,
123};
124
8cbc82f3
KW
125static struct ctl_table memory_failure_table[] = {
126 {
127 .procname = "memory_failure_early_kill",
128 .data = &sysctl_memory_failure_early_kill,
129 .maxlen = sizeof(sysctl_memory_failure_early_kill),
130 .mode = 0644,
131 .proc_handler = proc_dointvec_minmax,
132 .extra1 = SYSCTL_ZERO,
133 .extra2 = SYSCTL_ONE,
134 },
135 {
136 .procname = "memory_failure_recovery",
137 .data = &sysctl_memory_failure_recovery,
138 .maxlen = sizeof(sysctl_memory_failure_recovery),
139 .mode = 0644,
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ZERO,
142 .extra2 = SYSCTL_ONE,
143 },
144 { }
145};
146
7453bf62
NH
147/*
148 * Return values:
149 * 1: the page is dissolved (if needed) and taken off from buddy,
150 * 0: the page is dissolved (if needed) and not taken off from buddy,
151 * < 0: failed to dissolve.
152 */
153static int __page_handle_poison(struct page *page)
510d25c9 154{
f87060d3 155 int ret;
510d25c9
NH
156
157 zone_pcp_disable(page_zone(page));
158 ret = dissolve_free_huge_page(page);
159 if (!ret)
160 ret = take_page_off_buddy(page);
161 zone_pcp_enable(page_zone(page));
162
7453bf62 163 return ret;
510d25c9
NH
164}
165
6b9a217e 166static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 167{
6b9a217e
OS
168 if (hugepage_or_freepage) {
169 /*
170 * Doing this check for free pages is also fine since dissolve_free_huge_page
171 * returns 0 for non-hugetlb pages as well.
172 */
7453bf62 173 if (__page_handle_poison(page) <= 0)
6b9a217e
OS
174 /*
175 * We could fail to take off the target page from buddy
f0953a1b 176 * for example due to racy page allocation, but that's
6b9a217e
OS
177 * acceptable because soft-offlined page is not broken
178 * and if someone really want to use it, they should
179 * take it.
180 */
181 return false;
182 }
183
06be6ff3 184 SetPageHWPoison(page);
79f5f8fa
OS
185 if (release)
186 put_page(page);
06be6ff3 187 page_ref_inc(page);
a46c9304 188 num_poisoned_pages_inc(page_to_pfn(page));
6b9a217e
OS
189
190 return true;
06be6ff3
OS
191}
192
611b9fd8 193#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
27df5068 194
1bfe5feb 195u32 hwpoison_filter_enable = 0;
7c116f2b
WF
196u32 hwpoison_filter_dev_major = ~0U;
197u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
198u64 hwpoison_filter_flags_mask;
199u64 hwpoison_filter_flags_value;
1bfe5feb 200EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
201EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
202EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
203EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
204EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
205
206static int hwpoison_filter_dev(struct page *p)
207{
208 struct address_space *mapping;
209 dev_t dev;
210
211 if (hwpoison_filter_dev_major == ~0U &&
212 hwpoison_filter_dev_minor == ~0U)
213 return 0;
214
7c116f2b
WF
215 mapping = page_mapping(p);
216 if (mapping == NULL || mapping->host == NULL)
217 return -EINVAL;
218
219 dev = mapping->host->i_sb->s_dev;
220 if (hwpoison_filter_dev_major != ~0U &&
221 hwpoison_filter_dev_major != MAJOR(dev))
222 return -EINVAL;
223 if (hwpoison_filter_dev_minor != ~0U &&
224 hwpoison_filter_dev_minor != MINOR(dev))
225 return -EINVAL;
226
227 return 0;
228}
229
478c5ffc
WF
230static int hwpoison_filter_flags(struct page *p)
231{
232 if (!hwpoison_filter_flags_mask)
233 return 0;
234
235 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
236 hwpoison_filter_flags_value)
237 return 0;
238 else
239 return -EINVAL;
240}
241
4fd466eb
AK
242/*
243 * This allows stress tests to limit test scope to a collection of tasks
244 * by putting them under some memcg. This prevents killing unrelated/important
245 * processes such as /sbin/init. Note that the target task may share clean
246 * pages with init (eg. libc text), which is harmless. If the target task
247 * share _dirty_ pages with another task B, the test scheme must make sure B
248 * is also included in the memcg. At last, due to race conditions this filter
249 * can only guarantee that the page either belongs to the memcg tasks, or is
250 * a freed page.
251 */
94a59fb3 252#ifdef CONFIG_MEMCG
4fd466eb
AK
253u64 hwpoison_filter_memcg;
254EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
255static int hwpoison_filter_task(struct page *p)
256{
4fd466eb
AK
257 if (!hwpoison_filter_memcg)
258 return 0;
259
94a59fb3 260 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
261 return -EINVAL;
262
263 return 0;
264}
265#else
266static int hwpoison_filter_task(struct page *p) { return 0; }
267#endif
268
7c116f2b
WF
269int hwpoison_filter(struct page *p)
270{
1bfe5feb
HL
271 if (!hwpoison_filter_enable)
272 return 0;
273
7c116f2b
WF
274 if (hwpoison_filter_dev(p))
275 return -EINVAL;
276
478c5ffc
WF
277 if (hwpoison_filter_flags(p))
278 return -EINVAL;
279
4fd466eb
AK
280 if (hwpoison_filter_task(p))
281 return -EINVAL;
282
7c116f2b
WF
283 return 0;
284}
27df5068
AK
285#else
286int hwpoison_filter(struct page *p)
287{
288 return 0;
289}
290#endif
291
7c116f2b
WF
292EXPORT_SYMBOL_GPL(hwpoison_filter);
293
ae1139ec
DW
294/*
295 * Kill all processes that have a poisoned page mapped and then isolate
296 * the page.
297 *
298 * General strategy:
299 * Find all processes having the page mapped and kill them.
300 * But we keep a page reference around so that the page is not
301 * actually freed yet.
302 * Then stash the page away
303 *
304 * There's no convenient way to get back to mapped processes
305 * from the VMAs. So do a brute-force search over all
306 * running processes.
307 *
308 * Remember that machine checks are not common (or rather
309 * if they are common you have other problems), so this shouldn't
310 * be a performance issue.
311 *
312 * Also there are some races possible while we get from the
313 * error detection to actually handle it.
314 */
315
316struct to_kill {
317 struct list_head nd;
318 struct task_struct *tsk;
319 unsigned long addr;
320 short size_shift;
ae1139ec
DW
321};
322
6a46079c 323/*
7329bbeb
TL
324 * Send all the processes who have the page mapped a signal.
325 * ``action optional'' if they are not immediately affected by the error
326 * ``action required'' if error happened in current execution context
6a46079c 327 */
ae1139ec 328static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 329{
ae1139ec
DW
330 struct task_struct *t = tk->tsk;
331 short addr_lsb = tk->size_shift;
872e9a20 332 int ret = 0;
6a46079c 333
96f96763 334 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 335 pfn, t->comm, t->pid);
7329bbeb 336
49775047
ML
337 if ((flags & MF_ACTION_REQUIRED) && (t == current))
338 ret = force_sig_mceerr(BUS_MCEERR_AR,
339 (void __user *)tk->addr, addr_lsb);
340 else
7329bbeb 341 /*
49775047
ML
342 * Signal other processes sharing the page if they have
343 * PF_MCE_EARLY set.
7329bbeb
TL
344 * Don't use force here, it's convenient if the signal
345 * can be temporarily blocked.
346 * This could cause a loop when the user sets SIGBUS
347 * to SIG_IGN, but hopefully no one will do that?
348 */
ae1139ec 349 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
9cf28191 350 addr_lsb, t);
6a46079c 351 if (ret < 0)
96f96763 352 pr_info("Error sending signal to %s:%d: %d\n",
1170532b 353 t->comm, t->pid, ret);
6a46079c
AK
354 return ret;
355}
356
588f9ce6 357/*
47e431f4 358 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 359 * lru_add_drain_all.
588f9ce6 360 */
d0505e9f 361void shake_page(struct page *p)
588f9ce6 362{
8bcb74de
NH
363 if (PageHuge(p))
364 return;
588f9ce6 365 /*
d0505e9f
YS
366 * TODO: Could shrink slab caches here if a lightweight range-based
367 * shrinker will be available.
588f9ce6 368 */
b7b618da
ML
369 if (PageSlab(p))
370 return;
371
372 lru_add_drain_all();
588f9ce6
AK
373}
374EXPORT_SYMBOL_GPL(shake_page);
375
c36e2024
SR
376static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
377 unsigned long address)
6100e34b 378{
5c91c0e7 379 unsigned long ret = 0;
6100e34b
DW
380 pgd_t *pgd;
381 p4d_t *p4d;
382 pud_t *pud;
383 pmd_t *pmd;
384 pte_t *pte;
c33c7948 385 pte_t ptent;
6100e34b 386
a994402b 387 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
388 pgd = pgd_offset(vma->vm_mm, address);
389 if (!pgd_present(*pgd))
390 return 0;
391 p4d = p4d_offset(pgd, address);
392 if (!p4d_present(*p4d))
393 return 0;
394 pud = pud_offset(p4d, address);
395 if (!pud_present(*pud))
396 return 0;
397 if (pud_devmap(*pud))
398 return PUD_SHIFT;
399 pmd = pmd_offset(pud, address);
400 if (!pmd_present(*pmd))
401 return 0;
402 if (pmd_devmap(*pmd))
403 return PMD_SHIFT;
404 pte = pte_offset_map(pmd, address);
04dee9e8
HD
405 if (!pte)
406 return 0;
c33c7948
RR
407 ptent = ptep_get(pte);
408 if (pte_present(ptent) && pte_devmap(ptent))
5c91c0e7
QZ
409 ret = PAGE_SHIFT;
410 pte_unmap(pte);
411 return ret;
6100e34b 412}
6a46079c
AK
413
414/*
415 * Failure handling: if we can't find or can't kill a process there's
416 * not much we can do. We just print a message and ignore otherwise.
417 */
418
ac87ca0e
DW
419#define FSDAX_INVALID_PGOFF ULONG_MAX
420
6a46079c
AK
421/*
422 * Schedule a process for later kill.
423 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
c36e2024 424 *
ac87ca0e
DW
425 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
426 * filesystem with a memory failure handler has claimed the
427 * memory_failure event. In all other cases, page->index and
428 * page->mapping are sufficient for mapping the page back to its
429 * corresponding user virtual address.
6a46079c 430 */
4f775086
LX
431static void __add_to_kill(struct task_struct *tsk, struct page *p,
432 struct vm_area_struct *vma, struct list_head *to_kill,
433 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
6a46079c
AK
434{
435 struct to_kill *tk;
436
996ff7a0
JC
437 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
438 if (!tk) {
96f96763 439 pr_err("Out of memory while machine check handling\n");
996ff7a0 440 return;
6a46079c 441 }
996ff7a0 442
4f775086 443 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
c36e2024 444 if (is_zone_device_page(p)) {
ac87ca0e 445 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
c36e2024
SR
446 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
447 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
448 } else
75068518 449 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
450
451 /*
3d7fed4a
JC
452 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
453 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
454 * so "tk->size_shift == 0" effectively checks no mapping on
455 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
456 * to a process' address space, it's possible not all N VMAs
457 * contain mappings for the page, but at least one VMA does.
458 * Only deliver SIGBUS with payload derived from the VMA that
459 * has a mapping for the page.
