Merge tag 'efi-fixes-for-v6.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
4882c809 36#include <linux/pagevec.h>
1ff9e6e1 37#include <linux/vm_event_item.h>
d52aa412 38#include <linux/smp.h>
8a9f3ccd 39#include <linux/page-flags.h>
66e1707b 40#include <linux/backing-dev.h>
8a9f3ccd
BS
41#include <linux/bit_spinlock.h>
42#include <linux/rcupdate.h>
e222432b 43#include <linux/limits.h>
b9e15baf 44#include <linux/export.h>
8c7c6e34 45#include <linux/mutex.h>
bb4cc1a8 46#include <linux/rbtree.h>
b6ac57d5 47#include <linux/slab.h>
66e1707b 48#include <linux/swap.h>
02491447 49#include <linux/swapops.h>
66e1707b 50#include <linux/spinlock.h>
2e72b634 51#include <linux/eventfd.h>
79bd9814 52#include <linux/poll.h>
2e72b634 53#include <linux/sort.h>
66e1707b 54#include <linux/fs.h>
d2ceb9b7 55#include <linux/seq_file.h>
70ddf637 56#include <linux/vmpressure.h>
dc90f084 57#include <linux/memremap.h>
b69408e8 58#include <linux/mm_inline.h>
5d1ea48b 59#include <linux/swap_cgroup.h>
cdec2e42 60#include <linux/cpu.h>
158e0a2d 61#include <linux/oom.h>
0056f4e6 62#include <linux/lockdep.h>
79bd9814 63#include <linux/file.h>
03248add 64#include <linux/resume_user_mode.h>
0e4b01df 65#include <linux/psi.h>
c8713d0b 66#include <linux/seq_buf.h>
6a792697 67#include <linux/sched/isolation.h>
6011be59 68#include <linux/kmemleak.h>
08e552c6 69#include "internal.h"
d1a4c0b3 70#include <net/sock.h>
4bd2c1ee 71#include <net/ip.h>
f35c3a8e 72#include "slab.h"
014bb1de 73#include "swap.h"
8cdea7c0 74
7c0f6ba6 75#include <linux/uaccess.h>
8697d331 76
cc8e970c
KM
77#include <trace/events/vmscan.h>
78
073219e9
TH
79struct cgroup_subsys memory_cgrp_subsys __read_mostly;
80EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 81
7d828602
JW
82struct mem_cgroup *root_mem_cgroup __read_mostly;
83
37d5985c
RG
84/* Active memory cgroup to use from an interrupt context */
85DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 86EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 87
f7e1cb6e 88/* Socket memory accounting disabled? */
0f0cace3 89static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 90
04823c83 91/* Kernel memory accounting disabled? */
17c17367 92static bool cgroup_memory_nokmem __ro_after_init;
04823c83 93
b6c1a8af
YS
94/* BPF memory accounting disabled? */
95static bool cgroup_memory_nobpf __ro_after_init;
96
97b27821
TH
97#ifdef CONFIG_CGROUP_WRITEBACK
98static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99#endif
100
7941d214
JW
101/* Whether legacy memory+swap accounting is active */
102static bool do_memsw_account(void)
103{
b25806dc 104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
105}
106
a0db00fc
KS
107#define THRESHOLDS_EVENTS_TARGET 128
108#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 109
bb4cc1a8
AM
110/*
111 * Cgroups above their limits are maintained in a RB-Tree, independent of
112 * their hierarchy representation
113 */
114
ef8f2327 115struct mem_cgroup_tree_per_node {
bb4cc1a8 116 struct rb_root rb_root;
fa90b2fd 117 struct rb_node *rb_rightmost;
bb4cc1a8
AM
118 spinlock_t lock;
119};
120
bb4cc1a8
AM
121struct mem_cgroup_tree {
122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123};
124
125static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126
9490ff27
KH
127/* for OOM */
128struct mem_cgroup_eventfd_list {
129 struct list_head list;
130 struct eventfd_ctx *eventfd;
131};
2e72b634 132
79bd9814
TH
133/*
134 * cgroup_event represents events which userspace want to receive.
135 */
3bc942f3 136struct mem_cgroup_event {
79bd9814 137 /*
59b6f873 138 * memcg which the event belongs to.
79bd9814 139 */
59b6f873 140 struct mem_cgroup *memcg;
79bd9814
TH
141 /*
142 * eventfd to signal userspace about the event.
143 */
144 struct eventfd_ctx *eventfd;
145 /*
146 * Each of these stored in a list by the cgroup.
147 */
148 struct list_head list;
fba94807
TH
149 /*
150 * register_event() callback will be used to add new userspace
151 * waiter for changes related to this event. Use eventfd_signal()
152 * on eventfd to send notification to userspace.
153 */
59b6f873 154 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 155 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
156 /*
157 * unregister_event() callback will be called when userspace closes
158 * the eventfd or on cgroup removing. This callback must be set,
159 * if you want provide notification functionality.
160 */
59b6f873 161 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 162 struct eventfd_ctx *eventfd);
79bd9814
TH
163 /*
164 * All fields below needed to unregister event when
165 * userspace closes eventfd.
166 */
167 poll_table pt;
168 wait_queue_head_t *wqh;
ac6424b9 169 wait_queue_entry_t wait;
79bd9814
TH
170 struct work_struct remove;
171};
172
c0ff4b85
R
173static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 175
7dc74be0
DN
176/* Stuffs for move charges at task migration. */
177/*
1dfab5ab 178 * Types of charges to be moved.
7dc74be0 179 */
1dfab5ab
JW
180#define MOVE_ANON 0x1U
181#define MOVE_FILE 0x2U
182#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 183
4ffef5fe
DN
184/* "mc" and its members are protected by cgroup_mutex */
185static struct move_charge_struct {
b1dd693e 186 spinlock_t lock; /* for from, to */
264a0ae1 187 struct mm_struct *mm;
4ffef5fe
DN
188 struct mem_cgroup *from;
189 struct mem_cgroup *to;
1dfab5ab 190 unsigned long flags;
4ffef5fe 191 unsigned long precharge;
854ffa8d 192 unsigned long moved_charge;
483c30b5 193 unsigned long moved_swap;
8033b97c
DN
194 struct task_struct *moving_task; /* a task moving charges */
195 wait_queue_head_t waitq; /* a waitq for other context */
196} mc = {
2bd9bb20 197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199};
4ffef5fe 200
4e416953 201/*
f4d005af 202 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
4e416953
BS
203 * limit reclaim to prevent infinite loops, if they ever occur.
204 */
a0db00fc 205#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 206#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 207
8c7c6e34 208/* for encoding cft->private value on file */
86ae53e1
GC
209enum res_type {
210 _MEM,
211 _MEMSWAP,
510fc4e1 212 _KMEM,
d55f90bf 213 _TCP,
86ae53e1
GC
214};
215
a0db00fc
KS
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
218#define MEMFILE_ATTR(val) ((val) & 0xffff)
219
b05706f1
KT
220/*
221 * Iteration constructs for visiting all cgroups (under a tree). If
222 * loops are exited prematurely (break), mem_cgroup_iter_break() must
223 * be used for reference counting.
224 */
225#define for_each_mem_cgroup_tree(iter, root) \
226 for (iter = mem_cgroup_iter(root, NULL, NULL); \
227 iter != NULL; \
228 iter = mem_cgroup_iter(root, iter, NULL))
229
230#define for_each_mem_cgroup(iter) \
231 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(NULL, iter, NULL))
234
a4ebf1b6 235static inline bool task_is_dying(void)
7775face
TH
236{
237 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
238 (current->flags & PF_EXITING);
239}
240
70ddf637
AV
241/* Some nice accessors for the vmpressure. */
242struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
243{
244 if (!memcg)
245 memcg = root_mem_cgroup;
246 return &memcg->vmpressure;
247}
248
9647875b 249struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 250{
9647875b 251 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
252}
253
1aacbd35
RG
254#define CURRENT_OBJCG_UPDATE_BIT 0
255#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
256
84c07d11 257#ifdef CONFIG_MEMCG_KMEM
0764db9b 258static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 259
4d5c8aed
RG
260bool mem_cgroup_kmem_disabled(void)
261{
262 return cgroup_memory_nokmem;
263}
264
f1286fae
MS
265static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266 unsigned int nr_pages);
c1a660de 267
bf4f0599
RG
268static void obj_cgroup_release(struct percpu_ref *ref)
269{
270 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
271 unsigned int nr_bytes;
272 unsigned int nr_pages;
273 unsigned long flags;
274
275 /*
276 * At this point all allocated objects are freed, and
277 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279 *
280 * The following sequence can lead to it:
281 * 1) CPU0: objcg == stock->cached_objcg
282 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283 * PAGE_SIZE bytes are charged
284 * 3) CPU1: a process from another memcg is allocating something,
285 * the stock if flushed,
286 * objcg->nr_charged_bytes = PAGE_SIZE - 92
287 * 5) CPU0: we do release this object,
288 * 92 bytes are added to stock->nr_bytes
289 * 6) CPU0: stock is flushed,
290 * 92 bytes are added to objcg->nr_charged_bytes
291 *
292 * In the result, nr_charged_bytes == PAGE_SIZE.
293 * This page will be uncharged in obj_cgroup_release().
294 */
295 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297 nr_pages = nr_bytes >> PAGE_SHIFT;
298
bf4f0599 299 if (nr_pages)
f1286fae 300 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 301
0764db9b 302 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 303 list_del(&objcg->list);
0764db9b 304 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
305
306 percpu_ref_exit(ref);
307 kfree_rcu(objcg, rcu);
308}
309
310static struct obj_cgroup *obj_cgroup_alloc(void)
311{
312 struct obj_cgroup *objcg;
313 int ret;
314
315 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
316 if (!objcg)
317 return NULL;
318
319 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320 GFP_KERNEL);
321 if (ret) {
322 kfree(objcg);
323 return NULL;
324 }
325 INIT_LIST_HEAD(&objcg->list);
326 return objcg;
327}
328
329static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330 struct mem_cgroup *parent)
331{
332 struct obj_cgroup *objcg, *iter;
333
334 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335
0764db9b 336 spin_lock_irq(&objcg_lock);
bf4f0599 337
9838354e
MS
338 /* 1) Ready to reparent active objcg. */
339 list_add(&objcg->list, &memcg->objcg_list);
340 /* 2) Reparent active objcg and already reparented objcgs to parent. */
341 list_for_each_entry(iter, &memcg->objcg_list, list)
342 WRITE_ONCE(iter->memcg, parent);
343 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
344 list_splice(&memcg->objcg_list, &parent->objcg_list);
345
0764db9b 346 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
347
348 percpu_ref_kill(&objcg->refcnt);
349}
350
d7f25f8a
GC
351/*
352 * A lot of the calls to the cache allocation functions are expected to be
9f9796b4 353 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
d7f25f8a
GC
354 * conditional to this static branch, we'll have to allow modules that does
355 * kmem_cache_alloc and the such to see this symbol as well
356 */
f7a449f7
RG
357DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
358EXPORT_SYMBOL(memcg_kmem_online_key);
b6c1a8af
YS
359
360DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
361EXPORT_SYMBOL(memcg_bpf_enabled_key);
0a432dcb 362#endif
17cc4dfe 363
ad7fa852 364/**
75376c6f
MWO
365 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
366 * @folio: folio of interest
ad7fa852
TH
367 *
368 * If memcg is bound to the default hierarchy, css of the memcg associated
75376c6f 369 * with @folio is returned. The returned css remains associated with @folio
ad7fa852
TH
370 * until it is released.
371 *
372 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
373 * is returned.
ad7fa852 374 */
75376c6f 375struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
ad7fa852 376{
75376c6f 377 struct mem_cgroup *memcg = folio_memcg(folio);
ad7fa852 378
9e10a130 379 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
380 memcg = root_mem_cgroup;
381
ad7fa852
TH
382 return &memcg->css;
383}
384
2fc04524
VD
385/**
386 * page_cgroup_ino - return inode number of the memcg a page is charged to
387 * @page: the page
388 *
389 * Look up the closest online ancestor of the memory cgroup @page is charged to
390 * and return its inode number or 0 if @page is not charged to any cgroup. It
391 * is safe to call this function without holding a reference to @page.
392 *
393 * Note, this function is inherently racy, because there is nothing to prevent
394 * the cgroup inode from getting torn down and potentially reallocated a moment
395 * after page_cgroup_ino() returns, so it only should be used by callers that
396 * do not care (such as procfs interfaces).
397 */
398ino_t page_cgroup_ino(struct page *page)
399{
400 struct mem_cgroup *memcg;
401 unsigned long ino = 0;
402
403 rcu_read_lock();
ec342603
YA
404 /* page_folio() is racy here, but the entire function is racy anyway */
405 memcg = folio_memcg_check(page_folio(page));
286e04b8 406
2fc04524
VD
407 while (memcg && !(memcg->css.flags & CSS_ONLINE))
408 memcg = parent_mem_cgroup(memcg);
409 if (memcg)
410 ino = cgroup_ino(memcg->css.cgroup);
411 rcu_read_unlock();
412 return ino;
413}
414
ef8f2327
MG
415static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
416 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 417 unsigned long new_usage_in_excess)
bb4cc1a8
AM
418{
419 struct rb_node **p = &mctz->rb_root.rb_node;
420 struct rb_node *parent = NULL;
ef8f2327 421 struct mem_cgroup_per_node *mz_node;
fa90b2fd 422 bool rightmost = true;
bb4cc1a8
AM
423
424 if (mz->on_tree)
425 return;
426
427 mz->usage_in_excess = new_usage_in_excess;
428 if (!mz->usage_in_excess)
429 return;
430 while (*p) {
431 parent = *p;
ef8f2327 432 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 433 tree_node);
fa90b2fd 434 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 435 p = &(*p)->rb_left;
fa90b2fd 436 rightmost = false;
378876b0 437 } else {
bb4cc1a8 438 p = &(*p)->rb_right;
378876b0 439 }
bb4cc1a8 440 }
fa90b2fd
DB
441
442 if (rightmost)
443 mctz->rb_rightmost = &mz->tree_node;
444
bb4cc1a8
AM
445 rb_link_node(&mz->tree_node, parent, p);
446 rb_insert_color(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = true;
448}
449
ef8f2327
MG
450static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
451 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
452{
453 if (!mz->on_tree)
454 return;
fa90b2fd
DB
455
456 if (&mz->tree_node == mctz->rb_rightmost)
457 mctz->rb_rightmost = rb_prev(&mz->tree_node);
458
bb4cc1a8
AM
459 rb_erase(&mz->tree_node, &mctz->rb_root);
460 mz->on_tree = false;
461}
462
ef8f2327
MG
463static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
464 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 465{
0a31bc97
JW
466 unsigned long flags;
467
468 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 469 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 470 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
471}
472
3e32cb2e
JW
473static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
474{
475 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 476 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
477 unsigned long excess = 0;
478
479 if (nr_pages > soft_limit)
480 excess = nr_pages - soft_limit;
481
482 return excess;
483}
bb4cc1a8 484
658b69c9 485static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 486{
3e32cb2e 487 unsigned long excess;
ef8f2327
MG
488 struct mem_cgroup_per_node *mz;
489 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 490
e4dde56c 491 if (lru_gen_enabled()) {
36c7b4db 492 if (soft_limit_excess(memcg))
5c7e7a0d 493 lru_gen_soft_reclaim(memcg, nid);
e4dde56c
YZ
494 return;
495 }
496
2ab082ba 497 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
498 if (!mctz)
499 return;
bb4cc1a8
AM
500 /*
501 * Necessary to update all ancestors when hierarchy is used.
502 * because their event counter is not touched.
503 */
504 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 505 mz = memcg->nodeinfo[nid];
3e32cb2e 506 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
507 /*
508 * We have to update the tree if mz is on RB-tree or
509 * mem is over its softlimit.
510 */
511 if (excess || mz->on_tree) {
0a31bc97
JW
512 unsigned long flags;
513
514 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
515 /* if on-tree, remove it */
516 if (mz->on_tree)
cf2c8127 517 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
518 /*
519 * Insert again. mz->usage_in_excess will be updated.
520 * If excess is 0, no tree ops.
521 */
cf2c8127 522 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 523 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
524 }
525 }
526}
527
528static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
529{
ef8f2327
MG
530 struct mem_cgroup_tree_per_node *mctz;
531 struct mem_cgroup_per_node *mz;
532 int nid;
bb4cc1a8 533
e231875b 534 for_each_node(nid) {
a3747b53 535 mz = memcg->nodeinfo[nid];
2ab082ba 536 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
537 if (mctz)
538 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
539 }
540}
541
ef8f2327
MG
542static struct mem_cgroup_per_node *
543__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 544{
ef8f2327 545 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
546
547retry:
548 mz = NULL;
fa90b2fd 549 if (!mctz->rb_rightmost)
bb4cc1a8
AM
550 goto done; /* Nothing to reclaim from */
551
fa90b2fd
DB
552 mz = rb_entry(mctz->rb_rightmost,
553 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
554 /*
555 * Remove the node now but someone else can add it back,
556 * we will to add it back at the end of reclaim to its correct
557 * position in the tree.
558 */
cf2c8127 559 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 560 if (!soft_limit_excess(mz->memcg) ||
8965aa28 561 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
562 goto retry;
563done:
564 return mz;
565}
566
ef8f2327
MG
567static struct mem_cgroup_per_node *
568mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 569{
ef8f2327 570 struct mem_cgroup_per_node *mz;
bb4cc1a8 571
0a31bc97 572 spin_lock_irq(&mctz->lock);
bb4cc1a8 573 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 574 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
575 return mz;
576}
577
ff48c71c
SB
578/* Subset of node_stat_item for memcg stats */
579static const unsigned int memcg_node_stat_items[] = {
580 NR_INACTIVE_ANON,
581 NR_ACTIVE_ANON,
582 NR_INACTIVE_FILE,
583 NR_ACTIVE_FILE,
584 NR_UNEVICTABLE,
585 NR_SLAB_RECLAIMABLE_B,
586 NR_SLAB_UNRECLAIMABLE_B,
587 WORKINGSET_REFAULT_ANON,
588 WORKINGSET_REFAULT_FILE,
589 WORKINGSET_ACTIVATE_ANON,
590 WORKINGSET_ACTIVATE_FILE,
591 WORKINGSET_RESTORE_ANON,
592 WORKINGSET_RESTORE_FILE,
593 WORKINGSET_NODERECLAIM,
594 NR_ANON_MAPPED,
595 NR_FILE_MAPPED,
596 NR_FILE_PAGES,
597 NR_FILE_DIRTY,
598 NR_WRITEBACK,
599 NR_SHMEM,
600 NR_SHMEM_THPS,
601 NR_FILE_THPS,
602 NR_ANON_THPS,
603 NR_KERNEL_STACK_KB,
604 NR_PAGETABLE,
605 NR_SECONDARY_PAGETABLE,
606#ifdef CONFIG_SWAP
607 NR_SWAPCACHE,
608#endif
609};
610
611static const unsigned int memcg_stat_items[] = {
612 MEMCG_SWAP,
613 MEMCG_SOCK,
614 MEMCG_PERCPU_B,
615 MEMCG_VMALLOC,
616 MEMCG_KMEM,
617 MEMCG_ZSWAP_B,
618 MEMCG_ZSWAPPED,
619};
620
621#define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
622#define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
623 ARRAY_SIZE(memcg_stat_items))
624static int8_t mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
625
626static void init_memcg_stats(void)
627{
628 int8_t i, j = 0;
629
630 BUILD_BUG_ON(MEMCG_NR_STAT >= S8_MAX);
631
632 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i)
633 mem_cgroup_stats_index[memcg_node_stat_items[i]] = ++j;
634
635 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i)
636 mem_cgroup_stats_index[memcg_stat_items[i]] = ++j;
637}
638
639static inline int memcg_stats_index(int idx)
640{
641 return mem_cgroup_stats_index[idx] - 1;
642}
643
70a64b79
SB
644struct lruvec_stats_percpu {
645 /* Local (CPU and cgroup) state */
ff48c71c 646 long state[NR_MEMCG_NODE_STAT_ITEMS];
70a64b79
SB
647
648 /* Delta calculation for lockless upward propagation */
ff48c71c 649 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
70a64b79
SB
650};
651
652struct lruvec_stats {
653 /* Aggregated (CPU and subtree) state */
ff48c71c 654 long state[NR_MEMCG_NODE_STAT_ITEMS];
70a64b79
SB
655
656 /* Non-hierarchical (CPU aggregated) state */
ff48c71c 657 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
70a64b79
SB
658
659 /* Pending child counts during tree propagation */
ff48c71c 660 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
70a64b79
SB
661};
662
663unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
664{
665 struct mem_cgroup_per_node *pn;
666 long x;
ff48c71c 667 int i;
70a64b79
SB
668
669 if (mem_cgroup_disabled())
670 return node_page_state(lruvec_pgdat(lruvec), idx);
671
ff48c71c 672 i = memcg_stats_index(idx);
acb5fe2f 673 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
ff48c71c
SB
674 return 0;
675
70a64b79 676 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
ff48c71c 677 x = READ_ONCE(pn->lruvec_stats->state[i]);
70a64b79
SB
678#ifdef CONFIG_SMP
679 if (x < 0)
680 x = 0;
681#endif
682 return x;
683}
684
685unsigned long lruvec_page_state_local(struct lruvec *lruvec,
686 enum node_stat_item idx)
687{
688 struct mem_cgroup_per_node *pn;
acb5fe2f 689 long x;
ff48c71c 690 int i;
70a64b79
SB
691
692 if (mem_cgroup_disabled())
693 return node_page_state(lruvec_pgdat(lruvec), idx);
694
ff48c71c 695 i = memcg_stats_index(idx);
acb5fe2f 696 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
ff48c71c
SB
697 return 0;
698
70a64b79 699 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
ff48c71c 700 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
70a64b79
SB
701#ifdef CONFIG_SMP
702 if (x < 0)
703 x = 0;
704#endif
705 return x;
706}
707
d396def5
SB
708/* Subset of vm_event_item to report for memcg event stats */
709static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
710 PGPGIN,
711 PGPGOUT,
d396def5
SB
712 PGSCAN_KSWAPD,
713 PGSCAN_DIRECT,
57e9cc50 714 PGSCAN_KHUGEPAGED,
d396def5
SB
715 PGSTEAL_KSWAPD,
716 PGSTEAL_DIRECT,
57e9cc50 717 PGSTEAL_KHUGEPAGED,
d396def5
SB
718 PGFAULT,
719 PGMAJFAULT,
720 PGREFILL,
721 PGACTIVATE,
722 PGDEACTIVATE,
723 PGLAZYFREE,
724 PGLAZYFREED,
725#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
726 ZSWPIN,
727 ZSWPOUT,
e0bf1dc8 728 ZSWPWB,
d396def5
SB
729#endif
730#ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 THP_FAULT_ALLOC,
732 THP_COLLAPSE_ALLOC,
811244a5
XH
733 THP_SWPOUT,
734 THP_SWPOUT_FALLBACK,
d396def5
SB
735#endif
736};
737
8278f1c7 738#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
59142d87 739static int8_t mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
8278f1c7
SB
740
741static void init_memcg_events(void)
742{
59142d87
SB
743 int8_t i;
744
745 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= S8_MAX);
8278f1c7
SB
746
747 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
748 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
749}
750
751static inline int memcg_events_index(enum vm_event_item idx)
752{
753 return mem_cgroup_events_index[idx] - 1;
754}
755
410f8e82 756struct memcg_vmstats_percpu {
9cee7e8e
YA
757 /* Stats updates since the last flush */
758 unsigned int stats_updates;
759
760 /* Cached pointers for fast iteration in memcg_rstat_updated() */
761 struct memcg_vmstats_percpu *parent;
762 struct memcg_vmstats *vmstats;
763
764 /* The above should fit a single cacheline for memcg_rstat_updated() */
765
410f8e82 766 /* Local (CPU and cgroup) page state & events */
ff48c71c 767 long state[MEMCG_VMSTAT_SIZE];
8278f1c7 768 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
769
770 /* Delta calculation for lockless upward propagation */
ff48c71c 771 long state_prev[MEMCG_VMSTAT_SIZE];
8278f1c7 772 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
773
774 /* Cgroup1: threshold notifications & softlimit tree updates */
775 unsigned long nr_page_events;
776 unsigned long targets[MEM_CGROUP_NTARGETS];
9cee7e8e 777} ____cacheline_aligned;
410f8e82
SB
778
779struct memcg_vmstats {
780 /* Aggregated (CPU and subtree) page state & events */
ff48c71c 781 long state[MEMCG_VMSTAT_SIZE];
8278f1c7 782 unsigned long events[NR_MEMCG_EVENTS];
410f8e82 783
f82e6bf9 784 /* Non-hierarchical (CPU aggregated) page state & events */
ff48c71c 785 long state_local[MEMCG_VMSTAT_SIZE];
f82e6bf9
YA
786 unsigned long events_local[NR_MEMCG_EVENTS];
787
410f8e82 788 /* Pending child counts during tree propagation */
ff48c71c 789 long state_pending[MEMCG_VMSTAT_SIZE];
8278f1c7 790 unsigned long events_pending[NR_MEMCG_EVENTS];
8d59d221
YA
791
792 /* Stats updates since the last flush */
793 atomic64_t stats_updates;
410f8e82
SB
794};
795
11192d9c
SB
796/*
797 * memcg and lruvec stats flushing
798 *
799 * Many codepaths leading to stats update or read are performance sensitive and
800 * adding stats flushing in such codepaths is not desirable. So, to optimize the
801 * flushing the kernel does:
802 *
803 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
804 * rstat update tree grow unbounded.
805 *
806 * 2) Flush the stats synchronously on reader side only when there are more than
807 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
808 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
809 * only for 2 seconds due to (1).
810 */
811static void flush_memcg_stats_dwork(struct work_struct *w);
812static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
508bed88 813static u64 flush_last_time;
9b301615
SB
814
815#define FLUSH_TIME (2UL*HZ)
11192d9c 816
be3e67b5
SAS
817/*
818 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
819 * not rely on this as part of an acquired spinlock_t lock. These functions are
820 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
821 * is sufficient.
822 */
823static void memcg_stats_lock(void)
824{
e575d401
TG
825 preempt_disable_nested();
826 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
827}
828
829static void __memcg_stats_lock(void)
830{
e575d401 831 preempt_disable_nested();
be3e67b5
SAS
832}
833
834static void memcg_stats_unlock(void)
835{
e575d401 836 preempt_enable_nested();
be3e67b5
SAS
837}
838
8d59d221 839
9cee7e8e 840static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
8d59d221 841{
9cee7e8e 842 return atomic64_read(&vmstats->stats_updates) >
8d59d221
YA
843 MEMCG_CHARGE_BATCH * num_online_cpus();
844}
845
5b3be698 846static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 847{
9cee7e8e 848 struct memcg_vmstats_percpu *statc;
8d59d221 849 int cpu = smp_processor_id();
78ec6f9d 850 unsigned int stats_updates;
5b3be698 851
f9d911ca
YA
852 if (!val)
853 return;
854
8d59d221 855 cgroup_rstat_updated(memcg->css.cgroup, cpu);
9cee7e8e
YA
856 statc = this_cpu_ptr(memcg->vmstats_percpu);
857 for (; statc; statc = statc->parent) {
78ec6f9d
BL
858 stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
859 WRITE_ONCE(statc->stats_updates, stats_updates);
860 if (stats_updates < MEMCG_CHARGE_BATCH)
8d59d221 861 continue;
5b3be698 862
873f64b7 863 /*
8d59d221
YA
864 * If @memcg is already flush-able, increasing stats_updates is
865 * redundant. Avoid the overhead of the atomic update.
873f64b7 866 */
9cee7e8e 867 if (!memcg_vmstats_needs_flush(statc->vmstats))
78ec6f9d 868 atomic64_add(stats_updates,
9cee7e8e 869 &statc->vmstats->stats_updates);
78ec6f9d 870 WRITE_ONCE(statc->stats_updates, 0);
5b3be698 871 }
11192d9c
SB
872}
873
7d7ef0a4 874static void do_flush_stats(struct mem_cgroup *memcg)
11192d9c 875{
7d7ef0a4
YA
876 if (mem_cgroup_is_root(memcg))
877 WRITE_ONCE(flush_last_time, jiffies_64);
9fad9aee 878
7d7ef0a4 879 cgroup_rstat_flush(memcg->css.cgroup);
11192d9c
SB
880}
881
7d7ef0a4
YA
882/*
883 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
884 * @memcg: root of the subtree to flush
885 *
886 * Flushing is serialized by the underlying global rstat lock. There is also a
887 * minimum amount of work to be done even if there are no stat updates to flush.
888 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
889 * avoids unnecessary work and contention on the underlying lock.
890 */
891void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
11192d9c 892{
7d7ef0a4
YA
893 if (mem_cgroup_disabled())
894 return;
895
896 if (!memcg)
897 memcg = root_mem_cgroup;
898
9cee7e8e 899 if (memcg_vmstats_needs_flush(memcg->vmstats))
7d7ef0a4 900 do_flush_stats(memcg);
9fad9aee
YA
901}
902
7d7ef0a4 903void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
9b301615 904{
508bed88
YA
905 /* Only flush if the periodic flusher is one full cycle late */
906 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
7d7ef0a4 907 mem_cgroup_flush_stats(memcg);
9b301615
SB
908}
909
11192d9c
SB
910static void flush_memcg_stats_dwork(struct work_struct *w)
911{
9fad9aee 912 /*
9cee7e8e 913 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
8d59d221 914 * in latency-sensitive paths is as cheap as possible.
9fad9aee 915 */
7d7ef0a4 916 do_flush_stats(root_mem_cgroup);
9b301615 917 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
918}
919
410f8e82
SB
920unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
921{
ff48c71c
SB
922 long x;
923 int i = memcg_stats_index(idx);
924
acb5fe2f 925 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
ff48c71c
SB
926 return 0;
927
928 x = READ_ONCE(memcg->vmstats->state[i]);
410f8e82
SB
929#ifdef CONFIG_SMP
930 if (x < 0)
931 x = 0;
932#endif
933 return x;
934}
935
7bd5bc3c
YA
936static int memcg_page_state_unit(int item);
937
938/*
939 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
940 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
941 */
942static int memcg_state_val_in_pages(int idx, int val)
943{
944 int unit = memcg_page_state_unit(idx);
945
946 if (!val || unit == PAGE_SIZE)
947 return val;
948 else
949 return max(val * unit / PAGE_SIZE, 1UL);
950}
951
db9adbcb
JW
952/**
953 * __mod_memcg_state - update cgroup memory statistics
954 * @memcg: the memory cgroup
955 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
956 * @val: delta to add to the counter, can be negative
957 */
a94032b3
SB
958void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
959 int val)
db9adbcb 960{
ff48c71c
SB
961 int i = memcg_stats_index(idx);
962
acb5fe2f
SB
963 if (mem_cgroup_disabled())
964 return;
965
966 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
db9adbcb
JW
967 return;
968
ff48c71c 969 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
7bd5bc3c 970 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
db9adbcb
JW
971}
972
2d146aa3 973/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
974static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
975{
ff48c71c
SB
976 long x;
977 int i = memcg_stats_index(idx);
978
acb5fe2f 979 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
ff48c71c 980 return 0;
a18e6e6e 981
ff48c71c 982 x = READ_ONCE(memcg->vmstats->state_local[i]);
a18e6e6e
JW
983#ifdef CONFIG_SMP
984 if (x < 0)
985 x = 0;
986#endif
987 return x;
988}
989
91882c16
SB
990static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
991 enum node_stat_item idx,
992 int val)
db9adbcb
JW
993{
994 struct mem_cgroup_per_node *pn;
42a30035 995 struct mem_cgroup *memcg;
ff48c71c
SB
996 int i = memcg_stats_index(idx);
997
acb5fe2f 998 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
ff48c71c 999 return;
db9adbcb 1000
db9adbcb 1001 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 1002 memcg = pn->memcg;
db9adbcb 1003
be3e67b5 1004 /*
be16dd76 1005 * The caller from rmap relies on disabled preemption because they never
be3e67b5
SAS
1006 * update their counter from in-interrupt context. For these two
1007 * counters we check that the update is never performed from an
1008 * interrupt context while other caller need to have disabled interrupt.
1009 */
1010 __memcg_stats_lock();
e575d401 1011 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
1012 switch (idx) {
1013 case NR_ANON_MAPPED:
1014 case NR_FILE_MAPPED:
1015 case NR_ANON_THPS:
be3e67b5
SAS
1016 WARN_ON_ONCE(!in_task());
1017 break;
1018 default:
e575d401 1019 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
1020 }
1021 }
1022
db9adbcb 1023 /* Update memcg */
ff48c71c 1024 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
db9adbcb 1025
b4c46484 1026 /* Update lruvec */
ff48c71c 1027 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
11192d9c 1028
7bd5bc3c 1029 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
be3e67b5 1030 memcg_stats_unlock();
db9adbcb
JW
1031}
1032
eedc4e5a
RG
1033/**
1034 * __mod_lruvec_state - update lruvec memory statistics
1035 * @lruvec: the lruvec
1036 * @idx: the stat item
1037 * @val: delta to add to the counter, can be negative
1038 *
1039 * The lruvec is the intersection of the NUMA node and a cgroup. This
1040 * function updates the all three counters that are affected by a
1041 * change of state at this level: per-node, per-cgroup, per-lruvec.
1042 */
1043void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1044 int val)
1045{
1046 /* Update node */
1047 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1048
1049 /* Update memcg and lruvec */
1050 if (!mem_cgroup_disabled())
1051 __mod_memcg_lruvec_state(lruvec, idx, val);
1052}
1053
c701123b 1054void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
c47d5032
SB
1055 int val)
1056{
b4e0b68f 1057 struct mem_cgroup *memcg;
c701123b 1058 pg_data_t *pgdat = folio_pgdat(folio);
c47d5032
SB
1059 struct lruvec *lruvec;
1060
b4e0b68f 1061 rcu_read_lock();
c701123b 1062 memcg = folio_memcg(folio);
c47d5032 1063 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 1064 if (!memcg) {
b4e0b68f 1065 rcu_read_unlock();
c47d5032
SB
1066 __mod_node_page_state(pgdat, idx, val);
1067 return;
1068 }
1069
d635a69d 1070 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 1071 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 1072 rcu_read_unlock();
c47d5032 1073}
c701123b 1074EXPORT_SYMBOL(__lruvec_stat_mod_folio);
c47d5032 1075
da3ceeff 1076void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 1077{
4f103c63 1078 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
1079 struct mem_cgroup *memcg;
1080 struct lruvec *lruvec;
1081
1082 rcu_read_lock();
fc4db90f 1083 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 1084
8faeb1ff
MS
1085 /*
1086 * Untracked pages have no memcg, no lruvec. Update only the
1087 * node. If we reparent the slab objects to the root memcg,
1088 * when we free the slab object, we need to update the per-memcg
1089 * vmstats to keep it correct for the root memcg.
