socket: initial cgroup code.
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
8cdea7c0 53
8697d331
BS
54#include <asm/uaccess.h>
55
cc8e970c
KM
56#include <trace/events/vmscan.h>
57
a181b0e8 58struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 59#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 60struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 61
c077719b 62#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 63/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 64int do_swap_account __read_mostly;
a42c390c
MH
65
66/* for remember boot option*/
67#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68static int really_do_swap_account __initdata = 1;
69#else
70static int really_do_swap_account __initdata = 0;
71#endif
72
c077719b
KH
73#else
74#define do_swap_account (0)
75#endif
76
77
d52aa412
KH
78/*
79 * Statistics for memory cgroup.
80 */
81enum mem_cgroup_stat_index {
82 /*
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 */
85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 89 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 90 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
91 MEM_CGROUP_STAT_NSTATS,
92};
93
e9f8974f
JW
94enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
100 MEM_CGROUP_EVENTS_NSTATS,
101};
7a159cc9
JW
102/*
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
107 */
108enum mem_cgroup_events_target {
109 MEM_CGROUP_TARGET_THRESH,
110 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 111 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
112 MEM_CGROUP_NTARGETS,
113};
114#define THRESHOLDS_EVENTS_TARGET (128)
115#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 116#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 117
d52aa412 118struct mem_cgroup_stat_cpu {
7a159cc9 119 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 120 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 121 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
122};
123
6d12e2d8
KH
124/*
125 * per-zone information in memory controller.
126 */
6d12e2d8 127struct mem_cgroup_per_zone {
072c56c1
KH
128 /*
129 * spin_lock to protect the per cgroup LRU
130 */
b69408e8
CL
131 struct list_head lists[NR_LRU_LISTS];
132 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
133
134 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
135 struct rb_node tree_node; /* RB tree node */
136 unsigned long long usage_in_excess;/* Set to the value by which */
137 /* the soft limit is exceeded*/
138 bool on_tree;
4e416953
BS
139 struct mem_cgroup *mem; /* Back pointer, we cannot */
140 /* use container_of */
6d12e2d8
KH
141};
142/* Macro for accessing counter */
143#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
144
145struct mem_cgroup_per_node {
146 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147};
148
149struct mem_cgroup_lru_info {
150 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151};
152
f64c3f54
BS
153/*
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
156 */
157
158struct mem_cgroup_tree_per_zone {
159 struct rb_root rb_root;
160 spinlock_t lock;
161};
162
163struct mem_cgroup_tree_per_node {
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_tree {
168 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169};
170
171static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172
2e72b634
KS
173struct mem_cgroup_threshold {
174 struct eventfd_ctx *eventfd;
175 u64 threshold;
176};
177
9490ff27 178/* For threshold */
2e72b634
KS
179struct mem_cgroup_threshold_ary {
180 /* An array index points to threshold just below usage. */
5407a562 181 int current_threshold;
2e72b634
KS
182 /* Size of entries[] */
183 unsigned int size;
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries[0];
186};
2c488db2
KS
187
188struct mem_cgroup_thresholds {
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary *primary;
191 /*
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
195 */
196 struct mem_cgroup_threshold_ary *spare;
197};
198
9490ff27
KH
199/* for OOM */
200struct mem_cgroup_eventfd_list {
201 struct list_head list;
202 struct eventfd_ctx *eventfd;
203};
2e72b634 204
c0ff4b85
R
205static void mem_cgroup_threshold(struct mem_cgroup *memcg);
206static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 207
8cdea7c0
BS
208/*
209 * The memory controller data structure. The memory controller controls both
210 * page cache and RSS per cgroup. We would eventually like to provide
211 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212 * to help the administrator determine what knobs to tune.
213 *
214 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
215 * we hit the water mark. May be even add a low water mark, such that
216 * no reclaim occurs from a cgroup at it's low water mark, this is
217 * a feature that will be implemented much later in the future.
8cdea7c0
BS
218 */
219struct mem_cgroup {
220 struct cgroup_subsys_state css;
221 /*
222 * the counter to account for memory usage
223 */
224 struct res_counter res;
8c7c6e34
KH
225 /*
226 * the counter to account for mem+swap usage.
227 */
228 struct res_counter memsw;
e5671dfa
GC
229 /*
230 * the counter to account for kmem usage.
231 */
232 struct res_counter kmem;
78fb7466
PE
233 /*
234 * Per cgroup active and inactive list, similar to the
235 * per zone LRU lists.
78fb7466 236 */
6d12e2d8 237 struct mem_cgroup_lru_info info;
6d61ef40 238 /*
af901ca1 239 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 240 * reclaimed from.
6d61ef40 241 */
04046e1a 242 int last_scanned_child;
889976db
YH
243 int last_scanned_node;
244#if MAX_NUMNODES > 1
245 nodemask_t scan_nodes;
453a9bf3
KH
246 atomic_t numainfo_events;
247 atomic_t numainfo_updating;
889976db 248#endif
18f59ea7
BS
249 /*
250 * Should the accounting and control be hierarchical, per subtree?
251 */
252 bool use_hierarchy;
79dfdacc
MH
253
254 bool oom_lock;
255 atomic_t under_oom;
256
8c7c6e34 257 atomic_t refcnt;
14797e23 258
1f4c025b 259 int swappiness;
3c11ecf4
KH
260 /* OOM-Killer disable */
261 int oom_kill_disable;
a7885eb8 262
22a668d7
KH
263 /* set when res.limit == memsw.limit */
264 bool memsw_is_minimum;
265
2e72b634
KS
266 /* protect arrays of thresholds */
267 struct mutex thresholds_lock;
268
269 /* thresholds for memory usage. RCU-protected */
2c488db2 270 struct mem_cgroup_thresholds thresholds;
907860ed 271
2e72b634 272 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 273 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 274
9490ff27
KH
275 /* For oom notifier event fd */
276 struct list_head oom_notify;
185efc0f 277
7dc74be0
DN
278 /*
279 * Should we move charges of a task when a task is moved into this
280 * mem_cgroup ? And what type of charges should we move ?
281 */
282 unsigned long move_charge_at_immigrate;
e5671dfa
GC
283 /*
284 * Should kernel memory limits be stabilished independently
285 * from user memory ?
286 */
287 int kmem_independent_accounting;
d52aa412 288 /*
c62b1a3b 289 * percpu counter.
d52aa412 290 */
c62b1a3b 291 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
292 /*
293 * used when a cpu is offlined or other synchronizations
294 * See mem_cgroup_read_stat().
295 */
296 struct mem_cgroup_stat_cpu nocpu_base;
297 spinlock_t pcp_counter_lock;
8cdea7c0
BS
298};
299
7dc74be0
DN
300/* Stuffs for move charges at task migration. */
301/*
302 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
303 * left-shifted bitmap of these types.
304 */
305enum move_type {
4ffef5fe 306 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 307 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
308 NR_MOVE_TYPE,
309};
310
4ffef5fe
DN
311/* "mc" and its members are protected by cgroup_mutex */
312static struct move_charge_struct {
b1dd693e 313 spinlock_t lock; /* for from, to */
4ffef5fe
DN
314 struct mem_cgroup *from;
315 struct mem_cgroup *to;
316 unsigned long precharge;
854ffa8d 317 unsigned long moved_charge;
483c30b5 318 unsigned long moved_swap;
8033b97c
DN
319 struct task_struct *moving_task; /* a task moving charges */
320 wait_queue_head_t waitq; /* a waitq for other context */
321} mc = {
2bd9bb20 322 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
323 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
324};
4ffef5fe 325
90254a65
DN
326static bool move_anon(void)
327{
328 return test_bit(MOVE_CHARGE_TYPE_ANON,
329 &mc.to->move_charge_at_immigrate);
330}
331
87946a72
DN
332static bool move_file(void)
333{
334 return test_bit(MOVE_CHARGE_TYPE_FILE,
335 &mc.to->move_charge_at_immigrate);
336}
337
4e416953
BS
338/*
339 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
340 * limit reclaim to prevent infinite loops, if they ever occur.
341 */
342#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
343#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
344
217bc319
KH
345enum charge_type {
346 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
347 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 348 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 349 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 350 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 351 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
352 NR_CHARGE_TYPE,
353};
354
8c7c6e34 355/* for encoding cft->private value on file */
e5671dfa
GC
356
357enum mem_type {
358 _MEM = 0,
359 _MEMSWAP,
360 _OOM_TYPE,
361 _KMEM,
362};
363
8c7c6e34
KH
364#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
365#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
366#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
367/* Used for OOM nofiier */
368#define OOM_CONTROL (0)
8c7c6e34 369
75822b44
BS
370/*
371 * Reclaim flags for mem_cgroup_hierarchical_reclaim
372 */
373#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
374#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
375#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
376#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
377#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
378#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 379
c0ff4b85
R
380static void mem_cgroup_get(struct mem_cgroup *memcg);
381static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
382
383/* Writing them here to avoid exposing memcg's inner layout */
384#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
385#ifdef CONFIG_INET
386#include <net/sock.h>
387
388static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
389void sock_update_memcg(struct sock *sk)
390{
391 /* A socket spends its whole life in the same cgroup */
392 if (sk->sk_cgrp) {
393 WARN_ON(1);
394 return;
395 }
396 if (static_branch(&memcg_socket_limit_enabled)) {
397 struct mem_cgroup *memcg;
398
399 BUG_ON(!sk->sk_prot->proto_cgroup);
400
401 rcu_read_lock();
402 memcg = mem_cgroup_from_task(current);
403 if (!mem_cgroup_is_root(memcg)) {
404 mem_cgroup_get(memcg);
405 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
406 }
407 rcu_read_unlock();
408 }
409}
410EXPORT_SYMBOL(sock_update_memcg);
411
412void sock_release_memcg(struct sock *sk)
413{
414 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
415 struct mem_cgroup *memcg;
416 WARN_ON(!sk->sk_cgrp->memcg);
417 memcg = sk->sk_cgrp->memcg;
418 mem_cgroup_put(memcg);
419 }
420}
421#endif /* CONFIG_INET */
422#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
423
c0ff4b85 424static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 425
f64c3f54 426static struct mem_cgroup_per_zone *
c0ff4b85 427mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 428{
c0ff4b85 429 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
430}
431
c0ff4b85 432struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 433{
c0ff4b85 434 return &memcg->css;
d324236b
WF
435}
436
f64c3f54 437static struct mem_cgroup_per_zone *
c0ff4b85 438page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 439{
97a6c37b
JW
440 int nid = page_to_nid(page);
441 int zid = page_zonenum(page);
f64c3f54 442
c0ff4b85 443 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
444}
445
446static struct mem_cgroup_tree_per_zone *
447soft_limit_tree_node_zone(int nid, int zid)
448{
449 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
450}
451
452static struct mem_cgroup_tree_per_zone *
453soft_limit_tree_from_page(struct page *page)
454{
455 int nid = page_to_nid(page);
456 int zid = page_zonenum(page);
457
458 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
459}
460
461static void
c0ff4b85 462__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 463 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
464 struct mem_cgroup_tree_per_zone *mctz,
465 unsigned long long new_usage_in_excess)
f64c3f54
BS
466{
467 struct rb_node **p = &mctz->rb_root.rb_node;
468 struct rb_node *parent = NULL;
469 struct mem_cgroup_per_zone *mz_node;
470
471 if (mz->on_tree)
472 return;
473
ef8745c1
KH
474 mz->usage_in_excess = new_usage_in_excess;
475 if (!mz->usage_in_excess)
476 return;
f64c3f54
BS
477 while (*p) {
478 parent = *p;
479 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
480 tree_node);
481 if (mz->usage_in_excess < mz_node->usage_in_excess)
482 p = &(*p)->rb_left;
483 /*
484 * We can't avoid mem cgroups that are over their soft
485 * limit by the same amount
486 */
487 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
488 p = &(*p)->rb_right;
489 }
490 rb_link_node(&mz->tree_node, parent, p);
491 rb_insert_color(&mz->tree_node, &mctz->rb_root);
492 mz->on_tree = true;
4e416953
BS
493}
494
495static void
c0ff4b85 496__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
497 struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz)
499{
500 if (!mz->on_tree)
501 return;
502 rb_erase(&mz->tree_node, &mctz->rb_root);
503 mz->on_tree = false;
504}
505
f64c3f54 506static void
c0ff4b85 507mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
508 struct mem_cgroup_per_zone *mz,
509 struct mem_cgroup_tree_per_zone *mctz)
510{
511 spin_lock(&mctz->lock);
c0ff4b85 512 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
513 spin_unlock(&mctz->lock);
514}
515
f64c3f54 516
c0ff4b85 517static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 518{
ef8745c1 519 unsigned long long excess;
f64c3f54
BS
520 struct mem_cgroup_per_zone *mz;
521 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
522 int nid = page_to_nid(page);
523 int zid = page_zonenum(page);
f64c3f54
BS
524 mctz = soft_limit_tree_from_page(page);
525
526 /*
4e649152
KH
527 * Necessary to update all ancestors when hierarchy is used.
528 * because their event counter is not touched.
f64c3f54 529 */
c0ff4b85
R
530 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
531 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
532 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
533 /*
534 * We have to update the tree if mz is on RB-tree or
535 * mem is over its softlimit.
536 */
ef8745c1 537 if (excess || mz->on_tree) {
4e649152
KH
538 spin_lock(&mctz->lock);
539 /* if on-tree, remove it */
540 if (mz->on_tree)
c0ff4b85 541 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 542 /*
ef8745c1
KH
543 * Insert again. mz->usage_in_excess will be updated.
544 * If excess is 0, no tree ops.
4e649152 545 */
c0ff4b85 546 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
547 spin_unlock(&mctz->lock);
548 }
f64c3f54
BS
549 }
550}
551
c0ff4b85 552static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
553{
554 int node, zone;
555 struct mem_cgroup_per_zone *mz;
556 struct mem_cgroup_tree_per_zone *mctz;
557
558 for_each_node_state(node, N_POSSIBLE) {
559 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 560 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 561 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 562 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
563 }
564 }
565}
566
4e416953
BS
567static struct mem_cgroup_per_zone *
568__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
569{
570 struct rb_node *rightmost = NULL;
26251eaf 571 struct mem_cgroup_per_zone *mz;
4e416953
BS
572
573retry:
26251eaf 574 mz = NULL;
4e416953
BS
575 rightmost = rb_last(&mctz->rb_root);
576 if (!rightmost)
577 goto done; /* Nothing to reclaim from */
578
579 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
580 /*
581 * Remove the node now but someone else can add it back,
582 * we will to add it back at the end of reclaim to its correct
583 * position in the tree.
584 */
585 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
586 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
587 !css_tryget(&mz->mem->css))
588 goto retry;
589done:
590 return mz;
591}
592
593static struct mem_cgroup_per_zone *
594mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
595{
596 struct mem_cgroup_per_zone *mz;
597
598 spin_lock(&mctz->lock);
599 mz = __mem_cgroup_largest_soft_limit_node(mctz);
600 spin_unlock(&mctz->lock);
601 return mz;
602}
603
711d3d2c
KH
604/*
605 * Implementation Note: reading percpu statistics for memcg.
606 *
607 * Both of vmstat[] and percpu_counter has threshold and do periodic
608 * synchronization to implement "quick" read. There are trade-off between
609 * reading cost and precision of value. Then, we may have a chance to implement
610 * a periodic synchronizion of counter in memcg's counter.
611 *
612 * But this _read() function is used for user interface now. The user accounts
613 * memory usage by memory cgroup and he _always_ requires exact value because
614 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
615 * have to visit all online cpus and make sum. So, for now, unnecessary
616 * synchronization is not implemented. (just implemented for cpu hotplug)
617 *
618 * If there are kernel internal actions which can make use of some not-exact
619 * value, and reading all cpu value can be performance bottleneck in some
620 * common workload, threashold and synchonization as vmstat[] should be
621 * implemented.
622 */
c0ff4b85 623static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 624 enum mem_cgroup_stat_index idx)
c62b1a3b 625{
7a159cc9 626 long val = 0;
c62b1a3b 627 int cpu;
c62b1a3b 628
711d3d2c
KH
629 get_online_cpus();
630 for_each_online_cpu(cpu)
c0ff4b85 631 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 632#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
633 spin_lock(&memcg->pcp_counter_lock);
634 val += memcg->nocpu_base.count[idx];
635 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
636#endif
637 put_online_cpus();
c62b1a3b
KH
638 return val;
639}
640
c0ff4b85 641static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
642 bool charge)
643{
644 int val = (charge) ? 1 : -1;
c0ff4b85 645 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
646}
647
c0ff4b85 648void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
456f998e 649{
c0ff4b85 650 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
456f998e
YH
651}
652
c0ff4b85 653void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
456f998e 654{
c0ff4b85 655 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
456f998e
YH
656}
657
c0ff4b85 658static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
659 enum mem_cgroup_events_index idx)
660{
661 unsigned long val = 0;
662 int cpu;
663
664 for_each_online_cpu(cpu)
c0ff4b85 665 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 666#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
667 spin_lock(&memcg->pcp_counter_lock);
668 val += memcg->nocpu_base.events[idx];
669 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
670#endif
671 return val;
672}
673
c0ff4b85 674static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 675 bool file, int nr_pages)
d52aa412 676{
c62b1a3b
KH
677 preempt_disable();
678
e401f176 679 if (file)
c0ff4b85
R
680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 nr_pages);
d52aa412 682 else
c0ff4b85
R
683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 nr_pages);
55e462b0 685
e401f176
KH
686 /* pagein of a big page is an event. So, ignore page size */
687 if (nr_pages > 0)
c0ff4b85 688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 689 else {
c0ff4b85 690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
691 nr_pages = -nr_pages; /* for event */
692 }
e401f176 693
c0ff4b85 694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 695
c62b1a3b 696 preempt_enable();
6d12e2d8
KH
697}
698
bb2a0de9 699unsigned long
c0ff4b85 700mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 701 unsigned int lru_mask)
889976db
YH
702{
703 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
704 enum lru_list l;
705 unsigned long ret = 0;
706
c0ff4b85 707 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9
KH
708
709 for_each_lru(l) {
710 if (BIT(l) & lru_mask)
711 ret += MEM_CGROUP_ZSTAT(mz, l);
712 }
713 return ret;
714}
715
716static unsigned long
c0ff4b85 717mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
718 int nid, unsigned int lru_mask)
719{
889976db
YH
720 u64 total = 0;
721 int zid;
722
bb2a0de9 723 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
724 total += mem_cgroup_zone_nr_lru_pages(memcg,
725 nid, zid, lru_mask);
bb2a0de9 726
889976db
YH
727 return total;
728}
bb2a0de9 729
c0ff4b85 730static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 731 unsigned int lru_mask)
6d12e2d8 732{
889976db 733 int nid;
6d12e2d8
KH
734 u64 total = 0;
735
bb2a0de9 736 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 738 return total;
d52aa412
KH
739}
740
c0ff4b85 741static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
7a159cc9
JW
742{
743 unsigned long val, next;
744
4799401f
SR
745 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
746 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9
JW
747 /* from time_after() in jiffies.h */
748 return ((long)next - (long)val < 0);
749}
750
c0ff4b85 751static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
d2265e6f 752{
7a159cc9 753 unsigned long val, next;
d2265e6f 754
4799401f 755 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 756
7a159cc9
JW
757 switch (target) {
758 case MEM_CGROUP_TARGET_THRESH:
759 next = val + THRESHOLDS_EVENTS_TARGET;
760 break;
761 case MEM_CGROUP_TARGET_SOFTLIMIT:
762 next = val + SOFTLIMIT_EVENTS_TARGET;
763 break;
453a9bf3
KH
764 case MEM_CGROUP_TARGET_NUMAINFO:
765 next = val + NUMAINFO_EVENTS_TARGET;
766 break;
7a159cc9
JW
767 default:
768 return;
769 }
770
4799401f 771 __this_cpu_write(memcg->stat->targets[target], next);
d2265e6f
KH
772}
773
774/*
775 * Check events in order.
776 *
777 */
c0ff4b85 778static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 779{
4799401f 780 preempt_disable();
d2265e6f 781 /* threshold event is triggered in finer grain than soft limit */
c0ff4b85
R
782 if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
783 mem_cgroup_threshold(memcg);
784 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
785 if (unlikely(__memcg_event_check(memcg,
453a9bf3 786 MEM_CGROUP_TARGET_SOFTLIMIT))) {
c0ff4b85
R
787 mem_cgroup_update_tree(memcg, page);
788 __mem_cgroup_target_update(memcg,
453a9bf3
KH
789 MEM_CGROUP_TARGET_SOFTLIMIT);
790 }
791#if MAX_NUMNODES > 1
c0ff4b85 792 if (unlikely(__memcg_event_check(memcg,
453a9bf3 793 MEM_CGROUP_TARGET_NUMAINFO))) {
c0ff4b85
R
794 atomic_inc(&memcg->numainfo_events);
795 __mem_cgroup_target_update(memcg,
453a9bf3 796 MEM_CGROUP_TARGET_NUMAINFO);
7a159cc9 797 }
453a9bf3 798#endif
d2265e6f 799 }
4799401f 800 preempt_enable();
d2265e6f
KH
801}
802
d5b69e38 803static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
804{
805 return container_of(cgroup_subsys_state(cont,
806 mem_cgroup_subsys_id), struct mem_cgroup,
807 css);
808}
809
cf475ad2 810struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 811{
31a78f23
BS
812 /*
813 * mm_update_next_owner() may clear mm->owner to NULL
814 * if it races with swapoff, page migration, etc.
