Commit | Line | Data |
---|---|---|
c942fddf | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
8cdea7c0 BS |
2 | /* memcontrol.c - Memory Controller |
3 | * | |
4 | * Copyright IBM Corporation, 2007 | |
5 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | |
6 | * | |
78fb7466 PE |
7 | * Copyright 2007 OpenVZ SWsoft Inc |
8 | * Author: Pavel Emelianov <xemul@openvz.org> | |
9 | * | |
2e72b634 KS |
10 | * Memory thresholds |
11 | * Copyright (C) 2009 Nokia Corporation | |
12 | * Author: Kirill A. Shutemov | |
13 | * | |
7ae1e1d0 GC |
14 | * Kernel Memory Controller |
15 | * Copyright (C) 2012 Parallels Inc. and Google Inc. | |
16 | * Authors: Glauber Costa and Suleiman Souhlal | |
17 | * | |
1575e68b JW |
18 | * Native page reclaim |
19 | * Charge lifetime sanitation | |
20 | * Lockless page tracking & accounting | |
21 | * Unified hierarchy configuration model | |
22 | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner | |
6168d0da AS |
23 | * |
24 | * Per memcg lru locking | |
25 | * Copyright (C) 2020 Alibaba, Inc, Alex Shi | |
8cdea7c0 BS |
26 | */ |
27 | ||
c6f53ed8 | 28 | #include <linux/cgroup-defs.h> |
3e32cb2e | 29 | #include <linux/page_counter.h> |
8cdea7c0 BS |
30 | #include <linux/memcontrol.h> |
31 | #include <linux/cgroup.h> | |
7d709f49 | 32 | #include <linux/cpuset.h> |
6e84f315 | 33 | #include <linux/sched/mm.h> |
3a4f8a0b | 34 | #include <linux/shmem_fs.h> |
4ffef5fe | 35 | #include <linux/hugetlb.h> |
d13d1443 | 36 | #include <linux/pagemap.h> |
4882c809 | 37 | #include <linux/pagevec.h> |
1ff9e6e1 | 38 | #include <linux/vm_event_item.h> |
d52aa412 | 39 | #include <linux/smp.h> |
8a9f3ccd | 40 | #include <linux/page-flags.h> |
66e1707b | 41 | #include <linux/backing-dev.h> |
8a9f3ccd BS |
42 | #include <linux/bit_spinlock.h> |
43 | #include <linux/rcupdate.h> | |
e222432b | 44 | #include <linux/limits.h> |
b9e15baf | 45 | #include <linux/export.h> |
c6f53ed8 | 46 | #include <linux/list.h> |
8c7c6e34 | 47 | #include <linux/mutex.h> |
bb4cc1a8 | 48 | #include <linux/rbtree.h> |
b6ac57d5 | 49 | #include <linux/slab.h> |
02491447 | 50 | #include <linux/swapops.h> |
66e1707b BS |
51 | #include <linux/spinlock.h> |
52 | #include <linux/fs.h> | |
d2ceb9b7 | 53 | #include <linux/seq_file.h> |
70ddf637 | 54 | #include <linux/vmpressure.h> |
dc90f084 | 55 | #include <linux/memremap.h> |
b69408e8 | 56 | #include <linux/mm_inline.h> |
5d1ea48b | 57 | #include <linux/swap_cgroup.h> |
cdec2e42 | 58 | #include <linux/cpu.h> |
158e0a2d | 59 | #include <linux/oom.h> |
0056f4e6 | 60 | #include <linux/lockdep.h> |
03248add | 61 | #include <linux/resume_user_mode.h> |
0e4b01df | 62 | #include <linux/psi.h> |
c8713d0b | 63 | #include <linux/seq_buf.h> |
6a792697 | 64 | #include <linux/sched/isolation.h> |
6011be59 | 65 | #include <linux/kmemleak.h> |
08e552c6 | 66 | #include "internal.h" |
d1a4c0b3 | 67 | #include <net/sock.h> |
4bd2c1ee | 68 | #include <net/ip.h> |
f35c3a8e | 69 | #include "slab.h" |
d12f6d22 | 70 | #include "memcontrol-v1.h" |
8cdea7c0 | 71 | |
7c0f6ba6 | 72 | #include <linux/uaccess.h> |
8697d331 | 73 | |
0aa3ef36 SB |
74 | #define CREATE_TRACE_POINTS |
75 | #include <trace/events/memcg.h> | |
76 | #undef CREATE_TRACE_POINTS | |
77 | ||
cc8e970c KM |
78 | #include <trace/events/vmscan.h> |
79 | ||
073219e9 TH |
80 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; |
81 | EXPORT_SYMBOL(memory_cgrp_subsys); | |
68ae564b | 82 | |
7d828602 JW |
83 | struct mem_cgroup *root_mem_cgroup __read_mostly; |
84 | ||
37d5985c RG |
85 | /* Active memory cgroup to use from an interrupt context */ |
86 | DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); | |
c74d40e8 | 87 | EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); |
37d5985c | 88 | |
f7e1cb6e | 89 | /* Socket memory accounting disabled? */ |
0f0cace3 | 90 | static bool cgroup_memory_nosocket __ro_after_init; |
f7e1cb6e | 91 | |
04823c83 | 92 | /* Kernel memory accounting disabled? */ |
17c17367 | 93 | static bool cgroup_memory_nokmem __ro_after_init; |
04823c83 | 94 | |
b6c1a8af YS |
95 | /* BPF memory accounting disabled? */ |
96 | static bool cgroup_memory_nobpf __ro_after_init; | |
97 | ||
97e4fc4b | 98 | static struct kmem_cache *memcg_cachep; |
1b6a58e2 | 99 | static struct kmem_cache *memcg_pn_cachep; |
97e4fc4b | 100 | |
97b27821 TH |
101 | #ifdef CONFIG_CGROUP_WRITEBACK |
102 | static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); | |
103 | #endif | |
104 | ||
a4ebf1b6 | 105 | static inline bool task_is_dying(void) |
7775face TH |
106 | { |
107 | return tsk_is_oom_victim(current) || fatal_signal_pending(current) || | |
108 | (current->flags & PF_EXITING); | |
109 | } | |
110 | ||
70ddf637 AV |
111 | /* Some nice accessors for the vmpressure. */ |
112 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | |
113 | { | |
114 | if (!memcg) | |
115 | memcg = root_mem_cgroup; | |
116 | return &memcg->vmpressure; | |
117 | } | |
118 | ||
9647875b | 119 | struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) |
70ddf637 | 120 | { |
9647875b | 121 | return container_of(vmpr, struct mem_cgroup, vmpressure); |
70ddf637 AV |
122 | } |
123 | ||
8717734f | 124 | #define SEQ_BUF_SIZE SZ_4K |
1aacbd35 RG |
125 | #define CURRENT_OBJCG_UPDATE_BIT 0 |
126 | #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) | |
127 | ||
0764db9b | 128 | static DEFINE_SPINLOCK(objcg_lock); |
bf4f0599 | 129 | |
4d5c8aed RG |
130 | bool mem_cgroup_kmem_disabled(void) |
131 | { | |
132 | return cgroup_memory_nokmem; | |
133 | } | |
134 | ||
b6d04711 | 135 | static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); |
c1a660de | 136 | |
bf4f0599 RG |
137 | static void obj_cgroup_release(struct percpu_ref *ref) |
138 | { | |
139 | struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); | |
bf4f0599 RG |
140 | unsigned int nr_bytes; |
141 | unsigned int nr_pages; | |
142 | unsigned long flags; | |
143 | ||
144 | /* | |
145 | * At this point all allocated objects are freed, and | |
146 | * objcg->nr_charged_bytes can't have an arbitrary byte value. | |
147 | * However, it can be PAGE_SIZE or (x * PAGE_SIZE). | |
148 | * | |
149 | * The following sequence can lead to it: | |
150 | * 1) CPU0: objcg == stock->cached_objcg | |
151 | * 2) CPU1: we do a small allocation (e.g. 92 bytes), | |
152 | * PAGE_SIZE bytes are charged | |
153 | * 3) CPU1: a process from another memcg is allocating something, | |
154 | * the stock if flushed, | |
155 | * objcg->nr_charged_bytes = PAGE_SIZE - 92 | |
156 | * 5) CPU0: we do release this object, | |
157 | * 92 bytes are added to stock->nr_bytes | |
158 | * 6) CPU0: stock is flushed, | |
159 | * 92 bytes are added to objcg->nr_charged_bytes | |
160 | * | |
161 | * In the result, nr_charged_bytes == PAGE_SIZE. | |
162 | * This page will be uncharged in obj_cgroup_release(). | |
163 | */ | |
164 | nr_bytes = atomic_read(&objcg->nr_charged_bytes); | |
165 | WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); | |
166 | nr_pages = nr_bytes >> PAGE_SHIFT; | |
167 | ||
b6d04711 SB |
168 | if (nr_pages) { |
169 | struct mem_cgroup *memcg; | |
170 | ||
171 | memcg = get_mem_cgroup_from_objcg(objcg); | |
172 | mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); | |
173 | memcg1_account_kmem(memcg, -nr_pages); | |
174 | if (!mem_cgroup_is_root(memcg)) | |
175 | memcg_uncharge(memcg, nr_pages); | |
176 | mem_cgroup_put(memcg); | |
177 | } | |
271dd6b1 | 178 | |
0764db9b | 179 | spin_lock_irqsave(&objcg_lock, flags); |
bf4f0599 | 180 | list_del(&objcg->list); |
0764db9b | 181 | spin_unlock_irqrestore(&objcg_lock, flags); |
bf4f0599 RG |
182 | |
183 | percpu_ref_exit(ref); | |
184 | kfree_rcu(objcg, rcu); | |
185 | } | |
186 | ||
187 | static struct obj_cgroup *obj_cgroup_alloc(void) | |
188 | { | |
189 | struct obj_cgroup *objcg; | |
190 | int ret; | |
191 | ||
192 | objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); | |
193 | if (!objcg) | |
194 | return NULL; | |
195 | ||
196 | ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, | |
197 | GFP_KERNEL); | |
198 | if (ret) { | |
199 | kfree(objcg); | |
200 | return NULL; | |
201 | } | |
202 | INIT_LIST_HEAD(&objcg->list); | |
203 | return objcg; | |
204 | } | |
205 | ||
206 | static void memcg_reparent_objcgs(struct mem_cgroup *memcg, | |
207 | struct mem_cgroup *parent) | |
208 | { | |
209 | struct obj_cgroup *objcg, *iter; | |
210 | ||
211 | objcg = rcu_replace_pointer(memcg->objcg, NULL, true); | |
212 | ||
0764db9b | 213 | spin_lock_irq(&objcg_lock); |
bf4f0599 | 214 | |
9838354e MS |
215 | /* 1) Ready to reparent active objcg. */ |
216 | list_add(&objcg->list, &memcg->objcg_list); | |
217 | /* 2) Reparent active objcg and already reparented objcgs to parent. */ | |
218 | list_for_each_entry(iter, &memcg->objcg_list, list) | |
219 | WRITE_ONCE(iter->memcg, parent); | |
220 | /* 3) Move already reparented objcgs to the parent's list */ | |
bf4f0599 RG |
221 | list_splice(&memcg->objcg_list, &parent->objcg_list); |
222 | ||
0764db9b | 223 | spin_unlock_irq(&objcg_lock); |
bf4f0599 RG |
224 | |
225 | percpu_ref_kill(&objcg->refcnt); | |
226 | } | |
227 | ||
d7f25f8a GC |
228 | /* |
229 | * A lot of the calls to the cache allocation functions are expected to be | |
9f9796b4 | 230 | * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are |
d7f25f8a GC |
231 | * conditional to this static branch, we'll have to allow modules that does |
232 | * kmem_cache_alloc and the such to see this symbol as well | |
233 | */ | |
f7a449f7 RG |
234 | DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); |
235 | EXPORT_SYMBOL(memcg_kmem_online_key); | |
b6c1a8af YS |
236 | |
237 | DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); | |
238 | EXPORT_SYMBOL(memcg_bpf_enabled_key); | |
17cc4dfe | 239 | |
ad7fa852 | 240 | /** |
75376c6f MWO |
241 | * mem_cgroup_css_from_folio - css of the memcg associated with a folio |
242 | * @folio: folio of interest | |
ad7fa852 TH |
243 | * |
244 | * If memcg is bound to the default hierarchy, css of the memcg associated | |
75376c6f | 245 | * with @folio is returned. The returned css remains associated with @folio |
ad7fa852 TH |
246 | * until it is released. |
247 | * | |
248 | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup | |
249 | * is returned. | |
ad7fa852 | 250 | */ |
75376c6f | 251 | struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) |
ad7fa852 | 252 | { |
75376c6f | 253 | struct mem_cgroup *memcg = folio_memcg(folio); |
ad7fa852 | 254 | |
9e10a130 | 255 | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
ad7fa852 TH |
256 | memcg = root_mem_cgroup; |
257 | ||
ad7fa852 TH |
258 | return &memcg->css; |
259 | } | |
260 | ||
2fc04524 VD |
261 | /** |
262 | * page_cgroup_ino - return inode number of the memcg a page is charged to | |
263 | * @page: the page | |
264 | * | |
265 | * Look up the closest online ancestor of the memory cgroup @page is charged to | |
266 | * and return its inode number or 0 if @page is not charged to any cgroup. It | |
267 | * is safe to call this function without holding a reference to @page. | |
268 | * | |
269 | * Note, this function is inherently racy, because there is nothing to prevent | |
270 | * the cgroup inode from getting torn down and potentially reallocated a moment | |
271 | * after page_cgroup_ino() returns, so it only should be used by callers that | |
272 | * do not care (such as procfs interfaces). | |
273 | */ | |
274 | ino_t page_cgroup_ino(struct page *page) | |
275 | { | |
276 | struct mem_cgroup *memcg; | |
277 | unsigned long ino = 0; | |
278 | ||
279 | rcu_read_lock(); | |
ec342603 YA |
280 | /* page_folio() is racy here, but the entire function is racy anyway */ |
281 | memcg = folio_memcg_check(page_folio(page)); | |
286e04b8 | 282 | |
2fc04524 VD |
283 | while (memcg && !(memcg->css.flags & CSS_ONLINE)) |
284 | memcg = parent_mem_cgroup(memcg); | |
285 | if (memcg) | |
286 | ino = cgroup_ino(memcg->css.cgroup); | |
287 | rcu_read_unlock(); | |
288 | return ino; | |
289 | } | |
290 | ||
ff48c71c SB |
291 | /* Subset of node_stat_item for memcg stats */ |
292 | static const unsigned int memcg_node_stat_items[] = { | |
293 | NR_INACTIVE_ANON, | |
294 | NR_ACTIVE_ANON, | |
295 | NR_INACTIVE_FILE, | |
296 | NR_ACTIVE_FILE, | |
297 | NR_UNEVICTABLE, | |
298 | NR_SLAB_RECLAIMABLE_B, | |
299 | NR_SLAB_UNRECLAIMABLE_B, | |
300 | WORKINGSET_REFAULT_ANON, | |
301 | WORKINGSET_REFAULT_FILE, | |
302 | WORKINGSET_ACTIVATE_ANON, | |
303 | WORKINGSET_ACTIVATE_FILE, | |
304 | WORKINGSET_RESTORE_ANON, | |
305 | WORKINGSET_RESTORE_FILE, | |
306 | WORKINGSET_NODERECLAIM, | |
307 | NR_ANON_MAPPED, | |
308 | NR_FILE_MAPPED, | |
309 | NR_FILE_PAGES, | |
310 | NR_FILE_DIRTY, | |
311 | NR_WRITEBACK, | |
312 | NR_SHMEM, | |
313 | NR_SHMEM_THPS, | |
314 | NR_FILE_THPS, | |
315 | NR_ANON_THPS, | |
316 | NR_KERNEL_STACK_KB, | |
317 | NR_PAGETABLE, | |
318 | NR_SECONDARY_PAGETABLE, | |
319 | #ifdef CONFIG_SWAP | |
320 | NR_SWAPCACHE, | |
321 | #endif | |
f77f0c75 KZ |
322 | #ifdef CONFIG_NUMA_BALANCING |
323 | PGPROMOTE_SUCCESS, | |
324 | #endif | |
325 | PGDEMOTE_KSWAPD, | |
326 | PGDEMOTE_DIRECT, | |
327 | PGDEMOTE_KHUGEPAGED, | |
e452872b | 328 | PGDEMOTE_PROACTIVE, |
05d4532b JH |
329 | #ifdef CONFIG_HUGETLB_PAGE |
330 | NR_HUGETLB, | |
331 | #endif | |
ff48c71c SB |
332 | }; |
333 | ||
334 | static const unsigned int memcg_stat_items[] = { | |
335 | MEMCG_SWAP, | |
336 | MEMCG_SOCK, | |
337 | MEMCG_PERCPU_B, | |
338 | MEMCG_VMALLOC, | |
339 | MEMCG_KMEM, | |
340 | MEMCG_ZSWAP_B, | |
341 | MEMCG_ZSWAPPED, | |
342 | }; | |
343 | ||
344 | #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) | |
345 | #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ | |
346 | ARRAY_SIZE(memcg_stat_items)) | |
9db298a4 SB |
347 | #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) |
348 | static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; | |
ff48c71c SB |
349 | |
350 | static void init_memcg_stats(void) | |
351 | { | |
9db298a4 | 352 | u8 i, j = 0; |
ff48c71c | 353 | |
9db298a4 | 354 | BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); |
ff48c71c | 355 | |
9db298a4 | 356 | memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); |
ff48c71c | 357 | |
9db298a4 SB |
358 | for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) |
359 | mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; | |
ff48c71c | 360 | |
9db298a4 SB |
361 | for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) |
362 | mem_cgroup_stats_index[memcg_stat_items[i]] = j; | |
ff48c71c SB |
363 | } |
364 | ||
365 | static inline int memcg_stats_index(int idx) | |
366 | { | |
9db298a4 | 367 | return mem_cgroup_stats_index[idx]; |
ff48c71c SB |
368 | } |
369 | ||
70a64b79 SB |
370 | struct lruvec_stats_percpu { |
371 | /* Local (CPU and cgroup) state */ | |
ff48c71c | 372 | long state[NR_MEMCG_NODE_STAT_ITEMS]; |
70a64b79 SB |
373 | |
374 | /* Delta calculation for lockless upward propagation */ | |
ff48c71c | 375 | long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; |
70a64b79 SB |
376 | }; |
377 | ||
378 | struct lruvec_stats { | |
379 | /* Aggregated (CPU and subtree) state */ | |
ff48c71c | 380 | long state[NR_MEMCG_NODE_STAT_ITEMS]; |
70a64b79 SB |
381 | |
382 | /* Non-hierarchical (CPU aggregated) state */ | |
ff48c71c | 383 | long state_local[NR_MEMCG_NODE_STAT_ITEMS]; |
70a64b79 SB |
384 | |
385 | /* Pending child counts during tree propagation */ | |
ff48c71c | 386 | long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; |
70a64b79 SB |
387 | }; |
388 | ||
389 | unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) | |
390 | { | |
391 | struct mem_cgroup_per_node *pn; | |
392 | long x; | |
ff48c71c | 393 | int i; |
70a64b79 SB |
394 | |
395 | if (mem_cgroup_disabled()) | |
396 | return node_page_state(lruvec_pgdat(lruvec), idx); | |
397 | ||
ff48c71c | 398 | i = memcg_stats_index(idx); |
9db298a4 | 399 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
ff48c71c SB |
400 | return 0; |
401 | ||
70a64b79 | 402 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
ff48c71c | 403 | x = READ_ONCE(pn->lruvec_stats->state[i]); |
70a64b79 SB |
404 | #ifdef CONFIG_SMP |
405 | if (x < 0) | |
406 | x = 0; | |
407 | #endif | |
408 | return x; | |
409 | } | |
410 | ||
411 | unsigned long lruvec_page_state_local(struct lruvec *lruvec, | |
412 | enum node_stat_item idx) | |
413 | { | |
414 | struct mem_cgroup_per_node *pn; | |
acb5fe2f | 415 | long x; |
ff48c71c | 416 | int i; |
70a64b79 SB |
417 | |
418 | if (mem_cgroup_disabled()) | |
419 | return node_page_state(lruvec_pgdat(lruvec), idx); | |
420 | ||
ff48c71c | 421 | i = memcg_stats_index(idx); |
9db298a4 | 422 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
ff48c71c SB |
423 | return 0; |
424 | ||
70a64b79 | 425 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
ff48c71c | 426 | x = READ_ONCE(pn->lruvec_stats->state_local[i]); |
70a64b79 SB |
427 | #ifdef CONFIG_SMP |
428 | if (x < 0) | |
429 | x = 0; | |
430 | #endif | |
431 | return x; | |
432 | } | |
433 | ||
d396def5 SB |
434 | /* Subset of vm_event_item to report for memcg event stats */ |
435 | static const unsigned int memcg_vm_event_stat[] = { | |
98455eef | 436 | #ifdef CONFIG_MEMCG_V1 |
8278f1c7 SB |
437 | PGPGIN, |
438 | PGPGOUT, | |
98455eef | 439 | #endif |
15ff4d40 JZ |
440 | PSWPIN, |
441 | PSWPOUT, | |
d396def5 SB |
442 | PGSCAN_KSWAPD, |
443 | PGSCAN_DIRECT, | |
57e9cc50 | 444 | PGSCAN_KHUGEPAGED, |
e452872b | 445 | PGSCAN_PROACTIVE, |
d396def5 SB |
446 | PGSTEAL_KSWAPD, |
447 | PGSTEAL_DIRECT, | |
57e9cc50 | 448 | PGSTEAL_KHUGEPAGED, |
e452872b | 449 | PGSTEAL_PROACTIVE, |
d396def5 SB |
450 | PGFAULT, |
451 | PGMAJFAULT, | |
452 | PGREFILL, | |
453 | PGACTIVATE, | |
454 | PGDEACTIVATE, | |
455 | PGLAZYFREE, | |
456 | PGLAZYFREED, | |
e7ac4dae BS |
457 | #ifdef CONFIG_SWAP |
458 | SWPIN_ZERO, | |
459 | SWPOUT_ZERO, | |
460 | #endif | |
3a3b7fec | 461 | #ifdef CONFIG_ZSWAP |
d396def5 SB |
462 | ZSWPIN, |
463 | ZSWPOUT, | |
e0bf1dc8 | 464 | ZSWPWB, |
d396def5 SB |
465 | #endif |
466 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
467 | THP_FAULT_ALLOC, | |
468 | THP_COLLAPSE_ALLOC, | |
811244a5 XH |
469 | THP_SWPOUT, |
470 | THP_SWPOUT_FALLBACK, | |
d396def5 | 471 | #endif |
f77f0c75 KZ |
472 | #ifdef CONFIG_NUMA_BALANCING |
473 | NUMA_PAGE_MIGRATE, | |
474 | NUMA_PTE_UPDATES, | |
475 | NUMA_HINT_FAULTS, | |
476 | #endif | |
d396def5 SB |
477 | }; |
478 | ||
8278f1c7 | 479 | #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) |
9db298a4 | 480 | static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; |
8278f1c7 SB |
481 | |
482 | static void init_memcg_events(void) | |
483 | { | |
9db298a4 | 484 | u8 i; |
59142d87 | 485 | |
9db298a4 | 486 | BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); |
59142d87 | 487 | |
9db298a4 SB |
488 | memset(mem_cgroup_events_index, U8_MAX, |
489 | sizeof(mem_cgroup_events_index)); | |
8278f1c7 SB |
490 | |
491 | for (i = 0; i < NR_MEMCG_EVENTS; ++i) | |
9db298a4 | 492 | mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; |
8278f1c7 SB |
493 | } |
494 | ||
495 | static inline int memcg_events_index(enum vm_event_item idx) | |
496 | { | |
9db298a4 | 497 | return mem_cgroup_events_index[idx]; |
8278f1c7 SB |
498 | } |
499 | ||
410f8e82 | 500 | struct memcg_vmstats_percpu { |
9cee7e8e YA |
501 | /* Stats updates since the last flush */ |
502 | unsigned int stats_updates; | |
503 | ||
504 | /* Cached pointers for fast iteration in memcg_rstat_updated() */ | |
8a4b42b9 SB |
505 | struct memcg_vmstats_percpu __percpu *parent_pcpu; |
506 | struct memcg_vmstats *vmstats; | |
9cee7e8e YA |
507 | |
508 | /* The above should fit a single cacheline for memcg_rstat_updated() */ | |
509 | ||
410f8e82 | 510 | /* Local (CPU and cgroup) page state & events */ |
ff48c71c | 511 | long state[MEMCG_VMSTAT_SIZE]; |
8278f1c7 | 512 | unsigned long events[NR_MEMCG_EVENTS]; |
410f8e82 SB |
513 | |
514 | /* Delta calculation for lockless upward propagation */ | |
ff48c71c | 515 | long state_prev[MEMCG_VMSTAT_SIZE]; |
8278f1c7 | 516 | unsigned long events_prev[NR_MEMCG_EVENTS]; |
9cee7e8e | 517 | } ____cacheline_aligned; |
410f8e82 SB |
518 | |
519 | struct memcg_vmstats { | |
520 | /* Aggregated (CPU and subtree) page state & events */ | |
ff48c71c | 521 | long state[MEMCG_VMSTAT_SIZE]; |
8278f1c7 | 522 | unsigned long events[NR_MEMCG_EVENTS]; |
410f8e82 | 523 | |
f82e6bf9 | 524 | /* Non-hierarchical (CPU aggregated) page state & events */ |
ff48c71c | 525 | long state_local[MEMCG_VMSTAT_SIZE]; |
f82e6bf9 YA |
526 | unsigned long events_local[NR_MEMCG_EVENTS]; |
527 | ||
410f8e82 | 528 | /* Pending child counts during tree propagation */ |
ff48c71c | 529 | long state_pending[MEMCG_VMSTAT_SIZE]; |
8278f1c7 | 530 | unsigned long events_pending[NR_MEMCG_EVENTS]; |
8d59d221 YA |
531 | |
532 | /* Stats updates since the last flush */ | |
3ac4638a | 533 | atomic_t stats_updates; |
410f8e82 SB |
534 | }; |
535 | ||
11192d9c SB |
536 | /* |
537 | * memcg and lruvec stats flushing | |
538 | * | |
539 | * Many codepaths leading to stats update or read are performance sensitive and | |
540 | * adding stats flushing in such codepaths is not desirable. So, to optimize the | |
541 | * flushing the kernel does: | |
542 | * | |
543 | * 1) Periodically and asynchronously flush the stats every 2 seconds to not let | |
544 | * rstat update tree grow unbounded. | |
545 | * | |
546 | * 2) Flush the stats synchronously on reader side only when there are more than | |
547 | * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization | |
548 | * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but | |
549 | * only for 2 seconds due to (1). | |
550 | */ | |
551 | static void flush_memcg_stats_dwork(struct work_struct *w); | |
552 | static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); | |
508bed88 | 553 | static u64 flush_last_time; |
9b301615 SB |
554 | |
555 | #define FLUSH_TIME (2UL*HZ) | |
11192d9c | 556 | |
9cee7e8e | 557 | static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) |
8d59d221 | 558 | { |
3ac4638a | 559 | return atomic_read(&vmstats->stats_updates) > |
8d59d221 YA |
560 | MEMCG_CHARGE_BATCH * num_online_cpus(); |
561 | } | |
562 | ||
c7163535 SB |
563 | static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val, |
564 | int cpu) | |
11192d9c | 565 | { |
8a4b42b9 | 566 | struct memcg_vmstats_percpu __percpu *statc_pcpu; |
9cee7e8e | 567 | struct memcg_vmstats_percpu *statc; |
78ec6f9d | 568 | unsigned int stats_updates; |
5b3be698 | 569 | |
f9d911ca YA |
570 | if (!val) |
571 | return; | |
572 | ||
8dcb0ed8 | 573 | css_rstat_updated(&memcg->css, cpu); |
8a4b42b9 SB |
574 | statc_pcpu = memcg->vmstats_percpu; |
575 | for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) { | |
576 | statc = this_cpu_ptr(statc_pcpu); | |
60cada25 SB |
577 | /* |
578 | * If @memcg is already flushable then all its ancestors are | |
579 | * flushable as well and also there is no need to increase | |
580 | * stats_updates. | |
581 | */ | |
582 | if (memcg_vmstats_needs_flush(statc->vmstats)) | |
583 | break; | |
584 | ||
8a4b42b9 SB |
585 | stats_updates = this_cpu_add_return(statc_pcpu->stats_updates, |
586 | abs(val)); | |
78ec6f9d | 587 | if (stats_updates < MEMCG_CHARGE_BATCH) |
8d59d221 | 588 | continue; |
5b3be698 | 589 | |
8a4b42b9 | 590 | stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0); |
3ac4638a | 591 | atomic_add(stats_updates, &statc->vmstats->stats_updates); |
5b3be698 | 592 | } |
11192d9c SB |
593 | } |
594 | ||
e1479b88 | 595 | static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) |
11192d9c | 596 | { |
f914ac96 JK |
597 | bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); |
598 | ||
3ac4638a | 599 | trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates), |
f914ac96 JK |
600 | force, needs_flush); |
601 | ||
602 | if (!force && !needs_flush) | |
e1479b88 JK |
603 | return; |
604 | ||
7d7ef0a4 YA |
605 | if (mem_cgroup_is_root(memcg)) |
606 | WRITE_ONCE(flush_last_time, jiffies_64); | |
9fad9aee | 607 | |
a9791555 | 608 | css_rstat_flush(&memcg->css); |
11192d9c SB |
609 | } |
610 | ||
7d7ef0a4 YA |
611 | /* |
612 | * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree | |
613 | * @memcg: root of the subtree to flush | |
614 | * | |
615 | * Flushing is serialized by the underlying global rstat lock. There is also a | |
616 | * minimum amount of work to be done even if there are no stat updates to flush. | |
617 | * Hence, we only flush the stats if the updates delta exceeds a threshold. This | |
618 | * avoids unnecessary work and contention on the underlying lock. | |
619 | */ | |
620 | void mem_cgroup_flush_stats(struct mem_cgroup *memcg) | |
11192d9c | 621 | { |
7d7ef0a4 YA |
622 | if (mem_cgroup_disabled()) |
623 | return; | |
624 | ||
625 | if (!memcg) | |
626 | memcg = root_mem_cgroup; | |
627 | ||
e1479b88 | 628 | __mem_cgroup_flush_stats(memcg, false); |
9fad9aee YA |
629 | } |
630 | ||
7d7ef0a4 | 631 | void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) |
9b301615 | 632 | { |
508bed88 YA |
633 | /* Only flush if the periodic flusher is one full cycle late */ |
634 | if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) | |
7d7ef0a4 | 635 | mem_cgroup_flush_stats(memcg); |
9b301615 SB |
636 | } |
637 | ||
11192d9c SB |
638 | static void flush_memcg_stats_dwork(struct work_struct *w) |
639 | { | |
9fad9aee | 640 | /* |
9cee7e8e | 641 | * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing |
8d59d221 | 642 | * in latency-sensitive paths is as cheap as possible. |
9fad9aee | 643 | */ |
e1479b88 | 644 | __mem_cgroup_flush_stats(root_mem_cgroup, true); |
9b301615 | 645 | queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); |
11192d9c SB |
646 | } |
647 | ||
410f8e82 SB |
648 | unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) |
649 | { | |
ff48c71c SB |
650 | long x; |
651 | int i = memcg_stats_index(idx); | |
652 | ||
9db298a4 | 653 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
ff48c71c SB |
654 | return 0; |
655 | ||
656 | x = READ_ONCE(memcg->vmstats->state[i]); | |
410f8e82 SB |
657 | #ifdef CONFIG_SMP |
658 | if (x < 0) | |
659 | x = 0; | |
660 | #endif | |
661 | return x; | |
662 | } | |
663 | ||
7bd5bc3c YA |
664 | static int memcg_page_state_unit(int item); |
665 | ||
666 | /* | |
667 | * Normalize the value passed into memcg_rstat_updated() to be in pages. Round | |
668 | * up non-zero sub-page updates to 1 page as zero page updates are ignored. | |
669 | */ | |
670 | static int memcg_state_val_in_pages(int idx, int val) | |
671 | { | |
672 | int unit = memcg_page_state_unit(idx); | |
673 | ||
674 | if (!val || unit == PAGE_SIZE) | |
675 | return val; | |
676 | else | |
677 | return max(val * unit / PAGE_SIZE, 1UL); | |
678 | } | |
679 | ||
db9adbcb | 680 | /** |
8814e3b8 | 681 | * mod_memcg_state - update cgroup memory statistics |
db9adbcb JW |
682 | * @memcg: the memory cgroup |
683 | * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item | |
684 | * @val: delta to add to the counter, can be negative | |
685 | */ | |
8814e3b8 | 686 | void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, |
a94032b3 | 687 | int val) |
db9adbcb | 688 | { |
ff48c71c | 689 | int i = memcg_stats_index(idx); |
c7163535 | 690 | int cpu; |
ff48c71c | 691 | |
acb5fe2f SB |
692 | if (mem_cgroup_disabled()) |
693 | return; | |
694 | ||
9db298a4 | 695 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
db9adbcb JW |
696 | return; |
697 | ||
c7163535 SB |
698 | cpu = get_cpu(); |