1090 */
1091 if (!memcg) {
ec9f0238
RG
1092 __mod_node_page_state(pgdat, idx, val);
1093 } else {
867e5e1d 1094 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
1095 __mod_lruvec_state(lruvec, idx, val);
1096 }
1097 rcu_read_unlock();
1098}
1099
db9adbcb
JW
1100/**
1101 * __count_memcg_events - account VM events in a cgroup
1102 * @memcg: the memory cgroup
1103 * @idx: the event item
f0953a1b 1104 * @count: the number of events that occurred
db9adbcb
JW
1105 */
1106void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1107 unsigned long count)
1108{
acb5fe2f 1109 int i = memcg_events_index(idx);
8278f1c7 1110
acb5fe2f
SB
1111 if (mem_cgroup_disabled())
1112 return;
1113
1114 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, idx))
db9adbcb
JW
1115 return;
1116
be3e67b5 1117 memcg_stats_lock();
acb5fe2f 1118 __this_cpu_add(memcg->vmstats_percpu->events[i], count);
5b3be698 1119 memcg_rstat_updated(memcg, count);
be3e67b5 1120 memcg_stats_unlock();
db9adbcb
JW
1121}
1122
42a30035 1123static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 1124{
acb5fe2f 1125 int i = memcg_events_index(event);
8278f1c7 1126
acb5fe2f 1127 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event))
8278f1c7 1128 return 0;
acb5fe2f
SB
1129
1130 return READ_ONCE(memcg->vmstats->events[i]);
e9f8974f
JW
1131}
1132
42a30035
JW
1133static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
1134{
acb5fe2f 1135 int i = memcg_events_index(event);
8278f1c7 1136
acb5fe2f 1137 if (WARN_ONCE(i < 0, "%s: missing stat item %d\n", __func__, event))
8278f1c7 1138 return 0;
815744d7 1139
acb5fe2f 1140 return READ_ONCE(memcg->vmstats->events_local[i]);
42a30035
JW
1141}
1142
c0ff4b85 1143static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 1144 int nr_pages)
d52aa412 1145{
e401f176
KH
1146 /* pagein of a big page is an event. So, ignore page size */
1147 if (nr_pages > 0)
c9019e9b 1148 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 1149 else {
c9019e9b 1150 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
1151 nr_pages = -nr_pages; /* for event */
1152 }
e401f176 1153
871789d4 1154 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
1155}
1156
f53d7ce3
JW
1157static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1158 enum mem_cgroup_events_target target)
7a159cc9
JW
1159{
1160 unsigned long val, next;
1161
871789d4
CD
1162 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
1163 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 1164 /* from time_after() in jiffies.h */
6a1a8b80 1165 if ((long)(next - val) < 0) {
f53d7ce3
JW
1166 switch (target) {
1167 case MEM_CGROUP_TARGET_THRESH:
1168 next = val + THRESHOLDS_EVENTS_TARGET;
1169 break;
bb4cc1a8
AM
1170 case MEM_CGROUP_TARGET_SOFTLIMIT:
1171 next = val + SOFTLIMIT_EVENTS_TARGET;
1172 break;
f53d7ce3
JW
1173 default:
1174 break;
1175 }
871789d4 1176 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 1177 return true;
7a159cc9 1178 }
f53d7ce3 1179 return false;
d2265e6f
KH
1180}
1181
1182/*
1183 * Check events in order.
1184 *
1185 */
8e88bd2d 1186static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 1187{
2343e88d
SAS
1188 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1189 return;
1190
d2265e6f 1191 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1192 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1193 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1194 bool do_softlimit;
f53d7ce3 1195
bb4cc1a8
AM
1196 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1197 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 1198 mem_cgroup_threshold(memcg);
bb4cc1a8 1199 if (unlikely(do_softlimit))
8e88bd2d 1200 mem_cgroup_update_tree(memcg, nid);
0a31bc97 1201 }
d2265e6f
KH
1202}
1203
cf475ad2 1204struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1205{
31a78f23
BS
1206 /*
1207 * mm_update_next_owner() may clear mm->owner to NULL
1208 * if it races with swapoff, page migration, etc.
1209 * So this can be called with p == NULL.
1210 */
1211 if (unlikely(!p))
1212 return NULL;
1213
073219e9 1214 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1215}
33398cf2 1216EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1217
04f94e3f
DS
1218static __always_inline struct mem_cgroup *active_memcg(void)
1219{
55a68c82 1220 if (!in_task())
04f94e3f
DS
1221 return this_cpu_read(int_active_memcg);
1222 else
1223 return current->active_memcg;
1224}
1225
d46eb14b
SB
1226/**
1227 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1228 * @mm: mm from which memcg should be extracted. It can be NULL.
1229 *
04f94e3f
DS
1230 * Obtain a reference on mm->memcg and returns it if successful. If mm
1231 * is NULL, then the memcg is chosen as follows:
1232 * 1) The active memcg, if set.
1233 * 2) current->mm->memcg, if available
1234 * 3) root memcg
1235 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1236 */
1237struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1238{
d46eb14b
SB
1239 struct mem_cgroup *memcg;
1240
1241 if (mem_cgroup_disabled())
1242 return NULL;
0b7f569e 1243
2884b6b7
MS
1244 /*
1245 * Page cache insertions can happen without an
1246 * actual mm context, e.g. during disk probing
1247 * on boot, loopback IO, acct() writes etc.
1248 *
1249 * No need to css_get on root memcg as the reference
1250 * counting is disabled on the root level in the
1251 * cgroup core. See CSS_NO_REF.
1252 */
04f94e3f
DS
1253 if (unlikely(!mm)) {
1254 memcg = active_memcg();
1255 if (unlikely(memcg)) {
1256 /* remote memcg must hold a ref */
1257 css_get(&memcg->css);
1258 return memcg;
1259 }
1260 mm = current->mm;
1261 if (unlikely(!mm))
1262 return root_mem_cgroup;
1263 }
2884b6b7 1264
54595fe2
KH
1265 rcu_read_lock();
1266 do {
2884b6b7
MS
1267 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1268 if (unlikely(!memcg))
df381975 1269 memcg = root_mem_cgroup;
00d484f3 1270 } while (!css_tryget(&memcg->css));
54595fe2 1271 rcu_read_unlock();
c0ff4b85 1272 return memcg;
54595fe2 1273}
d46eb14b
SB
1274EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1275
4b569387
NP
1276/**
1277 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1278 */
1279struct mem_cgroup *get_mem_cgroup_from_current(void)
1280{
1281 struct mem_cgroup *memcg;
1282
1283 if (mem_cgroup_disabled())
1284 return NULL;
1285
1286again:
1287 rcu_read_lock();
1288 memcg = mem_cgroup_from_task(current);
1289 if (!css_tryget(&memcg->css)) {
1290 rcu_read_unlock();
1291 goto again;
1292 }
1293 rcu_read_unlock();
1294 return memcg;
1295}
1296
5660048c
JW
1297/**
1298 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1299 * @root: hierarchy root
1300 * @prev: previously returned memcg, NULL on first invocation
1301 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1302 *
1303 * Returns references to children of the hierarchy below @root, or
1304 * @root itself, or %NULL after a full round-trip.
1305 *
1306 * Caller must pass the return value in @prev on subsequent
1307 * invocations for reference counting, or use mem_cgroup_iter_break()
1308 * to cancel a hierarchy walk before the round-trip is complete.
1309 *
05bdc520
ML
1310 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1311 * in the hierarchy among all concurrent reclaimers operating on the
1312 * same node.
5660048c 1313 */
694fbc0f 1314struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1315 struct mem_cgroup *prev,
694fbc0f 1316 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1317{
3f649ab7 1318 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1319 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1320 struct mem_cgroup *memcg = NULL;
5ac8fb31 1321 struct mem_cgroup *pos = NULL;
711d3d2c 1322
694fbc0f
AM
1323 if (mem_cgroup_disabled())
1324 return NULL;
5660048c 1325
9f3a0d09
JW
1326 if (!root)
1327 root = root_mem_cgroup;
7d74b06f 1328
542f85f9 1329 rcu_read_lock();
5f578161 1330
5ac8fb31 1331 if (reclaim) {
ef8f2327 1332 struct mem_cgroup_per_node *mz;
5ac8fb31 1333
a3747b53 1334 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1335 iter = &mz->iter;
5ac8fb31 1336
a9320aae
WY
1337 /*
1338 * On start, join the current reclaim iteration cycle.
1339 * Exit when a concurrent walker completes it.
1340 */
1341 if (!prev)
1342 reclaim->generation = iter->generation;
1343 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1344 goto out_unlock;
1345
6df38689 1346 while (1) {
4db0c3c2 1347 pos = READ_ONCE(iter->position);
6df38689
VD
1348 if (!pos || css_tryget(&pos->css))
1349 break;
5ac8fb31 1350 /*
6df38689
VD
1351 * css reference reached zero, so iter->position will
1352 * be cleared by ->css_released. However, we should not
1353 * rely on this happening soon, because ->css_released
1354 * is called from a work queue, and by busy-waiting we
1355 * might block it. So we clear iter->position right
1356 * away.
5ac8fb31 1357 */
6df38689
VD
1358 (void)cmpxchg(&iter->position, pos, NULL);
1359 }
89d8330c
WY
1360 } else if (prev) {
1361 pos = prev;
5ac8fb31
JW
1362 }
1363
1364 if (pos)
1365 css = &pos->css;
1366
1367 for (;;) {
1368 css = css_next_descendant_pre(css, &root->css);
1369 if (!css) {
1370 /*
1371 * Reclaimers share the hierarchy walk, and a
1372 * new one might jump in right at the end of
1373 * the hierarchy - make sure they see at least
1374 * one group and restart from the beginning.
1375 */
1376 if (!prev)
1377 continue;
1378 break;
527a5ec9 1379 }
7d74b06f 1380
5ac8fb31
JW
1381 /*
1382 * Verify the css and acquire a reference. The root
1383 * is provided by the caller, so we know it's alive
1384 * and kicking, and don't take an extra reference.
1385 */
41555dad
WY
1386 if (css == &root->css || css_tryget(css)) {
1387 memcg = mem_cgroup_from_css(css);
0b8f73e1 1388 break;
41555dad 1389 }
9f3a0d09 1390 }
5ac8fb31
JW
1391
1392 if (reclaim) {
5ac8fb31 1393 /*
6df38689
VD
1394 * The position could have already been updated by a competing
1395 * thread, so check that the value hasn't changed since we read
1396 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1397 */
6df38689
VD
1398 (void)cmpxchg(&iter->position, pos, memcg);
1399
5ac8fb31
JW
1400 if (pos)
1401 css_put(&pos->css);
1402
1403 if (!memcg)
1404 iter->generation++;
9f3a0d09 1405 }
5ac8fb31 1406
542f85f9
MH
1407out_unlock:
1408 rcu_read_unlock();
c40046f3
MH
1409 if (prev && prev != root)
1410 css_put(&prev->css);
1411
9f3a0d09 1412 return memcg;
14067bb3 1413}
7d74b06f 1414
5660048c
JW
1415/**
1416 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1417 * @root: hierarchy root
1418 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1419 */
1420void mem_cgroup_iter_break(struct mem_cgroup *root,
1421 struct mem_cgroup *prev)
9f3a0d09
JW
1422{
1423 if (!root)
1424 root = root_mem_cgroup;
1425 if (prev && prev != root)
1426 css_put(&prev->css);
1427}
7d74b06f 1428
54a83d6b
MC
1429static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1430 struct mem_cgroup *dead_memcg)
6df38689 1431{
6df38689 1432 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1433 struct mem_cgroup_per_node *mz;
1434 int nid;
6df38689 1435
54a83d6b 1436 for_each_node(nid) {
a3747b53 1437 mz = from->nodeinfo[nid];
9da83f3f
YS
1438 iter = &mz->iter;
1439 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1440 }
1441}
1442
54a83d6b
MC
1443static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1444{
1445 struct mem_cgroup *memcg = dead_memcg;
1446 struct mem_cgroup *last;
1447
1448 do {
1449 __invalidate_reclaim_iterators(memcg, dead_memcg);
1450 last = memcg;
1451 } while ((memcg = parent_mem_cgroup(memcg)));
1452
1453 /*
b8dd3ee9 1454 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1455 * parent_mem_cgroup() does not walk all the way up to the
1456 * cgroup root (root_mem_cgroup). So we have to handle
1457 * dead_memcg from cgroup root separately.
1458 */
7848ed62 1459 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1460 __invalidate_reclaim_iterators(root_mem_cgroup,
1461 dead_memcg);
1462}
1463
7c5f64f8
VD
1464/**
1465 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1466 * @memcg: hierarchy root
1467 * @fn: function to call for each task
1468 * @arg: argument passed to @fn
1469 *
1470 * This function iterates over tasks attached to @memcg or to any of its
1471 * descendants and calls @fn for each task. If @fn returns a non-zero
025b7799
Z
1472 * value, the function breaks the iteration loop. Otherwise, it will iterate
1473 * over all tasks and return 0.
7c5f64f8
VD
1474 *
1475 * This function must not be called for the root memory cgroup.
1476 */
025b7799
Z
1477void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1478 int (*fn)(struct task_struct *, void *), void *arg)
7c5f64f8
VD
1479{
1480 struct mem_cgroup *iter;
1481 int ret = 0;
1482
7848ed62 1483 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1484
1485 for_each_mem_cgroup_tree(iter, memcg) {
1486 struct css_task_iter it;
1487 struct task_struct *task;
1488
f168a9a5 1489 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1490 while (!ret && (task = css_task_iter_next(&it)))
1491 ret = fn(task, arg);
1492 css_task_iter_end(&it);
1493 if (ret) {
1494 mem_cgroup_iter_break(memcg, iter);
1495 break;
1496 }
1497 }
7c5f64f8
VD
1498}
1499
6168d0da 1500#ifdef CONFIG_DEBUG_VM
e809c3fe 1501void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1502{
1503 struct mem_cgroup *memcg;
1504
1505 if (mem_cgroup_disabled())
1506 return;
1507
e809c3fe 1508 memcg = folio_memcg(folio);
6168d0da
AS
1509
1510 if (!memcg)
7848ed62 1511 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1512 else
e809c3fe 1513 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1514}
1515#endif
1516
6168d0da 1517/**
e809c3fe
MWO
1518 * folio_lruvec_lock - Lock the lruvec for a folio.
1519 * @folio: Pointer to the folio.
6168d0da 1520 *
d7e3aba5 1521 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1522 * - folio locked
1523 * - folio_test_lru false
1524 * - folio_memcg_lock()
1525 * - folio frozen (refcount of 0)
1526 *
1527 * Return: The lruvec this folio is on with its lock held.
6168d0da 1528 */
e809c3fe 1529struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1530{
e809c3fe 1531 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1532
6168d0da 1533 spin_lock(&lruvec->lru_lock);
e809c3fe 1534 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1535
1536 return lruvec;
1537}
1538
e809c3fe
MWO
1539/**
1540 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1541 * @folio: Pointer to the folio.
1542 *
1543 * These functions are safe to use under any of the following conditions:
1544 * - folio locked
1545 * - folio_test_lru false
1546 * - folio_memcg_lock()
1547 * - folio frozen (refcount of 0)
1548 *
1549 * Return: The lruvec this folio is on with its lock held and interrupts
1550 * disabled.
1551 */
1552struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1553{
e809c3fe 1554 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1555
6168d0da 1556 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1557 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1558
1559 return lruvec;
1560}
1561
e809c3fe
MWO
1562/**
1563 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1564 * @folio: Pointer to the folio.
1565 * @flags: Pointer to irqsave flags.
1566 *
1567 * These functions are safe to use under any of the following conditions:
1568 * - folio locked
1569 * - folio_test_lru false
1570 * - folio_memcg_lock()
1571 * - folio frozen (refcount of 0)
1572 *
1573 * Return: The lruvec this folio is on with its lock held and interrupts
1574 * disabled.
1575 */
1576struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1577 unsigned long *flags)
6168d0da 1578{
e809c3fe 1579 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1580
6168d0da 1581 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1582 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1583
1584 return lruvec;
1585}
1586
925b7673 1587/**
fa9add64
HD
1588 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1589 * @lruvec: mem_cgroup per zone lru vector
1590 * @lru: index of lru list the page is sitting on
b4536f0c 1591 * @zid: zone id of the accounted pages
fa9add64 1592 * @nr_pages: positive when adding or negative when removing
925b7673 1593 *
ca707239 1594 * This function must be called under lru_lock, just before a page is added
07ca7606 1595 * to or just after a page is removed from an lru list.
3f58a829 1596 */
fa9add64 1597void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1598 int zid, int nr_pages)
3f58a829 1599{
ef8f2327 1600 struct mem_cgroup_per_node *mz;
fa9add64 1601 unsigned long *lru_size;
ca707239 1602 long size;
3f58a829
MK
1603
1604 if (mem_cgroup_disabled())
1605 return;
1606
ef8f2327 1607 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1608 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1609
1610 if (nr_pages < 0)
1611 *lru_size += nr_pages;
1612
1613 size = *lru_size;
b4536f0c
MH
1614 if (WARN_ONCE(size < 0,
1615 "%s(%p, %d, %d): lru_size %ld\n",
1616 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1617 VM_BUG_ON(1);
1618 *lru_size = 0;
1619 }
1620
1621 if (nr_pages > 0)
1622 *lru_size += nr_pages;
08e552c6 1623}
544122e5 1624
19942822 1625/**
9d11ea9f 1626 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1627 * @memcg: the memory cgroup
19942822 1628 *
9d11ea9f 1629 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1630 * pages.
19942822 1631 */
c0ff4b85 1632static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1633{
3e32cb2e
JW
1634 unsigned long margin = 0;
1635 unsigned long count;
1636 unsigned long limit;
9d11ea9f 1637
3e32cb2e 1638 count = page_counter_read(&memcg->memory);
bbec2e15 1639 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1640 if (count < limit)
1641 margin = limit - count;
1642
7941d214 1643 if (do_memsw_account()) {
3e32cb2e 1644 count = page_counter_read(&memcg->memsw);
bbec2e15 1645 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1646 if (count < limit)
3e32cb2e 1647 margin = min(margin, limit - count);
cbedbac3
LR
1648 else
1649 margin = 0;
3e32cb2e
JW
1650 }
1651
1652 return margin;
19942822
JW
1653}
1654
32047e2a 1655/*
bdcbb659 1656 * A routine for checking "mem" is under move_account() or not.
32047e2a 1657 *
bdcbb659
QH
1658 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1659 * moving cgroups. This is for waiting at high-memory pressure
1660 * caused by "move".
32047e2a 1661 */
c0ff4b85 1662static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1663{
2bd9bb20
KH
1664 struct mem_cgroup *from;
1665 struct mem_cgroup *to;
4b534334 1666 bool ret = false;
2bd9bb20
KH
1667 /*
1668 * Unlike task_move routines, we access mc.to, mc.from not under
1669 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1670 */
1671 spin_lock(&mc.lock);
1672 from = mc.from;
1673 to = mc.to;
1674 if (!from)
1675 goto unlock;
3e92041d 1676
2314b42d
JW
1677 ret = mem_cgroup_is_descendant(from, memcg) ||
1678 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1679unlock:
1680 spin_unlock(&mc.lock);
4b534334
KH
1681 return ret;
1682}
1683
c0ff4b85 1684static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1685{
1686 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1687 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1688 DEFINE_WAIT(wait);
1689 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1690 /* moving charge context might have finished. */
1691 if (mc.moving_task)
1692 schedule();
1693 finish_wait(&mc.waitq, &wait);
1694 return true;
1695 }
1696 }
1697 return false;
1698}
1699
5f9a4f4a
MS
1700struct memory_stat {
1701 const char *name;
5f9a4f4a
MS
1702 unsigned int idx;
1703};
1704
57b2847d 1705static const struct memory_stat memory_stats[] = {
fff66b79
MS
1706 { "anon", NR_ANON_MAPPED },
1707 { "file", NR_FILE_PAGES },
a8c49af3 1708 { "kernel", MEMCG_KMEM },
fff66b79
MS
1709 { "kernel_stack", NR_KERNEL_STACK_KB },
1710 { "pagetables", NR_PAGETABLE },
ebc97a52 1711 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1712 { "percpu", MEMCG_PERCPU_B },
1713 { "sock", MEMCG_SOCK },
4e5aa1f4 1714 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1715 { "shmem", NR_SHMEM },
f4840ccf
JW
1716#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1717 { "zswap", MEMCG_ZSWAP_B },
1718 { "zswapped", MEMCG_ZSWAPPED },
1719#endif
fff66b79
MS
1720 { "file_mapped", NR_FILE_MAPPED },
1721 { "file_dirty", NR_FILE_DIRTY },
1722 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1723#ifdef CONFIG_SWAP
1724 { "swapcached", NR_SWAPCACHE },
1725#endif
5f9a4f4a 1726#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1727 { "anon_thp", NR_ANON_THPS },
1728 { "file_thp", NR_FILE_THPS },
1729 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1730#endif
fff66b79
MS
1731 { "inactive_anon", NR_INACTIVE_ANON },
1732 { "active_anon", NR_ACTIVE_ANON },
1733 { "inactive_file", NR_INACTIVE_FILE },
1734 { "active_file", NR_ACTIVE_FILE },
1735 { "unevictable", NR_UNEVICTABLE },
1736 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1737 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1738
1739 /* The memory events */
fff66b79
MS
1740 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1741 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1742 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1743 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1744 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1745 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1746 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1747};
1748
ff841a06 1749/* The actual unit of the state item, not the same as the output unit */
fff66b79
MS
1750static int memcg_page_state_unit(int item)
1751{
1752 switch (item) {
1753 case MEMCG_PERCPU_B:
f4840ccf 1754 case MEMCG_ZSWAP_B:
fff66b79
MS
1755 case NR_SLAB_RECLAIMABLE_B:
1756 case NR_SLAB_UNRECLAIMABLE_B:
ff841a06
YA
1757 return 1;
1758 case NR_KERNEL_STACK_KB:
1759 return SZ_1K;
1760 default:
1761 return PAGE_SIZE;
1762 }
1763}
1764
1765/* Translate stat items to the correct unit for memory.stat output */
1766static int memcg_page_state_output_unit(int item)
1767{
1768 /*
1769 * Workingset state is actually in pages, but we export it to userspace
1770 * as a scalar count of events, so special case it here.
1771 */
1772 switch (item) {
fff66b79
MS
1773 case WORKINGSET_REFAULT_ANON:
1774 case WORKINGSET_REFAULT_FILE:
1775 case WORKINGSET_ACTIVATE_ANON:
1776 case WORKINGSET_ACTIVATE_FILE:
1777 case WORKINGSET_RESTORE_ANON:
1778 case WORKINGSET_RESTORE_FILE:
1779 case WORKINGSET_NODERECLAIM:
1780 return 1;
fff66b79 1781 default:
ff841a06 1782 return memcg_page_state_unit(item);
fff66b79
MS
1783 }
1784}
1785
1786static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1787 int item)
1788{
ff841a06
YA
1789 return memcg_page_state(memcg, item) *
1790 memcg_page_state_output_unit(item);
1791}
1792
1793static inline unsigned long memcg_page_state_local_output(
1794 struct mem_cgroup *memcg, int item)
1795{
1796 return memcg_page_state_local(memcg, item) *
1797 memcg_page_state_output_unit(item);
fff66b79
MS
1798}
1799
dddb44ff 1800static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
c8713d0b 1801{
c8713d0b 1802 int i;
71cd3113 1803
c8713d0b
JW
1804 /*
1805 * Provide statistics on the state of the memory subsystem as
1806 * well as cumulative event counters that show past behavior.
1807 *
1808 * This list is ordered following a combination of these gradients:
1809 * 1) generic big picture -> specifics and details
1810 * 2) reflecting userspace activity -> reflecting kernel heuristics
1811 *
1812 * Current memory state:
1813 */
7d7ef0a4 1814 mem_cgroup_flush_stats(memcg);
c8713d0b 1815
5f9a4f4a
MS
1816 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1817 u64 size;
c8713d0b 1818
fff66b79 1819 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5b42360c 1820 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1821
5f9a4f4a 1822 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1823 size += memcg_page_state_output(memcg,
1824 NR_SLAB_RECLAIMABLE_B);
5b42360c 1825 seq_buf_printf(s, "slab %llu\n", size);
5f9a4f4a
MS
1826 }
1827 }
c8713d0b
JW
1828
1829 /* Accumulated memory events */
5b42360c 1830 seq_buf_printf(s, "pgscan %lu\n",
c8713d0b 1831 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1832 memcg_events(memcg, PGSCAN_DIRECT) +
1833 memcg_events(memcg, PGSCAN_KHUGEPAGED));
5b42360c 1834 seq_buf_printf(s, "pgsteal %lu\n",
c8713d0b 1835 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1836 memcg_events(memcg, PGSTEAL_DIRECT) +
1837 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1838
8278f1c7
SB
1839 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1840 if (memcg_vm_event_stat[i] == PGPGIN ||
1841 memcg_vm_event_stat[i] == PGPGOUT)
1842 continue;
1843
5b42360c 1844 seq_buf_printf(s, "%s %lu\n",
673520f8
QZ
1845 vm_event_name(memcg_vm_event_stat[i]),
1846 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1847 }
c8713d0b
JW
1848
1849 /* The above should easily fit into one page */
5b42360c 1850 WARN_ON_ONCE(seq_buf_has_overflowed(s));
c8713d0b 1851}
71cd3113 1852
dddb44ff
YA
1853static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1854
1855static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1856{
1857 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1858 memcg_stat_format(memcg, s);
1859 else
1860 memcg1_stat_format(memcg, s);
1861 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1862}
1863
e222432b 1864/**
f0c867d9 1865 * mem_cgroup_print_oom_context: Print OOM information relevant to
1866 * memory controller.
e222432b
BS
1867 * @memcg: The memory cgroup that went over limit
1868 * @p: Task that is going to be killed
1869 *
1870 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1871 * enabled
1872 */
f0c867d9 1873void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1874{
e222432b
BS
1875 rcu_read_lock();
1876
f0c867d9 1877 if (memcg) {
1878 pr_cont(",oom_memcg=");
1879 pr_cont_cgroup_path(memcg->css.cgroup);
1880 } else
1881 pr_cont(",global_oom");
2415b9f5 1882 if (p) {
f0c867d9 1883 pr_cont(",task_memcg=");
2415b9f5 1884 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1885 }
e222432b 1886 rcu_read_unlock();
f0c867d9 1887}
1888
1889/**
1890 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1891 * memory controller.
1892 * @memcg: The memory cgroup that went over limit
1893 */
1894void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1895{
68aaee14
TH
1896 /* Use static buffer, for the caller is holding oom_lock. */
1897 static char buf[PAGE_SIZE];
5b42360c 1898 struct seq_buf s;
68aaee14
TH
1899
1900 lockdep_assert_held(&oom_lock);
e222432b 1901
3e32cb2e
JW
1902 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1903 K((u64)page_counter_read(&memcg->memory)),
15b42562 1904 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1905 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1906 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1907 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1908 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1909 else {
1910 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1911 K((u64)page_counter_read(&memcg->memsw)),
1912 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1913 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1914 K((u64)page_counter_read(&memcg->kmem)),
1915 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1916 }
c8713d0b
JW
1917
1918 pr_info("Memory cgroup stats for ");
1919 pr_cont_cgroup_path(memcg->css.cgroup);
1920 pr_cont(":");
5b42360c
YA
1921 seq_buf_init(&s, buf, sizeof(buf));
1922 memory_stat_format(memcg, &s);
1923 seq_buf_do_printk(&s, KERN_INFO);
e222432b
BS
1924}
1925
a63d83f4
DR
1926/*
1927 * Return the memory (and swap, if configured) limit for a memcg.
1928 */
bbec2e15 1929unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1930{
8d387a5f
WL
1931 unsigned long max = READ_ONCE(memcg->memory.max);
1932
b94c4e94 1933 if (do_memsw_account()) {
8d387a5f
WL
1934 if (mem_cgroup_swappiness(memcg)) {
1935 /* Calculate swap excess capacity from memsw limit */
1936 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1937
1938 max += min(swap, (unsigned long)total_swap_pages);
1939 }
b94c4e94
JW
1940 } else {
1941 if (mem_cgroup_swappiness(memcg))
1942 max += min(READ_ONCE(memcg->swap.max),
1943 (unsigned long)total_swap_pages);
9a5a8f19 1944 }
bbec2e15 1945 return max;
a63d83f4
DR
1946}
1947
9783aa99
CD
1948unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1949{
1950 return page_counter_read(&memcg->memory);
1951}
1952
b6e6edcf 1953static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1954 int order)
9cbb78bb 1955{
6e0fc46d
DR
1956 struct oom_control oc = {
1957 .zonelist = NULL,
1958 .nodemask = NULL,
2a966b77 1959 .memcg = memcg,
6e0fc46d
DR
1960 .gfp_mask = gfp_mask,
1961 .order = order,
6e0fc46d 1962 };
1378b37d 1963 bool ret = true;
9cbb78bb 1964
7775face
TH
1965 if (mutex_lock_killable(&oom_lock))
1966 return true;
1378b37d
YS
1967
1968 if (mem_cgroup_margin(memcg) >= (1 << order))
1969 goto unlock;
1970
7775face
TH
1971 /*
1972 * A few threads which were not waiting at mutex_lock_killable() can
1973 * fail to bail out. Therefore, check again after holding oom_lock.
1974 */
a4ebf1b6 1975 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1976
1977unlock:
dc56401f 1978 mutex_unlock(&oom_lock);
7c5f64f8 1979 return ret;
9cbb78bb
DR
1980}
1981
0608f43d 1982static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1983 pg_data_t *pgdat,
0608f43d
AM
1984 gfp_t gfp_mask,
1985 unsigned long *total_scanned)
1986{
1987 struct mem_cgroup *victim = NULL;
1988 int total = 0;
1989 int loop = 0;
1990 unsigned long excess;
1991 unsigned long nr_scanned;
1992 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1993 .pgdat = pgdat,
0608f43d
AM
1994 };
1995
3e32cb2e 1996 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1997
1998 while (1) {
1999 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2000 if (!victim) {
2001 loop++;
2002 if (loop >= 2) {
2003 /*
2004 * If we have not been able to reclaim
2005 * anything, it might because there are
2006 * no reclaimable pages under this hierarchy
2007 */
2008 if (!total)
2009 break;
2010 /*
2011 * We want to do more targeted reclaim.
2012 * excess >> 2 is not to excessive so as to
2013 * reclaim too much, nor too less that we keep
2014 * coming back to reclaim from this cgroup
2015 */
2016 if (total >= (excess >> 2) ||
2017 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2018 break;
2019 }
2020 continue;
2021 }
a9dd0a83 2022 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 2023 pgdat, &nr_scanned);
0608f43d 2024 *total_scanned += nr_scanned;
3e32cb2e 2025 if (!soft_limit_excess(root_memcg))
0608f43d 2026 break;
6d61ef40 2027 }
0608f43d
AM
2028 mem_cgroup_iter_break(root_memcg, victim);
2029 return total;
6d61ef40
BS
2030}
2031
0056f4e6
JW
2032#ifdef CONFIG_LOCKDEP
2033static struct lockdep_map memcg_oom_lock_dep_map = {
2034 .name = "memcg_oom_lock",
2035};
2036#endif
2037
fb2a6fc5
JW
2038static DEFINE_SPINLOCK(memcg_oom_lock);
2039
867578cb
KH
2040/*
2041 * Check OOM-Killer is already running under our hierarchy.
2042 * If someone is running, return false.
2043 */
fb2a6fc5 2044static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2045{
79dfdacc 2046 struct mem_cgroup *iter, *failed = NULL;
a636b327 2047
fb2a6fc5
JW
2048 spin_lock(&memcg_oom_lock);
2049
9f3a0d09 2050 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2051 if (iter->oom_lock) {
79dfdacc
MH
2052 /*
2053 * this subtree of our hierarchy is already locked
2054 * so we cannot give a lock.
2055 */
79dfdacc 2056 failed = iter;
9f3a0d09
JW
2057 mem_cgroup_iter_break(memcg, iter);
2058 break;
23751be0
JW
2059 } else
2060 iter->oom_lock = true;
7d74b06f 2061 }
867578cb 2062
fb2a6fc5
JW
2063 if (failed) {
2064 /*
2065 * OK, we failed to lock the whole subtree so we have
2066 * to clean up what we set up to the failing subtree
2067 */
2068 for_each_mem_cgroup_tree(iter, memcg) {
2069 if (iter == failed) {
2070 mem_cgroup_iter_break(memcg, iter);
2071 break;
2072 }
2073 iter->oom_lock = false;
79dfdacc 2074 }
0056f4e6
JW
2075 } else
2076 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2077
2078 spin_unlock(&memcg_oom_lock);
2079
2080 return !failed;
a636b327 2081}
0b7f569e 2082
fb2a6fc5 2083static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2084{
7d74b06f
KH
2085 struct mem_cgroup *iter;
2086
fb2a6fc5 2087 spin_lock(&memcg_oom_lock);
5facae4f 2088 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 2089 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2090 iter->oom_lock = false;
fb2a6fc5 2091 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2092}
2093
c0ff4b85 2094static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2095{
2096 struct mem_cgroup *iter;
2097
c2b42d3c 2098 spin_lock(&memcg_oom_lock);
c0ff4b85 2099 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
2100 iter->under_oom++;
2101 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2102}
2103
c0ff4b85 2104static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2105{
2106 struct mem_cgroup *iter;
2107
867578cb 2108 /*
f0953a1b 2109 * Be careful about under_oom underflows because a child memcg
7a52d4d8 2110 * could have been added after mem_cgroup_mark_under_oom.
867578cb 2111 */
c2b42d3c 2112 spin_lock(&memcg_oom_lock);
c0ff4b85 2113 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
2114 if (iter->under_oom > 0)
2115 iter->under_oom--;
2116 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
2117}
2118
867578cb
KH
2119static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2120
dc98df5a 2121struct oom_wait_info {
d79154bb 2122 struct mem_cgroup *memcg;
ac6424b9 2123 wait_queue_entry_t wait;
dc98df5a
KH
2124};
2125
ac6424b9 2126static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
2127 unsigned mode, int sync, void *arg)
2128{
d79154bb
HD
2129 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2130 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2131 struct oom_wait_info *oom_wait_info;
2132
2133 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2134 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2135
2314b42d
JW
2136 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
2137 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 2138 return 0;
dc98df5a
KH
2139 return autoremove_wake_function(wait, mode, sync, arg);
2140}
2141
c0ff4b85 2142static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2143{
c2b42d3c
TH
2144 /*
2145 * For the following lockless ->under_oom test, the only required
2146 * guarantee is that it must see the state asserted by an OOM when
2147 * this function is called as a result of userland actions
2148 * triggered by the notification of the OOM. This is trivially
2149 * achieved by invoking mem_cgroup_mark_under_oom() before
2150 * triggering notification.
2151 */
2152 if (memcg && memcg->under_oom)
f4b90b70 2153 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
2154}
2155
becdf89d
SB
2156/*
2157 * Returns true if successfully killed one or more processes. Though in some
2158 * corner cases it can return true even without killing any process.