815 * So this can be called with p == NULL.
816 */
817 if (unlikely(!p))
818 return NULL;
819
78fb7466
PE
820 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
821 struct mem_cgroup, css);
822}
823
a433658c 824struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 825{
c0ff4b85 826 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
827
828 if (!mm)
829 return NULL;
54595fe2
KH
830 /*
831 * Because we have no locks, mm->owner's may be being moved to other
832 * cgroup. We use css_tryget() here even if this looks
833 * pessimistic (rather than adding locks here).
834 */
835 rcu_read_lock();
836 do {
c0ff4b85
R
837 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
838 if (unlikely(!memcg))
54595fe2 839 break;
c0ff4b85 840 } while (!css_tryget(&memcg->css));
54595fe2 841 rcu_read_unlock();
c0ff4b85 842 return memcg;
54595fe2
KH
843}
844
7d74b06f 845/* The caller has to guarantee "mem" exists before calling this */
c0ff4b85 846static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
14067bb3 847{
711d3d2c
KH
848 struct cgroup_subsys_state *css;
849 int found;
850
c0ff4b85 851 if (!memcg) /* ROOT cgroup has the smallest ID */
711d3d2c 852 return root_mem_cgroup; /*css_put/get against root is ignored*/
c0ff4b85
R
853 if (!memcg->use_hierarchy) {
854 if (css_tryget(&memcg->css))
855 return memcg;
711d3d2c
KH
856 return NULL;
857 }
858 rcu_read_lock();
859 /*
860 * searching a memory cgroup which has the smallest ID under given
861 * ROOT cgroup. (ID >= 1)
862 */
c0ff4b85 863 css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
711d3d2c 864 if (css && css_tryget(css))
c0ff4b85 865 memcg = container_of(css, struct mem_cgroup, css);
711d3d2c 866 else
c0ff4b85 867 memcg = NULL;
711d3d2c 868 rcu_read_unlock();
c0ff4b85 869 return memcg;
7d74b06f
KH
870}
871
872static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
873 struct mem_cgroup *root,
874 bool cond)
875{
876 int nextid = css_id(&iter->css) + 1;
877 int found;
878 int hierarchy_used;
14067bb3 879 struct cgroup_subsys_state *css;
14067bb3 880
7d74b06f 881 hierarchy_used = iter->use_hierarchy;
14067bb3 882
7d74b06f 883 css_put(&iter->css);
711d3d2c
KH
884 /* If no ROOT, walk all, ignore hierarchy */
885 if (!cond || (root && !hierarchy_used))
7d74b06f 886 return NULL;
14067bb3 887
711d3d2c
KH
888 if (!root)
889 root = root_mem_cgroup;
890
7d74b06f
KH
891 do {
892 iter = NULL;
14067bb3 893 rcu_read_lock();
7d74b06f
KH
894
895 css = css_get_next(&mem_cgroup_subsys, nextid,
896 &root->css, &found);
14067bb3 897 if (css && css_tryget(css))
7d74b06f 898 iter = container_of(css, struct mem_cgroup, css);
14067bb3 899 rcu_read_unlock();
7d74b06f 900 /* If css is NULL, no more cgroups will be found */
14067bb3 901 nextid = found + 1;
7d74b06f 902 } while (css && !iter);
14067bb3 903
7d74b06f 904 return iter;
14067bb3 905}
7d74b06f
KH
906/*
907 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
908 * be careful that "break" loop is not allowed. We have reference count.
909 * Instead of that modify "cond" to be false and "continue" to exit the loop.
910 */
911#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
912 for (iter = mem_cgroup_start_loop(root);\
913 iter != NULL;\
914 iter = mem_cgroup_get_next(iter, root, cond))
915
916#define for_each_mem_cgroup_tree(iter, root) \
917 for_each_mem_cgroup_tree_cond(iter, root, true)
918
711d3d2c
KH
919#define for_each_mem_cgroup_all(iter) \
920 for_each_mem_cgroup_tree_cond(iter, NULL, true)
921
14067bb3 922
c0ff4b85 923static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 924{
c0ff4b85 925 return (memcg == root_mem_cgroup);
4b3bde4c
BS
926}
927
456f998e
YH
928void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
929{
c0ff4b85 930 struct mem_cgroup *memcg;
456f998e
YH
931
932 if (!mm)
933 return;
934
935 rcu_read_lock();
c0ff4b85
R
936 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
937 if (unlikely(!memcg))
456f998e
YH
938 goto out;
939
940 switch (idx) {
941 case PGMAJFAULT:
c0ff4b85 942 mem_cgroup_pgmajfault(memcg, 1);
456f998e
YH
943 break;
944 case PGFAULT:
c0ff4b85 945 mem_cgroup_pgfault(memcg, 1);
456f998e
YH
946 break;
947 default:
948 BUG();
949 }
950out:
951 rcu_read_unlock();
952}
953EXPORT_SYMBOL(mem_cgroup_count_vm_event);
954
08e552c6
KH
955/*
956 * Following LRU functions are allowed to be used without PCG_LOCK.
957 * Operations are called by routine of global LRU independently from memcg.
958 * What we have to take care of here is validness of pc->mem_cgroup.
959 *
960 * Changes to pc->mem_cgroup happens when
961 * 1. charge
962 * 2. moving account
963 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
964 * It is added to LRU before charge.
965 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
966 * When moving account, the page is not on LRU. It's isolated.
967 */
4f98a2fe 968
08e552c6
KH
969void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
970{
971 struct page_cgroup *pc;
08e552c6 972 struct mem_cgroup_per_zone *mz;
6d12e2d8 973
f8d66542 974 if (mem_cgroup_disabled())
08e552c6
KH
975 return;
976 pc = lookup_page_cgroup(page);
977 /* can happen while we handle swapcache. */
4b3bde4c 978 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 979 return;
4b3bde4c 980 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
981 /*
982 * We don't check PCG_USED bit. It's cleared when the "page" is finally
983 * removed from global LRU.
984 */
97a6c37b 985 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
986 /* huge page split is done under lru_lock. so, we have no races. */
987 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
988 if (mem_cgroup_is_root(pc->mem_cgroup))
989 return;
990 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 991 list_del_init(&pc->lru);
6d12e2d8
KH
992}
993
08e552c6 994void mem_cgroup_del_lru(struct page *page)
6d12e2d8 995{
08e552c6
KH
996 mem_cgroup_del_lru_list(page, page_lru(page));
997}
b69408e8 998
3f58a829
MK
999/*
1000 * Writeback is about to end against a page which has been marked for immediate
1001 * reclaim. If it still appears to be reclaimable, move it to the tail of the
1002 * inactive list.
1003 */
1004void mem_cgroup_rotate_reclaimable_page(struct page *page)
1005{
1006 struct mem_cgroup_per_zone *mz;
1007 struct page_cgroup *pc;
1008 enum lru_list lru = page_lru(page);
1009
1010 if (mem_cgroup_disabled())
1011 return;
1012
1013 pc = lookup_page_cgroup(page);
1014 /* unused or root page is not rotated. */
1015 if (!PageCgroupUsed(pc))
1016 return;
1017 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1018 smp_rmb();
1019 if (mem_cgroup_is_root(pc->mem_cgroup))
1020 return;
97a6c37b 1021 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
1022 list_move_tail(&pc->lru, &mz->lists[lru]);
1023}
1024
08e552c6
KH
1025void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1026{
1027 struct mem_cgroup_per_zone *mz;
1028 struct page_cgroup *pc;
b69408e8 1029
f8d66542 1030 if (mem_cgroup_disabled())
08e552c6 1031 return;
6d12e2d8 1032
08e552c6 1033 pc = lookup_page_cgroup(page);
4b3bde4c 1034 /* unused or root page is not rotated. */
713735b4
JW
1035 if (!PageCgroupUsed(pc))
1036 return;
1037 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1038 smp_rmb();
1039 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 1040 return;
97a6c37b 1041 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 1042 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
1043}
1044
08e552c6 1045void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 1046{
08e552c6
KH
1047 struct page_cgroup *pc;
1048 struct mem_cgroup_per_zone *mz;
6d12e2d8 1049
f8d66542 1050 if (mem_cgroup_disabled())
08e552c6
KH
1051 return;
1052 pc = lookup_page_cgroup(page);
4b3bde4c 1053 VM_BUG_ON(PageCgroupAcctLRU(pc));
a61ed3ce
JW
1054 /*
1055 * putback: charge:
1056 * SetPageLRU SetPageCgroupUsed
1057 * smp_mb smp_mb
1058 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1059 *
1060 * Ensure that one of the two sides adds the page to the memcg
1061 * LRU during a race.
1062 */
1063 smp_mb();
08e552c6 1064 if (!PageCgroupUsed(pc))
894bc310 1065 return;
713735b4
JW
1066 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1067 smp_rmb();
97a6c37b 1068 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
1069 /* huge page split is done under lru_lock. so, we have no races. */
1070 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
1071 SetPageCgroupAcctLRU(pc);
1072 if (mem_cgroup_is_root(pc->mem_cgroup))
1073 return;
08e552c6
KH
1074 list_add(&pc->lru, &mz->lists[lru]);
1075}
544122e5 1076
08e552c6 1077/*
5a6475a4
KH
1078 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1079 * while it's linked to lru because the page may be reused after it's fully
1080 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1081 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1082 */
5a6475a4 1083static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1084{
544122e5
KH
1085 unsigned long flags;
1086 struct zone *zone = page_zone(page);
1087 struct page_cgroup *pc = lookup_page_cgroup(page);
1088
5a6475a4
KH
1089 /*
1090 * Doing this check without taking ->lru_lock seems wrong but this
1091 * is safe. Because if page_cgroup's USED bit is unset, the page
1092 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1093 * set, the commit after this will fail, anyway.
1094 * This all charge/uncharge is done under some mutual execustion.
1095 * So, we don't need to taking care of changes in USED bit.
1096 */
1097 if (likely(!PageLRU(page)))
1098 return;
1099
544122e5
KH
1100 spin_lock_irqsave(&zone->lru_lock, flags);
1101 /*
1102 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1103 * is guarded by lock_page() because the page is SwapCache.
1104 */
1105 if (!PageCgroupUsed(pc))
1106 mem_cgroup_del_lru_list(page, page_lru(page));
1107 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1108}
1109
5a6475a4 1110static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
1111{
1112 unsigned long flags;
1113 struct zone *zone = page_zone(page);
1114 struct page_cgroup *pc = lookup_page_cgroup(page);
a61ed3ce
JW
1115 /*
1116 * putback: charge:
1117 * SetPageLRU SetPageCgroupUsed
1118 * smp_mb smp_mb
1119 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1120 *
1121 * Ensure that one of the two sides adds the page to the memcg
1122 * LRU during a race.
1123 */
1124 smp_mb();
5a6475a4
KH
1125 /* taking care of that the page is added to LRU while we commit it */
1126 if (likely(!PageLRU(page)))
1127 return;
544122e5
KH
1128 spin_lock_irqsave(&zone->lru_lock, flags);
1129 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 1130 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
1131 mem_cgroup_add_lru_list(page, page_lru(page));
1132 spin_unlock_irqrestore(&zone->lru_lock, flags);
1133}
1134
1135
08e552c6
KH
1136void mem_cgroup_move_lists(struct page *page,
1137 enum lru_list from, enum lru_list to)
1138{
f8d66542 1139 if (mem_cgroup_disabled())
08e552c6
KH
1140 return;
1141 mem_cgroup_del_lru_list(page, from);
1142 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
1143}
1144
3e92041d 1145/*
c0ff4b85 1146 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1147 * hierarchy subtree
1148 */
c0ff4b85
R
1149static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1150 struct mem_cgroup *memcg)
3e92041d 1151{
c0ff4b85
R
1152 if (root_memcg != memcg) {
1153 return (root_memcg->use_hierarchy &&
1154 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1155 }
1156
1157 return true;
1158}
1159
c0ff4b85 1160int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1161{
1162 int ret;
0b7f569e 1163 struct mem_cgroup *curr = NULL;
158e0a2d 1164 struct task_struct *p;
4c4a2214 1165
158e0a2d
KH
1166 p = find_lock_task_mm(task);
1167 if (!p)
1168 return 0;
1169 curr = try_get_mem_cgroup_from_mm(p->mm);
1170 task_unlock(p);
0b7f569e
KH
1171 if (!curr)
1172 return 0;
d31f56db 1173 /*
c0ff4b85 1174 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1175 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1176 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1177 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1178 */
c0ff4b85 1179 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1180 css_put(&curr->css);
4c4a2214
DR
1181 return ret;
1182}
1183
9b272977 1184int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1185{
9b272977
JW
1186 unsigned long inactive_ratio;
1187 int nid = zone_to_nid(zone);
1188 int zid = zone_idx(zone);
14797e23 1189 unsigned long inactive;
9b272977 1190 unsigned long active;
c772be93 1191 unsigned long gb;
14797e23 1192
9b272977
JW
1193 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1194 BIT(LRU_INACTIVE_ANON));
1195 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1196 BIT(LRU_ACTIVE_ANON));
14797e23 1197
c772be93
KM
1198 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1199 if (gb)
1200 inactive_ratio = int_sqrt(10 * gb);
1201 else
1202 inactive_ratio = 1;
1203
9b272977 1204 return inactive * inactive_ratio < active;
14797e23
KM
1205}
1206
9b272977 1207int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1208{
1209 unsigned long active;
1210 unsigned long inactive;
9b272977
JW
1211 int zid = zone_idx(zone);
1212 int nid = zone_to_nid(zone);
56e49d21 1213
9b272977
JW
1214 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1215 BIT(LRU_INACTIVE_FILE));
1216 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1217 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1218
1219 return (active > inactive);
1220}
1221
3e2f41f1
KM
1222struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1223 struct zone *zone)
1224{
13d7e3a2 1225 int nid = zone_to_nid(zone);
3e2f41f1
KM
1226 int zid = zone_idx(zone);
1227 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1228
1229 return &mz->reclaim_stat;
1230}
1231
1232struct zone_reclaim_stat *
1233mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1234{
1235 struct page_cgroup *pc;
1236 struct mem_cgroup_per_zone *mz;
1237
1238 if (mem_cgroup_disabled())
1239 return NULL;
1240
1241 pc = lookup_page_cgroup(page);
bd112db8
DN
1242 if (!PageCgroupUsed(pc))
1243 return NULL;
713735b4
JW
1244 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1245 smp_rmb();
97a6c37b 1246 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1247 return &mz->reclaim_stat;
1248}
1249
66e1707b
BS
1250unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1251 struct list_head *dst,
1252 unsigned long *scanned, int order,
4356f21d
MK
1253 isolate_mode_t mode,
1254 struct zone *z,
66e1707b 1255 struct mem_cgroup *mem_cont,
4f98a2fe 1256 int active, int file)
66e1707b
BS
1257{
1258 unsigned long nr_taken = 0;
1259 struct page *page;
1260 unsigned long scan;
1261 LIST_HEAD(pc_list);
1262 struct list_head *src;
ff7283fa 1263 struct page_cgroup *pc, *tmp;
13d7e3a2 1264 int nid = zone_to_nid(z);
1ecaab2b
KH
1265 int zid = zone_idx(z);
1266 struct mem_cgroup_per_zone *mz;
b7c46d15 1267 int lru = LRU_FILE * file + active;
2ffebca6 1268 int ret;
66e1707b 1269
cf475ad2 1270 BUG_ON(!mem_cont);
1ecaab2b 1271 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1272 src = &mz->lists[lru];
66e1707b 1273
ff7283fa
KH
1274 scan = 0;
1275 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1276 if (scan >= nr_to_scan)
ff7283fa 1277 break;
08e552c6 1278
52d4b9ac
KH
1279 if (unlikely(!PageCgroupUsed(pc)))
1280 continue;
5564e88b 1281
6b3ae58e 1282 page = lookup_cgroup_page(pc);
5564e88b 1283
436c6541 1284 if (unlikely(!PageLRU(page)))
ff7283fa 1285 continue;
ff7283fa 1286
436c6541 1287 scan++;
2ffebca6
KH
1288 ret = __isolate_lru_page(page, mode, file);
1289 switch (ret) {
1290 case 0:
66e1707b 1291 list_move(&page->lru, dst);
2ffebca6 1292 mem_cgroup_del_lru(page);
2c888cfb 1293 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1294 break;
1295 case -EBUSY:
1296 /* we don't affect global LRU but rotate in our LRU */
1297 mem_cgroup_rotate_lru_list(page, page_lru(page));
1298 break;
1299 default:
1300 break;
66e1707b
BS
1301 }
1302 }
1303
66e1707b 1304 *scanned = scan;
cc8e970c
KM
1305
1306 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1307 0, 0, 0, mode);
1308
66e1707b
BS
1309 return nr_taken;
1310}
1311
6d61ef40
BS
1312#define mem_cgroup_from_res_counter(counter, member) \
1313 container_of(counter, struct mem_cgroup, member)
1314
19942822 1315/**
9d11ea9f
JW
1316 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1317 * @mem: the memory cgroup
19942822 1318 *
9d11ea9f 1319 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1320 * pages.
19942822 1321 */
c0ff4b85 1322static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1323{
9d11ea9f
JW
1324 unsigned long long margin;
1325
c0ff4b85 1326 margin = res_counter_margin(&memcg->res);
9d11ea9f 1327 if (do_swap_account)
c0ff4b85 1328 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1329 return margin >> PAGE_SHIFT;
19942822
JW
1330}
1331
1f4c025b 1332int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1333{
1334 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1335
1336 /* root ? */
1337 if (cgrp->parent == NULL)
1338 return vm_swappiness;
1339
bf1ff263 1340 return memcg->swappiness;
a7885eb8
KM
1341}
1342
c0ff4b85 1343static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1344{
1345 int cpu;
1489ebad
KH
1346
1347 get_online_cpus();
c0ff4b85 1348 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1349 for_each_online_cpu(cpu)
c0ff4b85
R
1350 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1351 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1352 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1353 put_online_cpus();
32047e2a
KH
1354
1355 synchronize_rcu();
1356}
1357
c0ff4b85 1358static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1359{
1360 int cpu;
1361
c0ff4b85 1362 if (!memcg)
32047e2a 1363 return;
1489ebad 1364 get_online_cpus();
c0ff4b85 1365 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1366 for_each_online_cpu(cpu)
c0ff4b85
R
1367 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1368 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1369 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1370 put_online_cpus();
32047e2a
KH
1371}
1372/*
1373 * 2 routines for checking "mem" is under move_account() or not.
1374 *
1375 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1376 * for avoiding race in accounting. If true,
1377 * pc->mem_cgroup may be overwritten.
1378 *
1379 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1380 * under hierarchy of moving cgroups. This is for
1381 * waiting at hith-memory prressure caused by "move".
1382 */
1383
c0ff4b85 1384static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1385{
1386 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1387 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1388}
4b534334 1389
c0ff4b85 1390static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1391{
2bd9bb20
KH
1392 struct mem_cgroup *from;
1393 struct mem_cgroup *to;
4b534334 1394 bool ret = false;
2bd9bb20
KH
1395 /*
1396 * Unlike task_move routines, we access mc.to, mc.from not under
1397 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1398 */
1399 spin_lock(&mc.lock);
1400 from = mc.from;
1401 to = mc.to;
1402 if (!from)
1403 goto unlock;
3e92041d 1404
c0ff4b85
R
1405 ret = mem_cgroup_same_or_subtree(memcg, from)
1406 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1407unlock:
1408 spin_unlock(&mc.lock);
4b534334
KH
1409 return ret;
1410}
1411
c0ff4b85 1412static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1413{
1414 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1415 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1416 DEFINE_WAIT(wait);
1417 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1418 /* moving charge context might have finished. */
1419 if (mc.moving_task)
1420 schedule();
1421 finish_wait(&mc.waitq, &wait);
1422 return true;
1423 }
1424 }
1425 return false;
1426}
1427
e222432b 1428/**
6a6135b6 1429 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1430 * @memcg: The memory cgroup that went over limit
1431 * @p: Task that is going to be killed
1432 *
1433 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1434 * enabled
1435 */
1436void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1437{
1438 struct cgroup *task_cgrp;
1439 struct cgroup *mem_cgrp;
1440 /*
1441 * Need a buffer in BSS, can't rely on allocations. The code relies
1442 * on the assumption that OOM is serialized for memory controller.