699 | ||
8814e3b8 | 700 | this_cpu_add(memcg->vmstats_percpu->state[i], val); |
0aa3ef36 | 701 | val = memcg_state_val_in_pages(idx, val); |
c7163535 | 702 | memcg_rstat_updated(memcg, val, cpu); |
0aa3ef36 | 703 | trace_mod_memcg_state(memcg, idx, val); |
c7163535 SB |
704 | |
705 | put_cpu(); | |
db9adbcb JW |
706 | } |
707 | ||
610dc18c | 708 | #ifdef CONFIG_MEMCG_V1 |
2d146aa3 | 709 | /* idx can be of type enum memcg_stat_item or node_stat_item. */ |
ea1e8796 | 710 | unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) |
a18e6e6e | 711 | { |
ff48c71c SB |
712 | long x; |
713 | int i = memcg_stats_index(idx); | |
714 | ||
9db298a4 | 715 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
ff48c71c | 716 | return 0; |
a18e6e6e | 717 | |
ff48c71c | 718 | x = READ_ONCE(memcg->vmstats->state_local[i]); |
a18e6e6e JW |
719 | #ifdef CONFIG_SMP |
720 | if (x < 0) | |
721 | x = 0; | |
722 | #endif | |
723 | return x; | |
724 | } | |
610dc18c | 725 | #endif |
a18e6e6e | 726 | |
eee8a177 | 727 | static void mod_memcg_lruvec_state(struct lruvec *lruvec, |
91882c16 SB |
728 | enum node_stat_item idx, |
729 | int val) | |
db9adbcb JW |
730 | { |
731 | struct mem_cgroup_per_node *pn; | |
42a30035 | 732 | struct mem_cgroup *memcg; |
ff48c71c | 733 | int i = memcg_stats_index(idx); |
c7163535 | 734 | int cpu; |
ff48c71c | 735 | |
9db298a4 | 736 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
ff48c71c | 737 | return; |
db9adbcb | 738 | |
db9adbcb | 739 | pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
42a30035 | 740 | memcg = pn->memcg; |
db9adbcb | 741 | |
c7163535 | 742 | cpu = get_cpu(); |
be3e67b5 | 743 | |
db9adbcb | 744 | /* Update memcg */ |
eee8a177 | 745 | this_cpu_add(memcg->vmstats_percpu->state[i], val); |
db9adbcb | 746 | |
b4c46484 | 747 | /* Update lruvec */ |
eee8a177 | 748 | this_cpu_add(pn->lruvec_stats_percpu->state[i], val); |
11192d9c | 749 | |
0aa3ef36 | 750 | val = memcg_state_val_in_pages(idx, val); |
c7163535 | 751 | memcg_rstat_updated(memcg, val, cpu); |
0aa3ef36 | 752 | trace_mod_memcg_lruvec_state(memcg, idx, val); |
c7163535 SB |
753 | |
754 | put_cpu(); | |
db9adbcb JW |
755 | } |
756 | ||
eedc4e5a RG |
757 | /** |
758 | * __mod_lruvec_state - update lruvec memory statistics | |
759 | * @lruvec: the lruvec | |
760 | * @idx: the stat item | |
761 | * @val: delta to add to the counter, can be negative | |
762 | * | |
763 | * The lruvec is the intersection of the NUMA node and a cgroup. This | |
764 | * function updates the all three counters that are affected by a | |
765 | * change of state at this level: per-node, per-cgroup, per-lruvec. | |
766 | */ | |
767 | void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, | |
768 | int val) | |
769 | { | |
770 | /* Update node */ | |
771 | __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); | |
772 | ||
773 | /* Update memcg and lruvec */ | |
774 | if (!mem_cgroup_disabled()) | |
eee8a177 | 775 | mod_memcg_lruvec_state(lruvec, idx, val); |
eedc4e5a RG |
776 | } |
777 | ||
c701123b | 778 | void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, |
c47d5032 SB |
779 | int val) |
780 | { | |
b4e0b68f | 781 | struct mem_cgroup *memcg; |
c701123b | 782 | pg_data_t *pgdat = folio_pgdat(folio); |
c47d5032 SB |
783 | struct lruvec *lruvec; |
784 | ||
b4e0b68f | 785 | rcu_read_lock(); |
c701123b | 786 | memcg = folio_memcg(folio); |
c47d5032 | 787 | /* Untracked pages have no memcg, no lruvec. Update only the node */ |
d635a69d | 788 | if (!memcg) { |
b4e0b68f | 789 | rcu_read_unlock(); |
c47d5032 SB |
790 | __mod_node_page_state(pgdat, idx, val); |
791 | return; | |
792 | } | |
793 | ||
d635a69d | 794 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
c47d5032 | 795 | __mod_lruvec_state(lruvec, idx, val); |
b4e0b68f | 796 | rcu_read_unlock(); |
c47d5032 | 797 | } |
c701123b | 798 | EXPORT_SYMBOL(__lruvec_stat_mod_folio); |
c47d5032 | 799 | |
da3ceeff | 800 | void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) |
ec9f0238 | 801 | { |
4f103c63 | 802 | pg_data_t *pgdat = page_pgdat(virt_to_page(p)); |
ec9f0238 RG |
803 | struct mem_cgroup *memcg; |
804 | struct lruvec *lruvec; | |
805 | ||
806 | rcu_read_lock(); | |
fc4db90f | 807 | memcg = mem_cgroup_from_slab_obj(p); |
ec9f0238 | 808 | |
8faeb1ff MS |
809 | /* |
810 | * Untracked pages have no memcg, no lruvec. Update only the | |
811 | * node. If we reparent the slab objects to the root memcg, | |
812 | * when we free the slab object, we need to update the per-memcg | |
813 | * vmstats to keep it correct for the root memcg. | |
814 | */ | |
815 | if (!memcg) { | |
ec9f0238 RG |
816 | __mod_node_page_state(pgdat, idx, val); |
817 | } else { | |
867e5e1d | 818 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
ec9f0238 RG |
819 | __mod_lruvec_state(lruvec, idx, val); |
820 | } | |
821 | rcu_read_unlock(); | |
822 | } | |
823 | ||
db9adbcb | 824 | /** |
e52401e7 | 825 | * count_memcg_events - account VM events in a cgroup |
db9adbcb JW |
826 | * @memcg: the memory cgroup |
827 | * @idx: the event item | |
f0953a1b | 828 | * @count: the number of events that occurred |
db9adbcb | 829 | */ |
e52401e7 | 830 | void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, |
db9adbcb JW |
831 | unsigned long count) |
832 | { | |
acb5fe2f | 833 | int i = memcg_events_index(idx); |
c7163535 | 834 | int cpu; |
8278f1c7 | 835 | |
acb5fe2f SB |
836 | if (mem_cgroup_disabled()) |
837 | return; | |
838 | ||
9db298a4 | 839 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) |
db9adbcb JW |
840 | return; |
841 | ||
c7163535 SB |
842 | cpu = get_cpu(); |
843 | ||
e52401e7 | 844 | this_cpu_add(memcg->vmstats_percpu->events[i], count); |
c7163535 | 845 | memcg_rstat_updated(memcg, count, cpu); |
0aa3ef36 | 846 | trace_count_memcg_events(memcg, idx, count); |
c7163535 SB |
847 | |
848 | put_cpu(); | |
db9adbcb JW |
849 | } |
850 | ||
ea1e8796 | 851 | unsigned long memcg_events(struct mem_cgroup *memcg, int event) |
e9f8974f | 852 | { |
acb5fe2f | 853 | int i = memcg_events_index(event); |
8278f1c7 | 854 | |
9db298a4 | 855 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) |
8278f1c7 | 856 | return 0; |
acb5fe2f SB |
857 | |
858 | return READ_ONCE(memcg->vmstats->events[i]); | |
e9f8974f JW |
859 | } |
860 | ||
610dc18c | 861 | #ifdef CONFIG_MEMCG_V1 |
ea1e8796 | 862 | unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) |
42a30035 | 863 | { |
acb5fe2f | 864 | int i = memcg_events_index(event); |
8278f1c7 | 865 | |
9db298a4 | 866 | if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) |
8278f1c7 | 867 | return 0; |
815744d7 | 868 | |
acb5fe2f | 869 | return READ_ONCE(memcg->vmstats->events_local[i]); |
42a30035 | 870 | } |
610dc18c | 871 | #endif |
42a30035 | 872 | |
cf475ad2 | 873 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
78fb7466 | 874 | { |
31a78f23 BS |
875 | /* |
876 | * mm_update_next_owner() may clear mm->owner to NULL | |
877 | * if it races with swapoff, page migration, etc. | |
878 | * So this can be called with p == NULL. | |
879 | */ | |
880 | if (unlikely(!p)) | |
881 | return NULL; | |
882 | ||
073219e9 | 883 | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); |
78fb7466 | 884 | } |
33398cf2 | 885 | EXPORT_SYMBOL(mem_cgroup_from_task); |
78fb7466 | 886 | |
04f94e3f DS |
887 | static __always_inline struct mem_cgroup *active_memcg(void) |
888 | { | |
55a68c82 | 889 | if (!in_task()) |
04f94e3f DS |
890 | return this_cpu_read(int_active_memcg); |
891 | else | |
892 | return current->active_memcg; | |
893 | } | |
894 | ||
d46eb14b SB |
895 | /** |
896 | * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. | |
897 | * @mm: mm from which memcg should be extracted. It can be NULL. | |
898 | * | |
04f94e3f DS |
899 | * Obtain a reference on mm->memcg and returns it if successful. If mm |
900 | * is NULL, then the memcg is chosen as follows: | |
901 | * 1) The active memcg, if set. | |
902 | * 2) current->mm->memcg, if available | |
903 | * 3) root memcg | |
904 | * If mem_cgroup is disabled, NULL is returned. | |
d46eb14b SB |
905 | */ |
906 | struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) | |
54595fe2 | 907 | { |
d46eb14b SB |
908 | struct mem_cgroup *memcg; |
909 | ||
910 | if (mem_cgroup_disabled()) | |
911 | return NULL; | |
0b7f569e | 912 | |
2884b6b7 MS |
913 | /* |
914 | * Page cache insertions can happen without an | |
915 | * actual mm context, e.g. during disk probing | |
916 | * on boot, loopback IO, acct() writes etc. | |
917 | * | |
918 | * No need to css_get on root memcg as the reference | |
919 | * counting is disabled on the root level in the | |
920 | * cgroup core. See CSS_NO_REF. | |
921 | */ | |
04f94e3f DS |
922 | if (unlikely(!mm)) { |
923 | memcg = active_memcg(); | |
924 | if (unlikely(memcg)) { | |
925 | /* remote memcg must hold a ref */ | |
926 | css_get(&memcg->css); | |
927 | return memcg; | |
928 | } | |
929 | mm = current->mm; | |
930 | if (unlikely(!mm)) | |
931 | return root_mem_cgroup; | |
932 | } | |
2884b6b7 | 933 | |
54595fe2 KH |
934 | rcu_read_lock(); |
935 | do { | |
2884b6b7 MS |
936 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
937 | if (unlikely(!memcg)) | |
df381975 | 938 | memcg = root_mem_cgroup; |
00d484f3 | 939 | } while (!css_tryget(&memcg->css)); |
54595fe2 | 940 | rcu_read_unlock(); |
c0ff4b85 | 941 | return memcg; |
54595fe2 | 942 | } |
d46eb14b SB |
943 | EXPORT_SYMBOL(get_mem_cgroup_from_mm); |
944 | ||
4b569387 NP |
945 | /** |
946 | * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. | |
947 | */ | |
948 | struct mem_cgroup *get_mem_cgroup_from_current(void) | |
949 | { | |
950 | struct mem_cgroup *memcg; | |
951 | ||
952 | if (mem_cgroup_disabled()) | |
953 | return NULL; | |
954 | ||
955 | again: | |
956 | rcu_read_lock(); | |
957 | memcg = mem_cgroup_from_task(current); | |
958 | if (!css_tryget(&memcg->css)) { | |
959 | rcu_read_unlock(); | |
960 | goto again; | |
961 | } | |
962 | rcu_read_unlock(); | |
963 | return memcg; | |
964 | } | |
965 | ||
f77f0c75 KZ |
966 | /** |
967 | * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. | |
968 | * @folio: folio from which memcg should be extracted. | |
969 | */ | |
970 | struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) | |
971 | { | |
972 | struct mem_cgroup *memcg = folio_memcg(folio); | |
973 | ||
974 | if (mem_cgroup_disabled()) | |
975 | return NULL; | |
976 | ||
977 | rcu_read_lock(); | |
978 | if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) | |
979 | memcg = root_mem_cgroup; | |
980 | rcu_read_unlock(); | |
981 | return memcg; | |
982 | } | |
983 | ||
5660048c JW |
984 | /** |
985 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | |
986 | * @root: hierarchy root | |
987 | * @prev: previously returned memcg, NULL on first invocation | |
988 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | |
989 | * | |
990 | * Returns references to children of the hierarchy below @root, or | |
991 | * @root itself, or %NULL after a full round-trip. | |
992 | * | |
993 | * Caller must pass the return value in @prev on subsequent | |
994 | * invocations for reference counting, or use mem_cgroup_iter_break() | |
995 | * to cancel a hierarchy walk before the round-trip is complete. | |
996 | * | |
05bdc520 ML |
997 | * Reclaimers can specify a node in @reclaim to divide up the memcgs |
998 | * in the hierarchy among all concurrent reclaimers operating on the | |
999 | * same node. | |
5660048c | 1000 | */ |
694fbc0f | 1001 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, |
5660048c | 1002 | struct mem_cgroup *prev, |
694fbc0f | 1003 | struct mem_cgroup_reclaim_cookie *reclaim) |
14067bb3 | 1004 | { |
3f649ab7 | 1005 | struct mem_cgroup_reclaim_iter *iter; |
ec0db74b | 1006 | struct cgroup_subsys_state *css; |
aa50b501 KH |
1007 | struct mem_cgroup *pos; |
1008 | struct mem_cgroup *next; | |
711d3d2c | 1009 | |
694fbc0f AM |
1010 | if (mem_cgroup_disabled()) |
1011 | return NULL; | |
5660048c | 1012 | |
9f3a0d09 JW |
1013 | if (!root) |
1014 | root = root_mem_cgroup; | |
7d74b06f | 1015 | |
542f85f9 | 1016 | rcu_read_lock(); |
3d150e31 | 1017 | restart: |
aa50b501 | 1018 | next = NULL; |
5f578161 | 1019 | |
5ac8fb31 | 1020 | if (reclaim) { |
ec0db74b | 1021 | int gen; |
aa50b501 | 1022 | int nid = reclaim->pgdat->node_id; |
5ac8fb31 | 1023 | |
aa50b501 | 1024 | iter = &root->nodeinfo[nid]->iter; |
ec0db74b | 1025 | gen = atomic_read(&iter->generation); |
5ac8fb31 | 1026 | |
a9320aae WY |
1027 | /* |
1028 | * On start, join the current reclaim iteration cycle. | |
1029 | * Exit when a concurrent walker completes it. | |
1030 | */ | |
1031 | if (!prev) | |
ec0db74b KH |
1032 | reclaim->generation = gen; |
1033 | else if (reclaim->generation != gen) | |
5ac8fb31 JW |
1034 | goto out_unlock; |
1035 | ||
4a2698b0 | 1036 | pos = READ_ONCE(iter->position); |
aa50b501 | 1037 | } else |
89d8330c | 1038 | pos = prev; |
5ac8fb31 | 1039 | |
ec0db74b | 1040 | css = pos ? &pos->css : NULL; |
7d74b06f | 1041 | |
aa50b501 | 1042 | while ((css = css_next_descendant_pre(css, &root->css))) { |
5ac8fb31 JW |
1043 | /* |
1044 | * Verify the css and acquire a reference. The root | |
1045 | * is provided by the caller, so we know it's alive | |
1046 | * and kicking, and don't take an extra reference. | |
1047 | */ | |
aa50b501 | 1048 | if (css == &root->css || css_tryget(css)) |
0b8f73e1 | 1049 | break; |
9f3a0d09 | 1050 | } |
5ac8fb31 | 1051 | |
aa50b501 | 1052 | next = mem_cgroup_from_css(css); |
ec0db74b | 1053 | |
5ac8fb31 | 1054 | if (reclaim) { |
5ac8fb31 | 1055 | /* |
6df38689 VD |
1056 | * The position could have already been updated by a competing |
1057 | * thread, so check that the value hasn't changed since we read | |
1058 | * it to avoid reclaiming from the same cgroup twice. | |
5ac8fb31 | 1059 | */ |
aa50b501 | 1060 | if (cmpxchg(&iter->position, pos, next) != pos) { |
ec0db74b KH |
1061 | if (css && css != &root->css) |
1062 | css_put(css); | |
1063 | goto restart; | |
1064 | } | |
6df38689 | 1065 | |
aa50b501 | 1066 | if (!next) { |
ec0db74b | 1067 | atomic_inc(&iter->generation); |
5ac8fb31 | 1068 | |
3d150e31 KH |
1069 | /* |
1070 | * Reclaimers share the hierarchy walk, and a | |
1071 | * new one might jump in right at the end of | |
1072 | * the hierarchy - make sure they see at least | |
1073 | * one group and restart from the beginning. | |
1074 | */ | |
1075 | if (!prev) | |
1076 | goto restart; | |
1077 | } | |
9f3a0d09 | 1078 | } |
5ac8fb31 | 1079 | |
542f85f9 MH |
1080 | out_unlock: |
1081 | rcu_read_unlock(); | |
c40046f3 MH |
1082 | if (prev && prev != root) |
1083 | css_put(&prev->css); | |
1084 | ||
aa50b501 | 1085 | return next; |
14067bb3 | 1086 | } |
7d74b06f | 1087 | |
5660048c JW |
1088 | /** |
1089 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | |
1090 | * @root: hierarchy root | |
1091 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | |
1092 | */ | |
1093 | void mem_cgroup_iter_break(struct mem_cgroup *root, | |
1094 | struct mem_cgroup *prev) | |
9f3a0d09 JW |
1095 | { |
1096 | if (!root) | |
1097 | root = root_mem_cgroup; | |
1098 | if (prev && prev != root) | |
1099 | css_put(&prev->css); | |
1100 | } | |
7d74b06f | 1101 | |
54a83d6b MC |
1102 | static void __invalidate_reclaim_iterators(struct mem_cgroup *from, |
1103 | struct mem_cgroup *dead_memcg) | |
6df38689 | 1104 | { |
6df38689 | 1105 | struct mem_cgroup_reclaim_iter *iter; |
ef8f2327 MG |
1106 | struct mem_cgroup_per_node *mz; |
1107 | int nid; | |
6df38689 | 1108 | |
54a83d6b | 1109 | for_each_node(nid) { |
a3747b53 | 1110 | mz = from->nodeinfo[nid]; |
9da83f3f YS |
1111 | iter = &mz->iter; |
1112 | cmpxchg(&iter->position, dead_memcg, NULL); | |
6df38689 VD |
1113 | } |
1114 | } | |
1115 | ||
54a83d6b MC |
1116 | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) |
1117 | { | |
1118 | struct mem_cgroup *memcg = dead_memcg; | |
1119 | struct mem_cgroup *last; | |
1120 | ||
1121 | do { | |
1122 | __invalidate_reclaim_iterators(memcg, dead_memcg); | |
1123 | last = memcg; | |
1124 | } while ((memcg = parent_mem_cgroup(memcg))); | |
1125 | ||
1126 | /* | |
b8dd3ee9 | 1127 | * When cgroup1 non-hierarchy mode is used, |
54a83d6b MC |
1128 | * parent_mem_cgroup() does not walk all the way up to the |
1129 | * cgroup root (root_mem_cgroup). So we have to handle | |
1130 | * dead_memcg from cgroup root separately. | |
1131 | */ | |
7848ed62 | 1132 | if (!mem_cgroup_is_root(last)) |
54a83d6b MC |
1133 | __invalidate_reclaim_iterators(root_mem_cgroup, |
1134 | dead_memcg); | |
1135 | } | |
1136 | ||
7c5f64f8 VD |
1137 | /** |
1138 | * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy | |
1139 | * @memcg: hierarchy root | |
1140 | * @fn: function to call for each task | |
1141 | * @arg: argument passed to @fn | |
1142 | * | |
1143 | * This function iterates over tasks attached to @memcg or to any of its | |
1144 | * descendants and calls @fn for each task. If @fn returns a non-zero | |
025b7799 Z |
1145 | * value, the function breaks the iteration loop. Otherwise, it will iterate |
1146 | * over all tasks and return 0. | |
7c5f64f8 VD |
1147 | * |
1148 | * This function must not be called for the root memory cgroup. | |
1149 | */ | |
025b7799 Z |
1150 | void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, |
1151 | int (*fn)(struct task_struct *, void *), void *arg) | |
7c5f64f8 VD |
1152 | { |
1153 | struct mem_cgroup *iter; | |
1154 | int ret = 0; | |
1155 | ||
7848ed62 | 1156 | BUG_ON(mem_cgroup_is_root(memcg)); |
7c5f64f8 VD |
1157 | |
1158 | for_each_mem_cgroup_tree(iter, memcg) { | |
1159 | struct css_task_iter it; | |
1160 | struct task_struct *task; | |
1161 | ||
f168a9a5 | 1162 | css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); |
ade81479 | 1163 | while (!ret && (task = css_task_iter_next(&it))) { |
7c5f64f8 | 1164 | ret = fn(task, arg); |
06717a7b BL |
1165 | /* Avoid potential softlockup warning */ |
1166 | cond_resched(); | |
ade81479 | 1167 | } |
7c5f64f8 VD |
1168 | css_task_iter_end(&it); |
1169 | if (ret) { | |
1170 | mem_cgroup_iter_break(memcg, iter); | |
1171 | break; | |
1172 | } | |
1173 | } | |
7c5f64f8 VD |
1174 | } |
1175 | ||
6168d0da | 1176 | #ifdef CONFIG_DEBUG_VM |
e809c3fe | 1177 | void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) |
6168d0da AS |
1178 | { |
1179 | struct mem_cgroup *memcg; | |
1180 | ||
1181 | if (mem_cgroup_disabled()) | |
1182 | return; | |
1183 | ||
e809c3fe | 1184 | memcg = folio_memcg(folio); |
6168d0da AS |
1185 | |
1186 | if (!memcg) | |
7848ed62 | 1187 | VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); |
6168d0da | 1188 | else |
e809c3fe | 1189 | VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); |
6168d0da AS |
1190 | } |
1191 | #endif | |
1192 | ||
6168d0da | 1193 | /** |
e809c3fe MWO |
1194 | * folio_lruvec_lock - Lock the lruvec for a folio. |
1195 | * @folio: Pointer to the folio. | |
6168d0da | 1196 | * |
d7e3aba5 | 1197 | * These functions are safe to use under any of the following conditions: |
e809c3fe MWO |
1198 | * - folio locked |
1199 | * - folio_test_lru false | |
e809c3fe MWO |
1200 | * - folio frozen (refcount of 0) |
1201 | * | |
1202 | * Return: The lruvec this folio is on with its lock held. | |
6168d0da | 1203 | */ |
e809c3fe | 1204 | struct lruvec *folio_lruvec_lock(struct folio *folio) |
6168d0da | 1205 | { |
e809c3fe | 1206 | struct lruvec *lruvec = folio_lruvec(folio); |
6168d0da | 1207 | |
6168d0da | 1208 | spin_lock(&lruvec->lru_lock); |
e809c3fe | 1209 | lruvec_memcg_debug(lruvec, folio); |
6168d0da AS |
1210 | |
1211 | return lruvec; | |
1212 | } | |
1213 | ||
e809c3fe MWO |
1214 | /** |
1215 | * folio_lruvec_lock_irq - Lock the lruvec for a folio. | |
1216 | * @folio: Pointer to the folio. | |
1217 | * | |
1218 | * These functions are safe to use under any of the following conditions: | |
1219 | * - folio locked | |
1220 | * - folio_test_lru false | |
e809c3fe MWO |
1221 | * - folio frozen (refcount of 0) |
1222 | * | |
1223 | * Return: The lruvec this folio is on with its lock held and interrupts | |
1224 | * disabled. | |
1225 | */ | |
1226 | struct lruvec *folio_lruvec_lock_irq(struct folio *folio) | |
6168d0da | 1227 | { |
e809c3fe | 1228 | struct lruvec *lruvec = folio_lruvec(folio); |
6168d0da | 1229 | |
6168d0da | 1230 | spin_lock_irq(&lruvec->lru_lock); |
e809c3fe | 1231 | lruvec_memcg_debug(lruvec, folio); |
6168d0da AS |
1232 | |
1233 | return lruvec; | |
1234 | } | |
1235 | ||
e809c3fe MWO |
1236 | /** |
1237 | * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. | |
1238 | * @folio: Pointer to the folio. | |
1239 | * @flags: Pointer to irqsave flags. | |
1240 | * | |
1241 | * These functions are safe to use under any of the following conditions: | |
1242 | * - folio locked | |
1243 | * - folio_test_lru false | |
e809c3fe MWO |
1244 | * - folio frozen (refcount of 0) |
1245 | * | |
1246 | * Return: The lruvec this folio is on with its lock held and interrupts | |
1247 | * disabled. | |
1248 | */ | |
1249 | struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, | |
1250 | unsigned long *flags) | |
6168d0da | 1251 | { |
e809c3fe | 1252 | struct lruvec *lruvec = folio_lruvec(folio); |
6168d0da | 1253 | |
6168d0da | 1254 | spin_lock_irqsave(&lruvec->lru_lock, *flags); |
e809c3fe | 1255 | lruvec_memcg_debug(lruvec, folio); |
6168d0da AS |
1256 | |
1257 | return lruvec; | |
1258 | } | |
1259 | ||
925b7673 | 1260 | /** |
fa9add64 HD |
1261 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1262 | * @lruvec: mem_cgroup per zone lru vector | |
1263 | * @lru: index of lru list the page is sitting on | |
b4536f0c | 1264 | * @zid: zone id of the accounted pages |
fa9add64 | 1265 | * @nr_pages: positive when adding or negative when removing |
925b7673 | 1266 | * |
ca707239 | 1267 | * This function must be called under lru_lock, just before a page is added |
07ca7606 | 1268 | * to or just after a page is removed from an lru list. |
3f58a829 | 1269 | */ |
fa9add64 | 1270 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
b4536f0c | 1271 | int zid, int nr_pages) |
3f58a829 | 1272 | { |
ef8f2327 | 1273 | struct mem_cgroup_per_node *mz; |
fa9add64 | 1274 | unsigned long *lru_size; |
ca707239 | 1275 | long size; |
3f58a829 MK |
1276 | |
1277 | if (mem_cgroup_disabled()) | |
1278 | return; | |
1279 | ||
ef8f2327 | 1280 | mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); |
b4536f0c | 1281 | lru_size = &mz->lru_zone_size[zid][lru]; |
ca707239 HD |
1282 | |
1283 | if (nr_pages < 0) | |
1284 | *lru_size += nr_pages; | |
1285 | ||
1286 | size = *lru_size; | |
b4536f0c MH |
1287 | if (WARN_ONCE(size < 0, |
1288 | "%s(%p, %d, %d): lru_size %ld\n", | |
1289 | __func__, lruvec, lru, nr_pages, size)) { | |
ca707239 HD |
1290 | VM_BUG_ON(1); |
1291 | *lru_size = 0; | |
1292 | } | |
1293 | ||
1294 | if (nr_pages > 0) | |
1295 | *lru_size += nr_pages; | |
08e552c6 | 1296 | } |
544122e5 | 1297 | |
19942822 | 1298 | /** |
9d11ea9f | 1299 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
dad7557e | 1300 | * @memcg: the memory cgroup |
19942822 | 1301 | * |
9d11ea9f | 1302 | * Returns the maximum amount of memory @mem can be charged with, in |
7ec99d62 | 1303 | * pages. |
19942822 | 1304 | */ |
c0ff4b85 | 1305 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
19942822 | 1306 | { |
3e32cb2e JW |
1307 | unsigned long margin = 0; |
1308 | unsigned long count; | |
1309 | unsigned long limit; | |
9d11ea9f | 1310 | |
3e32cb2e | 1311 | count = page_counter_read(&memcg->memory); |
bbec2e15 | 1312 | limit = READ_ONCE(memcg->memory.max); |
3e32cb2e JW |
1313 | if (count < limit) |
1314 | margin = limit - count; | |
1315 | ||
7941d214 | 1316 | if (do_memsw_account()) { |
3e32cb2e | 1317 | count = page_counter_read(&memcg->memsw); |
bbec2e15 | 1318 | limit = READ_ONCE(memcg->memsw.max); |
1c4448ed | 1319 | if (count < limit) |
3e32cb2e | 1320 | margin = min(margin, limit - count); |
cbedbac3 LR |
1321 | else |
1322 | margin = 0; | |
3e32cb2e JW |
1323 | } |
1324 | ||
1325 | return margin; | |
19942822 JW |
1326 | } |
1327 | ||
5f9a4f4a MS |
1328 | struct memory_stat { |
1329 | const char *name; | |
5f9a4f4a MS |
1330 | unsigned int idx; |
1331 | }; | |
1332 | ||
57b2847d | 1333 | static const struct memory_stat memory_stats[] = { |
fff66b79 MS |
1334 | { "anon", NR_ANON_MAPPED }, |
1335 | { "file", NR_FILE_PAGES }, | |
a8c49af3 | 1336 | { "kernel", MEMCG_KMEM }, |
fff66b79 MS |
1337 | { "kernel_stack", NR_KERNEL_STACK_KB }, |
1338 | { "pagetables", NR_PAGETABLE }, | |
ebc97a52 | 1339 | { "sec_pagetables", NR_SECONDARY_PAGETABLE }, |
fff66b79 MS |
1340 | { "percpu", MEMCG_PERCPU_B }, |
1341 | { "sock", MEMCG_SOCK }, | |
4e5aa1f4 | 1342 | { "vmalloc", MEMCG_VMALLOC }, |
fff66b79 | 1343 | { "shmem", NR_SHMEM }, |
3a3b7fec | 1344 | #ifdef CONFIG_ZSWAP |
f4840ccf JW |
1345 | { "zswap", MEMCG_ZSWAP_B }, |
1346 | { "zswapped", MEMCG_ZSWAPPED }, | |
1347 | #endif | |
fff66b79 MS |
1348 | { "file_mapped", NR_FILE_MAPPED }, |
1349 | { "file_dirty", NR_FILE_DIRTY }, | |
1350 | { "file_writeback", NR_WRITEBACK }, | |
b6038942 SB |
1351 | #ifdef CONFIG_SWAP |
1352 | { "swapcached", NR_SWAPCACHE }, | |
1353 | #endif | |
5f9a4f4a | 1354 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
fff66b79 MS |
1355 | { "anon_thp", NR_ANON_THPS }, |
1356 | { "file_thp", NR_FILE_THPS }, | |
1357 | { "shmem_thp", NR_SHMEM_THPS }, | |
5f9a4f4a | 1358 | #endif |
fff66b79 MS |
1359 | { "inactive_anon", NR_INACTIVE_ANON }, |
1360 | { "active_anon", NR_ACTIVE_ANON }, | |
1361 | { "inactive_file", NR_INACTIVE_FILE }, | |
1362 | { "active_file", NR_ACTIVE_FILE }, | |
1363 | { "unevictable", NR_UNEVICTABLE }, | |
1364 | { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, | |
1365 | { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, | |
05d4532b JH |
1366 | #ifdef CONFIG_HUGETLB_PAGE |
1367 | { "hugetlb", NR_HUGETLB }, | |
1368 | #endif | |
5f9a4f4a MS |
1369 | |
1370 | /* The memory events */ | |
fff66b79 MS |
1371 | { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, |
1372 | { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, | |
1373 | { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, | |
1374 | { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, | |
1375 | { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, | |
1376 | { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, | |
1377 | { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, | |
f77f0c75 KZ |
1378 | |
1379 | { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, | |
1380 | { "pgdemote_direct", PGDEMOTE_DIRECT }, | |
1381 | { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, | |
e452872b | 1382 | { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, |
f77f0c75 KZ |
1383 | #ifdef CONFIG_NUMA_BALANCING |
1384 | { "pgpromote_success", PGPROMOTE_SUCCESS }, | |
1385 | #endif | |
5f9a4f4a MS |
1386 | }; |
1387 | ||
ff841a06 | 1388 | /* The actual unit of the state item, not the same as the output unit */ |
fff66b79 MS |
1389 | static int memcg_page_state_unit(int item) |
1390 | { | |
1391 | switch (item) { | |
1392 | case MEMCG_PERCPU_B: | |
f4840ccf | 1393 | case MEMCG_ZSWAP_B: |
fff66b79 MS |
1394 | case NR_SLAB_RECLAIMABLE_B: |
1395 | case NR_SLAB_UNRECLAIMABLE_B: | |
ff841a06 YA |
1396 | return 1; |
1397 | case NR_KERNEL_STACK_KB: | |
1398 | return SZ_1K; | |
1399 | default: | |
1400 | return PAGE_SIZE; | |
1401 | } | |
1402 | } | |
1403 | ||
1404 | /* Translate stat items to the correct unit for memory.stat output */ | |