2159 */
2160static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2161{
becdf89d 2162 bool locked, ret;
7056d3a3 2163
29ef680a 2164 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 2165 return false;
29ef680a 2166
7a1adfdd
RG
2167 memcg_memory_event(memcg, MEMCG_OOM);
2168
867578cb 2169 /*
49426420
JW
2170 * We are in the middle of the charge context here, so we
2171 * don't want to block when potentially sitting on a callstack
2172 * that holds all kinds of filesystem and mm locks.
2173 *
29ef680a
MH
2174 * cgroup1 allows disabling the OOM killer and waiting for outside
2175 * handling until the charge can succeed; remember the context and put
2176 * the task to sleep at the end of the page fault when all locks are
2177 * released.
49426420 2178 *
29ef680a
MH
2179 * On the other hand, in-kernel OOM killer allows for an async victim
2180 * memory reclaim (oom_reaper) and that means that we are not solely
2181 * relying on the oom victim to make a forward progress and we can
2182 * invoke the oom killer here.
2183 *
2184 * Please note that mem_cgroup_out_of_memory might fail to find a
2185 * victim and then we have to bail out from the charge path.
867578cb 2186 */
17c56de6 2187 if (READ_ONCE(memcg->oom_kill_disable)) {
becdf89d
SB
2188 if (current->in_user_fault) {
2189 css_get(&memcg->css);
2190 current->memcg_in_oom = memcg;
becdf89d
SB
2191 }
2192 return false;
29ef680a
MH
2193 }
2194
7056d3a3
MH
2195 mem_cgroup_mark_under_oom(memcg);
2196
2197 locked = mem_cgroup_oom_trylock(memcg);
2198
2199 if (locked)
2200 mem_cgroup_oom_notify(memcg);
2201
2202 mem_cgroup_unmark_under_oom(memcg);
becdf89d 2203 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
2204
2205 if (locked)
2206 mem_cgroup_oom_unlock(memcg);
29ef680a 2207
7056d3a3 2208 return ret;
3812c8c8
JW
2209}
2210
2211/**
2212 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2213 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2214 *
49426420
JW
2215 * This has to be called at the end of a page fault if the memcg OOM
2216 * handler was enabled.
3812c8c8 2217 *
49426420 2218 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2219 * sleep on a waitqueue until the userspace task resolves the
2220 * situation. Sleeping directly in the charge context with all kinds
2221 * of locks held is not a good idea, instead we remember an OOM state
2222 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2223 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2224 *
2225 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2226 * completed, %false otherwise.
3812c8c8 2227 */
49426420 2228bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2229{
626ebc41 2230 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2231 struct oom_wait_info owait;
49426420 2232 bool locked;
3812c8c8
JW
2233
2234 /* OOM is global, do not handle */
3812c8c8 2235 if (!memcg)
49426420 2236 return false;
3812c8c8 2237
7c5f64f8 2238 if (!handle)
49426420 2239 goto cleanup;
3812c8c8
JW
2240
2241 owait.memcg = memcg;
2242 owait.wait.flags = 0;
2243 owait.wait.func = memcg_oom_wake_function;
2244 owait.wait.private = current;
2055da97 2245 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2246
3812c8c8 2247 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2248 mem_cgroup_mark_under_oom(memcg);
2249
2250 locked = mem_cgroup_oom_trylock(memcg);
2251
2252 if (locked)
2253 mem_cgroup_oom_notify(memcg);
2254
857f2139
HX
2255 schedule();
2256 mem_cgroup_unmark_under_oom(memcg);
2257 finish_wait(&memcg_oom_waitq, &owait.wait);
49426420 2258
18b1d18b 2259 if (locked)
fb2a6fc5 2260 mem_cgroup_oom_unlock(memcg);
49426420 2261cleanup:
626ebc41 2262 current->memcg_in_oom = NULL;
3812c8c8 2263 css_put(&memcg->css);
867578cb 2264 return true;
0b7f569e
KH
2265}
2266
3d8b38eb
RG
2267/**
2268 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2269 * @victim: task to be killed by the OOM killer
2270 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2271 *
2272 * Returns a pointer to a memory cgroup, which has to be cleaned up
2273 * by killing all belonging OOM-killable tasks.
2274 *
2275 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2276 */
2277struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2278 struct mem_cgroup *oom_domain)
2279{
2280 struct mem_cgroup *oom_group = NULL;
2281 struct mem_cgroup *memcg;
2282
2283 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2284 return NULL;
2285
2286 if (!oom_domain)
2287 oom_domain = root_mem_cgroup;
2288
2289 rcu_read_lock();
2290
2291 memcg = mem_cgroup_from_task(victim);
7848ed62 2292 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2293 goto out;
2294
48fe267c
RG
2295 /*
2296 * If the victim task has been asynchronously moved to a different
2297 * memory cgroup, we might end up killing tasks outside oom_domain.
2298 * In this case it's better to ignore memory.group.oom.
2299 */
2300 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2301 goto out;
2302
3d8b38eb
RG
2303 /*
2304 * Traverse the memory cgroup hierarchy from the victim task's
2305 * cgroup up to the OOMing cgroup (or root) to find the
2306 * highest-level memory cgroup with oom.group set.
2307 */
2308 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
eaf7b66b 2309 if (READ_ONCE(memcg->oom_group))
3d8b38eb
RG
2310 oom_group = memcg;
2311
2312 if (memcg == oom_domain)
2313 break;
2314 }
2315
2316 if (oom_group)
2317 css_get(&oom_group->css);
2318out:
2319 rcu_read_unlock();
2320
2321 return oom_group;
2322}
2323
2324void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2325{
2326 pr_info("Tasks in ");
2327 pr_cont_cgroup_path(memcg->css.cgroup);
2328 pr_cont(" are going to be killed due to memory.oom.group set\n");
2329}
2330
d7365e78 2331/**
f70ad448
MWO
2332 * folio_memcg_lock - Bind a folio to its memcg.
2333 * @folio: The folio.
32047e2a 2334 *
f70ad448 2335 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2336 * another cgroup.
2337 *
f70ad448
MWO
2338 * It ensures lifetime of the bound memcg. The caller is responsible
2339 * for the lifetime of the folio.
d69b042f 2340 */
f70ad448 2341void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2342{
2343 struct mem_cgroup *memcg;
6de22619 2344 unsigned long flags;
89c06bd5 2345
6de22619
JW
2346 /*
2347 * The RCU lock is held throughout the transaction. The fast
2348 * path can get away without acquiring the memcg->move_lock
2349 * because page moving starts with an RCU grace period.
739f79fc 2350 */
d7365e78
JW
2351 rcu_read_lock();
2352
2353 if (mem_cgroup_disabled())
1c824a68 2354 return;
89c06bd5 2355again:
f70ad448 2356 memcg = folio_memcg(folio);
29833315 2357 if (unlikely(!memcg))
1c824a68 2358 return;
d7365e78 2359
20ad50d6
AS
2360#ifdef CONFIG_PROVE_LOCKING
2361 local_irq_save(flags);
2362 might_lock(&memcg->move_lock);
2363 local_irq_restore(flags);
2364#endif
2365
bdcbb659 2366 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2367 return;
89c06bd5 2368
6de22619 2369 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2370 if (memcg != folio_memcg(folio)) {
6de22619 2371 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2372 goto again;
2373 }
6de22619
JW
2374
2375 /*
1c824a68
JW
2376 * When charge migration first begins, we can have multiple
2377 * critical sections holding the fast-path RCU lock and one
2378 * holding the slowpath move_lock. Track the task who has the
6c77b607 2379 * move_lock for folio_memcg_unlock().
6de22619
JW
2380 */
2381 memcg->move_lock_task = current;
2382 memcg->move_lock_flags = flags;
89c06bd5 2383}
f70ad448 2384
f70ad448 2385static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2386{
6de22619
JW
2387 if (memcg && memcg->move_lock_task == current) {
2388 unsigned long flags = memcg->move_lock_flags;
2389
2390 memcg->move_lock_task = NULL;
2391 memcg->move_lock_flags = 0;
2392
2393 spin_unlock_irqrestore(&memcg->move_lock, flags);
2394 }
89c06bd5 2395
d7365e78 2396 rcu_read_unlock();
89c06bd5 2397}
739f79fc
JW
2398
2399/**
f70ad448
MWO
2400 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2401 * @folio: The folio.
2402 *
2403 * This releases the binding created by folio_memcg_lock(). This does
2404 * not change the accounting of this folio to its memcg, but it does
2405 * permit others to change it.
739f79fc 2406 */
f70ad448 2407void folio_memcg_unlock(struct folio *folio)
739f79fc 2408{
f70ad448
MWO
2409 __folio_memcg_unlock(folio_memcg(folio));
2410}
9da7b521 2411
fead2b86 2412struct memcg_stock_pcp {
56751146 2413 local_lock_t stock_lock;
fead2b86
MH
2414 struct mem_cgroup *cached; /* this never be root cgroup */
2415 unsigned int nr_pages;
2416
bf4f0599
RG
2417#ifdef CONFIG_MEMCG_KMEM
2418 struct obj_cgroup *cached_objcg;
68ac5b3c 2419 struct pglist_data *cached_pgdat;
bf4f0599 2420 unsigned int nr_bytes;
68ac5b3c
WL
2421 int nr_slab_reclaimable_b;
2422 int nr_slab_unreclaimable_b;
bf4f0599
RG
2423#endif
2424
cdec2e42 2425 struct work_struct work;
26fe6168 2426 unsigned long flags;
a0db00fc 2427#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2428};
56751146
SAS
2429static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2430 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2431};
9f50fad6 2432static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2433
bf4f0599 2434#ifdef CONFIG_MEMCG_KMEM
56751146 2435static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2436static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2437 struct mem_cgroup *root_memcg);
a8c49af3 2438static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2439
2440#else
56751146 2441static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2442{
56751146 2443 return NULL;
bf4f0599
RG
2444}
2445static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2446 struct mem_cgroup *root_memcg)
2447{
2448 return false;
2449}
a8c49af3
YA
2450static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2451{
2452}
bf4f0599
RG
2453#endif
2454
a0956d54
SS
2455/**
2456 * consume_stock: Try to consume stocked charge on this cpu.
2457 * @memcg: memcg to consume from.
2458 * @nr_pages: how many pages to charge.
2459 *
2460 * The charges will only happen if @memcg matches the current cpu's memcg
2461 * stock, and at least @nr_pages are available in that stock. Failure to
2462 * service an allocation will refill the stock.
2463 *
2464 * returns true if successful, false otherwise.
cdec2e42 2465 */
a0956d54 2466static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2467{
2468 struct memcg_stock_pcp *stock;
1872b3bc 2469 unsigned int stock_pages;
db2ba40c 2470 unsigned long flags;
3e32cb2e 2471 bool ret = false;
cdec2e42 2472
a983b5eb 2473 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2474 return ret;
a0956d54 2475
56751146 2476 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2477
2478 stock = this_cpu_ptr(&memcg_stock);
1872b3bc
BL
2479 stock_pages = READ_ONCE(stock->nr_pages);
2480 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
2481 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
3e32cb2e
JW
2482 ret = true;
2483 }
db2ba40c 2484
56751146 2485 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2486
cdec2e42
KH
2487 return ret;
2488}
2489
2490/*
3e32cb2e 2491 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2492 */
2493static void drain_stock(struct memcg_stock_pcp *stock)
2494{
1872b3bc 2495 unsigned int stock_pages = READ_ONCE(stock->nr_pages);
f785a8f2 2496 struct mem_cgroup *old = READ_ONCE(stock->cached);
cdec2e42 2497
1a3e1f40
JW
2498 if (!old)
2499 return;
2500
1872b3bc
BL
2501 if (stock_pages) {
2502 page_counter_uncharge(&old->memory, stock_pages);
7941d214 2503 if (do_memsw_account())
1872b3bc
BL
2504 page_counter_uncharge(&old->memsw, stock_pages);
2505
2506 WRITE_ONCE(stock->nr_pages, 0);
cdec2e42 2507 }
1a3e1f40
JW
2508
2509 css_put(&old->css);
f785a8f2 2510 WRITE_ONCE(stock->cached, NULL);
cdec2e42
KH
2511}
2512
cdec2e42
KH
2513static void drain_local_stock(struct work_struct *dummy)
2514{
db2ba40c 2515 struct memcg_stock_pcp *stock;
56751146 2516 struct obj_cgroup *old = NULL;
db2ba40c
JW
2517 unsigned long flags;
2518
72f0184c 2519 /*
5c49cf9a
MH
2520 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2521 * drain_stock races is that we always operate on local CPU stock
2522 * here with IRQ disabled
72f0184c 2523 */
56751146 2524 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2525
2526 stock = this_cpu_ptr(&memcg_stock);
56751146 2527 old = drain_obj_stock(stock);
cdec2e42 2528 drain_stock(stock);
26fe6168 2529 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2530
56751146 2531 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
91b71e78 2532 obj_cgroup_put(old);
cdec2e42
KH
2533}
2534
2535/*
3e32cb2e 2536 * Cache charges(val) to local per_cpu area.
320cc51d 2537 * This will be consumed by consume_stock() function, later.
cdec2e42 2538 */
af9a3b69 2539static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2540{
db2ba40c 2541 struct memcg_stock_pcp *stock;
1872b3bc 2542 unsigned int stock_pages;
cdec2e42 2543
db2ba40c 2544 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2545 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
cdec2e42 2546 drain_stock(stock);
1a3e1f40 2547 css_get(&memcg->css);
f785a8f2 2548 WRITE_ONCE(stock->cached, memcg);
cdec2e42 2549 }
1872b3bc
BL
2550 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
2551 WRITE_ONCE(stock->nr_pages, stock_pages);
db2ba40c 2552
1872b3bc 2553 if (stock_pages > MEMCG_CHARGE_BATCH)
475d0487 2554 drain_stock(stock);
af9a3b69
JW
2555}
2556
2557static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2558{
2559 unsigned long flags;
475d0487 2560
56751146 2561 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2562 __refill_stock(memcg, nr_pages);
56751146 2563 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2564}
2565
2566/*
c0ff4b85 2567 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2568 * of the hierarchy under it.
cdec2e42 2569 */
6d3d6aa2 2570static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2571{
26fe6168 2572 int cpu, curcpu;
d38144b7 2573
6d3d6aa2
JW
2574 /* If someone's already draining, avoid adding running more workers. */
2575 if (!mutex_trylock(&percpu_charge_mutex))
2576 return;
72f0184c
MH
2577 /*
2578 * Notify other cpus that system-wide "drain" is running
2579 * We do not care about races with the cpu hotplug because cpu down
2580 * as well as workers from this path always operate on the local
2581 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2582 */
0790ed62
SAS
2583 migrate_disable();
2584 curcpu = smp_processor_id();
cdec2e42
KH
2585 for_each_online_cpu(cpu) {
2586 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2587 struct mem_cgroup *memcg;
e1a366be 2588 bool flush = false;
26fe6168 2589
e1a366be 2590 rcu_read_lock();
f785a8f2 2591 memcg = READ_ONCE(stock->cached);
1872b3bc 2592 if (memcg && READ_ONCE(stock->nr_pages) &&
e1a366be
RG
2593 mem_cgroup_is_descendant(memcg, root_memcg))
2594 flush = true;
27fb0956 2595 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2596 flush = true;
e1a366be
RG
2597 rcu_read_unlock();
2598
2599 if (flush &&
2600 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2601 if (cpu == curcpu)
2602 drain_local_stock(&stock->work);
6a792697 2603 else if (!cpu_is_isolated(cpu))
d1a05b69
MH
2604 schedule_work_on(cpu, &stock->work);
2605 }
cdec2e42 2606 }
0790ed62 2607 migrate_enable();
9f50fad6 2608 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2609}
2610
2cd21c89
JW
2611static int memcg_hotplug_cpu_dead(unsigned int cpu)
2612{
2613 struct memcg_stock_pcp *stock;
a3d4c05a 2614
2cd21c89
JW
2615 stock = &per_cpu(memcg_stock, cpu);
2616 drain_stock(stock);
a3d4c05a 2617
308167fc 2618 return 0;
cdec2e42
KH
2619}
2620
b3ff9291
CD
2621static unsigned long reclaim_high(struct mem_cgroup *memcg,
2622 unsigned int nr_pages,
2623 gfp_t gfp_mask)
f7e1cb6e 2624{
b3ff9291
CD
2625 unsigned long nr_reclaimed = 0;
2626
f7e1cb6e 2627 do {
e22c6ed9
JW
2628 unsigned long pflags;
2629
d1663a90
JK
2630 if (page_counter_read(&memcg->memory) <=
2631 READ_ONCE(memcg->memory.high))
f7e1cb6e 2632 continue;
e22c6ed9 2633
e27be240 2634 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2635
2636 psi_memstall_enter(&pflags);
b3ff9291 2637 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2638 gfp_mask,
55ab834a 2639 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2640 psi_memstall_leave(&pflags);
4bf17307
CD
2641 } while ((memcg = parent_mem_cgroup(memcg)) &&
2642 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2643
2644 return nr_reclaimed;
f7e1cb6e
JW
2645}
2646
2647static void high_work_func(struct work_struct *work)
2648{
2649 struct mem_cgroup *memcg;
2650
2651 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2652 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2653}
2654
0e4b01df
CD
2655/*
2656 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2657 * enough to still cause a significant slowdown in most cases, while still
2658 * allowing diagnostics and tracing to proceed without becoming stuck.
2659 */
2660#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2661
2662/*
2663 * When calculating the delay, we use these either side of the exponentiation to
2664 * maintain precision and scale to a reasonable number of jiffies (see the table
2665 * below.
2666 *
2667 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2668 * overage ratio to a delay.
ac5ddd0f 2669 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2670 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2671 * to produce a reasonable delay curve.
2672 *
2673 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2674 * reasonable delay curve compared to precision-adjusted overage, not
2675 * penalising heavily at first, but still making sure that growth beyond the
2676 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2677 * example, with a high of 100 megabytes:
2678 *
2679 * +-------+------------------------+
2680 * | usage | time to allocate in ms |
2681 * +-------+------------------------+
2682 * | 100M | 0 |
2683 * | 101M | 6 |
2684 * | 102M | 25 |
2685 * | 103M | 57 |
2686 * | 104M | 102 |
2687 * | 105M | 159 |
2688 * | 106M | 230 |
2689 * | 107M | 313 |
2690 * | 108M | 409 |
2691 * | 109M | 518 |
2692 * | 110M | 639 |
2693 * | 111M | 774 |
2694 * | 112M | 921 |
2695 * | 113M | 1081 |
2696 * | 114M | 1254 |
2697 * | 115M | 1439 |
2698 * | 116M | 1638 |
2699 * | 117M | 1849 |
2700 * | 118M | 2000 |
2701 * | 119M | 2000 |
2702 * | 120M | 2000 |
2703 * +-------+------------------------+
2704 */
2705 #define MEMCG_DELAY_PRECISION_SHIFT 20
2706 #define MEMCG_DELAY_SCALING_SHIFT 14
2707
8a5dbc65 2708static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2709{
8a5dbc65 2710 u64 overage;
b23afb93 2711
8a5dbc65
JK
2712 if (usage <= high)
2713 return 0;
e26733e0 2714
8a5dbc65
JK
2715 /*
2716 * Prevent division by 0 in overage calculation by acting as if
2717 * it was a threshold of 1 page
2718 */
2719 high = max(high, 1UL);
9b8b1754 2720
8a5dbc65
JK
2721 overage = usage - high;
2722 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2723 return div64_u64(overage, high);
2724}
e26733e0 2725
8a5dbc65
JK
2726static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2727{
2728 u64 overage, max_overage = 0;
e26733e0 2729
8a5dbc65
JK
2730 do {
2731 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2732 READ_ONCE(memcg->memory.high));
8a5dbc65 2733 max_overage = max(overage, max_overage);
e26733e0
CD
2734 } while ((memcg = parent_mem_cgroup(memcg)) &&
2735 !mem_cgroup_is_root(memcg));
2736
8a5dbc65
JK
2737 return max_overage;
2738}
2739
4b82ab4f
JK
2740static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2741{
2742 u64 overage, max_overage = 0;
2743
2744 do {
2745 overage = calculate_overage(page_counter_read(&memcg->swap),
2746 READ_ONCE(memcg->swap.high));
2747 if (overage)
2748 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2749 max_overage = max(overage, max_overage);
2750 } while ((memcg = parent_mem_cgroup(memcg)) &&
2751 !mem_cgroup_is_root(memcg));
2752
2753 return max_overage;
2754}
2755
8a5dbc65
JK
2756/*
2757 * Get the number of jiffies that we should penalise a mischievous cgroup which
2758 * is exceeding its memory.high by checking both it and its ancestors.
2759 */
2760static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2761 unsigned int nr_pages,
2762 u64 max_overage)
2763{
2764 unsigned long penalty_jiffies;
2765
e26733e0
CD
2766 if (!max_overage)
2767 return 0;
0e4b01df
CD
2768
2769 /*
0e4b01df
CD
2770 * We use overage compared to memory.high to calculate the number of
2771 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2772 * fairly lenient on small overages, and increasingly harsh when the
2773 * memcg in question makes it clear that it has no intention of stopping
2774 * its crazy behaviour, so we exponentially increase the delay based on
2775 * overage amount.
2776 */
e26733e0
CD
2777 penalty_jiffies = max_overage * max_overage * HZ;
2778 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2779 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2780
2781 /*
2782 * Factor in the task's own contribution to the overage, such that four
2783 * N-sized allocations are throttled approximately the same as one
2784 * 4N-sized allocation.
2785 *
2786 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2787 * larger the current charge patch is than that.
2788 */
ff144e69 2789 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2790}
2791
2792/*
63fd3270
JW
2793 * Reclaims memory over the high limit. Called directly from
2794 * try_charge() (context permitting), as well as from the userland
2795 * return path where reclaim is always able to block.
e26733e0 2796 */
9ea9cb00 2797void mem_cgroup_handle_over_high(gfp_t gfp_mask)
e26733e0
CD
2798{
2799 unsigned long penalty_jiffies;
2800 unsigned long pflags;
b3ff9291 2801 unsigned long nr_reclaimed;
e26733e0 2802 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2803 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2804 struct mem_cgroup *memcg;
b3ff9291 2805 bool in_retry = false;
e26733e0
CD
2806
2807 if (likely(!nr_pages))
2808 return;
2809
2810 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2811 current->memcg_nr_pages_over_high = 0;
2812
b3ff9291 2813retry_reclaim:
63fd3270
JW
2814 /*
2815 * Bail if the task is already exiting. Unlike memory.max,
2816 * memory.high enforcement isn't as strict, and there is no
2817 * OOM killer involved, which means the excess could already
2818 * be much bigger (and still growing) than it could for
2819 * memory.max; the dying task could get stuck in fruitless
2820 * reclaim for a long time, which isn't desirable.
2821 */
2822 if (task_is_dying())
2823 goto out;
2824
b3ff9291
CD
2825 /*
2826 * The allocating task should reclaim at least the batch size, but for
2827 * subsequent retries we only want to do what's necessary to prevent oom
2828 * or breaching resource isolation.
2829 *
2830 * This is distinct from memory.max or page allocator behaviour because
2831 * memory.high is currently batched, whereas memory.max and the page
2832 * allocator run every time an allocation is made.
2833 */
2834 nr_reclaimed = reclaim_high(memcg,
2835 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
9ea9cb00 2836 gfp_mask);
b3ff9291 2837
e26733e0
CD
2838 /*
2839 * memory.high is breached and reclaim is unable to keep up. Throttle
2840 * allocators proactively to slow down excessive growth.
2841 */
8a5dbc65
JK
2842 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2843 mem_find_max_overage(memcg));
0e4b01df 2844
4b82ab4f
JK
2845 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2846 swap_find_max_overage(memcg));
2847
ff144e69
JK
2848 /*
2849 * Clamp the max delay per usermode return so as to still keep the
2850 * application moving forwards and also permit diagnostics, albeit
2851 * extremely slowly.
2852 */
2853 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2854
0e4b01df
CD
2855 /*
2856 * Don't sleep if the amount of jiffies this memcg owes us is so low
2857 * that it's not even worth doing, in an attempt to be nice to those who
2858 * go only a small amount over their memory.high value and maybe haven't
2859 * been aggressively reclaimed enough yet.
2860 */
2861 if (penalty_jiffies <= HZ / 100)
2862 goto out;
2863
b3ff9291
CD
2864 /*
2865 * If reclaim is making forward progress but we're still over
2866 * memory.high, we want to encourage that rather than doing allocator
2867 * throttling.
2868 */
2869 if (nr_reclaimed || nr_retries--) {
2870 in_retry = true;
2871 goto retry_reclaim;
2872 }
2873
0e4b01df 2874 /*
63fd3270
JW
2875 * Reclaim didn't manage to push usage below the limit, slow
2876 * this allocating task down.
2877 *
0e4b01df
CD
2878 * If we exit early, we're guaranteed to die (since
2879 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2880 * need to account for any ill-begotten jiffies to pay them off later.
2881 */
2882 psi_memstall_enter(&pflags);
2883 schedule_timeout_killable(penalty_jiffies);
2884 psi_memstall_leave(&pflags);
2885
2886out:
2887 css_put(&memcg->css);
b23afb93
TH
2888}
2889
c5c8b16b
MS
2890static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2891 unsigned int nr_pages)
8a9f3ccd 2892{
a983b5eb 2893 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2894 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2895 struct mem_cgroup *mem_over_limit;
3e32cb2e 2896 struct page_counter *counter;
6539cc05 2897 unsigned long nr_reclaimed;
a4ebf1b6 2898 bool passed_oom = false;
73b73bac 2899 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2900 bool drained = false;
d6e103a7 2901 bool raised_max_event = false;
e22c6ed9 2902 unsigned long pflags;
a636b327 2903
6539cc05 2904retry:
b6b6cc72 2905 if (consume_stock(memcg, nr_pages))
10d53c74 2906 return 0;
8a9f3ccd 2907
7941d214 2908 if (!do_memsw_account() ||
6071ca52
JW
2909 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2910 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2911 goto done_restock;
7941d214 2912 if (do_memsw_account())
3e32cb2e
JW
2913 page_counter_uncharge(&memcg->memsw, batch);
2914 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2915 } else {
3e32cb2e 2916 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2917 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2918 }
7a81b88c 2919
6539cc05
JW
2920 if (batch > nr_pages) {
2921 batch = nr_pages;
2922 goto retry;
2923 }
6d61ef40 2924
89a28483
JW
2925 /*
2926 * Prevent unbounded recursion when reclaim operations need to
2927 * allocate memory. This might exceed the limits temporarily,
2928 * but we prefer facilitating memory reclaim and getting back
2929 * under the limit over triggering OOM kills in these cases.
2930 */
2931 if (unlikely(current->flags & PF_MEMALLOC))
2932 goto force;
2933
06b078fc
JW
2934 if (unlikely(task_in_memcg_oom(current)))
2935 goto nomem;
2936
d0164adc 2937 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2938 goto nomem;
4b534334 2939
e27be240 2940 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2941 raised_max_event = true;
241994ed 2942
e22c6ed9 2943 psi_memstall_enter(&pflags);
b70a2a21 2944 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
55ab834a 2945 gfp_mask, reclaim_options);
e22c6ed9 2946 psi_memstall_leave(&pflags);
6539cc05 2947
61e02c74 2948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2949 goto retry;
28c34c29 2950
b70a2a21 2951 if (!drained) {
6d3d6aa2 2952 drain_all_stock(mem_over_limit);
b70a2a21
JW
2953 drained = true;
2954 goto retry;
2955 }
2956
28c34c29
JW
2957 if (gfp_mask & __GFP_NORETRY)
2958 goto nomem;
6539cc05
JW
2959 /*
2960 * Even though the limit is exceeded at this point, reclaim
2961 * may have been able to free some pages. Retry the charge
2962 * before killing the task.
2963 *
2964 * Only for regular pages, though: huge pages are rather
2965 * unlikely to succeed so close to the limit, and we fall back
2966 * to regular pages anyway in case of failure.
2967 */
61e02c74 2968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2969 goto retry;
2970 /*
2971 * At task move, charge accounts can be doubly counted. So, it's
2972 * better to wait until the end of task_move if something is going on.
2973 */
2974 if (mem_cgroup_wait_acct_move(mem_over_limit))
2975 goto retry;
2976
9b130619
JW
2977 if (nr_retries--)
2978 goto retry;
2979
38d38493 2980 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2981 goto nomem;
2982
a4ebf1b6
VA
2983 /* Avoid endless loop for tasks bypassed by the oom killer */
2984 if (passed_oom && task_is_dying())
2985 goto nomem;
6539cc05 2986
29ef680a
MH
2987 /*
2988 * keep retrying as long as the memcg oom killer is able to make
2989 * a forward progress or bypass the charge if the oom killer
2990 * couldn't make any progress.
2991 */
becdf89d
SB
2992 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2993 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2994 passed_oom = true;
d977aa93 2995 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2996 goto retry;
29ef680a 2997 }
7a81b88c 2998nomem:
1461e8c2
SB
2999 /*
3000 * Memcg doesn't have a dedicated reserve for atomic
3001 * allocations. But like the global atomic pool, we need to
3002 * put the burden of reclaim on regular allocation requests
3003 * and let these go through as privileged allocations.
3004 */
3005 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 3006 return -ENOMEM;
10d53c74 3007force:
d6e103a7
RG
3008 /*
3009 * If the allocation has to be enforced, don't forget to raise
3010 * a MEMCG_MAX event.
3011 */
3012 if (!raised_max_event)
3013 memcg_memory_event(mem_over_limit, MEMCG_MAX);
3014
10d53c74
TH
3015 /*
3016 * The allocation either can't fail or will lead to more memory
3017 * being freed very soon. Allow memory usage go over the limit
3018 * temporarily by force charging it.
3019 */
3020 page_counter_charge(&memcg->memory, nr_pages);
7941d214 3021 if (do_memsw_account())
10d53c74 3022 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
3023
3024 return 0;
6539cc05
JW
3025
3026done_restock:
3027 if (batch > nr_pages)
3028 refill_stock(memcg, batch - nr_pages);
b23afb93 3029
241994ed 3030 /*
b23afb93
TH
3031 * If the hierarchy is above the normal consumption range, schedule
3032 * reclaim on returning to userland. We can perform reclaim here
71baba4b 3033 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
3034 * GFP_KERNEL can consistently be used during reclaim. @memcg is
3035 * not recorded as it most likely matches current's and won't
3036 * change in the meantime. As high limit is checked again before
3037 * reclaim, the cost of mismatch is negligible.
241994ed
JW
3038 */
3039 do {
4b82ab4f
JK
3040 bool mem_high, swap_high;
3041
3042 mem_high = page_counter_read(&memcg->memory) >
3043 READ_ONCE(memcg->memory.high);
3044 swap_high = page_counter_read(&memcg->swap) >
3045 READ_ONCE(memcg->swap.high);
3046
3047 /* Don't bother a random interrupted task */
086f694a 3048 if (!in_task()) {
4b82ab4f 3049 if (mem_high) {
f7e1cb6e
JW
3050 schedule_work(&memcg->high_work);
3051 break;
3052 }
4b82ab4f
JK
3053 continue;
3054 }
3055
3056 if (mem_high || swap_high) {
3057 /*
3058 * The allocating tasks in this cgroup will need to do
3059 * reclaim or be throttled to prevent further growth
3060 * of the memory or swap footprints.
3061 *
3062 * Target some best-effort fairness between the tasks,
3063 * and distribute reclaim work and delay penalties
3064 * based on how much each task is actually allocating.
3065 */
9516a18a 3066 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
3067 set_notify_resume(current);
3068 break;
3069 }
241994ed 3070 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 3071
63fd3270
JW
3072 /*
3073 * Reclaim is set up above to be called from the userland
3074 * return path. But also attempt synchronous reclaim to avoid
3075 * excessive overrun while the task is still inside the
3076 * kernel. If this is successful, the return path will see it
3077 * when it rechecks the overage and simply bail out.
3078 */
c9afe31e
SB
3079 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
3080 !(current->flags & PF_MEMALLOC) &&
63fd3270 3081 gfpflags_allow_blocking(gfp_mask))
9ea9cb00 3082 mem_cgroup_handle_over_high(gfp_mask);
10d53c74 3083 return 0;
7a81b88c 3084}
8a9f3ccd 3085
c5c8b16b
MS
3086static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
3087 unsigned int nr_pages)
3088{
3089 if (mem_cgroup_is_root(memcg))
3090 return 0;
3091
3092 return try_charge_memcg(memcg, gfp_mask, nr_pages);
3093}
3094
4b569387
NP
3095/**
3096 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
3097 * @memcg: memcg previously charged.
3098 * @nr_pages: number of pages previously charged.
3099 */
3100void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 3101{
ce00a967
JW
3102 if (mem_cgroup_is_root(memcg))
3103 return;
3104
3e32cb2e 3105 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 3106 if (do_memsw_account())
3e32cb2e 3107 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
3108}
3109
118f2875 3110static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 3111{
118f2875 3112 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 3113 /*
a5eb011a 3114 * Any of the following ensures page's memcg stability:
0a31bc97 3115 *
a0b5b414
JW
3116 * - the page lock
3117 * - LRU isolation
6c77b607 3118 * - folio_memcg_lock()
a0b5b414 3119 * - exclusive reference
018ee47f 3120 * - mem_cgroup_trylock_pages()
0a31bc97 3121 */
118f2875 3122 folio->memcg_data = (unsigned long)memcg;
7a81b88c 3123}
66e1707b 3124
4b569387
NP
3125/**
3126 * mem_cgroup_commit_charge - commit a previously successful try_charge().
3127 * @folio: folio to commit the charge to.
3128 * @memcg: memcg previously charged.
3129 */
3130void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
3131{
3132 css_get(&memcg->css);
3133 commit_charge(folio, memcg);
3134
3135 local_irq_disable();
3136 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
3137 memcg_check_events(memcg, folio_nid(folio));
3138 local_irq_enable();
3139}
3140
84c07d11 3141#ifdef CONFIG_MEMCG_KMEM
41eb5df1 3142
91882c16
SB
3143static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
3144 struct pglist_data *pgdat,
3145 enum node_stat_item idx, int nr)
a7ebf564
WL
3146{
3147 struct mem_cgroup *memcg;
3148 struct lruvec *lruvec;
3149
3150 rcu_read_lock();
3151 memcg = obj_cgroup_memcg(objcg);
3152 lruvec = mem_cgroup_lruvec(memcg, pgdat);
91882c16 3153 __mod_memcg_lruvec_state(lruvec, idx, nr);
a7ebf564
WL
3154 rcu_read_unlock();
3155}
3156
fc4db90f
RG
3157static __always_inline
3158struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 3159{
8380ce47 3160 /*
9855609b
RG
3161 * Slab objects are accounted individually, not per-page.
3162 * Memcg membership data for each individual object is saved in
21c690a3 3163 * slab->obj_exts.