6a46079c 460 */
3d7fed4a 461 if (tk->addr == -EFAULT) {
96f96763 462 pr_info("Unable to find user space address %lx in %s\n",
6a46079c 463 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
464 } else if (tk->size_shift == 0) {
465 kfree(tk);
466 return;
6a46079c 467 }
996ff7a0 468
6a46079c
AK
469 get_task_struct(tsk);
470 tk->tsk = tsk;
471 list_add_tail(&tk->nd, to_kill);
472}
473
4f775086
LX
474static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
475 struct vm_area_struct *vma,
476 struct list_head *to_kill)
477{
478 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
479}
480
4248d008
LX
481#ifdef CONFIG_KSM
482static bool task_in_to_kill_list(struct list_head *to_kill,
483 struct task_struct *tsk)
484{
485 struct to_kill *tk, *next;
486
487 list_for_each_entry_safe(tk, next, to_kill, nd) {
488 if (tk->tsk == tsk)
489 return true;
490 }
491
492 return false;
493}
494void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
495 struct vm_area_struct *vma, struct list_head *to_kill,
496 unsigned long ksm_addr)
497{
498 if (!task_in_to_kill_list(to_kill, tsk))
499 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
500}
501#endif
6a46079c
AK
502/*
503 * Kill the processes that have been collected earlier.
504 *
a21c184f
ML
505 * Only do anything when FORCEKILL is set, otherwise just free the
506 * list (this is used for clean pages which do not need killing)
6a46079c
AK
507 * Also when FAIL is set do a force kill because something went
508 * wrong earlier.
509 */
ae1139ec
DW
510static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
511 unsigned long pfn, int flags)
6a46079c
AK
512{
513 struct to_kill *tk, *next;
514
54f9555d 515 list_for_each_entry_safe(tk, next, to_kill, nd) {
6751ed65 516 if (forcekill) {
6a46079c 517 /*
af901ca1 518 * In case something went wrong with munmapping
6a46079c
AK
519 * make sure the process doesn't catch the
520 * signal and then access the memory. Just kill it.
6a46079c 521 */
3d7fed4a 522 if (fail || tk->addr == -EFAULT) {
96f96763 523 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 524 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
525 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
526 tk->tsk, PIDTYPE_PID);
6a46079c
AK
527 }
528
529 /*
530 * In theory the process could have mapped
531 * something else on the address in-between. We could
532 * check for that, but we need to tell the
533 * process anyways.
534 */
ae1139ec 535 else if (kill_proc(tk, pfn, flags) < 0)
96f96763 536 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 537 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c 538 }
54f9555d 539 list_del(&tk->nd);
6a46079c
AK
540 put_task_struct(tk->tsk);
541 kfree(tk);
542 }
543}
544
3ba08129
NH
545/*
546 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
547 * on behalf of the thread group. Return task_struct of the (first found)
548 * dedicated thread if found, and return NULL otherwise.
549 *
d256d1cd
TT
550 * We already hold rcu lock in the caller, so we don't have to call
551 * rcu_read_lock/unlock() in this function.
3ba08129
NH
552 */
553static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 554{
3ba08129
NH
555 struct task_struct *t;
556
4e018b45
NH
557 for_each_thread(tsk, t) {
558 if (t->flags & PF_MCE_PROCESS) {
559 if (t->flags & PF_MCE_EARLY)
560 return t;
561 } else {
562 if (sysctl_memory_failure_early_kill)
563 return t;
564 }
565 }
3ba08129
NH
566 return NULL;
567}
568
569/*
570 * Determine whether a given process is "early kill" process which expects
571 * to be signaled when some page under the process is hwpoisoned.
572 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 573 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 574 *
30c9cf49
AY
575 * Note that the above is true for Action Optional case. For Action Required
576 * case, it's only meaningful to the current thread which need to be signaled
577 * with SIGBUS, this error is Action Optional for other non current
578 * processes sharing the same error page,if the process is "early kill", the
579 * task_struct of the dedicated thread will also be returned.
3ba08129 580 */
4248d008 581struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
3ba08129 582{
6a46079c 583 if (!tsk->mm)
3ba08129 584 return NULL;
30c9cf49
AY
585 /*
586 * Comparing ->mm here because current task might represent
587 * a subthread, while tsk always points to the main thread.
588 */
589 if (force_early && tsk->mm == current->mm)
590 return current;
591
4e018b45 592 return find_early_kill_thread(tsk);
6a46079c
AK
593}
594
595/*
596 * Collect processes when the error hit an anonymous page.
597 */
376907f3
MWO
598static void collect_procs_anon(struct folio *folio, struct page *page,
599 struct list_head *to_kill, int force_early)
6a46079c
AK
600{
601 struct vm_area_struct *vma;
602 struct task_struct *tsk;
603 struct anon_vma *av;
bf181b9f 604 pgoff_t pgoff;
6a46079c 605
6d4675e6 606 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 607 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
608 return;
609
a0f7a756 610 pgoff = page_to_pgoff(page);
d256d1cd 611 rcu_read_lock();
5885c6a6 612 for_each_process(tsk) {
5beb4930 613 struct anon_vma_chain *vmac;
3ba08129 614 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 615
3ba08129 616 if (!t)
6a46079c 617 continue;
bf181b9f
ML
618 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
619 pgoff, pgoff) {
5beb4930 620 vma = vmac->vma;
36537a67
ML
621 if (vma->vm_mm != t->mm)
622 continue;
6a46079c
AK
623 if (!page_mapped_in_vma(page, vma))
624 continue;
4f775086 625 add_to_kill_anon_file(t, page, vma, to_kill);
6a46079c
AK
626 }
627 }
d256d1cd 628 rcu_read_unlock();
0c826c0b 629 anon_vma_unlock_read(av);
6a46079c
AK
630}
631
632/*
633 * Collect processes when the error hit a file mapped page.
634 */
376907f3
MWO
635static void collect_procs_file(struct folio *folio, struct page *page,
636 struct list_head *to_kill, int force_early)
6a46079c
AK
637{
638 struct vm_area_struct *vma;
639 struct task_struct *tsk;
376907f3 640 struct address_space *mapping = folio->mapping;
c43bc03d 641 pgoff_t pgoff;
6a46079c 642
d28eb9c8 643 i_mmap_lock_read(mapping);
d256d1cd 644 rcu_read_lock();
c43bc03d 645 pgoff = page_to_pgoff(page);
6a46079c 646 for_each_process(tsk) {
3ba08129 647 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 648
3ba08129 649 if (!t)
6a46079c 650 continue;
6b2dbba8 651 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
652 pgoff) {
653 /*
654 * Send early kill signal to tasks where a vma covers
655 * the page but the corrupted page is not necessarily
5885c6a6 656 * mapped in its pte.
6a46079c
AK
657 * Assume applications who requested early kill want
658 * to be informed of all such data corruptions.
659 */
3ba08129 660 if (vma->vm_mm == t->mm)
4f775086 661 add_to_kill_anon_file(t, page, vma, to_kill);
6a46079c
AK
662 }
663 }
d256d1cd 664 rcu_read_unlock();
d28eb9c8 665 i_mmap_unlock_read(mapping);
6a46079c
AK
666}
667
c36e2024 668#ifdef CONFIG_FS_DAX
4f775086
LX
669static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
670 struct vm_area_struct *vma,
671 struct list_head *to_kill, pgoff_t pgoff)
672{
673 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
674}
675
c36e2024
SR
676/*
677 * Collect processes when the error hit a fsdax page.
678 */
679static void collect_procs_fsdax(struct page *page,
680 struct address_space *mapping, pgoff_t pgoff,
fa422b35 681 struct list_head *to_kill, bool pre_remove)
c36e2024
SR
682{
683 struct vm_area_struct *vma;
684 struct task_struct *tsk;
685
686 i_mmap_lock_read(mapping);
d256d1cd 687 rcu_read_lock();
c36e2024 688 for_each_process(tsk) {
fa422b35 689 struct task_struct *t = tsk;
c36e2024 690
fa422b35
SR
691 /*
692 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
693 * the current may not be the one accessing the fsdax page.
694 * Otherwise, search for the current task.
695 */
696 if (!pre_remove)
697 t = task_early_kill(tsk, true);
c36e2024
SR
698 if (!t)
699 continue;
700 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
701 if (vma->vm_mm == t->mm)
4f775086 702 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
c36e2024
SR
703 }
704 }
d256d1cd 705 rcu_read_unlock();
c36e2024
SR
706 i_mmap_unlock_read(mapping);
707}
708#endif /* CONFIG_FS_DAX */
709
6a46079c
AK
710/*
711 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 712 */
376907f3
MWO
713static void collect_procs(struct folio *folio, struct page *page,
714 struct list_head *tokill, int force_early)
6a46079c 715{
376907f3 716 if (!folio->mapping)
6a46079c 717 return;
4248d008
LX
718 if (unlikely(PageKsm(page)))
719 collect_procs_ksm(page, tokill, force_early);
720 else if (PageAnon(page))
376907f3 721 collect_procs_anon(folio, page, tokill, force_early);
6a46079c 722 else
376907f3 723 collect_procs_file(folio, page, tokill, force_early);
6a46079c
AK
724}
725
6885938c 726struct hwpoison_walk {
a3f5d80e
NH
727 struct to_kill tk;
728 unsigned long pfn;
729 int flags;
730};
731
732static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
733{
734 tk->addr = addr;
735 tk->size_shift = shift;
736}
737
738static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
739 unsigned long poisoned_pfn, struct to_kill *tk)
740{
741 unsigned long pfn = 0;
742
743 if (pte_present(pte)) {
744 pfn = pte_pfn(pte);
745 } else {
746 swp_entry_t swp = pte_to_swp_entry(pte);
747
748 if (is_hwpoison_entry(swp))
0d206b5d 749 pfn = swp_offset_pfn(swp);
a3f5d80e
NH
750 }
751
752 if (!pfn || pfn != poisoned_pfn)
753 return 0;
754
755 set_to_kill(tk, addr, shift);
756 return 1;
757}
758
759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
760static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 761 struct hwpoison_walk *hwp)
a3f5d80e
NH
762{
763 pmd_t pmd = *pmdp;
764 unsigned long pfn;
765 unsigned long hwpoison_vaddr;
766
767 if (!pmd_present(pmd))
768 return 0;
769 pfn = pmd_pfn(pmd);
770 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
771 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
772 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
773 return 1;
774 }
775 return 0;
776}
777#else
778static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 779 struct hwpoison_walk *hwp)
a3f5d80e
NH
780{
781 return 0;
782}
783#endif
784
785static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
786 unsigned long end, struct mm_walk *walk)
787{
6885938c 788 struct hwpoison_walk *hwp = walk->private;
a3f5d80e 789 int ret = 0;
ea3732f7 790 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
791 spinlock_t *ptl;
792
793 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
794 if (ptl) {
795 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
796 spin_unlock(ptl);
797 goto out;
798 }
799
ea3732f7
ML
800 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
801 addr, &ptl);
04dee9e8
HD
802 if (!ptep)
803 goto out;
804
a3f5d80e 805 for (; addr != end; ptep++, addr += PAGE_SIZE) {
c33c7948 806 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
a3f5d80e
NH
807 hwp->pfn, &hwp->tk);
808 if (ret == 1)
809 break;
810 }
ea3732f7 811 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
812out:
813 cond_resched();
814 return ret;
815}
816
817#ifdef CONFIG_HUGETLB_PAGE
818static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
819 unsigned long addr, unsigned long end,
820 struct mm_walk *walk)
821{
6885938c 822 struct hwpoison_walk *hwp = walk->private;
a3f5d80e
NH
823 pte_t pte = huge_ptep_get(ptep);
824 struct hstate *h = hstate_vma(walk->vma);
825
826 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
827 hwp->pfn, &hwp->tk);
828}
829#else
830#define hwpoison_hugetlb_range NULL
831#endif
832
6885938c 833static const struct mm_walk_ops hwpoison_walk_ops = {
a3f5d80e
NH
834 .pmd_entry = hwpoison_pte_range,
835 .hugetlb_entry = hwpoison_hugetlb_range,
49b06385 836 .walk_lock = PGWALK_RDLOCK,
a3f5d80e
NH
837};
838
839/*
840 * Sends SIGBUS to the current process with error info.