1405 | static int memcg_page_state_output_unit(int item) | |
1406 | { | |
1407 | /* | |
1408 | * Workingset state is actually in pages, but we export it to userspace | |
1409 | * as a scalar count of events, so special case it here. | |
f77f0c75 KZ |
1410 | * |
1411 | * Demotion and promotion activities are exported in pages, consistent | |
1412 | * with their global counterparts. | |
ff841a06 YA |
1413 | */ |
1414 | switch (item) { | |
fff66b79 MS |
1415 | case WORKINGSET_REFAULT_ANON: |
1416 | case WORKINGSET_REFAULT_FILE: | |
1417 | case WORKINGSET_ACTIVATE_ANON: | |
1418 | case WORKINGSET_ACTIVATE_FILE: | |
1419 | case WORKINGSET_RESTORE_ANON: | |
1420 | case WORKINGSET_RESTORE_FILE: | |
1421 | case WORKINGSET_NODERECLAIM: | |
f77f0c75 KZ |
1422 | case PGDEMOTE_KSWAPD: |
1423 | case PGDEMOTE_DIRECT: | |
1424 | case PGDEMOTE_KHUGEPAGED: | |
e452872b | 1425 | case PGDEMOTE_PROACTIVE: |
f77f0c75 KZ |
1426 | #ifdef CONFIG_NUMA_BALANCING |
1427 | case PGPROMOTE_SUCCESS: | |
1428 | #endif | |
fff66b79 | 1429 | return 1; |
fff66b79 | 1430 | default: |
ff841a06 | 1431 | return memcg_page_state_unit(item); |
fff66b79 MS |
1432 | } |
1433 | } | |
1434 | ||
ea1e8796 | 1435 | unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) |
fff66b79 | 1436 | { |
ff841a06 YA |
1437 | return memcg_page_state(memcg, item) * |
1438 | memcg_page_state_output_unit(item); | |
1439 | } | |
1440 | ||
610dc18c | 1441 | #ifdef CONFIG_MEMCG_V1 |
ea1e8796 | 1442 | unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) |
ff841a06 YA |
1443 | { |
1444 | return memcg_page_state_local(memcg, item) * | |
1445 | memcg_page_state_output_unit(item); | |
fff66b79 | 1446 | } |
610dc18c | 1447 | #endif |
fff66b79 | 1448 | |
4e97d64c JH |
1449 | #ifdef CONFIG_HUGETLB_PAGE |
1450 | static bool memcg_accounts_hugetlb(void) | |
1451 | { | |
1452 | return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; | |
1453 | } | |
1454 | #else /* CONFIG_HUGETLB_PAGE */ | |
1455 | static bool memcg_accounts_hugetlb(void) | |
1456 | { | |
1457 | return false; | |
1458 | } | |
1459 | #endif /* CONFIG_HUGETLB_PAGE */ | |
1460 | ||
dddb44ff | 1461 | static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) |
c8713d0b | 1462 | { |
c8713d0b | 1463 | int i; |
71cd3113 | 1464 | |
c8713d0b JW |
1465 | /* |
1466 | * Provide statistics on the state of the memory subsystem as | |
1467 | * well as cumulative event counters that show past behavior. | |
1468 | * | |
1469 | * This list is ordered following a combination of these gradients: | |
1470 | * 1) generic big picture -> specifics and details | |
1471 | * 2) reflecting userspace activity -> reflecting kernel heuristics | |
1472 | * | |
1473 | * Current memory state: | |
1474 | */ | |
7d7ef0a4 | 1475 | mem_cgroup_flush_stats(memcg); |
c8713d0b | 1476 | |
5f9a4f4a MS |
1477 | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { |
1478 | u64 size; | |
c8713d0b | 1479 | |
05d4532b JH |
1480 | #ifdef CONFIG_HUGETLB_PAGE |
1481 | if (unlikely(memory_stats[i].idx == NR_HUGETLB) && | |
4e97d64c | 1482 | !memcg_accounts_hugetlb()) |
05d4532b JH |
1483 | continue; |
1484 | #endif | |
fff66b79 | 1485 | size = memcg_page_state_output(memcg, memory_stats[i].idx); |
5b42360c | 1486 | seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); |
c8713d0b | 1487 | |
5f9a4f4a | 1488 | if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { |
fff66b79 MS |
1489 | size += memcg_page_state_output(memcg, |
1490 | NR_SLAB_RECLAIMABLE_B); | |
5b42360c | 1491 | seq_buf_printf(s, "slab %llu\n", size); |
5f9a4f4a MS |
1492 | } |
1493 | } | |
c8713d0b JW |
1494 | |
1495 | /* Accumulated memory events */ | |
5b42360c | 1496 | seq_buf_printf(s, "pgscan %lu\n", |
c8713d0b | 1497 | memcg_events(memcg, PGSCAN_KSWAPD) + |
57e9cc50 | 1498 | memcg_events(memcg, PGSCAN_DIRECT) + |
e452872b | 1499 | memcg_events(memcg, PGSCAN_PROACTIVE) + |
57e9cc50 | 1500 | memcg_events(memcg, PGSCAN_KHUGEPAGED)); |
5b42360c | 1501 | seq_buf_printf(s, "pgsteal %lu\n", |
c8713d0b | 1502 | memcg_events(memcg, PGSTEAL_KSWAPD) + |
57e9cc50 | 1503 | memcg_events(memcg, PGSTEAL_DIRECT) + |
e452872b | 1504 | memcg_events(memcg, PGSTEAL_PROACTIVE) + |
57e9cc50 | 1505 | memcg_events(memcg, PGSTEAL_KHUGEPAGED)); |
c8713d0b | 1506 | |
8278f1c7 | 1507 | for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { |
98455eef | 1508 | #ifdef CONFIG_MEMCG_V1 |
8278f1c7 SB |
1509 | if (memcg_vm_event_stat[i] == PGPGIN || |
1510 | memcg_vm_event_stat[i] == PGPGOUT) | |
1511 | continue; | |
98455eef | 1512 | #endif |
5b42360c | 1513 | seq_buf_printf(s, "%s %lu\n", |
673520f8 QZ |
1514 | vm_event_name(memcg_vm_event_stat[i]), |
1515 | memcg_events(memcg, memcg_vm_event_stat[i])); | |
8278f1c7 | 1516 | } |
c8713d0b | 1517 | } |
71cd3113 | 1518 | |
dddb44ff YA |
1519 | static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) |
1520 | { | |
1521 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
1522 | memcg_stat_format(memcg, s); | |
1523 | else | |
1524 | memcg1_stat_format(memcg, s); | |
c2fad56b XJ |
1525 | if (seq_buf_has_overflowed(s)) |
1526 | pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); | |
dddb44ff YA |
1527 | } |
1528 | ||
e222432b | 1529 | /** |
f0c867d9 | 1530 | * mem_cgroup_print_oom_context: Print OOM information relevant to |
1531 | * memory controller. | |
e222432b BS |
1532 | * @memcg: The memory cgroup that went over limit |
1533 | * @p: Task that is going to be killed | |
1534 | * | |
1535 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1536 | * enabled | |
1537 | */ | |
f0c867d9 | 1538 | void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) |
e222432b | 1539 | { |
e222432b BS |
1540 | rcu_read_lock(); |
1541 | ||
f0c867d9 | 1542 | if (memcg) { |
1543 | pr_cont(",oom_memcg="); | |
1544 | pr_cont_cgroup_path(memcg->css.cgroup); | |
1545 | } else | |
1546 | pr_cont(",global_oom"); | |
2415b9f5 | 1547 | if (p) { |
f0c867d9 | 1548 | pr_cont(",task_memcg="); |
2415b9f5 | 1549 | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); |
2415b9f5 | 1550 | } |
e222432b | 1551 | rcu_read_unlock(); |
f0c867d9 | 1552 | } |
1553 | ||
1554 | /** | |
1555 | * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to | |
1556 | * memory controller. | |
1557 | * @memcg: The memory cgroup that went over limit | |
1558 | */ | |
1559 | void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) | |
1560 | { | |
68aaee14 | 1561 | /* Use static buffer, for the caller is holding oom_lock. */ |
8717734f | 1562 | static char buf[SEQ_BUF_SIZE]; |
5b42360c | 1563 | struct seq_buf s; |
0e2759af | 1564 | unsigned long memory_failcnt; |
68aaee14 TH |
1565 | |
1566 | lockdep_assert_held(&oom_lock); | |
e222432b | 1567 | |
0e2759af SB |
1568 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
1569 | memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); | |
1570 | else | |
1571 | memory_failcnt = memcg->memory.failcnt; | |
1572 | ||
3e32cb2e JW |
1573 | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", |
1574 | K((u64)page_counter_read(&memcg->memory)), | |
0e2759af | 1575 | K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); |
c8713d0b JW |
1576 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
1577 | pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", | |
1578 | K((u64)page_counter_read(&memcg->swap)), | |
0e2759af SB |
1579 | K((u64)READ_ONCE(memcg->swap.max)), |
1580 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); | |
47d2702b | 1581 | #ifdef CONFIG_MEMCG_V1 |
c8713d0b JW |
1582 | else { |
1583 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | |
1584 | K((u64)page_counter_read(&memcg->memsw)), | |
1585 | K((u64)memcg->memsw.max), memcg->memsw.failcnt); | |
1586 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | |
1587 | K((u64)page_counter_read(&memcg->kmem)), | |
1588 | K((u64)memcg->kmem.max), memcg->kmem.failcnt); | |
58cf188e | 1589 | } |
47d2702b | 1590 | #endif |
c8713d0b JW |
1591 | |
1592 | pr_info("Memory cgroup stats for "); | |
1593 | pr_cont_cgroup_path(memcg->css.cgroup); | |
1594 | pr_cont(":"); | |
8717734f | 1595 | seq_buf_init(&s, buf, SEQ_BUF_SIZE); |
5b42360c YA |
1596 | memory_stat_format(memcg, &s); |
1597 | seq_buf_do_printk(&s, KERN_INFO); | |
e222432b BS |
1598 | } |
1599 | ||
a63d83f4 DR |
1600 | /* |
1601 | * Return the memory (and swap, if configured) limit for a memcg. | |
1602 | */ | |
bbec2e15 | 1603 | unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) |
a63d83f4 | 1604 | { |
8d387a5f WL |
1605 | unsigned long max = READ_ONCE(memcg->memory.max); |
1606 | ||
b94c4e94 | 1607 | if (do_memsw_account()) { |
8d387a5f WL |
1608 | if (mem_cgroup_swappiness(memcg)) { |
1609 | /* Calculate swap excess capacity from memsw limit */ | |
1610 | unsigned long swap = READ_ONCE(memcg->memsw.max) - max; | |
1611 | ||
1612 | max += min(swap, (unsigned long)total_swap_pages); | |
1613 | } | |
b94c4e94 JW |
1614 | } else { |
1615 | if (mem_cgroup_swappiness(memcg)) | |
1616 | max += min(READ_ONCE(memcg->swap.max), | |
1617 | (unsigned long)total_swap_pages); | |
9a5a8f19 | 1618 | } |
bbec2e15 | 1619 | return max; |
a63d83f4 DR |
1620 | } |
1621 | ||
9783aa99 CD |
1622 | unsigned long mem_cgroup_size(struct mem_cgroup *memcg) |
1623 | { | |
1624 | return page_counter_read(&memcg->memory); | |
1625 | } | |
1626 | ||
b6e6edcf | 1627 | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
19965460 | 1628 | int order) |
9cbb78bb | 1629 | { |
6e0fc46d DR |
1630 | struct oom_control oc = { |
1631 | .zonelist = NULL, | |
1632 | .nodemask = NULL, | |
2a966b77 | 1633 | .memcg = memcg, |
6e0fc46d DR |
1634 | .gfp_mask = gfp_mask, |
1635 | .order = order, | |
6e0fc46d | 1636 | }; |
1378b37d | 1637 | bool ret = true; |
9cbb78bb | 1638 | |
7775face TH |
1639 | if (mutex_lock_killable(&oom_lock)) |
1640 | return true; | |
1378b37d YS |
1641 | |
1642 | if (mem_cgroup_margin(memcg) >= (1 << order)) | |
1643 | goto unlock; | |
1644 | ||
7775face TH |
1645 | /* |
1646 | * A few threads which were not waiting at mutex_lock_killable() can | |
1647 | * fail to bail out. Therefore, check again after holding oom_lock. | |
1648 | */ | |
a75ffa26 | 1649 | ret = out_of_memory(&oc); |
1378b37d YS |
1650 | |
1651 | unlock: | |
dc56401f | 1652 | mutex_unlock(&oom_lock); |
7c5f64f8 | 1653 | return ret; |
9cbb78bb DR |
1654 | } |
1655 | ||
becdf89d SB |
1656 | /* |
1657 | * Returns true if successfully killed one or more processes. Though in some | |
1658 | * corner cases it can return true even without killing any process. | |
1659 | */ | |
1660 | static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) | |
0b7f569e | 1661 | { |
becdf89d | 1662 | bool locked, ret; |
7056d3a3 | 1663 | |
29ef680a | 1664 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
becdf89d | 1665 | return false; |
29ef680a | 1666 | |
7a1adfdd RG |
1667 | memcg_memory_event(memcg, MEMCG_OOM); |
1668 | ||
292fc2e0 | 1669 | if (!memcg1_oom_prepare(memcg, &locked)) |
becdf89d | 1670 | return false; |
29ef680a | 1671 | |
becdf89d | 1672 | ret = mem_cgroup_out_of_memory(memcg, mask, order); |
7056d3a3 | 1673 | |
292fc2e0 | 1674 | memcg1_oom_finish(memcg, locked); |
29ef680a | 1675 | |
7056d3a3 | 1676 | return ret; |
3812c8c8 JW |
1677 | } |
1678 | ||
3d8b38eb RG |
1679 | /** |
1680 | * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM | |
1681 | * @victim: task to be killed by the OOM killer | |
1682 | * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM | |
1683 | * | |
1684 | * Returns a pointer to a memory cgroup, which has to be cleaned up | |
1685 | * by killing all belonging OOM-killable tasks. | |
1686 | * | |
1687 | * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. | |
1688 | */ | |
1689 | struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, | |
1690 | struct mem_cgroup *oom_domain) | |
1691 | { | |
1692 | struct mem_cgroup *oom_group = NULL; | |
1693 | struct mem_cgroup *memcg; | |
1694 | ||
1695 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
1696 | return NULL; | |
1697 | ||
1698 | if (!oom_domain) | |
1699 | oom_domain = root_mem_cgroup; | |
1700 | ||
1701 | rcu_read_lock(); | |
1702 | ||
1703 | memcg = mem_cgroup_from_task(victim); | |
7848ed62 | 1704 | if (mem_cgroup_is_root(memcg)) |
3d8b38eb RG |
1705 | goto out; |
1706 | ||
48fe267c RG |
1707 | /* |
1708 | * If the victim task has been asynchronously moved to a different | |
1709 | * memory cgroup, we might end up killing tasks outside oom_domain. | |
1710 | * In this case it's better to ignore memory.group.oom. | |
1711 | */ | |
1712 | if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) | |
1713 | goto out; | |
1714 | ||
3d8b38eb RG |
1715 | /* |
1716 | * Traverse the memory cgroup hierarchy from the victim task's | |
1717 | * cgroup up to the OOMing cgroup (or root) to find the | |
1718 | * highest-level memory cgroup with oom.group set. | |
1719 | */ | |
1720 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | |
eaf7b66b | 1721 | if (READ_ONCE(memcg->oom_group)) |
3d8b38eb RG |
1722 | oom_group = memcg; |
1723 | ||
1724 | if (memcg == oom_domain) | |
1725 | break; | |
1726 | } | |
1727 | ||
1728 | if (oom_group) | |
1729 | css_get(&oom_group->css); | |
1730 | out: | |
1731 | rcu_read_unlock(); | |
1732 | ||
1733 | return oom_group; | |
1734 | } | |
1735 | ||
1736 | void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) | |
1737 | { | |
1738 | pr_info("Tasks in "); | |
1739 | pr_cont_cgroup_path(memcg->css.cgroup); | |
1740 | pr_cont(" are going to be killed due to memory.oom.group set\n"); | |
1741 | } | |
1742 | ||
f735eebe SB |
1743 | /* |
1744 | * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their | |
1745 | * nr_pages in a single cacheline. This may change in future. | |
1746 | */ | |
1747 | #define NR_MEMCG_STOCK 7 | |
c80509ef | 1748 | #define FLUSHING_CACHED_CHARGE 0 |
fead2b86 | 1749 | struct memcg_stock_pcp { |
c80509ef | 1750 | local_trylock_t lock; |
f735eebe SB |
1751 | uint8_t nr_pages[NR_MEMCG_STOCK]; |
1752 | struct mem_cgroup *cached[NR_MEMCG_STOCK]; | |
fead2b86 | 1753 | |
c80509ef SB |
1754 | struct work_struct work; |
1755 | unsigned long flags; | |
1756 | }; | |
1757 | ||
1758 | static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { | |
1759 | .lock = INIT_LOCAL_TRYLOCK(lock), | |
1760 | }; | |
1761 | ||
1762 | struct obj_stock_pcp { | |
1763 | local_trylock_t lock; | |
3523dd7a | 1764 | unsigned int nr_bytes; |
bf4f0599 | 1765 | struct obj_cgroup *cached_objcg; |
68ac5b3c | 1766 | struct pglist_data *cached_pgdat; |
68ac5b3c WL |
1767 | int nr_slab_reclaimable_b; |
1768 | int nr_slab_unreclaimable_b; | |
bf4f0599 | 1769 | |
cdec2e42 | 1770 | struct work_struct work; |
26fe6168 | 1771 | unsigned long flags; |
cdec2e42 | 1772 | }; |
c80509ef SB |
1773 | |
1774 | static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = { | |
1775 | .lock = INIT_LOCAL_TRYLOCK(lock), | |
56751146 | 1776 | }; |
c80509ef | 1777 | |
9f50fad6 | 1778 | static DEFINE_MUTEX(percpu_charge_mutex); |
cdec2e42 | 1779 | |
c80509ef SB |
1780 | static void drain_obj_stock(struct obj_stock_pcp *stock); |
1781 | static bool obj_stock_flush_required(struct obj_stock_pcp *stock, | |
bf4f0599 RG |
1782 | struct mem_cgroup *root_memcg); |
1783 | ||
a0956d54 SS |
1784 | /** |
1785 | * consume_stock: Try to consume stocked charge on this cpu. | |
1786 | * @memcg: memcg to consume from. | |
1787 | * @nr_pages: how many pages to charge. | |
1788 | * | |
2fba5961 SB |
1789 | * Consume the cached charge if enough nr_pages are present otherwise return |
1790 | * failure. Also return failure for charge request larger than | |
1791 | * MEMCG_CHARGE_BATCH or if the local lock is already taken. | |
a0956d54 SS |
1792 | * |
1793 | * returns true if successful, false otherwise. | |
cdec2e42 | 1794 | */ |
2fba5961 | 1795 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 KH |
1796 | { |
1797 | struct memcg_stock_pcp *stock; | |
f735eebe | 1798 | uint8_t stock_pages; |
3e32cb2e | 1799 | bool ret = false; |
f735eebe | 1800 | int i; |
cdec2e42 | 1801 | |
2fba5961 | 1802 | if (nr_pages > MEMCG_CHARGE_BATCH || |
9e619cd4 | 1803 | !local_trylock(&memcg_stock.lock)) |
51339d99 | 1804 | return ret; |
db2ba40c JW |
1805 | |
1806 | stock = this_cpu_ptr(&memcg_stock); | |
f735eebe SB |
1807 | |
1808 | for (i = 0; i < NR_MEMCG_STOCK; ++i) { | |
1809 | if (memcg != READ_ONCE(stock->cached[i])) | |
1810 | continue; | |
1811 | ||
1812 | stock_pages = READ_ONCE(stock->nr_pages[i]); | |
1813 | if (stock_pages >= nr_pages) { | |
1814 | WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); | |
1815 | ret = true; | |
1816 | } | |
1817 | break; | |
3e32cb2e | 1818 | } |
db2ba40c | 1819 | |
9e619cd4 | 1820 | local_unlock(&memcg_stock.lock); |
db2ba40c | 1821 | |
cdec2e42 KH |
1822 | return ret; |
1823 | } | |
1824 | ||
89f342af SB |
1825 | static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) |
1826 | { | |
1827 | page_counter_uncharge(&memcg->memory, nr_pages); | |
1828 | if (do_memsw_account()) | |
1829 | page_counter_uncharge(&memcg->memsw, nr_pages); | |
1830 | } | |
1831 | ||
cdec2e42 | 1832 | /* |
3e32cb2e | 1833 | * Returns stocks cached in percpu and reset cached information. |
cdec2e42 | 1834 | */ |
f735eebe | 1835 | static void drain_stock(struct memcg_stock_pcp *stock, int i) |
cdec2e42 | 1836 | { |
f735eebe SB |
1837 | struct mem_cgroup *old = READ_ONCE(stock->cached[i]); |
1838 | uint8_t stock_pages; | |
cdec2e42 | 1839 | |
1a3e1f40 JW |
1840 | if (!old) |
1841 | return; | |
1842 | ||
f735eebe | 1843 | stock_pages = READ_ONCE(stock->nr_pages[i]); |
1872b3bc | 1844 | if (stock_pages) { |
89f342af | 1845 | memcg_uncharge(old, stock_pages); |
f735eebe | 1846 | WRITE_ONCE(stock->nr_pages[i], 0); |
cdec2e42 | 1847 | } |
1a3e1f40 JW |
1848 | |
1849 | css_put(&old->css); | |
f735eebe | 1850 | WRITE_ONCE(stock->cached[i], NULL); |
cdec2e42 KH |
1851 | } |
1852 | ||
f735eebe SB |
1853 | static void drain_stock_fully(struct memcg_stock_pcp *stock) |
1854 | { | |
1855 | int i; | |
1856 | ||
1857 | for (i = 0; i < NR_MEMCG_STOCK; ++i) | |
1858 | drain_stock(stock, i); | |
cdec2e42 KH |
1859 | } |
1860 | ||
c80509ef | 1861 | static void drain_local_memcg_stock(struct work_struct *dummy) |
cdec2e42 | 1862 | { |
db2ba40c | 1863 | struct memcg_stock_pcp *stock; |
db2ba40c | 1864 | |
3523dd7a SB |
1865 | if (WARN_ONCE(!in_task(), "drain in non-task context")) |
1866 | return; | |
db2ba40c | 1867 | |
9e619cd4 | 1868 | local_lock(&memcg_stock.lock); |
db2ba40c JW |
1869 | |
1870 | stock = this_cpu_ptr(&memcg_stock); | |
f735eebe | 1871 | drain_stock_fully(stock); |
26fe6168 | 1872 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
db2ba40c | 1873 | |
9e619cd4 | 1874 | local_unlock(&memcg_stock.lock); |
cdec2e42 KH |
1875 | } |
1876 | ||
c80509ef | 1877 | static void drain_local_obj_stock(struct work_struct *dummy) |
cdec2e42 | 1878 | { |
c80509ef | 1879 | struct obj_stock_pcp *stock; |
cdec2e42 | 1880 | |
c80509ef SB |
1881 | if (WARN_ONCE(!in_task(), "drain in non-task context")) |
1882 | return; | |
1883 | ||
200577f6 | 1884 | local_lock(&obj_stock.lock); |
c80509ef SB |
1885 | |
1886 | stock = this_cpu_ptr(&obj_stock); | |
1887 | drain_obj_stock(stock); | |
1888 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | |
db2ba40c | 1889 | |
200577f6 | 1890 | local_unlock(&obj_stock.lock); |
af9a3b69 JW |
1891 | } |
1892 | ||
1893 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | |
1894 | { | |
db2ba40c | 1895 | struct memcg_stock_pcp *stock; |
f735eebe SB |
1896 | struct mem_cgroup *cached; |
1897 | uint8_t stock_pages; | |
f735eebe SB |
1898 | bool success = false; |
1899 | int empty_slot = -1; | |
1900 | int i; | |
1901 | ||
1902 | /* | |
1903 | * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we | |
1904 | * decide to increase it more than 127 then we will need more careful | |
1905 | * handling of nr_pages[] in struct memcg_stock_pcp. | |
1906 | */ | |
1907 | BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); | |
475d0487 | 1908 | |
cbc09144 SB |
1909 | VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); |
1910 | ||
f735eebe | 1911 | if (nr_pages > MEMCG_CHARGE_BATCH || |
9e619cd4 | 1912 | !local_trylock(&memcg_stock.lock)) { |
01d37228 | 1913 | /* |
f735eebe | 1914 | * In case of larger than batch refill or unlikely failure to |
c80509ef | 1915 | * lock the percpu memcg_stock.lock, uncharge memcg directly. |
01d37228 | 1916 | */ |
cbc09144 | 1917 | memcg_uncharge(memcg, nr_pages); |
01d37228 AS |
1918 | return; |
1919 | } | |
cdec2e42 | 1920 | |
db2ba40c | 1921 | stock = this_cpu_ptr(&memcg_stock); |
f735eebe SB |
1922 | for (i = 0; i < NR_MEMCG_STOCK; ++i) { |
1923 | cached = READ_ONCE(stock->cached[i]); | |
1924 | if (!cached && empty_slot == -1) | |
1925 | empty_slot = i; | |
1926 | if (memcg == READ_ONCE(stock->cached[i])) { | |
1927 | stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; | |
1928 | WRITE_ONCE(stock->nr_pages[i], stock_pages); | |
1929 | if (stock_pages > MEMCG_CHARGE_BATCH) | |
1930 | drain_stock(stock, i); | |
1931 | success = true; | |
1932 | break; | |
1933 | } | |
cdec2e42 | 1934 | } |
db2ba40c | 1935 | |
f735eebe SB |
1936 | if (!success) { |
1937 | i = empty_slot; | |
1938 | if (i == -1) { | |
1939 | i = get_random_u32_below(NR_MEMCG_STOCK); | |
1940 | drain_stock(stock, i); | |
1941 | } | |
1942 | css_get(&memcg->css); | |
1943 | WRITE_ONCE(stock->cached[i], memcg); | |
1944 | WRITE_ONCE(stock->nr_pages[i], nr_pages); | |
1945 | } | |
e56fa8f5 | 1946 | |
9e619cd4 | 1947 | local_unlock(&memcg_stock.lock); |
cdec2e42 KH |
1948 | } |
1949 | ||
c80509ef SB |
1950 | static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock, |
1951 | struct mem_cgroup *root_memcg) | |
f735eebe SB |
1952 | { |
1953 | struct mem_cgroup *memcg; | |
1954 | bool flush = false; | |
1955 | int i; | |
1956 | ||
1957 | rcu_read_lock(); | |
f735eebe SB |
1958 | for (i = 0; i < NR_MEMCG_STOCK; ++i) { |
1959 | memcg = READ_ONCE(stock->cached[i]); | |
1960 | if (!memcg) | |
1961 | continue; | |
1962 | ||
1963 | if (READ_ONCE(stock->nr_pages[i]) && | |
1964 | mem_cgroup_is_descendant(memcg, root_memcg)) { | |
1965 | flush = true; | |
1966 | break; | |
1967 | } | |
1968 | } | |
f735eebe SB |
1969 | rcu_read_unlock(); |
1970 | return flush; | |
cdec2e42 KH |
1971 | } |
1972 | ||
1973 | /* | |
c0ff4b85 | 1974 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
6d3d6aa2 | 1975 | * of the hierarchy under it. |
cdec2e42 | 1976 | */ |
ea1e8796 | 1977 | void drain_all_stock(struct mem_cgroup *root_memcg) |
cdec2e42 | 1978 | { |
26fe6168 | 1979 | int cpu, curcpu; |
d38144b7 | 1980 | |
6d3d6aa2 JW |
1981 | /* If someone's already draining, avoid adding running more workers. */ |
1982 | if (!mutex_trylock(&percpu_charge_mutex)) | |
1983 | return; | |
72f0184c MH |
1984 | /* |
1985 | * Notify other cpus that system-wide "drain" is running | |
1986 | * We do not care about races with the cpu hotplug because cpu down | |
1987 | * as well as workers from this path always operate on the local | |
1988 | * per-cpu data. CPU up doesn't touch memcg_stock at all. | |
1989 | */ | |
0790ed62 SAS |
1990 | migrate_disable(); |
1991 | curcpu = smp_processor_id(); | |
cdec2e42 | 1992 | for_each_online_cpu(cpu) { |
c80509ef SB |
1993 | struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu); |
1994 | struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu); | |
26fe6168 | 1995 | |
c80509ef SB |
1996 | if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) && |
1997 | is_memcg_drain_needed(memcg_st, root_memcg) && | |
1998 | !test_and_set_bit(FLUSHING_CACHED_CHARGE, | |
1999 | &memcg_st->flags)) { | |
d1a05b69 | 2000 | if (cpu == curcpu) |
c80509ef | 2001 | drain_local_memcg_stock(&memcg_st->work); |
6a792697 | 2002 | else if (!cpu_is_isolated(cpu)) |
c80509ef SB |
2003 | schedule_work_on(cpu, &memcg_st->work); |
2004 | } | |
e1a366be | 2005 | |
c80509ef SB |
2006 | if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) && |
2007 | obj_stock_flush_required(obj_st, root_memcg) && | |
2008 | !test_and_set_bit(FLUSHING_CACHED_CHARGE, | |
2009 | &obj_st->flags)) { | |
d1a05b69 | 2010 | if (cpu == curcpu) |
c80509ef | 2011 | drain_local_obj_stock(&obj_st->work); |
6a792697 | 2012 | else if (!cpu_is_isolated(cpu)) |
c80509ef | 2013 | schedule_work_on(cpu, &obj_st->work); |
d1a05b69 | 2014 | } |
cdec2e42 | 2015 | } |
0790ed62 | 2016 | migrate_enable(); |
9f50fad6 | 2017 | mutex_unlock(&percpu_charge_mutex); |
cdec2e42 KH |
2018 | } |
2019 | ||
2cd21c89 JW |
2020 | static int memcg_hotplug_cpu_dead(unsigned int cpu) |
2021 | { | |
3523dd7a | 2022 | /* no need for the local lock */ |
0ccf1806 | 2023 | drain_obj_stock(&per_cpu(obj_stock, cpu)); |
c80509ef | 2024 | drain_stock_fully(&per_cpu(memcg_stock, cpu)); |
a3d4c05a | 2025 | |
308167fc | 2026 | return 0; |
cdec2e42 KH |
2027 | } |
2028 | ||
b3ff9291 CD |
2029 | static unsigned long reclaim_high(struct mem_cgroup *memcg, |
2030 | unsigned int nr_pages, | |
2031 | gfp_t gfp_mask) | |
f7e1cb6e | 2032 | { |
b3ff9291 CD |
2033 | unsigned long nr_reclaimed = 0; |
2034 | ||
f7e1cb6e | 2035 | do { |
e22c6ed9 JW |
2036 | unsigned long pflags; |
2037 | ||
d1663a90 JK |
2038 | if (page_counter_read(&memcg->memory) <= |
2039 | READ_ONCE(memcg->memory.high)) | |
f7e1cb6e | 2040 | continue; |
e22c6ed9 | 2041 | |
e27be240 | 2042 | memcg_memory_event(memcg, MEMCG_HIGH); |
e22c6ed9 JW |
2043 | |
2044 | psi_memstall_enter(&pflags); | |
b3ff9291 | 2045 | nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, |
73b73bac | 2046 | gfp_mask, |
68cd9050 DS |
2047 | MEMCG_RECLAIM_MAY_SWAP, |
2048 | NULL); | |
e22c6ed9 | 2049 | psi_memstall_leave(&pflags); |
4bf17307 CD |
2050 | } while ((memcg = parent_mem_cgroup(memcg)) && |
2051 | !mem_cgroup_is_root(memcg)); | |
b3ff9291 CD |
2052 | |
2053 | return nr_reclaimed; | |
f7e1cb6e JW |
2054 | } |
2055 | ||
2056 | static void high_work_func(struct work_struct *work) | |
2057 | { | |
2058 | struct mem_cgroup *memcg; | |
2059 | ||
2060 | memcg = container_of(work, struct mem_cgroup, high_work); | |
a983b5eb | 2061 | reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); |
f7e1cb6e JW |
2062 | } |
2063 | ||
0e4b01df CD |
2064 | /* |
2065 | * Clamp the maximum sleep time per allocation batch to 2 seconds. This is | |
2066 | * enough to still cause a significant slowdown in most cases, while still | |
2067 | * allowing diagnostics and tracing to proceed without becoming stuck. | |
2068 | */ | |
2069 | #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) | |
2070 | ||
2071 | /* | |
2072 | * When calculating the delay, we use these either side of the exponentiation to | |
2073 | * maintain precision and scale to a reasonable number of jiffies (see the table | |
2074 | * below. | |
2075 | * | |
2076 | * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the | |
2077 | * overage ratio to a delay. | |
ac5ddd0f | 2078 | * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the |
0e4b01df CD |
2079 | * proposed penalty in order to reduce to a reasonable number of jiffies, and |
2080 | * to produce a reasonable delay curve. | |
2081 | * | |
2082 | * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a | |
2083 | * reasonable delay curve compared to precision-adjusted overage, not | |
2084 | * penalising heavily at first, but still making sure that growth beyond the | |
2085 | * limit penalises misbehaviour cgroups by slowing them down exponentially. For | |
2086 | * example, with a high of 100 megabytes: | |
2087 | * | |
2088 | * +-------+------------------------+ | |