8380ce47 3164 */
4b5f8d9a 3165 if (folio_test_slab(folio)) {
21c690a3 3166 struct slabobj_ext *obj_exts;
4b5f8d9a 3167 struct slab *slab;
9855609b
RG
3168 unsigned int off;
3169
4b5f8d9a 3170 slab = folio_slab(folio);
21c690a3
SB
3171 obj_exts = slab_obj_exts(slab);
3172 if (!obj_exts)
4b5f8d9a
VB
3173 return NULL;
3174
3175 off = obj_to_index(slab->slab_cache, slab, p);
21c690a3
SB
3176 if (obj_exts[off].objcg)
3177 return obj_cgroup_memcg(obj_exts[off].objcg);
10befea9
RG
3178
3179 return NULL;
9855609b 3180 }
8380ce47 3181
bcfe06bf 3182 /*
becacb04 3183 * folio_memcg_check() is used here, because in theory we can encounter
4b5f8d9a 3184 * a folio where the slab flag has been cleared already, but
21c690a3 3185 * slab->obj_exts has not been freed yet
becacb04 3186 * folio_memcg_check() will guarantee that a proper memory
bcfe06bf
RG
3187 * cgroup pointer or NULL will be returned.
3188 */
becacb04 3189 return folio_memcg_check(folio);
8380ce47
RG
3190}
3191
fc4db90f
RG
3192/*
3193 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3194 *
3195 * A passed kernel object can be a slab object, vmalloc object or a generic
3196 * kernel page, so different mechanisms for getting the memory cgroup pointer
3197 * should be used.
3198 *
3199 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3200 * can not know for sure how the kernel object is implemented.
3201 * mem_cgroup_from_obj() can be safely used in such cases.
3202 *
3203 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3204 * cgroup_mutex, etc.
3205 */
3206struct mem_cgroup *mem_cgroup_from_obj(void *p)
3207{
3208 struct folio *folio;
3209
3210 if (mem_cgroup_disabled())
3211 return NULL;
3212
3213 if (unlikely(is_vmalloc_addr(p)))
3214 folio = page_folio(vmalloc_to_page(p));
3215 else
3216 folio = virt_to_folio(p);
3217
3218 return mem_cgroup_from_obj_folio(folio, p);
3219}
3220
3221/*
3222 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3223 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3224 * allocated using vmalloc().
3225 *
3226 * A passed kernel object must be a slab object or a generic kernel page.
3227 *
3228 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3229 * cgroup_mutex, etc.
3230 */
3231struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3232{
3233 if (mem_cgroup_disabled())
3234 return NULL;
3235
3236 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3237}
3238
f4840ccf
JW
3239static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3240{
3241 struct obj_cgroup *objcg = NULL;
3242
7848ed62 3243 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf 3244 objcg = rcu_dereference(memcg->objcg);
7d0715d0 3245 if (likely(objcg && obj_cgroup_tryget(objcg)))
f4840ccf
JW
3246 break;
3247 objcg = NULL;
3248 }
3249 return objcg;
3250}
3251
1aacbd35
RG
3252static struct obj_cgroup *current_objcg_update(void)
3253{
3254 struct mem_cgroup *memcg;
3255 struct obj_cgroup *old, *objcg = NULL;
3256
3257 do {
3258 /* Atomically drop the update bit. */
3259 old = xchg(&current->objcg, NULL);
3260 if (old) {
3261 old = (struct obj_cgroup *)
3262 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
91b71e78 3263 obj_cgroup_put(old);
1aacbd35
RG
3264
3265 old = NULL;
3266 }
3267
3268 /* If new objcg is NULL, no reason for the second atomic update. */
3269 if (!current->mm || (current->flags & PF_KTHREAD))
3270 return NULL;
3271
3272 /*
3273 * Release the objcg pointer from the previous iteration,
3274 * if try_cmpxcg() below fails.
3275 */
3276 if (unlikely(objcg)) {
3277 obj_cgroup_put(objcg);
3278 objcg = NULL;
3279 }
3280
3281 /*
3282 * Obtain the new objcg pointer. The current task can be
3283 * asynchronously moved to another memcg and the previous
3284 * memcg can be offlined. So let's get the memcg pointer
3285 * and try get a reference to objcg under a rcu read lock.
3286 */
3287
3288 rcu_read_lock();
3289 memcg = mem_cgroup_from_task(current);
3290 objcg = __get_obj_cgroup_from_memcg(memcg);
3291 rcu_read_unlock();
3292
3293 /*
3294 * Try set up a new objcg pointer atomically. If it
3295 * fails, it means the update flag was set concurrently, so
3296 * the whole procedure should be repeated.
3297 */
3298 } while (!try_cmpxchg(&current->objcg, &old, objcg));
3299
3300 return objcg;
3301}
3302
e86828e5
RG
3303__always_inline struct obj_cgroup *current_obj_cgroup(void)
3304{
3305 struct mem_cgroup *memcg;
3306 struct obj_cgroup *objcg;
3307
3308 if (in_task()) {
3309 memcg = current->active_memcg;
3310 if (unlikely(memcg))
3311 goto from_memcg;
3312
3313 objcg = READ_ONCE(current->objcg);
3314 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3315 objcg = current_objcg_update();
3316 /*
3317 * Objcg reference is kept by the task, so it's safe
3318 * to use the objcg by the current task.
3319 */
3320 return objcg;
3321 }
3322
3323 memcg = this_cpu_read(int_active_memcg);
3324 if (unlikely(memcg))
3325 goto from_memcg;
3326
3327 return NULL;
3328
3329from_memcg:
5f79489a 3330 objcg = NULL;
e86828e5
RG
3331 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3332 /*
3333 * Memcg pointer is protected by scope (see set_active_memcg())
3334 * and is pinning the corresponding objcg, so objcg can't go
3335 * away and can be used within the scope without any additional
3336 * protection.
3337 */
3338 objcg = rcu_dereference_check(memcg->objcg, 1);
3339 if (likely(objcg))
3340 break;
e86828e5
RG
3341 }
3342
3343 return objcg;
3344}
3345
074e3e26 3346struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
f4840ccf
JW
3347{
3348 struct obj_cgroup *objcg;
3349
f7a449f7 3350 if (!memcg_kmem_online())
f4840ccf
JW
3351 return NULL;
3352
074e3e26
MWO
3353 if (folio_memcg_kmem(folio)) {
3354 objcg = __folio_objcg(folio);
f4840ccf
JW
3355 obj_cgroup_get(objcg);
3356 } else {
3357 struct mem_cgroup *memcg;
bf4f0599 3358
f4840ccf 3359 rcu_read_lock();
074e3e26 3360 memcg = __folio_memcg(folio);
f4840ccf
JW
3361 if (memcg)
3362 objcg = __get_obj_cgroup_from_memcg(memcg);
3363 else
3364 objcg = NULL;
3365 rcu_read_unlock();
3366 }
bf4f0599
RG
3367 return objcg;
3368}
3369
a8c49af3
YA
3370static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3371{
3372 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3373 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3374 if (nr_pages > 0)
3375 page_counter_charge(&memcg->kmem, nr_pages);
3376 else
3377 page_counter_uncharge(&memcg->kmem, -nr_pages);
3378 }
3379}
3380
3381
f1286fae
MS
3382/*
3383 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3384 * @objcg: object cgroup to uncharge
3385 * @nr_pages: number of pages to uncharge
3386 */
e74d2259
MS
3387static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3388 unsigned int nr_pages)
3389{
3390 struct mem_cgroup *memcg;
3391
3392 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3393
a8c49af3 3394 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3395 refill_stock(memcg, nr_pages);
e74d2259 3396
e74d2259 3397 css_put(&memcg->css);
e74d2259
MS
3398}
3399
f1286fae
MS
3400/*
3401 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3402 * @objcg: object cgroup to charge
45264778 3403 * @gfp: reclaim mode
92d0510c 3404 * @nr_pages: number of pages to charge
45264778
VD
3405 *
3406 * Returns 0 on success, an error code on failure.
3407 */
f1286fae
MS
3408static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3409 unsigned int nr_pages)
7ae1e1d0 3410{
f1286fae 3411 struct mem_cgroup *memcg;
7ae1e1d0
GC
3412 int ret;
3413
f1286fae
MS
3414 memcg = get_mem_cgroup_from_objcg(objcg);
3415
c5c8b16b 3416 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3417 if (ret)
f1286fae 3418 goto out;
52c29b04 3419
a8c49af3 3420 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3421out:
3422 css_put(&memcg->css);
4b13f64d 3423
f1286fae 3424 return ret;
4b13f64d
RG
3425}
3426
45264778 3427/**
f4b00eab 3428 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3429 * @page: page to charge
3430 * @gfp: reclaim mode
3431 * @order: allocation order
3432 *
3433 * Returns 0 on success, an error code on failure.
3434 */
f4b00eab 3435int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3436{
b4e0b68f 3437 struct obj_cgroup *objcg;
fcff7d7e 3438 int ret = 0;
7ae1e1d0 3439
e86828e5 3440 objcg = current_obj_cgroup();
b4e0b68f
MS
3441 if (objcg) {
3442 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3443 if (!ret) {
e86828e5 3444 obj_cgroup_get(objcg);
b4e0b68f 3445 page->memcg_data = (unsigned long)objcg |
18b2db3b 3446 MEMCG_DATA_KMEM;
1a3e1f40 3447 return 0;
4d96ba35 3448 }
c4159a75 3449 }
d05e83a6 3450 return ret;
7ae1e1d0 3451}
49a18eae 3452
45264778 3453/**
f4b00eab 3454 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3455 * @page: page to uncharge
3456 * @order: allocation order
3457 */
f4b00eab 3458void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3459{
1b7e4464 3460 struct folio *folio = page_folio(page);
b4e0b68f 3461 struct obj_cgroup *objcg;
f3ccb2c4 3462 unsigned int nr_pages = 1 << order;
7ae1e1d0 3463
1b7e4464 3464 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3465 return;
3466
1b7e4464 3467 objcg = __folio_objcg(folio);
b4e0b68f 3468 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3469 folio->memcg_data = 0;
b4e0b68f 3470 obj_cgroup_put(objcg);
60d3fd32 3471}
bf4f0599 3472
91882c16 3473static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
68ac5b3c
WL
3474 enum node_stat_item idx, int nr)
3475{
fead2b86 3476 struct memcg_stock_pcp *stock;
56751146 3477 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3478 unsigned long flags;
3479 int *bytes;
3480
56751146 3481 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3482 stock = this_cpu_ptr(&memcg_stock);
3483
68ac5b3c
WL
3484 /*
3485 * Save vmstat data in stock and skip vmstat array update unless
3486 * accumulating over a page of vmstat data or when pgdat or idx
3487 * changes.
3488 */
3b8abb32 3489 if (READ_ONCE(stock->cached_objcg) != objcg) {
56751146 3490 old = drain_obj_stock(stock);
68ac5b3c
WL
3491 obj_cgroup_get(objcg);
3492 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3493 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3b8abb32 3494 WRITE_ONCE(stock->cached_objcg, objcg);
68ac5b3c
WL
3495 stock->cached_pgdat = pgdat;
3496 } else if (stock->cached_pgdat != pgdat) {
3497 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3498 struct pglist_data *oldpg = stock->cached_pgdat;
3499
68ac5b3c 3500 if (stock->nr_slab_reclaimable_b) {
91882c16 3501 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3502 stock->nr_slab_reclaimable_b);
3503 stock->nr_slab_reclaimable_b = 0;
3504 }
3505 if (stock->nr_slab_unreclaimable_b) {
91882c16 3506 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3507 stock->nr_slab_unreclaimable_b);
3508 stock->nr_slab_unreclaimable_b = 0;
3509 }
3510 stock->cached_pgdat = pgdat;
3511 }
3512
3513 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3514 : &stock->nr_slab_unreclaimable_b;
3515 /*
3516 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3517 * cached locally at least once before pushing it out.
3518 */
3519 if (!*bytes) {
3520 *bytes = nr;
3521 nr = 0;
3522 } else {
3523 *bytes += nr;
3524 if (abs(*bytes) > PAGE_SIZE) {
3525 nr = *bytes;
3526 *bytes = 0;
3527 } else {
3528 nr = 0;
3529 }
3530 }
3531 if (nr)
91882c16 3532 __mod_objcg_mlstate(objcg, pgdat, idx, nr);
68ac5b3c 3533
56751146 3534 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
91b71e78 3535 obj_cgroup_put(old);
68ac5b3c
WL
3536}
3537
bf4f0599
RG
3538static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3539{
fead2b86 3540 struct memcg_stock_pcp *stock;
bf4f0599
RG
3541 unsigned long flags;
3542 bool ret = false;
3543
56751146 3544 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3545
3546 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3547 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
bf4f0599
RG
3548 stock->nr_bytes -= nr_bytes;
3549 ret = true;
3550 }
3551
56751146 3552 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3553
3554 return ret;
3555}
3556
56751146 3557static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 3558{
3b8abb32 3559 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3560
3561 if (!old)
56751146 3562 return NULL;
bf4f0599
RG
3563
3564 if (stock->nr_bytes) {
3565 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3566 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3567
af9a3b69
JW
3568 if (nr_pages) {
3569 struct mem_cgroup *memcg;
3570
3571 memcg = get_mem_cgroup_from_objcg(old);
3572
3573 memcg_account_kmem(memcg, -nr_pages);
3574 __refill_stock(memcg, nr_pages);
3575
3576 css_put(&memcg->css);
3577 }
bf4f0599
RG
3578
3579 /*
3580 * The leftover is flushed to the centralized per-memcg value.
3581 * On the next attempt to refill obj stock it will be moved
3582 * to a per-cpu stock (probably, on an other CPU), see
3583 * refill_obj_stock().
3584 *
3585 * How often it's flushed is a trade-off between the memory
3586 * limit enforcement accuracy and potential CPU contention,
3587 * so it might be changed in the future.
3588 */
3589 atomic_add(nr_bytes, &old->nr_charged_bytes);
3590 stock->nr_bytes = 0;
3591 }
3592
68ac5b3c
WL
3593 /*
3594 * Flush the vmstat data in current stock
3595 */
3596 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3597 if (stock->nr_slab_reclaimable_b) {
91882c16 3598 __mod_objcg_mlstate(old, stock->cached_pgdat,
68ac5b3c
WL
3599 NR_SLAB_RECLAIMABLE_B,
3600 stock->nr_slab_reclaimable_b);
3601 stock->nr_slab_reclaimable_b = 0;
3602 }
3603 if (stock->nr_slab_unreclaimable_b) {
91882c16 3604 __mod_objcg_mlstate(old, stock->cached_pgdat,
68ac5b3c
WL
3605 NR_SLAB_UNRECLAIMABLE_B,
3606 stock->nr_slab_unreclaimable_b);
3607 stock->nr_slab_unreclaimable_b = 0;
3608 }
3609 stock->cached_pgdat = NULL;
3610 }
3611
3b8abb32 3612 WRITE_ONCE(stock->cached_objcg, NULL);
56751146
SAS
3613 /*
3614 * The `old' objects needs to be released by the caller via
3615 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3616 */
3617 return old;
bf4f0599
RG
3618}
3619
3620static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3621 struct mem_cgroup *root_memcg)
3622{
3b8abb32 3623 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3624 struct mem_cgroup *memcg;
3625
3b8abb32
RG
3626 if (objcg) {
3627 memcg = obj_cgroup_memcg(objcg);
bf4f0599
RG
3628 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3629 return true;
3630 }
3631
3632 return false;
3633}
3634
5387c904
WL
3635static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3636 bool allow_uncharge)
bf4f0599 3637{
fead2b86 3638 struct memcg_stock_pcp *stock;
56751146 3639 struct obj_cgroup *old = NULL;
bf4f0599 3640 unsigned long flags;
5387c904 3641 unsigned int nr_pages = 0;
bf4f0599 3642
56751146 3643 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3644
3645 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3646 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
56751146 3647 old = drain_obj_stock(stock);
bf4f0599 3648 obj_cgroup_get(objcg);
3b8abb32 3649 WRITE_ONCE(stock->cached_objcg, objcg);
5387c904
WL
3650 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3651 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3652 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3653 }
3654 stock->nr_bytes += nr_bytes;
3655
5387c904
WL
3656 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3657 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3658 stock->nr_bytes &= (PAGE_SIZE - 1);
3659 }
bf4f0599 3660
56751146 3661 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
91b71e78 3662 obj_cgroup_put(old);
5387c904
WL
3663
3664 if (nr_pages)
3665 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3666}
3667
3668int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3669{
bf4f0599
RG
3670 unsigned int nr_pages, nr_bytes;
3671 int ret;
3672
3673 if (consume_obj_stock(objcg, size))
3674 return 0;
3675
3676 /*
5387c904 3677 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3678 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3679 * flushing objcg->nr_charged_bytes requires two atomic
3680 * operations, and objcg->nr_charged_bytes can't be big.
3681 * The shared objcg->nr_charged_bytes can also become a
3682 * performance bottleneck if all tasks of the same memcg are
3683 * trying to update it. So it's better to ignore it and try
3684 * grab some new pages. The stock's nr_bytes will be flushed to
3685 * objcg->nr_charged_bytes later on when objcg changes.
3686 *
3687 * The stock's nr_bytes may contain enough pre-charged bytes
3688 * to allow one less page from being charged, but we can't rely
3689 * on the pre-charged bytes not being changed outside of
3690 * consume_obj_stock() or refill_obj_stock(). So ignore those
3691 * pre-charged bytes as well when charging pages. To avoid a
3692 * page uncharge right after a page charge, we set the
3693 * allow_uncharge flag to false when calling refill_obj_stock()
3694 * to temporarily allow the pre-charged bytes to exceed the page
3695 * size limit. The maximum reachable value of the pre-charged
3696 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3697 * race.
bf4f0599 3698 */
bf4f0599
RG
3699 nr_pages = size >> PAGE_SHIFT;
3700 nr_bytes = size & (PAGE_SIZE - 1);
3701
3702 if (nr_bytes)
3703 nr_pages += 1;
3704
e74d2259 3705 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3706 if (!ret && nr_bytes)
5387c904 3707 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3708
bf4f0599
RG
3709 return ret;
3710}
3711
3712void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3713{
5387c904 3714 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3715}
3716
e6100a45
VB
3717static inline size_t obj_full_size(struct kmem_cache *s)
3718{
3719 /*
3720 * For each accounted object there is an extra space which is used
3721 * to store obj_cgroup membership. Charge it too.
3722 */
3723 return s->size + sizeof(struct obj_cgroup *);
3724}
3725
3726bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3727 gfp_t flags, size_t size, void **p)
3728{
3729 struct obj_cgroup *objcg;
3730 struct slab *slab;
3731 unsigned long off;
3732 size_t i;
3733
3734 /*
3735 * The obtained objcg pointer is safe to use within the current scope,
3736 * defined by current task or set_active_memcg() pair.
3737 * obj_cgroup_get() is used to get a permanent reference.
3738 */
3739 objcg = current_obj_cgroup();
3740 if (!objcg)
3741 return true;
3742
3743 /*
3744 * slab_alloc_node() avoids the NULL check, so we might be called with a
3745 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3746 * the whole requested size.
3747 * return success as there's nothing to free back
3748 */
3749 if (unlikely(*p == NULL))
3750 return true;
3751
3752 flags &= gfp_allowed_mask;
3753
3754 if (lru) {
3755 int ret;
3756 struct mem_cgroup *memcg;
3757
3758 memcg = get_mem_cgroup_from_objcg(objcg);
3759 ret = memcg_list_lru_alloc(memcg, lru, flags);
3760 css_put(&memcg->css);
3761
3762 if (ret)
3763 return false;
3764 }
3765
3766 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
3767 return false;
3768
3769 for (i = 0; i < size; i++) {
3770 slab = virt_to_slab(p[i]);
3771
3772 if (!slab_obj_exts(slab) &&
3773 alloc_slab_obj_exts(slab, s, flags, false)) {
3774 obj_cgroup_uncharge(objcg, obj_full_size(s));
3775 continue;
3776 }
3777
3778 off = obj_to_index(s, slab, p[i]);
3779 obj_cgroup_get(objcg);
3780 slab_obj_exts(slab)[off].objcg = objcg;
3781 mod_objcg_state(objcg, slab_pgdat(slab),
3782 cache_vmstat_idx(s), obj_full_size(s));
3783 }
3784
3785 return true;
3786}
3787
3788void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3789 void **p, int objects, struct slabobj_ext *obj_exts)
3790{
3791 for (int i = 0; i < objects; i++) {
3792 struct obj_cgroup *objcg;
3793 unsigned int off;
3794
3795 off = obj_to_index(s, slab, p[i]);
3796 objcg = obj_exts[off].objcg;
3797 if (!objcg)
3798 continue;
3799
3800 obj_exts[off].objcg = NULL;
3801 obj_cgroup_uncharge(objcg, obj_full_size(s));
3802 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3803 -obj_full_size(s));
3804 obj_cgroup_put(objcg);
3805 }
3806}
84c07d11 3807#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3808
ca3e0214 3809/*
be6c8982 3810 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3811 */
b8791381 3812void split_page_memcg(struct page *head, int old_order, int new_order)
ca3e0214 3813{
1b7e4464
MWO
3814 struct folio *folio = page_folio(head);
3815 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3816 int i;
b8791381
ZY
3817 unsigned int old_nr = 1 << old_order;
3818 unsigned int new_nr = 1 << new_order;
ca3e0214 3819
be6c8982 3820 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3821 return;
b070e65c 3822
b8791381 3823 for (i = new_nr; i < old_nr; i += new_nr)
1b7e4464 3824 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3825
1b7e4464 3826 if (folio_memcg_kmem(folio))
b8791381 3827 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
b4e0b68f 3828 else
b8791381 3829 css_get_many(&memcg->css, old_nr / new_nr - 1);
ca3e0214 3830}
ca3e0214 3831
e55b9f96 3832#ifdef CONFIG_SWAP
02491447
DN
3833/**
3834 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3835 * @entry: swap entry to be moved
3836 * @from: mem_cgroup which the entry is moved from
3837 * @to: mem_cgroup which the entry is moved to
3838 *
3839 * It succeeds only when the swap_cgroup's record for this entry is the same
3840 * as the mem_cgroup's id of @from.
3841 *
3842 * Returns 0 on success, -EINVAL on failure.
3843 *
3e32cb2e 3844 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3845 * both res and memsw, and called css_get().
3846 */
3847static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3848 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3849{
3850 unsigned short old_id, new_id;
3851
34c00c31
LZ
3852 old_id = mem_cgroup_id(from);
3853 new_id = mem_cgroup_id(to);
02491447
DN
3854
3855 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3856 mod_memcg_state(from, MEMCG_SWAP, -1);
3857 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3858 return 0;
3859 }
3860 return -EINVAL;
3861}
3862#else
3863static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3864 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3865{
3866 return -EINVAL;
3867}
8c7c6e34 3868#endif
d13d1443 3869
bbec2e15 3870static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3871
bbec2e15
RG
3872static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3873 unsigned long max, bool memsw)
628f4235 3874{
3e32cb2e 3875 bool enlarge = false;
bb4a7ea2 3876 bool drained = false;
3e32cb2e 3877 int ret;
c054a78c
YZ
3878 bool limits_invariant;
3879 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3880
3e32cb2e 3881 do {
628f4235
KH
3882 if (signal_pending(current)) {
3883 ret = -EINTR;
3884 break;
3885 }
3e32cb2e 3886
bbec2e15 3887 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3888 /*
3889 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3890 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3891 */
15b42562 3892 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3893 max <= memcg->memsw.max;
c054a78c 3894 if (!limits_invariant) {
bbec2e15 3895 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3896 ret = -EINVAL;
8c7c6e34
KH
3897 break;
3898 }
bbec2e15 3899 if (max > counter->max)
3e32cb2e 3900 enlarge = true;
bbec2e15
RG
3901 ret = page_counter_set_max(counter, max);
3902 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3903
3904 if (!ret)
3905 break;
3906
bb4a7ea2
SB
3907 if (!drained) {
3908 drain_all_stock(memcg);
3909 drained = true;
3910 continue;
3911 }
3912
73b73bac 3913 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3914 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3915 ret = -EBUSY;
3916 break;
3917 }
3918 } while (true);
3e32cb2e 3919
3c11ecf4
KH
3920 if (!ret && enlarge)
3921 memcg_oom_recover(memcg);
3e32cb2e 3922
628f4235
KH
3923 return ret;
3924}
3925
ef8f2327 3926unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3927 gfp_t gfp_mask,
3928 unsigned long *total_scanned)
3929{
3930 unsigned long nr_reclaimed = 0;
ef8f2327 3931 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3932 unsigned long reclaimed;
3933 int loop = 0;
ef8f2327 3934 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3935 unsigned long excess;
0608f43d 3936
e4dde56c
YZ
3937 if (lru_gen_enabled())
3938 return 0;
3939
0608f43d
AM
3940 if (order > 0)
3941 return 0;
3942
2ab082ba 3943 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3944
3945 /*
3946 * Do not even bother to check the largest node if the root
3947 * is empty. Do it lockless to prevent lock bouncing. Races
3948 * are acceptable as soft limit is best effort anyway.
3949 */
bfc7228b 3950 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3951 return 0;
3952
0608f43d
AM
3953 /*
3954 * This loop can run a while, specially if mem_cgroup's continuously
3955 * keep exceeding their soft limit and putting the system under
3956 * pressure
3957 */
3958 do {
3959 if (next_mz)
3960 mz = next_mz;
3961 else
3962 mz = mem_cgroup_largest_soft_limit_node(mctz);
3963 if (!mz)
3964 break;
3965
ef8f2327 3966 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3967 gfp_mask, total_scanned);
0608f43d 3968 nr_reclaimed += reclaimed;
0a31bc97 3969 spin_lock_irq(&mctz->lock);
0608f43d
AM
3970
3971 /*
3972 * If we failed to reclaim anything from this memory cgroup
3973 * it is time to move on to the next cgroup
3974 */
3975 next_mz = NULL;
bc2f2e7f
VD
3976 if (!reclaimed)
3977 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3978
3e32cb2e 3979 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3980 /*
3981 * One school of thought says that we should not add
3982 * back the node to the tree if reclaim returns 0.
3983 * But our reclaim could return 0, simply because due
3984 * to priority we are exposing a smaller subset of
3985 * memory to reclaim from. Consider this as a longer
3986 * term TODO.
3987 */
3988 /* If excess == 0, no tree ops */
cf2c8127 3989 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3990 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3991 css_put(&mz->memcg->css);
3992 loop++;
3993 /*
3994 * Could not reclaim anything and there are no more
3995 * mem cgroups to try or we seem to be looping without
3996 * reclaiming anything.
3997 */
3998 if (!nr_reclaimed &&
3999 (next_mz == NULL ||
4000 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4001 break;
4002 } while (!nr_reclaimed);
4003 if (next_mz)
4004 css_put(&next_mz->memcg->css);
4005 return nr_reclaimed;
4006}
4007
c26251f9 4008/*
51038171 4009 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
4010 *
4011 * Caller is responsible for holding css reference for memcg.
4012 */
4013static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4014{
d977aa93 4015 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 4016
c1e862c1
KH
4017 /* we call try-to-free pages for make this cgroup empty */
4018 lru_add_drain_all();
d12c60f6
JS
4019
4020 drain_all_stock(memcg);
4021
f817ed48 4022 /* try to free all pages in this cgroup */
3e32cb2e 4023 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
4024 if (signal_pending(current))
4025 return -EINTR;
4026
73b73bac 4027 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 4028 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 4029 nr_retries--;
f817ed48 4030 }
ab5196c2
MH
4031
4032 return 0;
cc847582
KH
4033}
4034
6770c64e
TH
4035static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4036 char *buf, size_t nbytes,
4037 loff_t off)
c1e862c1 4038{
6770c64e 4039 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 4040
d8423011
MH
4041 if (mem_cgroup_is_root(memcg))
4042 return -EINVAL;
6770c64e 4043 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
4044}
4045
182446d0
TH
4046static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4047 struct cftype *cft)
18f59ea7 4048{
bef8620c 4049 return 1;
18f59ea7
BS
4050}
4051
182446d0
TH
4052static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4053 struct cftype *cft, u64 val)
18f59ea7 4054{
bef8620c 4055 if (val == 1)
0b8f73e1 4056 return 0;
567fb435 4057
bef8620c
RG
4058 pr_warn_once("Non-hierarchical mode is deprecated. "
4059 "Please report your usecase to linux-mm@kvack.org if you "
4060 "depend on this functionality.\n");
567fb435 4061
bef8620c 4062 return -EINVAL;
18f59ea7
BS
4063}
4064
6f646156 4065static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 4066{
42a30035 4067 unsigned long val;
ce00a967 4068
3e32cb2e 4069 if (mem_cgroup_is_root(memcg)) {
a2174e95 4070 /*
f82a7a86
YA
4071 * Approximate root's usage from global state. This isn't
4072 * perfect, but the root usage was always an approximation.
a2174e95 4073 */
f82a7a86
YA
4074 val = global_node_page_state(NR_FILE_PAGES) +
4075 global_node_page_state(NR_ANON_MAPPED);
42a30035 4076 if (swap)
f82a7a86 4077 val += total_swap_pages - get_nr_swap_pages();
3e32cb2e 4078 } else {
ce00a967 4079 if (!swap)
3e32cb2e 4080 val = page_counter_read(&memcg->memory);
ce00a967 4081 else
3e32cb2e 4082 val = page_counter_read(&memcg->memsw);
ce00a967 4083 }
c12176d3 4084 return val;
ce00a967
JW
4085}
4086
3e32cb2e
JW
4087enum {
4088 RES_USAGE,
4089 RES_LIMIT,
4090 RES_MAX_USAGE,
4091 RES_FAILCNT,
4092 RES_SOFT_LIMIT,
4093};
ce00a967 4094
791badbd 4095static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 4096 struct cftype *cft)
8cdea7c0 4097{
182446d0 4098 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 4099 struct page_counter *counter;
af36f906 4100
3e32cb2e 4101 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 4102 case _MEM:
3e32cb2e
JW
4103 counter = &memcg->memory;
4104 break;
8c7c6e34 4105 case _MEMSWAP:
3e32cb2e
JW
4106 counter = &memcg->memsw;
4107 break;
510fc4e1 4108 case _KMEM:
3e32cb2e 4109 counter = &memcg->kmem;
510fc4e1 4110 break;
d55f90bf 4111 case _TCP:
0db15298 4112 counter = &memcg->tcpmem;
d55f90bf 4113 break;
8c7c6e34
KH
4114 default:
4115 BUG();
8c7c6e34 4116 }
3e32cb2e
JW
4117
4118 switch (MEMFILE_ATTR(cft->private)) {
4119 case RES_USAGE:
4120 if (counter == &memcg->memory)
c12176d3 4121 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 4122 if (counter == &memcg->memsw)
c12176d3 4123 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
4124 return (u64)page_counter_read(counter) * PAGE_SIZE;
4125 case RES_LIMIT:
bbec2e15 4126 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
4127 case RES_MAX_USAGE:
4128 return (u64)counter->watermark * PAGE_SIZE;
4129 case RES_FAILCNT:
4130 return counter->failcnt;
4131 case RES_SOFT_LIMIT:
2178e20c 4132 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3e32cb2e
JW
4133 default:
4134 BUG();
4135 }
8cdea7c0 4136}
510fc4e1 4137
6b0ba2ab
FS
4138/*
4139 * This function doesn't do anything useful. Its only job is to provide a read
4140 * handler for a file so that cgroup_file_mode() will add read permissions.
4141 */
4142static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
4143 __always_unused void *v)
4144{
4145 return -EINVAL;
4146}
4147
84c07d11 4148#ifdef CONFIG_MEMCG_KMEM
567e9ab2 4149static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 4150{
bf4f0599 4151 struct obj_cgroup *objcg;
d6441637 4152
9c94bef9 4153 if (mem_cgroup_kmem_disabled())
b313aeee
VD
4154 return 0;
4155
da0efe30
MS
4156 if (unlikely(mem_cgroup_is_root(memcg)))
4157 return 0;
d6441637 4158
bf4f0599 4159 objcg = obj_cgroup_alloc();
f9c69d63 4160 if (!objcg)
bf4f0599 4161 return -ENOMEM;
f9c69d63 4162
bf4f0599
RG
4163 objcg->memcg = memcg;
4164 rcu_assign_pointer(memcg->objcg, objcg);
675d6c9b
RG
4165 obj_cgroup_get(objcg);
4166 memcg->orig_objcg = objcg;
bf4f0599 4167
f7a449f7 4168 static_branch_enable(&memcg_kmem_online_key);
d648bcc7 4169
f9c69d63 4170 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
4171
4172 return 0;
d6441637
VD
4173}
4174
8e0a8912
JW
4175static void memcg_offline_kmem(struct mem_cgroup *memcg)
4176{
64268868 4177 struct mem_cgroup *parent;
8e0a8912 4178
9c94bef9 4179 if (mem_cgroup_kmem_disabled())
da0efe30
MS
4180 return;
4181
4182 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 4183 return;
9855609b 4184
8e0a8912
JW
4185 parent = parent_mem_cgroup(memcg);
4186 if (!parent)
4187 parent = root_mem_cgroup;
4188
bf4f0599 4189 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 4190
8e0a8912 4191 /*
64268868
MS
4192 * After we have finished memcg_reparent_objcgs(), all list_lrus
4193 * corresponding to this cgroup are guaranteed to remain empty.
4194 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 4195 * memcg_reparent_list_lrus().
8e0a8912 4196 */
1f391eb2 4197 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 4198}
d6441637 4199#else
0b8f73e1 4200static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
4201{
4202 return 0;
4203}
4204static void memcg_offline_kmem(struct mem_cgroup *memcg)
4205{
4206}
84c07d11 4207#endif /* CONFIG_MEMCG_KMEM */
127424c8 4208
bbec2e15 4209static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
4210{
4211 int ret;
4212
bbec2e15 4213 mutex_lock(&memcg_max_mutex);
d55f90bf 4214
bbec2e15 4215 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
4216 if (ret)
4217 goto out;
4218
0db15298 4219 if (!memcg->tcpmem_active) {
d55f90bf
VD
4220 /*
4221 * The active flag needs to be written after the static_key
4222 * update. This is what guarantees that the socket activation
2d758073
JW
4223 * function is the last one to run. See mem_cgroup_sk_alloc()
4224 * for details, and note that we don't mark any socket as
4225 * belonging to this memcg until that flag is up.
d55f90bf
VD
4226 *
4227 * We need to do this, because static_keys will span multiple
4228 * sites, but we can't control their order. If we mark a socket
4229 * as accounted, but the accounting functions are not patched in
4230 * yet, we'll lose accounting.
4231 *
2d758073 4232 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
4233 * because when this value change, the code to process it is not
4234 * patched in yet.
4235 */
4236 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 4237 memcg->tcpmem_active = true;
d55f90bf
VD
4238 }
4239out:
bbec2e15 4240 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
4241 return ret;
4242}
d55f90bf 4243
628f4235
KH
4244/*
4245 * The user of this function is...
4246 * RES_LIMIT.