841 *
842 * This function is intended to handle "Action Required" MCEs on already
843 * hardware poisoned pages. They could happen, for example, when
844 * memory_failure() failed to unmap the error page at the first call, or
845 * when multiple local machine checks happened on different CPUs.
846 *
847 * MCE handler currently has no easy access to the error virtual address,
848 * so this function walks page table to find it. The returned virtual address
849 * is proper in most cases, but it could be wrong when the application
850 * process has multiple entries mapping the error page.
851 */
852static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
853 int flags)
854{
855 int ret;
6885938c 856 struct hwpoison_walk priv = {
a3f5d80e
NH
857 .pfn = pfn,
858 };
859 priv.tk.tsk = p;
860
77677cdb
SX
861 if (!p->mm)
862 return -EFAULT;
863
a3f5d80e 864 mmap_read_lock(p->mm);
6885938c 865 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
a3f5d80e
NH
866 (void *)&priv);
867 if (ret == 1 && priv.tk.addr)
868 kill_proc(&priv.tk, pfn, flags);
046545a6
NH
869 else
870 ret = 0;
a3f5d80e 871 mmap_read_unlock(p->mm);
046545a6 872 return ret > 0 ? -EHWPOISON : -EFAULT;
a3f5d80e
NH
873}
874
6a46079c 875static const char *action_name[] = {
cc637b17
XX
876 [MF_IGNORED] = "Ignored",
877 [MF_FAILED] = "Failed",
878 [MF_DELAYED] = "Delayed",
879 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
880};
881
882static const char * const action_page_types[] = {
cc637b17
XX
883 [MF_MSG_KERNEL] = "reserved kernel page",
884 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
885 [MF_MSG_SLAB] = "kernel slab page",
886 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
887 [MF_MSG_HUGE] = "huge page",
888 [MF_MSG_FREE_HUGE] = "free huge page",
889 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
890 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
891 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
892 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
893 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
894 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
895 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
896 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
897 [MF_MSG_CLEAN_LRU] = "clean LRU page",
898 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
899 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 900 [MF_MSG_DAX] = "dax page",
5d1fd5dc 901 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 902 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
903};
904
dc2a1cbf
WF
905/*
906 * XXX: It is possible that a page is isolated from LRU cache,
907 * and then kept in swap cache or failed to remove from page cache.
908 * The page count will stop it from being freed by unpoison.
909 * Stress tests should be aware of this memory leak problem.
910 */
f7092393 911static int delete_from_lru_cache(struct folio *folio)
dc2a1cbf 912{
f7092393 913 if (folio_isolate_lru(folio)) {
dc2a1cbf
WF
914 /*
915 * Clear sensible page flags, so that the buddy system won't
f7092393 916 * complain when the folio is unpoison-and-freed.
dc2a1cbf 917 */
f7092393
MWO
918 folio_clear_active(folio);
919 folio_clear_unevictable(folio);
18365225
MH
920
921 /*
922 * Poisoned page might never drop its ref count to 0 so we have
923 * to uncharge it manually from its memcg.
924 */
f7092393 925 mem_cgroup_uncharge(folio);
18365225 926
dc2a1cbf 927 /*
f7092393 928 * drop the refcount elevated by folio_isolate_lru()
dc2a1cbf 929 */
f7092393 930 folio_put(folio);
dc2a1cbf
WF
931 return 0;
932 }
933 return -EIO;
934}
935
af7628d6 936static int truncate_error_folio(struct folio *folio, unsigned long pfn,
78bb9203
NH
937 struct address_space *mapping)
938{
939 int ret = MF_FAILED;
940
af7628d6
MWO
941 if (mapping->a_ops->error_remove_folio) {
942 int err = mapping->a_ops->error_remove_folio(mapping, folio);
78bb9203 943
0201ebf2 944 if (err != 0)
96f96763 945 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
0201ebf2 946 else if (!filemap_release_folio(folio, GFP_NOIO))
96f96763 947 pr_info("%#lx: failed to release buffers\n", pfn);
0201ebf2 948 else
78bb9203 949 ret = MF_RECOVERED;
78bb9203
NH
950 } else {
951 /*
952 * If the file system doesn't support it just invalidate
953 * This fails on dirty or anything with private pages
954 */
19369d86 955 if (mapping_evict_folio(mapping, folio))
78bb9203
NH
956 ret = MF_RECOVERED;
957 else
96f96763 958 pr_info("%#lx: Failed to invalidate\n", pfn);
78bb9203
NH
959 }
960
961 return ret;
962}
963
dd0f230a
YS
964struct page_state {
965 unsigned long mask;
966 unsigned long res;
967 enum mf_action_page_type type;
968
969 /* Callback ->action() has to unlock the relevant page inside it. */
970 int (*action)(struct page_state *ps, struct page *p);
971};
972
973/*
974 * Return true if page is still referenced by others, otherwise return
975 * false.
976 *
977 * The extra_pins is true when one extra refcount is expected.
978 */
979static bool has_extra_refcount(struct page_state *ps, struct page *p,
980 bool extra_pins)
981{
982 int count = page_count(p) - 1;
983
984 if (extra_pins)
985 count -= 1;
986
987 if (count > 0) {
96f96763 988 pr_err("%#lx: %s still referenced by %d users\n",
dd0f230a
YS
989 page_to_pfn(p), action_page_types[ps->type], count);
990 return true;
991 }
992
993 return false;
994}
995
6a46079c
AK
996/*
997 * Error hit kernel page.
998 * Do nothing, try to be lucky and not touch this instead. For a few cases we
999 * could be more sophisticated.
1000 */
dd0f230a 1001static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 1002{
ea6d0630 1003 unlock_page(p);
cc637b17 1004 return MF_IGNORED;
6a46079c
AK
1005}
1006
1007/*
1008 * Page in unknown state. Do nothing.
1009 */
dd0f230a 1010static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 1011{
96f96763 1012 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 1013 unlock_page(p);
cc637b17 1014 return MF_FAILED;
6a46079c
AK
1015}
1016
6a46079c
AK
1017/*
1018 * Clean (or cleaned) page cache page.
1019 */
dd0f230a 1020static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 1021{
3d47e317 1022 struct folio *folio = page_folio(p);
ea6d0630 1023 int ret;
6a46079c 1024 struct address_space *mapping;
a7605426 1025 bool extra_pins;
6a46079c 1026
f7092393 1027 delete_from_lru_cache(folio);
dc2a1cbf 1028
6a46079c 1029 /*
3d47e317 1030 * For anonymous folios the only reference left
6a46079c
AK
1031 * should be the one m_f() holds.
1032 */
3d47e317 1033 if (folio_test_anon(folio)) {
ea6d0630
NH
1034 ret = MF_RECOVERED;
1035 goto out;
1036 }
6a46079c
AK
1037
1038 /*
1039 * Now truncate the page in the page cache. This is really
1040 * more like a "temporary hole punch"
1041 * Don't do this for block devices when someone else
1042 * has a reference, because it could be file system metadata
1043 * and that's not safe to truncate.
1044 */
3d47e317 1045 mapping = folio_mapping(folio);
6a46079c 1046 if (!mapping) {
3d47e317 1047 /* Folio has been torn down in the meantime */
ea6d0630
NH
1048 ret = MF_FAILED;
1049 goto out;
6a46079c
AK
1050 }
1051
a7605426
YS
1052 /*
1053 * The shmem page is kept in page cache instead of truncating
1054 * so is expected to have an extra refcount after error-handling.
1055 */
1056 extra_pins = shmem_mapping(mapping);
1057
6a46079c
AK
1058 /*
1059 * Truncation is a bit tricky. Enable it per file system for now.
1060 *
9608703e 1061 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 1062 */
af7628d6 1063 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
a7605426
YS
1064 if (has_extra_refcount(ps, p, extra_pins))
1065 ret = MF_FAILED;
1066
ea6d0630 1067out:
3d47e317 1068 folio_unlock(folio);
dd0f230a 1069
ea6d0630 1070 return ret;
6a46079c
AK
1071}
1072
1073/*
549543df 1074 * Dirty pagecache page
6a46079c
AK
1075 * Issues: when the error hit a hole page the error is not properly
1076 * propagated.
1077 */
dd0f230a 1078static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c
AK
1079{
1080 struct address_space *mapping = page_mapping(p);
1081
1082 SetPageError(p);
1083 /* TBD: print more information about the file. */
1084 if (mapping) {
1085 /*
1086 * IO error will be reported by write(), fsync(), etc.
1087 * who check the mapping.
1088 * This way the application knows that something went
1089 * wrong with its dirty file data.
1090 *
1091 * There's one open issue:
1092 *
1093 * The EIO will be only reported on the next IO
1094 * operation and then cleared through the IO map.
1095 * Normally Linux has two mechanisms to pass IO error
1096 * first through the AS_EIO flag in the address space
1097 * and then through the PageError flag in the page.
1098 * Since we drop pages on memory failure handling the
1099 * only mechanism open to use is through AS_AIO.
1100 *
1101 * This has the disadvantage that it gets cleared on
1102 * the first operation that returns an error, while
1103 * the PageError bit is more sticky and only cleared
1104 * when the page is reread or dropped. If an
1105 * application assumes it will always get error on
1106 * fsync, but does other operations on the fd before
25985edc 1107 * and the page is dropped between then the error
6a46079c
AK
1108 * will not be properly reported.
1109 *
1110 * This can already happen even without hwpoisoned
1111 * pages: first on metadata IO errors (which only
1112 * report through AS_EIO) or when the page is dropped
1113 * at the wrong time.
1114 *
1115 * So right now we assume that the application DTRT on
1116 * the first EIO, but we're not worse than other parts
1117 * of the kernel.
1118 */
af21bfaf 1119 mapping_set_error(mapping, -EIO);
6a46079c
AK
1120 }
1121
dd0f230a 1122 return me_pagecache_clean(ps, p);
6a46079c
AK
1123}
1124
1125/*
1126 * Clean and dirty swap cache.
1127 *
1128 * Dirty swap cache page is tricky to handle. The page could live both in page
1129 * cache and swap cache(ie. page is freshly swapped in). So it could be
1130 * referenced concurrently by 2 types of PTEs:
1131 * normal PTEs and swap PTEs. We try to handle them consistently by calling
6da6b1d4 1132 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
6a46079c
AK
1133 * and then
1134 * - clear dirty bit to prevent IO
1135 * - remove from LRU
1136 * - but keep in the swap cache, so that when we return to it on
1137 * a later page fault, we know the application is accessing
1138 * corrupted data and shall be killed (we installed simple
1139 * interception code in do_swap_page to catch it).
1140 *
1141 * Clean swap cache pages can be directly isolated. A later page fault will
1142 * bring in the known good data from disk.
1143 */
dd0f230a 1144static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 1145{
6304b531 1146 struct folio *folio = page_folio(p);
ea6d0630 1147 int ret;
dd0f230a 1148 bool extra_pins = false;
ea6d0630 1149
6304b531 1150 folio_clear_dirty(folio);
6a46079c 1151 /* Trigger EIO in shmem: */
6304b531 1152 folio_clear_uptodate(folio);
6a46079c 1153
f7092393 1154 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
6304b531 1155 folio_unlock(folio);
dd0f230a
YS
1156
1157 if (ret == MF_DELAYED)
1158 extra_pins = true;
1159
1160 if (has_extra_refcount(ps, p, extra_pins))
1161 ret = MF_FAILED;
1162
ea6d0630 1163 return ret;
6a46079c
AK
1164}
1165
dd0f230a 1166static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1167{
75fa68a5 1168 struct folio *folio = page_folio(p);
ea6d0630
NH
1169 int ret;
1170
75fa68a5 1171 delete_from_swap_cache(folio);
e43c3afb 1172
f7092393 1173 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1174 folio_unlock(folio);
dd0f230a
YS
1175
1176 if (has_extra_refcount(ps, p, false))
1177 ret = MF_FAILED;
1178
ea6d0630 1179 return ret;
6a46079c
AK
1180}
1181
1182/*
1183 * Huge pages. Needs work.