1443 * If this assumption is broken, revisit this code.
1444 */
1445 static char memcg_name[PATH_MAX];
1446 int ret;
1447
d31f56db 1448 if (!memcg || !p)
e222432b
BS
1449 return;
1450
1451
1452 rcu_read_lock();
1453
1454 mem_cgrp = memcg->css.cgroup;
1455 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1456
1457 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1458 if (ret < 0) {
1459 /*
1460 * Unfortunately, we are unable to convert to a useful name
1461 * But we'll still print out the usage information
1462 */
1463 rcu_read_unlock();
1464 goto done;
1465 }
1466 rcu_read_unlock();
1467
1468 printk(KERN_INFO "Task in %s killed", memcg_name);
1469
1470 rcu_read_lock();
1471 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1472 if (ret < 0) {
1473 rcu_read_unlock();
1474 goto done;
1475 }
1476 rcu_read_unlock();
1477
1478 /*
1479 * Continues from above, so we don't need an KERN_ level
1480 */
1481 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1482done:
1483
1484 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1485 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1486 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1487 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1488 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1489 "failcnt %llu\n",
1490 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1491 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1492 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1493}
1494
81d39c20
KH
1495/*
1496 * This function returns the number of memcg under hierarchy tree. Returns
1497 * 1(self count) if no children.
1498 */
c0ff4b85 1499static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1500{
1501 int num = 0;
7d74b06f
KH
1502 struct mem_cgroup *iter;
1503
c0ff4b85 1504 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1505 num++;
81d39c20
KH
1506 return num;
1507}
1508
a63d83f4
DR
1509/*
1510 * Return the memory (and swap, if configured) limit for a memcg.
1511 */
1512u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1513{
1514 u64 limit;
1515 u64 memsw;
1516
f3e8eb70
JW
1517 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1518 limit += total_swap_pages << PAGE_SHIFT;
1519
a63d83f4
DR
1520 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1521 /*
1522 * If memsw is finite and limits the amount of swap space available
1523 * to this memcg, return that limit.
1524 */
1525 return min(limit, memsw);
1526}
1527
6d61ef40 1528/*
04046e1a
KH
1529 * Visit the first child (need not be the first child as per the ordering
1530 * of the cgroup list, since we track last_scanned_child) of @mem and use
1531 * that to reclaim free pages from.
1532 */
1533static struct mem_cgroup *
c0ff4b85 1534mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
04046e1a
KH
1535{
1536 struct mem_cgroup *ret = NULL;
1537 struct cgroup_subsys_state *css;
1538 int nextid, found;
1539
c0ff4b85
R
1540 if (!root_memcg->use_hierarchy) {
1541 css_get(&root_memcg->css);
1542 ret = root_memcg;
04046e1a
KH
1543 }
1544
1545 while (!ret) {
1546 rcu_read_lock();
c0ff4b85
R
1547 nextid = root_memcg->last_scanned_child + 1;
1548 css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
04046e1a
KH
1549 &found);
1550 if (css && css_tryget(css))
1551 ret = container_of(css, struct mem_cgroup, css);
1552
1553 rcu_read_unlock();
1554 /* Updates scanning parameter */
04046e1a
KH
1555 if (!css) {
1556 /* this means start scan from ID:1 */
c0ff4b85 1557 root_memcg->last_scanned_child = 0;
04046e1a 1558 } else
c0ff4b85 1559 root_memcg->last_scanned_child = found;
04046e1a
KH
1560 }
1561
1562 return ret;
1563}
1564
4d0c066d
KH
1565/**
1566 * test_mem_cgroup_node_reclaimable
1567 * @mem: the target memcg
1568 * @nid: the node ID to be checked.
1569 * @noswap : specify true here if the user wants flle only information.
1570 *
1571 * This function returns whether the specified memcg contains any
1572 * reclaimable pages on a node. Returns true if there are any reclaimable
1573 * pages in the node.
1574 */
c0ff4b85 1575static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1576 int nid, bool noswap)
1577{
c0ff4b85 1578 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1579 return true;
1580 if (noswap || !total_swap_pages)
1581 return false;
c0ff4b85 1582 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1583 return true;
1584 return false;
1585
1586}
889976db
YH
1587#if MAX_NUMNODES > 1
1588
1589/*
1590 * Always updating the nodemask is not very good - even if we have an empty
1591 * list or the wrong list here, we can start from some node and traverse all
1592 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1593 *
1594 */
c0ff4b85 1595static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1596{
1597 int nid;
453a9bf3
KH
1598 /*
1599 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1600 * pagein/pageout changes since the last update.
1601 */
c0ff4b85 1602 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1603 return;
c0ff4b85 1604 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1605 return;
1606
889976db 1607 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1608 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1609
1610 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1611
c0ff4b85
R
1612 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1613 node_clear(nid, memcg->scan_nodes);
889976db 1614 }
453a9bf3 1615
c0ff4b85
R
1616 atomic_set(&memcg->numainfo_events, 0);
1617 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1618}
1619
1620/*
1621 * Selecting a node where we start reclaim from. Because what we need is just
1622 * reducing usage counter, start from anywhere is O,K. Considering
1623 * memory reclaim from current node, there are pros. and cons.
1624 *
1625 * Freeing memory from current node means freeing memory from a node which
1626 * we'll use or we've used. So, it may make LRU bad. And if several threads
1627 * hit limits, it will see a contention on a node. But freeing from remote
1628 * node means more costs for memory reclaim because of memory latency.
1629 *
1630 * Now, we use round-robin. Better algorithm is welcomed.
1631 */
c0ff4b85 1632int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1633{
1634 int node;
1635
c0ff4b85
R
1636 mem_cgroup_may_update_nodemask(memcg);
1637 node = memcg->last_scanned_node;
889976db 1638
c0ff4b85 1639 node = next_node(node, memcg->scan_nodes);
889976db 1640 if (node == MAX_NUMNODES)
c0ff4b85 1641 node = first_node(memcg->scan_nodes);
889976db
YH
1642 /*
1643 * We call this when we hit limit, not when pages are added to LRU.
1644 * No LRU may hold pages because all pages are UNEVICTABLE or
1645 * memcg is too small and all pages are not on LRU. In that case,
1646 * we use curret node.
1647 */
1648 if (unlikely(node == MAX_NUMNODES))
1649 node = numa_node_id();
1650
c0ff4b85 1651 memcg->last_scanned_node = node;
889976db
YH
1652 return node;
1653}
1654
4d0c066d
KH
1655/*
1656 * Check all nodes whether it contains reclaimable pages or not.
1657 * For quick scan, we make use of scan_nodes. This will allow us to skip
1658 * unused nodes. But scan_nodes is lazily updated and may not cotain
1659 * enough new information. We need to do double check.
1660 */
c0ff4b85 1661bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1662{
1663 int nid;
1664
1665 /*
1666 * quick check...making use of scan_node.
1667 * We can skip unused nodes.
1668 */
c0ff4b85
R
1669 if (!nodes_empty(memcg->scan_nodes)) {
1670 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1671 nid < MAX_NUMNODES;
c0ff4b85 1672 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1673
c0ff4b85 1674 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1675 return true;
1676 }
1677 }
1678 /*
1679 * Check rest of nodes.
1680 */
1681 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1682 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1683 continue;
c0ff4b85 1684 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1685 return true;
1686 }
1687 return false;
1688}
1689
889976db 1690#else
c0ff4b85 1691int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1692{
1693 return 0;
1694}
4d0c066d 1695
c0ff4b85 1696bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1697{
c0ff4b85 1698 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1699}
889976db
YH
1700#endif
1701
04046e1a
KH
1702/*
1703 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1704 * we reclaimed from, so that we don't end up penalizing one child extensively
1705 * based on its position in the children list.
6d61ef40 1706 *
c0ff4b85 1707 * root_memcg is the original ancestor that we've been reclaim from.
04046e1a 1708 *
c0ff4b85 1709 * We give up and return to the caller when we visit root_memcg twice.
04046e1a 1710 * (other groups can be removed while we're walking....)
81d39c20
KH
1711 *
1712 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40 1713 */
c0ff4b85 1714static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
4e416953 1715 struct zone *zone,
75822b44 1716 gfp_t gfp_mask,
0ae5e89c
YH
1717 unsigned long reclaim_options,
1718 unsigned long *total_scanned)
6d61ef40 1719{
04046e1a
KH
1720 struct mem_cgroup *victim;
1721 int ret, total = 0;
1722 int loop = 0;
75822b44
BS
1723 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1724 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1725 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f 1726 unsigned long excess;
185efc0f 1727 unsigned long nr_scanned;
9d11ea9f 1728
c0ff4b85 1729 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1730
22a668d7 1731 /* If memsw_is_minimum==1, swap-out is of-no-use. */
c0ff4b85 1732 if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
22a668d7
KH
1733 noswap = true;
1734
4e416953 1735 while (1) {
c0ff4b85
R
1736 victim = mem_cgroup_select_victim(root_memcg);
1737 if (victim == root_memcg) {
04046e1a 1738 loop++;
fbc29a25
KH
1739 /*
1740 * We are not draining per cpu cached charges during
1741 * soft limit reclaim because global reclaim doesn't
1742 * care about charges. It tries to free some memory and
1743 * charges will not give any.
1744 */
1745 if (!check_soft && loop >= 1)
c0ff4b85 1746 drain_all_stock_async(root_memcg);
4e416953
BS
1747 if (loop >= 2) {
1748 /*
1749 * If we have not been able to reclaim
1750 * anything, it might because there are
1751 * no reclaimable pages under this hierarchy
1752 */
1753 if (!check_soft || !total) {
1754 css_put(&victim->css);
1755 break;
1756 }
1757 /*
25985edc 1758 * We want to do more targeted reclaim.
4e416953
BS
1759 * excess >> 2 is not to excessive so as to
1760 * reclaim too much, nor too less that we keep
1761 * coming back to reclaim from this cgroup
1762 */
1763 if (total >= (excess >> 2) ||
1764 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1765 css_put(&victim->css);
1766 break;
1767 }
1768 }
1769 }
4d0c066d 1770 if (!mem_cgroup_reclaimable(victim, noswap)) {
04046e1a
KH
1771 /* this cgroup's local usage == 0 */
1772 css_put(&victim->css);
6d61ef40
BS
1773 continue;
1774 }
04046e1a 1775 /* we use swappiness of local cgroup */
0ae5e89c 1776 if (check_soft) {
4e416953 1777 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
185efc0f
JW
1778 noswap, zone, &nr_scanned);
1779 *total_scanned += nr_scanned;
0ae5e89c 1780 } else
4e416953 1781 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
185efc0f 1782 noswap);
04046e1a 1783 css_put(&victim->css);
81d39c20
KH
1784 /*
1785 * At shrinking usage, we can't check we should stop here or
1786 * reclaim more. It's depends on callers. last_scanned_child
1787 * will work enough for keeping fairness under tree.
1788 */
1789 if (shrink)
1790 return ret;
04046e1a 1791 total += ret;
4e416953 1792 if (check_soft) {
c0ff4b85 1793 if (!res_counter_soft_limit_excess(&root_memcg->res))
4e416953 1794 return total;
c0ff4b85 1795 } else if (mem_cgroup_margin(root_memcg))
4fd14ebf 1796 return total;
6d61ef40 1797 }
04046e1a 1798 return total;
6d61ef40
BS
1799}
1800
867578cb
KH
1801/*
1802 * Check OOM-Killer is already running under our hierarchy.
1803 * If someone is running, return false.
1af8efe9 1804 * Has to be called with memcg_oom_lock
867578cb 1805 */
c0ff4b85 1806static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1807{
79dfdacc
MH
1808 struct mem_cgroup *iter, *failed = NULL;
1809 bool cond = true;
a636b327 1810
c0ff4b85 1811 for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
23751be0 1812 if (iter->oom_lock) {
79dfdacc
MH
1813 /*
1814 * this subtree of our hierarchy is already locked
1815 * so we cannot give a lock.
1816 */
79dfdacc
MH
1817 failed = iter;
1818 cond = false;
23751be0
JW
1819 } else
1820 iter->oom_lock = true;
7d74b06f 1821 }
867578cb 1822
79dfdacc 1823 if (!failed)
23751be0 1824 return true;
79dfdacc
MH
1825
1826 /*
1827 * OK, we failed to lock the whole subtree so we have to clean up
1828 * what we set up to the failing subtree
1829 */
1830 cond = true;
c0ff4b85 1831 for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
79dfdacc
MH
1832 if (iter == failed) {
1833 cond = false;
1834 continue;
1835 }
1836 iter->oom_lock = false;
1837 }
23751be0 1838 return false;
a636b327 1839}
0b7f569e 1840
79dfdacc 1841/*
1af8efe9 1842 * Has to be called with memcg_oom_lock
79dfdacc 1843 */
c0ff4b85 1844static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1845{
7d74b06f
KH
1846 struct mem_cgroup *iter;
1847
c0ff4b85 1848 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1849 iter->oom_lock = false;
1850 return 0;
1851}
1852
c0ff4b85 1853static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1854{
1855 struct mem_cgroup *iter;
1856
c0ff4b85 1857 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1858 atomic_inc(&iter->under_oom);
1859}
1860
c0ff4b85 1861static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1862{
1863 struct mem_cgroup *iter;
1864
867578cb
KH
1865 /*
1866 * When a new child is created while the hierarchy is under oom,
1867 * mem_cgroup_oom_lock() may not be called. We have to use
1868 * atomic_add_unless() here.
1869 */
c0ff4b85 1870 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1871 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1872}
1873
1af8efe9 1874static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1875static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1876
dc98df5a
KH
1877struct oom_wait_info {
1878 struct mem_cgroup *mem;
1879 wait_queue_t wait;
1880};
1881
1882static int memcg_oom_wake_function(wait_queue_t *wait,
1883 unsigned mode, int sync, void *arg)
1884{
c0ff4b85
R
1885 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1886 *oom_wait_memcg;
dc98df5a
KH
1887 struct oom_wait_info *oom_wait_info;
1888
1889 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
c0ff4b85 1890 oom_wait_memcg = oom_wait_info->mem;
dc98df5a 1891
dc98df5a
KH
1892 /*
1893 * Both of oom_wait_info->mem and wake_mem are stable under us.
1894 * Then we can use css_is_ancestor without taking care of RCU.
1895 */
c0ff4b85
R
1896 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1897 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1898 return 0;
dc98df5a
KH
1899 return autoremove_wake_function(wait, mode, sync, arg);
1900}
1901
c0ff4b85 1902static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1903{
c0ff4b85
R
1904 /* for filtering, pass "memcg" as argument. */
1905 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1906}
1907
c0ff4b85 1908static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1909{
c0ff4b85
R
1910 if (memcg && atomic_read(&memcg->under_oom))
1911 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1912}
1913
867578cb
KH
1914/*
1915 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1916 */
c0ff4b85 1917bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
0b7f569e 1918{
dc98df5a 1919 struct oom_wait_info owait;
3c11ecf4 1920 bool locked, need_to_kill;
867578cb 1921
c0ff4b85 1922 owait.mem = memcg;
dc98df5a
KH
1923 owait.wait.flags = 0;
1924 owait.wait.func = memcg_oom_wake_function;
1925 owait.wait.private = current;
1926 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1927 need_to_kill = true;
c0ff4b85 1928 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1929
c0ff4b85 1930 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1931 spin_lock(&memcg_oom_lock);
c0ff4b85 1932 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1933 /*
1934 * Even if signal_pending(), we can't quit charge() loop without
1935 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1936 * under OOM is always welcomed, use TASK_KILLABLE here.
1937 */
3c11ecf4 1938 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1939 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1940 need_to_kill = false;
1941 if (locked)
c0ff4b85 1942 mem_cgroup_oom_notify(memcg);
1af8efe9 1943 spin_unlock(&memcg_oom_lock);
867578cb 1944
3c11ecf4
KH
1945 if (need_to_kill) {
1946 finish_wait(&memcg_oom_waitq, &owait.wait);
c0ff4b85 1947 mem_cgroup_out_of_memory(memcg, mask);
3c11ecf4 1948 } else {
867578cb 1949 schedule();
dc98df5a 1950 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1951 }
1af8efe9 1952 spin_lock(&memcg_oom_lock);
79dfdacc 1953 if (locked)
c0ff4b85
R
1954 mem_cgroup_oom_unlock(memcg);
1955 memcg_wakeup_oom(memcg);
1af8efe9 1956 spin_unlock(&memcg_oom_lock);
867578cb 1957
c0ff4b85 1958 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1959
867578cb
KH
1960 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1961 return false;
1962 /* Give chance to dying process */
715a5ee8 1963 schedule_timeout_uninterruptible(1);
867578cb 1964 return true;
0b7f569e
KH
1965}
1966
d69b042f
BS
1967/*
1968 * Currently used to update mapped file statistics, but the routine can be
1969 * generalized to update other statistics as well.
32047e2a
KH
1970 *
1971 * Notes: Race condition
1972 *
1973 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1974 * it tends to be costly. But considering some conditions, we doesn't need
1975 * to do so _always_.
1976 *
1977 * Considering "charge", lock_page_cgroup() is not required because all
1978 * file-stat operations happen after a page is attached to radix-tree. There
1979 * are no race with "charge".
1980 *
1981 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1982 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1983 * if there are race with "uncharge". Statistics itself is properly handled
1984 * by flags.
1985 *
1986 * Considering "move", this is an only case we see a race. To make the race
1987 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1988 * possibility of race condition. If there is, we take a lock.
d69b042f 1989 */
26174efd 1990
2a7106f2
GT
1991void mem_cgroup_update_page_stat(struct page *page,
1992 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1993{
c0ff4b85 1994 struct mem_cgroup *memcg;
32047e2a
KH
1995 struct page_cgroup *pc = lookup_page_cgroup(page);
1996 bool need_unlock = false;
dbd4ea78 1997 unsigned long uninitialized_var(flags);
d69b042f 1998
d69b042f
BS
1999 if (unlikely(!pc))
2000 return;
2001
32047e2a 2002 rcu_read_lock();
c0ff4b85
R
2003 memcg = pc->mem_cgroup;
2004 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
2005 goto out;
2006 /* pc->mem_cgroup is unstable ? */
c0ff4b85 2007 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 2008 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 2009 move_lock_page_cgroup(pc, &flags);
32047e2a 2010 need_unlock = true;
c0ff4b85
R
2011 memcg = pc->mem_cgroup;
2012 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
2013 goto out;
2014 }
26174efd 2015
26174efd 2016 switch (idx) {
2a7106f2 2017 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
2018 if (val > 0)
2019 SetPageCgroupFileMapped(pc);
2020 else if (!page_mapped(page))
0c270f8f 2021 ClearPageCgroupFileMapped(pc);
2a7106f2 2022 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2023 break;
2024 default:
2025 BUG();
8725d541 2026 }
d69b042f 2027
c0ff4b85 2028 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 2029
32047e2a
KH
2030out:
2031 if (unlikely(need_unlock))
dbd4ea78 2032 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
2033 rcu_read_unlock();
2034 return;
d69b042f 2035}
2a7106f2 2036EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 2037
cdec2e42
KH
2038/*
2039 * size of first charge trial. "32" comes from vmscan.c's magic value.
2040 * TODO: maybe necessary to use big numbers in big irons.
2041 */
7ec99d62 2042#define CHARGE_BATCH 32U
cdec2e42
KH
2043struct memcg_stock_pcp {
2044 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2045 unsigned int nr_pages;
cdec2e42 2046 struct work_struct work;
26fe6168
KH
2047 unsigned long flags;
2048#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
2049};
2050static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2051static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2052
2053/*
11c9ea4e 2054 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2055 * from local stock and true is returned. If the stock is 0 or charges from a
2056 * cgroup which is not current target, returns false. This stock will be
2057 * refilled.
2058 */
c0ff4b85 2059static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2060{
2061 struct memcg_stock_pcp *stock;
2062 bool ret = true;
2063
2064 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2065 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2066 stock->nr_pages--;
cdec2e42
KH
2067 else /* need to call res_counter_charge */
2068 ret = false;
2069 put_cpu_var(memcg_stock);
2070 return ret;
2071}
2072
2073/*
2074 * Returns stocks cached in percpu to res_counter and reset cached information.
2075 */
2076static void drain_stock(struct memcg_stock_pcp *stock)
2077{
2078 struct mem_cgroup *old = stock->cached;
2079
11c9ea4e
JW
2080 if (stock->nr_pages) {
2081 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2082
2083 res_counter_uncharge(&old->res, bytes);
cdec2e42 2084 if (do_swap_account)
11c9ea4e
JW
2085 res_counter_uncharge(&old->memsw, bytes);
2086 stock->nr_pages = 0;
cdec2e42
KH
2087 }
2088 stock->cached = NULL;
cdec2e42
KH
2089}
2090
2091/*
2092 * This must be called under preempt disabled or must be called by
2093 * a thread which is pinned to local cpu.