2089 | * | usage | time to allocate in ms | | |
2090 | * +-------+------------------------+ | |
2091 | * | 100M | 0 | | |
2092 | * | 101M | 6 | | |
2093 | * | 102M | 25 | | |
2094 | * | 103M | 57 | | |
2095 | * | 104M | 102 | | |
2096 | * | 105M | 159 | | |
2097 | * | 106M | 230 | | |
2098 | * | 107M | 313 | | |
2099 | * | 108M | 409 | | |
2100 | * | 109M | 518 | | |
2101 | * | 110M | 639 | | |
2102 | * | 111M | 774 | | |
2103 | * | 112M | 921 | | |
2104 | * | 113M | 1081 | | |
2105 | * | 114M | 1254 | | |
2106 | * | 115M | 1439 | | |
2107 | * | 116M | 1638 | | |
2108 | * | 117M | 1849 | | |
2109 | * | 118M | 2000 | | |
2110 | * | 119M | 2000 | | |
2111 | * | 120M | 2000 | | |
2112 | * +-------+------------------------+ | |
2113 | */ | |
2114 | #define MEMCG_DELAY_PRECISION_SHIFT 20 | |
2115 | #define MEMCG_DELAY_SCALING_SHIFT 14 | |
2116 | ||
8a5dbc65 | 2117 | static u64 calculate_overage(unsigned long usage, unsigned long high) |
b23afb93 | 2118 | { |
8a5dbc65 | 2119 | u64 overage; |
b23afb93 | 2120 | |
8a5dbc65 JK |
2121 | if (usage <= high) |
2122 | return 0; | |
e26733e0 | 2123 | |
8a5dbc65 JK |
2124 | /* |
2125 | * Prevent division by 0 in overage calculation by acting as if | |
2126 | * it was a threshold of 1 page | |
2127 | */ | |
2128 | high = max(high, 1UL); | |
9b8b1754 | 2129 | |
8a5dbc65 JK |
2130 | overage = usage - high; |
2131 | overage <<= MEMCG_DELAY_PRECISION_SHIFT; | |
2132 | return div64_u64(overage, high); | |
2133 | } | |
e26733e0 | 2134 | |
8a5dbc65 JK |
2135 | static u64 mem_find_max_overage(struct mem_cgroup *memcg) |
2136 | { | |
2137 | u64 overage, max_overage = 0; | |
e26733e0 | 2138 | |
8a5dbc65 JK |
2139 | do { |
2140 | overage = calculate_overage(page_counter_read(&memcg->memory), | |
d1663a90 | 2141 | READ_ONCE(memcg->memory.high)); |
8a5dbc65 | 2142 | max_overage = max(overage, max_overage); |
e26733e0 CD |
2143 | } while ((memcg = parent_mem_cgroup(memcg)) && |
2144 | !mem_cgroup_is_root(memcg)); | |
2145 | ||
8a5dbc65 JK |
2146 | return max_overage; |
2147 | } | |
2148 | ||
4b82ab4f JK |
2149 | static u64 swap_find_max_overage(struct mem_cgroup *memcg) |
2150 | { | |
2151 | u64 overage, max_overage = 0; | |
2152 | ||
2153 | do { | |
2154 | overage = calculate_overage(page_counter_read(&memcg->swap), | |
2155 | READ_ONCE(memcg->swap.high)); | |
2156 | if (overage) | |
2157 | memcg_memory_event(memcg, MEMCG_SWAP_HIGH); | |
2158 | max_overage = max(overage, max_overage); | |
2159 | } while ((memcg = parent_mem_cgroup(memcg)) && | |
2160 | !mem_cgroup_is_root(memcg)); | |
2161 | ||
2162 | return max_overage; | |
2163 | } | |
2164 | ||
8a5dbc65 JK |
2165 | /* |
2166 | * Get the number of jiffies that we should penalise a mischievous cgroup which | |
2167 | * is exceeding its memory.high by checking both it and its ancestors. | |
2168 | */ | |
2169 | static unsigned long calculate_high_delay(struct mem_cgroup *memcg, | |
2170 | unsigned int nr_pages, | |
2171 | u64 max_overage) | |
2172 | { | |
2173 | unsigned long penalty_jiffies; | |
2174 | ||
e26733e0 CD |
2175 | if (!max_overage) |
2176 | return 0; | |
0e4b01df CD |
2177 | |
2178 | /* | |
0e4b01df CD |
2179 | * We use overage compared to memory.high to calculate the number of |
2180 | * jiffies to sleep (penalty_jiffies). Ideally this value should be | |
2181 | * fairly lenient on small overages, and increasingly harsh when the | |
2182 | * memcg in question makes it clear that it has no intention of stopping | |
2183 | * its crazy behaviour, so we exponentially increase the delay based on | |
2184 | * overage amount. | |
2185 | */ | |
e26733e0 CD |
2186 | penalty_jiffies = max_overage * max_overage * HZ; |
2187 | penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; | |
2188 | penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; | |
0e4b01df CD |
2189 | |
2190 | /* | |
2191 | * Factor in the task's own contribution to the overage, such that four | |
2192 | * N-sized allocations are throttled approximately the same as one | |
2193 | * 4N-sized allocation. | |
2194 | * | |
2195 | * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or | |
2196 | * larger the current charge patch is than that. | |
2197 | */ | |
ff144e69 | 2198 | return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; |
e26733e0 CD |
2199 | } |
2200 | ||
2201 | /* | |
63fd3270 JW |
2202 | * Reclaims memory over the high limit. Called directly from |
2203 | * try_charge() (context permitting), as well as from the userland | |
2204 | * return path where reclaim is always able to block. | |
e26733e0 | 2205 | */ |
9ea9cb00 | 2206 | void mem_cgroup_handle_over_high(gfp_t gfp_mask) |
e26733e0 CD |
2207 | { |
2208 | unsigned long penalty_jiffies; | |
2209 | unsigned long pflags; | |
b3ff9291 | 2210 | unsigned long nr_reclaimed; |
e26733e0 | 2211 | unsigned int nr_pages = current->memcg_nr_pages_over_high; |
d977aa93 | 2212 | int nr_retries = MAX_RECLAIM_RETRIES; |
e26733e0 | 2213 | struct mem_cgroup *memcg; |
b3ff9291 | 2214 | bool in_retry = false; |
e26733e0 CD |
2215 | |
2216 | if (likely(!nr_pages)) | |
2217 | return; | |
2218 | ||
2219 | memcg = get_mem_cgroup_from_mm(current->mm); | |
e26733e0 CD |
2220 | current->memcg_nr_pages_over_high = 0; |
2221 | ||
b3ff9291 | 2222 | retry_reclaim: |
63fd3270 JW |
2223 | /* |
2224 | * Bail if the task is already exiting. Unlike memory.max, | |
2225 | * memory.high enforcement isn't as strict, and there is no | |
2226 | * OOM killer involved, which means the excess could already | |
2227 | * be much bigger (and still growing) than it could for | |
2228 | * memory.max; the dying task could get stuck in fruitless | |
2229 | * reclaim for a long time, which isn't desirable. | |
2230 | */ | |
2231 | if (task_is_dying()) | |
2232 | goto out; | |
2233 | ||
b3ff9291 CD |
2234 | /* |
2235 | * The allocating task should reclaim at least the batch size, but for | |
2236 | * subsequent retries we only want to do what's necessary to prevent oom | |
2237 | * or breaching resource isolation. | |
2238 | * | |
2239 | * This is distinct from memory.max or page allocator behaviour because | |
2240 | * memory.high is currently batched, whereas memory.max and the page | |
2241 | * allocator run every time an allocation is made. | |
2242 | */ | |
2243 | nr_reclaimed = reclaim_high(memcg, | |
2244 | in_retry ? SWAP_CLUSTER_MAX : nr_pages, | |
9ea9cb00 | 2245 | gfp_mask); |
b3ff9291 | 2246 | |
e26733e0 CD |
2247 | /* |
2248 | * memory.high is breached and reclaim is unable to keep up. Throttle | |
2249 | * allocators proactively to slow down excessive growth. | |
2250 | */ | |
8a5dbc65 JK |
2251 | penalty_jiffies = calculate_high_delay(memcg, nr_pages, |
2252 | mem_find_max_overage(memcg)); | |
0e4b01df | 2253 | |
4b82ab4f JK |
2254 | penalty_jiffies += calculate_high_delay(memcg, nr_pages, |
2255 | swap_find_max_overage(memcg)); | |
2256 | ||
ff144e69 JK |
2257 | /* |
2258 | * Clamp the max delay per usermode return so as to still keep the | |
2259 | * application moving forwards and also permit diagnostics, albeit | |
2260 | * extremely slowly. | |
2261 | */ | |
2262 | penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); | |
2263 | ||
0e4b01df CD |
2264 | /* |
2265 | * Don't sleep if the amount of jiffies this memcg owes us is so low | |
2266 | * that it's not even worth doing, in an attempt to be nice to those who | |
2267 | * go only a small amount over their memory.high value and maybe haven't | |
2268 | * been aggressively reclaimed enough yet. | |
2269 | */ | |
2270 | if (penalty_jiffies <= HZ / 100) | |
2271 | goto out; | |
2272 | ||
b3ff9291 CD |
2273 | /* |
2274 | * If reclaim is making forward progress but we're still over | |
2275 | * memory.high, we want to encourage that rather than doing allocator | |
2276 | * throttling. | |
2277 | */ | |
2278 | if (nr_reclaimed || nr_retries--) { | |
2279 | in_retry = true; | |
2280 | goto retry_reclaim; | |
2281 | } | |
2282 | ||
0e4b01df | 2283 | /* |
63fd3270 JW |
2284 | * Reclaim didn't manage to push usage below the limit, slow |
2285 | * this allocating task down. | |
2286 | * | |
0e4b01df CD |
2287 | * If we exit early, we're guaranteed to die (since |
2288 | * schedule_timeout_killable sets TASK_KILLABLE). This means we don't | |
2289 | * need to account for any ill-begotten jiffies to pay them off later. | |
2290 | */ | |
2291 | psi_memstall_enter(&pflags); | |
2292 | schedule_timeout_killable(penalty_jiffies); | |
2293 | psi_memstall_leave(&pflags); | |
2294 | ||
2295 | out: | |
2296 | css_put(&memcg->css); | |
b23afb93 TH |
2297 | } |
2298 | ||
75fe8ec2 JW |
2299 | static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, |
2300 | unsigned int nr_pages) | |
8a9f3ccd | 2301 | { |
a983b5eb | 2302 | unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); |
d977aa93 | 2303 | int nr_retries = MAX_RECLAIM_RETRIES; |
6539cc05 | 2304 | struct mem_cgroup *mem_over_limit; |
3e32cb2e | 2305 | struct page_counter *counter; |
6539cc05 | 2306 | unsigned long nr_reclaimed; |
a4ebf1b6 | 2307 | bool passed_oom = false; |
73b73bac | 2308 | unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; |
b70a2a21 | 2309 | bool drained = false; |
d6e103a7 | 2310 | bool raised_max_event = false; |
e22c6ed9 | 2311 | unsigned long pflags; |
a636b327 | 2312 | |
6539cc05 | 2313 | retry: |
2fba5961 | 2314 | if (consume_stock(memcg, nr_pages)) |
10d53c74 | 2315 | return 0; |
8a9f3ccd | 2316 | |
01d37228 AS |
2317 | if (!gfpflags_allow_spinning(gfp_mask)) |
2318 | /* Avoid the refill and flush of the older stock */ | |
2319 | batch = nr_pages; | |
2320 | ||
7941d214 | 2321 | if (!do_memsw_account() || |
6071ca52 JW |
2322 | page_counter_try_charge(&memcg->memsw, batch, &counter)) { |
2323 | if (page_counter_try_charge(&memcg->memory, batch, &counter)) | |
6539cc05 | 2324 | goto done_restock; |
7941d214 | 2325 | if (do_memsw_account()) |
3e32cb2e JW |
2326 | page_counter_uncharge(&memcg->memsw, batch); |
2327 | mem_over_limit = mem_cgroup_from_counter(counter, memory); | |
3fbe7244 | 2328 | } else { |
3e32cb2e | 2329 | mem_over_limit = mem_cgroup_from_counter(counter, memsw); |
73b73bac | 2330 | reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; |
3fbe7244 | 2331 | } |
7a81b88c | 2332 | |
6539cc05 JW |
2333 | if (batch > nr_pages) { |
2334 | batch = nr_pages; | |
2335 | goto retry; | |
2336 | } | |
6d61ef40 | 2337 | |
89a28483 JW |
2338 | /* |
2339 | * Prevent unbounded recursion when reclaim operations need to | |
2340 | * allocate memory. This might exceed the limits temporarily, | |
2341 | * but we prefer facilitating memory reclaim and getting back | |
2342 | * under the limit over triggering OOM kills in these cases. | |
2343 | */ | |
2344 | if (unlikely(current->flags & PF_MEMALLOC)) | |
2345 | goto force; | |
2346 | ||
06b078fc JW |
2347 | if (unlikely(task_in_memcg_oom(current))) |
2348 | goto nomem; | |
2349 | ||
d0164adc | 2350 | if (!gfpflags_allow_blocking(gfp_mask)) |
6539cc05 | 2351 | goto nomem; |
4b534334 | 2352 | |
e27be240 | 2353 | memcg_memory_event(mem_over_limit, MEMCG_MAX); |
d6e103a7 | 2354 | raised_max_event = true; |
241994ed | 2355 | |
e22c6ed9 | 2356 | psi_memstall_enter(&pflags); |
b70a2a21 | 2357 | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, |
68cd9050 | 2358 | gfp_mask, reclaim_options, NULL); |
e22c6ed9 | 2359 | psi_memstall_leave(&pflags); |
6539cc05 | 2360 | |
61e02c74 | 2361 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
6539cc05 | 2362 | goto retry; |
28c34c29 | 2363 | |
b70a2a21 | 2364 | if (!drained) { |
6d3d6aa2 | 2365 | drain_all_stock(mem_over_limit); |
b70a2a21 JW |
2366 | drained = true; |
2367 | goto retry; | |
2368 | } | |
2369 | ||
28c34c29 JW |
2370 | if (gfp_mask & __GFP_NORETRY) |
2371 | goto nomem; | |
6539cc05 JW |
2372 | /* |
2373 | * Even though the limit is exceeded at this point, reclaim | |
2374 | * may have been able to free some pages. Retry the charge | |
2375 | * before killing the task. | |
2376 | * | |
2377 | * Only for regular pages, though: huge pages are rather | |
2378 | * unlikely to succeed so close to the limit, and we fall back | |
2379 | * to regular pages anyway in case of failure. | |
2380 | */ | |
61e02c74 | 2381 | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) |
6539cc05 | 2382 | goto retry; |
6539cc05 | 2383 | |
9b130619 JW |
2384 | if (nr_retries--) |
2385 | goto retry; | |
2386 | ||
38d38493 | 2387 | if (gfp_mask & __GFP_RETRY_MAYFAIL) |
29ef680a MH |
2388 | goto nomem; |
2389 | ||
a4ebf1b6 VA |
2390 | /* Avoid endless loop for tasks bypassed by the oom killer */ |
2391 | if (passed_oom && task_is_dying()) | |
2392 | goto nomem; | |
6539cc05 | 2393 | |
29ef680a MH |
2394 | /* |
2395 | * keep retrying as long as the memcg oom killer is able to make | |
2396 | * a forward progress or bypass the charge if the oom killer | |
2397 | * couldn't make any progress. | |
2398 | */ | |
becdf89d SB |
2399 | if (mem_cgroup_oom(mem_over_limit, gfp_mask, |
2400 | get_order(nr_pages * PAGE_SIZE))) { | |
a4ebf1b6 | 2401 | passed_oom = true; |
d977aa93 | 2402 | nr_retries = MAX_RECLAIM_RETRIES; |
29ef680a | 2403 | goto retry; |
29ef680a | 2404 | } |
7a81b88c | 2405 | nomem: |
1461e8c2 SB |
2406 | /* |
2407 | * Memcg doesn't have a dedicated reserve for atomic | |
2408 | * allocations. But like the global atomic pool, we need to | |
2409 | * put the burden of reclaim on regular allocation requests | |
2410 | * and let these go through as privileged allocations. | |
2411 | */ | |
2412 | if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) | |
3168ecbe | 2413 | return -ENOMEM; |
10d53c74 | 2414 | force: |
d6e103a7 RG |
2415 | /* |
2416 | * If the allocation has to be enforced, don't forget to raise | |
2417 | * a MEMCG_MAX event. | |
2418 | */ | |
2419 | if (!raised_max_event) | |
2420 | memcg_memory_event(mem_over_limit, MEMCG_MAX); | |
2421 | ||
10d53c74 TH |
2422 | /* |
2423 | * The allocation either can't fail or will lead to more memory | |
2424 | * being freed very soon. Allow memory usage go over the limit | |
2425 | * temporarily by force charging it. | |
2426 | */ | |
2427 | page_counter_charge(&memcg->memory, nr_pages); | |
7941d214 | 2428 | if (do_memsw_account()) |
10d53c74 | 2429 | page_counter_charge(&memcg->memsw, nr_pages); |
10d53c74 TH |
2430 | |
2431 | return 0; | |
6539cc05 JW |
2432 | |
2433 | done_restock: | |
2434 | if (batch > nr_pages) | |
2435 | refill_stock(memcg, batch - nr_pages); | |
b23afb93 | 2436 | |
241994ed | 2437 | /* |
b23afb93 TH |
2438 | * If the hierarchy is above the normal consumption range, schedule |
2439 | * reclaim on returning to userland. We can perform reclaim here | |
71baba4b | 2440 | * if __GFP_RECLAIM but let's always punt for simplicity and so that |
b23afb93 TH |
2441 | * GFP_KERNEL can consistently be used during reclaim. @memcg is |
2442 | * not recorded as it most likely matches current's and won't | |
2443 | * change in the meantime. As high limit is checked again before | |
2444 | * reclaim, the cost of mismatch is negligible. | |
241994ed JW |
2445 | */ |
2446 | do { | |
4b82ab4f JK |
2447 | bool mem_high, swap_high; |
2448 | ||
2449 | mem_high = page_counter_read(&memcg->memory) > | |
2450 | READ_ONCE(memcg->memory.high); | |
2451 | swap_high = page_counter_read(&memcg->swap) > | |
2452 | READ_ONCE(memcg->swap.high); | |
2453 | ||
2454 | /* Don't bother a random interrupted task */ | |
086f694a | 2455 | if (!in_task()) { |
4b82ab4f | 2456 | if (mem_high) { |
f7e1cb6e JW |
2457 | schedule_work(&memcg->high_work); |
2458 | break; | |
2459 | } | |
4b82ab4f JK |
2460 | continue; |
2461 | } | |
2462 | ||
2463 | if (mem_high || swap_high) { | |
2464 | /* | |
2465 | * The allocating tasks in this cgroup will need to do | |
2466 | * reclaim or be throttled to prevent further growth | |
2467 | * of the memory or swap footprints. | |
2468 | * | |
2469 | * Target some best-effort fairness between the tasks, | |
2470 | * and distribute reclaim work and delay penalties | |
2471 | * based on how much each task is actually allocating. | |
2472 | */ | |
9516a18a | 2473 | current->memcg_nr_pages_over_high += batch; |
b23afb93 TH |
2474 | set_notify_resume(current); |
2475 | break; | |
2476 | } | |
241994ed | 2477 | } while ((memcg = parent_mem_cgroup(memcg))); |
10d53c74 | 2478 | |
63fd3270 JW |
2479 | /* |
2480 | * Reclaim is set up above to be called from the userland | |
2481 | * return path. But also attempt synchronous reclaim to avoid | |
2482 | * excessive overrun while the task is still inside the | |
2483 | * kernel. If this is successful, the return path will see it | |
2484 | * when it rechecks the overage and simply bail out. | |
2485 | */ | |
c9afe31e SB |
2486 | if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && |
2487 | !(current->flags & PF_MEMALLOC) && | |
63fd3270 | 2488 | gfpflags_allow_blocking(gfp_mask)) |
9ea9cb00 | 2489 | mem_cgroup_handle_over_high(gfp_mask); |
10d53c74 | 2490 | return 0; |
7a81b88c | 2491 | } |
8a9f3ccd | 2492 | |
75fe8ec2 JW |
2493 | static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
2494 | unsigned int nr_pages) | |
2495 | { | |
2496 | if (mem_cgroup_is_root(memcg)) | |
2497 | return 0; | |
2498 | ||
2499 | return try_charge_memcg(memcg, gfp_mask, nr_pages); | |
2500 | } | |
2501 | ||
118f2875 | 2502 | static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) |
0a31bc97 | 2503 | { |
02f4bbef | 2504 | VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); |
0a31bc97 | 2505 | /* |
a5eb011a | 2506 | * Any of the following ensures page's memcg stability: |
0a31bc97 | 2507 | * |
a0b5b414 JW |
2508 | * - the page lock |
2509 | * - LRU isolation | |
a0b5b414 | 2510 | * - exclusive reference |
0a31bc97 | 2511 | */ |
118f2875 | 2512 | folio->memcg_data = (unsigned long)memcg; |
7a81b88c | 2513 | } |
66e1707b | 2514 | |
15ca4fa9 SB |
2515 | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC |
2516 | static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, | |
2517 | struct pglist_data *pgdat, | |
2518 | enum node_stat_item idx, int nr) | |
2519 | { | |
2520 | struct lruvec *lruvec; | |
2521 | ||
2522 | if (likely(!in_nmi())) { | |
2523 | lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
2524 | mod_memcg_lruvec_state(lruvec, idx, nr); | |
2525 | } else { | |
2526 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id]; | |
2527 | ||
8dcb0ed8 SB |
2528 | /* preemption is disabled in_nmi(). */ |
2529 | css_rstat_updated(&memcg->css, smp_processor_id()); | |
15ca4fa9 SB |
2530 | if (idx == NR_SLAB_RECLAIMABLE_B) |
2531 | atomic_add(nr, &pn->slab_reclaimable); | |
2532 | else | |
2533 | atomic_add(nr, &pn->slab_unreclaimable); | |
2534 | } | |
2535 | } | |
2536 | #else | |
2537 | static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, | |
2538 | struct pglist_data *pgdat, | |
2539 | enum node_stat_item idx, int nr) | |
2540 | { | |
2541 | struct lruvec *lruvec; | |
2542 | ||
2543 | lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
2544 | mod_memcg_lruvec_state(lruvec, idx, nr); | |
2545 | } | |
2546 | #endif | |
2547 | ||
eee8a177 | 2548 | static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, |
91882c16 SB |
2549 | struct pglist_data *pgdat, |
2550 | enum node_stat_item idx, int nr) | |
a7ebf564 WL |
2551 | { |
2552 | struct mem_cgroup *memcg; | |
a7ebf564 WL |
2553 | |
2554 | rcu_read_lock(); | |
2555 | memcg = obj_cgroup_memcg(objcg); | |
15ca4fa9 | 2556 | account_slab_nmi_safe(memcg, pgdat, idx, nr); |
a7ebf564 WL |
2557 | rcu_read_unlock(); |
2558 | } | |
2559 | ||
fc4db90f RG |
2560 | static __always_inline |
2561 | struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) | |
8380ce47 | 2562 | { |
8380ce47 | 2563 | /* |
9855609b RG |
2564 | * Slab objects are accounted individually, not per-page. |
2565 | * Memcg membership data for each individual object is saved in | |
21c690a3 | 2566 | * slab->obj_exts. |
8380ce47 | 2567 | */ |
4b5f8d9a | 2568 | if (folio_test_slab(folio)) { |
21c690a3 | 2569 | struct slabobj_ext *obj_exts; |
4b5f8d9a | 2570 | struct slab *slab; |
9855609b RG |
2571 | unsigned int off; |
2572 | ||
4b5f8d9a | 2573 | slab = folio_slab(folio); |
21c690a3 SB |
2574 | obj_exts = slab_obj_exts(slab); |
2575 | if (!obj_exts) | |
4b5f8d9a VB |
2576 | return NULL; |
2577 | ||
2578 | off = obj_to_index(slab->slab_cache, slab, p); | |
21c690a3 SB |
2579 | if (obj_exts[off].objcg) |
2580 | return obj_cgroup_memcg(obj_exts[off].objcg); | |
10befea9 RG |
2581 | |
2582 | return NULL; | |
9855609b | 2583 | } |
8380ce47 | 2584 | |
bcfe06bf | 2585 | /* |
becacb04 | 2586 | * folio_memcg_check() is used here, because in theory we can encounter |
4b5f8d9a | 2587 | * a folio where the slab flag has been cleared already, but |
21c690a3 | 2588 | * slab->obj_exts has not been freed yet |
becacb04 | 2589 | * folio_memcg_check() will guarantee that a proper memory |
bcfe06bf RG |
2590 | * cgroup pointer or NULL will be returned. |
2591 | */ | |
becacb04 | 2592 | return folio_memcg_check(folio); |
8380ce47 RG |
2593 | } |
2594 | ||
fc4db90f RG |
2595 | /* |
2596 | * Returns a pointer to the memory cgroup to which the kernel object is charged. | |
4fd568fa | 2597 | * It is not suitable for objects allocated using vmalloc(). |
fc4db90f RG |
2598 | * |
2599 | * A passed kernel object must be a slab object or a generic kernel page. | |
2600 | * | |
2601 | * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), | |
2602 | * cgroup_mutex, etc. | |
2603 | */ | |
2604 | struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) | |
2605 | { | |
2606 | if (mem_cgroup_disabled()) | |
2607 | return NULL; | |
2608 | ||
2609 | return mem_cgroup_from_obj_folio(virt_to_folio(p), p); | |
2610 | } | |
2611 | ||
f4840ccf JW |
2612 | static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) |
2613 | { | |
2614 | struct obj_cgroup *objcg = NULL; | |
2615 | ||
7848ed62 | 2616 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
f4840ccf | 2617 | objcg = rcu_dereference(memcg->objcg); |
7d0715d0 | 2618 | if (likely(objcg && obj_cgroup_tryget(objcg))) |
f4840ccf JW |
2619 | break; |
2620 | objcg = NULL; | |
2621 | } | |
2622 | return objcg; | |
2623 | } | |
2624 | ||
1aacbd35 RG |
2625 | static struct obj_cgroup *current_objcg_update(void) |
2626 | { | |
2627 | struct mem_cgroup *memcg; | |
2628 | struct obj_cgroup *old, *objcg = NULL; | |
2629 | ||
2630 | do { | |
2631 | /* Atomically drop the update bit. */ | |
2632 | old = xchg(¤t->objcg, NULL); | |
2633 | if (old) { | |
2634 | old = (struct obj_cgroup *) | |
2635 | ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); | |
91b71e78 | 2636 | obj_cgroup_put(old); |
1aacbd35 RG |
2637 | |
2638 | old = NULL; | |
2639 | } | |
2640 | ||
2641 | /* If new objcg is NULL, no reason for the second atomic update. */ | |
2642 | if (!current->mm || (current->flags & PF_KTHREAD)) | |
2643 | return NULL; | |
2644 | ||
2645 | /* | |
2646 | * Release the objcg pointer from the previous iteration, | |
2647 | * if try_cmpxcg() below fails. | |
2648 | */ | |
2649 | if (unlikely(objcg)) { | |
2650 | obj_cgroup_put(objcg); | |
2651 | objcg = NULL; | |
2652 | } | |
2653 | ||
2654 | /* | |
2655 | * Obtain the new objcg pointer. The current task can be | |
2656 | * asynchronously moved to another memcg and the previous | |
2657 | * memcg can be offlined. So let's get the memcg pointer | |
2658 | * and try get a reference to objcg under a rcu read lock. | |
2659 | */ | |
2660 | ||
2661 | rcu_read_lock(); | |
2662 | memcg = mem_cgroup_from_task(current); | |
2663 | objcg = __get_obj_cgroup_from_memcg(memcg); | |
2664 | rcu_read_unlock(); | |
2665 | ||
2666 | /* | |
2667 | * Try set up a new objcg pointer atomically. If it | |
2668 | * fails, it means the update flag was set concurrently, so | |
2669 | * the whole procedure should be repeated. | |
2670 | */ | |
2671 | } while (!try_cmpxchg(¤t->objcg, &old, objcg)); | |
2672 | ||
2673 | return objcg; | |
2674 | } | |
2675 | ||
e86828e5 RG |
2676 | __always_inline struct obj_cgroup *current_obj_cgroup(void) |
2677 | { | |
2678 | struct mem_cgroup *memcg; | |
2679 | struct obj_cgroup *objcg; | |
2680 | ||
25352d2f SB |
2681 | if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi()) |
2682 | return NULL; | |
2683 | ||
e86828e5 RG |
2684 | if (in_task()) { |
2685 | memcg = current->active_memcg; | |
2686 | if (unlikely(memcg)) | |
2687 | goto from_memcg; | |
2688 | ||
2689 | objcg = READ_ONCE(current->objcg); | |
2690 | if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) | |
2691 | objcg = current_objcg_update(); | |
2692 | /* | |
2693 | * Objcg reference is kept by the task, so it's safe | |
2694 | * to use the objcg by the current task. | |
2695 | */ | |
2696 | return objcg; | |
2697 | } | |
2698 | ||
2699 | memcg = this_cpu_read(int_active_memcg); | |
2700 | if (unlikely(memcg)) | |
2701 | goto from_memcg; | |
2702 | ||
2703 | return NULL; | |
2704 | ||
2705 | from_memcg: | |
5f79489a | 2706 | objcg = NULL; |
e86828e5 RG |
2707 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
2708 | /* | |
2709 | * Memcg pointer is protected by scope (see set_active_memcg()) | |
2710 | * and is pinning the corresponding objcg, so objcg can't go | |
2711 | * away and can be used within the scope without any additional | |
2712 | * protection. | |
2713 | */ | |
2714 | objcg = rcu_dereference_check(memcg->objcg, 1); | |
2715 | if (likely(objcg)) | |
2716 | break; | |
e86828e5 RG |
2717 | } |
2718 | ||
2719 | return objcg; | |
2720 | } | |
2721 | ||
074e3e26 | 2722 | struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) |
f4840ccf JW |
2723 | { |
2724 | struct obj_cgroup *objcg; | |
2725 | ||
f7a449f7 | 2726 | if (!memcg_kmem_online()) |
f4840ccf JW |
2727 | return NULL; |
2728 | ||
074e3e26 MWO |
2729 | if (folio_memcg_kmem(folio)) { |
2730 | objcg = __folio_objcg(folio); | |
f4840ccf JW |
2731 | obj_cgroup_get(objcg); |
2732 | } else { | |
2733 | struct mem_cgroup *memcg; | |
bf4f0599 | 2734 | |
f4840ccf | 2735 | rcu_read_lock(); |
074e3e26 | 2736 | memcg = __folio_memcg(folio); |
f4840ccf JW |
2737 | if (memcg) |
2738 | objcg = __get_obj_cgroup_from_memcg(memcg); | |
2739 | else | |
2740 | objcg = NULL; | |
2741 | rcu_read_unlock(); | |
2742 | } | |
bf4f0599 RG |
2743 | return objcg; |
2744 | } | |
2745 | ||
9d3edf96 SB |
2746 | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC |
2747 | static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) | |
2748 | { | |
2749 | if (likely(!in_nmi())) { | |
2750 | mod_memcg_state(memcg, MEMCG_KMEM, val); | |
2751 | } else { | |
8dcb0ed8 SB |
2752 | /* preemption is disabled in_nmi(). */ |
2753 | css_rstat_updated(&memcg->css, smp_processor_id()); | |
9d3edf96 SB |
2754 | atomic_add(val, &memcg->kmem_stat); |
2755 | } | |
2756 | } | |
2757 | #else | |
2758 | static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) | |
2759 | { | |
2760 | mod_memcg_state(memcg, MEMCG_KMEM, val); | |
2761 | } | |
2762 | #endif | |
2763 | ||
f1286fae MS |
2764 | /* |
2765 | * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg | |
2766 | * @objcg: object cgroup to uncharge | |
2767 | * @nr_pages: number of pages to uncharge | |
2768 | */ | |
e74d2259 MS |
2769 | static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, |
2770 | unsigned int nr_pages) | |
2771 | { | |
2772 | struct mem_cgroup *memcg; | |
2773 | ||
2774 | memcg = get_mem_cgroup_from_objcg(objcg); | |
e74d2259 | 2775 | |
9d3edf96 | 2776 | account_kmem_nmi_safe(memcg, -nr_pages); |
04fbe921 | 2777 | memcg1_account_kmem(memcg, -nr_pages); |
20d6c172 SB |