1184 * Issues:
93f70f90
NH
1185 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1186 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1187 */
dd0f230a 1188static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1189{
b6fd410c 1190 struct folio *folio = page_folio(p);
a8b2c2ce 1191 int res;
78bb9203 1192 struct address_space *mapping;
8625147c 1193 bool extra_pins = false;
2491ffee 1194
b6fd410c 1195 mapping = folio_mapping(folio);
78bb9203 1196 if (mapping) {
af7628d6 1197 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
8625147c
JH
1198 /* The page is kept in page cache. */
1199 extra_pins = true;
b6fd410c 1200 folio_unlock(folio);
78bb9203 1201 } else {
b6fd410c 1202 folio_unlock(folio);
78bb9203 1203 /*
ef526b17
ML
1204 * migration entry prevents later access on error hugepage,
1205 * so we can free and dissolve it into buddy to save healthy
1206 * subpages.
78bb9203 1207 */
b6fd410c 1208 folio_put(folio);
ceaf8fbe 1209 if (__page_handle_poison(p) >= 0) {
a8b2c2ce
OS
1210 page_ref_inc(p);
1211 res = MF_RECOVERED;
ceaf8fbe
NH
1212 } else {
1213 res = MF_FAILED;
a8b2c2ce 1214 }
93f70f90 1215 }
78bb9203 1216
8625147c 1217 if (has_extra_refcount(ps, p, extra_pins))
dd0f230a
YS
1218 res = MF_FAILED;
1219
78bb9203 1220 return res;
6a46079c
AK
1221}
1222
1223/*
1224 * Various page states we can handle.
1225 *
1226 * A page state is defined by its current page->flags bits.
1227 * The table matches them in order and calls the right handler.
1228 *
1229 * This is quite tricky because we can access page at any time
25985edc 1230 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1231 *
1232 * This is not complete. More states could be added.
1233 * For any missing state don't attempt recovery.
1234 */
1235
1236#define dirty (1UL << PG_dirty)
6326fec1 1237#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1238#define unevict (1UL << PG_unevictable)
1239#define mlock (1UL << PG_mlocked)
6a46079c 1240#define lru (1UL << PG_lru)
6a46079c 1241#define head (1UL << PG_head)
6a46079c 1242#define slab (1UL << PG_slab)
6a46079c
AK
1243#define reserved (1UL << PG_reserved)
1244
dd0f230a 1245static struct page_state error_states[] = {
cc637b17 1246 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1247 /*
1248 * free pages are specially detected outside this table:
1249 * PG_buddy pages only make a small fraction of all free pages.
1250 */
6a46079c
AK
1251
1252 /*
1253 * Could in theory check if slab page is free or if we can drop
1254 * currently unused objects without touching them. But just
1255 * treat it as standard kernel for now.
1256 */
cc637b17 1257 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1258
cc637b17 1259 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1260
cc637b17
XX
1261 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1262 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1263
cc637b17
XX
1264 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1265 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1266
cc637b17
XX
1267 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1268 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1269
cc637b17
XX
1270 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1271 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1272
1273 /*
1274 * Catchall entry: must be at end.
1275 */
cc637b17 1276 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1277};
1278
2326c467
AK
1279#undef dirty
1280#undef sc
1281#undef unevict
1282#undef mlock
2326c467 1283#undef lru
2326c467 1284#undef head
2326c467
AK
1285#undef slab
1286#undef reserved
1287
18f41fa6
JY
1288static void update_per_node_mf_stats(unsigned long pfn,
1289 enum mf_result result)
1290{
1291 int nid = MAX_NUMNODES;
1292 struct memory_failure_stats *mf_stats = NULL;
1293
1294 nid = pfn_to_nid(pfn);
1295 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1296 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1297 return;
1298 }
1299
1300 mf_stats = &NODE_DATA(nid)->mf_stats;
1301 switch (result) {
1302 case MF_IGNORED:
1303 ++mf_stats->ignored;
1304 break;
1305 case MF_FAILED:
1306 ++mf_stats->failed;
1307 break;
1308 case MF_DELAYED:
1309 ++mf_stats->delayed;
1310 break;
1311 case MF_RECOVERED:
1312 ++mf_stats->recovered;
1313 break;
1314 default:
1315 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1316 break;
1317 }
1318 ++mf_stats->total;
1319}
1320
ff604cf6
NH
1321/*
1322 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1323 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1324 */
b66d00df
KW
1325static int action_result(unsigned long pfn, enum mf_action_page_type type,
1326 enum mf_result result)
6a46079c 1327{
97f0b134
XX
1328 trace_memory_failure_event(pfn, type, result);
1329
a46c9304 1330 num_poisoned_pages_inc(pfn);
18f41fa6
JY
1331
1332 update_per_node_mf_stats(pfn, result);
1333
96f96763 1334 pr_err("%#lx: recovery action for %s: %s\n",
64d37a2b 1335 pfn, action_page_types[type], action_name[result]);
b66d00df
KW
1336
1337 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1338}
1339
1340static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1341 unsigned long pfn)
6a46079c
AK
1342{
1343 int result;
1344
ea6d0630 1345 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1346 result = ps->action(ps, p);
7456b040 1347
6a46079c
AK
1348 /* Could do more checks here if page looks ok */
1349 /*
1350 * Could adjust zone counters here to correct for the missing page.
1351 */
1352
b66d00df 1353 return action_result(pfn, ps->type, result);
6a46079c
AK
1354}
1355
bf181c58
NH
1356static inline bool PageHWPoisonTakenOff(struct page *page)
1357{
1358 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1359}
1360
1361void SetPageHWPoisonTakenOff(struct page *page)
1362{
1363 set_page_private(page, MAGIC_HWPOISON);
1364}
1365
1366void ClearPageHWPoisonTakenOff(struct page *page)
1367{
1368 if (PageHWPoison(page))
1369 set_page_private(page, 0);
1370}
1371
25182f05
NH
1372/*
1373 * Return true if a page type of a given page is supported by hwpoison
1374 * mechanism (while handling could fail), otherwise false. This function
1375 * does not return true for hugetlb or device memory pages, so it's assumed
1376 * to be called only in the context where we never have such pages.
1377 */
bf6445bc 1378static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1379{
3f871370 1380 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1381 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1382 return true;
bf6445bc 1383
3f871370 1384 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1385}
1386
bf6445bc 1387static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a 1388{
04bac040 1389 struct folio *folio = page_folio(page);
25182f05
NH
1390 int ret = 0;
1391 bool hugetlb = false;
1392
04bac040 1393 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
d31155b8
ML
1394 if (hugetlb) {
1395 /* Make sure hugetlb demotion did not happen from under us. */
1396 if (folio == page_folio(page))
1397 return ret;
1398 if (ret > 0) {
1399 folio_put(folio);
1400 folio = page_folio(page);
1401 }
1402 }
25182f05
NH
1403
1404 /*
04bac040
SK
1405 * This check prevents from calling folio_try_get() for any
1406 * unsupported type of folio in order to reduce the risk of unexpected
1407 * races caused by taking a folio refcount.
25182f05 1408 */
04bac040 1409 if (!HWPoisonHandlable(&folio->page, flags))
fcc00621 1410 return -EBUSY;
ead07f6a 1411
04bac040
SK
1412 if (folio_try_get(folio)) {
1413 if (folio == page_folio(page))
c2e7e00b
KK
1414 return 1;
1415
96f96763 1416 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
04bac040 1417 folio_put(folio);
c2e7e00b
KK
1418 }
1419
1420 return 0;
ead07f6a 1421}
ead07f6a 1422
2f714160 1423static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1424{
2f714160
OS
1425 int ret = 0, pass = 0;
1426 bool count_increased = false;
17e395b6 1427
2f714160
OS
1428 if (flags & MF_COUNT_INCREASED)
1429 count_increased = true;
1430
1431try_again:
0ed950d1 1432 if (!count_increased) {
bf6445bc 1433 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1434 if (!ret) {
1435 if (page_count(p)) {
1436 /* We raced with an allocation, retry. */
1437 if (pass++ < 3)
1438 goto try_again;
1439 ret = -EBUSY;
1440 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1441 /* We raced with put_page, retry. */
1442 if (pass++ < 3)
1443 goto try_again;
1444 ret = -EIO;
1445 }
1446 goto out;
1447 } else if (ret == -EBUSY) {
fcc00621
NH
1448 /*
1449 * We raced with (possibly temporary) unhandlable
1450 * page, retry.
1451 */
1452 if (pass++ < 3) {
d0505e9f 1453 shake_page(p);
2f714160 1454 goto try_again;
fcc00621
NH
1455 }
1456 ret = -EIO;
0ed950d1 1457 goto out;
2f714160 1458 }
0ed950d1
NH
1459 }
1460
bf6445bc 1461 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1462 ret = 1;
2f714160 1463 } else {
0ed950d1
NH
1464 /*
1465 * A page we cannot handle. Check whether we can turn
1466 * it into something we can handle.
1467 */
1468 if (pass++ < 3) {
2f714160 1469 put_page(p);
d0505e9f 1470 shake_page(p);
0ed950d1
NH
1471 count_increased = false;
1472 goto try_again;
2f714160 1473 }
0ed950d1
NH
1474 put_page(p);
1475 ret = -EIO;
17e395b6 1476 }
0ed950d1 1477out:
941ca063 1478 if (ret == -EIO)
96f96763 1479 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1480
17e395b6
OS
1481 return ret;
1482}
1483
bf181c58
NH
1484static int __get_unpoison_page(struct page *page)
1485{
04bac040 1486 struct folio *folio = page_folio(page);
bf181c58
NH
1487 int ret = 0;
1488 bool hugetlb = false;
1489
04bac040 1490 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
d31155b8
ML
1491 if (hugetlb) {
1492 /* Make sure hugetlb demotion did not happen from under us. */
1493 if (folio == page_folio(page))
1494 return ret;
1495 if (ret > 0)
1496 folio_put(folio);
1497 }
bf181c58
NH
1498
1499 /*
1500 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1501 * but also isolated from buddy freelist, so need to identify the
1502 * state and have to cancel both operations to unpoison.
1503 */
1504 if (PageHWPoisonTakenOff(page))
1505 return -EHWPOISON;
1506
1507 return get_page_unless_zero(page) ? 1 : 0;
1508}
1509
0ed950d1
NH
1510/**
1511 * get_hwpoison_page() - Get refcount for memory error handling
1512 * @p: Raw error page (hit by memory error)
1513 * @flags: Flags controlling behavior of error handling
1514 *
1515 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1516 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1517 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1518 * such as LRU page and hugetlb page).
1519 *
1520 * Memory error handling could be triggered at any time on any type of page,
1521 * so it's prone to race with typical memory management lifecycle (like
1522 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1523 * extra care for the error page's state (as done in __get_hwpoison_page()),
1524 * and has some retry logic in get_any_page().
1525 *
bf181c58
NH
1526 * When called from unpoison_memory(), the caller should already ensure that
1527 * the given page has PG_hwpoison. So it's never reused for other page
1528 * allocations, and __get_unpoison_page() never races with them.