4247 */
451af504
TH
4248static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4249 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4250{
451af504 4251 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4252 unsigned long nr_pages;
628f4235
KH
4253 int ret;
4254
451af504 4255 buf = strstrip(buf);
650c5e56 4256 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
4257 if (ret)
4258 return ret;
af36f906 4259
3e32cb2e 4260 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 4261 case RES_LIMIT:
4b3bde4c
BS
4262 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4263 ret = -EINVAL;
4264 break;
4265 }
3e32cb2e
JW
4266 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4267 case _MEM:
bbec2e15 4268 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 4269 break;
3e32cb2e 4270 case _MEMSWAP:
bbec2e15 4271 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 4272 break;
4597648f
MH
4273 case _KMEM:
4274 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4275 "Writing any value to this file has no effect. "
4276 "Please report your usecase to linux-mm@kvack.org if you "
4277 "depend on this functionality.\n");
4278 ret = 0;
4279 break;
d55f90bf 4280 case _TCP:
bbec2e15 4281 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 4282 break;
3e32cb2e 4283 }
296c81d8 4284 break;
3e32cb2e 4285 case RES_SOFT_LIMIT:
2343e88d
SAS
4286 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4287 ret = -EOPNOTSUPP;
4288 } else {
2178e20c 4289 WRITE_ONCE(memcg->soft_limit, nr_pages);
2343e88d
SAS
4290 ret = 0;
4291 }
628f4235
KH
4292 break;
4293 }
451af504 4294 return ret ?: nbytes;
8cdea7c0
BS
4295}
4296
6770c64e
TH
4297static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4298 size_t nbytes, loff_t off)
c84872e1 4299{
6770c64e 4300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4301 struct page_counter *counter;
c84872e1 4302
3e32cb2e
JW
4303 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4304 case _MEM:
4305 counter = &memcg->memory;
4306 break;
4307 case _MEMSWAP:
4308 counter = &memcg->memsw;
4309 break;
4310 case _KMEM:
4311 counter = &memcg->kmem;
4312 break;
d55f90bf 4313 case _TCP:
0db15298 4314 counter = &memcg->tcpmem;
d55f90bf 4315 break;
3e32cb2e
JW
4316 default:
4317 BUG();
4318 }
af36f906 4319
3e32cb2e 4320 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 4321 case RES_MAX_USAGE:
3e32cb2e 4322 page_counter_reset_watermark(counter);
29f2a4da
PE
4323 break;
4324 case RES_FAILCNT:
3e32cb2e 4325 counter->failcnt = 0;
29f2a4da 4326 break;
3e32cb2e
JW
4327 default:
4328 BUG();
29f2a4da 4329 }
f64c3f54 4330
6770c64e 4331 return nbytes;
c84872e1
PE
4332}
4333
182446d0 4334static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4335 struct cftype *cft)
4336{
182446d0 4337 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4338}
4339
02491447 4340#ifdef CONFIG_MMU
182446d0 4341static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4342 struct cftype *cft, u64 val)
4343{
182446d0 4344 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 4345
da34a848
JW
4346 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4347 "Please report your usecase to linux-mm@kvack.org if you "
4348 "depend on this functionality.\n");
4349
1dfab5ab 4350 if (val & ~MOVE_MASK)
7dc74be0 4351 return -EINVAL;
ee5e8472 4352
7dc74be0 4353 /*
ee5e8472
GC
4354 * No kind of locking is needed in here, because ->can_attach() will
4355 * check this value once in the beginning of the process, and then carry
4356 * on with stale data. This means that changes to this value will only
4357 * affect task migrations starting after the change.
7dc74be0 4358 */
c0ff4b85 4359 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4360 return 0;
4361}
02491447 4362#else
182446d0 4363static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4364 struct cftype *cft, u64 val)
4365{
4366 return -ENOSYS;
4367}
4368#endif
7dc74be0 4369
406eb0c9 4370#ifdef CONFIG_NUMA
113b7dfd
JW
4371
4372#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4373#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4374#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4375
4376static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 4377 int nid, unsigned int lru_mask, bool tree)
113b7dfd 4378{
867e5e1d 4379 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
4380 unsigned long nr = 0;
4381 enum lru_list lru;
4382
4383 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4384
4385 for_each_lru(lru) {
4386 if (!(BIT(lru) & lru_mask))
4387 continue;
dd8657b6
SB
4388 if (tree)
4389 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4390 else
4391 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
4392 }
4393 return nr;
4394}
4395
4396static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
4397 unsigned int lru_mask,
4398 bool tree)
113b7dfd
JW
4399{
4400 unsigned long nr = 0;
4401 enum lru_list lru;
4402
4403 for_each_lru(lru) {
4404 if (!(BIT(lru) & lru_mask))
4405 continue;
dd8657b6
SB
4406 if (tree)
4407 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4408 else
4409 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
4410 }
4411 return nr;
4412}
4413
2da8ca82 4414static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4415{
25485de6
GT
4416 struct numa_stat {
4417 const char *name;
4418 unsigned int lru_mask;
4419 };
4420
4421 static const struct numa_stat stats[] = {
4422 { "total", LRU_ALL },
4423 { "file", LRU_ALL_FILE },
4424 { "anon", LRU_ALL_ANON },
4425 { "unevictable", BIT(LRU_UNEVICTABLE) },
4426 };
4427 const struct numa_stat *stat;
406eb0c9 4428 int nid;
aa9694bb 4429 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4430
7d7ef0a4 4431 mem_cgroup_flush_stats(memcg);
2d146aa3 4432
25485de6 4433 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4434 seq_printf(m, "%s=%lu", stat->name,
4435 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4436 false));
4437 for_each_node_state(nid, N_MEMORY)
4438 seq_printf(m, " N%d=%lu", nid,
4439 mem_cgroup_node_nr_lru_pages(memcg, nid,
4440 stat->lru_mask, false));
25485de6 4441 seq_putc(m, '\n');
406eb0c9 4442 }
406eb0c9 4443
071aee13 4444 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4445
4446 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4447 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4448 true));
4449 for_each_node_state(nid, N_MEMORY)
4450 seq_printf(m, " N%d=%lu", nid,
4451 mem_cgroup_node_nr_lru_pages(memcg, nid,
4452 stat->lru_mask, true));
071aee13 4453 seq_putc(m, '\n');
406eb0c9 4454 }
406eb0c9 4455
406eb0c9
YH
4456 return 0;
4457}
4458#endif /* CONFIG_NUMA */
4459
c8713d0b 4460static const unsigned int memcg1_stats[] = {
0d1c2072 4461 NR_FILE_PAGES,
be5d0a74 4462 NR_ANON_MAPPED,
468c3982
JW
4463#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4464 NR_ANON_THPS,
4465#endif
c8713d0b
JW
4466 NR_SHMEM,
4467 NR_FILE_MAPPED,
4468 NR_FILE_DIRTY,
4469 NR_WRITEBACK,
e09b0b61
YS
4470 WORKINGSET_REFAULT_ANON,
4471 WORKINGSET_REFAULT_FILE,
72a14e82 4472#ifdef CONFIG_SWAP
c8713d0b 4473 MEMCG_SWAP,
72a14e82
LS
4474 NR_SWAPCACHE,
4475#endif
c8713d0b
JW
4476};
4477
4478static const char *const memcg1_stat_names[] = {
4479 "cache",
4480 "rss",
468c3982 4481#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4482 "rss_huge",
468c3982 4483#endif
c8713d0b
JW
4484 "shmem",
4485 "mapped_file",
4486 "dirty",
4487 "writeback",
e09b0b61
YS
4488 "workingset_refault_anon",
4489 "workingset_refault_file",
72a14e82 4490#ifdef CONFIG_SWAP
c8713d0b 4491 "swap",
72a14e82
LS
4492 "swapcached",
4493#endif
c8713d0b
JW
4494};
4495
df0e53d0 4496/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4497static const unsigned int memcg1_events[] = {
df0e53d0
JW
4498 PGPGIN,
4499 PGPGOUT,
4500 PGFAULT,
4501 PGMAJFAULT,
4502};
4503
dddb44ff 4504static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
d2ceb9b7 4505{
3e32cb2e 4506 unsigned long memory, memsw;
af7c4b0e
JW
4507 struct mem_cgroup *mi;
4508 unsigned int i;
406eb0c9 4509
71cd3113 4510 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4511
7d7ef0a4 4512 mem_cgroup_flush_stats(memcg);
2d146aa3 4513
71cd3113 4514 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4515 unsigned long nr;
4516
ff841a06
YA
4517 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4518 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
1dd3a273 4519 }
7b854121 4520
df0e53d0 4521 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4522 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4523 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4524
4525 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4526 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4527 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4528 PAGE_SIZE);
af7c4b0e 4529
14067bb3 4530 /* Hierarchical information */
3e32cb2e
JW
4531 memory = memsw = PAGE_COUNTER_MAX;
4532 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4533 memory = min(memory, READ_ONCE(mi->memory.max));
4534 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4535 }
dddb44ff
YA
4536 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4537 (u64)memory * PAGE_SIZE);
840ea53a
LS
4538 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4539 (u64)memsw * PAGE_SIZE);
7f016ee8 4540
8de7ecc6 4541 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4542 unsigned long nr;
4543
ff841a06 4544 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
dddb44ff 4545 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
ff841a06 4546 (u64)nr);
af7c4b0e
JW
4547 }
4548
8de7ecc6 4549 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4550 seq_buf_printf(s, "total_%s %llu\n",
4551 vm_event_name(memcg1_events[i]),
4552 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4553
8de7ecc6 4554 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4555 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4556 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4557 PAGE_SIZE);
14067bb3 4558
7f016ee8 4559#ifdef CONFIG_DEBUG_VM
7f016ee8 4560 {
ef8f2327
MG
4561 pg_data_t *pgdat;
4562 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4563 unsigned long anon_cost = 0;
4564 unsigned long file_cost = 0;
7f016ee8 4565
ef8f2327 4566 for_each_online_pgdat(pgdat) {
a3747b53 4567 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4568
1431d4d1
JW
4569 anon_cost += mz->lruvec.anon_cost;
4570 file_cost += mz->lruvec.file_cost;
ef8f2327 4571 }
dddb44ff
YA
4572 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4573 seq_buf_printf(s, "file_cost %lu\n", file_cost);
7f016ee8
KM
4574 }
4575#endif
d2ceb9b7
KH
4576}
4577
182446d0
TH
4578static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4579 struct cftype *cft)
a7885eb8 4580{
182446d0 4581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4582
1f4c025b 4583 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4584}
4585
182446d0
TH
4586static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4587 struct cftype *cft, u64 val)
a7885eb8 4588{
182446d0 4589 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4590
37bc3cb9 4591 if (val > 200)
a7885eb8
KM
4592 return -EINVAL;
4593
a4792030 4594 if (!mem_cgroup_is_root(memcg))
82b3aa26 4595 WRITE_ONCE(memcg->swappiness, val);
3dae7fec 4596 else
82b3aa26 4597 WRITE_ONCE(vm_swappiness, val);
068b38c1 4598
a7885eb8
KM
4599 return 0;
4600}
4601
2e72b634
KS
4602static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4603{
4604 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4605 unsigned long usage;
2e72b634
KS
4606 int i;
4607
4608 rcu_read_lock();
4609 if (!swap)
2c488db2 4610 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4611 else
2c488db2 4612 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4613
4614 if (!t)
4615 goto unlock;
4616
ce00a967 4617 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4618
4619 /*
748dad36 4620 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4621 * If it's not true, a threshold was crossed after last
4622 * call of __mem_cgroup_threshold().
4623 */
5407a562 4624 i = t->current_threshold;
2e72b634
KS
4625
4626 /*
4627 * Iterate backward over array of thresholds starting from
4628 * current_threshold and check if a threshold is crossed.
4629 * If none of thresholds below usage is crossed, we read
4630 * only one element of the array here.
4631 */
4632 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3652117f 4633 eventfd_signal(t->entries[i].eventfd);
2e72b634
KS
4634
4635 /* i = current_threshold + 1 */
4636 i++;
4637
4638 /*
4639 * Iterate forward over array of thresholds starting from
4640 * current_threshold+1 and check if a threshold is crossed.
4641 * If none of thresholds above usage is crossed, we read
4642 * only one element of the array here.
4643 */
4644 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3652117f 4645 eventfd_signal(t->entries[i].eventfd);
2e72b634
KS
4646
4647 /* Update current_threshold */
5407a562 4648 t->current_threshold = i - 1;
2e72b634
KS
4649unlock:
4650 rcu_read_unlock();
4651}
4652
4653static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4654{
ad4ca5f4
KS
4655 while (memcg) {
4656 __mem_cgroup_threshold(memcg, false);
7941d214 4657 if (do_memsw_account())
ad4ca5f4
KS
4658 __mem_cgroup_threshold(memcg, true);
4659
4660 memcg = parent_mem_cgroup(memcg);
4661 }
2e72b634
KS
4662}
4663
4664static int compare_thresholds(const void *a, const void *b)
4665{
4666 const struct mem_cgroup_threshold *_a = a;
4667 const struct mem_cgroup_threshold *_b = b;
4668
2bff24a3
GT
4669 if (_a->threshold > _b->threshold)
4670 return 1;
4671
4672 if (_a->threshold < _b->threshold)
4673 return -1;
4674
4675 return 0;
2e72b634
KS
4676}
4677
c0ff4b85 4678static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4679{
4680 struct mem_cgroup_eventfd_list *ev;
4681
2bcf2e92
MH
4682 spin_lock(&memcg_oom_lock);
4683
c0ff4b85 4684 list_for_each_entry(ev, &memcg->oom_notify, list)
3652117f 4685 eventfd_signal(ev->eventfd);
2bcf2e92
MH
4686
4687 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4688 return 0;
4689}
4690
c0ff4b85 4691static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4692{
7d74b06f
KH
4693 struct mem_cgroup *iter;
4694
c0ff4b85 4695 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4696 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4697}
4698
59b6f873 4699static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4700 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4701{
2c488db2
KS
4702 struct mem_cgroup_thresholds *thresholds;
4703 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4704 unsigned long threshold;
4705 unsigned long usage;
2c488db2 4706 int i, size, ret;
2e72b634 4707
650c5e56 4708 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4709 if (ret)
4710 return ret;
4711
4712 mutex_lock(&memcg->thresholds_lock);
2c488db2 4713
05b84301 4714 if (type == _MEM) {
2c488db2 4715 thresholds = &memcg->thresholds;
ce00a967 4716 usage = mem_cgroup_usage(memcg, false);
05b84301 4717 } else if (type == _MEMSWAP) {
2c488db2 4718 thresholds = &memcg->memsw_thresholds;
ce00a967 4719 usage = mem_cgroup_usage(memcg, true);
05b84301 4720 } else
2e72b634
KS
4721 BUG();
4722
2e72b634 4723 /* Check if a threshold crossed before adding a new one */
2c488db2 4724 if (thresholds->primary)
2e72b634
KS
4725 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4726
2c488db2 4727 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4728
4729 /* Allocate memory for new array of thresholds */
67b8046f 4730 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4731 if (!new) {
2e72b634
KS
4732 ret = -ENOMEM;
4733 goto unlock;
4734 }
2c488db2 4735 new->size = size;
2e72b634
KS
4736
4737 /* Copy thresholds (if any) to new array */
e90342e6
GS
4738 if (thresholds->primary)
4739 memcpy(new->entries, thresholds->primary->entries,
4740 flex_array_size(new, entries, size - 1));
2c488db2 4741
2e72b634 4742 /* Add new threshold */
2c488db2
KS
4743 new->entries[size - 1].eventfd = eventfd;
4744 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4745
4746 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4747 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4748 compare_thresholds, NULL);
4749
4750 /* Find current threshold */
2c488db2 4751 new->current_threshold = -1;
2e72b634 4752 for (i = 0; i < size; i++) {
748dad36 4753 if (new->entries[i].threshold <= usage) {
2e72b634 4754 /*
2c488db2
KS
4755 * new->current_threshold will not be used until
4756 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4757 * it here.
4758 */
2c488db2 4759 ++new->current_threshold;
748dad36
SZ
4760 } else
4761 break;
2e72b634
KS
4762 }
4763
2c488db2
KS
4764 /* Free old spare buffer and save old primary buffer as spare */
4765 kfree(thresholds->spare);
4766 thresholds->spare = thresholds->primary;
4767
4768 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4769
907860ed 4770 /* To be sure that nobody uses thresholds */
2e72b634
KS
4771 synchronize_rcu();
4772
2e72b634
KS
4773unlock:
4774 mutex_unlock(&memcg->thresholds_lock);
4775
4776 return ret;
4777}
4778
59b6f873 4779static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4780 struct eventfd_ctx *eventfd, const char *args)
4781{
59b6f873 4782 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4783}
4784
59b6f873 4785static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4786 struct eventfd_ctx *eventfd, const char *args)
4787{
59b6f873 4788 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4789}
4790
59b6f873 4791static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4792 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4793{
2c488db2
KS
4794 struct mem_cgroup_thresholds *thresholds;
4795 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4796 unsigned long usage;
7d36665a 4797 int i, j, size, entries;
2e72b634
KS
4798
4799 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4800
4801 if (type == _MEM) {
2c488db2 4802 thresholds = &memcg->thresholds;
ce00a967 4803 usage = mem_cgroup_usage(memcg, false);
05b84301 4804 } else if (type == _MEMSWAP) {
2c488db2 4805 thresholds = &memcg->memsw_thresholds;
ce00a967 4806 usage = mem_cgroup_usage(memcg, true);
05b84301 4807 } else
2e72b634
KS
4808 BUG();
4809
371528ca
AV
4810 if (!thresholds->primary)
4811 goto unlock;
4812
2e72b634
KS
4813 /* Check if a threshold crossed before removing */
4814 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4815
4816 /* Calculate new number of threshold */
7d36665a 4817 size = entries = 0;
2c488db2
KS
4818 for (i = 0; i < thresholds->primary->size; i++) {
4819 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4820 size++;
7d36665a
CX
4821 else
4822 entries++;
2e72b634
KS
4823 }
4824
2c488db2 4825 new = thresholds->spare;
907860ed 4826
7d36665a
CX
4827 /* If no items related to eventfd have been cleared, nothing to do */
4828 if (!entries)
4829 goto unlock;
4830
2e72b634
KS
4831 /* Set thresholds array to NULL if we don't have thresholds */
4832 if (!size) {
2c488db2
KS
4833 kfree(new);
4834 new = NULL;
907860ed 4835 goto swap_buffers;
2e72b634
KS
4836 }
4837
2c488db2 4838 new->size = size;
2e72b634
KS
4839
4840 /* Copy thresholds and find current threshold */
2c488db2
KS
4841 new->current_threshold = -1;
4842 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4843 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4844 continue;
4845
2c488db2 4846 new->entries[j] = thresholds->primary->entries[i];
748dad36 4847 if (new->entries[j].threshold <= usage) {
2e72b634 4848 /*
2c488db2 4849 * new->current_threshold will not be used
2e72b634
KS
4850 * until rcu_assign_pointer(), so it's safe to increment
4851 * it here.
4852 */
2c488db2 4853 ++new->current_threshold;
2e72b634
KS
4854 }
4855 j++;
4856 }
4857
907860ed 4858swap_buffers:
2c488db2
KS
4859 /* Swap primary and spare array */
4860 thresholds->spare = thresholds->primary;
8c757763 4861
2c488db2 4862 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4863
907860ed 4864 /* To be sure that nobody uses thresholds */
2e72b634 4865 synchronize_rcu();
6611d8d7
MC
4866
4867 /* If all events are unregistered, free the spare array */
4868 if (!new) {
4869 kfree(thresholds->spare);
4870 thresholds->spare = NULL;
4871 }
371528ca 4872unlock:
2e72b634 4873 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4874}
c1e862c1 4875
59b6f873 4876static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4877 struct eventfd_ctx *eventfd)
4878{
59b6f873 4879 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4880}
4881
59b6f873 4882static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4883 struct eventfd_ctx *eventfd)
4884{
59b6f873 4885 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4886}
4887
59b6f873 4888static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4889 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4890{
9490ff27 4891 struct mem_cgroup_eventfd_list *event;
9490ff27 4892
9490ff27
KH
4893 event = kmalloc(sizeof(*event), GFP_KERNEL);
4894 if (!event)
4895 return -ENOMEM;
4896
1af8efe9 4897 spin_lock(&memcg_oom_lock);
9490ff27
KH
4898
4899 event->eventfd = eventfd;
4900 list_add(&event->list, &memcg->oom_notify);
4901
4902 /* already in OOM ? */
c2b42d3c 4903 if (memcg->under_oom)
3652117f 4904 eventfd_signal(eventfd);
1af8efe9 4905 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4906
4907 return 0;
4908}
4909
59b6f873 4910static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4911 struct eventfd_ctx *eventfd)
9490ff27 4912{
9490ff27 4913 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4914
1af8efe9 4915 spin_lock(&memcg_oom_lock);
9490ff27 4916
c0ff4b85 4917 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4918 if (ev->eventfd == eventfd) {
4919 list_del(&ev->list);
4920 kfree(ev);
4921 }
4922 }
4923
1af8efe9 4924 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4925}
4926
2da8ca82 4927static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4928{
aa9694bb 4929 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4930
17c56de6 4931 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
c2b42d3c 4932 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4933 seq_printf(sf, "oom_kill %lu\n",
4934 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4935 return 0;
4936}
4937
182446d0 4938static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4939 struct cftype *cft, u64 val)
4940{
182446d0 4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4942
4943 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4944 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4945 return -EINVAL;
4946
17c56de6 4947 WRITE_ONCE(memcg->oom_kill_disable, val);
4d845ebf 4948 if (!val)
c0ff4b85 4949 memcg_oom_recover(memcg);
3dae7fec 4950
3c11ecf4
KH
4951 return 0;
4952}
4953
52ebea74
TH
4954#ifdef CONFIG_CGROUP_WRITEBACK
4955
3a8e9ac8
TH
4956#include <trace/events/writeback.h>
4957
841710aa
TH
4958static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4959{
4960 return wb_domain_init(&memcg->cgwb_domain, gfp);
4961}
4962
4963static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4964{
4965 wb_domain_exit(&memcg->cgwb_domain);
4966}
4967
2529bb3a
TH
4968static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4969{
4970 wb_domain_size_changed(&memcg->cgwb_domain);
4971}
4972
841710aa
TH
4973struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4974{
4975 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4976
4977 if (!memcg->css.parent)
4978 return NULL;
4979
4980 return &memcg->cgwb_domain;
4981}
4982
c2aa723a
TH
4983/**
4984 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4985 * @wb: bdi_writeback in question
c5edf9cd
TH
4986 * @pfilepages: out parameter for number of file pages
4987 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4988 * @pdirty: out parameter for number of dirty pages
4989 * @pwriteback: out parameter for number of pages under writeback
4990 *
c5edf9cd
TH
4991 * Determine the numbers of file, headroom, dirty, and writeback pages in
4992 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4993 * is a bit more involved.
c2aa723a 4994 *
c5edf9cd
TH
4995 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4996 * headroom is calculated as the lowest headroom of itself and the
4997 * ancestors. Note that this doesn't consider the actual amount of
4998 * available memory in the system. The caller should further cap
4999 * *@pheadroom accordingly.
c2aa723a 5000 */
c5edf9cd
TH
5001void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
5002 unsigned long *pheadroom, unsigned long *pdirty,
5003 unsigned long *pwriteback)
c2aa723a
TH
5004{
5005 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
5006 struct mem_cgroup *parent;
c2aa723a 5007
d9b3ce87 5008 mem_cgroup_flush_stats_ratelimited(memcg);
c2aa723a 5009
2d146aa3
JW
5010 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
5011 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
5012 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
5013 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 5014
2d146aa3 5015 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 5016 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 5017 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 5018 READ_ONCE(memcg->memory.high));
c2aa723a
TH
5019 unsigned long used = page_counter_read(&memcg->memory);
5020
c5edf9cd 5021 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
5022 memcg = parent;
5023 }
c2aa723a
TH
5024}
5025
97b27821
TH
5026/*
5027 * Foreign dirty flushing
5028 *
5029 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 5030 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
5031 * deliberate design decision because honoring per-page ownership in the
5032 * writeback path is complicated, may lead to higher CPU and IO overheads
5033 * and deemed unnecessary given that write-sharing an inode across
5034 * different cgroups isn't a common use-case.
5035 *
5036 * Combined with inode majority-writer ownership switching, this works well
5037 * enough in most cases but there are some pathological cases. For
5038 * example, let's say there are two cgroups A and B which keep writing to
5039 * different but confined parts of the same inode. B owns the inode and
5040 * A's memory is limited far below B's. A's dirty ratio can rise enough to
5041 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
5042 * triggering background writeback. A will be slowed down without a way to
5043 * make writeback of the dirty pages happen.
5044 *
f0953a1b 5045 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 5046 * severely throttled after making some progress after each
f0953a1b 5047 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
5048 * completely idle.
5049 *
5050 * Solving this problem completely requires matching the ownership tracking
5051 * granularities between memcg and writeback in either direction. However,
5052 * the more egregious behaviors can be avoided by simply remembering the
5053 * most recent foreign dirtying events and initiating remote flushes on
5054 * them when local writeback isn't enough to keep the memory clean enough.
5055 *
5056 * The following two functions implement such mechanism. When a foreign
5057 * page - a page whose memcg and writeback ownerships don't match - is
5058 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
5059 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
5060 * decides that the memcg needs to sleep due to high dirty ratio, it calls
5061 * mem_cgroup_flush_foreign() which queues writeback on the recorded
5062 * foreign bdi_writebacks which haven't expired. Both the numbers of
5063 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
5064 * limited to MEMCG_CGWB_FRN_CNT.
5065 *
5066 * The mechanism only remembers IDs and doesn't hold any object references.
5067 * As being wrong occasionally doesn't matter, updates and accesses to the
5068 * records are lockless and racy.
5069 */
9d8053fc 5070void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
5071 struct bdi_writeback *wb)
5072{
9d8053fc 5073 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
5074 struct memcg_cgwb_frn *frn;
5075 u64 now = get_jiffies_64();
5076 u64 oldest_at = now;
5077 int oldest = -1;
5078 int i;
5079
9d8053fc 5080 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 5081
97b27821
TH
5082 /*
5083 * Pick the slot to use. If there is already a slot for @wb, keep
5084 * using it. If not replace the oldest one which isn't being
5085 * written out.
5086 */
5087 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
5088 frn = &memcg->cgwb_frn[i];
5089 if (frn->bdi_id == wb->bdi->id &&
5090 frn->memcg_id == wb->memcg_css->id)
5091 break;
5092 if (time_before64(frn->at, oldest_at) &&
5093 atomic_read(&frn->done.cnt) == 1) {
5094 oldest = i;
5095 oldest_at = frn->at;
5096 }
5097 }
5098
5099 if (i < MEMCG_CGWB_FRN_CNT) {
5100 /*
5101 * Re-using an existing one. Update timestamp lazily to
5102 * avoid making the cacheline hot. We want them to be
5103 * reasonably up-to-date and significantly shorter than
5104 * dirty_expire_interval as that's what expires the record.
5105 * Use the shorter of 1s and dirty_expire_interval / 8.
5106 */
5107 unsigned long update_intv =
5108 min_t(unsigned long, HZ,
5109 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
5110
5111 if (time_before64(frn->at, now - update_intv))
5112 frn->at = now;
5113 } else if (oldest >= 0) {
5114 /* replace the oldest free one */
5115 frn = &memcg->cgwb_frn[oldest];
5116 frn->bdi_id = wb->bdi->id;
5117 frn->memcg_id = wb->memcg_css->id;
5118 frn->at = now;
5119 }
5120}
5121
5122/* issue foreign writeback flushes for recorded foreign dirtying events */
5123void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
5124{
5125 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
5126 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
5127 u64 now = jiffies_64;
5128 int i;
5129
5130 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
5131 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
5132
5133 /*
5134 * If the record is older than dirty_expire_interval,
5135 * writeback on it has already started. No need to kick it
5136 * off again. Also, don't start a new one if there's
5137 * already one in flight.
5138 */
5139 if (time_after64(frn->at, now - intv) &&
5140 atomic_read(&frn->done.cnt) == 1) {
5141 frn->at = 0;
3a8e9ac8 5142 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 5143 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
5144 WB_REASON_FOREIGN_FLUSH,
5145 &frn->done);
5146 }
5147 }
5148}
5149
841710aa
TH
5150#else /* CONFIG_CGROUP_WRITEBACK */
5151
5152static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
5153{
5154 return 0;
5155}
5156
5157static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
5158{
5159}
5160
2529bb3a
TH
5161static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
5162{
5163}
5164
52ebea74
TH
5165#endif /* CONFIG_CGROUP_WRITEBACK */
5166
3bc942f3
TH
5167/*
5168 * DO NOT USE IN NEW FILES.
5169 *
5170 * "cgroup.event_control" implementation.
5171 *
5172 * This is way over-engineered. It tries to support fully configurable
5173 * events for each user. Such level of flexibility is completely
5174 * unnecessary especially in the light of the planned unified hierarchy.
5175 *
5176 * Please deprecate this and replace with something simpler if at all
5177 * possible.
5178 */
5179
79bd9814
TH
5180/*
5181 * Unregister event and free resources.
5182 *
5183 * Gets called from workqueue.
5184 */
3bc942f3 5185static void memcg_event_remove(struct work_struct *work)
79bd9814 5186{
3bc942f3
TH
5187 struct mem_cgroup_event *event =
5188 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5189 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5190
5191 remove_wait_queue(event->wqh, &event->wait);
5192
59b6f873 5193 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5194
5195 /* Notify userspace the event is going away. */
3652117f 5196 eventfd_signal(event->eventfd);
79bd9814
TH
5197
5198 eventfd_ctx_put(event->eventfd);
5199 kfree(event);
59b6f873 5200 css_put(&memcg->css);
79bd9814
TH
5201}
5202
5203/*
a9a08845 5204 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
5205 *
5206 * Called with wqh->lock held and interrupts disabled.
5207 */
ac6424b9 5208static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 5209 int sync, void *key)
79bd9814 5210{
3bc942f3
TH
5211 struct mem_cgroup_event *event =
5212 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5213 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 5214 __poll_t flags = key_to_poll(key);
79bd9814 5215
a9a08845 5216 if (flags & EPOLLHUP) {
79bd9814
TH
5217 /*
5218 * If the event has been detached at cgroup removal, we
5219 * can simply return knowing the other side will cleanup
5220 * for us.
5221 *
5222 * We can't race against event freeing since the other
5223 * side will require wqh->lock via remove_wait_queue(),
5224 * which we hold.
5225 */
fba94807 5226 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5227 if (!list_empty(&event->list)) {
5228 list_del_init(&event->list);
5229 /*
5230 * We are in atomic context, but cgroup_event_remove()
5231 * may sleep, so we have to call it in workqueue.
5232 */
5233 schedule_work(&event->remove);
5234 }
fba94807 5235 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5236 }
5237
5238 return 0;
5239}
5240
3bc942f3 5241static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5242 wait_queue_head_t *wqh, poll_table *pt)
5243{
3bc942f3
TH
5244 struct mem_cgroup_event *event =
5245 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5246
5247 event->wqh = wqh;
5248 add_wait_queue(wqh, &event->wait);
5249}
5250
5251/*
3bc942f3
TH
5252 * DO NOT USE IN NEW FILES.
5253 *
79bd9814
TH
5254 * Parse input and register new cgroup event handler.
5255 *
5256 * Input must be in format '<event_fd> <control_fd> <args>'.
5257 * Interpretation of args is defined by control file implementation.
5258 */
451af504
TH
5259static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5260 char *buf, size_t nbytes, loff_t off)
79bd9814 5261{
451af504 5262 struct cgroup_subsys_state *css = of_css(of);
fba94807 5263 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5264 struct mem_cgroup_event *event;
79bd9814
TH
5265 struct cgroup_subsys_state *cfile_css;
5266 unsigned int efd, cfd;
5267 struct fd efile;
5268 struct fd cfile;
4a7ba45b 5269 struct dentry *cdentry;
fba94807 5270 const char *name;
79bd9814
TH
5271 char *endp;
5272 int ret;
5273
2343e88d
SAS
5274 if (IS_ENABLED(CONFIG_PREEMPT_RT))
5275 return -EOPNOTSUPP;
5276
451af504
TH
5277 buf = strstrip(buf);
5278
5279 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5280 if (*endp != ' ')
5281 return -EINVAL;
451af504 5282 buf = endp + 1;
79bd9814 5283
451af504 5284 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5285 if ((*endp != ' ') && (*endp != '\0'))
5286 return -EINVAL;
451af504 5287 buf = endp + 1;
79bd9814
TH
5288
5289 event = kzalloc(sizeof(*event), GFP_KERNEL);
5290 if (!event)
5291 return -ENOMEM;
5292
59b6f873 5293 event->memcg = memcg;
79bd9814 5294 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5295 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5296 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5297 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5298
5299 efile = fdget(efd);
5300 if (!efile.file) {
5301 ret = -EBADF;
5302 goto out_kfree;
5303 }
5304
5305 event->eventfd = eventfd_ctx_fileget(efile.file);
5306 if (IS_ERR(event->eventfd)) {
5307 ret = PTR_ERR(event->eventfd);
5308 goto out_put_efile;
5309 }
5310
5311 cfile = fdget(cfd);
5312 if (!cfile.file) {
5313 ret = -EBADF;
5314 goto out_put_eventfd;
5315 }
5316
5317 /* the process need read permission on control file */
5318 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 5319 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
5320 if (ret < 0)
5321 goto out_put_cfile;
5322
4a7ba45b
TH
5323 /*
5324 * The control file must be a regular cgroup1 file. As a regular cgroup
5325 * file can't be renamed, it's safe to access its name afterwards.
5326 */
5327 cdentry = cfile.file->f_path.dentry;
5328 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5329 ret = -EINVAL;
5330 goto out_put_cfile;
5331 }
5332
fba94807
TH
5333 /*
5334 * Determine the event callbacks and set them in @event. This used
5335 * to be done via struct cftype but cgroup core no longer knows
5336 * about these events. The following is crude but the whole thing
5337 * is for compatibility anyway.
3bc942f3
TH
5338 *
5339 * DO NOT ADD NEW FILES.
fba94807 5340 */
4a7ba45b 5341 name = cdentry->d_name.name;
fba94807
TH
5342
5343 if (!strcmp(name, "memory.usage_in_bytes")) {
5344 event->register_event = mem_cgroup_usage_register_event;
5345 event->unregister_event = mem_cgroup_usage_unregister_event;
5346 } else if (!strcmp(name, "memory.oom_control")) {
5347 event->register_event = mem_cgroup_oom_register_event;
5348 event->unregister_event = mem_cgroup_oom_unregister_event;
5349 } else if (!strcmp(name, "memory.pressure_level")) {
5350 event->register_event = vmpressure_register_event;
5351 event->unregister_event = vmpressure_unregister_event;
5352 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5353 event->register_event = memsw_cgroup_usage_register_event;
5354 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5355 } else {
5356 ret = -EINVAL;
5357 goto out_put_cfile;
5358 }
5359
79bd9814 5360 /*
b5557c4c
TH
5361 * Verify @cfile should belong to @css. Also, remaining events are
5362 * automatically removed on cgroup destruction but the removal is
5363 * asynchronous, so take an extra ref on @css.