2778 | if (!mem_cgroup_is_root(memcg)) |
2779 | refill_stock(memcg, nr_pages); | |
e74d2259 | 2780 | |
e74d2259 | 2781 | css_put(&memcg->css); |
e74d2259 MS |
2782 | } |
2783 | ||
f1286fae MS |
2784 | /* |
2785 | * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg | |
2786 | * @objcg: object cgroup to charge | |
45264778 | 2787 | * @gfp: reclaim mode |
92d0510c | 2788 | * @nr_pages: number of pages to charge |
45264778 VD |
2789 | * |
2790 | * Returns 0 on success, an error code on failure. | |
2791 | */ | |
f1286fae MS |
2792 | static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, |
2793 | unsigned int nr_pages) | |
7ae1e1d0 | 2794 | { |
f1286fae | 2795 | struct mem_cgroup *memcg; |
7ae1e1d0 GC |
2796 | int ret; |
2797 | ||
f1286fae MS |
2798 | memcg = get_mem_cgroup_from_objcg(objcg); |
2799 | ||
c5c8b16b | 2800 | ret = try_charge_memcg(memcg, gfp, nr_pages); |
52c29b04 | 2801 | if (ret) |
f1286fae | 2802 | goto out; |
52c29b04 | 2803 | |
9d3edf96 | 2804 | account_kmem_nmi_safe(memcg, nr_pages); |
04fbe921 | 2805 | memcg1_account_kmem(memcg, nr_pages); |
f1286fae MS |
2806 | out: |
2807 | css_put(&memcg->css); | |
4b13f64d | 2808 | |
f1286fae | 2809 | return ret; |
4b13f64d RG |
2810 | } |
2811 | ||
7cc57eca MWO |
2812 | static struct obj_cgroup *page_objcg(const struct page *page) |
2813 | { | |
2814 | unsigned long memcg_data = page->memcg_data; | |
2815 | ||
2816 | if (mem_cgroup_disabled() || !memcg_data) | |
2817 | return NULL; | |
2818 | ||
2819 | VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, | |
2820 | page); | |
2821 | return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); | |
2822 | } | |
2823 | ||
2824 | static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) | |
2825 | { | |
2826 | page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; | |
2827 | } | |
2828 | ||
45264778 | 2829 | /** |
f4b00eab | 2830 | * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup |
45264778 VD |
2831 | * @page: page to charge |
2832 | * @gfp: reclaim mode | |
2833 | * @order: allocation order | |
2834 | * | |
2835 | * Returns 0 on success, an error code on failure. | |
2836 | */ | |
f4b00eab | 2837 | int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) |
7ae1e1d0 | 2838 | { |
b4e0b68f | 2839 | struct obj_cgroup *objcg; |
fcff7d7e | 2840 | int ret = 0; |
7ae1e1d0 | 2841 | |
e86828e5 | 2842 | objcg = current_obj_cgroup(); |
b4e0b68f MS |
2843 | if (objcg) { |
2844 | ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); | |
4d96ba35 | 2845 | if (!ret) { |
e86828e5 | 2846 | obj_cgroup_get(objcg); |
7cc57eca | 2847 | page_set_objcg(page, objcg); |
1a3e1f40 | 2848 | return 0; |
4d96ba35 | 2849 | } |
c4159a75 | 2850 | } |
d05e83a6 | 2851 | return ret; |
7ae1e1d0 | 2852 | } |
49a18eae | 2853 | |
45264778 | 2854 | /** |
f4b00eab | 2855 | * __memcg_kmem_uncharge_page: uncharge a kmem page |
45264778 VD |
2856 | * @page: page to uncharge |
2857 | * @order: allocation order | |
2858 | */ | |
f4b00eab | 2859 | void __memcg_kmem_uncharge_page(struct page *page, int order) |
7ae1e1d0 | 2860 | { |
0d2a2605 | 2861 | struct obj_cgroup *objcg = page_objcg(page); |
f3ccb2c4 | 2862 | unsigned int nr_pages = 1 << order; |
7ae1e1d0 | 2863 | |
0d2a2605 | 2864 | if (!objcg) |
7ae1e1d0 GC |
2865 | return; |
2866 | ||
b4e0b68f | 2867 | obj_cgroup_uncharge_pages(objcg, nr_pages); |
0d2a2605 | 2868 | page->memcg_data = 0; |
b4e0b68f | 2869 | obj_cgroup_put(objcg); |
60d3fd32 | 2870 | } |
bf4f0599 | 2871 | |
bc730030 | 2872 | static void __account_obj_stock(struct obj_cgroup *objcg, |
c80509ef | 2873 | struct obj_stock_pcp *stock, int nr, |
bc730030 | 2874 | struct pglist_data *pgdat, enum node_stat_item idx) |
68ac5b3c | 2875 | { |
68ac5b3c WL |
2876 | int *bytes; |
2877 | ||
68ac5b3c WL |
2878 | /* |
2879 | * Save vmstat data in stock and skip vmstat array update unless | |
bc730030 | 2880 | * accumulating over a page of vmstat data or when pgdat changes. |
68ac5b3c | 2881 | */ |
bc730030 | 2882 | if (stock->cached_pgdat != pgdat) { |
68ac5b3c | 2883 | /* Flush the existing cached vmstat data */ |
7fa0dacb WL |
2884 | struct pglist_data *oldpg = stock->cached_pgdat; |
2885 | ||
68ac5b3c | 2886 | if (stock->nr_slab_reclaimable_b) { |
eee8a177 | 2887 | mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, |
68ac5b3c WL |
2888 | stock->nr_slab_reclaimable_b); |
2889 | stock->nr_slab_reclaimable_b = 0; | |
2890 | } | |
2891 | if (stock->nr_slab_unreclaimable_b) { | |
eee8a177 | 2892 | mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, |
68ac5b3c WL |
2893 | stock->nr_slab_unreclaimable_b); |
2894 | stock->nr_slab_unreclaimable_b = 0; | |
2895 | } | |
2896 | stock->cached_pgdat = pgdat; | |
2897 | } | |
2898 | ||
2899 | bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b | |
2900 | : &stock->nr_slab_unreclaimable_b; | |
2901 | /* | |
2902 | * Even for large object >= PAGE_SIZE, the vmstat data will still be | |
2903 | * cached locally at least once before pushing it out. | |
2904 | */ | |
2905 | if (!*bytes) { | |
2906 | *bytes = nr; | |
2907 | nr = 0; | |
2908 | } else { | |
2909 | *bytes += nr; | |
2910 | if (abs(*bytes) > PAGE_SIZE) { | |
2911 | nr = *bytes; | |
2912 | *bytes = 0; | |
2913 | } else { | |
2914 | nr = 0; | |
2915 | } | |
2916 | } | |
2917 | if (nr) | |
eee8a177 | 2918 | mod_objcg_mlstate(objcg, pgdat, idx, nr); |
68ac5b3c WL |
2919 | } |
2920 | ||
bc730030 VB |
2921 | static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, |
2922 | struct pglist_data *pgdat, enum node_stat_item idx) | |
bf4f0599 | 2923 | { |
c80509ef | 2924 | struct obj_stock_pcp *stock; |
bf4f0599 RG |
2925 | bool ret = false; |
2926 | ||
200577f6 SB |
2927 | if (!local_trylock(&obj_stock.lock)) |
2928 | return ret; | |
fead2b86 | 2929 | |
c80509ef | 2930 | stock = this_cpu_ptr(&obj_stock); |
3b8abb32 | 2931 | if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { |
bf4f0599 RG |
2932 | stock->nr_bytes -= nr_bytes; |
2933 | ret = true; | |
bc730030 VB |
2934 | |
2935 | if (pgdat) | |
2936 | __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); | |
bf4f0599 RG |
2937 | } |
2938 | ||
200577f6 | 2939 | local_unlock(&obj_stock.lock); |
bf4f0599 RG |
2940 | |
2941 | return ret; | |
2942 | } | |
2943 | ||
c80509ef | 2944 | static void drain_obj_stock(struct obj_stock_pcp *stock) |
bf4f0599 | 2945 | { |
3b8abb32 | 2946 | struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); |
bf4f0599 RG |
2947 | |
2948 | if (!old) | |
ae51c775 | 2949 | return; |
bf4f0599 RG |
2950 | |
2951 | if (stock->nr_bytes) { | |
2952 | unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; | |
2953 | unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); | |
2954 | ||
af9a3b69 JW |
2955 | if (nr_pages) { |
2956 | struct mem_cgroup *memcg; | |
2957 | ||
2958 | memcg = get_mem_cgroup_from_objcg(old); | |
2959 | ||
04fbe921 RG |
2960 | mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); |
2961 | memcg1_account_kmem(memcg, -nr_pages); | |
89f342af SB |
2962 | if (!mem_cgroup_is_root(memcg)) |
2963 | memcg_uncharge(memcg, nr_pages); | |
af9a3b69 JW |
2964 | |
2965 | css_put(&memcg->css); | |
2966 | } | |
bf4f0599 RG |
2967 | |
2968 | /* | |
2969 | * The leftover is flushed to the centralized per-memcg value. | |
2970 | * On the next attempt to refill obj stock it will be moved | |
2971 | * to a per-cpu stock (probably, on an other CPU), see | |
2972 | * refill_obj_stock(). | |
2973 | * | |
2974 | * How often it's flushed is a trade-off between the memory | |
2975 | * limit enforcement accuracy and potential CPU contention, | |
2976 | * so it might be changed in the future. | |
2977 | */ | |
2978 | atomic_add(nr_bytes, &old->nr_charged_bytes); | |
2979 | stock->nr_bytes = 0; | |
2980 | } | |
2981 | ||
68ac5b3c WL |
2982 | /* |
2983 | * Flush the vmstat data in current stock | |
2984 | */ | |
2985 | if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { | |
2986 | if (stock->nr_slab_reclaimable_b) { | |
eee8a177 | 2987 | mod_objcg_mlstate(old, stock->cached_pgdat, |
68ac5b3c WL |
2988 | NR_SLAB_RECLAIMABLE_B, |
2989 | stock->nr_slab_reclaimable_b); | |
2990 | stock->nr_slab_reclaimable_b = 0; | |
2991 | } | |
2992 | if (stock->nr_slab_unreclaimable_b) { | |
eee8a177 | 2993 | mod_objcg_mlstate(old, stock->cached_pgdat, |
68ac5b3c WL |
2994 | NR_SLAB_UNRECLAIMABLE_B, |
2995 | stock->nr_slab_unreclaimable_b); | |
2996 | stock->nr_slab_unreclaimable_b = 0; | |
2997 | } | |
2998 | stock->cached_pgdat = NULL; | |
2999 | } | |
3000 | ||
3b8abb32 | 3001 | WRITE_ONCE(stock->cached_objcg, NULL); |
ae51c775 | 3002 | obj_cgroup_put(old); |
bf4f0599 RG |
3003 | } |
3004 | ||
c80509ef | 3005 | static bool obj_stock_flush_required(struct obj_stock_pcp *stock, |
bf4f0599 RG |
3006 | struct mem_cgroup *root_memcg) |
3007 | { | |
3b8abb32 | 3008 | struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); |
bf4f0599 | 3009 | struct mem_cgroup *memcg; |
c80509ef | 3010 | bool flush = false; |
bf4f0599 | 3011 | |
c80509ef | 3012 | rcu_read_lock(); |
3b8abb32 RG |
3013 | if (objcg) { |
3014 | memcg = obj_cgroup_memcg(objcg); | |
bf4f0599 | 3015 | if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) |
c80509ef | 3016 | flush = true; |
bf4f0599 | 3017 | } |
c80509ef | 3018 | rcu_read_unlock(); |
bf4f0599 | 3019 | |
c80509ef | 3020 | return flush; |
bf4f0599 RG |
3021 | } |
3022 | ||
5387c904 | 3023 | static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, |
bc730030 VB |
3024 | bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, |
3025 | enum node_stat_item idx) | |
bf4f0599 | 3026 | { |
c80509ef | 3027 | struct obj_stock_pcp *stock; |
5387c904 | 3028 | unsigned int nr_pages = 0; |
bf4f0599 | 3029 | |
200577f6 SB |
3030 | if (!local_trylock(&obj_stock.lock)) { |
3031 | if (pgdat) | |
3032 | mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes); | |
3033 | nr_pages = nr_bytes >> PAGE_SHIFT; | |
3034 | nr_bytes = nr_bytes & (PAGE_SIZE - 1); | |
3035 | atomic_add(nr_bytes, &objcg->nr_charged_bytes); | |
3036 | goto out; | |
3037 | } | |
fead2b86 | 3038 | |
c80509ef | 3039 | stock = this_cpu_ptr(&obj_stock); |
3b8abb32 | 3040 | if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ |
ac26920d SB |
3041 | drain_obj_stock(stock); |
3042 | obj_cgroup_get(objcg); | |
3043 | stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) | |
3044 | ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; | |
3045 | WRITE_ONCE(stock->cached_objcg, objcg); | |
3046 | ||
5387c904 | 3047 | allow_uncharge = true; /* Allow uncharge when objcg changes */ |
bf4f0599 RG |
3048 | } |
3049 | stock->nr_bytes += nr_bytes; | |
3050 | ||
bc730030 VB |
3051 | if (pgdat) |
3052 | __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); | |
3053 | ||
5387c904 WL |
3054 | if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { |
3055 | nr_pages = stock->nr_bytes >> PAGE_SHIFT; | |
3056 | stock->nr_bytes &= (PAGE_SIZE - 1); | |
3057 | } | |
bf4f0599 | 3058 | |
200577f6 SB |
3059 | local_unlock(&obj_stock.lock); |
3060 | out: | |
5387c904 WL |
3061 | if (nr_pages) |
3062 | obj_cgroup_uncharge_pages(objcg, nr_pages); | |
bf4f0599 RG |
3063 | } |
3064 | ||
bc730030 VB |
3065 | static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, |
3066 | struct pglist_data *pgdat, enum node_stat_item idx) | |
bf4f0599 | 3067 | { |
bf4f0599 RG |
3068 | unsigned int nr_pages, nr_bytes; |
3069 | int ret; | |
3070 | ||
bc730030 | 3071 | if (likely(consume_obj_stock(objcg, size, pgdat, idx))) |
bf4f0599 RG |
3072 | return 0; |
3073 | ||
3074 | /* | |
5387c904 | 3075 | * In theory, objcg->nr_charged_bytes can have enough |
bf4f0599 | 3076 | * pre-charged bytes to satisfy the allocation. However, |
5387c904 WL |
3077 | * flushing objcg->nr_charged_bytes requires two atomic |
3078 | * operations, and objcg->nr_charged_bytes can't be big. | |
3079 | * The shared objcg->nr_charged_bytes can also become a | |
3080 | * performance bottleneck if all tasks of the same memcg are | |
3081 | * trying to update it. So it's better to ignore it and try | |
3082 | * grab some new pages. The stock's nr_bytes will be flushed to | |
3083 | * objcg->nr_charged_bytes later on when objcg changes. | |
3084 | * | |
3085 | * The stock's nr_bytes may contain enough pre-charged bytes | |
3086 | * to allow one less page from being charged, but we can't rely | |
3087 | * on the pre-charged bytes not being changed outside of | |
3088 | * consume_obj_stock() or refill_obj_stock(). So ignore those | |
3089 | * pre-charged bytes as well when charging pages. To avoid a | |
3090 | * page uncharge right after a page charge, we set the | |
3091 | * allow_uncharge flag to false when calling refill_obj_stock() | |
3092 | * to temporarily allow the pre-charged bytes to exceed the page | |
3093 | * size limit. The maximum reachable value of the pre-charged | |
3094 | * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data | |
3095 | * race. | |
bf4f0599 | 3096 | */ |
bf4f0599 RG |
3097 | nr_pages = size >> PAGE_SHIFT; |
3098 | nr_bytes = size & (PAGE_SIZE - 1); | |
3099 | ||
3100 | if (nr_bytes) | |
3101 | nr_pages += 1; | |
3102 | ||
e74d2259 | 3103 | ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); |
bc730030 VB |
3104 | if (!ret && (nr_bytes || pgdat)) |
3105 | refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, | |
3106 | false, size, pgdat, idx); | |
bf4f0599 | 3107 | |
bf4f0599 RG |
3108 | return ret; |
3109 | } | |
3110 | ||
bc730030 VB |
3111 | int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) |
3112 | { | |
3113 | return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); | |
3114 | } | |
3115 | ||
bf4f0599 RG |
3116 | void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) |
3117 | { | |
bc730030 | 3118 | refill_obj_stock(objcg, size, true, 0, NULL, 0); |
bf4f0599 RG |
3119 | } |
3120 | ||
e6100a45 VB |
3121 | static inline size_t obj_full_size(struct kmem_cache *s) |
3122 | { | |
3123 | /* | |
3124 | * For each accounted object there is an extra space which is used | |
3125 | * to store obj_cgroup membership. Charge it too. | |
3126 | */ | |
3127 | return s->size + sizeof(struct obj_cgroup *); | |
3128 | } | |
3129 | ||
3130 | bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, | |
3131 | gfp_t flags, size_t size, void **p) | |
3132 | { | |
3133 | struct obj_cgroup *objcg; | |
3134 | struct slab *slab; | |
3135 | unsigned long off; | |
3136 | size_t i; | |
3137 | ||
3138 | /* | |
3139 | * The obtained objcg pointer is safe to use within the current scope, | |
3140 | * defined by current task or set_active_memcg() pair. | |
3141 | * obj_cgroup_get() is used to get a permanent reference. | |
3142 | */ | |
3143 | objcg = current_obj_cgroup(); | |
3144 | if (!objcg) | |
3145 | return true; | |
3146 | ||
3147 | /* | |
3148 | * slab_alloc_node() avoids the NULL check, so we might be called with a | |
3149 | * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill | |
3150 | * the whole requested size. | |
3151 | * return success as there's nothing to free back | |
3152 | */ | |
3153 | if (unlikely(*p == NULL)) | |
3154 | return true; | |
3155 | ||
3156 | flags &= gfp_allowed_mask; | |
3157 | ||
3158 | if (lru) { | |
3159 | int ret; | |
3160 | struct mem_cgroup *memcg; | |
3161 | ||
3162 | memcg = get_mem_cgroup_from_objcg(objcg); | |
3163 | ret = memcg_list_lru_alloc(memcg, lru, flags); | |
3164 | css_put(&memcg->css); | |
3165 | ||
3166 | if (ret) | |
3167 | return false; | |
3168 | } | |
3169 | ||
e6100a45 VB |
3170 | for (i = 0; i < size; i++) { |
3171 | slab = virt_to_slab(p[i]); | |
3172 | ||
3173 | if (!slab_obj_exts(slab) && | |
3174 | alloc_slab_obj_exts(slab, s, flags, false)) { | |
e6100a45 VB |
3175 | continue; |
3176 | } | |
3177 | ||
bc730030 VB |
3178 | /* |
3179 | * if we fail and size is 1, memcg_alloc_abort_single() will | |
3180 | * just free the object, which is ok as we have not assigned | |
3181 | * objcg to its obj_ext yet | |
3182 | * | |
3183 | * for larger sizes, kmem_cache_free_bulk() will uncharge | |
3184 | * any objects that were already charged and obj_ext assigned | |
3185 | * | |
3186 | * TODO: we could batch this until slab_pgdat(slab) changes | |
3187 | * between iterations, with a more complicated undo | |
3188 | */ | |
3189 | if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), | |
3190 | slab_pgdat(slab), cache_vmstat_idx(s))) | |
3191 | return false; | |
3192 | ||
e6100a45 VB |
3193 | off = obj_to_index(s, slab, p[i]); |
3194 | obj_cgroup_get(objcg); | |
3195 | slab_obj_exts(slab)[off].objcg = objcg; | |
e6100a45 VB |
3196 | } |
3197 | ||
3198 | return true; | |
3199 | } | |
3200 | ||
3201 | void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, | |
3202 | void **p, int objects, struct slabobj_ext *obj_exts) | |
3203 | { | |
bc730030 VB |
3204 | size_t obj_size = obj_full_size(s); |
3205 | ||
e6100a45 VB |
3206 | for (int i = 0; i < objects; i++) { |
3207 | struct obj_cgroup *objcg; | |
3208 | unsigned int off; | |
3209 | ||
3210 | off = obj_to_index(s, slab, p[i]); | |
3211 | objcg = obj_exts[off].objcg; | |
3212 | if (!objcg) | |
3213 | continue; | |
3214 | ||
3215 | obj_exts[off].objcg = NULL; | |
bc730030 VB |
3216 | refill_obj_stock(objcg, obj_size, true, -obj_size, |
3217 | slab_pgdat(slab), cache_vmstat_idx(s)); | |
e6100a45 VB |
3218 | obj_cgroup_put(objcg); |
3219 | } | |
3220 | } | |
7ae1e1d0 | 3221 | |
ca3e0214 | 3222 | /* |
1506c255 MWO |
3223 | * The objcg is only set on the first page, so transfer it to all the |
3224 | * other pages. | |
ca3e0214 | 3225 | */ |
7cc57eca | 3226 | void split_page_memcg(struct page *page, unsigned order) |
ca3e0214 | 3227 | { |
7cc57eca | 3228 | struct obj_cgroup *objcg = page_objcg(page); |
1506c255 | 3229 | unsigned int i, nr = 1 << order; |
ca3e0214 | 3230 | |
7cc57eca | 3231 | if (!objcg) |
3d37c4a9 | 3232 | return; |
b070e65c | 3233 | |
1506c255 | 3234 | for (i = 1; i < nr; i++) |
7cc57eca | 3235 | page_set_objcg(&page[i], objcg); |
b4e0b68f | 3236 | |
7cc57eca | 3237 | obj_cgroup_get_many(objcg, nr - 1); |
fa23a338 MWO |
3238 | } |
3239 | ||
3240 | void folio_split_memcg_refs(struct folio *folio, unsigned old_order, | |
3241 | unsigned new_order) | |
3242 | { | |
3243 | unsigned new_refs; | |
3244 | ||
3245 | if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) | |
3246 | return; | |
3247 | ||
3248 | new_refs = (1 << (old_order - new_order)) - 1; | |
3249 | css_get_many(&__folio_memcg(folio)->css, new_refs); | |
ca3e0214 | 3250 | } |
ca3e0214 | 3251 | |
66d60c42 | 3252 | unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
ce00a967 | 3253 | { |
42a30035 | 3254 | unsigned long val; |
ce00a967 | 3255 | |
3e32cb2e | 3256 | if (mem_cgroup_is_root(memcg)) { |
a2174e95 | 3257 | /* |
f82a7a86 YA |
3258 | * Approximate root's usage from global state. This isn't |
3259 | * perfect, but the root usage was always an approximation. | |
a2174e95 | 3260 | */ |
f82a7a86 YA |
3261 | val = global_node_page_state(NR_FILE_PAGES) + |
3262 | global_node_page_state(NR_ANON_MAPPED); | |
42a30035 | 3263 | if (swap) |
f82a7a86 | 3264 | val += total_swap_pages - get_nr_swap_pages(); |
3e32cb2e | 3265 | } else { |
ce00a967 | 3266 | if (!swap) |
3e32cb2e | 3267 | val = page_counter_read(&memcg->memory); |
ce00a967 | 3268 | else |
3e32cb2e | 3269 | val = page_counter_read(&memcg->memsw); |
ce00a967 | 3270 | } |
c12176d3 | 3271 | return val; |
ce00a967 JW |
3272 | } |
3273 | ||
567e9ab2 | 3274 | static int memcg_online_kmem(struct mem_cgroup *memcg) |
d6441637 | 3275 | { |
bf4f0599 | 3276 | struct obj_cgroup *objcg; |
d6441637 | 3277 | |
9c94bef9 | 3278 | if (mem_cgroup_kmem_disabled()) |
b313aeee VD |
3279 | return 0; |
3280 | ||
da0efe30 MS |
3281 | if (unlikely(mem_cgroup_is_root(memcg))) |
3282 | return 0; | |
d6441637 | 3283 | |
bf4f0599 | 3284 | objcg = obj_cgroup_alloc(); |
f9c69d63 | 3285 | if (!objcg) |
bf4f0599 | 3286 | return -ENOMEM; |
f9c69d63 | 3287 | |
bf4f0599 RG |
3288 | objcg->memcg = memcg; |
3289 | rcu_assign_pointer(memcg->objcg, objcg); | |
675d6c9b RG |
3290 | obj_cgroup_get(objcg); |
3291 | memcg->orig_objcg = objcg; | |
bf4f0599 | 3292 | |
f7a449f7 | 3293 | static_branch_enable(&memcg_kmem_online_key); |
d648bcc7 | 3294 | |
f9c69d63 | 3295 | memcg->kmemcg_id = memcg->id.id; |
0b8f73e1 JW |
3296 | |
3297 | return 0; | |
d6441637 VD |
3298 | } |
3299 | ||
8e0a8912 JW |
3300 | static void memcg_offline_kmem(struct mem_cgroup *memcg) |
3301 | { | |
64268868 | 3302 | struct mem_cgroup *parent; |
8e0a8912 | 3303 | |
9c94bef9 | 3304 | if (mem_cgroup_kmem_disabled()) |
da0efe30 MS |
3305 | return; |
3306 | ||
3307 | if (unlikely(mem_cgroup_is_root(memcg))) | |
8e0a8912 | 3308 | return; |
9855609b | 3309 | |
8e0a8912 JW |
3310 | parent = parent_mem_cgroup(memcg); |
3311 | if (!parent) | |
3312 | parent = root_mem_cgroup; | |
3313 | ||
1f391eb2 | 3314 | memcg_reparent_list_lrus(memcg, parent); |
fb56fdf8 KS |
3315 | |
3316 | /* | |
3317 | * Objcg's reparenting must be after list_lru's, make sure list_lru | |
3318 | * helpers won't use parent's list_lru until child is drained. | |
3319 | */ | |
3320 | memcg_reparent_objcgs(memcg, parent); | |
8e0a8912 | 3321 | } |
127424c8 | 3322 | |
52ebea74 TH |
3323 | #ifdef CONFIG_CGROUP_WRITEBACK |
3324 | ||
3a8e9ac8 TH |
3325 | #include <trace/events/writeback.h> |
3326 | ||
841710aa TH |
3327 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) |
3328 | { | |
3329 | return wb_domain_init(&memcg->cgwb_domain, gfp); | |
3330 | } | |
3331 | ||
3332 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | |
3333 | { | |
3334 | wb_domain_exit(&memcg->cgwb_domain); | |
3335 | } | |
3336 | ||
2529bb3a TH |
3337 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) |
3338 | { | |
3339 | wb_domain_size_changed(&memcg->cgwb_domain); | |
3340 | } | |
3341 | ||
841710aa TH |
3342 | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) |
3343 | { | |
3344 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | |
3345 | ||
3346 | if (!memcg->css.parent) | |
3347 | return NULL; | |
3348 | ||
3349 | return &memcg->cgwb_domain; | |
3350 | } | |
3351 | ||
c2aa723a TH |
3352 | /** |
3353 | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg | |
3354 | * @wb: bdi_writeback in question | |
c5edf9cd TH |
3355 | * @pfilepages: out parameter for number of file pages |
3356 | * @pheadroom: out parameter for number of allocatable pages according to memcg | |
c2aa723a TH |
3357 | * @pdirty: out parameter for number of dirty pages |
3358 | * @pwriteback: out parameter for number of pages under writeback | |
3359 | * | |
c5edf9cd TH |
3360 | * Determine the numbers of file, headroom, dirty, and writeback pages in |
3361 | * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom | |
3362 | * is a bit more involved. | |
c2aa723a | 3363 | * |
c5edf9cd TH |
3364 | * A memcg's headroom is "min(max, high) - used". In the hierarchy, the |
3365 | * headroom is calculated as the lowest headroom of itself and the | |
3366 | * ancestors. Note that this doesn't consider the actual amount of | |
3367 | * available memory in the system. The caller should further cap | |
3368 | * *@pheadroom accordingly. | |
c2aa723a | 3369 | */ |
c5edf9cd TH |
3370 | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, |
3371 | unsigned long *pheadroom, unsigned long *pdirty, | |
3372 | unsigned long *pwriteback) | |
c2aa723a TH |
3373 | { |
3374 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | |
3375 | struct mem_cgroup *parent; | |
c2aa723a | 3376 | |
d9b3ce87 | 3377 | mem_cgroup_flush_stats_ratelimited(memcg); |
c2aa723a | 3378 | |
2d146aa3 JW |
3379 | *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); |
3380 | *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); | |
3381 | *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + | |
3382 | memcg_page_state(memcg, NR_ACTIVE_FILE); | |
c2aa723a | 3383 | |
2d146aa3 | 3384 | *pheadroom = PAGE_COUNTER_MAX; |
c2aa723a | 3385 | while ((parent = parent_mem_cgroup(memcg))) { |
15b42562 | 3386 | unsigned long ceiling = min(READ_ONCE(memcg->memory.max), |
d1663a90 | 3387 | READ_ONCE(memcg->memory.high)); |
c2aa723a TH |
3388 | unsigned long used = page_counter_read(&memcg->memory); |
3389 | ||
c5edf9cd | 3390 | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); |
c2aa723a TH |
3391 | memcg = parent; |
3392 | } | |
c2aa723a TH |
3393 | } |
3394 | ||
97b27821 TH |
3395 | /* |
3396 | * Foreign dirty flushing | |
3397 | * | |
3398 | * There's an inherent mismatch between memcg and writeback. The former | |
f0953a1b | 3399 | * tracks ownership per-page while the latter per-inode. This was a |
97b27821 TH |
3400 | * deliberate design decision because honoring per-page ownership in the |
3401 | * writeback path is complicated, may lead to higher CPU and IO overheads | |
3402 | * and deemed unnecessary given that write-sharing an inode across | |
3403 | * different cgroups isn't a common use-case. | |
3404 | * | |
3405 | * Combined with inode majority-writer ownership switching, this works well | |
3406 | * enough in most cases but there are some pathological cases. For | |
3407 | * example, let's say there are two cgroups A and B which keep writing to | |
3408 | * different but confined parts of the same inode. B owns the inode and | |
3409 | * A's memory is limited far below B's. A's dirty ratio can rise enough to | |
3410 | * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid | |
3411 | * triggering background writeback. A will be slowed down without a way to | |
3412 | * make writeback of the dirty pages happen. | |
3413 | * | |
f0953a1b | 3414 | * Conditions like the above can lead to a cgroup getting repeatedly and |
97b27821 | 3415 | * severely throttled after making some progress after each |
f0953a1b | 3416 | * dirty_expire_interval while the underlying IO device is almost |
97b27821 TH |
3417 | * completely idle. |
3418 | * | |
3419 | * Solving this problem completely requires matching the ownership tracking | |
3420 | * granularities between memcg and writeback in either direction. However, | |
3421 | * the more egregious behaviors can be avoided by simply remembering the | |
3422 | * most recent foreign dirtying events and initiating remote flushes on | |
3423 | * them when local writeback isn't enough to keep the memory clean enough. | |
3424 | * | |
3425 | * The following two functions implement such mechanism. When a foreign | |
3426 | * page - a page whose memcg and writeback ownerships don't match - is | |
3427 | * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning | |
3428 | * bdi_writeback on the page owning memcg. When balance_dirty_pages() | |
3429 | * decides that the memcg needs to sleep due to high dirty ratio, it calls | |
3430 | * mem_cgroup_flush_foreign() which queues writeback on the recorded | |
3431 | * foreign bdi_writebacks which haven't expired. Both the numbers of | |
3432 | * recorded bdi_writebacks and concurrent in-flight foreign writebacks are | |
3433 | * limited to MEMCG_CGWB_FRN_CNT. | |
3434 | * | |
3435 | * The mechanism only remembers IDs and doesn't hold any object references. | |
3436 | * As being wrong occasionally doesn't matter, updates and accesses to the | |
3437 | * records are lockless and racy. | |
3438 | */ | |
9d8053fc | 3439 | void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, |
97b27821 TH |
3440 | struct bdi_writeback *wb) |
3441 | { | |
9d8053fc | 3442 | struct mem_cgroup *memcg = folio_memcg(folio); |
97b27821 TH |
3443 | struct memcg_cgwb_frn *frn; |
3444 | u64 now = get_jiffies_64(); | |