1529 *
0ed950d1
NH
1530 * Return: 0 on failure,
1531 * 1 on success for in-use pages in a well-defined state,
1532 * -EIO for pages on which we can not handle memory errors,
1533 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1534 * operations like allocation and free,
1535 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1536 */
1537static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1538{
1539 int ret;
1540
1541 zone_pcp_disable(page_zone(p));
bf181c58
NH
1542 if (flags & MF_UNPOISON)
1543 ret = __get_unpoison_page(p);
1544 else
1545 ret = get_any_page(p, flags);
2f714160
OS
1546 zone_pcp_enable(page_zone(p));
1547
1548 return ret;
1549}
1550
6a46079c
AK
1551/*
1552 * Do all that is necessary to remove user space mappings. Unmap
1553 * the pages and send SIGBUS to the processes if the data was dirty.
1554 */
666e5a40 1555static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1556 int flags, struct page *hpage)
6a46079c 1557{
869f7ee6 1558 struct folio *folio = page_folio(hpage);
6da6b1d4 1559 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
6a46079c
AK
1560 struct address_space *mapping;
1561 LIST_HEAD(tokill);
1fb08ac6 1562 bool unmap_success;
0792a4a6 1563 int forcekill;
286c469a 1564 bool mlocked = PageMlocked(hpage);
6a46079c 1565
93a9eb39
NH
1566 /*
1567 * Here we are interested only in user-mapped pages, so skip any
1568 * other types of pages.
1569 */
7a8817f2 1570 if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
666e5a40 1571 return true;
93a9eb39 1572 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1573 return true;
6a46079c 1574
6a46079c
AK
1575 /*
1576 * This check implies we don't kill processes if their pages
1577 * are in the swap cache early. Those are always late kills.
1578 */
c79c5a0a 1579 if (!page_mapped(p))
666e5a40 1580 return true;
1668bfd5 1581
6a46079c 1582 if (PageSwapCache(p)) {
96f96763 1583 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
6da6b1d4 1584 ttu &= ~TTU_HWPOISON;
6a46079c
AK
1585 }
1586
1587 /*
1588 * Propagate the dirty bit from PTEs to struct page first, because we
1589 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1590 * XXX: the dirty test could be racy: set_page_dirty() may not always
1591 * be called inside page lock (it's recommended but not enforced).
6a46079c 1592 */
7af446a8 1593 mapping = page_mapping(hpage);
6751ed65 1594 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1595 mapping_can_writeback(mapping)) {
7af446a8
NH
1596 if (page_mkclean(hpage)) {
1597 SetPageDirty(hpage);
6a46079c 1598 } else {
6da6b1d4 1599 ttu &= ~TTU_HWPOISON;
96f96763 1600 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1601 pfn);
1602 }
1603 }
1604
1605 /*
1606 * First collect all the processes that have the page
1607 * mapped in dirty form. This has to be done before try_to_unmap,
1608 * because ttu takes the rmap data structures down.
6a46079c 1609 */
376907f3 1610 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1611
357670f7
ML
1612 if (PageHuge(hpage) && !PageAnon(hpage)) {
1613 /*
1614 * For hugetlb pages in shared mappings, try_to_unmap
1615 * could potentially call huge_pmd_unshare. Because of
1616 * this, take semaphore in write mode here and set
1617 * TTU_RMAP_LOCKED to indicate we have taken the lock
1618 * at this higher level.
1619 */
1620 mapping = hugetlb_page_mapping_lock_write(hpage);
1621 if (mapping) {
9030fb0b 1622 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
357670f7
ML
1623 i_mmap_unlock_write(mapping);
1624 } else
96f96763 1625 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1626 } else {
9030fb0b 1627 try_to_unmap(folio, ttu);
c0d0381a 1628 }
1fb08ac6 1629
c79c5a0a 1630 unmap_success = !page_mapped(p);
666e5a40 1631 if (!unmap_success)
96f96763 1632 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
c79c5a0a 1633 pfn, page_mapcount(p));
a6d30ddd 1634
286c469a
NH
1635 /*
1636 * try_to_unmap() might put mlocked page in lru cache, so call
1637 * shake_page() again to ensure that it's flushed.
1638 */
1639 if (mlocked)
d0505e9f 1640 shake_page(hpage);
286c469a 1641
6a46079c
AK
1642 /*
1643 * Now that the dirty bit has been propagated to the
1644 * struct page and all unmaps done we can decide if
1645 * killing is needed or not. Only kill when the page
6751ed65
TL
1646 * was dirty or the process is not restartable,
1647 * otherwise the tokill list is merely
6a46079c
AK
1648 * freed. When there was a problem unmapping earlier
1649 * use a more force-full uncatchable kill to prevent
1650 * any accesses to the poisoned memory.
1651 */
0792a4a6
ML
1652 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1653 !unmap_success;
ae1139ec 1654 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1655
666e5a40 1656 return unmap_success;
6a46079c
AK
1657}
1658
0348d2eb
NH
1659static int identify_page_state(unsigned long pfn, struct page *p,
1660 unsigned long page_flags)
761ad8d7
NH
1661{
1662 struct page_state *ps;
0348d2eb
NH
1663
1664 /*
1665 * The first check uses the current page flags which may not have any
1666 * relevant information. The second check with the saved page flags is
1667 * carried out only if the first check can't determine the page status.
1668 */
1669 for (ps = error_states;; ps++)
1670 if ((p->flags & ps->mask) == ps->res)
1671 break;
1672
1673 page_flags |= (p->flags & (1UL << PG_dirty));
1674
1675 if (!ps->mask)
1676 for (ps = error_states;; ps++)
1677 if ((page_flags & ps->mask) == ps->res)
1678 break;
1679 return page_action(ps, p, pfn);
1680}
1681
2ace36f0 1682static int try_to_split_thp_page(struct page *page)
694bf0b0 1683{
2ace36f0
KW
1684 int ret;
1685
694bf0b0 1686 lock_page(page);
2ace36f0
KW
1687 ret = split_huge_page(page);
1688 unlock_page(page);
694bf0b0 1689
2ace36f0 1690 if (unlikely(ret))
694bf0b0 1691 put_page(page);
694bf0b0 1692
2ace36f0 1693 return ret;
694bf0b0
OS
1694}
1695
00cc790e
SR
1696static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1697 struct address_space *mapping, pgoff_t index, int flags)
1698{
1699 struct to_kill *tk;
1700 unsigned long size = 0;
1701
1702 list_for_each_entry(tk, to_kill, nd)
1703 if (tk->size_shift)
1704 size = max(size, 1UL << tk->size_shift);
1705
1706 if (size) {
1707 /*
1708 * Unmap the largest mapping to avoid breaking up device-dax
1709 * mappings which are constant size. The actual size of the
1710 * mapping being torn down is communicated in siginfo, see
1711 * kill_proc()
1712 */
39ebd6dc 1713 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
00cc790e
SR
1714
1715 unmap_mapping_range(mapping, start, size, 0);
1716 }
1717
1718 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1719}
1720
91e79d22
MWO
1721/*
1722 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1723 * either do not claim or fails to claim a hwpoison event, or devdax.
1724 * The fsdax pages are initialized per base page, and the devdax pages
1725 * could be initialized either as base pages, or as compound pages with
1726 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1727 * hwpoison, such that, if a subpage of a compound page is poisoned,
1728 * simply mark the compound head page is by far sufficient.
1729 */
00cc790e
SR
1730static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1731 struct dev_pagemap *pgmap)
1732{
91e79d22 1733 struct folio *folio = pfn_folio(pfn);
00cc790e
SR
1734 LIST_HEAD(to_kill);
1735 dax_entry_t cookie;
1736 int rc = 0;
1737
00cc790e
SR
1738 /*
1739 * Prevent the inode from being freed while we are interrogating
1740 * the address_space, typically this would be handled by
1741 * lock_page(), but dax pages do not use the page lock. This
1742 * also prevents changes to the mapping of this pfn until
1743 * poison signaling is complete.
1744 */
91e79d22 1745 cookie = dax_lock_folio(folio);
00cc790e
SR
1746 if (!cookie)
1747 return -EBUSY;
1748
91e79d22 1749 if (hwpoison_filter(&folio->page)) {
00cc790e
SR
1750 rc = -EOPNOTSUPP;
1751 goto unlock;
1752 }
1753
1754 switch (pgmap->type) {
1755 case MEMORY_DEVICE_PRIVATE:
1756 case MEMORY_DEVICE_COHERENT:
1757 /*
1758 * TODO: Handle device pages which may need coordination
1759 * with device-side memory.
1760 */
1761 rc = -ENXIO;
1762 goto unlock;
1763 default:
1764 break;
1765 }
1766
1767 /*
1768 * Use this flag as an indication that the dax page has been
1769 * remapped UC to prevent speculative consumption of poison.
1770 */
91e79d22 1771 SetPageHWPoison(&folio->page);
00cc790e
SR
1772
1773 /*
1774 * Unlike System-RAM there is no possibility to swap in a
1775 * different physical page at a given virtual address, so all
1776 * userspace consumption of ZONE_DEVICE memory necessitates
1777 * SIGBUS (i.e. MF_MUST_KILL)
1778 */
1779 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
376907f3 1780 collect_procs(folio, &folio->page, &to_kill, true);
00cc790e 1781
91e79d22 1782 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
00cc790e 1783unlock:
91e79d22 1784 dax_unlock_folio(folio, cookie);
00cc790e
SR
1785 return rc;
1786}
1787
c36e2024
SR
1788#ifdef CONFIG_FS_DAX
1789/**
1790 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1791 * @mapping: address_space of the file in use
1792 * @index: start pgoff of the range within the file
1793 * @count: length of the range, in unit of PAGE_SIZE
1794 * @mf_flags: memory failure flags
1795 */
1796int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1797 unsigned long count, int mf_flags)
1798{
1799 LIST_HEAD(to_kill);
1800 dax_entry_t cookie;
1801 struct page *page;
1802 size_t end = index + count;
fa422b35 1803 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
c36e2024
SR
1804
1805 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1806
1807 for (; index < end; index++) {
1808 page = NULL;
1809 cookie = dax_lock_mapping_entry(mapping, index, &page);
1810 if (!cookie)
1811 return -EBUSY;
1812 if (!page)
1813 goto unlock;
1814
fa422b35
SR
1815 if (!pre_remove)
1816 SetPageHWPoison(page);
c36e2024 1817
fa422b35
SR
1818 /*
1819 * The pre_remove case is revoking access, the memory is still
1820 * good and could theoretically be put back into service.