79bd9814 5364 */
4a7ba45b 5365 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 5366 &memory_cgrp_subsys);
79bd9814 5367 ret = -EINVAL;
5a17f543 5368 if (IS_ERR(cfile_css))
79bd9814 5369 goto out_put_cfile;
5a17f543
TH
5370 if (cfile_css != css) {
5371 css_put(cfile_css);
79bd9814 5372 goto out_put_cfile;
5a17f543 5373 }
79bd9814 5374
451af504 5375 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5376 if (ret)
5377 goto out_put_css;
5378
9965ed17 5379 vfs_poll(efile.file, &event->pt);
79bd9814 5380
4ba9515d 5381 spin_lock_irq(&memcg->event_list_lock);
fba94807 5382 list_add(&event->list, &memcg->event_list);
4ba9515d 5383 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
5384
5385 fdput(cfile);
5386 fdput(efile);
5387
451af504 5388 return nbytes;
79bd9814
TH
5389
5390out_put_css:
b5557c4c 5391 css_put(css);
79bd9814
TH
5392out_put_cfile:
5393 fdput(cfile);
5394out_put_eventfd:
5395 eventfd_ctx_put(event->eventfd);
5396out_put_efile:
5397 fdput(efile);
5398out_kfree:
5399 kfree(event);
5400
5401 return ret;
5402}
5403
bc3dcb85 5404#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
c29b5b3d
MS
5405static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5406{
5407 /*
5408 * Deprecated.
df4ae285 5409 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
5410 */
5411 return 0;
5412}
5413#endif
5414
dddb44ff
YA
5415static int memory_stat_show(struct seq_file *m, void *v);
5416
241994ed 5417static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 5418 {
0eea1030 5419 .name = "usage_in_bytes",
8c7c6e34 5420 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5421 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5422 },
c84872e1
PE
5423 {
5424 .name = "max_usage_in_bytes",
8c7c6e34 5425 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5426 .write = mem_cgroup_reset,
791badbd 5427 .read_u64 = mem_cgroup_read_u64,
c84872e1 5428 },
8cdea7c0 5429 {
0eea1030 5430 .name = "limit_in_bytes",
8c7c6e34 5431 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5432 .write = mem_cgroup_write,
791badbd 5433 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5434 },
296c81d8
BS
5435 {
5436 .name = "soft_limit_in_bytes",
5437 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5438 .write = mem_cgroup_write,
791badbd 5439 .read_u64 = mem_cgroup_read_u64,
296c81d8 5440 },
8cdea7c0
BS
5441 {
5442 .name = "failcnt",
8c7c6e34 5443 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5444 .write = mem_cgroup_reset,
791badbd 5445 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5446 },
d2ceb9b7
KH
5447 {
5448 .name = "stat",
dddb44ff 5449 .seq_show = memory_stat_show,
d2ceb9b7 5450 },
c1e862c1
KH
5451 {
5452 .name = "force_empty",
6770c64e 5453 .write = mem_cgroup_force_empty_write,
c1e862c1 5454 },
18f59ea7
BS
5455 {
5456 .name = "use_hierarchy",
5457 .write_u64 = mem_cgroup_hierarchy_write,
5458 .read_u64 = mem_cgroup_hierarchy_read,
5459 },
79bd9814 5460 {
3bc942f3 5461 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5462 .write = memcg_write_event_control,
7dbdb199 5463 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5464 },
a7885eb8
KM
5465 {
5466 .name = "swappiness",
5467 .read_u64 = mem_cgroup_swappiness_read,
5468 .write_u64 = mem_cgroup_swappiness_write,
5469 },
7dc74be0
DN
5470 {
5471 .name = "move_charge_at_immigrate",
5472 .read_u64 = mem_cgroup_move_charge_read,
5473 .write_u64 = mem_cgroup_move_charge_write,
5474 },
9490ff27
KH
5475 {
5476 .name = "oom_control",
2da8ca82 5477 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5478 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5479 },
70ddf637
AV
5480 {
5481 .name = "pressure_level",
6b0ba2ab 5482 .seq_show = mem_cgroup_dummy_seq_show,
70ddf637 5483 },
406eb0c9
YH
5484#ifdef CONFIG_NUMA
5485 {
5486 .name = "numa_stat",
2da8ca82 5487 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5488 },
5489#endif
4597648f
MH
5490 {
5491 .name = "kmem.limit_in_bytes",
5492 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5493 .write = mem_cgroup_write,
5494 .read_u64 = mem_cgroup_read_u64,
5495 },
510fc4e1
GC
5496 {
5497 .name = "kmem.usage_in_bytes",
5498 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5499 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5500 },
5501 {
5502 .name = "kmem.failcnt",
5503 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5504 .write = mem_cgroup_reset,
791badbd 5505 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5506 },
5507 {
5508 .name = "kmem.max_usage_in_bytes",
5509 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5510 .write = mem_cgroup_reset,
791badbd 5511 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5512 },
bc3dcb85 5513#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
749c5415
GC
5514 {
5515 .name = "kmem.slabinfo",
c29b5b3d 5516 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5517 },
5518#endif
d55f90bf
VD
5519 {
5520 .name = "kmem.tcp.limit_in_bytes",
5521 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5522 .write = mem_cgroup_write,
5523 .read_u64 = mem_cgroup_read_u64,
5524 },
5525 {
5526 .name = "kmem.tcp.usage_in_bytes",
5527 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5528 .read_u64 = mem_cgroup_read_u64,
5529 },
5530 {
5531 .name = "kmem.tcp.failcnt",
5532 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5533 .write = mem_cgroup_reset,
5534 .read_u64 = mem_cgroup_read_u64,
5535 },
5536 {
5537 .name = "kmem.tcp.max_usage_in_bytes",
5538 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5539 .write = mem_cgroup_reset,
5540 .read_u64 = mem_cgroup_read_u64,
5541 },
6bc10349 5542 { }, /* terminate */
af36f906 5543};
8c7c6e34 5544
73f576c0
JW
5545/*
5546 * Private memory cgroup IDR
5547 *
5548 * Swap-out records and page cache shadow entries need to store memcg
5549 * references in constrained space, so we maintain an ID space that is
5550 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5551 * memory-controlled cgroups to 64k.
5552 *
b8f2935f 5553 * However, there usually are many references to the offline CSS after
73f576c0
JW
5554 * the cgroup has been destroyed, such as page cache or reclaimable
5555 * slab objects, that don't need to hang on to the ID. We want to keep
5556 * those dead CSS from occupying IDs, or we might quickly exhaust the
5557 * relatively small ID space and prevent the creation of new cgroups
5558 * even when there are much fewer than 64k cgroups - possibly none.
5559 *
5560 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5561 * be freed and recycled when it's no longer needed, which is usually
5562 * when the CSS is offlined.
5563 *
5564 * The only exception to that are records of swapped out tmpfs/shmem
5565 * pages that need to be attributed to live ancestors on swapin. But
5566 * those references are manageable from userspace.
5567 */
5568
60b1e24c 5569#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
73f576c0
JW
5570static DEFINE_IDR(mem_cgroup_idr);
5571
7e97de0b
KT
5572static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5573{
5574 if (memcg->id.id > 0) {
5575 idr_remove(&mem_cgroup_idr, memcg->id.id);
5576 memcg->id.id = 0;
5577 }
5578}
5579
c1514c0a
VF
5580static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5581 unsigned int n)
73f576c0 5582{
1c2d479a 5583 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5584}
5585
615d66c3 5586static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5587{
1c2d479a 5588 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5589 mem_cgroup_id_remove(memcg);
73f576c0
JW
5590
5591 /* Memcg ID pins CSS */
5592 css_put(&memcg->css);
5593 }
5594}
5595
615d66c3
VD
5596static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5597{
5598 mem_cgroup_id_put_many(memcg, 1);
5599}
5600
73f576c0
JW
5601/**
5602 * mem_cgroup_from_id - look up a memcg from a memcg id
5603 * @id: the memcg id to look up
5604 *
5605 * Caller must hold rcu_read_lock().
5606 */
5607struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5608{
5609 WARN_ON_ONCE(!rcu_read_lock_held());
5610 return idr_find(&mem_cgroup_idr, id);
5611}
5612
c15187a4
RG
5613#ifdef CONFIG_SHRINKER_DEBUG
5614struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5615{
5616 struct cgroup *cgrp;
5617 struct cgroup_subsys_state *css;
5618 struct mem_cgroup *memcg;
5619
5620 cgrp = cgroup_get_from_id(ino);
fa7e439c 5621 if (IS_ERR(cgrp))
c0f2df49 5622 return ERR_CAST(cgrp);
c15187a4
RG
5623
5624 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5625 if (css)
5626 memcg = container_of(css, struct mem_cgroup, css);
5627 else
5628 memcg = ERR_PTR(-ENOENT);
5629
5630 cgroup_put(cgrp);
5631
5632 return memcg;
5633}
5634#endif
5635
a8248bb7 5636static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5637{
5638 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5639
5640 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8 5641 if (!pn)
a8248bb7 5642 return false;
1ecaab2b 5643
aab6103b
RG
5644 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
5645 GFP_KERNEL_ACCOUNT, node);
70a64b79
SB
5646 if (!pn->lruvec_stats)
5647 goto fail;
5648
7e1c0d6f
SB
5649 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5650 GFP_KERNEL_ACCOUNT);
70a64b79
SB
5651 if (!pn->lruvec_stats_percpu)
5652 goto fail;
00f3ca2c 5653
ef8f2327 5654 lruvec_init(&pn->lruvec);
ef8f2327
MG
5655 pn->memcg = memcg;
5656
54f72fe0 5657 memcg->nodeinfo[node] = pn;
a8248bb7 5658 return true;
70a64b79
SB
5659fail:
5660 kfree(pn->lruvec_stats);
5661 kfree(pn);
a8248bb7 5662 return false;
6d12e2d8
KH
5663}
5664
ef8f2327 5665static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5666{
00f3ca2c
JW
5667 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5668
4eaf431f
MH
5669 if (!pn)
5670 return;
5671
7e1c0d6f 5672 free_percpu(pn->lruvec_stats_percpu);
70a64b79 5673 kfree(pn->lruvec_stats);
00f3ca2c 5674 kfree(pn);
1ecaab2b
KH
5675}
5676
40e952f9 5677static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5678{
c8b2a36f 5679 int node;
59927fb9 5680
91b71e78 5681 obj_cgroup_put(memcg->orig_objcg);
675d6c9b 5682
c8b2a36f 5683 for_each_node(node)
ef8f2327 5684 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5685 kfree(memcg->vmstats);
871789d4 5686 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5687 kfree(memcg);
59927fb9 5688}
3afe36b1 5689
40e952f9
TE
5690static void mem_cgroup_free(struct mem_cgroup *memcg)
5691{
ec1c86b2 5692 lru_gen_exit_memcg(memcg);
40e952f9
TE
5693 memcg_wb_domain_exit(memcg);
5694 __mem_cgroup_free(memcg);
5695}
5696
9cee7e8e 5697static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
8cdea7c0 5698{
9cee7e8e 5699 struct memcg_vmstats_percpu *statc, *pstatc;
d142e3e6 5700 struct mem_cgroup *memcg;
9cee7e8e 5701 int node, cpu;
97b27821 5702 int __maybe_unused i;
11d67612 5703 long error = -ENOMEM;
8cdea7c0 5704
06b2c3b0 5705 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5706 if (!memcg)
11d67612 5707 return ERR_PTR(error);
0b8f73e1 5708
73f576c0 5709 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5710 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5711 if (memcg->id.id < 0) {
5712 error = memcg->id.id;
73f576c0 5713 goto fail;
11d67612 5714 }
73f576c0 5715
aab6103b
RG
5716 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
5717 GFP_KERNEL_ACCOUNT);
410f8e82
SB
5718 if (!memcg->vmstats)
5719 goto fail;
5720
3e38e0aa
RG
5721 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5722 GFP_KERNEL_ACCOUNT);
871789d4 5723 if (!memcg->vmstats_percpu)
0b8f73e1 5724 goto fail;
78fb7466 5725
9cee7e8e
YA
5726 for_each_possible_cpu(cpu) {
5727 if (parent)
5728 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
5729 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5730 statc->parent = parent ? pstatc : NULL;
5731 statc->vmstats = memcg->vmstats;
5732 }
5733
3ed28fa1 5734 for_each_node(node)
a8248bb7 5735 if (!alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5736 goto fail;
f64c3f54 5737
0b8f73e1
JW
5738 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5739 goto fail;
28dbc4b6 5740
f7e1cb6e 5741 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5742 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5743 mutex_init(&memcg->thresholds_lock);
5744 spin_lock_init(&memcg->move_lock);
70ddf637 5745 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5746 INIT_LIST_HEAD(&memcg->event_list);
5747 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5748 memcg->socket_pressure = jiffies;
84c07d11 5749#ifdef CONFIG_MEMCG_KMEM
900a38f0 5750 memcg->kmemcg_id = -1;
bf4f0599 5751 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5752#endif
52ebea74
TH
5753#ifdef CONFIG_CGROUP_WRITEBACK
5754 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5755 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5756 memcg->cgwb_frn[i].done =
5757 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5758#endif
5759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5760 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5761 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5762 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5763#endif
ec1c86b2 5764 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5765 return memcg;
5766fail:
7e97de0b 5767 mem_cgroup_id_remove(memcg);
40e952f9 5768 __mem_cgroup_free(memcg);
11d67612 5769 return ERR_PTR(error);
d142e3e6
GC
5770}
5771
0b8f73e1
JW
5772static struct cgroup_subsys_state * __ref
5773mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5774{
0b8f73e1 5775 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5776 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5777
b87d8cef 5778 old_memcg = set_active_memcg(parent);
9cee7e8e 5779 memcg = mem_cgroup_alloc(parent);
b87d8cef 5780 set_active_memcg(old_memcg);
11d67612
YS
5781 if (IS_ERR(memcg))
5782 return ERR_CAST(memcg);
d142e3e6 5783
d1663a90 5784 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5785 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
f4840ccf
JW
5786#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5787 memcg->zswap_max = PAGE_COUNTER_MAX;
501a06fe
NP
5788 WRITE_ONCE(memcg->zswap_writeback,
5789 !parent || READ_ONCE(parent->zswap_writeback));
f4840ccf 5790#endif
4b82ab4f 5791 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1 5792 if (parent) {
82b3aa26 5793 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
17c56de6 5794 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
bef8620c 5795
3e32cb2e 5796 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5797 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5798 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5799 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5800 } else {
ff48c71c 5801 init_memcg_stats();
8278f1c7 5802 init_memcg_events();
bef8620c
RG
5803 page_counter_init(&memcg->memory, NULL);
5804 page_counter_init(&memcg->swap, NULL);
5805 page_counter_init(&memcg->kmem, NULL);
5806 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5807
0b8f73e1
JW
5808 root_mem_cgroup = memcg;
5809 return &memcg->css;
5810 }
5811
f7e1cb6e 5812 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5813 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5814
b6c1a8af
YS
5815#if defined(CONFIG_MEMCG_KMEM)
5816 if (!cgroup_memory_nobpf)
5817 static_branch_inc(&memcg_bpf_enabled_key);
5818#endif
5819
0b8f73e1 5820 return &memcg->css;
0b8f73e1
JW
5821}
5822
73f576c0 5823static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5824{
58fa2a55
VD
5825 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5826
da0efe30
MS
5827 if (memcg_online_kmem(memcg))
5828 goto remove_id;
5829
0a4465d3 5830 /*
e4262c4f 5831 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5832 * by the time the maps are allocated. So, we allocate maps
5833 * here, when for_each_mem_cgroup() can't skip it.
5834 */
da0efe30
MS
5835 if (alloc_shrinker_info(memcg))
5836 goto offline_kmem;
0a4465d3 5837
13ef7424 5838 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
aa48e47e 5839 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
396faf88 5840 FLUSH_TIME);
e4dde56c 5841 lru_gen_online_memcg(memcg);
6f0df8e1
JW
5842
5843 /* Online state pins memcg ID, memcg ID pins CSS */
5844 refcount_set(&memcg->id.ref, 1);
5845 css_get(css);
5846
5847 /*
5848 * Ensure mem_cgroup_from_id() works once we're fully online.
5849 *
5850 * We could do this earlier and require callers to filter with
5851 * css_tryget_online(). But right now there are no users that
5852 * need earlier access, and the workingset code relies on the
5853 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5854 * publish it here at the end of onlining. This matches the
5855 * regular ID destruction during offlining.
5856 */
5857 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5858
2f7dd7a4 5859 return 0;
da0efe30
MS
5860offline_kmem:
5861 memcg_offline_kmem(memcg);
5862remove_id:
5863 mem_cgroup_id_remove(memcg);
5864 return -ENOMEM;
8cdea7c0
BS
5865}
5866
eb95419b 5867static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5868{
eb95419b 5869 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5870 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5871
5872 /*
5873 * Unregister events and notify userspace.
5874 * Notify userspace about cgroup removing only after rmdir of cgroup
5875 * directory to avoid race between userspace and kernelspace.
5876 */
4ba9515d 5877 spin_lock_irq(&memcg->event_list_lock);
fba94807 5878 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5879 list_del_init(&event->list);
5880 schedule_work(&event->remove);
5881 }
4ba9515d 5882 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5883
bf8d5d52 5884 page_counter_set_min(&memcg->memory, 0);
23067153 5885 page_counter_set_low(&memcg->memory, 0);
63677c74 5886
a65b0e76
DC
5887 zswap_memcg_offline_cleanup(memcg);
5888
567e9ab2 5889 memcg_offline_kmem(memcg);
a178015c 5890 reparent_shrinker_deferred(memcg);
52ebea74 5891 wb_memcg_offline(memcg);
e4dde56c 5892 lru_gen_offline_memcg(memcg);
73f576c0 5893
591edfb1
RG
5894 drain_all_stock(memcg);
5895
73f576c0 5896 mem_cgroup_id_put(memcg);
df878fb0
KH
5897}
5898
6df38689
VD
5899static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5900{
5901 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5902
5903 invalidate_reclaim_iterators(memcg);
e4dde56c 5904 lru_gen_release_memcg(memcg);
6df38689
VD
5905}
5906
eb95419b 5907static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5908{
eb95419b 5909 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5910 int __maybe_unused i;
c268e994 5911
97b27821
TH
5912#ifdef CONFIG_CGROUP_WRITEBACK
5913 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5914 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5915#endif
f7e1cb6e 5916 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5917 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5918
0db15298 5919 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5920 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5921
b6c1a8af
YS
5922#if defined(CONFIG_MEMCG_KMEM)
5923 if (!cgroup_memory_nobpf)
5924 static_branch_dec(&memcg_bpf_enabled_key);
5925#endif
5926
0b8f73e1
JW
5927 vmpressure_cleanup(&memcg->vmpressure);
5928 cancel_work_sync(&memcg->high_work);
5929 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5930 free_shrinker_info(memcg);
0b8f73e1 5931 mem_cgroup_free(memcg);
8cdea7c0
BS
5932}
5933
1ced953b
TH
5934/**
5935 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5936 * @css: the target css
5937 *
5938 * Reset the states of the mem_cgroup associated with @css. This is
5939 * invoked when the userland requests disabling on the default hierarchy
5940 * but the memcg is pinned through dependency. The memcg should stop
5941 * applying policies and should revert to the vanilla state as it may be
5942 * made visible again.
5943 *
5944 * The current implementation only resets the essential configurations.
5945 * This needs to be expanded to cover all the visible parts.
5946 */
5947static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5948{
5949 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5950
bbec2e15
RG
5951 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5952 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5953 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5954 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5955 page_counter_set_min(&memcg->memory, 0);
23067153 5956 page_counter_set_low(&memcg->memory, 0);
d1663a90 5957 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5958 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
4b82ab4f 5959 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5960 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5961}
5962
2d146aa3
JW
5963static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5964{
5965 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5966 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5967 struct memcg_vmstats_percpu *statc;
f82e6bf9 5968 long delta, delta_cpu, v;
7e1c0d6f 5969 int i, nid;
2d146aa3
JW
5970
5971 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5972
ff48c71c 5973 for (i = 0; i < MEMCG_VMSTAT_SIZE; i++) {
2d146aa3
JW
5974 /*
5975 * Collect the aggregated propagation counts of groups
5976 * below us. We're in a per-cpu loop here and this is
5977 * a global counter, so the first cycle will get them.
5978 */
410f8e82 5979 delta = memcg->vmstats->state_pending[i];
2d146aa3 5980 if (delta)
410f8e82 5981 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5982
5983 /* Add CPU changes on this level since the last flush */
f82e6bf9 5984 delta_cpu = 0;
2d146aa3
JW
5985 v = READ_ONCE(statc->state[i]);
5986 if (v != statc->state_prev[i]) {
f82e6bf9
YA
5987 delta_cpu = v - statc->state_prev[i];
5988 delta += delta_cpu;
2d146aa3
JW
5989 statc->state_prev[i] = v;
5990 }
5991
2d146aa3 5992 /* Aggregate counts on this level and propagate upwards */
f82e6bf9
YA
5993 if (delta_cpu)
5994 memcg->vmstats->state_local[i] += delta_cpu;
5995
5996 if (delta) {
5997 memcg->vmstats->state[i] += delta;
5998 if (parent)
5999 parent->vmstats->state_pending[i] += delta;
6000 }
2d146aa3
JW
6001 }
6002
8278f1c7 6003 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 6004 delta = memcg->vmstats->events_pending[i];
2d146aa3 6005 if (delta)
410f8e82 6006 memcg->vmstats->events_pending[i] = 0;
2d146aa3 6007
f82e6bf9 6008 delta_cpu = 0;
2d146aa3
JW
6009 v = READ_ONCE(statc->events[i]);
6010 if (v != statc->events_prev[i]) {
f82e6bf9
YA
6011 delta_cpu = v - statc->events_prev[i];
6012 delta += delta_cpu;
2d146aa3
JW
6013 statc->events_prev[i] = v;
6014 }
6015
f82e6bf9
YA
6016 if (delta_cpu)
6017 memcg->vmstats->events_local[i] += delta_cpu;
2d146aa3 6018
f82e6bf9
YA
6019 if (delta) {
6020 memcg->vmstats->events[i] += delta;
6021 if (parent)
6022 parent->vmstats->events_pending[i] += delta;
6023 }
2d146aa3 6024 }
7e1c0d6f
SB
6025
6026 for_each_node_state(nid, N_MEMORY) {
6027 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
70a64b79
SB
6028 struct lruvec_stats *lstats = pn->lruvec_stats;
6029 struct lruvec_stats *plstats = NULL;
7e1c0d6f
SB
6030 struct lruvec_stats_percpu *lstatc;
6031
6032 if (parent)
70a64b79 6033 plstats = parent->nodeinfo[nid]->lruvec_stats;
7e1c0d6f
SB
6034
6035 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
6036
ff48c71c 6037 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; i++) {
70a64b79 6038 delta = lstats->state_pending[i];
7e1c0d6f 6039 if (delta)
70a64b79 6040 lstats->state_pending[i] = 0;
7e1c0d6f 6041
f82e6bf9 6042 delta_cpu = 0;
7e1c0d6f
SB
6043 v = READ_ONCE(lstatc->state[i]);
6044 if (v != lstatc->state_prev[i]) {
f82e6bf9
YA
6045 delta_cpu = v - lstatc->state_prev[i];
6046 delta += delta_cpu;
7e1c0d6f
SB
6047 lstatc->state_prev[i] = v;
6048 }
6049
f82e6bf9 6050 if (delta_cpu)
70a64b79 6051 lstats->state_local[i] += delta_cpu;
7e1c0d6f 6052
f82e6bf9 6053 if (delta) {
70a64b79
SB
6054 lstats->state[i] += delta;
6055 if (plstats)
6056 plstats->state_pending[i] += delta;
f82e6bf9 6057 }
7e1c0d6f
SB
6058 }
6059 }
78ec6f9d 6060 WRITE_ONCE(statc->stats_updates, 0);
8d59d221
YA
6061 /* We are in a per-cpu loop here, only do the atomic write once */
6062 if (atomic64_read(&memcg->vmstats->stats_updates))
6063 atomic64_set(&memcg->vmstats->stats_updates, 0);
2d146aa3
JW
6064}
6065
02491447 6066#ifdef CONFIG_MMU
7dc74be0 6067/* Handlers for move charge at task migration. */
854ffa8d 6068static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6069{
05b84301 6070 int ret;
9476db97 6071
d0164adc
MG
6072 /* Try a single bulk charge without reclaim first, kswapd may wake */
6073 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 6074 if (!ret) {
854ffa8d 6075 mc.precharge += count;
854ffa8d
DN
6076 return ret;
6077 }
9476db97 6078
3674534b 6079 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 6080 while (count--) {
3674534b 6081 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 6082 if (ret)
38c5d72f 6083 return ret;
854ffa8d 6084 mc.precharge++;
9476db97 6085 cond_resched();
854ffa8d 6086 }
9476db97 6087 return 0;
4ffef5fe
DN
6088}
6089
4ffef5fe 6090union mc_target {
b46777da 6091 struct folio *folio;
02491447 6092 swp_entry_t ent;
4ffef5fe
DN
6093};
6094
4ffef5fe 6095enum mc_target_type {
8d32ff84 6096 MC_TARGET_NONE = 0,
4ffef5fe 6097 MC_TARGET_PAGE,
02491447 6098 MC_TARGET_SWAP,
c733a828 6099 MC_TARGET_DEVICE,
4ffef5fe
DN
6100};
6101
90254a65
DN
6102static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6103 unsigned long addr, pte_t ptent)
4ffef5fe 6104{
25b2995a 6105 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6106
58f341f7 6107 if (!page)
90254a65
DN
6108 return NULL;
6109 if (PageAnon(page)) {
1dfab5ab 6110 if (!(mc.flags & MOVE_ANON))
90254a65 6111 return NULL;
1dfab5ab
JW
6112 } else {
6113 if (!(mc.flags & MOVE_FILE))
6114 return NULL;
6115 }
58f341f7 6116 get_page(page);
90254a65
DN
6117
6118 return page;
6119}
6120
c733a828 6121#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 6122static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 6123 pte_t ptent, swp_entry_t *entry)
90254a65 6124{
90254a65
DN
6125 struct page *page = NULL;
6126 swp_entry_t ent = pte_to_swp_entry(ptent);
6127
9a137153 6128 if (!(mc.flags & MOVE_ANON))
90254a65 6129 return NULL;
c733a828
JG
6130
6131 /*
27674ef6
CH
6132 * Handle device private pages that are not accessible by the CPU, but
6133 * stored as special swap entries in the page table.
c733a828
JG
6134 */
6135 if (is_device_private_entry(ent)) {
af5cdaf8 6136 page = pfn_swap_entry_to_page(ent);
27674ef6 6137 if (!get_page_unless_zero(page))
c733a828
JG
6138 return NULL;
6139 return page;
6140 }
6141
9a137153
RC
6142 if (non_swap_entry(ent))
6143 return NULL;
6144
4b91355e 6145 /*
cb691e2f 6146 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
6147 * we call find_get_page() with swapper_space directly.
6148 */
f6ab1f7f 6149 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 6150 entry->val = ent.val;
90254a65
DN
6151
6152 return page;
6153}
4b91355e
KH
6154#else
6155static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 6156 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
6157{
6158 return NULL;
6159}
6160#endif
90254a65 6161
87946a72 6162static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 6163 unsigned long addr, pte_t ptent)
87946a72 6164{
524984ff
MWO
6165 unsigned long index;
6166 struct folio *folio;
6167
87946a72
DN
6168 if (!vma->vm_file) /* anonymous vma */
6169 return NULL;
1dfab5ab 6170 if (!(mc.flags & MOVE_FILE))
87946a72
DN
6171 return NULL;
6172
524984ff 6173 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 6174 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
6175 index = linear_page_index(vma, addr);
6176 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
66dabbb6 6177 if (IS_ERR(folio))
524984ff
MWO
6178 return NULL;
6179 return folio_file_page(folio, index);
87946a72
DN
6180}
6181
b1b0deab 6182/**
b267e1a3
MWO
6183 * mem_cgroup_move_account - move account of the folio
6184 * @folio: The folio.
25843c2b 6185 * @compound: charge the page as compound or small page
b267e1a3
MWO
6186 * @from: mem_cgroup which the folio is moved from.
6187 * @to: mem_cgroup which the folio is moved to. @from != @to.
b1b0deab 6188 *
b267e1a3 6189 * The folio must be locked and not on the LRU.
b1b0deab
CG
6190 *
6191 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
6192 * from old cgroup.
6193 */
b267e1a3 6194static int mem_cgroup_move_account(struct folio *folio,
f627c2f5 6195 bool compound,
b1b0deab
CG
6196 struct mem_cgroup *from,
6197 struct mem_cgroup *to)
6198{
ae8af438
KK
6199 struct lruvec *from_vec, *to_vec;
6200 struct pglist_data *pgdat;
fcce4672 6201 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 6202 int nid, ret;
b1b0deab
CG
6203
6204 VM_BUG_ON(from == to);
4e0cf05f 6205 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fcce4672 6206 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 6207 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab 6208
b1b0deab 6209 ret = -EINVAL;
fcce4672 6210 if (folio_memcg(folio) != from)
4e0cf05f 6211 goto out;
b1b0deab 6212
fcce4672 6213 pgdat = folio_pgdat(folio);
867e5e1d
JW
6214 from_vec = mem_cgroup_lruvec(from, pgdat);
6215 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 6216
fcce4672 6217 folio_memcg_lock(folio);
b1b0deab 6218
fcce4672
MWO
6219 if (folio_test_anon(folio)) {
6220 if (folio_mapped(folio)) {
be5d0a74
JW
6221 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
6222 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6199277b 6223 if (folio_test_pmd_mappable(folio)) {
69473e5d
MS
6224 __mod_lruvec_state(from_vec, NR_ANON_THPS,
6225 -nr_pages);
6226 __mod_lruvec_state(to_vec, NR_ANON_THPS,
6227 nr_pages);
468c3982 6228 }
be5d0a74
JW
6229 }
6230 } else {
0d1c2072
JW
6231 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
6232 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
6233
fcce4672 6234 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
6235 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
6236 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
6237 }
6238
fcce4672 6239 if (folio_mapped(folio)) {
49e50d27
JW
6240 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
6241 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
6242 }
b1b0deab 6243
fcce4672
MWO
6244 if (folio_test_dirty(folio)) {
6245 struct address_space *mapping = folio_mapping(folio);
c4843a75 6246
f56753ac 6247 if (mapping_can_writeback(mapping)) {
49e50d27
JW
6248 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
6249 -nr_pages);
6250 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
6251 nr_pages);
6252 }
c4843a75
GT
6253 }
6254 }
6255
c449deb2
HD
6256#ifdef CONFIG_SWAP
6257 if (folio_test_swapcache(folio)) {
6258 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
6259 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
6260 }
6261#endif
fcce4672 6262 if (folio_test_writeback(folio)) {
ae8af438
KK
6263 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
6264 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
6265 }
6266
6267 /*
abb242f5
JW
6268 * All state has been migrated, let's switch to the new memcg.
6269 *
bcfe06bf 6270 * It is safe to change page's memcg here because the page
abb242f5
JW
6271 * is referenced, charged, isolated, and locked: we can't race
6272 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 6273 * that would rely on a stable page's memory cgroup.
abb242f5 6274 *
6c77b607 6275 * Note that folio_memcg_lock is a memcg lock, not a page lock,
bcfe06bf 6276 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
6277 * new memcg that isn't locked, the above state can change
6278 * concurrently again. Make sure we're truly done with it.
b1b0deab 6279 */
abb242f5 6280 smp_mb();
b1b0deab 6281
1a3e1f40
JW
6282 css_get(&to->css);
6283 css_put(&from->css);
6284
fcce4672 6285 folio->memcg_data = (unsigned long)to;
87eaceb3 6286
f70ad448 6287 __folio_memcg_unlock(from);
b1b0deab
CG
6288
6289 ret = 0;
fcce4672 6290 nid = folio_nid(folio);
b1b0deab
CG
6291
6292 local_irq_disable();
6e0110c2 6293 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 6294 memcg_check_events(to, nid);
6e0110c2 6295 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 6296 memcg_check_events(from, nid);
b1b0deab 6297 local_irq_enable();
b1b0deab
CG
6298out:
6299 return ret;
6300}
6301
7cf7806c
LR
6302/**
6303 * get_mctgt_type - get target type of moving charge
6304 * @vma: the vma the pte to be checked belongs
6305 * @addr: the address corresponding to the pte to be checked
6306 * @ptent: the pte to be checked
6307 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6308 *
853f62a3
MWO
6309 * Context: Called with pte lock held.
6310 * Return:
6311 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6312 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
b46777da 6313 * move charge. If @target is not NULL, the folio is stored in target->folio
853f62a3
MWO
6314 * with extra refcnt taken (Caller should release it).
6315 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6316 * target for charge migration. If @target is not NULL, the entry is
6317 * stored in target->ent.
6318 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6319 * thus not on the lru. For now such page is charged like a regular page
6320 * would be as it is just special memory taking the place of a regular page.
6321 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c 6322 */
8d32ff84 6323static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6324 unsigned long addr, pte_t ptent, union mc_target *target)
6325{
6326 struct page *page = NULL;
b67fa6e4 6327 struct folio *folio;
8d32ff84 6328 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6329 swp_entry_t ent = { .val = 0 };
6330
6331 if (pte_present(ptent))
6332 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
6333 else if (pte_none_mostly(ptent))
6334 /*
6335 * PTE markers should be treated as a none pte here, separated
6336 * from other swap handling below.
6337 */
6338 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 6339 else if (is_swap_pte(ptent))
48406ef8 6340 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65 6341
b67fa6e4
MWO
6342 if (page)
6343 folio = page_folio(page);
4e0cf05f 6344 if (target && page) {
b67fa6e4
MWO
6345 if (!folio_trylock(folio)) {
6346 folio_put(folio);
4e0cf05f
JW
6347 return ret;
6348 }
6349 /*
6350 * page_mapped() must be stable during the move. This
6351 * pte is locked, so if it's present, the page cannot
6352 * become unmapped. If it isn't, we have only partial
6353 * control over the mapped state: the page lock will
6354 * prevent new faults against pagecache and swapcache,
6355 * so an unmapped page cannot become mapped. However,
6356 * if the page is already mapped elsewhere, it can
6357 * unmap, and there is nothing we can do about it.
6358 * Alas, skip moving the page in this case.
6359 */
6360 if (!pte_present(ptent) && page_mapped(page)) {
b67fa6e4
MWO
6361 folio_unlock(folio);
6362 folio_put(folio);
4e0cf05f
JW
6363 return ret;
6364 }
6365 }
6366
90254a65 6367 if (!page && !ent.val)
8d32ff84 6368 return ret;
02491447 6369 if (page) {
02491447 6370 /*
0a31bc97 6371 * Do only loose check w/o serialization.
1306a85a 6372 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 6373 * not under LRU exclusion.
02491447 6374 */
b67fa6e4 6375 if (folio_memcg(folio) == mc.from) {
02491447 6376 ret = MC_TARGET_PAGE;
b67fa6e4
MWO
6377 if (folio_is_device_private(folio) ||
6378 folio_is_device_coherent(folio))
c733a828 6379 ret = MC_TARGET_DEVICE;
02491447 6380 if (target)
b67fa6e4 6381 target->folio = folio;
02491447 6382 }
4e0cf05f
JW
6383 if (!ret || !target) {
6384 if (target)
b67fa6e4
MWO
6385 folio_unlock(folio);
6386 folio_put(folio);
4e0cf05f 6387 }
02491447 6388 }
3e14a57b
HY
6389 /*
6390 * There is a swap entry and a page doesn't exist or isn't charged.