2094 */
2095static void drain_local_stock(struct work_struct *dummy)
2096{
2097 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2098 drain_stock(stock);
26fe6168 2099 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2100}
2101
2102/*
2103 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2104 * This will be consumed by consume_stock() function, later.
cdec2e42 2105 */
c0ff4b85 2106static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2107{
2108 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2109
c0ff4b85 2110 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2111 drain_stock(stock);
c0ff4b85 2112 stock->cached = memcg;
cdec2e42 2113 }
11c9ea4e 2114 stock->nr_pages += nr_pages;
cdec2e42
KH
2115 put_cpu_var(memcg_stock);
2116}
2117
2118/*
c0ff4b85 2119 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2120 * of the hierarchy under it. sync flag says whether we should block
2121 * until the work is done.
cdec2e42 2122 */
c0ff4b85 2123static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2124{
26fe6168 2125 int cpu, curcpu;
d38144b7 2126
cdec2e42 2127 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2128 get_online_cpus();
5af12d0e 2129 curcpu = get_cpu();
cdec2e42
KH
2130 for_each_online_cpu(cpu) {
2131 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2132 struct mem_cgroup *memcg;
26fe6168 2133
c0ff4b85
R
2134 memcg = stock->cached;
2135 if (!memcg || !stock->nr_pages)
26fe6168 2136 continue;
c0ff4b85 2137 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2138 continue;
d1a05b69
MH
2139 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2140 if (cpu == curcpu)
2141 drain_local_stock(&stock->work);
2142 else
2143 schedule_work_on(cpu, &stock->work);
2144 }
cdec2e42 2145 }
5af12d0e 2146 put_cpu();
d38144b7
MH
2147
2148 if (!sync)
2149 goto out;
2150
2151 for_each_online_cpu(cpu) {
2152 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2153 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2154 flush_work(&stock->work);
2155 }
2156out:
cdec2e42 2157 put_online_cpus();
d38144b7
MH
2158}
2159
2160/*
2161 * Tries to drain stocked charges in other cpus. This function is asynchronous
2162 * and just put a work per cpu for draining localy on each cpu. Caller can
2163 * expects some charges will be back to res_counter later but cannot wait for
2164 * it.
2165 */
c0ff4b85 2166static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2167{
9f50fad6
MH
2168 /*
2169 * If someone calls draining, avoid adding more kworker runs.
2170 */
2171 if (!mutex_trylock(&percpu_charge_mutex))
2172 return;
c0ff4b85 2173 drain_all_stock(root_memcg, false);
9f50fad6 2174 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2175}
2176
2177/* This is a synchronous drain interface. */
c0ff4b85 2178static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2179{
2180 /* called when force_empty is called */
9f50fad6 2181 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2182 drain_all_stock(root_memcg, true);
9f50fad6 2183 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2184}
2185
711d3d2c
KH
2186/*
2187 * This function drains percpu counter value from DEAD cpu and
2188 * move it to local cpu. Note that this function can be preempted.
2189 */
c0ff4b85 2190static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2191{
2192 int i;
2193
c0ff4b85 2194 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2195 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2196 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2197
c0ff4b85
R
2198 per_cpu(memcg->stat->count[i], cpu) = 0;
2199 memcg->nocpu_base.count[i] += x;
711d3d2c 2200 }
e9f8974f 2201 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2202 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2203
c0ff4b85
R
2204 per_cpu(memcg->stat->events[i], cpu) = 0;
2205 memcg->nocpu_base.events[i] += x;
e9f8974f 2206 }
1489ebad 2207 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2208 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2209 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2210}
2211
c0ff4b85 2212static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2213{
2214 int idx = MEM_CGROUP_ON_MOVE;
2215
c0ff4b85
R
2216 spin_lock(&memcg->pcp_counter_lock);
2217 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2218 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2219}
2220
2221static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2222 unsigned long action,
2223 void *hcpu)
2224{
2225 int cpu = (unsigned long)hcpu;
2226 struct memcg_stock_pcp *stock;
711d3d2c 2227 struct mem_cgroup *iter;
cdec2e42 2228
1489ebad
KH
2229 if ((action == CPU_ONLINE)) {
2230 for_each_mem_cgroup_all(iter)
2231 synchronize_mem_cgroup_on_move(iter, cpu);
2232 return NOTIFY_OK;
2233 }
2234
711d3d2c 2235 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2236 return NOTIFY_OK;
711d3d2c
KH
2237
2238 for_each_mem_cgroup_all(iter)
2239 mem_cgroup_drain_pcp_counter(iter, cpu);
2240
cdec2e42
KH
2241 stock = &per_cpu(memcg_stock, cpu);
2242 drain_stock(stock);
2243 return NOTIFY_OK;
2244}
2245
4b534334
KH
2246
2247/* See __mem_cgroup_try_charge() for details */
2248enum {
2249 CHARGE_OK, /* success */
2250 CHARGE_RETRY, /* need to retry but retry is not bad */
2251 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2252 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2253 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2254};
2255
c0ff4b85 2256static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2257 unsigned int nr_pages, bool oom_check)
4b534334 2258{
7ec99d62 2259 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2260 struct mem_cgroup *mem_over_limit;
2261 struct res_counter *fail_res;
2262 unsigned long flags = 0;
2263 int ret;
2264
c0ff4b85 2265 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2266
2267 if (likely(!ret)) {
2268 if (!do_swap_account)
2269 return CHARGE_OK;
c0ff4b85 2270 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2271 if (likely(!ret))
2272 return CHARGE_OK;
2273
c0ff4b85 2274 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2275 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2276 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2277 } else
2278 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2279 /*
7ec99d62
JW
2280 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2281 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2282 *
2283 * Never reclaim on behalf of optional batching, retry with a
2284 * single page instead.
2285 */
7ec99d62 2286 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2287 return CHARGE_RETRY;
2288
2289 if (!(gfp_mask & __GFP_WAIT))
2290 return CHARGE_WOULDBLOCK;
2291
2292 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
0ae5e89c 2293 gfp_mask, flags, NULL);
7ec99d62 2294 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2295 return CHARGE_RETRY;
4b534334 2296 /*
19942822
JW
2297 * Even though the limit is exceeded at this point, reclaim
2298 * may have been able to free some pages. Retry the charge
2299 * before killing the task.
2300 *
2301 * Only for regular pages, though: huge pages are rather
2302 * unlikely to succeed so close to the limit, and we fall back
2303 * to regular pages anyway in case of failure.
4b534334 2304 */
7ec99d62 2305 if (nr_pages == 1 && ret)
4b534334
KH
2306 return CHARGE_RETRY;
2307
2308 /*
2309 * At task move, charge accounts can be doubly counted. So, it's
2310 * better to wait until the end of task_move if something is going on.
2311 */
2312 if (mem_cgroup_wait_acct_move(mem_over_limit))
2313 return CHARGE_RETRY;
2314
2315 /* If we don't need to call oom-killer at el, return immediately */
2316 if (!oom_check)
2317 return CHARGE_NOMEM;
2318 /* check OOM */
2319 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2320 return CHARGE_OOM_DIE;
2321
2322 return CHARGE_RETRY;
2323}
2324
f817ed48
KH
2325/*
2326 * Unlike exported interface, "oom" parameter is added. if oom==true,
2327 * oom-killer can be invoked.
8a9f3ccd 2328 */
f817ed48 2329static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2330 gfp_t gfp_mask,
7ec99d62 2331 unsigned int nr_pages,
c0ff4b85 2332 struct mem_cgroup **ptr,
7ec99d62 2333 bool oom)
8a9f3ccd 2334{
7ec99d62 2335 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2336 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2337 struct mem_cgroup *memcg = NULL;
4b534334 2338 int ret;
a636b327 2339
867578cb
KH
2340 /*
2341 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2342 * in system level. So, allow to go ahead dying process in addition to
2343 * MEMDIE process.
2344 */
2345 if (unlikely(test_thread_flag(TIF_MEMDIE)
2346 || fatal_signal_pending(current)))
2347 goto bypass;
a636b327 2348
8a9f3ccd 2349 /*
3be91277
HD
2350 * We always charge the cgroup the mm_struct belongs to.
2351 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2352 * thread group leader migrates. It's possible that mm is not
2353 * set, if so charge the init_mm (happens for pagecache usage).
2354 */
c0ff4b85 2355 if (!*ptr && !mm)
f75ca962
KH
2356 goto bypass;
2357again:
c0ff4b85
R
2358 if (*ptr) { /* css should be a valid one */
2359 memcg = *ptr;
2360 VM_BUG_ON(css_is_removed(&memcg->css));
2361 if (mem_cgroup_is_root(memcg))
f75ca962 2362 goto done;
c0ff4b85 2363 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2364 goto done;
c0ff4b85 2365 css_get(&memcg->css);
4b534334 2366 } else {
f75ca962 2367 struct task_struct *p;
54595fe2 2368
f75ca962
KH
2369 rcu_read_lock();
2370 p = rcu_dereference(mm->owner);
f75ca962 2371 /*
ebb76ce1 2372 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2373 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2374 * race with swapoff. Then, we have small risk of mis-accouning.
2375 * But such kind of mis-account by race always happens because
2376 * we don't have cgroup_mutex(). It's overkill and we allo that
2377 * small race, here.
2378 * (*) swapoff at el will charge against mm-struct not against
2379 * task-struct. So, mm->owner can be NULL.
f75ca962 2380 */
c0ff4b85
R
2381 memcg = mem_cgroup_from_task(p);
2382 if (!memcg || mem_cgroup_is_root(memcg)) {
f75ca962
KH
2383 rcu_read_unlock();
2384 goto done;
2385 }
c0ff4b85 2386 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2387 /*
2388 * It seems dagerous to access memcg without css_get().
2389 * But considering how consume_stok works, it's not
2390 * necessary. If consume_stock success, some charges
2391 * from this memcg are cached on this cpu. So, we
2392 * don't need to call css_get()/css_tryget() before
2393 * calling consume_stock().
2394 */
2395 rcu_read_unlock();
2396 goto done;
2397 }
2398 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2399 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2400 rcu_read_unlock();
2401 goto again;
2402 }
2403 rcu_read_unlock();
2404 }
8a9f3ccd 2405
4b534334
KH
2406 do {
2407 bool oom_check;
7a81b88c 2408
4b534334 2409 /* If killed, bypass charge */
f75ca962 2410 if (fatal_signal_pending(current)) {
c0ff4b85 2411 css_put(&memcg->css);
4b534334 2412 goto bypass;
f75ca962 2413 }
6d61ef40 2414
4b534334
KH
2415 oom_check = false;
2416 if (oom && !nr_oom_retries) {
2417 oom_check = true;
2418 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2419 }
66e1707b 2420
c0ff4b85 2421 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2422 switch (ret) {
2423 case CHARGE_OK:
2424 break;
2425 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2426 batch = nr_pages;
c0ff4b85
R
2427 css_put(&memcg->css);
2428 memcg = NULL;
f75ca962 2429 goto again;
4b534334 2430 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2431 css_put(&memcg->css);
4b534334
KH
2432 goto nomem;
2433 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2434 if (!oom) {
c0ff4b85 2435 css_put(&memcg->css);
867578cb 2436 goto nomem;
f75ca962 2437 }
4b534334
KH
2438 /* If oom, we never return -ENOMEM */
2439 nr_oom_retries--;
2440 break;
2441 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2442 css_put(&memcg->css);
867578cb 2443 goto bypass;
66e1707b 2444 }
4b534334
KH
2445 } while (ret != CHARGE_OK);
2446
7ec99d62 2447 if (batch > nr_pages)
c0ff4b85
R
2448 refill_stock(memcg, batch - nr_pages);
2449 css_put(&memcg->css);
0c3e73e8 2450done:
c0ff4b85 2451 *ptr = memcg;
7a81b88c
KH
2452 return 0;
2453nomem:
c0ff4b85 2454 *ptr = NULL;
7a81b88c 2455 return -ENOMEM;
867578cb 2456bypass:
c0ff4b85 2457 *ptr = NULL;
867578cb 2458 return 0;
7a81b88c 2459}
8a9f3ccd 2460
a3032a2c
DN
2461/*
2462 * Somemtimes we have to undo a charge we got by try_charge().
2463 * This function is for that and do uncharge, put css's refcnt.
2464 * gotten by try_charge().
2465 */
c0ff4b85 2466static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2467 unsigned int nr_pages)
a3032a2c 2468{
c0ff4b85 2469 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2470 unsigned long bytes = nr_pages * PAGE_SIZE;
2471
c0ff4b85 2472 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2473 if (do_swap_account)
c0ff4b85 2474 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2475 }
854ffa8d
DN
2476}
2477
a3b2d692
KH
2478/*
2479 * A helper function to get mem_cgroup from ID. must be called under
2480 * rcu_read_lock(). The caller must check css_is_removed() or some if
2481 * it's concern. (dropping refcnt from swap can be called against removed
2482 * memcg.)
2483 */
2484static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2485{
2486 struct cgroup_subsys_state *css;
2487
2488 /* ID 0 is unused ID */
2489 if (!id)
2490 return NULL;
2491 css = css_lookup(&mem_cgroup_subsys, id);
2492 if (!css)
2493 return NULL;
2494 return container_of(css, struct mem_cgroup, css);
2495}
2496
e42d9d5d 2497struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2498{
c0ff4b85 2499 struct mem_cgroup *memcg = NULL;
3c776e64 2500 struct page_cgroup *pc;
a3b2d692 2501 unsigned short id;
b5a84319
KH
2502 swp_entry_t ent;
2503
3c776e64
DN
2504 VM_BUG_ON(!PageLocked(page));
2505
3c776e64 2506 pc = lookup_page_cgroup(page);
c0bd3f63 2507 lock_page_cgroup(pc);
a3b2d692 2508 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2509 memcg = pc->mem_cgroup;
2510 if (memcg && !css_tryget(&memcg->css))
2511 memcg = NULL;
e42d9d5d 2512 } else if (PageSwapCache(page)) {
3c776e64 2513 ent.val = page_private(page);
a3b2d692
KH
2514 id = lookup_swap_cgroup(ent);
2515 rcu_read_lock();
c0ff4b85
R
2516 memcg = mem_cgroup_lookup(id);
2517 if (memcg && !css_tryget(&memcg->css))
2518 memcg = NULL;
a3b2d692 2519 rcu_read_unlock();
3c776e64 2520 }
c0bd3f63 2521 unlock_page_cgroup(pc);
c0ff4b85 2522 return memcg;
b5a84319
KH
2523}
2524
c0ff4b85 2525static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2526 struct page *page,
7ec99d62 2527 unsigned int nr_pages,
ca3e0214 2528 struct page_cgroup *pc,
7ec99d62 2529 enum charge_type ctype)
7a81b88c 2530{
ca3e0214
KH
2531 lock_page_cgroup(pc);
2532 if (unlikely(PageCgroupUsed(pc))) {
2533 unlock_page_cgroup(pc);
c0ff4b85 2534 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2535 return;
2536 }
2537 /*
2538 * we don't need page_cgroup_lock about tail pages, becase they are not
2539 * accessed by any other context at this point.
2540 */
c0ff4b85 2541 pc->mem_cgroup = memcg;
261fb61a
KH
2542 /*
2543 * We access a page_cgroup asynchronously without lock_page_cgroup().
2544 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2545 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2546 * before USED bit, we need memory barrier here.
2547 * See mem_cgroup_add_lru_list(), etc.
2548 */
08e552c6 2549 smp_wmb();
4b3bde4c
BS
2550 switch (ctype) {
2551 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2552 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2553 SetPageCgroupCache(pc);
2554 SetPageCgroupUsed(pc);
2555 break;
2556 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2557 ClearPageCgroupCache(pc);
2558 SetPageCgroupUsed(pc);
2559 break;
2560 default:
2561 break;
2562 }
3be91277 2563
c0ff4b85 2564 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2565 unlock_page_cgroup(pc);
430e4863
KH
2566 /*
2567 * "charge_statistics" updated event counter. Then, check it.
2568 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2569 * if they exceeds softlimit.
2570 */
c0ff4b85 2571 memcg_check_events(memcg, page);
7a81b88c 2572}
66e1707b 2573
ca3e0214
KH
2574#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2575
2576#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2577 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2578/*
2579 * Because tail pages are not marked as "used", set it. We're under
2580 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2581 */
2582void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2583{
2584 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2585 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2586 unsigned long flags;
2587
3d37c4a9
KH
2588 if (mem_cgroup_disabled())
2589 return;
ca3e0214 2590 /*
ece35ca8 2591 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2592 * page state accounting.
2593 */
2594 move_lock_page_cgroup(head_pc, &flags);
2595
2596 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2597 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2598 if (PageCgroupAcctLRU(head_pc)) {
2599 enum lru_list lru;
2600 struct mem_cgroup_per_zone *mz;
2601
2602 /*
2603 * LRU flags cannot be copied because we need to add tail
2604 *.page to LRU by generic call and our hook will be called.
2605 * We hold lru_lock, then, reduce counter directly.
2606 */
2607 lru = page_lru(head);
97a6c37b 2608 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2609 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2610 }
ca3e0214
KH
2611 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2612 move_unlock_page_cgroup(head_pc, &flags);
2613}
2614#endif
2615
f817ed48 2616/**
de3638d9 2617 * mem_cgroup_move_account - move account of the page
5564e88b 2618 * @page: the page
7ec99d62 2619 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2620 * @pc: page_cgroup of the page.
2621 * @from: mem_cgroup which the page is moved from.
2622 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2623 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2624 *
2625 * The caller must confirm following.
08e552c6 2626 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2627 * - compound_lock is held when nr_pages > 1
f817ed48 2628 *
854ffa8d 2629 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2630 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2631 * true, this function does "uncharge" from old cgroup, but it doesn't if
2632 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2633 */
7ec99d62
JW
2634static int mem_cgroup_move_account(struct page *page,
2635 unsigned int nr_pages,
2636 struct page_cgroup *pc,
2637 struct mem_cgroup *from,
2638 struct mem_cgroup *to,
2639 bool uncharge)
f817ed48 2640{
de3638d9
JW
2641 unsigned long flags;
2642 int ret;
987eba66 2643
f817ed48 2644 VM_BUG_ON(from == to);
5564e88b 2645 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2646 /*
2647 * The page is isolated from LRU. So, collapse function
2648 * will not handle this page. But page splitting can happen.
2649 * Do this check under compound_page_lock(). The caller should
2650 * hold it.
2651 */
2652 ret = -EBUSY;
7ec99d62 2653 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2654 goto out;
2655
2656 lock_page_cgroup(pc);
2657
2658 ret = -EINVAL;
2659 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2660 goto unlock;
2661
2662 move_lock_page_cgroup(pc, &flags);
f817ed48 2663
8725d541 2664 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2665 /* Update mapped_file data for mem_cgroup */
2666 preempt_disable();
2667 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2668 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2669 preempt_enable();
d69b042f 2670 }
987eba66 2671 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2672 if (uncharge)
2673 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2674 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2675
854ffa8d 2676 /* caller should have done css_get */
08e552c6 2677 pc->mem_cgroup = to;
987eba66 2678 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2679 /*
2680 * We charges against "to" which may not have any tasks. Then, "to"
2681 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2682 * this function is just force_empty() and move charge, so it's
25985edc 2683 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2684 * status here.
88703267 2685 */
de3638d9
JW
2686 move_unlock_page_cgroup(pc, &flags);
2687 ret = 0;
2688unlock:
57f9fd7d 2689 unlock_page_cgroup(pc);
d2265e6f
KH
2690 /*
2691 * check events
2692 */
5564e88b
JW
2693 memcg_check_events(to, page);
2694 memcg_check_events(from, page);
de3638d9 2695out:
f817ed48
KH
2696 return ret;
2697}
2698
2699/*
2700 * move charges to its parent.
2701 */
2702
5564e88b
JW
2703static int mem_cgroup_move_parent(struct page *page,
2704 struct page_cgroup *pc,
f817ed48
KH
2705 struct mem_cgroup *child,
2706 gfp_t gfp_mask)
2707{
2708 struct cgroup *cg = child->css.cgroup;
2709 struct cgroup *pcg = cg->parent;
2710 struct mem_cgroup *parent;
7ec99d62 2711 unsigned int nr_pages;
4be4489f 2712 unsigned long uninitialized_var(flags);
f817ed48
KH
2713 int ret;
2714
2715 /* Is ROOT ? */
2716 if (!pcg)
2717 return -EINVAL;
2718
57f9fd7d
DN
2719 ret = -EBUSY;
2720 if (!get_page_unless_zero(page))
2721 goto out;
2722 if (isolate_lru_page(page))
2723 goto put;
52dbb905 2724
7ec99d62 2725 nr_pages = hpage_nr_pages(page);
08e552c6 2726
f817ed48 2727 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2728 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2729 if (ret || !parent)
57f9fd7d 2730 goto put_back;
f817ed48 2731
7ec99d62 2732 if (nr_pages > 1)
987eba66
KH
2733 flags = compound_lock_irqsave(page);
2734
7ec99d62 2735 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2736 if (ret)
7ec99d62 2737 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2738
7ec99d62 2739 if (nr_pages > 1)
987eba66 2740 compound_unlock_irqrestore(page, flags);
8dba474f 2741put_back:
08e552c6 2742 putback_lru_page(page);
57f9fd7d 2743put:
40d58138 2744 put_page(page);
57f9fd7d 2745out:
f817ed48
KH
2746 return ret;
2747}
2748
7a81b88c
KH
2749/*
2750 * Charge the memory controller for page usage.