3445 | u64 oldest_at = now; | |
3446 | int oldest = -1; | |
3447 | int i; | |
3448 | ||
9d8053fc | 3449 | trace_track_foreign_dirty(folio, wb); |
3a8e9ac8 | 3450 | |
97b27821 TH |
3451 | /* |
3452 | * Pick the slot to use. If there is already a slot for @wb, keep | |
3453 | * using it. If not replace the oldest one which isn't being | |
3454 | * written out. | |
3455 | */ | |
3456 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { | |
3457 | frn = &memcg->cgwb_frn[i]; | |
3458 | if (frn->bdi_id == wb->bdi->id && | |
3459 | frn->memcg_id == wb->memcg_css->id) | |
3460 | break; | |
3461 | if (time_before64(frn->at, oldest_at) && | |
3462 | atomic_read(&frn->done.cnt) == 1) { | |
3463 | oldest = i; | |
3464 | oldest_at = frn->at; | |
3465 | } | |
3466 | } | |
3467 | ||
3468 | if (i < MEMCG_CGWB_FRN_CNT) { | |
3469 | /* | |
3470 | * Re-using an existing one. Update timestamp lazily to | |
3471 | * avoid making the cacheline hot. We want them to be | |
3472 | * reasonably up-to-date and significantly shorter than | |
3473 | * dirty_expire_interval as that's what expires the record. | |
3474 | * Use the shorter of 1s and dirty_expire_interval / 8. | |
3475 | */ | |
3476 | unsigned long update_intv = | |
3477 | min_t(unsigned long, HZ, | |
3478 | msecs_to_jiffies(dirty_expire_interval * 10) / 8); | |
3479 | ||
3480 | if (time_before64(frn->at, now - update_intv)) | |
3481 | frn->at = now; | |
3482 | } else if (oldest >= 0) { | |
3483 | /* replace the oldest free one */ | |
3484 | frn = &memcg->cgwb_frn[oldest]; | |
3485 | frn->bdi_id = wb->bdi->id; | |
3486 | frn->memcg_id = wb->memcg_css->id; | |
3487 | frn->at = now; | |
3488 | } | |
3489 | } | |
3490 | ||
3491 | /* issue foreign writeback flushes for recorded foreign dirtying events */ | |
3492 | void mem_cgroup_flush_foreign(struct bdi_writeback *wb) | |
3493 | { | |
3494 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | |
3495 | unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); | |
3496 | u64 now = jiffies_64; | |
3497 | int i; | |
3498 | ||
3499 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { | |
3500 | struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; | |
3501 | ||
3502 | /* | |
3503 | * If the record is older than dirty_expire_interval, | |
3504 | * writeback on it has already started. No need to kick it | |
3505 | * off again. Also, don't start a new one if there's | |
3506 | * already one in flight. | |
3507 | */ | |
3508 | if (time_after64(frn->at, now - intv) && | |
3509 | atomic_read(&frn->done.cnt) == 1) { | |
3510 | frn->at = 0; | |
3a8e9ac8 | 3511 | trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); |
7490a2d2 | 3512 | cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, |
97b27821 TH |
3513 | WB_REASON_FOREIGN_FLUSH, |
3514 | &frn->done); | |
3515 | } | |
3516 | } | |
3517 | } | |
3518 | ||
841710aa TH |
3519 | #else /* CONFIG_CGROUP_WRITEBACK */ |
3520 | ||
3521 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | |
3522 | { | |
3523 | return 0; | |
3524 | } | |
3525 | ||
3526 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | |
3527 | { | |
3528 | } | |
3529 | ||
2529bb3a TH |
3530 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) |
3531 | { | |
3532 | } | |
3533 | ||
52ebea74 TH |
3534 | #endif /* CONFIG_CGROUP_WRITEBACK */ |
3535 | ||
73f576c0 JW |
3536 | /* |
3537 | * Private memory cgroup IDR | |
3538 | * | |
3539 | * Swap-out records and page cache shadow entries need to store memcg | |
3540 | * references in constrained space, so we maintain an ID space that is | |
3541 | * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of | |
3542 | * memory-controlled cgroups to 64k. | |
3543 | * | |
b8f2935f | 3544 | * However, there usually are many references to the offline CSS after |
73f576c0 JW |
3545 | * the cgroup has been destroyed, such as page cache or reclaimable |
3546 | * slab objects, that don't need to hang on to the ID. We want to keep | |
3547 | * those dead CSS from occupying IDs, or we might quickly exhaust the | |
3548 | * relatively small ID space and prevent the creation of new cgroups | |
3549 | * even when there are much fewer than 64k cgroups - possibly none. | |
3550 | * | |
3551 | * Maintain a private 16-bit ID space for memcg, and allow the ID to | |
3552 | * be freed and recycled when it's no longer needed, which is usually | |
3553 | * when the CSS is offlined. | |
3554 | * | |
3555 | * The only exception to that are records of swapped out tmpfs/shmem | |
3556 | * pages that need to be attributed to live ancestors on swapin. But | |
3557 | * those references are manageable from userspace. | |
3558 | */ | |
3559 | ||
60b1e24c | 3560 | #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) |
07222371 | 3561 | static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); |
73f576c0 | 3562 | |
7e97de0b KT |
3563 | static void mem_cgroup_id_remove(struct mem_cgroup *memcg) |
3564 | { | |
3565 | if (memcg->id.id > 0) { | |
07222371 | 3566 | xa_erase(&mem_cgroup_ids, memcg->id.id); |
7e97de0b KT |
3567 | memcg->id.id = 0; |
3568 | } | |
3569 | } | |
3570 | ||
e548ad4a RG |
3571 | void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, |
3572 | unsigned int n) | |
73f576c0 | 3573 | { |
1c2d479a | 3574 | refcount_add(n, &memcg->id.ref); |
73f576c0 JW |
3575 | } |
3576 | ||
75fe8ec2 | 3577 | static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) |
73f576c0 | 3578 | { |
1c2d479a | 3579 | if (refcount_sub_and_test(n, &memcg->id.ref)) { |
7e97de0b | 3580 | mem_cgroup_id_remove(memcg); |
73f576c0 JW |
3581 | |
3582 | /* Memcg ID pins CSS */ | |
3583 | css_put(&memcg->css); | |
3584 | } | |
3585 | } | |
3586 | ||
615d66c3 VD |
3587 | static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) |
3588 | { | |
3589 | mem_cgroup_id_put_many(memcg, 1); | |
3590 | } | |
3591 | ||
89ce924f JW |
3592 | struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) |
3593 | { | |
3594 | while (!refcount_inc_not_zero(&memcg->id.ref)) { | |
3595 | /* | |
3596 | * The root cgroup cannot be destroyed, so it's refcount must | |
3597 | * always be >= 1. | |
3598 | */ | |
3599 | if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { | |
3600 | VM_BUG_ON(1); | |
3601 | break; | |
3602 | } | |
3603 | memcg = parent_mem_cgroup(memcg); | |
3604 | if (!memcg) | |
3605 | memcg = root_mem_cgroup; | |
3606 | } | |
3607 | return memcg; | |
3608 | } | |
3609 | ||
73f576c0 JW |
3610 | /** |
3611 | * mem_cgroup_from_id - look up a memcg from a memcg id | |
3612 | * @id: the memcg id to look up | |
3613 | * | |
3614 | * Caller must hold rcu_read_lock(). | |
3615 | */ | |
3616 | struct mem_cgroup *mem_cgroup_from_id(unsigned short id) | |
3617 | { | |
3618 | WARN_ON_ONCE(!rcu_read_lock_held()); | |
07222371 | 3619 | return xa_load(&mem_cgroup_ids, id); |
73f576c0 JW |
3620 | } |
3621 | ||
c15187a4 RG |
3622 | #ifdef CONFIG_SHRINKER_DEBUG |
3623 | struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) | |
3624 | { | |
3625 | struct cgroup *cgrp; | |
3626 | struct cgroup_subsys_state *css; | |
3627 | struct mem_cgroup *memcg; | |
3628 | ||
3629 | cgrp = cgroup_get_from_id(ino); | |
fa7e439c | 3630 | if (IS_ERR(cgrp)) |
c0f2df49 | 3631 | return ERR_CAST(cgrp); |
c15187a4 RG |
3632 | |
3633 | css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); | |
3634 | if (css) | |
3635 | memcg = container_of(css, struct mem_cgroup, css); | |
3636 | else | |
3637 | memcg = ERR_PTR(-ENOENT); | |
3638 | ||
3639 | cgroup_put(cgrp); | |
3640 | ||
3641 | return memcg; | |
3642 | } | |
3643 | #endif | |
3644 | ||
2059c8e3 CR |
3645 | static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) |
3646 | { | |
3647 | if (!pn) | |
3648 | return; | |
3649 | ||
3650 | free_percpu(pn->lruvec_stats_percpu); | |
3651 | kfree(pn->lruvec_stats); | |
3652 | kfree(pn); | |
3653 | } | |
3654 | ||
a8248bb7 | 3655 | static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) |
6d12e2d8 KH |
3656 | { |
3657 | struct mem_cgroup_per_node *pn; | |
8c9bb398 | 3658 | |
1b6a58e2 HY |
3659 | pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, |
3660 | node); | |
6d12e2d8 | 3661 | if (!pn) |
a8248bb7 | 3662 | return false; |
1ecaab2b | 3663 | |
aab6103b RG |
3664 | pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), |
3665 | GFP_KERNEL_ACCOUNT, node); | |
70a64b79 SB |
3666 | if (!pn->lruvec_stats) |
3667 | goto fail; | |
3668 | ||
7e1c0d6f SB |
3669 | pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, |
3670 | GFP_KERNEL_ACCOUNT); | |
70a64b79 SB |
3671 | if (!pn->lruvec_stats_percpu) |
3672 | goto fail; | |
00f3ca2c | 3673 | |
ef8f2327 | 3674 | lruvec_init(&pn->lruvec); |
ef8f2327 MG |
3675 | pn->memcg = memcg; |
3676 | ||
54f72fe0 | 3677 | memcg->nodeinfo[node] = pn; |
a8248bb7 | 3678 | return true; |
70a64b79 | 3679 | fail: |
2059c8e3 | 3680 | free_mem_cgroup_per_node_info(pn); |
a8248bb7 | 3681 | return false; |
6d12e2d8 KH |
3682 | } |
3683 | ||
40e952f9 | 3684 | static void __mem_cgroup_free(struct mem_cgroup *memcg) |
59927fb9 | 3685 | { |
c8b2a36f | 3686 | int node; |
59927fb9 | 3687 | |
91b71e78 | 3688 | obj_cgroup_put(memcg->orig_objcg); |
675d6c9b | 3689 | |
c8b2a36f | 3690 | for_each_node(node) |
2059c8e3 | 3691 | free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); |
5d383b69 | 3692 | memcg1_free_events(memcg); |
410f8e82 | 3693 | kfree(memcg->vmstats); |
871789d4 | 3694 | free_percpu(memcg->vmstats_percpu); |
8ff69e2c | 3695 | kfree(memcg); |
59927fb9 | 3696 | } |
3afe36b1 | 3697 | |
40e952f9 TE |
3698 | static void mem_cgroup_free(struct mem_cgroup *memcg) |
3699 | { | |
ec1c86b2 | 3700 | lru_gen_exit_memcg(memcg); |
40e952f9 TE |
3701 | memcg_wb_domain_exit(memcg); |
3702 | __mem_cgroup_free(memcg); | |
3703 | } | |
3704 | ||
9cee7e8e | 3705 | static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) |
8cdea7c0 | 3706 | { |
8a4b42b9 SB |
3707 | struct memcg_vmstats_percpu *statc; |
3708 | struct memcg_vmstats_percpu __percpu *pstatc_pcpu; | |
d142e3e6 | 3709 | struct mem_cgroup *memcg; |
9cee7e8e | 3710 | int node, cpu; |
97b27821 | 3711 | int __maybe_unused i; |
07222371 | 3712 | long error; |
8cdea7c0 | 3713 | |
97e4fc4b | 3714 | memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); |
c0ff4b85 | 3715 | if (!memcg) |
07222371 | 3716 | return ERR_PTR(-ENOMEM); |
0b8f73e1 | 3717 | |
07222371 SB |
3718 | error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, |
3719 | XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); | |
3720 | if (error) | |
73f576c0 | 3721 | goto fail; |
07222371 | 3722 | error = -ENOMEM; |
73f576c0 | 3723 | |
aab6103b RG |
3724 | memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), |
3725 | GFP_KERNEL_ACCOUNT); | |
410f8e82 SB |
3726 | if (!memcg->vmstats) |
3727 | goto fail; | |
3728 | ||
3e38e0aa RG |
3729 | memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, |
3730 | GFP_KERNEL_ACCOUNT); | |
871789d4 | 3731 | if (!memcg->vmstats_percpu) |
0b8f73e1 | 3732 | goto fail; |
78fb7466 | 3733 | |
5d383b69 SB |
3734 | if (!memcg1_alloc_events(memcg)) |
3735 | goto fail; | |
3736 | ||
9cee7e8e YA |
3737 | for_each_possible_cpu(cpu) { |
3738 | if (parent) | |
8a4b42b9 | 3739 | pstatc_pcpu = parent->vmstats_percpu; |
9cee7e8e | 3740 | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); |
8a4b42b9 | 3741 | statc->parent_pcpu = parent ? pstatc_pcpu : NULL; |
9cee7e8e YA |
3742 | statc->vmstats = memcg->vmstats; |
3743 | } | |
3744 | ||
3ed28fa1 | 3745 | for_each_node(node) |
a8248bb7 | 3746 | if (!alloc_mem_cgroup_per_node_info(memcg, node)) |
0b8f73e1 | 3747 | goto fail; |
f64c3f54 | 3748 | |
0b8f73e1 JW |
3749 | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) |
3750 | goto fail; | |
28dbc4b6 | 3751 | |
f7e1cb6e | 3752 | INIT_WORK(&memcg->high_work, high_work_func); |
70ddf637 | 3753 | vmpressure_init(&memcg->vmpressure); |
c6f53ed8 DF |
3754 | INIT_LIST_HEAD(&memcg->memory_peaks); |
3755 | INIT_LIST_HEAD(&memcg->swap_peaks); | |
3756 | spin_lock_init(&memcg->peaks_lock); | |
378bdb97 KI |
3757 | memcg->socket_pressure = get_jiffies_64(); |
3758 | #if BITS_PER_LONG < 64 | |
3759 | seqlock_init(&memcg->socket_pressure_seqlock); | |
3760 | #endif | |
b5855a26 | 3761 | memcg1_memcg_init(memcg); |
900a38f0 | 3762 | memcg->kmemcg_id = -1; |
bf4f0599 | 3763 | INIT_LIST_HEAD(&memcg->objcg_list); |
52ebea74 TH |
3764 | #ifdef CONFIG_CGROUP_WRITEBACK |
3765 | INIT_LIST_HEAD(&memcg->cgwb_list); | |
97b27821 TH |
3766 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) |
3767 | memcg->cgwb_frn[i].done = | |
3768 | __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); | |
87eaceb3 YS |
3769 | #endif |
3770 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
3771 | spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); | |
3772 | INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); | |
3773 | memcg->deferred_split_queue.split_queue_len = 0; | |
52ebea74 | 3774 | #endif |
ec1c86b2 | 3775 | lru_gen_init_memcg(memcg); |
0b8f73e1 JW |
3776 | return memcg; |
3777 | fail: | |
7e97de0b | 3778 | mem_cgroup_id_remove(memcg); |
40e952f9 | 3779 | __mem_cgroup_free(memcg); |
11d67612 | 3780 | return ERR_PTR(error); |
d142e3e6 GC |
3781 | } |
3782 | ||
0b8f73e1 JW |
3783 | static struct cgroup_subsys_state * __ref |
3784 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | |
d142e3e6 | 3785 | { |
0b8f73e1 | 3786 | struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); |
b87d8cef | 3787 | struct mem_cgroup *memcg, *old_memcg; |
645207a6 | 3788 | bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); |
d142e3e6 | 3789 | |
b87d8cef | 3790 | old_memcg = set_active_memcg(parent); |
9cee7e8e | 3791 | memcg = mem_cgroup_alloc(parent); |
b87d8cef | 3792 | set_active_memcg(old_memcg); |
11d67612 YS |
3793 | if (IS_ERR(memcg)) |
3794 | return ERR_CAST(memcg); | |
d142e3e6 | 3795 | |
d1663a90 | 3796 | page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); |
d12f6d22 | 3797 | memcg1_soft_limit_reset(memcg); |
3a3b7fec | 3798 | #ifdef CONFIG_ZSWAP |
f4840ccf | 3799 | memcg->zswap_max = PAGE_COUNTER_MAX; |
e3992573 | 3800 | WRITE_ONCE(memcg->zswap_writeback, true); |
f4840ccf | 3801 | #endif |
4b82ab4f | 3802 | page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); |
0b8f73e1 | 3803 | if (parent) { |
82b3aa26 | 3804 | WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); |
bef8620c | 3805 | |
645207a6 | 3806 | page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); |
f77bd4b1 | 3807 | page_counter_init(&memcg->swap, &parent->swap, false); |
05dfec12 | 3808 | #ifdef CONFIG_MEMCG_V1 |
0e2759af | 3809 | memcg->memory.track_failcnt = !memcg_on_dfl; |
05dfec12 | 3810 | WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); |
f77bd4b1 RG |
3811 | page_counter_init(&memcg->kmem, &parent->kmem, false); |
3812 | page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); | |
05dfec12 | 3813 | #endif |
18f59ea7 | 3814 | } else { |
ff48c71c | 3815 | init_memcg_stats(); |
8278f1c7 | 3816 | init_memcg_events(); |
f77bd4b1 RG |
3817 | page_counter_init(&memcg->memory, NULL, true); |
3818 | page_counter_init(&memcg->swap, NULL, false); | |
05dfec12 | 3819 | #ifdef CONFIG_MEMCG_V1 |
f77bd4b1 RG |
3820 | page_counter_init(&memcg->kmem, NULL, false); |
3821 | page_counter_init(&memcg->tcpmem, NULL, false); | |
05dfec12 | 3822 | #endif |
0b8f73e1 JW |
3823 | root_mem_cgroup = memcg; |
3824 | return &memcg->css; | |
3825 | } | |
3826 | ||
645207a6 | 3827 | if (memcg_on_dfl && !cgroup_memory_nosocket) |
ef12947c | 3828 | static_branch_inc(&memcg_sockets_enabled_key); |
f7e1cb6e | 3829 | |
b6c1a8af YS |
3830 | if (!cgroup_memory_nobpf) |
3831 | static_branch_inc(&memcg_bpf_enabled_key); | |
b6c1a8af | 3832 | |
0b8f73e1 | 3833 | return &memcg->css; |
0b8f73e1 JW |
3834 | } |
3835 | ||
73f576c0 | 3836 | static int mem_cgroup_css_online(struct cgroup_subsys_state *css) |
0b8f73e1 | 3837 | { |
58fa2a55 VD |
3838 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3839 | ||
da0efe30 MS |
3840 | if (memcg_online_kmem(memcg)) |
3841 | goto remove_id; | |
3842 | ||
0a4465d3 | 3843 | /* |
e4262c4f | 3844 | * A memcg must be visible for expand_shrinker_info() |
0a4465d3 KT |
3845 | * by the time the maps are allocated. So, we allocate maps |
3846 | * here, when for_each_mem_cgroup() can't skip it. | |
3847 | */ | |
da0efe30 MS |
3848 | if (alloc_shrinker_info(memcg)) |
3849 | goto offline_kmem; | |
0a4465d3 | 3850 | |
13ef7424 | 3851 | if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) |
aa48e47e | 3852 | queue_delayed_work(system_unbound_wq, &stats_flush_dwork, |
396faf88 | 3853 | FLUSH_TIME); |
e4dde56c | 3854 | lru_gen_online_memcg(memcg); |
6f0df8e1 JW |
3855 | |
3856 | /* Online state pins memcg ID, memcg ID pins CSS */ | |
3857 | refcount_set(&memcg->id.ref, 1); | |
3858 | css_get(css); | |
3859 | ||
3860 | /* | |
3861 | * Ensure mem_cgroup_from_id() works once we're fully online. | |
3862 | * | |
3863 | * We could do this earlier and require callers to filter with | |
3864 | * css_tryget_online(). But right now there are no users that | |
3865 | * need earlier access, and the workingset code relies on the | |
3866 | * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So | |
3867 | * publish it here at the end of onlining. This matches the | |
3868 | * regular ID destruction during offlining. | |
3869 | */ | |
07222371 | 3870 | xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); |
6f0df8e1 | 3871 | |
2f7dd7a4 | 3872 | return 0; |
da0efe30 MS |
3873 | offline_kmem: |
3874 | memcg_offline_kmem(memcg); | |
3875 | remove_id: | |
3876 | mem_cgroup_id_remove(memcg); | |
3877 | return -ENOMEM; | |
8cdea7c0 BS |
3878 | } |
3879 | ||
eb95419b | 3880 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) |
df878fb0 | 3881 | { |
eb95419b | 3882 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
79bd9814 | 3883 | |
66d60c42 | 3884 | memcg1_css_offline(memcg); |
ec64f515 | 3885 | |
bf8d5d52 | 3886 | page_counter_set_min(&memcg->memory, 0); |
23067153 | 3887 | page_counter_set_low(&memcg->memory, 0); |
63677c74 | 3888 | |
a65b0e76 DC |
3889 | zswap_memcg_offline_cleanup(memcg); |
3890 | ||
567e9ab2 | 3891 | memcg_offline_kmem(memcg); |
a178015c | 3892 | reparent_shrinker_deferred(memcg); |
52ebea74 | 3893 | wb_memcg_offline(memcg); |
e4dde56c | 3894 | lru_gen_offline_memcg(memcg); |
73f576c0 | 3895 | |
591edfb1 RG |
3896 | drain_all_stock(memcg); |
3897 | ||
73f576c0 | 3898 | mem_cgroup_id_put(memcg); |
df878fb0 KH |
3899 | } |
3900 | ||
6df38689 VD |
3901 | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) |
3902 | { | |
3903 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3904 | ||
3905 | invalidate_reclaim_iterators(memcg); | |
e4dde56c | 3906 | lru_gen_release_memcg(memcg); |
6df38689 VD |
3907 | } |
3908 | ||
eb95419b | 3909 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) |
8cdea7c0 | 3910 | { |
eb95419b | 3911 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
97b27821 | 3912 | int __maybe_unused i; |
c268e994 | 3913 | |
97b27821 TH |
3914 | #ifdef CONFIG_CGROUP_WRITEBACK |
3915 | for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) | |
3916 | wb_wait_for_completion(&memcg->cgwb_frn[i].done); | |
3917 | #endif | |
f7e1cb6e | 3918 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) |
ef12947c | 3919 | static_branch_dec(&memcg_sockets_enabled_key); |
127424c8 | 3920 | |
773e9ae7 | 3921 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) |
d55f90bf | 3922 | static_branch_dec(&memcg_sockets_enabled_key); |
3893e302 | 3923 | |
b6c1a8af YS |
3924 | if (!cgroup_memory_nobpf) |
3925 | static_branch_dec(&memcg_bpf_enabled_key); | |
b6c1a8af | 3926 | |
0b8f73e1 JW |
3927 | vmpressure_cleanup(&memcg->vmpressure); |
3928 | cancel_work_sync(&memcg->high_work); | |
87024f58 | 3929 | memcg1_remove_from_trees(memcg); |
e4262c4f | 3930 | free_shrinker_info(memcg); |
0b8f73e1 | 3931 | mem_cgroup_free(memcg); |
8cdea7c0 BS |
3932 | } |
3933 | ||
1ced953b TH |
3934 | /** |
3935 | * mem_cgroup_css_reset - reset the states of a mem_cgroup | |
3936 | * @css: the target css | |
3937 | * | |
3938 | * Reset the states of the mem_cgroup associated with @css. This is | |
3939 | * invoked when the userland requests disabling on the default hierarchy | |
3940 | * but the memcg is pinned through dependency. The memcg should stop | |
3941 | * applying policies and should revert to the vanilla state as it may be | |
3942 | * made visible again. | |
3943 | * | |
3944 | * The current implementation only resets the essential configurations. | |
3945 | * This needs to be expanded to cover all the visible parts. | |
3946 | */ | |
3947 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | |
3948 | { | |
3949 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
3950 | ||
bbec2e15 RG |
3951 | page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); |
3952 | page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); | |
05dfec12 | 3953 | #ifdef CONFIG_MEMCG_V1 |
bbec2e15 RG |
3954 | page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); |
3955 | page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); | |
05dfec12 | 3956 | #endif |
bf8d5d52 | 3957 | page_counter_set_min(&memcg->memory, 0); |
23067153 | 3958 | page_counter_set_low(&memcg->memory, 0); |
d1663a90 | 3959 | page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); |
d12f6d22 | 3960 | memcg1_soft_limit_reset(memcg); |
4b82ab4f | 3961 | page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); |
2529bb3a | 3962 | memcg_wb_domain_size_changed(memcg); |
1ced953b TH |
3963 | } |
3964 | ||
2b1d5549 XJ |
3965 | struct aggregate_control { |
3966 | /* pointer to the aggregated (CPU and subtree aggregated) counters */ | |
3967 | long *aggregate; | |
3968 | /* pointer to the non-hierarchichal (CPU aggregated) counters */ | |
3969 | long *local; | |
3970 | /* pointer to the pending child counters during tree propagation */ | |
3971 | long *pending; | |
3972 | /* pointer to the parent's pending counters, could be NULL */ | |
3973 | long *ppending; | |
3974 | /* pointer to the percpu counters to be aggregated */ | |
3975 | long *cstat; | |
3976 | /* pointer to the percpu counters of the last aggregation*/ | |
3977 | long *cstat_prev; | |
3978 | /* size of the above counters */ | |
3979 | int size; | |
3980 | }; | |
3981 | ||
3982 | static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) | |
2d146aa3 | 3983 | { |
2b1d5549 | 3984 | int i; |
f82e6bf9 | 3985 | long delta, delta_cpu, v; |
2d146aa3 | 3986 | |
2b1d5549 | 3987 | for (i = 0; i < ac->size; i++) { |
2d146aa3 JW |
3988 | /* |
3989 | * Collect the aggregated propagation counts of groups | |
3990 | * below us. We're in a per-cpu loop here and this is | |
3991 | * a global counter, so the first cycle will get them. | |
3992 | */ | |
2b1d5549 | 3993 | delta = ac->pending[i]; |
2d146aa3 | 3994 | if (delta) |
2b1d5549 | 3995 | ac->pending[i] = 0; |
2d146aa3 JW |
3996 | |
3997 | /* Add CPU changes on this level since the last flush */ | |
f82e6bf9 | 3998 | delta_cpu = 0; |
2b1d5549 XJ |
3999 | v = READ_ONCE(ac->cstat[i]); |
4000 | if (v != ac->cstat_prev[i]) { | |
4001 | delta_cpu = v - ac->cstat_prev[i]; | |
f82e6bf9 | 4002 | delta += delta_cpu; |
2b1d5549 | 4003 | ac->cstat_prev[i] = v; |
2d146aa3 JW |
4004 | } |
4005 | ||
2d146aa3 | 4006 | /* Aggregate counts on this level and propagate upwards */ |
f82e6bf9 | 4007 | if (delta_cpu) |
2b1d5549 | 4008 | ac->local[i] += delta_cpu; |
f82e6bf9 YA |
4009 | |
4010 | if (delta) { | |
2b1d5549 XJ |
4011 | ac->aggregate[i] += delta; |
4012 | if (ac->ppending) | |
4013 | ac->ppending[i] += delta; | |
f82e6bf9 | 4014 | } |
2d146aa3 | 4015 | } |
2b1d5549 | 4016 | } |
2d146aa3 | 4017 | |
940b01fc SB |
4018 | #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC |
4019 | static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, | |
4020 | int cpu) | |
4021 | { | |
4022 | int nid; | |
4023 | ||
4024 | if (atomic_read(&memcg->kmem_stat)) { | |
4025 | int kmem = atomic_xchg(&memcg->kmem_stat, 0); | |
4026 | int index = memcg_stats_index(MEMCG_KMEM); | |
4027 | ||
4028 | memcg->vmstats->state[index] += kmem; | |
4029 | if (parent) | |
4030 | parent->vmstats->state_pending[index] += kmem; | |
4031 | } | |
4032 | ||
4033 | for_each_node_state(nid, N_MEMORY) { | |
4034 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; | |
4035 | struct lruvec_stats *lstats = pn->lruvec_stats; | |
4036 | struct lruvec_stats *plstats = NULL; | |
4037 | ||
4038 | if (parent) | |
4039 | plstats = parent->nodeinfo[nid]->lruvec_stats; | |
4040 | ||
4041 | if (atomic_read(&pn->slab_reclaimable)) { | |
4042 | int slab = atomic_xchg(&pn->slab_reclaimable, 0); | |
4043 | int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B); | |
4044 | ||
4045 | lstats->state[index] += slab; | |
4046 | if (plstats) | |
4047 | plstats->state_pending[index] += slab; | |
4048 | } | |
4049 | if (atomic_read(&pn->slab_unreclaimable)) { | |
4050 | int slab = atomic_xchg(&pn->slab_unreclaimable, 0); | |
4051 | int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B); | |
4052 | ||
4053 | lstats->state[index] += slab; | |
4054 | if (plstats) | |
4055 | plstats->state_pending[index] += slab; | |
4056 | } | |
4057 | } | |
4058 | } | |
4059 | #else | |
4060 | static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, | |
4061 | int cpu) | |
4062 | {} | |
4063 | #endif | |
4064 | ||
2b1d5549 XJ |
4065 | static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) |
4066 | { | |
4067 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4068 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); | |
4069 | struct memcg_vmstats_percpu *statc; | |
4070 | struct aggregate_control ac; | |
4071 | int nid; | |
2d146aa3 | 4072 | |
940b01fc SB |
4073 | flush_nmi_stats(memcg, parent, cpu); |
4074 | ||
2b1d5549 | 4075 | statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); |
2d146aa3 | 4076 | |
2b1d5549 XJ |
4077 | ac = (struct aggregate_control) { |
4078 | .aggregate = memcg->vmstats->state, | |
4079 | .local = memcg->vmstats->state_local, | |
4080 | .pending = memcg->vmstats->state_pending, | |
4081 | .ppending = parent ? parent->vmstats->state_pending : NULL, | |
4082 | .cstat = statc->state, | |
4083 | .cstat_prev = statc->state_prev, | |
4084 | .size = MEMCG_VMSTAT_SIZE, | |
4085 | }; | |
4086 | mem_cgroup_stat_aggregate(&ac); | |
4087 | ||
4088 | ac = (struct aggregate_control) { | |
4089 | .aggregate = memcg->vmstats->events, | |
4090 | .local = memcg->vmstats->events_local, | |
4091 | .pending = memcg->vmstats->events_pending, | |
4092 | .ppending = parent ? parent->vmstats->events_pending : NULL, | |
4093 | .cstat = statc->events, | |
4094 | .cstat_prev = statc->events_prev, | |
4095 | .size = NR_MEMCG_EVENTS, | |
4096 | }; | |
4097 | mem_cgroup_stat_aggregate(&ac); | |
7e1c0d6f SB |
4098 | |
4099 | for_each_node_state(nid, N_MEMORY) { | |
4100 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; | |
70a64b79 SB |
4101 | struct lruvec_stats *lstats = pn->lruvec_stats; |
4102 | struct lruvec_stats *plstats = NULL; | |
7e1c0d6f SB |
4103 | struct lruvec_stats_percpu *lstatc; |
4104 | ||
4105 | if (parent) | |
70a64b79 | 4106 | plstats = parent->nodeinfo[nid]->lruvec_stats; |
7e1c0d6f SB |
4107 | |
4108 | lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); | |
4109 | ||
2b1d5549 XJ |
4110 | ac = (struct aggregate_control) { |
4111 | .aggregate = lstats->state, | |
4112 | .local = lstats->state_local, | |
4113 | .pending = lstats->state_pending, | |