6391 * But we cannot move a tail-page in a THP.
6392 */
6393 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 6394 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6395 ret = MC_TARGET_SWAP;
6396 if (target)
6397 target->ent = ent;
4ffef5fe 6398 }
4ffef5fe
DN
6399 return ret;
6400}
6401
12724850
NH
6402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6403/*
d6810d73
HY
6404 * We don't consider PMD mapped swapping or file mapped pages because THP does
6405 * not support them for now.
12724850
NH
6406 * Caller should make sure that pmd_trans_huge(pmd) is true.
6407 */
6408static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6409 unsigned long addr, pmd_t pmd, union mc_target *target)
6410{
6411 struct page *page = NULL;
f6c7590b 6412 struct folio *folio;
12724850
NH
6413 enum mc_target_type ret = MC_TARGET_NONE;
6414
84c3fc4e
ZY
6415 if (unlikely(is_swap_pmd(pmd))) {
6416 VM_BUG_ON(thp_migration_supported() &&
6417 !is_pmd_migration_entry(pmd));
6418 return ret;
6419 }
12724850 6420 page = pmd_page(pmd);
309381fe 6421 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
f6c7590b 6422 folio = page_folio(page);
1dfab5ab 6423 if (!(mc.flags & MOVE_ANON))
12724850 6424 return ret;
f6c7590b 6425 if (folio_memcg(folio) == mc.from) {
12724850
NH
6426 ret = MC_TARGET_PAGE;
6427 if (target) {
f6c7590b
MWO
6428 folio_get(folio);
6429 if (!folio_trylock(folio)) {
6430 folio_put(folio);
4e0cf05f
JW
6431 return MC_TARGET_NONE;
6432 }
f6c7590b 6433 target->folio = folio;
12724850
NH
6434 }
6435 }
6436 return ret;
6437}
6438#else
6439static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6440 unsigned long addr, pmd_t pmd, union mc_target *target)
6441{
6442 return MC_TARGET_NONE;
6443}
6444#endif
6445
4ffef5fe
DN
6446static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6447 unsigned long addr, unsigned long end,
6448 struct mm_walk *walk)
6449{
26bcd64a 6450 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6451 pte_t *pte;
6452 spinlock_t *ptl;
6453
b6ec57f4
KS
6454 ptl = pmd_trans_huge_lock(pmd, vma);
6455 if (ptl) {
c733a828
JG
6456 /*
6457 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
6458 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6459 * this might change.
c733a828 6460 */
12724850
NH
6461 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6462 mc.precharge += HPAGE_PMD_NR;
bf929152 6463 spin_unlock(ptl);
1a5a9906 6464 return 0;
12724850 6465 }
03319327 6466
4ffef5fe 6467 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
04dee9e8
HD
6468 if (!pte)
6469 return 0;
4ffef5fe 6470 for (; addr != end; pte++, addr += PAGE_SIZE)
c33c7948 6471 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
4ffef5fe
DN
6472 mc.precharge++; /* increment precharge temporarily */
6473 pte_unmap_unlock(pte - 1, ptl);
6474 cond_resched();
6475
7dc74be0
DN
6476 return 0;
6477}
6478
7b86ac33
CH
6479static const struct mm_walk_ops precharge_walk_ops = {
6480 .pmd_entry = mem_cgroup_count_precharge_pte_range,
49b06385 6481 .walk_lock = PGWALK_RDLOCK,
7b86ac33
CH
6482};
6483
4ffef5fe
DN
6484static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6485{
6486 unsigned long precharge;
4ffef5fe 6487
d8ed45c5 6488 mmap_read_lock(mm);
ba0aff8e 6489 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 6490 mmap_read_unlock(mm);
4ffef5fe
DN
6491
6492 precharge = mc.precharge;
6493 mc.precharge = 0;
6494
6495 return precharge;
6496}
6497
4ffef5fe
DN
6498static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6499{
dfe076b0
DN
6500 unsigned long precharge = mem_cgroup_count_precharge(mm);
6501
6502 VM_BUG_ON(mc.moving_task);
6503 mc.moving_task = current;
6504 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6505}
6506
dfe076b0
DN
6507/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6508static void __mem_cgroup_clear_mc(void)
4ffef5fe 6509{
2bd9bb20
KH
6510 struct mem_cgroup *from = mc.from;
6511 struct mem_cgroup *to = mc.to;
6512
4ffef5fe 6513 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6514 if (mc.precharge) {
4b569387 6515 mem_cgroup_cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6516 mc.precharge = 0;
6517 }
6518 /*
6519 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6520 * we must uncharge here.
6521 */
6522 if (mc.moved_charge) {
4b569387 6523 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6524 mc.moved_charge = 0;
4ffef5fe 6525 }
483c30b5
DN
6526 /* we must fixup refcnts and charges */
6527 if (mc.moved_swap) {
483c30b5 6528 /* uncharge swap account from the old cgroup */
ce00a967 6529 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6530 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6531
615d66c3
VD
6532 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6533
05b84301 6534 /*
3e32cb2e
JW
6535 * we charged both to->memory and to->memsw, so we
6536 * should uncharge to->memory.
05b84301 6537 */
ce00a967 6538 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6539 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6540
483c30b5
DN
6541 mc.moved_swap = 0;
6542 }
dfe076b0
DN
6543 memcg_oom_recover(from);
6544 memcg_oom_recover(to);
6545 wake_up_all(&mc.waitq);
6546}
6547
6548static void mem_cgroup_clear_mc(void)
6549{
264a0ae1
TH
6550 struct mm_struct *mm = mc.mm;
6551
dfe076b0
DN
6552 /*
6553 * we must clear moving_task before waking up waiters at the end of
6554 * task migration.
6555 */
6556 mc.moving_task = NULL;
6557 __mem_cgroup_clear_mc();
2bd9bb20 6558 spin_lock(&mc.lock);
4ffef5fe
DN
6559 mc.from = NULL;
6560 mc.to = NULL;
264a0ae1 6561 mc.mm = NULL;
2bd9bb20 6562 spin_unlock(&mc.lock);
264a0ae1
TH
6563
6564 mmput(mm);
4ffef5fe
DN
6565}
6566
1f7dd3e5 6567static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6568{
1f7dd3e5 6569 struct cgroup_subsys_state *css;
eed67d75 6570 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6571 struct mem_cgroup *from;
4530eddb 6572 struct task_struct *leader, *p;
9f2115f9 6573 struct mm_struct *mm;
1dfab5ab 6574 unsigned long move_flags;
9f2115f9 6575 int ret = 0;
7dc74be0 6576
1f7dd3e5
TH
6577 /* charge immigration isn't supported on the default hierarchy */
6578 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6579 return 0;
6580
4530eddb
TH
6581 /*
6582 * Multi-process migrations only happen on the default hierarchy
6583 * where charge immigration is not used. Perform charge
6584 * immigration if @tset contains a leader and whine if there are
6585 * multiple.
6586 */
6587 p = NULL;
1f7dd3e5 6588 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6589 WARN_ON_ONCE(p);
6590 p = leader;
1f7dd3e5 6591 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6592 }
6593 if (!p)
6594 return 0;
6595
1f7dd3e5 6596 /*
f0953a1b 6597 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6598 * tunable will only affect upcoming migrations, not the current one.
6599 * So we need to save it, and keep it going.
6600 */
6601 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6602 if (!move_flags)
6603 return 0;
6604
9f2115f9
TH
6605 from = mem_cgroup_from_task(p);
6606
6607 VM_BUG_ON(from == memcg);
6608
6609 mm = get_task_mm(p);
6610 if (!mm)
6611 return 0;
6612 /* We move charges only when we move a owner of the mm */
6613 if (mm->owner == p) {
6614 VM_BUG_ON(mc.from);
6615 VM_BUG_ON(mc.to);
6616 VM_BUG_ON(mc.precharge);
6617 VM_BUG_ON(mc.moved_charge);
6618 VM_BUG_ON(mc.moved_swap);
6619
6620 spin_lock(&mc.lock);
264a0ae1 6621 mc.mm = mm;
9f2115f9
TH
6622 mc.from = from;
6623 mc.to = memcg;
6624 mc.flags = move_flags;
6625 spin_unlock(&mc.lock);
6626 /* We set mc.moving_task later */
6627
6628 ret = mem_cgroup_precharge_mc(mm);
6629 if (ret)
6630 mem_cgroup_clear_mc();
264a0ae1
TH
6631 } else {
6632 mmput(mm);
7dc74be0
DN
6633 }
6634 return ret;
6635}
6636
1f7dd3e5 6637static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6638{
4e2f245d
JW
6639 if (mc.to)
6640 mem_cgroup_clear_mc();
7dc74be0
DN
6641}
6642
4ffef5fe
DN
6643static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6644 unsigned long addr, unsigned long end,
6645 struct mm_walk *walk)
7dc74be0 6646{
4ffef5fe 6647 int ret = 0;
26bcd64a 6648 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6649 pte_t *pte;
6650 spinlock_t *ptl;
12724850
NH
6651 enum mc_target_type target_type;
6652 union mc_target target;
b267e1a3 6653 struct folio *folio;
4ffef5fe 6654
b6ec57f4
KS
6655 ptl = pmd_trans_huge_lock(pmd, vma);
6656 if (ptl) {
62ade86a 6657 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6658 spin_unlock(ptl);
12724850
NH
6659 return 0;
6660 }
6661 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6662 if (target_type == MC_TARGET_PAGE) {
b46777da 6663 folio = target.folio;
b267e1a3
MWO
6664 if (folio_isolate_lru(folio)) {
6665 if (!mem_cgroup_move_account(folio, true,
1306a85a 6666 mc.from, mc.to)) {
12724850
NH
6667 mc.precharge -= HPAGE_PMD_NR;
6668 mc.moved_charge += HPAGE_PMD_NR;
6669 }
b267e1a3 6670 folio_putback_lru(folio);
12724850 6671 }
b267e1a3
MWO
6672 folio_unlock(folio);
6673 folio_put(folio);
c733a828 6674 } else if (target_type == MC_TARGET_DEVICE) {
b46777da 6675 folio = target.folio;
b267e1a3 6676 if (!mem_cgroup_move_account(folio, true,
c733a828
JG
6677 mc.from, mc.to)) {
6678 mc.precharge -= HPAGE_PMD_NR;
6679 mc.moved_charge += HPAGE_PMD_NR;
6680 }
b267e1a3
MWO
6681 folio_unlock(folio);
6682 folio_put(folio);
12724850 6683 }
bf929152 6684 spin_unlock(ptl);
1a5a9906 6685 return 0;
12724850
NH
6686 }
6687
4ffef5fe
DN
6688retry:
6689 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
04dee9e8
HD
6690 if (!pte)
6691 return 0;
4ffef5fe 6692 for (; addr != end; addr += PAGE_SIZE) {
c33c7948 6693 pte_t ptent = ptep_get(pte++);
c733a828 6694 bool device = false;
02491447 6695 swp_entry_t ent;
4ffef5fe
DN
6696
6697 if (!mc.precharge)
6698 break;
6699
8d32ff84 6700 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6701 case MC_TARGET_DEVICE:
6702 device = true;
e4a9bc58 6703 fallthrough;
4ffef5fe 6704 case MC_TARGET_PAGE:
b46777da 6705 folio = target.folio;
53f9263b
KS
6706 /*
6707 * We can have a part of the split pmd here. Moving it
6708 * can be done but it would be too convoluted so simply
6709 * ignore such a partial THP and keep it in original
6710 * memcg. There should be somebody mapping the head.
6711 */
b267e1a3 6712 if (folio_test_large(folio))
53f9263b 6713 goto put;
b267e1a3 6714 if (!device && !folio_isolate_lru(folio))
4ffef5fe 6715 goto put;
b267e1a3 6716 if (!mem_cgroup_move_account(folio, false,
f627c2f5 6717 mc.from, mc.to)) {
4ffef5fe 6718 mc.precharge--;
854ffa8d
DN
6719 /* we uncharge from mc.from later. */
6720 mc.moved_charge++;
4ffef5fe 6721 }
c733a828 6722 if (!device)
b267e1a3 6723 folio_putback_lru(folio);
4e0cf05f 6724put: /* get_mctgt_type() gets & locks the page */
b267e1a3
MWO
6725 folio_unlock(folio);
6726 folio_put(folio);
4ffef5fe 6727 break;
02491447
DN
6728 case MC_TARGET_SWAP:
6729 ent = target.ent;
e91cbb42 6730 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6731 mc.precharge--;
8d22a935
HD
6732 mem_cgroup_id_get_many(mc.to, 1);
6733 /* we fixup other refcnts and charges later. */
483c30b5
DN
6734 mc.moved_swap++;
6735 }
02491447 6736 break;
4ffef5fe
DN
6737 default:
6738 break;
6739 }
6740 }
6741 pte_unmap_unlock(pte - 1, ptl);
6742 cond_resched();
6743
6744 if (addr != end) {
6745 /*
6746 * We have consumed all precharges we got in can_attach().
6747 * We try charge one by one, but don't do any additional
6748 * charges to mc.to if we have failed in charge once in attach()
6749 * phase.
6750 */
854ffa8d 6751 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6752 if (!ret)
6753 goto retry;
6754 }
6755
6756 return ret;
6757}
6758
7b86ac33
CH
6759static const struct mm_walk_ops charge_walk_ops = {
6760 .pmd_entry = mem_cgroup_move_charge_pte_range,
49b06385 6761 .walk_lock = PGWALK_RDLOCK,
7b86ac33
CH
6762};
6763
264a0ae1 6764static void mem_cgroup_move_charge(void)
4ffef5fe 6765{
4ffef5fe 6766 lru_add_drain_all();
312722cb 6767 /*
6c77b607 6768 * Signal folio_memcg_lock() to take the memcg's move_lock
81f8c3a4
JW
6769 * while we're moving its pages to another memcg. Then wait
6770 * for already started RCU-only updates to finish.
312722cb
JW
6771 */
6772 atomic_inc(&mc.from->moving_account);
6773 synchronize_rcu();
dfe076b0 6774retry:
d8ed45c5 6775 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6776 /*
c1e8d7c6 6777 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6778 * waitq. So we cancel all extra charges, wake up all waiters,
6779 * and retry. Because we cancel precharges, we might not be able
6780 * to move enough charges, but moving charge is a best-effort
6781 * feature anyway, so it wouldn't be a big problem.
6782 */
6783 __mem_cgroup_clear_mc();
6784 cond_resched();
6785 goto retry;
6786 }
26bcd64a
NH
6787 /*
6788 * When we have consumed all precharges and failed in doing
6789 * additional charge, the page walk just aborts.
6790 */
ba0aff8e 6791 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6792 mmap_read_unlock(mc.mm);
312722cb 6793 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6794}
6795
264a0ae1 6796static void mem_cgroup_move_task(void)
67e465a7 6797{
264a0ae1
TH
6798 if (mc.to) {
6799 mem_cgroup_move_charge();
a433658c 6800 mem_cgroup_clear_mc();
264a0ae1 6801 }
67e465a7 6802}
1aacbd35 6803
5cfb80a7 6804#else /* !CONFIG_MMU */
1f7dd3e5 6805static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6806{
6807 return 0;
6808}
1f7dd3e5 6809static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6810{
6811}
264a0ae1 6812static void mem_cgroup_move_task(void)
5cfb80a7
DN
6813{
6814}
6815#endif
67e465a7 6816
1aacbd35
RG
6817#ifdef CONFIG_MEMCG_KMEM
6818static void mem_cgroup_fork(struct task_struct *task)
6819{
6820 /*
6821 * Set the update flag to cause task->objcg to be initialized lazily
6822 * on the first allocation. It can be done without any synchronization
6823 * because it's always performed on the current task, so does
6824 * current_objcg_update().
6825 */
6826 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6827}
6828
6829static void mem_cgroup_exit(struct task_struct *task)
6830{
6831 struct obj_cgroup *objcg = task->objcg;
6832
6833 objcg = (struct obj_cgroup *)
6834 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
91b71e78 6835 obj_cgroup_put(objcg);
1aacbd35
RG
6836
6837 /*
6838 * Some kernel allocations can happen after this point,
6839 * but let's ignore them. It can be done without any synchronization
6840 * because it's always performed on the current task, so does
6841 * current_objcg_update().
6842 */
6843 task->objcg = NULL;
6844}
6845#endif
6846
bd74fdae 6847#ifdef CONFIG_LRU_GEN
1aacbd35 6848static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
bd74fdae
YZ
6849{
6850 struct task_struct *task;
6851 struct cgroup_subsys_state *css;
6852
6853 /* find the first leader if there is any */
6854 cgroup_taskset_for_each_leader(task, css, tset)
6855 break;
6856
6857 if (!task)
6858 return;
6859
6860 task_lock(task);
6861 if (task->mm && READ_ONCE(task->mm->owner) == task)
6862 lru_gen_migrate_mm(task->mm);
6863 task_unlock(task);
6864}
6865#else
1aacbd35
RG
6866static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6867#endif /* CONFIG_LRU_GEN */
6868
6869#ifdef CONFIG_MEMCG_KMEM
6870static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6871{
6872 struct task_struct *task;
6873 struct cgroup_subsys_state *css;
6874
6875 cgroup_taskset_for_each(task, css, tset) {
6876 /* atomically set the update bit */
6877 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6878 }
6879}
6880#else
6881static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6882#endif /* CONFIG_MEMCG_KMEM */
6883
6884#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
bd74fdae
YZ
6885static void mem_cgroup_attach(struct cgroup_taskset *tset)
6886{
1aacbd35
RG
6887 mem_cgroup_lru_gen_attach(tset);
6888 mem_cgroup_kmem_attach(tset);
bd74fdae 6889}
1aacbd35 6890#endif
bd74fdae 6891
677dc973
CD
6892static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6893{
6894 if (value == PAGE_COUNTER_MAX)
6895 seq_puts(m, "max\n");
6896 else
6897 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6898
6899 return 0;
6900}
6901
241994ed
JW
6902static u64 memory_current_read(struct cgroup_subsys_state *css,
6903 struct cftype *cft)
6904{
f5fc3c5d
JW
6905 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6906
6907 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6908}
6909
8e20d4b3
GR
6910static u64 memory_peak_read(struct cgroup_subsys_state *css,
6911 struct cftype *cft)
6912{
6913 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6914
6915 return (u64)memcg->memory.watermark * PAGE_SIZE;
6916}
6917
bf8d5d52
RG
6918static int memory_min_show(struct seq_file *m, void *v)
6919{
677dc973
CD
6920 return seq_puts_memcg_tunable(m,
6921 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6922}
6923
6924static ssize_t memory_min_write(struct kernfs_open_file *of,
6925 char *buf, size_t nbytes, loff_t off)
6926{
6927 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6928 unsigned long min;
6929 int err;
6930
6931 buf = strstrip(buf);
6932 err = page_counter_memparse(buf, "max", &min);
6933 if (err)
6934 return err;
6935
6936 page_counter_set_min(&memcg->memory, min);
6937
6938 return nbytes;
6939}
6940
241994ed
JW
6941static int memory_low_show(struct seq_file *m, void *v)
6942{
677dc973
CD
6943 return seq_puts_memcg_tunable(m,
6944 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6945}
6946
6947static ssize_t memory_low_write(struct kernfs_open_file *of,
6948 char *buf, size_t nbytes, loff_t off)
6949{
6950 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6951 unsigned long low;
6952 int err;
6953
6954 buf = strstrip(buf);
d2973697 6955 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6956 if (err)
6957 return err;
6958
23067153 6959 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6960
6961 return nbytes;
6962}
6963
6964static int memory_high_show(struct seq_file *m, void *v)
6965{
d1663a90
JK
6966 return seq_puts_memcg_tunable(m,
6967 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6968}
6969
6970static ssize_t memory_high_write(struct kernfs_open_file *of,
6971 char *buf, size_t nbytes, loff_t off)
6972{
6973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6974 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6975 bool drained = false;
241994ed
JW
6976 unsigned long high;
6977 int err;
6978
6979 buf = strstrip(buf);
d2973697 6980 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6981 if (err)
6982 return err;
6983
e82553c1
JW
6984 page_counter_set_high(&memcg->memory, high);
6985
8c8c383c
JW
6986 for (;;) {
6987 unsigned long nr_pages = page_counter_read(&memcg->memory);
6988 unsigned long reclaimed;
6989
6990 if (nr_pages <= high)
6991 break;
6992
6993 if (signal_pending(current))
6994 break;
6995
6996 if (!drained) {
6997 drain_all_stock(memcg);
6998 drained = true;
6999 continue;
7000 }
7001
7002 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
55ab834a 7003 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
7004
7005 if (!reclaimed && !nr_retries--)
7006 break;
7007 }
588083bb 7008
19ce33ac 7009 memcg_wb_domain_size_changed(memcg);
241994ed
JW
7010 return nbytes;
7011}
7012
7013static int memory_max_show(struct seq_file *m, void *v)
7014{
677dc973
CD
7015 return seq_puts_memcg_tunable(m,
7016 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
7017}
7018
7019static ssize_t memory_max_write(struct kernfs_open_file *of,
7020 char *buf, size_t nbytes, loff_t off)
7021{
7022 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 7023 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 7024 bool drained = false;
241994ed
JW
7025 unsigned long max;
7026 int err;
7027
7028 buf = strstrip(buf);
d2973697 7029 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
7030 if (err)
7031 return err;
7032
bbec2e15 7033 xchg(&memcg->memory.max, max);
b6e6edcf
JW
7034
7035 for (;;) {
7036 unsigned long nr_pages = page_counter_read(&memcg->memory);
7037
7038 if (nr_pages <= max)
7039 break;
7040
7249c9f0 7041 if (signal_pending(current))
b6e6edcf 7042 break;
b6e6edcf
JW
7043
7044 if (!drained) {
7045 drain_all_stock(memcg);
7046 drained = true;
7047 continue;
7048 }
7049
7050 if (nr_reclaims) {
7051 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
55ab834a 7052 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
7053 nr_reclaims--;
7054 continue;
7055 }
7056
e27be240 7057 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
7058 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
7059 break;
7060 }
241994ed 7061
2529bb3a 7062 memcg_wb_domain_size_changed(memcg);
241994ed
JW
7063 return nbytes;
7064}
7065
664dc218
DR
7066/*
7067 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
7068 * if any new events become available.
7069 */
1e577f97
SB
7070static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
7071{
7072 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
7073 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
7074 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
7075 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
7076 seq_printf(m, "oom_kill %lu\n",
7077 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
7078 seq_printf(m, "oom_group_kill %lu\n",
7079 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
7080}
7081
241994ed
JW
7082static int memory_events_show(struct seq_file *m, void *v)
7083{
aa9694bb 7084 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 7085
1e577f97
SB
7086 __memory_events_show(m, memcg->memory_events);
7087 return 0;
7088}
7089
7090static int memory_events_local_show(struct seq_file *m, void *v)
7091{
7092 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 7093
1e577f97 7094 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
7095 return 0;
7096}
7097
587d9f72
JW
7098static int memory_stat_show(struct seq_file *m, void *v)
7099{
aa9694bb 7100 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 7101 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5b42360c 7102 struct seq_buf s;
1ff9e6e1 7103
c8713d0b
JW
7104 if (!buf)
7105 return -ENOMEM;
5b42360c
YA
7106 seq_buf_init(&s, buf, PAGE_SIZE);
7107 memory_stat_format(memcg, &s);
c8713d0b
JW
7108 seq_puts(m, buf);
7109 kfree(buf);
587d9f72
JW
7110 return 0;
7111}
7112
5f9a4f4a 7113#ifdef CONFIG_NUMA
fff66b79
MS
7114static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
7115 int item)
7116{
ff841a06
YA
7117 return lruvec_page_state(lruvec, item) *
7118 memcg_page_state_output_unit(item);
fff66b79
MS
7119}
7120
5f9a4f4a
MS
7121static int memory_numa_stat_show(struct seq_file *m, void *v)
7122{
7123 int i;
7124 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7125
7d7ef0a4 7126 mem_cgroup_flush_stats(memcg);
7e1c0d6f 7127
5f9a4f4a
MS
7128 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
7129 int nid;
7130
7131 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
7132 continue;
7133
7134 seq_printf(m, "%s", memory_stats[i].name);
7135 for_each_node_state(nid, N_MEMORY) {
7136 u64 size;
7137 struct lruvec *lruvec;
7138
7139 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
7140 size = lruvec_page_state_output(lruvec,
7141 memory_stats[i].idx);
5f9a4f4a
MS
7142 seq_printf(m, " N%d=%llu", nid, size);
7143 }
7144 seq_putc(m, '\n');
7145 }
7146
7147 return 0;
7148}
7149#endif
7150
3d8b38eb
RG
7151static int memory_oom_group_show(struct seq_file *m, void *v)
7152{
aa9694bb 7153 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb 7154
eaf7b66b 7155 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
3d8b38eb
RG
7156
7157 return 0;
7158}
7159
7160static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
7161 char *buf, size_t nbytes, loff_t off)
7162{
7163 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7164 int ret, oom_group;
7165
7166 buf = strstrip(buf);
7167 if (!buf)
7168 return -EINVAL;
7169
7170 ret = kstrtoint(buf, 0, &oom_group);
7171 if (ret)
7172 return ret;
7173
7174 if (oom_group != 0 && oom_group != 1)
7175 return -EINVAL;
7176
eaf7b66b 7177 WRITE_ONCE(memcg->oom_group, oom_group);
3d8b38eb
RG
7178
7179 return nbytes;
7180}
7181
94968384
SB
7182static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
7183 size_t nbytes, loff_t off)
7184{
7185 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7186 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
7187 unsigned long nr_to_reclaim, nr_reclaimed = 0;
55ab834a
MH
7188 unsigned int reclaim_options;
7189 int err;
12a5d395
MA
7190
7191 buf = strstrip(buf);
55ab834a
MH
7192 err = page_counter_memparse(buf, "", &nr_to_reclaim);
7193 if (err)
7194 return err;
12a5d395 7195
55ab834a 7196 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384 7197 while (nr_reclaimed < nr_to_reclaim) {
287d5fed
M
7198 /* Will converge on zero, but reclaim enforces a minimum */
7199 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
94968384
SB
7200 unsigned long reclaimed;
7201
7202 if (signal_pending(current))
7203 return -EINTR;
7204
7205 /*
7206 * This is the final attempt, drain percpu lru caches in the
7207 * hope of introducing more evictable pages for
7208 * try_to_free_mem_cgroup_pages().
7209 */
7210 if (!nr_retries)
7211 lru_add_drain_all();
7212
7213 reclaimed = try_to_free_mem_cgroup_pages(memcg,
287d5fed 7214 batch_size, GFP_KERNEL, reclaim_options);
94968384
SB
7215
7216 if (!reclaimed && !nr_retries--)
7217 return -EAGAIN;
7218
7219 nr_reclaimed += reclaimed;
7220 }
7221
7222 return nbytes;
7223}
7224
241994ed
JW
7225static struct cftype memory_files[] = {
7226 {
7227 .name = "current",
f5fc3c5d 7228 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
7229 .read_u64 = memory_current_read,
7230 },
8e20d4b3
GR
7231 {
7232 .name = "peak",
7233 .flags = CFTYPE_NOT_ON_ROOT,
7234 .read_u64 = memory_peak_read,
7235 },
bf8d5d52
RG
7236 {
7237 .name = "min",
7238 .flags = CFTYPE_NOT_ON_ROOT,
7239 .seq_show = memory_min_show,
7240 .write = memory_min_write,
7241 },
241994ed
JW
7242 {
7243 .name = "low",
7244 .flags = CFTYPE_NOT_ON_ROOT,
7245 .seq_show = memory_low_show,
7246 .write = memory_low_write,
7247 },
7248 {
7249 .name = "high",
7250 .flags = CFTYPE_NOT_ON_ROOT,
7251 .seq_show = memory_high_show,
7252 .write = memory_high_write,
7253 },
7254 {
7255 .name = "max",
7256 .flags = CFTYPE_NOT_ON_ROOT,
7257 .seq_show = memory_max_show,
7258 .write = memory_max_write,
7259 },
7260 {
7261 .name = "events",
7262 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 7263 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
7264 .seq_show = memory_events_show,
7265 },
1e577f97
SB
7266 {
7267 .name = "events.local",
7268 .flags = CFTYPE_NOT_ON_ROOT,
7269 .file_offset = offsetof(struct mem_cgroup, events_local_file),
7270 .seq_show = memory_events_local_show,
7271 },
587d9f72
JW
7272 {
7273 .name = "stat",
587d9f72
JW
7274 .seq_show = memory_stat_show,
7275 },
5f9a4f4a
MS
7276#ifdef CONFIG_NUMA
7277 {
7278 .name = "numa_stat",
7279 .seq_show = memory_numa_stat_show,
7280 },
7281#endif
3d8b38eb
RG
7282 {
7283 .name = "oom.group",
7284 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7285 .seq_show = memory_oom_group_show,
7286 .write = memory_oom_group_write,
7287 },
94968384
SB
7288 {
7289 .name = "reclaim",
7290 .flags = CFTYPE_NS_DELEGATABLE,
7291 .write = memory_reclaim,
7292 },
241994ed
JW
7293 { } /* terminate */
7294};
7295
073219e9 7296struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7297 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7298 .css_online = mem_cgroup_css_online,
92fb9748 7299 .css_offline = mem_cgroup_css_offline,
6df38689 7300 .css_released = mem_cgroup_css_released,
92fb9748 7301 .css_free = mem_cgroup_css_free,
1ced953b 7302 .css_reset = mem_cgroup_css_reset,
2d146aa3 7303 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 7304 .can_attach = mem_cgroup_can_attach,
1aacbd35 7305#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
bd74fdae 7306 .attach = mem_cgroup_attach,
1aacbd35 7307#endif
7dc74be0 7308 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 7309 .post_attach = mem_cgroup_move_task,
1aacbd35
RG
7310#ifdef CONFIG_MEMCG_KMEM
7311 .fork = mem_cgroup_fork,
7312 .exit = mem_cgroup_exit,
7313#endif
241994ed
JW
7314 .dfl_cftypes = memory_files,
7315 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 7316 .early_init = 0,
8cdea7c0 7317};
c077719b 7318
bc50bcc6
JW
7319/*
7320 * This function calculates an individual cgroup's effective
7321 * protection which is derived from its own memory.min/low, its
7322 * parent's and siblings' settings, as well as the actual memory
7323 * distribution in the tree.
7324 *
7325 * The following rules apply to the effective protection values:
7326 *
7327 * 1. At the first level of reclaim, effective protection is equal to
7328 * the declared protection in memory.min and memory.low.
7329 *
7330 * 2. To enable safe delegation of the protection configuration, at
7331 * subsequent levels the effective protection is capped to the
7332 * parent's effective protection.
7333 *
7334 * 3. To make complex and dynamic subtrees easier to configure, the
7335 * user is allowed to overcommit the declared protection at a given
7336 * level. If that is the case, the parent's effective protection is
7337 * distributed to the children in proportion to how much protection
7338 * they have declared and how much of it they are utilizing.
7339 *
7340 * This makes distribution proportional, but also work-conserving:
7341 * if one cgroup claims much more protection than it uses memory,
7342 * the unused remainder is available to its siblings.
7343 *
7344 * 4. Conversely, when the declared protection is undercommitted at a
7345 * given level, the distribution of the larger parental protection
7346 * budget is NOT proportional. A cgroup's protection from a sibling
7347 * is capped to its own memory.min/low setting.
7348 *
8a931f80
JW
7349 * 5. However, to allow protecting recursive subtrees from each other
7350 * without having to declare each individual cgroup's fixed share
7351 * of the ancestor's claim to protection, any unutilized -
7352 * "floating" - protection from up the tree is distributed in
7353 * proportion to each cgroup's *usage*. This makes the protection
7354 * neutral wrt sibling cgroups and lets them compete freely over
7355 * the shared parental protection budget, but it protects the
7356 * subtree as a whole from neighboring subtrees.
7357 *
7358 * Note that 4. and 5. are not in conflict: 4. is about protecting
7359 * against immediate siblings whereas 5. is about protecting against
7360 * neighboring subtrees.
bc50bcc6
JW
7361 */
7362static unsigned long effective_protection(unsigned long usage,
8a931f80 7363 unsigned long parent_usage,
bc50bcc6
JW
7364 unsigned long setting,
7365 unsigned long parent_effective,
7366 unsigned long siblings_protected)
7367{
7368 unsigned long protected;
8a931f80 7369 unsigned long ep;
bc50bcc6
JW
7370
7371 protected = min(usage, setting);
7372 /*
7373 * If all cgroups at this level combined claim and use more
08e0f49e 7374 * protection than what the parent affords them, distribute
bc50bcc6
JW
7375 * shares in proportion to utilization.
7376 *
7377 * We are using actual utilization rather than the statically
7378 * claimed protection in order to be work-conserving: claimed
7379 * but unused protection is available to siblings that would
7380 * otherwise get a smaller chunk than what they claimed.
7381 */
7382 if (siblings_protected > parent_effective)
7383 return protected * parent_effective / siblings_protected;
7384
7385 /*
7386 * Ok, utilized protection of all children is within what the
7387 * parent affords them, so we know whatever this child claims
7388 * and utilizes is effectively protected.
7389 *
7390 * If there is unprotected usage beyond this value, reclaim
7391 * will apply pressure in proportion to that amount.
7392 *
7393 * If there is unutilized protection, the cgroup will be fully
7394 * shielded from reclaim, but we do return a smaller value for
7395 * protection than what the group could enjoy in theory. This
7396 * is okay. With the overcommit distribution above, effective
7397 * protection is always dependent on how memory is actually
7398 * consumed among the siblings anyway.
7399 */
8a931f80
JW
7400 ep = protected;
7401
7402 /*
7403 * If the children aren't claiming (all of) the protection
7404 * afforded to them by the parent, distribute the remainder in
7405 * proportion to the (unprotected) memory of each cgroup. That
7406 * way, cgroups that aren't explicitly prioritized wrt each
7407 * other compete freely over the allowance, but they are
7408 * collectively protected from neighboring trees.
7409 *
7410 * We're using unprotected memory for the weight so that if
7411 * some cgroups DO claim explicit protection, we don't protect
7412 * the same bytes twice.
cd324edc
JW
7413 *
7414 * Check both usage and parent_usage against the respective
7415 * protected values. One should imply the other, but they
7416 * aren't read atomically - make sure the division is sane.
8a931f80
JW
7417 */
7418 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7419 return ep;
cd324edc
JW
7420 if (parent_effective > siblings_protected &&
7421 parent_usage > siblings_protected &&
7422 usage > protected) {
8a931f80
JW
7423 unsigned long unclaimed;
7424
7425 unclaimed = parent_effective - siblings_protected;
7426 unclaimed *= usage - protected;
7427 unclaimed /= parent_usage - siblings_protected;
7428
7429 ep += unclaimed;
7430 }
7431
7432 return ep;
bc50bcc6
JW
7433}
7434
241994ed 7435/**
05395718 7436 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 7437 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
7438 * @memcg: the memory cgroup to check
7439 *
23067153
RG
7440 * WARNING: This function is not stateless! It can only be used as part
7441 * of a top-down tree iteration, not for isolated queries.