2751 * Return
2752 * 0 if the charge was successful
2753 * < 0 if the cgroup is over its limit
2754 */
2755static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2756 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2757{
c0ff4b85 2758 struct mem_cgroup *memcg = NULL;
7ec99d62 2759 unsigned int nr_pages = 1;
7a81b88c 2760 struct page_cgroup *pc;
8493ae43 2761 bool oom = true;
7a81b88c 2762 int ret;
ec168510 2763
37c2ac78 2764 if (PageTransHuge(page)) {
7ec99d62 2765 nr_pages <<= compound_order(page);
37c2ac78 2766 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2767 /*
2768 * Never OOM-kill a process for a huge page. The
2769 * fault handler will fall back to regular pages.
2770 */
2771 oom = false;
37c2ac78 2772 }
7a81b88c
KH
2773
2774 pc = lookup_page_cgroup(page);
af4a6621 2775 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2776
c0ff4b85
R
2777 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2778 if (ret || !memcg)
7a81b88c
KH
2779 return ret;
2780
c0ff4b85 2781 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
8a9f3ccd 2782 return 0;
8a9f3ccd
BS
2783}
2784
7a81b88c
KH
2785int mem_cgroup_newpage_charge(struct page *page,
2786 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2787{
f8d66542 2788 if (mem_cgroup_disabled())
cede86ac 2789 return 0;
69029cd5
KH
2790 /*
2791 * If already mapped, we don't have to account.
2792 * If page cache, page->mapping has address_space.
2793 * But page->mapping may have out-of-use anon_vma pointer,
2794 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2795 * is NULL.
2796 */
2797 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2798 return 0;
2799 if (unlikely(!mm))
2800 mm = &init_mm;
217bc319 2801 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2802 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2803}
2804
83aae4c7
DN
2805static void
2806__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2807 enum charge_type ctype);
2808
5a6475a4 2809static void
c0ff4b85 2810__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
5a6475a4
KH
2811 enum charge_type ctype)
2812{
2813 struct page_cgroup *pc = lookup_page_cgroup(page);
2814 /*
2815 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2816 * is already on LRU. It means the page may on some other page_cgroup's
2817 * LRU. Take care of it.
2818 */
2819 mem_cgroup_lru_del_before_commit(page);
c0ff4b85 2820 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
5a6475a4
KH
2821 mem_cgroup_lru_add_after_commit(page);
2822 return;
2823}
2824
e1a1cd59
BS
2825int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2826 gfp_t gfp_mask)
8697d331 2827{
c0ff4b85 2828 struct mem_cgroup *memcg = NULL;
b5a84319
KH
2829 int ret;
2830
f8d66542 2831 if (mem_cgroup_disabled())
cede86ac 2832 return 0;
52d4b9ac
KH
2833 if (PageCompound(page))
2834 return 0;
accf163e 2835
73045c47 2836 if (unlikely(!mm))
8697d331 2837 mm = &init_mm;
accf163e 2838
5a6475a4 2839 if (page_is_file_cache(page)) {
c0ff4b85
R
2840 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2841 if (ret || !memcg)
5a6475a4 2842 return ret;
b5a84319 2843
5a6475a4
KH
2844 /*
2845 * FUSE reuses pages without going through the final
2846 * put that would remove them from the LRU list, make
2847 * sure that they get relinked properly.
2848 */
c0ff4b85 2849 __mem_cgroup_commit_charge_lrucare(page, memcg,
5a6475a4
KH
2850 MEM_CGROUP_CHARGE_TYPE_CACHE);
2851 return ret;
2852 }
83aae4c7
DN
2853 /* shmem */
2854 if (PageSwapCache(page)) {
c0ff4b85 2855 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2856 if (!ret)
c0ff4b85 2857 __mem_cgroup_commit_charge_swapin(page, memcg,
83aae4c7
DN
2858 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2859 } else
2860 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2861 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2862
b5a84319 2863 return ret;
e8589cc1
KH
2864}
2865
54595fe2
KH
2866/*
2867 * While swap-in, try_charge -> commit or cancel, the page is locked.
2868 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2869 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2870 * "commit()" or removed by "cancel()"
2871 */
8c7c6e34
KH
2872int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2873 struct page *page,
2874 gfp_t mask, struct mem_cgroup **ptr)
2875{
c0ff4b85 2876 struct mem_cgroup *memcg;
54595fe2 2877 int ret;
8c7c6e34 2878
56039efa
KH
2879 *ptr = NULL;
2880
f8d66542 2881 if (mem_cgroup_disabled())
8c7c6e34
KH
2882 return 0;
2883
2884 if (!do_swap_account)
2885 goto charge_cur_mm;
8c7c6e34
KH
2886 /*
2887 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2888 * the pte, and even removed page from swap cache: in those cases
2889 * do_swap_page()'s pte_same() test will fail; but there's also a
2890 * KSM case which does need to charge the page.
8c7c6e34
KH
2891 */
2892 if (!PageSwapCache(page))
407f9c8b 2893 goto charge_cur_mm;
c0ff4b85
R
2894 memcg = try_get_mem_cgroup_from_page(page);
2895 if (!memcg)
54595fe2 2896 goto charge_cur_mm;
c0ff4b85 2897 *ptr = memcg;
7ec99d62 2898 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
c0ff4b85 2899 css_put(&memcg->css);
54595fe2 2900 return ret;
8c7c6e34
KH
2901charge_cur_mm:
2902 if (unlikely(!mm))
2903 mm = &init_mm;
7ec99d62 2904 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2905}
2906
83aae4c7
DN
2907static void
2908__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2909 enum charge_type ctype)
7a81b88c 2910{
f8d66542 2911 if (mem_cgroup_disabled())
7a81b88c
KH
2912 return;
2913 if (!ptr)
2914 return;
88703267 2915 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2916
2917 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2918 /*
2919 * Now swap is on-memory. This means this page may be
2920 * counted both as mem and swap....double count.
03f3c433
KH
2921 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2922 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2923 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2924 */
03f3c433 2925 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2926 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2927 unsigned short id;
8c7c6e34 2928 struct mem_cgroup *memcg;
a3b2d692
KH
2929
2930 id = swap_cgroup_record(ent, 0);
2931 rcu_read_lock();
2932 memcg = mem_cgroup_lookup(id);
8c7c6e34 2933 if (memcg) {
a3b2d692
KH
2934 /*
2935 * This recorded memcg can be obsolete one. So, avoid
2936 * calling css_tryget
2937 */
0c3e73e8 2938 if (!mem_cgroup_is_root(memcg))
4e649152 2939 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2940 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2941 mem_cgroup_put(memcg);
2942 }
a3b2d692 2943 rcu_read_unlock();
8c7c6e34 2944 }
88703267
KH
2945 /*
2946 * At swapin, we may charge account against cgroup which has no tasks.
2947 * So, rmdir()->pre_destroy() can be called while we do this charge.
2948 * In that case, we need to call pre_destroy() again. check it here.
2949 */
2950 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2951}
2952
83aae4c7
DN
2953void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2954{
2955 __mem_cgroup_commit_charge_swapin(page, ptr,
2956 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2957}
2958
c0ff4b85 2959void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2960{
f8d66542 2961 if (mem_cgroup_disabled())
7a81b88c 2962 return;
c0ff4b85 2963 if (!memcg)
7a81b88c 2964 return;
c0ff4b85 2965 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2966}
2967
c0ff4b85 2968static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2969 unsigned int nr_pages,
2970 const enum charge_type ctype)
569b846d
KH
2971{
2972 struct memcg_batch_info *batch = NULL;
2973 bool uncharge_memsw = true;
7ec99d62 2974
569b846d
KH
2975 /* If swapout, usage of swap doesn't decrease */
2976 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2977 uncharge_memsw = false;
569b846d
KH
2978
2979 batch = &current->memcg_batch;
2980 /*
2981 * In usual, we do css_get() when we remember memcg pointer.
2982 * But in this case, we keep res->usage until end of a series of
2983 * uncharges. Then, it's ok to ignore memcg's refcnt.
2984 */
2985 if (!batch->memcg)
c0ff4b85 2986 batch->memcg = memcg;
3c11ecf4
KH
2987 /*
2988 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2989 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2990 * the same cgroup and we have chance to coalesce uncharges.
2991 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2992 * because we want to do uncharge as soon as possible.
2993 */
2994
2995 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2996 goto direct_uncharge;
2997
7ec99d62 2998 if (nr_pages > 1)
ec168510
AA
2999 goto direct_uncharge;
3000
569b846d
KH
3001 /*
3002 * In typical case, batch->memcg == mem. This means we can
3003 * merge a series of uncharges to an uncharge of res_counter.
3004 * If not, we uncharge res_counter ony by one.
3005 */
c0ff4b85 3006 if (batch->memcg != memcg)
569b846d
KH
3007 goto direct_uncharge;
3008 /* remember freed charge and uncharge it later */
7ffd4ca7 3009 batch->nr_pages++;
569b846d 3010 if (uncharge_memsw)
7ffd4ca7 3011 batch->memsw_nr_pages++;
569b846d
KH
3012 return;
3013direct_uncharge:
c0ff4b85 3014 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3015 if (uncharge_memsw)
c0ff4b85
R
3016 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3017 if (unlikely(batch->memcg != memcg))
3018 memcg_oom_recover(memcg);
569b846d
KH
3019 return;
3020}
7a81b88c 3021
8a9f3ccd 3022/*
69029cd5 3023 * uncharge if !page_mapped(page)
8a9f3ccd 3024 */
8c7c6e34 3025static struct mem_cgroup *
69029cd5 3026__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 3027{
c0ff4b85 3028 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3029 unsigned int nr_pages = 1;
3030 struct page_cgroup *pc;
8a9f3ccd 3031
f8d66542 3032 if (mem_cgroup_disabled())
8c7c6e34 3033 return NULL;
4077960e 3034
d13d1443 3035 if (PageSwapCache(page))
8c7c6e34 3036 return NULL;
d13d1443 3037
37c2ac78 3038 if (PageTransHuge(page)) {
7ec99d62 3039 nr_pages <<= compound_order(page);
37c2ac78
AA
3040 VM_BUG_ON(!PageTransHuge(page));
3041 }
8697d331 3042 /*
3c541e14 3043 * Check if our page_cgroup is valid
8697d331 3044 */
52d4b9ac
KH
3045 pc = lookup_page_cgroup(page);
3046 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 3047 return NULL;
b9c565d5 3048
52d4b9ac 3049 lock_page_cgroup(pc);
d13d1443 3050
c0ff4b85 3051 memcg = pc->mem_cgroup;
8c7c6e34 3052
d13d1443
KH
3053 if (!PageCgroupUsed(pc))
3054 goto unlock_out;
3055
3056 switch (ctype) {
3057 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 3058 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3059 /* See mem_cgroup_prepare_migration() */
3060 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
3061 goto unlock_out;
3062 break;
3063 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3064 if (!PageAnon(page)) { /* Shared memory */
3065 if (page->mapping && !page_is_file_cache(page))
3066 goto unlock_out;
3067 } else if (page_mapped(page)) /* Anon */
3068 goto unlock_out;
3069 break;
3070 default:
3071 break;
52d4b9ac 3072 }
d13d1443 3073
c0ff4b85 3074 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 3075
52d4b9ac 3076 ClearPageCgroupUsed(pc);
544122e5
KH
3077 /*
3078 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3079 * freed from LRU. This is safe because uncharged page is expected not
3080 * to be reused (freed soon). Exception is SwapCache, it's handled by
3081 * special functions.
3082 */
b9c565d5 3083
52d4b9ac 3084 unlock_page_cgroup(pc);
f75ca962 3085 /*
c0ff4b85 3086 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3087 * will never be freed.
3088 */
c0ff4b85 3089 memcg_check_events(memcg, page);
f75ca962 3090 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3091 mem_cgroup_swap_statistics(memcg, true);
3092 mem_cgroup_get(memcg);
f75ca962 3093 }
c0ff4b85
R
3094 if (!mem_cgroup_is_root(memcg))
3095 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3096
c0ff4b85 3097 return memcg;
d13d1443
KH
3098
3099unlock_out:
3100 unlock_page_cgroup(pc);
8c7c6e34 3101 return NULL;
3c541e14
BS
3102}
3103
69029cd5
KH
3104void mem_cgroup_uncharge_page(struct page *page)
3105{
52d4b9ac
KH
3106 /* early check. */
3107 if (page_mapped(page))
3108 return;
3109 if (page->mapping && !PageAnon(page))
3110 return;
69029cd5
KH
3111 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3112}
3113
3114void mem_cgroup_uncharge_cache_page(struct page *page)
3115{
3116 VM_BUG_ON(page_mapped(page));
b7abea96 3117 VM_BUG_ON(page->mapping);
69029cd5
KH
3118 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3119}
3120
569b846d
KH
3121/*
3122 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3123 * In that cases, pages are freed continuously and we can expect pages
3124 * are in the same memcg. All these calls itself limits the number of
3125 * pages freed at once, then uncharge_start/end() is called properly.
3126 * This may be called prural(2) times in a context,
3127 */
3128
3129void mem_cgroup_uncharge_start(void)
3130{
3131 current->memcg_batch.do_batch++;
3132 /* We can do nest. */
3133 if (current->memcg_batch.do_batch == 1) {
3134 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3135 current->memcg_batch.nr_pages = 0;
3136 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3137 }
3138}
3139
3140void mem_cgroup_uncharge_end(void)
3141{
3142 struct memcg_batch_info *batch = &current->memcg_batch;
3143
3144 if (!batch->do_batch)
3145 return;
3146
3147 batch->do_batch--;
3148 if (batch->do_batch) /* If stacked, do nothing. */
3149 return;
3150
3151 if (!batch->memcg)
3152 return;
3153 /*
3154 * This "batch->memcg" is valid without any css_get/put etc...
3155 * bacause we hide charges behind us.
3156 */
7ffd4ca7
JW
3157 if (batch->nr_pages)
3158 res_counter_uncharge(&batch->memcg->res,
3159 batch->nr_pages * PAGE_SIZE);
3160 if (batch->memsw_nr_pages)
3161 res_counter_uncharge(&batch->memcg->memsw,
3162 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3163 memcg_oom_recover(batch->memcg);
569b846d
KH
3164 /* forget this pointer (for sanity check) */
3165 batch->memcg = NULL;
3166}
3167
e767e056 3168#ifdef CONFIG_SWAP
8c7c6e34 3169/*
e767e056 3170 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3171 * memcg information is recorded to swap_cgroup of "ent"
3172 */
8a9478ca
KH
3173void
3174mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3175{
3176 struct mem_cgroup *memcg;
8a9478ca
KH
3177 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3178
3179 if (!swapout) /* this was a swap cache but the swap is unused ! */
3180 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3181
3182 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3183
f75ca962
KH
3184 /*
3185 * record memcg information, if swapout && memcg != NULL,
3186 * mem_cgroup_get() was called in uncharge().
3187 */
3188 if (do_swap_account && swapout && memcg)
a3b2d692 3189 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3190}
e767e056 3191#endif
8c7c6e34
KH
3192
3193#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3194/*
3195 * called from swap_entry_free(). remove record in swap_cgroup and
3196 * uncharge "memsw" account.
3197 */
3198void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3199{
8c7c6e34 3200 struct mem_cgroup *memcg;
a3b2d692 3201 unsigned short id;
8c7c6e34
KH
3202
3203 if (!do_swap_account)
3204 return;
3205
a3b2d692
KH
3206 id = swap_cgroup_record(ent, 0);
3207 rcu_read_lock();
3208 memcg = mem_cgroup_lookup(id);
8c7c6e34 3209 if (memcg) {
a3b2d692
KH
3210 /*
3211 * We uncharge this because swap is freed.
3212 * This memcg can be obsolete one. We avoid calling css_tryget
3213 */
0c3e73e8 3214 if (!mem_cgroup_is_root(memcg))
4e649152 3215 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3216 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3217 mem_cgroup_put(memcg);
3218 }
a3b2d692 3219 rcu_read_unlock();
d13d1443 3220}
02491447
DN
3221
3222/**
3223 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3224 * @entry: swap entry to be moved
3225 * @from: mem_cgroup which the entry is moved from
3226 * @to: mem_cgroup which the entry is moved to
483c30b5 3227 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3228 *
3229 * It succeeds only when the swap_cgroup's record for this entry is the same
3230 * as the mem_cgroup's id of @from.
3231 *
3232 * Returns 0 on success, -EINVAL on failure.
3233 *
3234 * The caller must have charged to @to, IOW, called res_counter_charge() about
3235 * both res and memsw, and called css_get().
3236 */
3237static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3238 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3239{
3240 unsigned short old_id, new_id;
3241
3242 old_id = css_id(&from->css);
3243 new_id = css_id(&to->css);
3244
3245 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3246 mem_cgroup_swap_statistics(from, false);
483c30b5 3247 mem_cgroup_swap_statistics(to, true);
02491447 3248 /*
483c30b5
DN
3249 * This function is only called from task migration context now.
3250 * It postpones res_counter and refcount handling till the end
3251 * of task migration(mem_cgroup_clear_mc()) for performance
3252 * improvement. But we cannot postpone mem_cgroup_get(to)
3253 * because if the process that has been moved to @to does
3254 * swap-in, the refcount of @to might be decreased to 0.
02491447 3255 */
02491447 3256 mem_cgroup_get(to);
483c30b5
DN
3257 if (need_fixup) {
3258 if (!mem_cgroup_is_root(from))
3259 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3260 mem_cgroup_put(from);
3261 /*
3262 * we charged both to->res and to->memsw, so we should
3263 * uncharge to->res.
3264 */
3265 if (!mem_cgroup_is_root(to))
3266 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3267 }
02491447
DN
3268 return 0;
3269 }
3270 return -EINVAL;
3271}
3272#else
3273static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3274 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3275{
3276 return -EINVAL;
3277}
8c7c6e34 3278#endif
d13d1443 3279
ae41be37 3280/*
01b1ae63
KH
3281 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3282 * page belongs to.
ae41be37 3283 */
ac39cf8c 3284int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3285 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3286{
c0ff4b85 3287 struct mem_cgroup *memcg = NULL;
7ec99d62 3288 struct page_cgroup *pc;
ac39cf8c 3289 enum charge_type ctype;
e8589cc1 3290 int ret = 0;
8869b8f6 3291
56039efa
KH
3292 *ptr = NULL;
3293
ec168510 3294 VM_BUG_ON(PageTransHuge(page));
f8d66542 3295 if (mem_cgroup_disabled())
4077960e
BS
3296 return 0;
3297
52d4b9ac
KH
3298 pc = lookup_page_cgroup(page);
3299 lock_page_cgroup(pc);
3300 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3301 memcg = pc->mem_cgroup;
3302 css_get(&memcg->css);
ac39cf8c 3303 /*
3304 * At migrating an anonymous page, its mapcount goes down
3305 * to 0 and uncharge() will be called. But, even if it's fully
3306 * unmapped, migration may fail and this page has to be
3307 * charged again. We set MIGRATION flag here and delay uncharge
3308 * until end_migration() is called
3309 *
3310 * Corner Case Thinking
3311 * A)
3312 * When the old page was mapped as Anon and it's unmap-and-freed
3313 * while migration was ongoing.
3314 * If unmap finds the old page, uncharge() of it will be delayed
3315 * until end_migration(). If unmap finds a new page, it's
3316 * uncharged when it make mapcount to be 1->0. If unmap code
3317 * finds swap_migration_entry, the new page will not be mapped
3318 * and end_migration() will find it(mapcount==0).
3319 *
3320 * B)
3321 * When the old page was mapped but migraion fails, the kernel
3322 * remaps it. A charge for it is kept by MIGRATION flag even
3323 * if mapcount goes down to 0. We can do remap successfully
3324 * without charging it again.
3325 *
3326 * C)
3327 * The "old" page is under lock_page() until the end of
3328 * migration, so, the old page itself will not be swapped-out.
3329 * If the new page is swapped out before end_migraton, our
3330 * hook to usual swap-out path will catch the event.