4114 | .ppending = plstats ? plstats->state_pending : NULL, | |
4115 | .cstat = lstatc->state, | |
4116 | .cstat_prev = lstatc->state_prev, | |
4117 | .size = NR_MEMCG_NODE_STAT_ITEMS, | |
4118 | }; | |
4119 | mem_cgroup_stat_aggregate(&ac); | |
7e1c0d6f | 4120 | |
7e1c0d6f | 4121 | } |
78ec6f9d | 4122 | WRITE_ONCE(statc->stats_updates, 0); |
8d59d221 | 4123 | /* We are in a per-cpu loop here, only do the atomic write once */ |
3ac4638a SB |
4124 | if (atomic_read(&memcg->vmstats->stats_updates)) |
4125 | atomic_set(&memcg->vmstats->stats_updates, 0); | |
2d146aa3 JW |
4126 | } |
4127 | ||
1aacbd35 RG |
4128 | static void mem_cgroup_fork(struct task_struct *task) |
4129 | { | |
4130 | /* | |
4131 | * Set the update flag to cause task->objcg to be initialized lazily | |
4132 | * on the first allocation. It can be done without any synchronization | |
4133 | * because it's always performed on the current task, so does | |
4134 | * current_objcg_update(). | |
4135 | */ | |
4136 | task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; | |
4137 | } | |
4138 | ||
4139 | static void mem_cgroup_exit(struct task_struct *task) | |
4140 | { | |
4141 | struct obj_cgroup *objcg = task->objcg; | |
4142 | ||
4143 | objcg = (struct obj_cgroup *) | |
4144 | ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); | |
91b71e78 | 4145 | obj_cgroup_put(objcg); |
1aacbd35 RG |
4146 | |
4147 | /* | |
4148 | * Some kernel allocations can happen after this point, | |
4149 | * but let's ignore them. It can be done without any synchronization | |
4150 | * because it's always performed on the current task, so does | |
4151 | * current_objcg_update(). | |
4152 | */ | |
4153 | task->objcg = NULL; | |
4154 | } | |
1aacbd35 | 4155 | |
bd74fdae | 4156 | #ifdef CONFIG_LRU_GEN |
1aacbd35 | 4157 | static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) |
bd74fdae YZ |
4158 | { |
4159 | struct task_struct *task; | |
4160 | struct cgroup_subsys_state *css; | |
4161 | ||
4162 | /* find the first leader if there is any */ | |
4163 | cgroup_taskset_for_each_leader(task, css, tset) | |
4164 | break; | |
4165 | ||
4166 | if (!task) | |
4167 | return; | |
4168 | ||
4169 | task_lock(task); | |
4170 | if (task->mm && READ_ONCE(task->mm->owner) == task) | |
4171 | lru_gen_migrate_mm(task->mm); | |
4172 | task_unlock(task); | |
4173 | } | |
4174 | #else | |
1aacbd35 RG |
4175 | static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} |
4176 | #endif /* CONFIG_LRU_GEN */ | |
4177 | ||
1aacbd35 RG |
4178 | static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) |
4179 | { | |
4180 | struct task_struct *task; | |
4181 | struct cgroup_subsys_state *css; | |
4182 | ||
4183 | cgroup_taskset_for_each(task, css, tset) { | |
4184 | /* atomically set the update bit */ | |
4185 | set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); | |
4186 | } | |
4187 | } | |
1aacbd35 | 4188 | |
bd74fdae YZ |
4189 | static void mem_cgroup_attach(struct cgroup_taskset *tset) |
4190 | { | |
1aacbd35 RG |
4191 | mem_cgroup_lru_gen_attach(tset); |
4192 | mem_cgroup_kmem_attach(tset); | |
bd74fdae | 4193 | } |
bd74fdae | 4194 | |
677dc973 CD |
4195 | static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) |
4196 | { | |
4197 | if (value == PAGE_COUNTER_MAX) | |
4198 | seq_puts(m, "max\n"); | |
4199 | else | |
4200 | seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); | |
4201 | ||
4202 | return 0; | |
4203 | } | |
4204 | ||
241994ed JW |
4205 | static u64 memory_current_read(struct cgroup_subsys_state *css, |
4206 | struct cftype *cft) | |
4207 | { | |
f5fc3c5d JW |
4208 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
4209 | ||
4210 | return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; | |
241994ed JW |
4211 | } |
4212 | ||
c6f53ed8 DF |
4213 | #define OFP_PEAK_UNSET (((-1UL))) |
4214 | ||
4215 | static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) | |
8e20d4b3 | 4216 | { |
c6f53ed8 DF |
4217 | struct cgroup_of_peak *ofp = of_peak(sf->private); |
4218 | u64 fd_peak = READ_ONCE(ofp->value), peak; | |
4219 | ||
4220 | /* User wants global or local peak? */ | |
4221 | if (fd_peak == OFP_PEAK_UNSET) | |
4222 | peak = pc->watermark; | |
4223 | else | |
4224 | peak = max(fd_peak, READ_ONCE(pc->local_watermark)); | |
4225 | ||
4226 | seq_printf(sf, "%llu\n", peak * PAGE_SIZE); | |
4227 | return 0; | |
4228 | } | |
4229 | ||
4230 | static int memory_peak_show(struct seq_file *sf, void *v) | |
4231 | { | |
4232 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); | |
8e20d4b3 | 4233 | |
c6f53ed8 | 4234 | return peak_show(sf, v, &memcg->memory); |
8e20d4b3 GR |
4235 | } |
4236 | ||
c6f53ed8 DF |
4237 | static int peak_open(struct kernfs_open_file *of) |
4238 | { | |
4239 | struct cgroup_of_peak *ofp = of_peak(of); | |
4240 | ||
4241 | ofp->value = OFP_PEAK_UNSET; | |
4242 | return 0; | |
4243 | } | |
4244 | ||
4245 | static void peak_release(struct kernfs_open_file *of) | |
4246 | { | |
4247 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
4248 | struct cgroup_of_peak *ofp = of_peak(of); | |
4249 | ||
4250 | if (ofp->value == OFP_PEAK_UNSET) { | |
4251 | /* fast path (no writes on this fd) */ | |
4252 | return; | |
4253 | } | |
4254 | spin_lock(&memcg->peaks_lock); | |
4255 | list_del(&ofp->list); | |
4256 | spin_unlock(&memcg->peaks_lock); | |
4257 | } | |
4258 | ||
4259 | static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, | |
4260 | loff_t off, struct page_counter *pc, | |
4261 | struct list_head *watchers) | |
4262 | { | |
4263 | unsigned long usage; | |
4264 | struct cgroup_of_peak *peer_ctx; | |
4265 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
4266 | struct cgroup_of_peak *ofp = of_peak(of); | |
4267 | ||
4268 | spin_lock(&memcg->peaks_lock); | |
4269 | ||
4270 | usage = page_counter_read(pc); | |
4271 | WRITE_ONCE(pc->local_watermark, usage); | |
4272 | ||
4273 | list_for_each_entry(peer_ctx, watchers, list) | |
4274 | if (usage > peer_ctx->value) | |
4275 | WRITE_ONCE(peer_ctx->value, usage); | |
4276 | ||
4277 | /* initial write, register watcher */ | |
1c81f1a6 | 4278 | if (ofp->value == OFP_PEAK_UNSET) |
c6f53ed8 DF |
4279 | list_add(&ofp->list, watchers); |
4280 | ||
4281 | WRITE_ONCE(ofp->value, usage); | |
4282 | spin_unlock(&memcg->peaks_lock); | |
4283 | ||
4284 | return nbytes; | |
4285 | } | |
4286 | ||
4287 | static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, | |
4288 | size_t nbytes, loff_t off) | |
4289 | { | |
4290 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
8e20d4b3 | 4291 | |
c6f53ed8 DF |
4292 | return peak_write(of, buf, nbytes, off, &memcg->memory, |
4293 | &memcg->memory_peaks); | |
8e20d4b3 GR |
4294 | } |
4295 | ||
c6f53ed8 DF |
4296 | #undef OFP_PEAK_UNSET |
4297 | ||
bf8d5d52 RG |
4298 | static int memory_min_show(struct seq_file *m, void *v) |
4299 | { | |
677dc973 CD |
4300 | return seq_puts_memcg_tunable(m, |
4301 | READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); | |
bf8d5d52 RG |
4302 | } |
4303 | ||
4304 | static ssize_t memory_min_write(struct kernfs_open_file *of, | |
4305 | char *buf, size_t nbytes, loff_t off) | |
4306 | { | |
4307 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
4308 | unsigned long min; | |
4309 | int err; | |
4310 | ||
4311 | buf = strstrip(buf); | |
4312 | err = page_counter_memparse(buf, "max", &min); | |
4313 | if (err) | |
4314 | return err; | |
4315 | ||
4316 | page_counter_set_min(&memcg->memory, min); | |
4317 | ||
4318 | return nbytes; | |
4319 | } | |
4320 | ||
241994ed JW |
4321 | static int memory_low_show(struct seq_file *m, void *v) |
4322 | { | |
677dc973 CD |
4323 | return seq_puts_memcg_tunable(m, |
4324 | READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); | |
241994ed JW |
4325 | } |
4326 | ||
4327 | static ssize_t memory_low_write(struct kernfs_open_file *of, | |
4328 | char *buf, size_t nbytes, loff_t off) | |
4329 | { | |
4330 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
4331 | unsigned long low; | |
4332 | int err; | |
4333 | ||
4334 | buf = strstrip(buf); | |
d2973697 | 4335 | err = page_counter_memparse(buf, "max", &low); |
241994ed JW |
4336 | if (err) |
4337 | return err; | |
4338 | ||
23067153 | 4339 | page_counter_set_low(&memcg->memory, low); |
241994ed JW |
4340 | |
4341 | return nbytes; | |
4342 | } | |
4343 | ||
4344 | static int memory_high_show(struct seq_file *m, void *v) | |
4345 | { | |
d1663a90 JK |
4346 | return seq_puts_memcg_tunable(m, |
4347 | READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); | |
241994ed JW |
4348 | } |
4349 | ||
4350 | static ssize_t memory_high_write(struct kernfs_open_file *of, | |
4351 | char *buf, size_t nbytes, loff_t off) | |
4352 | { | |
4353 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
d977aa93 | 4354 | unsigned int nr_retries = MAX_RECLAIM_RETRIES; |
8c8c383c | 4355 | bool drained = false; |
241994ed JW |
4356 | unsigned long high; |
4357 | int err; | |
4358 | ||
4359 | buf = strstrip(buf); | |
d2973697 | 4360 | err = page_counter_memparse(buf, "max", &high); |
241994ed JW |
4361 | if (err) |
4362 | return err; | |
4363 | ||
e82553c1 JW |
4364 | page_counter_set_high(&memcg->memory, high); |
4365 | ||
c8e6002b SB |
4366 | if (of->file->f_flags & O_NONBLOCK) |
4367 | goto out; | |
4368 | ||
8c8c383c JW |
4369 | for (;;) { |
4370 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
4371 | unsigned long reclaimed; | |
4372 | ||
4373 | if (nr_pages <= high) | |
4374 | break; | |
4375 | ||
4376 | if (signal_pending(current)) | |
4377 | break; | |
4378 | ||
4379 | if (!drained) { | |
4380 | drain_all_stock(memcg); | |
4381 | drained = true; | |
4382 | continue; | |
4383 | } | |
4384 | ||
4385 | reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, | |
68cd9050 | 4386 | GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); |
8c8c383c JW |
4387 | |
4388 | if (!reclaimed && !nr_retries--) | |
4389 | break; | |
4390 | } | |
c8e6002b | 4391 | out: |
19ce33ac | 4392 | memcg_wb_domain_size_changed(memcg); |
241994ed JW |
4393 | return nbytes; |
4394 | } | |
4395 | ||
4396 | static int memory_max_show(struct seq_file *m, void *v) | |
4397 | { | |
677dc973 CD |
4398 | return seq_puts_memcg_tunable(m, |
4399 | READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); | |
241994ed JW |
4400 | } |
4401 | ||
4402 | static ssize_t memory_max_write(struct kernfs_open_file *of, | |
4403 | char *buf, size_t nbytes, loff_t off) | |
4404 | { | |
4405 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
d977aa93 | 4406 | unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; |
b6e6edcf | 4407 | bool drained = false; |
241994ed JW |
4408 | unsigned long max; |
4409 | int err; | |
4410 | ||
4411 | buf = strstrip(buf); | |
d2973697 | 4412 | err = page_counter_memparse(buf, "max", &max); |
241994ed JW |
4413 | if (err) |
4414 | return err; | |
4415 | ||
bbec2e15 | 4416 | xchg(&memcg->memory.max, max); |
b6e6edcf | 4417 | |
c8e6002b SB |
4418 | if (of->file->f_flags & O_NONBLOCK) |
4419 | goto out; | |
4420 | ||
b6e6edcf JW |
4421 | for (;;) { |
4422 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
4423 | ||
4424 | if (nr_pages <= max) | |
4425 | break; | |
4426 | ||
7249c9f0 | 4427 | if (signal_pending(current)) |
b6e6edcf | 4428 | break; |
b6e6edcf JW |
4429 | |
4430 | if (!drained) { | |
4431 | drain_all_stock(memcg); | |
4432 | drained = true; | |
4433 | continue; | |
4434 | } | |
4435 | ||
4436 | if (nr_reclaims) { | |
4437 | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, | |
68cd9050 | 4438 | GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) |
b6e6edcf JW |
4439 | nr_reclaims--; |
4440 | continue; | |
4441 | } | |
4442 | ||
e27be240 | 4443 | memcg_memory_event(memcg, MEMCG_OOM); |
b6e6edcf JW |
4444 | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) |
4445 | break; | |
99333229 | 4446 | cond_resched(); |
b6e6edcf | 4447 | } |
c8e6002b | 4448 | out: |
2529bb3a | 4449 | memcg_wb_domain_size_changed(memcg); |
241994ed JW |
4450 | return nbytes; |
4451 | } | |
4452 | ||
664dc218 DR |
4453 | /* |
4454 | * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' | |
4455 | * if any new events become available. | |
4456 | */ | |
1e577f97 SB |
4457 | static void __memory_events_show(struct seq_file *m, atomic_long_t *events) |
4458 | { | |
4459 | seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); | |
4460 | seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); | |
4461 | seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); | |
4462 | seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); | |
4463 | seq_printf(m, "oom_kill %lu\n", | |
4464 | atomic_long_read(&events[MEMCG_OOM_KILL])); | |
b6bf9abb DS |
4465 | seq_printf(m, "oom_group_kill %lu\n", |
4466 | atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); | |
1e577f97 SB |
4467 | } |
4468 | ||
241994ed JW |
4469 | static int memory_events_show(struct seq_file *m, void *v) |
4470 | { | |
aa9694bb | 4471 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
241994ed | 4472 | |
1e577f97 SB |
4473 | __memory_events_show(m, memcg->memory_events); |
4474 | return 0; | |
4475 | } | |
4476 | ||
4477 | static int memory_events_local_show(struct seq_file *m, void *v) | |
4478 | { | |
4479 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
241994ed | 4480 | |
1e577f97 | 4481 | __memory_events_show(m, memcg->memory_events_local); |
241994ed JW |
4482 | return 0; |
4483 | } | |
4484 | ||
ea1e8796 | 4485 | int memory_stat_show(struct seq_file *m, void *v) |
587d9f72 | 4486 | { |
aa9694bb | 4487 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
8717734f | 4488 | char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); |
5b42360c | 4489 | struct seq_buf s; |
1ff9e6e1 | 4490 | |
c8713d0b JW |
4491 | if (!buf) |
4492 | return -ENOMEM; | |
8717734f | 4493 | seq_buf_init(&s, buf, SEQ_BUF_SIZE); |
5b42360c | 4494 | memory_stat_format(memcg, &s); |
c8713d0b JW |
4495 | seq_puts(m, buf); |
4496 | kfree(buf); | |
587d9f72 JW |
4497 | return 0; |
4498 | } | |
4499 | ||
5f9a4f4a | 4500 | #ifdef CONFIG_NUMA |
fff66b79 MS |
4501 | static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, |
4502 | int item) | |
4503 | { | |
ff841a06 YA |
4504 | return lruvec_page_state(lruvec, item) * |
4505 | memcg_page_state_output_unit(item); | |
fff66b79 MS |
4506 | } |
4507 | ||
5f9a4f4a MS |
4508 | static int memory_numa_stat_show(struct seq_file *m, void *v) |
4509 | { | |
4510 | int i; | |
4511 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
4512 | ||
7d7ef0a4 | 4513 | mem_cgroup_flush_stats(memcg); |
7e1c0d6f | 4514 | |
5f9a4f4a MS |
4515 | for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { |
4516 | int nid; | |
4517 | ||
4518 | if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) | |
4519 | continue; | |
4520 | ||
4521 | seq_printf(m, "%s", memory_stats[i].name); | |
4522 | for_each_node_state(nid, N_MEMORY) { | |
4523 | u64 size; | |
4524 | struct lruvec *lruvec; | |
4525 | ||
4526 | lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); | |
fff66b79 MS |
4527 | size = lruvec_page_state_output(lruvec, |
4528 | memory_stats[i].idx); | |
5f9a4f4a MS |
4529 | seq_printf(m, " N%d=%llu", nid, size); |
4530 | } | |
4531 | seq_putc(m, '\n'); | |
4532 | } | |
4533 | ||
4534 | return 0; | |
4535 | } | |
4536 | #endif | |
4537 | ||
3d8b38eb RG |
4538 | static int memory_oom_group_show(struct seq_file *m, void *v) |
4539 | { | |
aa9694bb | 4540 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
3d8b38eb | 4541 | |
eaf7b66b | 4542 | seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); |
3d8b38eb RG |
4543 | |
4544 | return 0; | |
4545 | } | |
4546 | ||
4547 | static ssize_t memory_oom_group_write(struct kernfs_open_file *of, | |
4548 | char *buf, size_t nbytes, loff_t off) | |
4549 | { | |
4550 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
4551 | int ret, oom_group; | |
4552 | ||
4553 | buf = strstrip(buf); | |
4554 | if (!buf) | |
4555 | return -EINVAL; | |
4556 | ||
4557 | ret = kstrtoint(buf, 0, &oom_group); | |
4558 | if (ret) | |
4559 | return ret; | |
4560 | ||
4561 | if (oom_group != 0 && oom_group != 1) | |
4562 | return -EINVAL; | |
4563 | ||
eaf7b66b | 4564 | WRITE_ONCE(memcg->oom_group, oom_group); |
3d8b38eb RG |
4565 | |
4566 | return nbytes; | |
4567 | } | |
4568 | ||
94968384 SB |
4569 | static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, |
4570 | size_t nbytes, loff_t off) | |
4571 | { | |
4572 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
2b7226af | 4573 | int ret; |
94968384 | 4574 | |
2b7226af DB |
4575 | ret = user_proactive_reclaim(buf, memcg, NULL); |
4576 | if (ret) | |
4577 | return ret; | |
94968384 SB |
4578 | |
4579 | return nbytes; | |
4580 | } | |
4581 | ||
241994ed JW |
4582 | static struct cftype memory_files[] = { |
4583 | { | |
4584 | .name = "current", | |
f5fc3c5d | 4585 | .flags = CFTYPE_NOT_ON_ROOT, |
241994ed JW |
4586 | .read_u64 = memory_current_read, |
4587 | }, | |
8e20d4b3 GR |
4588 | { |
4589 | .name = "peak", | |
4590 | .flags = CFTYPE_NOT_ON_ROOT, | |
c6f53ed8 DF |
4591 | .open = peak_open, |
4592 | .release = peak_release, | |
4593 | .seq_show = memory_peak_show, | |
4594 | .write = memory_peak_write, | |
8e20d4b3 | 4595 | }, |
bf8d5d52 RG |
4596 | { |
4597 | .name = "min", | |
4598 | .flags = CFTYPE_NOT_ON_ROOT, | |
4599 | .seq_show = memory_min_show, | |
4600 | .write = memory_min_write, | |
4601 | }, | |
241994ed JW |
4602 | { |
4603 | .name = "low", | |
4604 | .flags = CFTYPE_NOT_ON_ROOT, | |
4605 | .seq_show = memory_low_show, | |
4606 | .write = memory_low_write, | |
4607 | }, | |
4608 | { | |
4609 | .name = "high", | |
4610 | .flags = CFTYPE_NOT_ON_ROOT, | |
4611 | .seq_show = memory_high_show, | |
4612 | .write = memory_high_write, | |
4613 | }, | |
4614 | { | |
4615 | .name = "max", | |
4616 | .flags = CFTYPE_NOT_ON_ROOT, | |
4617 | .seq_show = memory_max_show, | |
4618 | .write = memory_max_write, | |
4619 | }, | |
4620 | { | |
4621 | .name = "events", | |
4622 | .flags = CFTYPE_NOT_ON_ROOT, | |
472912a2 | 4623 | .file_offset = offsetof(struct mem_cgroup, events_file), |
241994ed JW |
4624 | .seq_show = memory_events_show, |
4625 | }, | |
1e577f97 SB |
4626 | { |
4627 | .name = "events.local", | |
4628 | .flags = CFTYPE_NOT_ON_ROOT, | |
4629 | .file_offset = offsetof(struct mem_cgroup, events_local_file), | |
4630 | .seq_show = memory_events_local_show, | |
4631 | }, | |
587d9f72 JW |
4632 | { |
4633 | .name = "stat", | |
587d9f72 JW |
4634 | .seq_show = memory_stat_show, |
4635 | }, | |
5f9a4f4a MS |
4636 | #ifdef CONFIG_NUMA |
4637 | { | |
4638 | .name = "numa_stat", | |
4639 | .seq_show = memory_numa_stat_show, | |
4640 | }, | |
4641 | #endif | |
3d8b38eb RG |
4642 | { |
4643 | .name = "oom.group", | |
4644 | .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, | |
4645 | .seq_show = memory_oom_group_show, | |
4646 | .write = memory_oom_group_write, | |
4647 | }, | |
94968384 SB |
4648 | { |
4649 | .name = "reclaim", | |
4650 | .flags = CFTYPE_NS_DELEGATABLE, | |
4651 | .write = memory_reclaim, | |
4652 | }, | |
241994ed JW |
4653 | { } /* terminate */ |
4654 | }; | |
4655 | ||
073219e9 | 4656 | struct cgroup_subsys memory_cgrp_subsys = { |
92fb9748 | 4657 | .css_alloc = mem_cgroup_css_alloc, |
d142e3e6 | 4658 | .css_online = mem_cgroup_css_online, |
92fb9748 | 4659 | .css_offline = mem_cgroup_css_offline, |
6df38689 | 4660 | .css_released = mem_cgroup_css_released, |
92fb9748 | 4661 | .css_free = mem_cgroup_css_free, |
1ced953b | 4662 | .css_reset = mem_cgroup_css_reset, |
2d146aa3 | 4663 | .css_rstat_flush = mem_cgroup_css_rstat_flush, |
bd74fdae | 4664 | .attach = mem_cgroup_attach, |
1aacbd35 RG |
4665 | .fork = mem_cgroup_fork, |
4666 | .exit = mem_cgroup_exit, | |
241994ed | 4667 | .dfl_cftypes = memory_files, |
e93d4166 | 4668 | #ifdef CONFIG_MEMCG_V1 |
241994ed | 4669 | .legacy_cftypes = mem_cgroup_legacy_files, |
e93d4166 | 4670 | #endif |
6d12e2d8 | 4671 | .early_init = 0, |
8cdea7c0 | 4672 | }; |
c077719b | 4673 | |
241994ed | 4674 | /** |
05395718 | 4675 | * mem_cgroup_calculate_protection - check if memory consumption is in the normal range |
34c81057 | 4676 | * @root: the top ancestor of the sub-tree being checked |
241994ed JW |
4677 | * @memcg: the memory cgroup to check |
4678 | * | |
23067153 RG |
4679 | * WARNING: This function is not stateless! It can only be used as part |
4680 | * of a top-down tree iteration, not for isolated queries. | |
241994ed | 4681 | */ |
45c7f7e1 CD |
4682 | void mem_cgroup_calculate_protection(struct mem_cgroup *root, |
4683 | struct mem_cgroup *memcg) | |
241994ed | 4684 | { |
a8585ac6 ML |
4685 | bool recursive_protection = |
4686 | cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; | |
23067153 | 4687 | |
241994ed | 4688 | if (mem_cgroup_disabled()) |
45c7f7e1 | 4689 | return; |
241994ed | 4690 | |
34c81057 SC |
4691 | if (!root) |
4692 | root = root_mem_cgroup; | |
22f7496f | 4693 | |
a8585ac6 | 4694 | page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); |
241994ed JW |
4695 | } |
4696 | ||
8f425e4e MWO |
4697 | static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, |
4698 | gfp_t gfp) | |
0add0c77 | 4699 | { |
0add0c77 SB |
4700 | int ret; |
4701 | ||
4b569387 | 4702 | ret = try_charge(memcg, gfp, folio_nr_pages(folio)); |
0add0c77 SB |
4703 | if (ret) |
4704 | goto out; | |
4705 | ||
1d8f136a JH |
4706 | css_get(&memcg->css); |
4707 | commit_charge(folio, memcg); | |
4708 | memcg1_commit_charge(folio, memcg); | |
0add0c77 SB |
4709 | out: |
4710 | return ret; | |
4711 | } | |
4712 | ||
8f425e4e | 4713 | int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) |
00501b53 | 4714 | { |
0add0c77 SB |
4715 | struct mem_cgroup *memcg; |
4716 | int ret; | |
00501b53 | 4717 | |
0add0c77 | 4718 | memcg = get_mem_cgroup_from_mm(mm); |
8f425e4e | 4719 | ret = charge_memcg(folio, memcg, gfp); |
0add0c77 | 4720 | css_put(&memcg->css); |
2d1c4980 | 4721 | |
0add0c77 SB |
4722 | return ret; |
4723 | } | |
e993d905 | 4724 | |
99113577 JH |
4725 | /** |
4726 | * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio | |
4727 | * @folio: folio being charged | |
4728 | * @gfp: reclaim mode | |
4729 | * | |
4730 | * This function is called when allocating a huge page folio, after the page has | |
4731 | * already been obtained and charged to the appropriate hugetlb cgroup | |
4732 | * controller (if it is enabled). | |
4733 | * | |
4734 | * Returns ENOMEM if the memcg is already full. | |
4735 | * Returns 0 if either the charge was successful, or if we skip the charging. | |
4736 | */ | |
4737 | int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) | |
4738 | { | |
4739 | struct mem_cgroup *memcg = get_mem_cgroup_from_current(); | |
4740 | int ret = 0; | |
4741 | ||
4742 | /* | |
4743 | * Even memcg does not account for hugetlb, we still want to update | |
4744 | * system-level stats via lruvec_stat_mod_folio. Return 0, and skip | |
4745 | * charging the memcg. | |
4746 | */ | |
4747 | if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || | |
4748 | !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
4749 | goto out; | |
4750 | ||
4751 | if (charge_memcg(folio, memcg, gfp)) | |
4752 | ret = -ENOMEM; | |
4753 | ||
4754 | out: | |
4755 | mem_cgroup_put(memcg); | |
4756 | return ret; | |
4757 | } | |
4758 | ||
0add0c77 | 4759 | /** |
65995918 MWO |
4760 | * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. |
4761 | * @folio: folio to charge. | |
0add0c77 SB |
4762 | * @mm: mm context of the victim |
4763 | * @gfp: reclaim mode | |
65995918 | 4764 | * @entry: swap entry for which the folio is allocated |
0add0c77 | 4765 | * |
65995918 MWO |
4766 | * This function charges a folio allocated for swapin. Please call this before |
4767 | * adding the folio to the swapcache. | |
0add0c77 SB |
4768 | * |
4769 | * Returns 0 on success. Otherwise, an error code is returned. | |
4770 | */ | |
65995918 | 4771 | int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, |
0add0c77 SB |
4772 | gfp_t gfp, swp_entry_t entry) |
4773 | { | |
4774 | struct mem_cgroup *memcg; | |
4775 | unsigned short id; | |
4776 | int ret; | |
00501b53 | 4777 | |
0add0c77 SB |
4778 | if (mem_cgroup_disabled()) |
4779 | return 0; | |
00501b53 | 4780 | |
0add0c77 SB |
4781 | id = lookup_swap_cgroup_id(entry); |
4782 | rcu_read_lock(); | |
4783 | memcg = mem_cgroup_from_id(id); | |
4784 | if (!memcg || !css_tryget_online(&memcg->css)) | |
4785 | memcg = get_mem_cgroup_from_mm(mm); | |
4786 | rcu_read_unlock(); | |
00501b53 | 4787 | |
8f425e4e | 4788 | ret = charge_memcg(folio, memcg, gfp); |
6abb5a86 | 4789 | |
0add0c77 SB |
4790 | css_put(&memcg->css); |
4791 | return ret; | |
4792 | } | |
00501b53 | 4793 | |
a9d5adee JG |
4794 | struct uncharge_gather { |
4795 | struct mem_cgroup *memcg; | |
b4e0b68f | 4796 | unsigned long nr_memory; |
a9d5adee | 4797 | unsigned long pgpgout; |
a9d5adee | 4798 | unsigned long nr_kmem; |
8e88bd2d | 4799 | int nid; |
a9d5adee JG |
4800 | }; |
4801 | ||
4802 | static inline void uncharge_gather_clear(struct uncharge_gather *ug) | |
747db954 | 4803 | { |
a9d5adee JG |
4804 | memset(ug, 0, sizeof(*ug)); |
4805 | } | |
4806 | ||
4807 | static void uncharge_batch(const struct uncharge_gather *ug) | |
4808 | { | |
b4e0b68f | 4809 | if (ug->nr_memory) { |
89f342af | 4810 | memcg_uncharge(ug->memcg, ug->nr_memory); |
04fbe921 RG |
4811 | if (ug->nr_kmem) { |
4812 | mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); | |
4813 | memcg1_account_kmem(ug->memcg, -ug->nr_kmem); | |
4814 | } | |
8d49b699 | 4815 | memcg1_oom_recover(ug->memcg); |
ce00a967 | 4816 | } |
747db954 | 4817 | |
f7d49ba0 | 4818 | memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); |
f1796544 | 4819 | |
c4ed6ebf | 4820 | /* drop reference from uncharge_folio */ |
f1796544 | 4821 | css_put(&ug->memcg->css); |
a9d5adee JG |
4822 | } |
4823 | ||
c4ed6ebf | 4824 | static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) |
a9d5adee | 4825 | { |
c4ed6ebf | 4826 | long nr_pages; |
b4e0b68f MS |
4827 | struct mem_cgroup *memcg; |
4828 | struct obj_cgroup *objcg; | |
9f762dbe | 4829 | |
c4ed6ebf | 4830 | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); |
a9d5adee | 4831 | |
a9d5adee JG |
4832 | /* |
4833 | * Nobody should be changing or seriously looking at | |
c4ed6ebf MWO |
4834 | * folio memcg or objcg at this point, we have fully |
4835 | * exclusive access to the folio. | |
a9d5adee | 4836 | */ |
fead2b86 | 4837 | if (folio_memcg_kmem(folio)) { |
1b7e4464 | 4838 | objcg = __folio_objcg(folio); |
b4e0b68f MS |
4839 | /* |
4840 | * This get matches the put at the end of the function and | |
4841 | * kmem pages do not hold memcg references anymore. | |
4842 | */ | |
4843 | memcg = get_mem_cgroup_from_objcg(objcg); | |
4844 | } else { | |
1b7e4464 | 4845 | memcg = __folio_memcg(folio); |
b4e0b68f | 4846 | } |
a9d5adee | 4847 | |
b4e0b68f MS |
4848 | if (!memcg) |
4849 | return; | |
4850 | ||
4851 | if (ug->memcg != memcg) { | |
a9d5adee JG |
4852 | if (ug->memcg) { |
4853 | uncharge_batch(ug); | |
4854 | uncharge_gather_clear(ug); | |
4855 | } | |
b4e0b68f | 4856 | ug->memcg = memcg; |
c4ed6ebf | 4857 | ug->nid = folio_nid(folio); |
f1796544 MH |
4858 | |
4859 | /* pairs with css_put in uncharge_batch */ | |
b4e0b68f | 4860 | css_get(&memcg->css); |
a9d5adee JG |
4861 | } |
4862 | ||
c4ed6ebf | 4863 | nr_pages = folio_nr_pages(folio); |
a9d5adee | 4864 | |
fead2b86 | 4865 | if (folio_memcg_kmem(folio)) { |
b4e0b68f | 4866 | ug->nr_memory += nr_pages; |
9f762dbe | 4867 | ug->nr_kmem += nr_pages; |