1821 */
1822 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
c36e2024
SR
1823 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1824 index, mf_flags);
1825unlock:
1826 dax_unlock_mapping_entry(mapping, index, cookie);
1827 }
1828 return 0;
1829}
1830EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1831#endif /* CONFIG_FS_DAX */
1832
161df60e 1833#ifdef CONFIG_HUGETLB_PAGE
b79f8eb4 1834
161df60e
NH
1835/*
1836 * Struct raw_hwp_page represents information about "raw error page",
dad6a5eb 1837 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
161df60e
NH
1838 */
1839struct raw_hwp_page {
1840 struct llist_node node;
1841 struct page *page;
1842};
1843
b02e7582 1844static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
161df60e 1845{
b02e7582 1846 return (struct llist_head *)&folio->_hugetlb_hwpoison;
161df60e
NH
1847}
1848
b79f8eb4
JY
1849bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1850{
1851 struct llist_head *raw_hwp_head;
1852 struct raw_hwp_page *p;
1853 struct folio *folio = page_folio(page);
1854 bool ret = false;
1855
1856 if (!folio_test_hwpoison(folio))
1857 return false;
1858
1859 if (!folio_test_hugetlb(folio))
1860 return PageHWPoison(page);
1861
1862 /*
1863 * When RawHwpUnreliable is set, kernel lost track of which subpages
1864 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1865 */
1866 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1867 return true;
1868
1869 mutex_lock(&mf_mutex);
1870
1871 raw_hwp_head = raw_hwp_list_head(folio);
1872 llist_for_each_entry(p, raw_hwp_head->first, node) {
1873 if (page == p->page) {
1874 ret = true;
1875 break;
1876 }
1877 }
1878
1879 mutex_unlock(&mf_mutex);
1880
1881 return ret;
1882}
1883
0858b5eb 1884static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
161df60e 1885{
6379693e
ML
1886 struct llist_node *head;
1887 struct raw_hwp_page *p, *next;
ac5fcde0 1888 unsigned long count = 0;
161df60e 1889
9e130c4b 1890 head = llist_del_all(raw_hwp_list_head(folio));
6379693e 1891 llist_for_each_entry_safe(p, next, head, node) {
ac5fcde0
NH
1892 if (move_flag)
1893 SetPageHWPoison(p->page);
5033091d
NH
1894 else
1895 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
161df60e 1896 kfree(p);
ac5fcde0 1897 count++;
161df60e 1898 }
ac5fcde0 1899 return count;
161df60e
NH
1900}
1901
595dd818 1902static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
161df60e
NH
1903{
1904 struct llist_head *head;
1905 struct raw_hwp_page *raw_hwp;
6379693e 1906 struct raw_hwp_page *p, *next;
595dd818 1907 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
161df60e
NH
1908
1909 /*
1910 * Once the hwpoison hugepage has lost reliable raw error info,
1911 * there is little meaning to keep additional error info precisely,
1912 * so skip to add additional raw error info.
1913 */
b02e7582 1914 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1915 return -EHWPOISON;
b02e7582 1916 head = raw_hwp_list_head(folio);
6379693e 1917 llist_for_each_entry_safe(p, next, head->first, node) {
161df60e
NH
1918 if (p->page == page)
1919 return -EHWPOISON;
1920 }
1921
1922 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1923 if (raw_hwp) {
1924 raw_hwp->page = page;
1925 llist_add(&raw_hwp->node, head);
1926 /* the first error event will be counted in action_result(). */
1927 if (ret)
a46c9304 1928 num_poisoned_pages_inc(page_to_pfn(page));
161df60e
NH
1929 } else {
1930 /*
1931 * Failed to save raw error info. We no longer trace all
1932 * hwpoisoned subpages, and we need refuse to free/dissolve
1933 * this hwpoisoned hugepage.
1934 */
b02e7582 1935 folio_set_hugetlb_raw_hwp_unreliable(folio);
161df60e 1936 /*
b02e7582 1937 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
161df60e
NH
1938 * used any more, so free it.
1939 */
0858b5eb 1940 __folio_free_raw_hwp(folio, false);
161df60e
NH
1941 }
1942 return ret;
1943}
1944
9637d7df 1945static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
ac5fcde0
NH
1946{
1947 /*
9637d7df 1948 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
ac5fcde0
NH
1949 * pages for tail pages are required but they don't exist.
1950 */
9637d7df 1951 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
ac5fcde0
NH
1952 return 0;
1953
1954 /*
9637d7df 1955 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
ac5fcde0
NH
1956 * definition.
1957 */
9637d7df 1958 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
ac5fcde0
NH
1959 return 0;
1960
0858b5eb 1961 return __folio_free_raw_hwp(folio, move_flag);
ac5fcde0
NH
1962}
1963
2ff6cece 1964void folio_clear_hugetlb_hwpoison(struct folio *folio)
161df60e 1965{
2ff6cece 1966 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1967 return;
92a025a7
ML
1968 if (folio_test_hugetlb_vmemmap_optimized(folio))
1969 return;
2ff6cece 1970 folio_clear_hwpoison(folio);
9637d7df 1971 folio_free_raw_hwp(folio, true);
161df60e
NH
1972}
1973
405ce051
NH
1974/*
1975 * Called from hugetlb code with hugetlb_lock held.
1976 *
1977 * Return values:
1978 * 0 - free hugepage
1979 * 1 - in-use hugepage
1980 * 2 - not a hugepage
1981 * -EBUSY - the hugepage is busy (try to retry)
1982 * -EHWPOISON - the hugepage is already hwpoisoned
1983 */
e591ef7d
NH
1984int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1985 bool *migratable_cleared)
405ce051
NH
1986{
1987 struct page *page = pfn_to_page(pfn);
4c110ec9 1988 struct folio *folio = page_folio(page);
405ce051
NH
1989 int ret = 2; /* fallback to normal page handling */
1990 bool count_increased = false;
1991
4c110ec9 1992 if (!folio_test_hugetlb(folio))
405ce051
NH
1993 goto out;
1994
1995 if (flags & MF_COUNT_INCREASED) {
1996 ret = 1;
1997 count_increased = true;
4c110ec9 1998 } else if (folio_test_hugetlb_freed(folio)) {
b283d983 1999 ret = 0;
4c110ec9
SK
2000 } else if (folio_test_hugetlb_migratable(folio)) {
2001 ret = folio_try_get(folio);
405ce051
NH
2002 if (ret)
2003 count_increased = true;
2004 } else {
2005 ret = -EBUSY;
38f6d293
NH
2006 if (!(flags & MF_NO_RETRY))
2007 goto out;
405ce051
NH
2008 }
2009
595dd818 2010 if (folio_set_hugetlb_hwpoison(folio, page)) {
405ce051
NH
2011 ret = -EHWPOISON;
2012 goto out;
2013 }
2014
e591ef7d 2015 /*
4c110ec9 2016 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
e591ef7d
NH
2017 * from being migrated by memory hotremove.
2018 */
4c110ec9
SK
2019 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2020 folio_clear_hugetlb_migratable(folio);
e591ef7d
NH
2021 *migratable_cleared = true;
2022 }
2023
405ce051
NH
2024 return ret;
2025out:
2026 if (count_increased)
4c110ec9 2027 folio_put(folio);
405ce051
NH
2028 return ret;
2029}
2030
405ce051
NH
2031/*
2032 * Taking refcount of hugetlb pages needs extra care about race conditions
2033 * with basic operations like hugepage allocation/free/demotion.
2034 * So some of prechecks for hwpoison (pinning, and testing/setting
2035 * PageHWPoison) should be done in single hugetlb_lock range.
2036 */
2037static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 2038{
761ad8d7 2039 int res;
405ce051 2040 struct page *p = pfn_to_page(pfn);
bc1cfde1 2041 struct folio *folio;
761ad8d7 2042 unsigned long page_flags;
e591ef7d 2043 bool migratable_cleared = false;
761ad8d7 2044
405ce051
NH
2045 *hugetlb = 1;
2046retry:
e591ef7d 2047 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
405ce051
NH
2048 if (res == 2) { /* fallback to normal page handling */
2049 *hugetlb = 0;
2050 return 0;
2051 } else if (res == -EHWPOISON) {
96f96763 2052 pr_err("%#lx: already hardware poisoned\n", pfn);
405ce051 2053 if (flags & MF_ACTION_REQUIRED) {
bc1cfde1
SK
2054 folio = page_folio(p);
2055 res = kill_accessing_process(current, folio_pfn(folio), flags);
405ce051
NH
2056 }
2057 return res;
2058 } else if (res == -EBUSY) {
38f6d293
NH
2059 if (!(flags & MF_NO_RETRY)) {
2060 flags |= MF_NO_RETRY;
405ce051
NH
2061 goto retry;
2062 }
b66d00df 2063 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
761ad8d7
NH
2064 }
2065
bc1cfde1
SK
2066 folio = page_folio(p);
2067 folio_lock(folio);
405ce051
NH
2068
2069 if (hwpoison_filter(p)) {
2ff6cece 2070 folio_clear_hugetlb_hwpoison(folio);
e591ef7d 2071 if (migratable_cleared)
bc1cfde1
SK
2072 folio_set_hugetlb_migratable(folio);
2073 folio_unlock(folio);
f36a5543 2074 if (res == 1)
bc1cfde1 2075 folio_put(folio);
f36a5543 2076 return -EOPNOTSUPP;
405ce051
NH
2077 }
2078
405ce051
NH
2079 /*
2080 * Handling free hugepage. The possible race with hugepage allocation
2081 * or demotion can be prevented by PageHWPoison flag.
2082 */
2083 if (res == 0) {
bc1cfde1 2084 folio_unlock(folio);
ceaf8fbe 2085 if (__page_handle_poison(p) >= 0) {
405ce051
NH
2086 page_ref_inc(p);
2087 res = MF_RECOVERED;
ceaf8fbe
NH
2088 } else {
2089 res = MF_FAILED;
761ad8d7 2090 }
b66d00df 2091 return action_result(pfn, MF_MSG_FREE_HUGE, res);
761ad8d7
NH
2092 }
2093
bc1cfde1 2094 page_flags = folio->flags;
761ad8d7 2095
bc1cfde1
SK
2096 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2097 folio_unlock(folio);
b66d00df 2098 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
761ad8d7
NH
2099 }
2100
ea6d0630 2101 return identify_page_state(pfn, p, page_flags);
761ad8d7 2102}
00cc790e 2103
405ce051
NH
2104#else
2105static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2106{
2107 return 0;
2108}
00cc790e 2109
9637d7df 2110static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
ac5fcde0
NH
2111{
2112 return 0;
2113}
00cc790e 2114#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 2115
b5f1fc98
KW
2116/* Drop the extra refcount in case we come from madvise() */
2117static void put_ref_page(unsigned long pfn, int flags)
2118{
2119 struct page *page;
2120
2121 if (!(flags & MF_COUNT_INCREASED))
2122 return;
2123
2124 page = pfn_to_page(pfn);
2125 if (page)
2126 put_page(page);
2127}
2128
6100e34b
DW
2129static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2130 struct dev_pagemap *pgmap)
2131{
00cc790e 2132 int rc = -ENXIO;
6100e34b 2133
34dc45be 2134 /* device metadata space is not recoverable */
00cc790e 2135 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 2136 goto out;
61e28cf0 2137
6100e34b 2138 /*
33a8f7f2
SR
2139 * Call driver's implementation to handle the memory failure, otherwise
2140 * fall back to generic handler.
6100e34b 2141 */
65d3440e 2142 if (pgmap_has_memory_failure(pgmap)) {
33a8f7f2 2143 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
6100e34b 2144 /*
33a8f7f2
SR
2145 * Fall back to generic handler too if operation is not
2146 * supported inside the driver/device/filesystem.
6100e34b 2147 */
33a8f7f2
SR
2148 if (rc != -EOPNOTSUPP)
2149 goto out;
6100e34b
DW
2150 }
2151
00cc790e 2152 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
2153out:
2154 /* drop pgmap ref acquired in caller */
2155 put_dev_pagemap(pgmap);
80ee7cb2
ML
2156 if (rc != -EOPNOTSUPP)
2157 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
6100e34b
DW
2158 return rc;
2159}
2160
cd42f4a3
TL
2161/**
2162 * memory_failure - Handle memory failure of a page.
2163 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
2164 * @flags: fine tune action taken
2165 *
2166 * This function is called by the low level machine check code
2167 * of an architecture when it detects hardware memory corruption
2168 * of a page. It tries its best to recover, which includes
2169 * dropping pages, killing processes etc.