3331 */
3332 if (PageAnon(page))
3333 SetPageCgroupMigration(pc);
e8589cc1 3334 }
52d4b9ac 3335 unlock_page_cgroup(pc);
ac39cf8c 3336 /*
3337 * If the page is not charged at this point,
3338 * we return here.
3339 */
c0ff4b85 3340 if (!memcg)
ac39cf8c 3341 return 0;
01b1ae63 3342
c0ff4b85 3343 *ptr = memcg;
7ec99d62 3344 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
c0ff4b85 3345 css_put(&memcg->css);/* drop extra refcnt */
ac39cf8c 3346 if (ret || *ptr == NULL) {
3347 if (PageAnon(page)) {
3348 lock_page_cgroup(pc);
3349 ClearPageCgroupMigration(pc);
3350 unlock_page_cgroup(pc);
3351 /*
3352 * The old page may be fully unmapped while we kept it.
3353 */
3354 mem_cgroup_uncharge_page(page);
3355 }
3356 return -ENOMEM;
e8589cc1 3357 }
ac39cf8c 3358 /*
3359 * We charge new page before it's used/mapped. So, even if unlock_page()
3360 * is called before end_migration, we can catch all events on this new
3361 * page. In the case new page is migrated but not remapped, new page's
3362 * mapcount will be finally 0 and we call uncharge in end_migration().
3363 */
3364 pc = lookup_page_cgroup(newpage);
3365 if (PageAnon(page))
3366 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3367 else if (page_is_file_cache(page))
3368 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3369 else
3370 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
c0ff4b85 3371 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
e8589cc1 3372 return ret;
ae41be37 3373}
8869b8f6 3374
69029cd5 3375/* remove redundant charge if migration failed*/
c0ff4b85 3376void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3377 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3378{
ac39cf8c 3379 struct page *used, *unused;
01b1ae63 3380 struct page_cgroup *pc;
01b1ae63 3381
c0ff4b85 3382 if (!memcg)
01b1ae63 3383 return;
ac39cf8c 3384 /* blocks rmdir() */
c0ff4b85 3385 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3386 if (!migration_ok) {
ac39cf8c 3387 used = oldpage;
3388 unused = newpage;
01b1ae63 3389 } else {
ac39cf8c 3390 used = newpage;
01b1ae63
KH
3391 unused = oldpage;
3392 }
69029cd5 3393 /*
ac39cf8c 3394 * We disallowed uncharge of pages under migration because mapcount
3395 * of the page goes down to zero, temporarly.
3396 * Clear the flag and check the page should be charged.
01b1ae63 3397 */
ac39cf8c 3398 pc = lookup_page_cgroup(oldpage);
3399 lock_page_cgroup(pc);
3400 ClearPageCgroupMigration(pc);
3401 unlock_page_cgroup(pc);
01b1ae63 3402
ac39cf8c 3403 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3404
01b1ae63 3405 /*
ac39cf8c 3406 * If a page is a file cache, radix-tree replacement is very atomic
3407 * and we can skip this check. When it was an Anon page, its mapcount
3408 * goes down to 0. But because we added MIGRATION flage, it's not
3409 * uncharged yet. There are several case but page->mapcount check
3410 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3411 * check. (see prepare_charge() also)
69029cd5 3412 */
ac39cf8c 3413 if (PageAnon(used))
3414 mem_cgroup_uncharge_page(used);
88703267 3415 /*
ac39cf8c 3416 * At migration, we may charge account against cgroup which has no
3417 * tasks.
88703267
KH
3418 * So, rmdir()->pre_destroy() can be called while we do this charge.
3419 * In that case, we need to call pre_destroy() again. check it here.
3420 */
c0ff4b85 3421 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3422}
78fb7466 3423
f212ad7c
DN
3424#ifdef CONFIG_DEBUG_VM
3425static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3426{
3427 struct page_cgroup *pc;
3428
3429 pc = lookup_page_cgroup(page);
3430 if (likely(pc) && PageCgroupUsed(pc))
3431 return pc;
3432 return NULL;
3433}
3434
3435bool mem_cgroup_bad_page_check(struct page *page)
3436{
3437 if (mem_cgroup_disabled())
3438 return false;
3439
3440 return lookup_page_cgroup_used(page) != NULL;
3441}
3442
3443void mem_cgroup_print_bad_page(struct page *page)
3444{
3445 struct page_cgroup *pc;
3446
3447 pc = lookup_page_cgroup_used(page);
3448 if (pc) {
3449 int ret = -1;
3450 char *path;
3451
3452 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3453 pc, pc->flags, pc->mem_cgroup);
3454
3455 path = kmalloc(PATH_MAX, GFP_KERNEL);
3456 if (path) {
3457 rcu_read_lock();
3458 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3459 path, PATH_MAX);
3460 rcu_read_unlock();
3461 }
3462
3463 printk(KERN_CONT "(%s)\n",
3464 (ret < 0) ? "cannot get the path" : path);
3465 kfree(path);
3466 }
3467}
3468#endif
3469
8c7c6e34
KH
3470static DEFINE_MUTEX(set_limit_mutex);
3471
d38d2a75 3472static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3473 unsigned long long val)
628f4235 3474{
81d39c20 3475 int retry_count;
3c11ecf4 3476 u64 memswlimit, memlimit;
628f4235 3477 int ret = 0;
81d39c20
KH
3478 int children = mem_cgroup_count_children(memcg);
3479 u64 curusage, oldusage;
3c11ecf4 3480 int enlarge;
81d39c20
KH
3481
3482 /*
3483 * For keeping hierarchical_reclaim simple, how long we should retry
3484 * is depends on callers. We set our retry-count to be function
3485 * of # of children which we should visit in this loop.
3486 */
3487 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3488
3489 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3490
3c11ecf4 3491 enlarge = 0;
8c7c6e34 3492 while (retry_count) {
628f4235
KH
3493 if (signal_pending(current)) {
3494 ret = -EINTR;
3495 break;
3496 }
8c7c6e34
KH
3497 /*
3498 * Rather than hide all in some function, I do this in
3499 * open coded manner. You see what this really does.
c0ff4b85 3500 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3501 */
3502 mutex_lock(&set_limit_mutex);
3503 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3504 if (memswlimit < val) {
3505 ret = -EINVAL;
3506 mutex_unlock(&set_limit_mutex);
628f4235
KH
3507 break;
3508 }
3c11ecf4
KH
3509
3510 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3511 if (memlimit < val)
3512 enlarge = 1;
3513
8c7c6e34 3514 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3515 if (!ret) {
3516 if (memswlimit == val)
3517 memcg->memsw_is_minimum = true;
3518 else
3519 memcg->memsw_is_minimum = false;
3520 }
8c7c6e34
KH
3521 mutex_unlock(&set_limit_mutex);
3522
3523 if (!ret)
3524 break;
3525
aa20d489 3526 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
0ae5e89c
YH
3527 MEM_CGROUP_RECLAIM_SHRINK,
3528 NULL);
81d39c20
KH
3529 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3530 /* Usage is reduced ? */
3531 if (curusage >= oldusage)
3532 retry_count--;
3533 else
3534 oldusage = curusage;
8c7c6e34 3535 }
3c11ecf4
KH
3536 if (!ret && enlarge)
3537 memcg_oom_recover(memcg);
14797e23 3538
8c7c6e34
KH
3539 return ret;
3540}
3541
338c8431
LZ
3542static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3543 unsigned long long val)
8c7c6e34 3544{
81d39c20 3545 int retry_count;
3c11ecf4 3546 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3547 int children = mem_cgroup_count_children(memcg);
3548 int ret = -EBUSY;
3c11ecf4 3549 int enlarge = 0;
8c7c6e34 3550
81d39c20
KH
3551 /* see mem_cgroup_resize_res_limit */
3552 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3553 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3554 while (retry_count) {
3555 if (signal_pending(current)) {
3556 ret = -EINTR;
3557 break;
3558 }
3559 /*
3560 * Rather than hide all in some function, I do this in
3561 * open coded manner. You see what this really does.
c0ff4b85 3562 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3563 */
3564 mutex_lock(&set_limit_mutex);
3565 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3566 if (memlimit > val) {
3567 ret = -EINVAL;
3568 mutex_unlock(&set_limit_mutex);
3569 break;
3570 }
3c11ecf4
KH
3571 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3572 if (memswlimit < val)
3573 enlarge = 1;
8c7c6e34 3574 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3575 if (!ret) {
3576 if (memlimit == val)
3577 memcg->memsw_is_minimum = true;
3578 else
3579 memcg->memsw_is_minimum = false;
3580 }
8c7c6e34
KH
3581 mutex_unlock(&set_limit_mutex);
3582
3583 if (!ret)
3584 break;
3585
4e416953 3586 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44 3587 MEM_CGROUP_RECLAIM_NOSWAP |
0ae5e89c
YH
3588 MEM_CGROUP_RECLAIM_SHRINK,
3589 NULL);
8c7c6e34 3590 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3591 /* Usage is reduced ? */
8c7c6e34 3592 if (curusage >= oldusage)
628f4235 3593 retry_count--;
81d39c20
KH
3594 else
3595 oldusage = curusage;
628f4235 3596 }
3c11ecf4
KH
3597 if (!ret && enlarge)
3598 memcg_oom_recover(memcg);
628f4235
KH
3599 return ret;
3600}
3601
4e416953 3602unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3603 gfp_t gfp_mask,
3604 unsigned long *total_scanned)
4e416953
BS
3605{
3606 unsigned long nr_reclaimed = 0;
3607 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3608 unsigned long reclaimed;
3609 int loop = 0;
3610 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3611 unsigned long long excess;
0ae5e89c 3612 unsigned long nr_scanned;
4e416953
BS
3613
3614 if (order > 0)
3615 return 0;
3616
00918b6a 3617 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3618 /*
3619 * This loop can run a while, specially if mem_cgroup's continuously
3620 * keep exceeding their soft limit and putting the system under
3621 * pressure
3622 */
3623 do {
3624 if (next_mz)
3625 mz = next_mz;
3626 else
3627 mz = mem_cgroup_largest_soft_limit_node(mctz);
3628 if (!mz)
3629 break;
3630
0ae5e89c 3631 nr_scanned = 0;
4e416953
BS
3632 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3633 gfp_mask,
0ae5e89c
YH
3634 MEM_CGROUP_RECLAIM_SOFT,
3635 &nr_scanned);
4e416953 3636 nr_reclaimed += reclaimed;
0ae5e89c 3637 *total_scanned += nr_scanned;
4e416953
BS
3638 spin_lock(&mctz->lock);
3639
3640 /*
3641 * If we failed to reclaim anything from this memory cgroup
3642 * it is time to move on to the next cgroup
3643 */
3644 next_mz = NULL;
3645 if (!reclaimed) {
3646 do {
3647 /*
3648 * Loop until we find yet another one.
3649 *
3650 * By the time we get the soft_limit lock
3651 * again, someone might have aded the
3652 * group back on the RB tree. Iterate to
3653 * make sure we get a different mem.
3654 * mem_cgroup_largest_soft_limit_node returns
3655 * NULL if no other cgroup is present on
3656 * the tree
3657 */
3658 next_mz =
3659 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3660 if (next_mz == mz)
4e416953 3661 css_put(&next_mz->mem->css);
39cc98f1 3662 else /* next_mz == NULL or other memcg */
4e416953
BS
3663 break;
3664 } while (1);
3665 }
4e416953 3666 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3667 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3668 /*
3669 * One school of thought says that we should not add
3670 * back the node to the tree if reclaim returns 0.
3671 * But our reclaim could return 0, simply because due
3672 * to priority we are exposing a smaller subset of
3673 * memory to reclaim from. Consider this as a longer
3674 * term TODO.
3675 */
ef8745c1
KH
3676 /* If excess == 0, no tree ops */
3677 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3678 spin_unlock(&mctz->lock);
3679 css_put(&mz->mem->css);
3680 loop++;
3681 /*
3682 * Could not reclaim anything and there are no more
3683 * mem cgroups to try or we seem to be looping without
3684 * reclaiming anything.
3685 */
3686 if (!nr_reclaimed &&
3687 (next_mz == NULL ||
3688 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3689 break;
3690 } while (!nr_reclaimed);
3691 if (next_mz)
3692 css_put(&next_mz->mem->css);
3693 return nr_reclaimed;
3694}
3695
cc847582
KH
3696/*
3697 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3698 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3699 */
c0ff4b85 3700static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3701 int node, int zid, enum lru_list lru)
cc847582 3702{
08e552c6
KH
3703 struct zone *zone;
3704 struct mem_cgroup_per_zone *mz;
f817ed48 3705 struct page_cgroup *pc, *busy;
08e552c6 3706 unsigned long flags, loop;
072c56c1 3707 struct list_head *list;
f817ed48 3708 int ret = 0;
072c56c1 3709
08e552c6 3710 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3711 mz = mem_cgroup_zoneinfo(memcg, node, zid);
b69408e8 3712 list = &mz->lists[lru];
cc847582 3713
f817ed48
KH
3714 loop = MEM_CGROUP_ZSTAT(mz, lru);
3715 /* give some margin against EBUSY etc...*/
3716 loop += 256;
3717 busy = NULL;
3718 while (loop--) {
5564e88b
JW
3719 struct page *page;
3720
f817ed48 3721 ret = 0;
08e552c6 3722 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3723 if (list_empty(list)) {
08e552c6 3724 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3725 break;
f817ed48
KH
3726 }
3727 pc = list_entry(list->prev, struct page_cgroup, lru);
3728 if (busy == pc) {
3729 list_move(&pc->lru, list);
648bcc77 3730 busy = NULL;
08e552c6 3731 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3732 continue;
3733 }
08e552c6 3734 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3735
6b3ae58e 3736 page = lookup_cgroup_page(pc);
5564e88b 3737
c0ff4b85 3738 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
f817ed48 3739 if (ret == -ENOMEM)
52d4b9ac 3740 break;
f817ed48
KH
3741
3742 if (ret == -EBUSY || ret == -EINVAL) {
3743 /* found lock contention or "pc" is obsolete. */
3744 busy = pc;
3745 cond_resched();
3746 } else
3747 busy = NULL;
cc847582 3748 }
08e552c6 3749
f817ed48
KH
3750 if (!ret && !list_empty(list))
3751 return -EBUSY;
3752 return ret;
cc847582
KH
3753}
3754
3755/*
3756 * make mem_cgroup's charge to be 0 if there is no task.
3757 * This enables deleting this mem_cgroup.
3758 */
c0ff4b85 3759static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3760{
f817ed48
KH
3761 int ret;
3762 int node, zid, shrink;
3763 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3764 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3765
c0ff4b85 3766 css_get(&memcg->css);
f817ed48
KH
3767
3768 shrink = 0;
c1e862c1
KH
3769 /* should free all ? */
3770 if (free_all)
3771 goto try_to_free;
f817ed48 3772move_account:
fce66477 3773 do {
f817ed48 3774 ret = -EBUSY;
c1e862c1
KH
3775 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3776 goto out;
3777 ret = -EINTR;
3778 if (signal_pending(current))
cc847582 3779 goto out;
52d4b9ac
KH
3780 /* This is for making all *used* pages to be on LRU. */
3781 lru_add_drain_all();
c0ff4b85 3782 drain_all_stock_sync(memcg);
f817ed48 3783 ret = 0;
c0ff4b85 3784 mem_cgroup_start_move(memcg);
299b4eaa 3785 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3786 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3787 enum lru_list l;
f817ed48 3788 for_each_lru(l) {
c0ff4b85 3789 ret = mem_cgroup_force_empty_list(memcg,
08e552c6 3790 node, zid, l);
f817ed48
KH
3791 if (ret)
3792 break;
3793 }
1ecaab2b 3794 }
f817ed48
KH
3795 if (ret)
3796 break;
3797 }
c0ff4b85
R
3798 mem_cgroup_end_move(memcg);
3799 memcg_oom_recover(memcg);
f817ed48
KH
3800 /* it seems parent cgroup doesn't have enough mem */
3801 if (ret == -ENOMEM)
3802 goto try_to_free;
52d4b9ac 3803 cond_resched();
fce66477 3804 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3805 } while (memcg->res.usage > 0 || ret);
cc847582 3806out:
c0ff4b85 3807 css_put(&memcg->css);
cc847582 3808 return ret;
f817ed48
KH
3809
3810try_to_free:
c1e862c1
KH
3811 /* returns EBUSY if there is a task or if we come here twice. */
3812 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3813 ret = -EBUSY;
3814 goto out;
3815 }
c1e862c1
KH
3816 /* we call try-to-free pages for make this cgroup empty */
3817 lru_add_drain_all();
f817ed48
KH
3818 /* try to free all pages in this cgroup */
3819 shrink = 1;
c0ff4b85 3820 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3821 int progress;
c1e862c1
KH
3822
3823 if (signal_pending(current)) {
3824 ret = -EINTR;
3825 goto out;
3826 }
c0ff4b85 3827 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3828 false);
c1e862c1 3829 if (!progress) {
f817ed48 3830 nr_retries--;
c1e862c1 3831 /* maybe some writeback is necessary */
8aa7e847 3832 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3833 }
f817ed48
KH
3834
3835 }
08e552c6 3836 lru_add_drain();
f817ed48 3837 /* try move_account...there may be some *locked* pages. */
fce66477 3838 goto move_account;
cc847582
KH
3839}
3840
c1e862c1
KH
3841int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3842{
3843 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3844}
3845
3846
18f59ea7
BS
3847static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3848{
3849 return mem_cgroup_from_cont(cont)->use_hierarchy;
3850}
3851
3852static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3853 u64 val)
3854{
3855 int retval = 0;
c0ff4b85 3856 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3857 struct cgroup *parent = cont->parent;
c0ff4b85 3858 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3859
3860 if (parent)
c0ff4b85 3861 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3862
3863 cgroup_lock();
3864 /*
af901ca1 3865 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3866 * in the child subtrees. If it is unset, then the change can
3867 * occur, provided the current cgroup has no children.
3868 *
3869 * For the root cgroup, parent_mem is NULL, we allow value to be
3870 * set if there are no children.
3871 */
c0ff4b85 3872 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3873 (val == 1 || val == 0)) {
3874 if (list_empty(&cont->children))
c0ff4b85 3875 memcg->use_hierarchy = val;
18f59ea7
BS
3876 else
3877 retval = -EBUSY;
3878 } else
3879 retval = -EINVAL;
3880 cgroup_unlock();
3881
3882 return retval;
3883}
3884
0c3e73e8 3885
c0ff4b85 3886static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3887 enum mem_cgroup_stat_index idx)
0c3e73e8 3888{
7d74b06f 3889 struct mem_cgroup *iter;
7a159cc9 3890 long val = 0;
0c3e73e8 3891
7a159cc9 3892 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3893 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3894 val += mem_cgroup_read_stat(iter, idx);
3895
3896 if (val < 0) /* race ? */
3897 val = 0;
3898 return val;
0c3e73e8
BS
3899}
3900
c0ff4b85 3901static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3902{
7d74b06f 3903 u64 val;
104f3928 3904
c0ff4b85 3905 if (!mem_cgroup_is_root(memcg)) {
e5671dfa
GC
3906 val = 0;
3907#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
3908 if (!memcg->kmem_independent_accounting)
3909 val = res_counter_read_u64(&memcg->kmem, RES_USAGE);
3910#endif
104f3928 3911 if (!swap)
e5671dfa 3912 val += res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3913 else
e5671dfa
GC
3914 val += res_counter_read_u64(&memcg->memsw, RES_USAGE);
3915
3916 return val;
104f3928
KS
3917 }
3918
c0ff4b85
R
3919 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3920 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3921
7d74b06f 3922 if (swap)
c0ff4b85 3923 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3924
3925 return val << PAGE_SHIFT;
3926}
3927
2c3daa72 3928static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3929{
c0ff4b85 3930 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3931 u64 val;
8c7c6e34
KH
3932 int type, name;
3933
3934 type = MEMFILE_TYPE(cft->private);
3935 name = MEMFILE_ATTR(cft->private);
3936 switch (type) {
3937 case _MEM:
104f3928 3938 if (name == RES_USAGE)
c0ff4b85 3939 val = mem_cgroup_usage(memcg, false);
104f3928 3940 else
c0ff4b85 3941 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3942 break;
3943 case _MEMSWAP:
104f3928 3944 if (name == RES_USAGE)
c0ff4b85 3945 val = mem_cgroup_usage(memcg, true);
104f3928 3946 else
c0ff4b85 3947 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 3948 break;
e5671dfa
GC
3949#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
3950 case _KMEM:
3951 val = res_counter_read_u64(&memcg->kmem, name);
3952 break;
3953#endif
8c7c6e34
KH
3954 default:
3955 BUG();
3956 break;
3957 }
3958 return val;
8cdea7c0 3959}
628f4235
KH
3960/*
3961 * The user of this function is...
3962 * RES_LIMIT.