b4e0b68f | 4868 | |
c4ed6ebf | 4869 | folio->memcg_data = 0; |
b4e0b68f MS |
4870 | obj_cgroup_put(objcg); |
4871 | } else { | |
4872 | /* LRU pages aren't accounted at the root level */ | |
4873 | if (!mem_cgroup_is_root(memcg)) | |
4874 | ug->nr_memory += nr_pages; | |
18b2db3b | 4875 | ug->pgpgout++; |
a9d5adee | 4876 | |
f8f931bb | 4877 | WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); |
c4ed6ebf | 4878 | folio->memcg_data = 0; |
b4e0b68f MS |
4879 | } |
4880 | ||
4881 | css_put(&memcg->css); | |
747db954 JW |
4882 | } |
4883 | ||
bbc6b703 | 4884 | void __mem_cgroup_uncharge(struct folio *folio) |
0a31bc97 | 4885 | { |
a9d5adee JG |
4886 | struct uncharge_gather ug; |
4887 | ||
bbc6b703 | 4888 | /* Don't touch folio->lru of any random page, pre-check: */ |
02f4bbef | 4889 | if (!folio_memcg_charged(folio)) |
0a31bc97 JW |
4890 | return; |
4891 | ||
a9d5adee | 4892 | uncharge_gather_clear(&ug); |
bbc6b703 | 4893 | uncharge_folio(folio, &ug); |
a9d5adee | 4894 | uncharge_batch(&ug); |
747db954 | 4895 | } |
0a31bc97 | 4896 | |
4882c809 MWO |
4897 | void __mem_cgroup_uncharge_folios(struct folio_batch *folios) |
4898 | { | |
4899 | struct uncharge_gather ug; | |
4900 | unsigned int i; | |
4901 | ||
4902 | uncharge_gather_clear(&ug); | |
4903 | for (i = 0; i < folios->nr; i++) | |
4904 | uncharge_folio(folios->folios[i], &ug); | |
4905 | if (ug.memcg) | |
4906 | uncharge_batch(&ug); | |
0a31bc97 JW |
4907 | } |
4908 | ||
4909 | /** | |
85ce2c51 | 4910 | * mem_cgroup_replace_folio - Charge a folio's replacement. |
d21bba2b MWO |
4911 | * @old: Currently circulating folio. |
4912 | * @new: Replacement folio. | |
0a31bc97 | 4913 | * |
d21bba2b | 4914 | * Charge @new as a replacement folio for @old. @old will |
9094b4a1 | 4915 | * be uncharged upon free. |
0a31bc97 | 4916 | * |
d21bba2b | 4917 | * Both folios must be locked, @new->mapping must be set up. |
0a31bc97 | 4918 | */ |
85ce2c51 | 4919 | void mem_cgroup_replace_folio(struct folio *old, struct folio *new) |
0a31bc97 | 4920 | { |
29833315 | 4921 | struct mem_cgroup *memcg; |
d21bba2b | 4922 | long nr_pages = folio_nr_pages(new); |
0a31bc97 | 4923 | |
d21bba2b MWO |
4924 | VM_BUG_ON_FOLIO(!folio_test_locked(old), old); |
4925 | VM_BUG_ON_FOLIO(!folio_test_locked(new), new); | |
4926 | VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); | |
4927 | VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); | |
0a31bc97 JW |
4928 | |
4929 | if (mem_cgroup_disabled()) | |
4930 | return; | |
4931 | ||
d21bba2b | 4932 | /* Page cache replacement: new folio already charged? */ |
02f4bbef | 4933 | if (folio_memcg_charged(new)) |
0a31bc97 JW |
4934 | return; |
4935 | ||
d21bba2b MWO |
4936 | memcg = folio_memcg(old); |
4937 | VM_WARN_ON_ONCE_FOLIO(!memcg, old); | |
29833315 | 4938 | if (!memcg) |
0a31bc97 JW |
4939 | return; |
4940 | ||
44b7a8d3 | 4941 | /* Force-charge the new page. The old one will be freed soon */ |
8dc87c7d MS |
4942 | if (!mem_cgroup_is_root(memcg)) { |
4943 | page_counter_charge(&memcg->memory, nr_pages); | |
4944 | if (do_memsw_account()) | |
4945 | page_counter_charge(&memcg->memsw, nr_pages); | |
4946 | } | |
0a31bc97 | 4947 | |
1a3e1f40 | 4948 | css_get(&memcg->css); |
d21bba2b | 4949 | commit_charge(new, memcg); |
f7d49ba0 | 4950 | memcg1_commit_charge(new, memcg); |
0a31bc97 JW |
4951 | } |
4952 | ||
85ce2c51 NP |
4953 | /** |
4954 | * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. | |
4955 | * @old: Currently circulating folio. | |
4956 | * @new: Replacement folio. | |
4957 | * | |
4958 | * Transfer the memcg data from the old folio to the new folio for migration. | |
4959 | * The old folio's data info will be cleared. Note that the memory counters | |
4960 | * will remain unchanged throughout the process. | |
4961 | * | |
4962 | * Both folios must be locked, @new->mapping must be set up. | |
4963 | */ | |
4964 | void mem_cgroup_migrate(struct folio *old, struct folio *new) | |
4965 | { | |
4966 | struct mem_cgroup *memcg; | |
4967 | ||
4968 | VM_BUG_ON_FOLIO(!folio_test_locked(old), old); | |
4969 | VM_BUG_ON_FOLIO(!folio_test_locked(new), new); | |
4970 | VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); | |
4971 | VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); | |
a6ab9c82 | 4972 | VM_BUG_ON_FOLIO(folio_test_lru(old), old); |
85ce2c51 NP |
4973 | |
4974 | if (mem_cgroup_disabled()) | |
4975 | return; | |
4976 | ||
4977 | memcg = folio_memcg(old); | |
8cba9576 NP |
4978 | /* |
4979 | * Note that it is normal to see !memcg for a hugetlb folio. | |
4980 | * For e.g, itt could have been allocated when memory_hugetlb_accounting | |
4981 | * was not selected. | |
4982 | */ | |
4983 | VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); | |
85ce2c51 NP |
4984 | if (!memcg) |
4985 | return; | |
4986 | ||
4987 | /* Transfer the charge and the css ref */ | |
4988 | commit_charge(new, memcg); | |
f8f931bb HD |
4989 | |
4990 | /* Warning should never happen, so don't worry about refcount non-0 */ | |
4991 | WARN_ON_ONCE(folio_unqueue_deferred_split(old)); | |
85ce2c51 NP |
4992 | old->memcg_data = 0; |
4993 | } | |
4994 | ||
ef12947c | 4995 | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); |
11092087 JW |
4996 | EXPORT_SYMBOL(memcg_sockets_enabled_key); |
4997 | ||
2d758073 | 4998 | void mem_cgroup_sk_alloc(struct sock *sk) |
11092087 JW |
4999 | { |
5000 | struct mem_cgroup *memcg; | |
5001 | ||
2d758073 JW |
5002 | if (!mem_cgroup_sockets_enabled) |
5003 | return; | |
5004 | ||
e876ecc6 | 5005 | /* Do not associate the sock with unrelated interrupted task's memcg. */ |
086f694a | 5006 | if (!in_task()) |
e876ecc6 SB |
5007 | return; |
5008 | ||
11092087 JW |
5009 | rcu_read_lock(); |
5010 | memcg = mem_cgroup_from_task(current); | |
7848ed62 | 5011 | if (mem_cgroup_is_root(memcg)) |
f7e1cb6e | 5012 | goto out; |
773e9ae7 | 5013 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) |
f7e1cb6e | 5014 | goto out; |
8965aa28 | 5015 | if (css_tryget(&memcg->css)) |
11092087 | 5016 | sk->sk_memcg = memcg; |
f7e1cb6e | 5017 | out: |
11092087 JW |
5018 | rcu_read_unlock(); |
5019 | } | |
11092087 | 5020 | |
2d758073 | 5021 | void mem_cgroup_sk_free(struct sock *sk) |
11092087 | 5022 | { |
2d758073 JW |
5023 | if (sk->sk_memcg) |
5024 | css_put(&sk->sk_memcg->css); | |
11092087 JW |
5025 | } |
5026 | ||
5027 | /** | |
5028 | * mem_cgroup_charge_skmem - charge socket memory | |
5029 | * @memcg: memcg to charge | |
5030 | * @nr_pages: number of pages to charge | |
4b1327be | 5031 | * @gfp_mask: reclaim mode |
11092087 JW |
5032 | * |
5033 | * Charges @nr_pages to @memcg. Returns %true if the charge fit within | |
4b1327be | 5034 | * @memcg's configured limit, %false if it doesn't. |
11092087 | 5035 | */ |
4b1327be WW |
5036 | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, |
5037 | gfp_t gfp_mask) | |
11092087 | 5038 | { |
773e9ae7 RG |
5039 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
5040 | return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); | |
d886f4e4 | 5041 | |
3dc30ef6 | 5042 | if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { |
4b1327be | 5043 | mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); |
f7e1cb6e | 5044 | return true; |
4b1327be | 5045 | } |
f7e1cb6e | 5046 | |
11092087 JW |
5047 | return false; |
5048 | } | |
5049 | ||
5050 | /** | |
5051 | * mem_cgroup_uncharge_skmem - uncharge socket memory | |
b7701a5f MR |
5052 | * @memcg: memcg to uncharge |
5053 | * @nr_pages: number of pages to uncharge | |
11092087 JW |
5054 | */ |
5055 | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | |
5056 | { | |
f7e1cb6e | 5057 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { |
773e9ae7 | 5058 | memcg1_uncharge_skmem(memcg, nr_pages); |
f7e1cb6e JW |
5059 | return; |
5060 | } | |
d886f4e4 | 5061 | |
c9019e9b | 5062 | mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); |
b2807f07 | 5063 | |
475d0487 | 5064 | refill_stock(memcg, nr_pages); |
11092087 JW |
5065 | } |
5066 | ||
f7e1cb6e JW |
5067 | static int __init cgroup_memory(char *s) |
5068 | { | |
5069 | char *token; | |
5070 | ||
5071 | while ((token = strsep(&s, ",")) != NULL) { | |
5072 | if (!*token) | |
5073 | continue; | |
5074 | if (!strcmp(token, "nosocket")) | |
5075 | cgroup_memory_nosocket = true; | |
04823c83 VD |
5076 | if (!strcmp(token, "nokmem")) |
5077 | cgroup_memory_nokmem = true; | |
b6c1a8af YS |
5078 | if (!strcmp(token, "nobpf")) |
5079 | cgroup_memory_nobpf = true; | |
f7e1cb6e | 5080 | } |
460a79e1 | 5081 | return 1; |
f7e1cb6e JW |
5082 | } |
5083 | __setup("cgroup.memory=", cgroup_memory); | |
11092087 | 5084 | |
2d11085e | 5085 | /* |
bc9817bb | 5086 | * Memory controller init before cgroup_init() initialize root_mem_cgroup. |
1081312f | 5087 | * |
308167fc SAS |
5088 | * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this |
5089 | * context because of lock dependencies (cgroup_lock -> cpu hotplug) but | |
5090 | * basically everything that doesn't depend on a specific mem_cgroup structure | |
5091 | * should be initialized from here. | |
2d11085e | 5092 | */ |
bc9817bb | 5093 | int __init mem_cgroup_init(void) |
2d11085e | 5094 | { |
97e4fc4b | 5095 | unsigned int memcg_size; |
d12f6d22 | 5096 | int cpu; |
95a045f6 | 5097 | |
f3344adf MS |
5098 | /* |
5099 | * Currently s32 type (can refer to struct batched_lruvec_stat) is | |
5100 | * used for per-memcg-per-cpu caching of per-node statistics. In order | |
5101 | * to work fine, we should make sure that the overfill threshold can't | |
5102 | * exceed S32_MAX / PAGE_SIZE. | |
5103 | */ | |
5104 | BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); | |
5105 | ||
308167fc SAS |
5106 | cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, |
5107 | memcg_hotplug_cpu_dead); | |
95a045f6 | 5108 | |
c80509ef | 5109 | for_each_possible_cpu(cpu) { |
95a045f6 | 5110 | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, |
c80509ef SB |
5111 | drain_local_memcg_stock); |
5112 | INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work, | |
5113 | drain_local_obj_stock); | |
5114 | } | |
95a045f6 | 5115 | |
97e4fc4b HY |
5116 | memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); |
5117 | memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0, | |
5118 | SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); | |
5119 | ||
1b6a58e2 HY |
5120 | memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, |
5121 | SLAB_PANIC | SLAB_HWCACHE_ALIGN); | |
95a045f6 | 5122 | |
2d11085e MH |
5123 | return 0; |
5124 | } | |
21afa38e | 5125 | |
e55b9f96 | 5126 | #ifdef CONFIG_SWAP |
38d8b4e6 | 5127 | /** |
e2e3fdc7 MWO |
5128 | * __mem_cgroup_try_charge_swap - try charging swap space for a folio |
5129 | * @folio: folio being added to swap | |
37e84351 VD |
5130 | * @entry: swap entry to charge |
5131 | * | |
e2e3fdc7 | 5132 | * Try to charge @folio's memcg for the swap space at @entry. |
37e84351 VD |
5133 | * |
5134 | * Returns 0 on success, -ENOMEM on failure. | |
5135 | */ | |
e2e3fdc7 | 5136 | int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) |
37e84351 | 5137 | { |
e2e3fdc7 | 5138 | unsigned int nr_pages = folio_nr_pages(folio); |
37e84351 | 5139 | struct page_counter *counter; |
38d8b4e6 | 5140 | struct mem_cgroup *memcg; |
37e84351 | 5141 | |
b94c4e94 | 5142 | if (do_memsw_account()) |
37e84351 VD |
5143 | return 0; |
5144 | ||
e2e3fdc7 | 5145 | memcg = folio_memcg(folio); |
37e84351 | 5146 | |
e2e3fdc7 | 5147 | VM_WARN_ON_ONCE_FOLIO(!memcg, folio); |
37e84351 VD |
5148 | if (!memcg) |
5149 | return 0; | |
5150 | ||
f3a53a3a TH |
5151 | if (!entry.val) { |
5152 | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | |
bb98f2c5 | 5153 | return 0; |
f3a53a3a | 5154 | } |
bb98f2c5 | 5155 | |
1f47b61f VD |
5156 | memcg = mem_cgroup_id_get_online(memcg); |
5157 | ||
b25806dc | 5158 | if (!mem_cgroup_is_root(memcg) && |
38d8b4e6 | 5159 | !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { |
f3a53a3a TH |
5160 | memcg_memory_event(memcg, MEMCG_SWAP_MAX); |
5161 | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | |
1f47b61f | 5162 | mem_cgroup_id_put(memcg); |
37e84351 | 5163 | return -ENOMEM; |
1f47b61f | 5164 | } |
37e84351 | 5165 | |
38d8b4e6 HY |
5166 | /* Get references for the tail pages, too */ |
5167 | if (nr_pages > 1) | |
5168 | mem_cgroup_id_get_many(memcg, nr_pages - 1); | |
c9019e9b | 5169 | mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); |
37e84351 | 5170 | |
73f839b6 | 5171 | swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); |
67691831 | 5172 | |
37e84351 VD |
5173 | return 0; |
5174 | } | |
5175 | ||
21afa38e | 5176 | /** |
01c4b28c | 5177 | * __mem_cgroup_uncharge_swap - uncharge swap space |
21afa38e | 5178 | * @entry: swap entry to uncharge |
38d8b4e6 | 5179 | * @nr_pages: the amount of swap space to uncharge |
21afa38e | 5180 | */ |
01c4b28c | 5181 | void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) |
21afa38e JW |
5182 | { |
5183 | struct mem_cgroup *memcg; | |
5184 | unsigned short id; | |
5185 | ||
67691831 | 5186 | id = swap_cgroup_clear(entry, nr_pages); |
21afa38e | 5187 | rcu_read_lock(); |
adbe427b | 5188 | memcg = mem_cgroup_from_id(id); |
21afa38e | 5189 | if (memcg) { |
b25806dc | 5190 | if (!mem_cgroup_is_root(memcg)) { |
b94c4e94 | 5191 | if (do_memsw_account()) |
38d8b4e6 | 5192 | page_counter_uncharge(&memcg->memsw, nr_pages); |
b94c4e94 JW |
5193 | else |
5194 | page_counter_uncharge(&memcg->swap, nr_pages); | |
37e84351 | 5195 | } |
c9019e9b | 5196 | mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); |
38d8b4e6 | 5197 | mem_cgroup_id_put_many(memcg, nr_pages); |
21afa38e JW |
5198 | } |
5199 | rcu_read_unlock(); | |
5200 | } | |
5201 | ||
d8b38438 VD |
5202 | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) |
5203 | { | |
5204 | long nr_swap_pages = get_nr_swap_pages(); | |
5205 | ||
b25806dc | 5206 | if (mem_cgroup_disabled() || do_memsw_account()) |
d8b38438 | 5207 | return nr_swap_pages; |
7848ed62 | 5208 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) |
d8b38438 | 5209 | nr_swap_pages = min_t(long, nr_swap_pages, |
bbec2e15 | 5210 | READ_ONCE(memcg->swap.max) - |
d8b38438 VD |
5211 | page_counter_read(&memcg->swap)); |
5212 | return nr_swap_pages; | |
5213 | } | |
5214 | ||
9202d527 | 5215 | bool mem_cgroup_swap_full(struct folio *folio) |
5ccc5aba VD |
5216 | { |
5217 | struct mem_cgroup *memcg; | |
5218 | ||
9202d527 | 5219 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
5ccc5aba VD |
5220 | |
5221 | if (vm_swap_full()) | |
5222 | return true; | |
b25806dc | 5223 | if (do_memsw_account()) |
5ccc5aba VD |
5224 | return false; |
5225 | ||
9202d527 | 5226 | memcg = folio_memcg(folio); |
5ccc5aba VD |
5227 | if (!memcg) |
5228 | return false; | |
5229 | ||
7848ed62 | 5230 | for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { |
4b82ab4f JK |
5231 | unsigned long usage = page_counter_read(&memcg->swap); |
5232 | ||
5233 | if (usage * 2 >= READ_ONCE(memcg->swap.high) || | |
5234 | usage * 2 >= READ_ONCE(memcg->swap.max)) | |
5ccc5aba | 5235 | return true; |
4b82ab4f | 5236 | } |
5ccc5aba VD |
5237 | |
5238 | return false; | |
5239 | } | |
5240 | ||
eccb52e7 | 5241 | static int __init setup_swap_account(char *s) |
21afa38e | 5242 | { |
118642d7 JW |
5243 | bool res; |
5244 | ||
5245 | if (!kstrtobool(s, &res) && !res) | |
5246 | pr_warn_once("The swapaccount=0 commandline option is deprecated " | |
5247 | "in favor of configuring swap control via cgroupfs. " | |
5248 | "Please report your usecase to linux-mm@kvack.org if you " | |
5249 | "depend on this functionality.\n"); | |
21afa38e JW |
5250 | return 1; |
5251 | } | |
eccb52e7 | 5252 | __setup("swapaccount=", setup_swap_account); |
21afa38e | 5253 | |
37e84351 VD |
5254 | static u64 swap_current_read(struct cgroup_subsys_state *css, |
5255 | struct cftype *cft) | |
5256 | { | |
5257 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
5258 | ||
5259 | return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; | |
5260 | } | |
5261 | ||
c6f53ed8 | 5262 | static int swap_peak_show(struct seq_file *sf, void *v) |
e0e0b412 | 5263 | { |
c6f53ed8 DF |
5264 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); |
5265 | ||
5266 | return peak_show(sf, v, &memcg->swap); | |
5267 | } | |
5268 | ||
5269 | static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, | |
5270 | size_t nbytes, loff_t off) | |
5271 | { | |
5272 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
e0e0b412 | 5273 | |
c6f53ed8 DF |
5274 | return peak_write(of, buf, nbytes, off, &memcg->swap, |
5275 | &memcg->swap_peaks); | |
e0e0b412 LD |
5276 | } |
5277 | ||
4b82ab4f JK |
5278 | static int swap_high_show(struct seq_file *m, void *v) |
5279 | { | |
5280 | return seq_puts_memcg_tunable(m, | |
5281 | READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); | |
5282 | } | |
5283 | ||
5284 | static ssize_t swap_high_write(struct kernfs_open_file *of, | |
5285 | char *buf, size_t nbytes, loff_t off) | |
5286 | { | |
5287 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
5288 | unsigned long high; | |
5289 | int err; | |
5290 | ||
5291 | buf = strstrip(buf); | |
5292 | err = page_counter_memparse(buf, "max", &high); | |
5293 | if (err) | |
5294 | return err; | |
5295 | ||
5296 | page_counter_set_high(&memcg->swap, high); | |
5297 | ||
5298 | return nbytes; | |
5299 | } | |
5300 | ||
37e84351 VD |
5301 | static int swap_max_show(struct seq_file *m, void *v) |
5302 | { | |
677dc973 CD |
5303 | return seq_puts_memcg_tunable(m, |
5304 | READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); | |
37e84351 VD |
5305 | } |
5306 | ||
5307 | static ssize_t swap_max_write(struct kernfs_open_file *of, | |
5308 | char *buf, size_t nbytes, loff_t off) | |
5309 | { | |
5310 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
5311 | unsigned long max; | |
5312 | int err; | |
5313 | ||
5314 | buf = strstrip(buf); | |
5315 | err = page_counter_memparse(buf, "max", &max); | |
5316 | if (err) | |
5317 | return err; | |
5318 | ||
be09102b | 5319 | xchg(&memcg->swap.max, max); |
37e84351 VD |
5320 | |
5321 | return nbytes; | |
5322 | } | |
5323 | ||
f3a53a3a TH |
5324 | static int swap_events_show(struct seq_file *m, void *v) |
5325 | { | |
aa9694bb | 5326 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
f3a53a3a | 5327 | |
4b82ab4f JK |
5328 | seq_printf(m, "high %lu\n", |
5329 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); | |
f3a53a3a TH |
5330 | seq_printf(m, "max %lu\n", |
5331 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); | |
5332 | seq_printf(m, "fail %lu\n", | |
5333 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); | |
5334 | ||
5335 | return 0; | |
5336 | } | |
5337 | ||
37e84351 VD |
5338 | static struct cftype swap_files[] = { |
5339 | { | |
5340 | .name = "swap.current", | |
5341 | .flags = CFTYPE_NOT_ON_ROOT, | |
5342 | .read_u64 = swap_current_read, | |
5343 | }, | |
4b82ab4f JK |
5344 | { |
5345 | .name = "swap.high", | |
5346 | .flags = CFTYPE_NOT_ON_ROOT, | |
5347 | .seq_show = swap_high_show, | |
5348 | .write = swap_high_write, | |
5349 | }, | |
37e84351 VD |
5350 | { |
5351 | .name = "swap.max", | |
5352 | .flags = CFTYPE_NOT_ON_ROOT, | |
5353 | .seq_show = swap_max_show, | |
5354 | .write = swap_max_write, | |
5355 | }, | |
e0e0b412 LD |
5356 | { |
5357 | .name = "swap.peak", | |
5358 | .flags = CFTYPE_NOT_ON_ROOT, | |
c6f53ed8 DF |
5359 | .open = peak_open, |
5360 | .release = peak_release, | |
5361 | .seq_show = swap_peak_show, | |
5362 | .write = swap_peak_write, | |
e0e0b412 | 5363 | }, |
f3a53a3a TH |
5364 | { |
5365 | .name = "swap.events", | |
5366 | .flags = CFTYPE_NOT_ON_ROOT, | |
5367 | .file_offset = offsetof(struct mem_cgroup, swap_events_file), | |
5368 | .seq_show = swap_events_show, | |
5369 | }, | |
37e84351 VD |
5370 | { } /* terminate */ |
5371 | }; | |
5372 | ||
3a3b7fec | 5373 | #ifdef CONFIG_ZSWAP |
f4840ccf JW |
5374 | /** |
5375 | * obj_cgroup_may_zswap - check if this cgroup can zswap | |
5376 | * @objcg: the object cgroup | |
5377 | * | |
5378 | * Check if the hierarchical zswap limit has been reached. | |
5379 | * | |
5380 | * This doesn't check for specific headroom, and it is not atomic | |
5381 | * either. But with zswap, the size of the allocation is only known | |
be16dd76 | 5382 | * once compression has occurred, and this optimistic pre-check avoids |
f4840ccf JW |
5383 | * spending cycles on compression when there is already no room left |
5384 | * or zswap is disabled altogether somewhere in the hierarchy. | |
5385 | */ | |
5386 | bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) | |
5387 | { | |
5388 | struct mem_cgroup *memcg, *original_memcg; | |
5389 | bool ret = true; | |
5390 | ||
5391 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
5392 | return true; | |
5393 | ||
5394 | original_memcg = get_mem_cgroup_from_objcg(objcg); | |
7848ed62 | 5395 | for (memcg = original_memcg; !mem_cgroup_is_root(memcg); |
f4840ccf JW |
5396 | memcg = parent_mem_cgroup(memcg)) { |
5397 | unsigned long max = READ_ONCE(memcg->zswap_max); | |
5398 | unsigned long pages; | |
5399 | ||
5400 | if (max == PAGE_COUNTER_MAX) | |
5401 | continue; | |
5402 | if (max == 0) { | |
5403 | ret = false; | |
5404 | break; | |
5405 | } | |
5406 | ||
e1479b88 JK |
5407 | /* Force flush to get accurate stats for charging */ |
5408 | __mem_cgroup_flush_stats(memcg, true); | |
f4840ccf JW |
5409 | pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; |
5410 | if (pages < max) | |
5411 | continue; | |
5412 | ret = false; | |
5413 | break; | |
5414 | } | |
5415 | mem_cgroup_put(original_memcg); | |
5416 | return ret; | |
5417 | } | |
5418 | ||
5419 | /** | |
5420 | * obj_cgroup_charge_zswap - charge compression backend memory | |
5421 | * @objcg: the object cgroup | |
5422 | * @size: size of compressed object | |
5423 | * | |
3a1060c2 | 5424 | * This forces the charge after obj_cgroup_may_zswap() allowed |
f4840ccf JW |
5425 | * compression and storage in zwap for this cgroup to go ahead. |
5426 | */ | |
5427 | void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) | |
5428 | { | |
5429 | struct mem_cgroup *memcg; | |
5430 | ||
5431 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
5432 | return; | |
5433 | ||
5434 | VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); | |
5435 | ||
5436 | /* PF_MEMALLOC context, charging must succeed */ | |
5437 | if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) | |
5438 | VM_WARN_ON_ONCE(1); | |
5439 | ||
5440 | rcu_read_lock(); | |
5441 | memcg = obj_cgroup_memcg(objcg); | |
5442 | mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); | |
5443 | mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); | |
5444 | rcu_read_unlock(); | |
5445 | } | |
5446 | ||
5447 | /** | |
5448 | * obj_cgroup_uncharge_zswap - uncharge compression backend memory | |
5449 | * @objcg: the object cgroup | |
5450 | * @size: size of compressed object | |
5451 | * | |
5452 | * Uncharges zswap memory on page in. | |
5453 | */ | |
5454 | void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) | |
5455 | { | |
5456 | struct mem_cgroup *memcg; | |
5457 | ||
5458 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
5459 | return; | |
5460 | ||
5461 | obj_cgroup_uncharge(objcg, size); | |
5462 | ||
5463 | rcu_read_lock(); | |
5464 | memcg = obj_cgroup_memcg(objcg); | |
5465 | mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); | |
5466 | mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); | |
5467 | rcu_read_unlock(); | |
5468 | } | |
5469 | ||
501a06fe NP |
5470 | bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) |
5471 | { | |
5472 | /* if zswap is disabled, do not block pages going to the swapping device */ | |
e3992573 MY |
5473 | if (!zswap_is_enabled()) |
5474 | return true; | |
5475 | ||
5476 | for (; memcg; memcg = parent_mem_cgroup(memcg)) | |
5477 | if (!READ_ONCE(memcg->zswap_writeback)) | |
5478 | return false; | |
5479 | ||
5480 | return true; | |
501a06fe NP |
5481 | } |
5482 | ||
f4840ccf JW |
5483 | static u64 zswap_current_read(struct cgroup_subsys_state *css, |
5484 | struct cftype *cft) | |
5485 | { | |
7d7ef0a4 YA |
5486 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5487 | ||
5488 | mem_cgroup_flush_stats(memcg); | |
5489 | return memcg_page_state(memcg, MEMCG_ZSWAP_B); | |
f4840ccf JW |
5490 | } |
5491 | ||
5492 | static int zswap_max_show(struct seq_file *m, void *v) | |
5493 | { | |
5494 | return seq_puts_memcg_tunable(m, | |
5495 | READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); | |
5496 | } | |
5497 | ||
5498 | static ssize_t zswap_max_write(struct kernfs_open_file *of, | |
5499 | char *buf, size_t nbytes, loff_t off) | |
5500 | { | |
5501 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
5502 | unsigned long max; | |
5503 | int err; | |
5504 | ||
5505 | buf = strstrip(buf); | |
5506 | err = page_counter_memparse(buf, "max", &max); | |
5507 | if (err) | |
5508 | return err; | |
5509 | ||
5510 | xchg(&memcg->zswap_max, max); | |
5511 | ||
5512 | return nbytes; | |
5513 | } | |
5514 | ||
501a06fe NP |
5515 | static int zswap_writeback_show(struct seq_file *m, void *v) |
5516 | { | |
5517 | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | |
5518 | ||
5519 | seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); | |
5520 | return 0; | |
5521 | } | |
5522 | ||
5523 | static ssize_t zswap_writeback_write(struct kernfs_open_file *of, | |
5524 | char *buf, size_t nbytes, loff_t off) | |
5525 | { | |
5526 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | |
5527 | int zswap_writeback; | |
5528 | ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); | |
5529 | ||
5530 | if (parse_ret) | |
5531 | return parse_ret; | |
5532 | ||
5533 | if (zswap_writeback != 0 && zswap_writeback != 1) | |
5534 | return -EINVAL; | |
5535 | ||
5536 | WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); | |
5537 | return nbytes; | |
5538 | } | |
5539 | ||
f4840ccf JW |
5540 | static struct cftype zswap_files[] = { |
5541 | { | |
5542 | .name = "zswap.current", | |
5543 | .flags = CFTYPE_NOT_ON_ROOT, | |
5544 | .read_u64 = zswap_current_read, | |
5545 | }, | |
5546 | { | |
5547 | .name = "zswap.max", | |
5548 | .flags = CFTYPE_NOT_ON_ROOT, | |
5549 | .seq_show = zswap_max_show, | |
5550 | .write = zswap_max_write, | |
5551 | }, | |
501a06fe NP |
5552 | { |
5553 | .name = "zswap.writeback", | |
5554 | .seq_show = zswap_writeback_show, | |
5555 | .write = zswap_writeback_write, | |
5556 | }, | |
f4840ccf JW |
5557 | { } /* terminate */ |
5558 | }; | |
3a3b7fec | 5559 | #endif /* CONFIG_ZSWAP */ |
f4840ccf | 5560 | |
21afa38e JW |
5561 | static int __init mem_cgroup_swap_init(void) |
5562 | { | |
2d1c4980 | 5563 | if (mem_cgroup_disabled()) |
eccb52e7 JW |
5564 | return 0; |
5565 | ||
5566 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); | |
e93d4166 | 5567 | #ifdef CONFIG_MEMCG_V1 |
eccb52e7 | 5568 | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); |
e93d4166 | 5569 | #endif |
3a3b7fec | 5570 | #ifdef CONFIG_ZSWAP |
f4840ccf JW |
5571 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); |
5572 | #endif | |
21afa38e JW |
5573 | return 0; |
5574 | } | |
b25806dc | 5575 | subsys_initcall(mem_cgroup_swap_init); |
21afa38e | 5576 | |
e55b9f96 | 5577 | #endif /* CONFIG_SWAP */ |
7d709f49 GP |
5578 | |
5579 | bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) | |
5580 | { | |
5581 | return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true; | |
5582 | } |