2170 *
2171 * The function is primarily of use for corruptions that
2172 * happen outside the current execution context (e.g. when
2173 * detected by a background scrubber)
2174 *
2175 * Must run in process context (e.g. a work queue) with interrupts
5885c6a6 2176 * enabled and no spinlocks held.
d1fe111f 2177 *
2178 * Return: 0 for successfully handled the memory error,
9113eaf3 2179 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
d1fe111f 2180 * < 0(except -EOPNOTSUPP) on failure.
cd42f4a3 2181 */
83b57531 2182int memory_failure(unsigned long pfn, int flags)
6a46079c 2183{
6a46079c 2184 struct page *p;
7af446a8 2185 struct page *hpage;
6100e34b 2186 struct dev_pagemap *pgmap;
171936dd 2187 int res = 0;
524fca1e 2188 unsigned long page_flags;
a8b2c2ce 2189 bool retry = true;
405ce051 2190 int hugetlb = 0;
6a46079c
AK
2191
2192 if (!sysctl_memory_failure_recovery)
83b57531 2193 panic("Memory failure on page %lx", pfn);
6a46079c 2194
03b122da
TL
2195 mutex_lock(&mf_mutex);
2196
67f22ba7 2197 if (!(flags & MF_SW_SIMULATED))
2198 hw_memory_failure = true;
2199
96c804a6
DH
2200 p = pfn_to_online_page(pfn);
2201 if (!p) {
03b122da
TL
2202 res = arch_memory_failure(pfn, flags);
2203 if (res == 0)
2204 goto unlock_mutex;
2205
96c804a6
DH
2206 if (pfn_valid(pfn)) {
2207 pgmap = get_dev_pagemap(pfn, NULL);
d51b6846 2208 put_ref_page(pfn, flags);
03b122da
TL
2209 if (pgmap) {
2210 res = memory_failure_dev_pagemap(pfn, flags,
2211 pgmap);
2212 goto unlock_mutex;
2213 }
96c804a6 2214 }
96f96763 2215 pr_err("%#lx: memory outside kernel control\n", pfn);
03b122da
TL
2216 res = -ENXIO;
2217 goto unlock_mutex;
6a46079c
AK
2218 }
2219
a8b2c2ce 2220try_again:
405ce051
NH
2221 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2222 if (hugetlb)
171936dd 2223 goto unlock_mutex;
171936dd 2224
6a46079c 2225 if (TestSetPageHWPoison(p)) {
96f96763 2226 pr_err("%#lx: already hardware poisoned\n", pfn);
47af12ba 2227 res = -EHWPOISON;
a3f5d80e
NH
2228 if (flags & MF_ACTION_REQUIRED)
2229 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
2230 if (flags & MF_COUNT_INCREASED)
2231 put_page(p);
171936dd 2232 goto unlock_mutex;
6a46079c
AK
2233 }
2234
6a46079c
AK
2235 /*
2236 * We need/can do nothing about count=0 pages.
2237 * 1) it's a free page, and therefore in safe hand:
9cf28191 2238 * check_new_page() will be the gate keeper.
761ad8d7 2239 * 2) it's part of a non-compound high order page.
6a46079c
AK
2240 * Implies some kernel user: cannot stop them from
2241 * R/W the page; let's pray that the page has been
2242 * used and will be freed some time later.
2243 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 2244 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 2245 */
0ed950d1
NH
2246 if (!(flags & MF_COUNT_INCREASED)) {
2247 res = get_hwpoison_page(p, flags);
2248 if (!res) {
2249 if (is_free_buddy_page(p)) {
2250 if (take_page_off_buddy(p)) {
2251 page_ref_inc(p);
2252 res = MF_RECOVERED;
2253 } else {
2254 /* We lost the race, try again */
2255 if (retry) {
2256 ClearPageHWPoison(p);
0ed950d1
NH
2257 retry = false;
2258 goto try_again;
2259 }
2260 res = MF_FAILED;
a8b2c2ce 2261 }
b66d00df 2262 res = action_result(pfn, MF_MSG_BUDDY, res);
0ed950d1 2263 } else {
b66d00df 2264 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
a8b2c2ce 2265 }
0ed950d1
NH
2266 goto unlock_mutex;
2267 } else if (res < 0) {
b66d00df 2268 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
0ed950d1 2269 goto unlock_mutex;
8d22ba1b 2270 }
6a46079c
AK
2271 }
2272
a363d122 2273 hpage = compound_head(p);
761ad8d7 2274 if (PageTransHuge(hpage)) {
eac96c3e
YS
2275 /*
2276 * The flag must be set after the refcount is bumped
2277 * otherwise it may race with THP split.
2278 * And the flag can't be set in get_hwpoison_page() since
2279 * it is called by soft offline too and it is just called
5885c6a6 2280 * for !MF_COUNT_INCREASED. So here seems to be the best
eac96c3e
YS
2281 * place.
2282 *
2283 * Don't need care about the above error handling paths for
2284 * get_hwpoison_page() since they handle either free page
2285 * or unhandlable page. The refcount is bumped iff the
2286 * page is a valid handlable page.
2287 */
2288 SetPageHasHWPoisoned(hpage);
2ace36f0 2289 if (try_to_split_thp_page(p) < 0) {
b66d00df 2290 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd 2291 goto unlock_mutex;
5d1fd5dc 2292 }
415c64c1 2293 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
2294 }
2295
e43c3afb
WF
2296 /*
2297 * We ignore non-LRU pages for good reasons.
2298 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 2299 * - to avoid races with __SetPageLocked()
e43c3afb
WF
2300 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2301 * The check (unnecessarily) ignores LRU pages being isolated and
2302 * walked by the page reclaim code, however that's not a big loss.
2303 */
d0505e9f 2304 shake_page(p);
e43c3afb 2305
761ad8d7 2306 lock_page(p);
847ce401 2307
f37d4298 2308 /*
75ee64b3
ML
2309 * We're only intended to deal with the non-Compound page here.
2310 * However, the page could have changed compound pages due to
2311 * race window. If this happens, we could try again to hopefully
2312 * handle the page next round.
f37d4298 2313 */
75ee64b3
ML
2314 if (PageCompound(p)) {
2315 if (retry) {
e240ac52 2316 ClearPageHWPoison(p);
75ee64b3
ML
2317 unlock_page(p);
2318 put_page(p);
2319 flags &= ~MF_COUNT_INCREASED;
2320 retry = false;
2321 goto try_again;
2322 }
b66d00df 2323 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
171936dd 2324 goto unlock_page;
f37d4298
AK
2325 }
2326
524fca1e
NH
2327 /*
2328 * We use page flags to determine what action should be taken, but
2329 * the flags can be modified by the error containment action. One
2330 * example is an mlocked page, where PG_mlocked is cleared by
4d8f7418
DH
2331 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2332 * status correctly, we save a copy of the page flags at this time.
524fca1e 2333 */
7d9d46ac 2334 page_flags = p->flags;
524fca1e 2335
7c116f2b 2336 if (hwpoison_filter(p)) {
2fe62e22 2337 ClearPageHWPoison(p);
761ad8d7 2338 unlock_page(p);
dd6e2402 2339 put_page(p);
d1fe111f 2340 res = -EOPNOTSUPP;
171936dd 2341 goto unlock_mutex;
7c116f2b 2342 }
847ce401 2343
e8675d29 2344 /*
e0650a41 2345 * __munlock_folio() may clear a writeback page's LRU flag without
e8675d29 2346 * page_lock. We need wait writeback completion for this page or it
2347 * may trigger vfs BUG while evict inode.
2348 */
b04d3eeb 2349 if (!PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
2350 goto identify_page_state;
2351
6edd6cc6
NH
2352 /*
2353 * It's very difficult to mess with pages currently under IO
2354 * and in many cases impossible, so we just avoid it here.
2355 */
6a46079c
AK
2356 wait_on_page_writeback(p);
2357
2358 /*
2359 * Now take care of user space mappings.
6ffcd825 2360 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
6a46079c 2361 */
ed8c2f49 2362 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
b66d00df 2363 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
171936dd 2364 goto unlock_page;
1668bfd5 2365 }
6a46079c
AK
2366
2367 /*
2368 * Torn down by someone else?
2369 */
dc2a1cbf 2370 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
b66d00df 2371 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
171936dd 2372 goto unlock_page;
6a46079c
AK
2373 }
2374
0bc1f8b0 2375identify_page_state:
0348d2eb 2376 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
2377 mutex_unlock(&mf_mutex);
2378 return res;
171936dd 2379unlock_page:
761ad8d7 2380 unlock_page(p);
171936dd
TL
2381unlock_mutex:
2382 mutex_unlock(&mf_mutex);
6a46079c
AK
2383 return res;
2384}
cd42f4a3 2385EXPORT_SYMBOL_GPL(memory_failure);
847ce401 2386
ea8f5fb8
HY
2387#define MEMORY_FAILURE_FIFO_ORDER 4
2388#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2389
2390struct memory_failure_entry {
2391 unsigned long pfn;
ea8f5fb8
HY
2392 int flags;
2393};
2394
2395struct memory_failure_cpu {
2396 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2397 MEMORY_FAILURE_FIFO_SIZE);
2398 spinlock_t lock;
2399 struct work_struct work;
2400};
2401
2402static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2403
2404/**
2405 * memory_failure_queue - Schedule handling memory failure of a page.
2406 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2407 * @flags: Flags for memory failure handling
2408 *
2409 * This function is called by the low level hardware error handler
2410 * when it detects hardware memory corruption of a page. It schedules
2411 * the recovering of error page, including dropping pages, killing
2412 * processes etc.
2413 *
2414 * The function is primarily of use for corruptions that
2415 * happen outside the current execution context (e.g. when
2416 * detected by a background scrubber)
2417 *
2418 * Can run in IRQ context.
2419 */
83b57531 2420void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2421{
2422 struct memory_failure_cpu *mf_cpu;
2423 unsigned long proc_flags;
2424 struct memory_failure_entry entry = {
2425 .pfn = pfn,
ea8f5fb8
HY
2426 .flags = flags,
2427 };
2428
2429 mf_cpu = &get_cpu_var(memory_failure_cpu);
2430 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 2431 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
2432 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2433 else
96f96763 2434 pr_err("buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
2435 pfn);
2436 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2437 put_cpu_var(memory_failure_cpu);
2438}
2439EXPORT_SYMBOL_GPL(memory_failure_queue);
2440
2441static void memory_failure_work_func(struct work_struct *work)
2442{
2443 struct memory_failure_cpu *mf_cpu;
2444 struct memory_failure_entry entry = { 0, };
2445 unsigned long proc_flags;
2446 int gotten;
2447
06202231 2448 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
2449 for (;;) {
2450 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2451 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2452 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2453 if (!gotten)
2454 break;
cf870c70 2455 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2456 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2457 else
83b57531 2458 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2459 }
2460}
2461
06202231
JM
2462/*
2463 * Process memory_failure work queued on the specified CPU.
2464 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2465 */
2466void memory_failure_queue_kick(int cpu)
2467{
2468 struct memory_failure_cpu *mf_cpu;
2469
2470 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2471 cancel_work_sync(&mf_cpu->work);
2472 memory_failure_work_func(&mf_cpu->work);
2473}
2474
ea8f5fb8
HY
2475static int __init memory_failure_init(void)
2476{
2477 struct memory_failure_cpu *mf_cpu;
2478 int cpu;
2479
2480 for_each_possible_cpu(cpu) {
2481 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2482 spin_lock_init(&mf_cpu->lock);
2483 INIT_KFIFO(mf_cpu->fifo);
2484 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2485 }
2486
97de10a9
KW
2487 register_sysctl_init("vm", memory_failure_table);
2488
ea8f5fb8
HY
2489 return 0;
2490}
2491core_initcall(memory_failure_init);
2492
96f96763
KW
2493#undef pr_fmt
2494#define pr_fmt(fmt) "" fmt
a5f65109
NH
2495#define unpoison_pr_info(fmt, pfn, rs) \
2496({ \
2497 if (__ratelimit(rs)) \
2498 pr_info(fmt, pfn); \
2499})
2500
847ce401
WF
2501/**
2502 * unpoison_memory - Unpoison a previously poisoned page
2503 * @pfn: Page number of the to be unpoisoned page
2504 *
2505 * Software-unpoison a page that has been poisoned by
2506 * memory_failure() earlier.