241994ed 7442 */
45c7f7e1
CD
7443void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7444 struct mem_cgroup *memcg)
241994ed 7445{
8a931f80 7446 unsigned long usage, parent_usage;
23067153
RG
7447 struct mem_cgroup *parent;
7448
241994ed 7449 if (mem_cgroup_disabled())
45c7f7e1 7450 return;
241994ed 7451
34c81057
SC
7452 if (!root)
7453 root = root_mem_cgroup;
22f7496f
YS
7454
7455 /*
7456 * Effective values of the reclaim targets are ignored so they
7457 * can be stale. Have a look at mem_cgroup_protection for more
7458 * details.
7459 * TODO: calculation should be more robust so that we do not need
7460 * that special casing.
7461 */
34c81057 7462 if (memcg == root)
45c7f7e1 7463 return;
241994ed 7464
23067153 7465 usage = page_counter_read(&memcg->memory);
bf8d5d52 7466 if (!usage)
45c7f7e1 7467 return;
bf8d5d52 7468
bf8d5d52 7469 parent = parent_mem_cgroup(memcg);
df2a4196 7470
bc50bcc6 7471 if (parent == root) {
c3d53200 7472 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 7473 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 7474 return;
bf8d5d52
RG
7475 }
7476
8a931f80
JW
7477 parent_usage = page_counter_read(&parent->memory);
7478
b3a7822e 7479 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
7480 READ_ONCE(memcg->memory.min),
7481 READ_ONCE(parent->memory.emin),
b3a7822e 7482 atomic_long_read(&parent->memory.children_min_usage)));
23067153 7483
b3a7822e 7484 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
7485 READ_ONCE(memcg->memory.low),
7486 READ_ONCE(parent->memory.elow),
b3a7822e 7487 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
7488}
7489
8f425e4e
MWO
7490static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7491 gfp_t gfp)
0add0c77 7492{
0add0c77
SB
7493 int ret;
7494
4b569387 7495 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
0add0c77
SB
7496 if (ret)
7497 goto out;
7498
4b569387 7499 mem_cgroup_commit_charge(folio, memcg);
0add0c77
SB
7500out:
7501 return ret;
7502}
7503
8f425e4e 7504int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 7505{
0add0c77
SB
7506 struct mem_cgroup *memcg;
7507 int ret;
00501b53 7508
0add0c77 7509 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 7510 ret = charge_memcg(folio, memcg, gfp);
0add0c77 7511 css_put(&memcg->css);
2d1c4980 7512
0add0c77
SB
7513 return ret;
7514}
e993d905 7515
8cba9576
NP
7516/**
7517 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7518 * @memcg: memcg to charge.
7519 * @gfp: reclaim mode.
7520 * @nr_pages: number of pages to charge.
7521 *
7522 * This function is called when allocating a huge page folio to determine if
7523 * the memcg has the capacity for it. It does not commit the charge yet,
7524 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7525 *
7526 * Once we have obtained the hugetlb folio, we can call
7527 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7528 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7529 * of try_charge().
7530 *
7531 * Returns 0 on success. Otherwise, an error code is returned.
7532 */
7533int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7534 long nr_pages)
7535{
7536 /*
7537 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7538 * but do not attempt to commit charge later (or cancel on error) either.
7539 */
7540 if (mem_cgroup_disabled() || !memcg ||
7541 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7542 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7543 return -EOPNOTSUPP;
7544
7545 if (try_charge(memcg, gfp, nr_pages))
7546 return -ENOMEM;
7547
7548 return 0;
7549}
7550
0add0c77 7551/**
65995918
MWO
7552 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7553 * @folio: folio to charge.
0add0c77
SB
7554 * @mm: mm context of the victim
7555 * @gfp: reclaim mode
65995918 7556 * @entry: swap entry for which the folio is allocated
0add0c77 7557 *
65995918
MWO
7558 * This function charges a folio allocated for swapin. Please call this before
7559 * adding the folio to the swapcache.
0add0c77
SB
7560 *
7561 * Returns 0 on success. Otherwise, an error code is returned.
7562 */
65995918 7563int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
7564 gfp_t gfp, swp_entry_t entry)
7565{
7566 struct mem_cgroup *memcg;
7567 unsigned short id;
7568 int ret;
00501b53 7569
0add0c77
SB
7570 if (mem_cgroup_disabled())
7571 return 0;
00501b53 7572
0add0c77
SB
7573 id = lookup_swap_cgroup_id(entry);
7574 rcu_read_lock();
7575 memcg = mem_cgroup_from_id(id);
7576 if (!memcg || !css_tryget_online(&memcg->css))
7577 memcg = get_mem_cgroup_from_mm(mm);
7578 rcu_read_unlock();
00501b53 7579
8f425e4e 7580 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 7581
0add0c77
SB
7582 css_put(&memcg->css);
7583 return ret;
7584}
00501b53 7585
0add0c77
SB
7586/*
7587 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7588 * @entry: swap entry for which the page is charged
7589 *
7590 * Call this function after successfully adding the charged page to swapcache.
7591 *
7592 * Note: This function assumes the page for which swap slot is being uncharged
7593 * is order 0 page.
7594 */
7595void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7596{
cae3af62
MS
7597 /*
7598 * Cgroup1's unified memory+swap counter has been charged with the
7599 * new swapcache page, finish the transfer by uncharging the swap
7600 * slot. The swap slot would also get uncharged when it dies, but
7601 * it can stick around indefinitely and we'd count the page twice
7602 * the entire time.
7603 *
7604 * Cgroup2 has separate resource counters for memory and swap,
7605 * so this is a non-issue here. Memory and swap charge lifetimes
7606 * correspond 1:1 to page and swap slot lifetimes: we charge the
7607 * page to memory here, and uncharge swap when the slot is freed.
7608 */
0add0c77 7609 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
7610 /*
7611 * The swap entry might not get freed for a long time,
7612 * let's not wait for it. The page already received a
7613 * memory+swap charge, drop the swap entry duplicate.
7614 */
0add0c77 7615 mem_cgroup_uncharge_swap(entry, 1);
00501b53 7616 }
3fea5a49
JW
7617}
7618
a9d5adee
JG
7619struct uncharge_gather {
7620 struct mem_cgroup *memcg;
b4e0b68f 7621 unsigned long nr_memory;
a9d5adee 7622 unsigned long pgpgout;
a9d5adee 7623 unsigned long nr_kmem;
8e88bd2d 7624 int nid;
a9d5adee
JG
7625};
7626
7627static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7628{
a9d5adee
JG
7629 memset(ug, 0, sizeof(*ug));
7630}
7631
7632static void uncharge_batch(const struct uncharge_gather *ug)
7633{
747db954
JW
7634 unsigned long flags;
7635
b4e0b68f
MS
7636 if (ug->nr_memory) {
7637 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7638 if (do_memsw_account())
b4e0b68f 7639 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7640 if (ug->nr_kmem)
7641 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7642 memcg_oom_recover(ug->memcg);
ce00a967 7643 }
747db954
JW
7644
7645 local_irq_save(flags);
c9019e9b 7646 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7647 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7648 memcg_check_events(ug->memcg, ug->nid);
747db954 7649 local_irq_restore(flags);
f1796544 7650
c4ed6ebf 7651 /* drop reference from uncharge_folio */
f1796544 7652 css_put(&ug->memcg->css);
a9d5adee
JG
7653}
7654
c4ed6ebf 7655static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7656{
c4ed6ebf 7657 long nr_pages;
b4e0b68f
MS
7658 struct mem_cgroup *memcg;
7659 struct obj_cgroup *objcg;
9f762dbe 7660
c4ed6ebf 7661 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
b7b098cf
MWO
7662 VM_BUG_ON_FOLIO(folio_order(folio) > 1 &&
7663 !folio_test_hugetlb(folio) &&
7664 !list_empty(&folio->_deferred_list), folio);
a9d5adee 7665
a9d5adee
JG
7666 /*
7667 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7668 * folio memcg or objcg at this point, we have fully
7669 * exclusive access to the folio.
a9d5adee 7670 */
fead2b86 7671 if (folio_memcg_kmem(folio)) {
1b7e4464 7672 objcg = __folio_objcg(folio);
b4e0b68f
MS
7673 /*
7674 * This get matches the put at the end of the function and
7675 * kmem pages do not hold memcg references anymore.
7676 */
7677 memcg = get_mem_cgroup_from_objcg(objcg);
7678 } else {
1b7e4464 7679 memcg = __folio_memcg(folio);
b4e0b68f 7680 }
a9d5adee 7681
b4e0b68f
MS
7682 if (!memcg)
7683 return;
7684
7685 if (ug->memcg != memcg) {
a9d5adee
JG
7686 if (ug->memcg) {
7687 uncharge_batch(ug);
7688 uncharge_gather_clear(ug);
7689 }
b4e0b68f 7690 ug->memcg = memcg;
c4ed6ebf 7691 ug->nid = folio_nid(folio);
f1796544
MH
7692
7693 /* pairs with css_put in uncharge_batch */
b4e0b68f 7694 css_get(&memcg->css);
a9d5adee
JG
7695 }
7696
c4ed6ebf 7697 nr_pages = folio_nr_pages(folio);
a9d5adee 7698
fead2b86 7699 if (folio_memcg_kmem(folio)) {
b4e0b68f 7700 ug->nr_memory += nr_pages;
9f762dbe 7701 ug->nr_kmem += nr_pages;
b4e0b68f 7702
c4ed6ebf 7703 folio->memcg_data = 0;
b4e0b68f
MS
7704 obj_cgroup_put(objcg);
7705 } else {
7706 /* LRU pages aren't accounted at the root level */
7707 if (!mem_cgroup_is_root(memcg))
7708 ug->nr_memory += nr_pages;
18b2db3b 7709 ug->pgpgout++;
a9d5adee 7710
c4ed6ebf 7711 folio->memcg_data = 0;
b4e0b68f
MS
7712 }
7713
7714 css_put(&memcg->css);
747db954
JW
7715}
7716
bbc6b703 7717void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7718{
a9d5adee
JG
7719 struct uncharge_gather ug;
7720
bbc6b703
MWO
7721 /* Don't touch folio->lru of any random page, pre-check: */
7722 if (!folio_memcg(folio))
0a31bc97
JW
7723 return;
7724
a9d5adee 7725 uncharge_gather_clear(&ug);
bbc6b703 7726 uncharge_folio(folio, &ug);
a9d5adee 7727 uncharge_batch(&ug);
747db954 7728}
0a31bc97 7729
4882c809
MWO
7730void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
7731{
7732 struct uncharge_gather ug;
7733 unsigned int i;
7734
7735 uncharge_gather_clear(&ug);
7736 for (i = 0; i < folios->nr; i++)
7737 uncharge_folio(folios->folios[i], &ug);
7738 if (ug.memcg)
7739 uncharge_batch(&ug);
0a31bc97
JW
7740}
7741
7742/**
85ce2c51 7743 * mem_cgroup_replace_folio - Charge a folio's replacement.
d21bba2b
MWO
7744 * @old: Currently circulating folio.
7745 * @new: Replacement folio.
0a31bc97 7746 *
d21bba2b 7747 * Charge @new as a replacement folio for @old. @old will
9094b4a1 7748 * be uncharged upon free.
0a31bc97 7749 *
d21bba2b 7750 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7751 */
85ce2c51 7752void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
0a31bc97 7753{
29833315 7754 struct mem_cgroup *memcg;
d21bba2b 7755 long nr_pages = folio_nr_pages(new);
d93c4130 7756 unsigned long flags;
0a31bc97 7757
d21bba2b
MWO
7758 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7759 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7760 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7761 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7762
7763 if (mem_cgroup_disabled())
7764 return;
7765
d21bba2b
MWO
7766 /* Page cache replacement: new folio already charged? */
7767 if (folio_memcg(new))
0a31bc97
JW
7768 return;
7769
d21bba2b
MWO
7770 memcg = folio_memcg(old);
7771 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7772 if (!memcg)
0a31bc97
JW
7773 return;
7774
44b7a8d3 7775 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7776 if (!mem_cgroup_is_root(memcg)) {
7777 page_counter_charge(&memcg->memory, nr_pages);
7778 if (do_memsw_account())
7779 page_counter_charge(&memcg->memsw, nr_pages);
7780 }
0a31bc97 7781
1a3e1f40 7782 css_get(&memcg->css);
d21bba2b 7783 commit_charge(new, memcg);
44b7a8d3 7784
d93c4130 7785 local_irq_save(flags);
6e0110c2 7786 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7787 memcg_check_events(memcg, folio_nid(new));
d93c4130 7788 local_irq_restore(flags);
0a31bc97
JW
7789}
7790
85ce2c51
NP
7791/**
7792 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7793 * @old: Currently circulating folio.
7794 * @new: Replacement folio.
7795 *
7796 * Transfer the memcg data from the old folio to the new folio for migration.
7797 * The old folio's data info will be cleared. Note that the memory counters
7798 * will remain unchanged throughout the process.
7799 *
7800 * Both folios must be locked, @new->mapping must be set up.
7801 */
7802void mem_cgroup_migrate(struct folio *old, struct folio *new)
7803{
7804 struct mem_cgroup *memcg;
7805
7806 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7807 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7808 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7809 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7810
7811 if (mem_cgroup_disabled())
7812 return;
7813
7814 memcg = folio_memcg(old);
8cba9576
NP
7815 /*
7816 * Note that it is normal to see !memcg for a hugetlb folio.
7817 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7818 * was not selected.
7819 */
7820 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
85ce2c51
NP
7821 if (!memcg)
7822 return;
7823
7824 /* Transfer the charge and the css ref */
7825 commit_charge(new, memcg);
9bcef597
BW
7826 /*
7827 * If the old folio is a large folio and is in the split queue, it needs
7828 * to be removed from the split queue now, in case getting an incorrect
7829 * split queue in destroy_large_folio() after the memcg of the old folio
7830 * is cleared.
7831 *
7832 * In addition, the old folio is about to be freed after migration, so
7833 * removing from the split queue a bit earlier seems reasonable.
7834 */
7835 if (folio_test_large(old) && folio_test_large_rmappable(old))
7836 folio_undo_large_rmappable(old);
85ce2c51
NP
7837 old->memcg_data = 0;
7838}
7839
ef12947c 7840DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7841EXPORT_SYMBOL(memcg_sockets_enabled_key);
7842
2d758073 7843void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7844{
7845 struct mem_cgroup *memcg;
7846
2d758073
JW
7847 if (!mem_cgroup_sockets_enabled)
7848 return;
7849
e876ecc6 7850 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7851 if (!in_task())
e876ecc6
SB
7852 return;
7853
11092087
JW
7854 rcu_read_lock();
7855 memcg = mem_cgroup_from_task(current);
7848ed62 7856 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7857 goto out;
0db15298 7858 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7859 goto out;
8965aa28 7860 if (css_tryget(&memcg->css))
11092087 7861 sk->sk_memcg = memcg;
f7e1cb6e 7862out:
11092087
JW
7863 rcu_read_unlock();
7864}
11092087 7865
2d758073 7866void mem_cgroup_sk_free(struct sock *sk)
11092087 7867{
2d758073
JW
7868 if (sk->sk_memcg)
7869 css_put(&sk->sk_memcg->css);
11092087
JW
7870}
7871
7872/**
7873 * mem_cgroup_charge_skmem - charge socket memory
7874 * @memcg: memcg to charge
7875 * @nr_pages: number of pages to charge
4b1327be 7876 * @gfp_mask: reclaim mode
11092087
JW
7877 *
7878 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7879 * @memcg's configured limit, %false if it doesn't.
11092087 7880 */
4b1327be
WW
7881bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7882 gfp_t gfp_mask)
11092087 7883{
f7e1cb6e 7884 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7885 struct page_counter *fail;
f7e1cb6e 7886
0db15298
JW
7887 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7888 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7889 return true;
7890 }
0db15298 7891 memcg->tcpmem_pressure = 1;
4b1327be
WW
7892 if (gfp_mask & __GFP_NOFAIL) {
7893 page_counter_charge(&memcg->tcpmem, nr_pages);
7894 return true;
7895 }
f7e1cb6e 7896 return false;
11092087 7897 }
d886f4e4 7898
4b1327be
WW
7899 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7900 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7901 return true;
4b1327be 7902 }
f7e1cb6e 7903
11092087
JW
7904 return false;
7905}
7906
7907/**
7908 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7909 * @memcg: memcg to uncharge
7910 * @nr_pages: number of pages to uncharge
11092087
JW
7911 */
7912void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7913{
f7e1cb6e 7914 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7915 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7916 return;
7917 }
d886f4e4 7918
c9019e9b 7919 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7920
475d0487 7921 refill_stock(memcg, nr_pages);
11092087
JW
7922}
7923
f7e1cb6e
JW
7924static int __init cgroup_memory(char *s)
7925{
7926 char *token;
7927
7928 while ((token = strsep(&s, ",")) != NULL) {
7929 if (!*token)
7930 continue;
7931 if (!strcmp(token, "nosocket"))
7932 cgroup_memory_nosocket = true;
04823c83
VD
7933 if (!strcmp(token, "nokmem"))
7934 cgroup_memory_nokmem = true;
b6c1a8af
YS
7935 if (!strcmp(token, "nobpf"))
7936 cgroup_memory_nobpf = true;
f7e1cb6e 7937 }
460a79e1 7938 return 1;
f7e1cb6e
JW
7939}
7940__setup("cgroup.memory=", cgroup_memory);
11092087 7941
2d11085e 7942/*
1081312f
MH
7943 * subsys_initcall() for memory controller.
7944 *
308167fc
SAS
7945 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7946 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7947 * basically everything that doesn't depend on a specific mem_cgroup structure
7948 * should be initialized from here.
2d11085e
MH
7949 */
7950static int __init mem_cgroup_init(void)
7951{
95a045f6
JW
7952 int cpu, node;
7953
f3344adf
MS
7954 /*
7955 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7956 * used for per-memcg-per-cpu caching of per-node statistics. In order
7957 * to work fine, we should make sure that the overfill threshold can't
7958 * exceed S32_MAX / PAGE_SIZE.
7959 */
7960 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7961
308167fc
SAS
7962 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7963 memcg_hotplug_cpu_dead);
95a045f6
JW
7964
7965 for_each_possible_cpu(cpu)
7966 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7967 drain_local_stock);
7968
7969 for_each_node(node) {
7970 struct mem_cgroup_tree_per_node *rtpn;
95a045f6 7971
91f0dcce 7972 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
95a045f6 7973
ef8f2327 7974 rtpn->rb_root = RB_ROOT;
fa90b2fd 7975 rtpn->rb_rightmost = NULL;
ef8f2327 7976 spin_lock_init(&rtpn->lock);
95a045f6
JW
7977 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7978 }
7979
2d11085e
MH
7980 return 0;
7981}
7982subsys_initcall(mem_cgroup_init);
21afa38e 7983
e55b9f96 7984#ifdef CONFIG_SWAP
358c07fc
AB
7985static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7986{
1c2d479a 7987 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7988 /*
7989 * The root cgroup cannot be destroyed, so it's refcount must
7990 * always be >= 1.
7991 */
7848ed62 7992 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7993 VM_BUG_ON(1);
7994 break;
7995 }
7996 memcg = parent_mem_cgroup(memcg);
7997 if (!memcg)
7998 memcg = root_mem_cgroup;
7999 }
8000 return memcg;
8001}
8002
21afa38e
JW
8003/**
8004 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 8005 * @folio: folio whose memsw charge to transfer
21afa38e
JW
8006 * @entry: swap entry to move the charge to
8007 *
3ecb0087 8008 * Transfer the memsw charge of @folio to @entry.
21afa38e 8009 */
3ecb0087 8010void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 8011{
1f47b61f 8012 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 8013 unsigned int nr_entries;
21afa38e
JW
8014 unsigned short oldid;
8015
3ecb0087
MWO
8016 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
8017 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 8018
76358ab5
AS
8019 if (mem_cgroup_disabled())
8020 return;
8021
b94c4e94 8022 if (!do_memsw_account())
21afa38e
JW
8023 return;
8024
3ecb0087 8025 memcg = folio_memcg(folio);
21afa38e 8026
3ecb0087 8027 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
8028 if (!memcg)
8029 return;
8030
1f47b61f
VD
8031 /*
8032 * In case the memcg owning these pages has been offlined and doesn't
8033 * have an ID allocated to it anymore, charge the closest online
8034 * ancestor for the swap instead and transfer the memory+swap charge.
8035 */
8036 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 8037 nr_entries = folio_nr_pages(folio);
d6810d73
HY
8038 /* Get references for the tail pages, too */
8039 if (nr_entries > 1)
8040 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
8041 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
8042 nr_entries);
3ecb0087 8043 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 8044 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 8045
3ecb0087 8046 folio->memcg_data = 0;
21afa38e
JW
8047
8048 if (!mem_cgroup_is_root(memcg))
d6810d73 8049 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 8050
b25806dc 8051 if (memcg != swap_memcg) {
1f47b61f 8052 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
8053 page_counter_charge(&swap_memcg->memsw, nr_entries);
8054 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
8055 }
8056
ce9ce665
SAS
8057 /*
8058 * Interrupts should be disabled here because the caller holds the
b93b0163 8059 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 8060 * important here to have the interrupts disabled because it is the
b93b0163 8061 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 8062 */
be3e67b5 8063 memcg_stats_lock();
6e0110c2 8064 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 8065 memcg_stats_unlock();
3ecb0087 8066 memcg_check_events(memcg, folio_nid(folio));
73f576c0 8067
1a3e1f40 8068 css_put(&memcg->css);
21afa38e
JW
8069}
8070
38d8b4e6 8071/**
e2e3fdc7
MWO
8072 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
8073 * @folio: folio being added to swap
37e84351
VD
8074 * @entry: swap entry to charge
8075 *
e2e3fdc7 8076 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
8077 *
8078 * Returns 0 on success, -ENOMEM on failure.
8079 */
e2e3fdc7 8080int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 8081{
e2e3fdc7 8082 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 8083 struct page_counter *counter;
38d8b4e6 8084 struct mem_cgroup *memcg;
37e84351
VD
8085 unsigned short oldid;
8086
b94c4e94 8087 if (do_memsw_account())
37e84351
VD
8088 return 0;
8089
e2e3fdc7 8090 memcg = folio_memcg(folio);
37e84351 8091
e2e3fdc7 8092 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
8093 if (!memcg)
8094 return 0;
8095
f3a53a3a
TH
8096 if (!entry.val) {
8097 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 8098 return 0;
f3a53a3a 8099 }
bb98f2c5 8100
1f47b61f
VD
8101 memcg = mem_cgroup_id_get_online(memcg);
8102
b25806dc 8103 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 8104 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
8105 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
8106 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 8107 mem_cgroup_id_put(memcg);
37e84351 8108 return -ENOMEM;
1f47b61f 8109 }
37e84351 8110
38d8b4e6
HY
8111 /* Get references for the tail pages, too */
8112 if (nr_pages > 1)
8113 mem_cgroup_id_get_many(memcg, nr_pages - 1);
8114 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 8115 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 8116 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 8117
37e84351
VD
8118 return 0;
8119}
8120
21afa38e 8121/**
01c4b28c 8122 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 8123 * @entry: swap entry to uncharge
38d8b4e6 8124 * @nr_pages: the amount of swap space to uncharge
21afa38e 8125 */
01c4b28c 8126void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
8127{
8128 struct mem_cgroup *memcg;
8129 unsigned short id;
8130
38d8b4e6 8131 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 8132 rcu_read_lock();
adbe427b 8133 memcg = mem_cgroup_from_id(id);
21afa38e 8134 if (memcg) {
b25806dc 8135 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 8136 if (do_memsw_account())
38d8b4e6 8137 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
8138 else
8139 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 8140 }
c9019e9b 8141 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 8142 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
8143 }
8144 rcu_read_unlock();
8145}
8146
d8b38438
VD
8147long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
8148{
8149 long nr_swap_pages = get_nr_swap_pages();
8150
b25806dc 8151 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 8152 return nr_swap_pages;
7848ed62 8153 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 8154 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 8155 READ_ONCE(memcg->swap.max) -
d8b38438
VD
8156 page_counter_read(&memcg->swap));
8157 return nr_swap_pages;
8158}
8159
9202d527 8160bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
8161{
8162 struct mem_cgroup *memcg;
8163
9202d527 8164 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
8165
8166 if (vm_swap_full())
8167 return true;
b25806dc 8168 if (do_memsw_account())
5ccc5aba
VD
8169 return false;
8170
9202d527 8171 memcg = folio_memcg(folio);
5ccc5aba
VD
8172 if (!memcg)
8173 return false;
8174
7848ed62 8175 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
8176 unsigned long usage = page_counter_read(&memcg->swap);
8177
8178 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
8179 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 8180 return true;
4b82ab4f 8181 }
5ccc5aba
VD
8182
8183 return false;
8184}
8185
eccb52e7 8186static int __init setup_swap_account(char *s)
21afa38e 8187{
118642d7
JW
8188 bool res;
8189
8190 if (!kstrtobool(s, &res) && !res)
8191 pr_warn_once("The swapaccount=0 commandline option is deprecated "
8192 "in favor of configuring swap control via cgroupfs. "
8193 "Please report your usecase to linux-mm@kvack.org if you "
8194 "depend on this functionality.\n");
21afa38e
JW
8195 return 1;
8196}
eccb52e7 8197__setup("swapaccount=", setup_swap_account);
21afa38e 8198
37e84351
VD
8199static u64 swap_current_read(struct cgroup_subsys_state *css,
8200 struct cftype *cft)
8201{
8202 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8203
8204 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
8205}
8206
e0e0b412
LD
8207static u64 swap_peak_read(struct cgroup_subsys_state *css,
8208 struct cftype *cft)
8209{
8210 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8211
8212 return (u64)memcg->swap.watermark * PAGE_SIZE;
8213}
8214
4b82ab4f
JK
8215static int swap_high_show(struct seq_file *m, void *v)
8216{
8217 return seq_puts_memcg_tunable(m,
8218 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
8219}
8220
8221static ssize_t swap_high_write(struct kernfs_open_file *of,
8222 char *buf, size_t nbytes, loff_t off)
8223{
8224 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8225 unsigned long high;
8226 int err;
8227
8228 buf = strstrip(buf);
8229 err = page_counter_memparse(buf, "max", &high);
8230 if (err)
8231 return err;
8232
8233 page_counter_set_high(&memcg->swap, high);
8234
8235 return nbytes;
8236}
8237
37e84351
VD
8238static int swap_max_show(struct seq_file *m, void *v)
8239{
677dc973
CD
8240 return seq_puts_memcg_tunable(m,
8241 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
8242}
8243
8244static ssize_t swap_max_write(struct kernfs_open_file *of,
8245 char *buf, size_t nbytes, loff_t off)
8246{
8247 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8248 unsigned long max;
8249 int err;
8250
8251 buf = strstrip(buf);
8252 err = page_counter_memparse(buf, "max", &max);
8253 if (err)
8254 return err;
8255
be09102b 8256 xchg(&memcg->swap.max, max);
37e84351
VD
8257
8258 return nbytes;
8259}
8260
f3a53a3a
TH
8261static int swap_events_show(struct seq_file *m, void *v)
8262{
aa9694bb 8263 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 8264
4b82ab4f
JK
8265 seq_printf(m, "high %lu\n",
8266 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
8267 seq_printf(m, "max %lu\n",
8268 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
8269 seq_printf(m, "fail %lu\n",
8270 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
8271
8272 return 0;
8273}
8274
37e84351
VD
8275static struct cftype swap_files[] = {
8276 {
8277 .name = "swap.current",
8278 .flags = CFTYPE_NOT_ON_ROOT,
8279 .read_u64 = swap_current_read,
8280 },
4b82ab4f
JK
8281 {
8282 .name = "swap.high",
8283 .flags = CFTYPE_NOT_ON_ROOT,
8284 .seq_show = swap_high_show,
8285 .write = swap_high_write,
8286 },
37e84351
VD
8287 {
8288 .name = "swap.max",
8289 .flags = CFTYPE_NOT_ON_ROOT,
8290 .seq_show = swap_max_show,
8291 .write = swap_max_write,
8292 },
e0e0b412
LD
8293 {
8294 .name = "swap.peak",
8295 .flags = CFTYPE_NOT_ON_ROOT,
8296 .read_u64 = swap_peak_read,
8297 },
f3a53a3a
TH
8298 {
8299 .name = "swap.events",
8300 .flags = CFTYPE_NOT_ON_ROOT,
8301 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
8302 .seq_show = swap_events_show,
8303 },
37e84351
VD
8304 { } /* terminate */
8305};
8306
eccb52e7 8307static struct cftype memsw_files[] = {
21afa38e
JW
8308 {
8309 .name = "memsw.usage_in_bytes",
8310 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8311 .read_u64 = mem_cgroup_read_u64,
8312 },
8313 {
8314 .name = "memsw.max_usage_in_bytes",
8315 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8316 .write = mem_cgroup_reset,
8317 .read_u64 = mem_cgroup_read_u64,
8318 },
8319 {
8320 .name = "memsw.limit_in_bytes",
8321 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8322 .write = mem_cgroup_write,
8323 .read_u64 = mem_cgroup_read_u64,
8324 },
8325 {
8326 .name = "memsw.failcnt",
8327 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8328 .write = mem_cgroup_reset,
8329 .read_u64 = mem_cgroup_read_u64,
8330 },
8331 { }, /* terminate */
8332};
8333
f4840ccf
JW
8334#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8335/**
8336 * obj_cgroup_may_zswap - check if this cgroup can zswap
8337 * @objcg: the object cgroup
8338 *
8339 * Check if the hierarchical zswap limit has been reached.
8340 *
8341 * This doesn't check for specific headroom, and it is not atomic
8342 * either. But with zswap, the size of the allocation is only known
be16dd76 8343 * once compression has occurred, and this optimistic pre-check avoids
f4840ccf
JW
8344 * spending cycles on compression when there is already no room left
8345 * or zswap is disabled altogether somewhere in the hierarchy.
8346 */
8347bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8348{
8349 struct mem_cgroup *memcg, *original_memcg;
8350 bool ret = true;
8351
8352 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8353 return true;
8354
8355 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 8356 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
8357 memcg = parent_mem_cgroup(memcg)) {
8358 unsigned long max = READ_ONCE(memcg->zswap_max);
8359 unsigned long pages;
8360
8361 if (max == PAGE_COUNTER_MAX)
8362 continue;
8363 if (max == 0) {
8364 ret = false;
8365 break;
8366 }
8367
7d7ef0a4
YA
8368 /*
8369 * mem_cgroup_flush_stats() ignores small changes. Use
8370 * do_flush_stats() directly to get accurate stats for charging.
8371 */
8372 do_flush_stats(memcg);
f4840ccf
JW
8373 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8374 if (pages < max)
8375 continue;
8376 ret = false;
8377 break;
8378 }
8379 mem_cgroup_put(original_memcg);
8380 return ret;
8381}
8382
8383/**
8384 * obj_cgroup_charge_zswap - charge compression backend memory
8385 * @objcg: the object cgroup
8386 * @size: size of compressed object
8387 *
3a1060c2 8388 * This forces the charge after obj_cgroup_may_zswap() allowed
f4840ccf
JW
8389 * compression and storage in zwap for this cgroup to go ahead.
8390 */
8391void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8392{
8393 struct mem_cgroup *memcg;
8394
8395 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8396 return;
8397
8398 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8399
8400 /* PF_MEMALLOC context, charging must succeed */
8401 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8402 VM_WARN_ON_ONCE(1);
8403
8404 rcu_read_lock();
8405 memcg = obj_cgroup_memcg(objcg);
8406 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8407 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8408 rcu_read_unlock();
8409}
8410
8411/**
8412 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8413 * @objcg: the object cgroup
8414 * @size: size of compressed object
8415 *
8416 * Uncharges zswap memory on page in.
8417 */
8418void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8419{
8420 struct mem_cgroup *memcg;
8421
8422 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8423 return;
8424
8425 obj_cgroup_uncharge(objcg, size);
8426
8427 rcu_read_lock();
8428 memcg = obj_cgroup_memcg(objcg);
8429 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8430 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8431 rcu_read_unlock();
8432}
8433
501a06fe
NP
8434bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
8435{
8436 /* if zswap is disabled, do not block pages going to the swapping device */
8437 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
8438}
8439
f4840ccf
JW
8440static u64 zswap_current_read(struct cgroup_subsys_state *css,
8441 struct cftype *cft)
8442{
7d7ef0a4
YA
8443 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8444
8445 mem_cgroup_flush_stats(memcg);
8446 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
f4840ccf
JW
8447}
8448
8449static int zswap_max_show(struct seq_file *m, void *v)
8450{
8451 return seq_puts_memcg_tunable(m,
8452 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8453}
8454
8455static ssize_t zswap_max_write(struct kernfs_open_file *of,
8456 char *buf, size_t nbytes, loff_t off)
8457{
8458 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8459 unsigned long max;
8460 int err;
8461
8462 buf = strstrip(buf);
8463 err = page_counter_memparse(buf, "max", &max);
8464 if (err)
8465 return err;
8466
8467 xchg(&memcg->zswap_max, max);
8468
8469 return nbytes;
8470}
8471
501a06fe
NP
8472static int zswap_writeback_show(struct seq_file *m, void *v)
8473{
8474 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8475
8476 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
8477 return 0;
8478}
8479
8480static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
8481 char *buf, size_t nbytes, loff_t off)
8482{
8483 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8484 int zswap_writeback;
8485 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
8486
8487 if (parse_ret)
8488 return parse_ret;
8489
8490 if (zswap_writeback != 0 && zswap_writeback != 1)
8491 return -EINVAL;
8492
8493 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
8494 return nbytes;
8495}
8496
f4840ccf
JW
8497static struct cftype zswap_files[] = {
8498 {
8499 .name = "zswap.current",
8500 .flags = CFTYPE_NOT_ON_ROOT,
8501 .read_u64 = zswap_current_read,
8502 },
8503 {
8504 .name = "zswap.max",
8505 .flags = CFTYPE_NOT_ON_ROOT,
8506 .seq_show = zswap_max_show,
8507 .write = zswap_max_write,
8508 },
501a06fe
NP
8509 {
8510 .name = "zswap.writeback",
8511 .seq_show = zswap_writeback_show,
8512 .write = zswap_writeback_write,
8513 },
f4840ccf
JW
8514 { } /* terminate */
8515};
8516#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8517
21afa38e
JW
8518static int __init mem_cgroup_swap_init(void)
8519{
2d1c4980 8520 if (mem_cgroup_disabled())
eccb52e7
JW
8521 return 0;
8522
8523 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8524 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
8525#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8526 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8527#endif
21afa38e
JW
8528 return 0;
8529}
b25806dc 8530subsys_initcall(mem_cgroup_swap_init);
21afa38e 8531
e55b9f96 8532#endif /* CONFIG_SWAP */