3963 */
856c13aa
PM
3964static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3965 const char *buffer)
8cdea7c0 3966{
628f4235 3967 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3968 int type, name;
628f4235
KH
3969 unsigned long long val;
3970 int ret;
3971
8c7c6e34
KH
3972 type = MEMFILE_TYPE(cft->private);
3973 name = MEMFILE_ATTR(cft->private);
3974 switch (name) {
628f4235 3975 case RES_LIMIT:
4b3bde4c
BS
3976 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3977 ret = -EINVAL;
3978 break;
3979 }
628f4235
KH
3980 /* This function does all necessary parse...reuse it */
3981 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3982 if (ret)
3983 break;
3984 if (type == _MEM)
628f4235 3985 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3986 else
3987 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3988 break;
296c81d8
BS
3989 case RES_SOFT_LIMIT:
3990 ret = res_counter_memparse_write_strategy(buffer, &val);
3991 if (ret)
3992 break;
3993 /*
3994 * For memsw, soft limits are hard to implement in terms
3995 * of semantics, for now, we support soft limits for
3996 * control without swap
3997 */
3998 if (type == _MEM)
3999 ret = res_counter_set_soft_limit(&memcg->res, val);
4000 else
4001 ret = -EINVAL;
4002 break;
628f4235
KH
4003 default:
4004 ret = -EINVAL; /* should be BUG() ? */
4005 break;
4006 }
4007 return ret;
8cdea7c0
BS
4008}
4009
fee7b548
KH
4010static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4011 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4012{
4013 struct cgroup *cgroup;
4014 unsigned long long min_limit, min_memsw_limit, tmp;
4015
4016 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4017 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4018 cgroup = memcg->css.cgroup;
4019 if (!memcg->use_hierarchy)
4020 goto out;
4021
4022 while (cgroup->parent) {
4023 cgroup = cgroup->parent;
4024 memcg = mem_cgroup_from_cont(cgroup);
4025 if (!memcg->use_hierarchy)
4026 break;
4027 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4028 min_limit = min(min_limit, tmp);
4029 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4030 min_memsw_limit = min(min_memsw_limit, tmp);
4031 }
4032out:
4033 *mem_limit = min_limit;
4034 *memsw_limit = min_memsw_limit;
4035 return;
4036}
4037
29f2a4da 4038static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4039{
c0ff4b85 4040 struct mem_cgroup *memcg;
8c7c6e34 4041 int type, name;
c84872e1 4042
c0ff4b85 4043 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
4044 type = MEMFILE_TYPE(event);
4045 name = MEMFILE_ATTR(event);
4046 switch (name) {
29f2a4da 4047 case RES_MAX_USAGE:
8c7c6e34 4048 if (type == _MEM)
c0ff4b85 4049 res_counter_reset_max(&memcg->res);
8c7c6e34 4050 else
c0ff4b85 4051 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4052 break;
4053 case RES_FAILCNT:
8c7c6e34 4054 if (type == _MEM)
c0ff4b85 4055 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4056 else
c0ff4b85 4057 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4058 break;
4059 }
f64c3f54 4060
85cc59db 4061 return 0;
c84872e1
PE
4062}
4063
7dc74be0
DN
4064static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4065 struct cftype *cft)
4066{
4067 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4068}
4069
02491447 4070#ifdef CONFIG_MMU
7dc74be0
DN
4071static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4072 struct cftype *cft, u64 val)
4073{
c0ff4b85 4074 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4075
4076 if (val >= (1 << NR_MOVE_TYPE))
4077 return -EINVAL;
4078 /*
4079 * We check this value several times in both in can_attach() and
4080 * attach(), so we need cgroup lock to prevent this value from being
4081 * inconsistent.
4082 */
4083 cgroup_lock();
c0ff4b85 4084 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4085 cgroup_unlock();
4086
4087 return 0;
4088}
02491447
DN
4089#else
4090static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4091 struct cftype *cft, u64 val)
4092{
4093 return -ENOSYS;
4094}
4095#endif
7dc74be0 4096
14067bb3
KH
4097
4098/* For read statistics */
4099enum {
4100 MCS_CACHE,
4101 MCS_RSS,
d8046582 4102 MCS_FILE_MAPPED,
14067bb3
KH
4103 MCS_PGPGIN,
4104 MCS_PGPGOUT,
1dd3a273 4105 MCS_SWAP,
456f998e
YH
4106 MCS_PGFAULT,
4107 MCS_PGMAJFAULT,
14067bb3
KH
4108 MCS_INACTIVE_ANON,
4109 MCS_ACTIVE_ANON,
4110 MCS_INACTIVE_FILE,
4111 MCS_ACTIVE_FILE,
4112 MCS_UNEVICTABLE,
4113 NR_MCS_STAT,
4114};
4115
4116struct mcs_total_stat {
4117 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4118};
4119
14067bb3
KH
4120struct {
4121 char *local_name;
4122 char *total_name;
4123} memcg_stat_strings[NR_MCS_STAT] = {
4124 {"cache", "total_cache"},
4125 {"rss", "total_rss"},
d69b042f 4126 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4127 {"pgpgin", "total_pgpgin"},
4128 {"pgpgout", "total_pgpgout"},
1dd3a273 4129 {"swap", "total_swap"},
456f998e
YH
4130 {"pgfault", "total_pgfault"},
4131 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4132 {"inactive_anon", "total_inactive_anon"},
4133 {"active_anon", "total_active_anon"},
4134 {"inactive_file", "total_inactive_file"},
4135 {"active_file", "total_active_file"},
4136 {"unevictable", "total_unevictable"}
4137};
4138
4139
7d74b06f 4140static void
c0ff4b85 4141mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4142{
14067bb3
KH
4143 s64 val;
4144
4145 /* per cpu stat */
c0ff4b85 4146 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4147 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4148 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4149 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4150 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4151 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4152 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4153 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4154 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4155 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4156 if (do_swap_account) {
c0ff4b85 4157 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4158 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4159 }
c0ff4b85 4160 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4161 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4162 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4163 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4164
4165 /* per zone stat */
c0ff4b85 4166 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4167 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4168 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4169 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4170 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4171 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4172 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4173 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4174 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4175 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4176}
4177
4178static void
c0ff4b85 4179mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4180{
7d74b06f
KH
4181 struct mem_cgroup *iter;
4182
c0ff4b85 4183 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4184 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4185}
4186
406eb0c9
YH
4187#ifdef CONFIG_NUMA
4188static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4189{
4190 int nid;
4191 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4192 unsigned long node_nr;
4193 struct cgroup *cont = m->private;
4194 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4195
bb2a0de9 4196 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4197 seq_printf(m, "total=%lu", total_nr);
4198 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4199 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4200 seq_printf(m, " N%d=%lu", nid, node_nr);
4201 }
4202 seq_putc(m, '\n');
4203
bb2a0de9 4204 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4205 seq_printf(m, "file=%lu", file_nr);
4206 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4207 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4208 LRU_ALL_FILE);
406eb0c9
YH
4209 seq_printf(m, " N%d=%lu", nid, node_nr);
4210 }
4211 seq_putc(m, '\n');
4212
bb2a0de9 4213 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4214 seq_printf(m, "anon=%lu", anon_nr);
4215 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4216 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4217 LRU_ALL_ANON);
406eb0c9
YH
4218 seq_printf(m, " N%d=%lu", nid, node_nr);
4219 }
4220 seq_putc(m, '\n');
4221
bb2a0de9 4222 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4223 seq_printf(m, "unevictable=%lu", unevictable_nr);
4224 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4225 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4226 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4227 seq_printf(m, " N%d=%lu", nid, node_nr);
4228 }
4229 seq_putc(m, '\n');
4230 return 0;
4231}
4232#endif /* CONFIG_NUMA */
4233
c64745cf
PM
4234static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4235 struct cgroup_map_cb *cb)
d2ceb9b7 4236{
d2ceb9b7 4237 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4238 struct mcs_total_stat mystat;
d2ceb9b7
KH
4239 int i;
4240
14067bb3
KH
4241 memset(&mystat, 0, sizeof(mystat));
4242 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4243
406eb0c9 4244
1dd3a273
DN
4245 for (i = 0; i < NR_MCS_STAT; i++) {
4246 if (i == MCS_SWAP && !do_swap_account)
4247 continue;
14067bb3 4248 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4249 }
7b854121 4250
14067bb3 4251 /* Hierarchical information */
fee7b548
KH
4252 {
4253 unsigned long long limit, memsw_limit;
4254 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4255 cb->fill(cb, "hierarchical_memory_limit", limit);
4256 if (do_swap_account)
4257 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4258 }
7f016ee8 4259
14067bb3
KH
4260 memset(&mystat, 0, sizeof(mystat));
4261 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4262 for (i = 0; i < NR_MCS_STAT; i++) {
4263 if (i == MCS_SWAP && !do_swap_account)
4264 continue;
14067bb3 4265 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4266 }
14067bb3 4267
7f016ee8 4268#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4269 {
4270 int nid, zid;
4271 struct mem_cgroup_per_zone *mz;
4272 unsigned long recent_rotated[2] = {0, 0};
4273 unsigned long recent_scanned[2] = {0, 0};
4274
4275 for_each_online_node(nid)
4276 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4277 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4278
4279 recent_rotated[0] +=
4280 mz->reclaim_stat.recent_rotated[0];
4281 recent_rotated[1] +=
4282 mz->reclaim_stat.recent_rotated[1];
4283 recent_scanned[0] +=
4284 mz->reclaim_stat.recent_scanned[0];
4285 recent_scanned[1] +=
4286 mz->reclaim_stat.recent_scanned[1];
4287 }
4288 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4289 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4290 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4291 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4292 }
4293#endif
4294
d2ceb9b7
KH
4295 return 0;
4296}
4297
a7885eb8
KM
4298static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4299{
4300 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4301
1f4c025b 4302 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4303}
4304
4305static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4306 u64 val)
4307{
4308 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4309 struct mem_cgroup *parent;
068b38c1 4310
a7885eb8
KM
4311 if (val > 100)
4312 return -EINVAL;
4313
4314 if (cgrp->parent == NULL)
4315 return -EINVAL;
4316
4317 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4318
4319 cgroup_lock();
4320
a7885eb8
KM
4321 /* If under hierarchy, only empty-root can set this value */
4322 if ((parent->use_hierarchy) ||
068b38c1
LZ
4323 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4324 cgroup_unlock();
a7885eb8 4325 return -EINVAL;
068b38c1 4326 }
a7885eb8 4327
a7885eb8 4328 memcg->swappiness = val;
a7885eb8 4329
068b38c1
LZ
4330 cgroup_unlock();
4331
a7885eb8
KM
4332 return 0;
4333}
4334
2e72b634
KS
4335static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4336{
4337 struct mem_cgroup_threshold_ary *t;
4338 u64 usage;
4339 int i;
4340
4341 rcu_read_lock();
4342 if (!swap)
2c488db2 4343 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4344 else
2c488db2 4345 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4346
4347 if (!t)
4348 goto unlock;
4349
4350 usage = mem_cgroup_usage(memcg, swap);
4351
4352 /*
4353 * current_threshold points to threshold just below usage.
4354 * If it's not true, a threshold was crossed after last
4355 * call of __mem_cgroup_threshold().
4356 */
5407a562 4357 i = t->current_threshold;
2e72b634
KS
4358
4359 /*
4360 * Iterate backward over array of thresholds starting from
4361 * current_threshold and check if a threshold is crossed.
4362 * If none of thresholds below usage is crossed, we read
4363 * only one element of the array here.
4364 */
4365 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4366 eventfd_signal(t->entries[i].eventfd, 1);
4367
4368 /* i = current_threshold + 1 */
4369 i++;
4370
4371 /*
4372 * Iterate forward over array of thresholds starting from
4373 * current_threshold+1 and check if a threshold is crossed.
4374 * If none of thresholds above usage is crossed, we read
4375 * only one element of the array here.
4376 */
4377 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4378 eventfd_signal(t->entries[i].eventfd, 1);
4379
4380 /* Update current_threshold */
5407a562 4381 t->current_threshold = i - 1;
2e72b634
KS
4382unlock:
4383 rcu_read_unlock();
4384}
4385
4386static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4387{
ad4ca5f4
KS
4388 while (memcg) {
4389 __mem_cgroup_threshold(memcg, false);
4390 if (do_swap_account)
4391 __mem_cgroup_threshold(memcg, true);
4392
4393 memcg = parent_mem_cgroup(memcg);
4394 }
2e72b634
KS
4395}
4396
4397static int compare_thresholds(const void *a, const void *b)
4398{
4399 const struct mem_cgroup_threshold *_a = a;
4400 const struct mem_cgroup_threshold *_b = b;
4401
4402 return _a->threshold - _b->threshold;
4403}
4404
c0ff4b85 4405static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4406{
4407 struct mem_cgroup_eventfd_list *ev;
4408
c0ff4b85 4409 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4410 eventfd_signal(ev->eventfd, 1);
4411 return 0;
4412}
4413
c0ff4b85 4414static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4415{
7d74b06f
KH
4416 struct mem_cgroup *iter;
4417
c0ff4b85 4418 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4419 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4420}
4421
4422static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4423 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4424{
4425 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4426 struct mem_cgroup_thresholds *thresholds;
4427 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4428 int type = MEMFILE_TYPE(cft->private);
4429 u64 threshold, usage;
2c488db2 4430 int i, size, ret;
2e72b634
KS
4431
4432 ret = res_counter_memparse_write_strategy(args, &threshold);
4433 if (ret)
4434 return ret;
4435
4436 mutex_lock(&memcg->thresholds_lock);
2c488db2 4437
2e72b634 4438 if (type == _MEM)
2c488db2 4439 thresholds = &memcg->thresholds;
2e72b634 4440 else if (type == _MEMSWAP)
2c488db2 4441 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4442 else
4443 BUG();
4444
4445 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4446
4447 /* Check if a threshold crossed before adding a new one */
2c488db2 4448 if (thresholds->primary)
2e72b634
KS
4449 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4450
2c488db2 4451 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4452
4453 /* Allocate memory for new array of thresholds */
2c488db2 4454 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4455 GFP_KERNEL);
2c488db2 4456 if (!new) {
2e72b634
KS
4457 ret = -ENOMEM;
4458 goto unlock;
4459 }
2c488db2 4460 new->size = size;
2e72b634
KS
4461
4462 /* Copy thresholds (if any) to new array */
2c488db2
KS
4463 if (thresholds->primary) {
4464 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4465 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4466 }
4467
2e72b634 4468 /* Add new threshold */
2c488db2
KS
4469 new->entries[size - 1].eventfd = eventfd;
4470 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4471
4472 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4473 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4474 compare_thresholds, NULL);
4475
4476 /* Find current threshold */
2c488db2 4477 new->current_threshold = -1;
2e72b634 4478 for (i = 0; i < size; i++) {
2c488db2 4479 if (new->entries[i].threshold < usage) {
2e72b634 4480 /*
2c488db2
KS
4481 * new->current_threshold will not be used until
4482 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4483 * it here.
4484 */
2c488db2 4485 ++new->current_threshold;
2e72b634
KS
4486 }
4487 }
4488
2c488db2
KS
4489 /* Free old spare buffer and save old primary buffer as spare */
4490 kfree(thresholds->spare);
4491 thresholds->spare = thresholds->primary;
4492
4493 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4494
907860ed 4495 /* To be sure that nobody uses thresholds */
2e72b634
KS
4496 synchronize_rcu();
4497
2e72b634
KS
4498unlock:
4499 mutex_unlock(&memcg->thresholds_lock);
4500
4501 return ret;
4502}
4503
907860ed 4504static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4505 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4506{
4507 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4508 struct mem_cgroup_thresholds *thresholds;
4509 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4510 int type = MEMFILE_TYPE(cft->private);
4511 u64 usage;
2c488db2 4512 int i, j, size;
2e72b634
KS
4513
4514 mutex_lock(&memcg->thresholds_lock);
4515 if (type == _MEM)
2c488db2 4516 thresholds = &memcg->thresholds;
2e72b634 4517 else if (type == _MEMSWAP)
2c488db2 4518 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4519 else
4520 BUG();
4521
4522 /*
4523 * Something went wrong if we trying to unregister a threshold
4524 * if we don't have thresholds
4525 */
4526 BUG_ON(!thresholds);
4527
4528 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4529
4530 /* Check if a threshold crossed before removing */
4531 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4532
4533 /* Calculate new number of threshold */
2c488db2
KS
4534 size = 0;
4535 for (i = 0; i < thresholds->primary->size; i++) {
4536 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4537 size++;
4538 }
4539
2c488db2 4540 new = thresholds->spare;
907860ed 4541
2e72b634
KS
4542 /* Set thresholds array to NULL if we don't have thresholds */
4543 if (!size) {
2c488db2
KS
4544 kfree(new);
4545 new = NULL;
907860ed 4546 goto swap_buffers;
2e72b634
KS
4547 }
4548
2c488db2 4549 new->size = size;
2e72b634
KS
4550
4551 /* Copy thresholds and find current threshold */
2c488db2
KS
4552 new->current_threshold = -1;
4553 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4554 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4555 continue;
4556
2c488db2
KS
4557 new->entries[j] = thresholds->primary->entries[i];
4558 if (new->entries[j].threshold < usage) {
2e72b634 4559 /*
2c488db2 4560 * new->current_threshold will not be used
2e72b634
KS
4561 * until rcu_assign_pointer(), so it's safe to increment
4562 * it here.