2507 *
2508 * This is only done on the software-level, so it only works
2509 * for linux injected failures, not real hardware failures
2510 *
2511 * Returns 0 for success, otherwise -errno.
2512 */
2513int unpoison_memory(unsigned long pfn)
2514{
9637d7df 2515 struct folio *folio;
847ce401 2516 struct page *p;
f29623e4 2517 int ret = -EBUSY, ghp;
ac5fcde0 2518 unsigned long count = 1;
5033091d 2519 bool huge = false;
a5f65109
NH
2520 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2521 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2522
2523 if (!pfn_valid(pfn))
2524 return -ENXIO;
2525
2526 p = pfn_to_page(pfn);
9637d7df 2527 folio = page_folio(p);
847ce401 2528
91d00547
NH
2529 mutex_lock(&mf_mutex);
2530
67f22ba7 2531 if (hw_memory_failure) {
2532 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2533 pfn, &unpoison_rs);
2534 ret = -EOPNOTSUPP;
2535 goto unlock_mutex;
2536 }
2537
6c54312f 2538 if (!PageHWPoison(p)) {
495367c0 2539 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2540 pfn, &unpoison_rs);
91d00547 2541 goto unlock_mutex;
847ce401
WF
2542 }
2543
a6fddef4 2544 if (folio_ref_count(folio) > 1) {
495367c0 2545 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2546 pfn, &unpoison_rs);
91d00547 2547 goto unlock_mutex;
230ac719
NH
2548 }
2549
7a8817f2
ML
2550 if (folio_test_slab(folio) || PageTable(&folio->page) ||
2551 folio_test_reserved(folio) || PageOffline(&folio->page))
faeb2ff2
ML
2552 goto unlock_mutex;
2553
2554 /*
2555 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2556 * in folio_mapped() has to be done after folio_test_slab() is checked.
2557 */
a6fddef4 2558 if (folio_mapped(folio)) {
495367c0 2559 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2560 pfn, &unpoison_rs);
91d00547 2561 goto unlock_mutex;
230ac719
NH
2562 }
2563
a6fddef4 2564 if (folio_mapping(folio)) {
495367c0 2565 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2566 pfn, &unpoison_rs);
91d00547 2567 goto unlock_mutex;
0cea3fdc
WL
2568 }
2569
f29623e4
ML
2570 ghp = get_hwpoison_page(p, MF_UNPOISON);
2571 if (!ghp) {
ac5fcde0 2572 if (PageHuge(p)) {
5033091d 2573 huge = true;
9637d7df 2574 count = folio_free_raw_hwp(folio, false);
f29623e4 2575 if (count == 0)
ac5fcde0 2576 goto unlock_mutex;
ac5fcde0 2577 }
a6fddef4 2578 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
f29623e4
ML
2579 } else if (ghp < 0) {
2580 if (ghp == -EHWPOISON) {
c8bd84f7 2581 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
f29623e4
ML
2582 } else {
2583 ret = ghp;
bf181c58
NH
2584 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2585 pfn, &unpoison_rs);
f29623e4 2586 }
bf181c58 2587 } else {
ac5fcde0 2588 if (PageHuge(p)) {
5033091d 2589 huge = true;
9637d7df 2590 count = folio_free_raw_hwp(folio, false);
ac5fcde0 2591 if (count == 0) {
a6fddef4 2592 folio_put(folio);
ac5fcde0
NH
2593 goto unlock_mutex;
2594 }
2595 }
847ce401 2596
a6fddef4 2597 folio_put(folio);
e0ff4280 2598 if (TestClearPageHWPoison(p)) {
a6fddef4 2599 folio_put(folio);
bf181c58
NH
2600 ret = 0;
2601 }
2602 }
847ce401 2603
91d00547
NH
2604unlock_mutex:
2605 mutex_unlock(&mf_mutex);
e0ff4280 2606 if (!ret) {
5033091d
NH
2607 if (!huge)
2608 num_poisoned_pages_sub(pfn, 1);
c8bd84f7 2609 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2610 page_to_pfn(p), &unpoison_rs);
2611 }
91d00547 2612 return ret;
847ce401
WF
2613}
2614EXPORT_SYMBOL(unpoison_memory);
facb6011 2615
761d79fb 2616static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
d950b958 2617{
6b9a217e 2618 bool isolated = false;
d950b958 2619
761d79fb
MWO
2620 if (folio_test_hugetlb(folio)) {
2621 isolated = isolate_hugetlb(folio, pagelist);
6b9a217e 2622 } else {
761d79fb 2623 bool lru = !__folio_test_movable(folio);
da294991 2624
6b9a217e 2625 if (lru)
761d79fb 2626 isolated = folio_isolate_lru(folio);
6b9a217e 2627 else
761d79fb 2628 isolated = isolate_movable_page(&folio->page,
cd775580 2629 ISOLATE_UNEVICTABLE);
6b9a217e 2630
da294991 2631 if (isolated) {
761d79fb 2632 list_add(&folio->lru, pagelist);
da294991 2633 if (lru)
761d79fb
MWO
2634 node_stat_add_folio(folio, NR_ISOLATED_ANON +
2635 folio_is_file_lru(folio));
da294991 2636 }
0ebff32c 2637 }
d950b958 2638
03613808 2639 /*
761d79fb
MWO
2640 * If we succeed to isolate the folio, we grabbed another refcount on
2641 * the folio, so we can safely drop the one we got from get_any_page().
2642 * If we failed to isolate the folio, it means that we cannot go further
6b9a217e 2643 * and we will return an error, so drop the reference we got from
5885c6a6 2644 * get_any_page() as well.
03613808 2645 */
761d79fb 2646 folio_put(folio);
6b9a217e 2647 return isolated;
d950b958
NH
2648}
2649
6b9a217e 2650/*
48309e1f 2651 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
6b9a217e
OS
2652 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2653 * If the page is mapped, it migrates the contents over.
2654 */
48309e1f 2655static int soft_offline_in_use_page(struct page *page)
af8fae7c 2656{
d6c75dc2 2657 long ret = 0;
af8fae7c 2658 unsigned long pfn = page_to_pfn(page);
049b2604 2659 struct folio *folio = page_folio(page);
6b9a217e 2660 char const *msg_page[] = {"page", "hugepage"};
049b2604 2661 bool huge = folio_test_hugetlb(folio);
6b9a217e 2662 LIST_HEAD(pagelist);
54608759
JK
2663 struct migration_target_control mtc = {
2664 .nid = NUMA_NO_NODE,
2665 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2666 };
facb6011 2667
049b2604 2668 if (!huge && folio_test_large(folio)) {
48309e1f
KW
2669 if (try_to_split_thp_page(page)) {
2670 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2671 return -EBUSY;
2672 }
049b2604 2673 folio = page_folio(page);
48309e1f
KW
2674 }
2675
049b2604 2676 folio_lock(folio);
55c7ac45 2677 if (!huge)
049b2604 2678 folio_wait_writeback(folio);
af8fae7c 2679 if (PageHWPoison(page)) {
049b2604
MWO
2680 folio_unlock(folio);
2681 folio_put(folio);
af8fae7c 2682 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2683 return 0;
af8fae7c 2684 }
6b9a217e 2685
049b2604 2686 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
6b9a217e
OS
2687 /*
2688 * Try to invalidate first. This should work for
2689 * non dirty unmapped page cache pages.
2690 */
049b2604
MWO
2691 ret = mapping_evict_folio(folio_mapping(folio), folio);
2692 folio_unlock(folio);
6b9a217e 2693
6b9a217e 2694 if (ret) {
fb46e735 2695 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2696 page_handle_poison(page, false, true);
af8fae7c 2697 return 0;
facb6011
AK
2698 }
2699
761d79fb 2700 if (mf_isolate_folio(folio, &pagelist)) {
54608759 2701 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2702 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2703 if (!ret) {
6b9a217e
OS
2704 bool release = !huge;
2705
2706 if (!page_handle_poison(page, huge, release))
2707 ret = -EBUSY;
79f5f8fa 2708 } else {
85fbe5d1
YX
2709 if (!list_empty(&pagelist))
2710 putback_movable_pages(&pagelist);
59c82b70 2711
d6c75dc2 2712 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2713 pfn, msg_page[huge], ret, &page->flags);
facb6011 2714 if (ret > 0)
3f4b815a 2715 ret = -EBUSY;
facb6011
AK
2716 }
2717 } else {
23efd080
MWO
2718 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2719 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2720 ret = -EBUSY;
facb6011 2721 }
facb6011
AK
2722 return ret;
2723}
86e05773
WL
2724
2725/**
2726 * soft_offline_page - Soft offline a page.
feec24a6 2727 * @pfn: pfn to soft-offline
86e05773
WL
2728 * @flags: flags. Same as memory_failure().
2729 *
9113eaf3 2730 * Returns 0 on success
2731 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2732 * < 0 otherwise negated errno.
86e05773
WL
2733 *
2734 * Soft offline a page, by migration or invalidation,
2735 * without killing anything. This is for the case when
2736 * a page is not corrupted yet (so it's still valid to access),
2737 * but has had a number of corrected errors and is better taken
2738 * out.
2739 *
2740 * The actual policy on when to do that is maintained by
2741 * user space.
2742 *
2743 * This should never impact any application or cause data loss,
2744 * however it might take some time.
2745 *
2746 * This is not a 100% solution for all memory, but tries to be
2747 * ``good enough'' for the majority of memory.
2748 */
feec24a6 2749int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2750{
2751 int ret;
b94e0282 2752 bool try_again = true;
b5f1fc98 2753 struct page *page;
dad4e5b3 2754
183a7c5d
KW
2755 if (!pfn_valid(pfn)) {
2756 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
feec24a6 2757 return -ENXIO;
183a7c5d 2758 }
dad4e5b3 2759
feec24a6
NH
2760 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2761 page = pfn_to_online_page(pfn);
dad4e5b3 2762 if (!page) {
b5f1fc98 2763 put_ref_page(pfn, flags);
86a66810 2764 return -EIO;
dad4e5b3 2765 }
86a66810 2766
91d00547
NH
2767 mutex_lock(&mf_mutex);
2768
86e05773 2769 if (PageHWPoison(page)) {
8295d535 2770 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
b5f1fc98 2771 put_ref_page(pfn, flags);
91d00547 2772 mutex_unlock(&mf_mutex);
5a2ffca3 2773 return 0;
86e05773 2774 }
86e05773 2775
b94e0282 2776retry:
bfc8c901 2777 get_online_mems();
bf6445bc 2778 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2779 put_online_mems();
4e41a30c 2780
9113eaf3 2781 if (hwpoison_filter(page)) {
2782 if (ret > 0)
2783 put_page(page);
9113eaf3 2784
2785 mutex_unlock(&mf_mutex);
2786 return -EOPNOTSUPP;
2787 }
2788
8295d535 2789 if (ret > 0) {
6b9a217e 2790 ret = soft_offline_in_use_page(page);
8295d535 2791 } else if (ret == 0) {
e2c1ab07
ML
2792 if (!page_handle_poison(page, true, false)) {
2793 if (try_again) {
2794 try_again = false;
2795 flags &= ~MF_COUNT_INCREASED;
2796 goto retry;
2797 }
2798 ret = -EBUSY;
b94e0282 2799 }
8295d535 2800 }
4e41a30c 2801
91d00547
NH
2802 mutex_unlock(&mf_mutex);
2803
86e05773
WL
2804 return ret;
2805}