4563 */
2c488db2 4564 ++new->current_threshold;
2e72b634
KS
4565 }
4566 j++;
4567 }
4568
907860ed 4569swap_buffers:
2c488db2
KS
4570 /* Swap primary and spare array */
4571 thresholds->spare = thresholds->primary;
4572 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4573
907860ed 4574 /* To be sure that nobody uses thresholds */
2e72b634
KS
4575 synchronize_rcu();
4576
2e72b634 4577 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4578}
c1e862c1 4579
9490ff27
KH
4580static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4581 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4582{
4583 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4584 struct mem_cgroup_eventfd_list *event;
4585 int type = MEMFILE_TYPE(cft->private);
4586
4587 BUG_ON(type != _OOM_TYPE);
4588 event = kmalloc(sizeof(*event), GFP_KERNEL);
4589 if (!event)
4590 return -ENOMEM;
4591
1af8efe9 4592 spin_lock(&memcg_oom_lock);
9490ff27
KH
4593
4594 event->eventfd = eventfd;
4595 list_add(&event->list, &memcg->oom_notify);
4596
4597 /* already in OOM ? */
79dfdacc 4598 if (atomic_read(&memcg->under_oom))
9490ff27 4599 eventfd_signal(eventfd, 1);
1af8efe9 4600 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4601
4602 return 0;
4603}
4604
907860ed 4605static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4606 struct cftype *cft, struct eventfd_ctx *eventfd)
4607{
c0ff4b85 4608 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4609 struct mem_cgroup_eventfd_list *ev, *tmp;
4610 int type = MEMFILE_TYPE(cft->private);
4611
4612 BUG_ON(type != _OOM_TYPE);
4613
1af8efe9 4614 spin_lock(&memcg_oom_lock);
9490ff27 4615
c0ff4b85 4616 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4617 if (ev->eventfd == eventfd) {
4618 list_del(&ev->list);
4619 kfree(ev);
4620 }
4621 }
4622
1af8efe9 4623 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4624}
4625
3c11ecf4
KH
4626static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4627 struct cftype *cft, struct cgroup_map_cb *cb)
4628{
c0ff4b85 4629 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4630
c0ff4b85 4631 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4632
c0ff4b85 4633 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4634 cb->fill(cb, "under_oom", 1);
4635 else
4636 cb->fill(cb, "under_oom", 0);
4637 return 0;
4638}
4639
3c11ecf4
KH
4640static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4641 struct cftype *cft, u64 val)
4642{
c0ff4b85 4643 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4644 struct mem_cgroup *parent;
4645
4646 /* cannot set to root cgroup and only 0 and 1 are allowed */
4647 if (!cgrp->parent || !((val == 0) || (val == 1)))
4648 return -EINVAL;
4649
4650 parent = mem_cgroup_from_cont(cgrp->parent);
4651
4652 cgroup_lock();
4653 /* oom-kill-disable is a flag for subhierarchy. */
4654 if ((parent->use_hierarchy) ||
c0ff4b85 4655 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4656 cgroup_unlock();
4657 return -EINVAL;
4658 }
c0ff4b85 4659 memcg->oom_kill_disable = val;
4d845ebf 4660 if (!val)
c0ff4b85 4661 memcg_oom_recover(memcg);
3c11ecf4
KH
4662 cgroup_unlock();
4663 return 0;
4664}
4665
406eb0c9
YH
4666#ifdef CONFIG_NUMA
4667static const struct file_operations mem_control_numa_stat_file_operations = {
4668 .read = seq_read,
4669 .llseek = seq_lseek,
4670 .release = single_release,
4671};
4672
4673static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4674{
4675 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4676
4677 file->f_op = &mem_control_numa_stat_file_operations;
4678 return single_open(file, mem_control_numa_stat_show, cont);
4679}
4680#endif /* CONFIG_NUMA */
4681
e5671dfa
GC
4682#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4683static u64 kmem_limit_independent_read(struct cgroup *cgroup, struct cftype *cft)
4684{
4685 return mem_cgroup_from_cont(cgroup)->kmem_independent_accounting;
4686}
4687
4688static int kmem_limit_independent_write(struct cgroup *cgroup, struct cftype *cft,
4689 u64 val)
4690{
4691 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
4692 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4693
4694 val = !!val;
4695
4696 /*
4697 * This follows the same hierarchy restrictions than
4698 * mem_cgroup_hierarchy_write()
4699 */
4700 if (!parent || !parent->use_hierarchy) {
4701 if (list_empty(&cgroup->children))
4702 memcg->kmem_independent_accounting = val;
4703 else
4704 return -EBUSY;
4705 }
4706 else
4707 return -EINVAL;
4708
4709 return 0;
4710}
4711static struct cftype kmem_cgroup_files[] = {
4712 {
4713 .name = "independent_kmem_limit",
4714 .read_u64 = kmem_limit_independent_read,
4715 .write_u64 = kmem_limit_independent_write,
4716 },
4717 {
4718 .name = "kmem.usage_in_bytes",
4719 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4720 .read_u64 = mem_cgroup_read,
4721 },
4722 {
4723 .name = "kmem.limit_in_bytes",
4724 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4725 .read_u64 = mem_cgroup_read,
4726 },
4727};
4728
4729static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4730{
4731 int ret = 0;
4732
4733 ret = cgroup_add_files(cont, ss, kmem_cgroup_files,
4734 ARRAY_SIZE(kmem_cgroup_files));
4735 return ret;
4736};
4737
4738#else
4739static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4740{
4741 return 0;
4742}
4743#endif
4744
8cdea7c0
BS
4745static struct cftype mem_cgroup_files[] = {
4746 {
0eea1030 4747 .name = "usage_in_bytes",
8c7c6e34 4748 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4749 .read_u64 = mem_cgroup_read,
9490ff27
KH
4750 .register_event = mem_cgroup_usage_register_event,
4751 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4752 },
c84872e1
PE
4753 {
4754 .name = "max_usage_in_bytes",
8c7c6e34 4755 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4756 .trigger = mem_cgroup_reset,
c84872e1
PE
4757 .read_u64 = mem_cgroup_read,
4758 },
8cdea7c0 4759 {
0eea1030 4760 .name = "limit_in_bytes",
8c7c6e34 4761 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4762 .write_string = mem_cgroup_write,
2c3daa72 4763 .read_u64 = mem_cgroup_read,
8cdea7c0 4764 },
296c81d8
BS
4765 {
4766 .name = "soft_limit_in_bytes",
4767 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4768 .write_string = mem_cgroup_write,
4769 .read_u64 = mem_cgroup_read,
4770 },
8cdea7c0
BS
4771 {
4772 .name = "failcnt",
8c7c6e34 4773 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4774 .trigger = mem_cgroup_reset,
2c3daa72 4775 .read_u64 = mem_cgroup_read,
8cdea7c0 4776 },
d2ceb9b7
KH
4777 {
4778 .name = "stat",
c64745cf 4779 .read_map = mem_control_stat_show,
d2ceb9b7 4780 },
c1e862c1
KH
4781 {
4782 .name = "force_empty",
4783 .trigger = mem_cgroup_force_empty_write,
4784 },
18f59ea7
BS
4785 {
4786 .name = "use_hierarchy",
4787 .write_u64 = mem_cgroup_hierarchy_write,
4788 .read_u64 = mem_cgroup_hierarchy_read,
4789 },
a7885eb8
KM
4790 {
4791 .name = "swappiness",
4792 .read_u64 = mem_cgroup_swappiness_read,
4793 .write_u64 = mem_cgroup_swappiness_write,
4794 },
7dc74be0
DN
4795 {
4796 .name = "move_charge_at_immigrate",
4797 .read_u64 = mem_cgroup_move_charge_read,
4798 .write_u64 = mem_cgroup_move_charge_write,
4799 },
9490ff27
KH
4800 {
4801 .name = "oom_control",
3c11ecf4
KH
4802 .read_map = mem_cgroup_oom_control_read,
4803 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4804 .register_event = mem_cgroup_oom_register_event,
4805 .unregister_event = mem_cgroup_oom_unregister_event,
4806 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4807 },
406eb0c9
YH
4808#ifdef CONFIG_NUMA
4809 {
4810 .name = "numa_stat",
4811 .open = mem_control_numa_stat_open,
89577127 4812 .mode = S_IRUGO,
406eb0c9
YH
4813 },
4814#endif
8cdea7c0
BS
4815};
4816
8c7c6e34
KH
4817#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4818static struct cftype memsw_cgroup_files[] = {
4819 {
4820 .name = "memsw.usage_in_bytes",
4821 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4822 .read_u64 = mem_cgroup_read,
9490ff27
KH
4823 .register_event = mem_cgroup_usage_register_event,
4824 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4825 },
4826 {
4827 .name = "memsw.max_usage_in_bytes",
4828 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4829 .trigger = mem_cgroup_reset,
4830 .read_u64 = mem_cgroup_read,
4831 },
4832 {
4833 .name = "memsw.limit_in_bytes",
4834 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4835 .write_string = mem_cgroup_write,
4836 .read_u64 = mem_cgroup_read,
4837 },
4838 {
4839 .name = "memsw.failcnt",
4840 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4841 .trigger = mem_cgroup_reset,
4842 .read_u64 = mem_cgroup_read,
4843 },
4844};
4845
4846static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4847{
4848 if (!do_swap_account)
4849 return 0;
4850 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4851 ARRAY_SIZE(memsw_cgroup_files));
4852};
4853#else
4854static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4855{
4856 return 0;
4857}
4858#endif
4859
c0ff4b85 4860static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4861{
4862 struct mem_cgroup_per_node *pn;
1ecaab2b 4863 struct mem_cgroup_per_zone *mz;
b69408e8 4864 enum lru_list l;
41e3355d 4865 int zone, tmp = node;
1ecaab2b
KH
4866 /*
4867 * This routine is called against possible nodes.
4868 * But it's BUG to call kmalloc() against offline node.
4869 *
4870 * TODO: this routine can waste much memory for nodes which will
4871 * never be onlined. It's better to use memory hotplug callback
4872 * function.
4873 */
41e3355d
KH
4874 if (!node_state(node, N_NORMAL_MEMORY))
4875 tmp = -1;
17295c88 4876 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4877 if (!pn)
4878 return 1;
1ecaab2b 4879
1ecaab2b
KH
4880 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4881 mz = &pn->zoneinfo[zone];
b69408e8
CL
4882 for_each_lru(l)
4883 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4884 mz->usage_in_excess = 0;
4e416953 4885 mz->on_tree = false;
c0ff4b85 4886 mz->mem = memcg;
1ecaab2b 4887 }
0a619e58 4888 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4889 return 0;
4890}
4891
c0ff4b85 4892static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4893{
c0ff4b85 4894 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4895}
4896
33327948
KH
4897static struct mem_cgroup *mem_cgroup_alloc(void)
4898{
4899 struct mem_cgroup *mem;
c62b1a3b 4900 int size = sizeof(struct mem_cgroup);
33327948 4901
c62b1a3b 4902 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4903 if (size < PAGE_SIZE)
17295c88 4904 mem = kzalloc(size, GFP_KERNEL);
33327948 4905 else
17295c88 4906 mem = vzalloc(size);
33327948 4907
e7bbcdf3
DC
4908 if (!mem)
4909 return NULL;
4910
c62b1a3b 4911 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4912 if (!mem->stat)
4913 goto out_free;
711d3d2c 4914 spin_lock_init(&mem->pcp_counter_lock);
33327948 4915 return mem;
d2e61b8d
DC
4916
4917out_free:
4918 if (size < PAGE_SIZE)
4919 kfree(mem);
4920 else
4921 vfree(mem);
4922 return NULL;
33327948
KH
4923}
4924
8c7c6e34
KH
4925/*
4926 * At destroying mem_cgroup, references from swap_cgroup can remain.
4927 * (scanning all at force_empty is too costly...)
4928 *
4929 * Instead of clearing all references at force_empty, we remember
4930 * the number of reference from swap_cgroup and free mem_cgroup when
4931 * it goes down to 0.
4932 *
8c7c6e34
KH
4933 * Removal of cgroup itself succeeds regardless of refs from swap.
4934 */
4935
c0ff4b85 4936static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4937{
08e552c6
KH
4938 int node;
4939
c0ff4b85
R
4940 mem_cgroup_remove_from_trees(memcg);
4941 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4942
08e552c6 4943 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4944 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4945
c0ff4b85 4946 free_percpu(memcg->stat);
c62b1a3b 4947 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
c0ff4b85 4948 kfree(memcg);
33327948 4949 else
c0ff4b85 4950 vfree(memcg);
33327948
KH
4951}
4952
c0ff4b85 4953static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4954{
c0ff4b85 4955 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4956}
4957
c0ff4b85 4958static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4959{
c0ff4b85
R
4960 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4961 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4962 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4963 if (parent)
4964 mem_cgroup_put(parent);
4965 }
8c7c6e34
KH
4966}
4967
c0ff4b85 4968static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4969{
c0ff4b85 4970 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4971}
4972
7bcc1bb1
DN
4973/*
4974 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4975 */
e1aab161 4976struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4977{
c0ff4b85 4978 if (!memcg->res.parent)
7bcc1bb1 4979 return NULL;
c0ff4b85 4980 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4981}
e1aab161 4982EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4983
c077719b
KH
4984#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4985static void __init enable_swap_cgroup(void)
4986{
f8d66542 4987 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4988 do_swap_account = 1;
4989}
4990#else
4991static void __init enable_swap_cgroup(void)
4992{
4993}
4994#endif
4995
f64c3f54
BS
4996static int mem_cgroup_soft_limit_tree_init(void)
4997{
4998 struct mem_cgroup_tree_per_node *rtpn;
4999 struct mem_cgroup_tree_per_zone *rtpz;
5000 int tmp, node, zone;
5001
5002 for_each_node_state(node, N_POSSIBLE) {
5003 tmp = node;
5004 if (!node_state(node, N_NORMAL_MEMORY))
5005 tmp = -1;
5006 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5007 if (!rtpn)
5008 return 1;
5009
5010 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5011
5012 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5013 rtpz = &rtpn->rb_tree_per_zone[zone];
5014 rtpz->rb_root = RB_ROOT;
5015 spin_lock_init(&rtpz->lock);
5016 }
5017 }
5018 return 0;
5019}
5020
0eb253e2 5021static struct cgroup_subsys_state * __ref
8cdea7c0
BS
5022mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5023{
c0ff4b85 5024 struct mem_cgroup *memcg, *parent;
04046e1a 5025 long error = -ENOMEM;
6d12e2d8 5026 int node;
8cdea7c0 5027
c0ff4b85
R
5028 memcg = mem_cgroup_alloc();
5029 if (!memcg)
04046e1a 5030 return ERR_PTR(error);
78fb7466 5031
6d12e2d8 5032 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 5033 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5034 goto free_out;
f64c3f54 5035
c077719b 5036 /* root ? */
28dbc4b6 5037 if (cont->parent == NULL) {
cdec2e42 5038 int cpu;
c077719b 5039 enable_swap_cgroup();
28dbc4b6 5040 parent = NULL;
c0ff4b85 5041 root_mem_cgroup = memcg;
f64c3f54
BS
5042 if (mem_cgroup_soft_limit_tree_init())
5043 goto free_out;
cdec2e42
KH
5044 for_each_possible_cpu(cpu) {
5045 struct memcg_stock_pcp *stock =
5046 &per_cpu(memcg_stock, cpu);
5047 INIT_WORK(&stock->work, drain_local_stock);
5048 }
711d3d2c 5049 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5050 } else {
28dbc4b6 5051 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
5052 memcg->use_hierarchy = parent->use_hierarchy;
5053 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5054 }
28dbc4b6 5055
18f59ea7 5056 if (parent && parent->use_hierarchy) {
c0ff4b85
R
5057 res_counter_init(&memcg->res, &parent->res);
5058 res_counter_init(&memcg->memsw, &parent->memsw);
e5671dfa 5059 res_counter_init(&memcg->kmem, &parent->kmem);
7bcc1bb1
DN
5060 /*
5061 * We increment refcnt of the parent to ensure that we can
5062 * safely access it on res_counter_charge/uncharge.
5063 * This refcnt will be decremented when freeing this
5064 * mem_cgroup(see mem_cgroup_put).
5065 */
5066 mem_cgroup_get(parent);
18f59ea7 5067 } else {
c0ff4b85
R
5068 res_counter_init(&memcg->res, NULL);
5069 res_counter_init(&memcg->memsw, NULL);
e5671dfa 5070 res_counter_init(&memcg->kmem, NULL);
18f59ea7 5071 }
c0ff4b85
R
5072 memcg->last_scanned_child = 0;
5073 memcg->last_scanned_node = MAX_NUMNODES;
5074 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5075
a7885eb8 5076 if (parent)
c0ff4b85
R
5077 memcg->swappiness = mem_cgroup_swappiness(parent);
5078 atomic_set(&memcg->refcnt, 1);
5079 memcg->move_charge_at_immigrate = 0;
5080 mutex_init(&memcg->thresholds_lock);
5081 return &memcg->css;
6d12e2d8 5082free_out:
c0ff4b85 5083 __mem_cgroup_free(memcg);
4b3bde4c 5084 root_mem_cgroup = NULL;
04046e1a 5085 return ERR_PTR(error);
8cdea7c0
BS
5086}
5087
ec64f515 5088static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
5089 struct cgroup *cont)
5090{
c0ff4b85 5091 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5092
c0ff4b85 5093 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5094}
5095
8cdea7c0
BS
5096static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5097 struct cgroup *cont)
5098{
c0ff4b85 5099 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5100
c0ff4b85 5101 mem_cgroup_put(memcg);
8cdea7c0
BS
5102}
5103
5104static int mem_cgroup_populate(struct cgroup_subsys *ss,
5105 struct cgroup *cont)
5106{
8c7c6e34
KH
5107 int ret;
5108
5109 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5110 ARRAY_SIZE(mem_cgroup_files));
5111
5112 if (!ret)
5113 ret = register_memsw_files(cont, ss);
e5671dfa
GC
5114
5115 if (!ret)
5116 ret = register_kmem_files(cont, ss);
5117
8c7c6e34 5118 return ret;
8cdea7c0
BS
5119}
5120
02491447 5121#ifdef CONFIG_MMU
7dc74be0 5122/* Handlers for move charge at task migration. */
854ffa8d
DN
5123#define PRECHARGE_COUNT_AT_ONCE 256
5124static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5125{
854ffa8d
DN
5126 int ret = 0;
5127 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5128 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5129
c0ff4b85 5130 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5131 mc.precharge += count;
5132 /* we don't need css_get for root */
5133 return ret;
5134 }
5135 /* try to charge at once */
5136 if (count > 1) {
5137 struct res_counter *dummy;
5138 /*
c0ff4b85 5139 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5140 * by cgroup_lock_live_cgroup() that it is not removed and we
5141 * are still under the same cgroup_mutex. So we can postpone
5142 * css_get().
5143 */
c0ff4b85 5144 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5145 goto one_by_one;
c0ff4b85 5146 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5147 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5148 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5149 goto one_by_one;
5150 }
5151 mc.precharge += count;
854ffa8d
DN
5152 return ret;
5153 }
5154one_by_one:
5155 /* fall back to one by one charge */
5156 while (count--) {
5157 if (signal_pending(current)) {
5158 ret = -EINTR;
5159 break;
5160 }
5161 if (!batch_count--) {
5162 batch_count = PRECHARGE_COUNT_AT_ONCE;
5163 cond_resched();
5164 }
c0ff4b85
R
5165 ret = __mem_cgroup_try_charge(NULL,
5166 GFP_KERNEL, 1, &memcg, false);
5167 if (ret || !memcg)
854ffa8d
DN
5168 /* mem_cgroup_clear_mc() will do uncharge later */
5169 return -ENOMEM;
5170 mc.precharge++;
5171 }
4ffef5fe
DN
5172 return ret;
5173}
5174
5175/**
5176 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5177 * @vma: the vma the pte to be checked belongs
5178 * @addr: the address corresponding to the pte to be checked
5179 * @ptent: the pte to be checked
02491447 5180 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5181 *
5182 * Returns
5183 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5184 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5185 * move charge. if @target is not NULL, the page is stored in target->page
5186 * with extra refcnt got(Callers should handle it).
02491447
DN
5187 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5188 * target for charge migration. if @target is not NULL, the entry is stored
5189 * in target->ent.
4ffef5fe
DN
5190 *
5191 * Called with pte lock held.
5192 */
4ffef5fe
DN
5193union mc_target {
5194 struct page *page;
02491447 5195 swp_entry_t ent;
4ffef5fe
DN
5196};
5197
4ffef5fe
DN
5198enum mc_target_type {
5199 MC_TARGET_NONE, /* not used */
5200 MC_TARGET_PAGE,
02491447 5201 MC_TARGET_SWAP,
4ffef5fe
DN
5202};
5203
90254a65
DN
5204static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5205 unsigned long addr, pte_t ptent)
4ffef5fe 5206{
90254a65 5207 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5208
90254a65
DN
5209 if (!page || !page_mapped(page))
5210 return NULL;
5211 if (PageAnon(page)) {
5212 /* we don't move shared anon */
5213 if (!move_anon() || page_mapcount(page) > 2)
5214 return NULL;
87946a72
DN
5215 } else if (!move_file())
5216 /* we ignore mapcount for file pages */
90254a65
DN
5217 return NULL;
5218 if (!get_page_unless_zero(page))
5219 return NULL;
5220
5221 return page;
5222}
5223
5224static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5225 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5226{
5227 int usage_count;
5228 struct page *page = NULL;
5229 swp_entry_t ent = pte_to_swp_entry(ptent);
5230
5231 if (!move_anon() || non_swap_entry(ent))
5232 return NULL;
5233 usage_count = mem_cgroup_count_swap_user(ent, &page);
5234 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5235 if (page)
5236 put_page(page);
90254a65 5237 return NULL;
02491447 5238 }
90254a65
DN
5239 if (do_swap_account)
5240 entry->val = ent.val;
5241
5242 return page;
5243}
5244
87946a72
DN
5245static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5246 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5247{
5248 struct page *page = NULL;
5249 struct inode *inode;
5250 struct address_space *mapping;
5251 pgoff_t pgoff;
5252
5253 if (!vma->vm_file) /* anonymous vma */
5254 return NULL;
5255 if (!move_file())
5256 return NULL;
5257
5258 inode = vma->vm_file->f_path.dentry->d_inode;
5259 mapping = vma->vm_file->f_mapping;
5260 if (pte_none(ptent))
5261 pgoff = linear_page_index(vma, addr);
5262 else /* pte_file(ptent) is true */
5263 pgoff = pte_to_pgoff(ptent);
5264
5265 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5266 page = find_get_page(mapping, pgoff);
5267
5268#ifdef CONFIG_SWAP
5269 /* shmem/tmpfs may report page out on swap: account for that too. */
5270 if (radix_tree_exceptional_entry(page)) {
5271 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5272 if (do_swap_account)
aa3b1895
HD
5273 *entry = swap;
5274 page = find_get_page(&swapper_space, swap.val);
87946a72 5275 }
aa3b1895 5276#endif
87946a72
DN
5277 return page;
5278}
5279
90254a65
DN
5280static int is_target_pte_for_mc(struct vm_area_struct *vma,
5281 unsigned long addr, pte_t ptent, union mc_target *target)
5282{
5283 struct page *page = NULL;
5284 struct page_cgroup *pc;
5285 int ret = 0;
5286 swp_entry_t ent = { .val = 0 };
5287
5288 if (pte_present(ptent))
5289 page = mc_handle_present_pte(vma, addr, ptent);
5290 else if (is_swap_pte(ptent))
5291 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5292 else if (pte_none(ptent) || pte_file(ptent))
5293 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5294
5295 if (!page && !ent.val)
5296 return 0;
02491447
DN
5297 if (page) {
5298 pc = lookup_page_cgroup(page);
5299 /*
5300 * Do only loose check w/o page_cgroup lock.
5301 * mem_cgroup_move_account() checks the pc is valid or not under
5302 * the lock.
5303 */
5304 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5305 ret = MC_TARGET_PAGE;
5306 if (target)
5307 target->page = page;
5308 }
5309 if (!ret || !target)
5310 put_page(page);
5311 }
90254a65
DN
5312 /* There is a swap entry and a page doesn't exist or isn't charged */
5313 if (ent.val && !ret &&
7f0f1546
KH
5314 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5315 ret = MC_TARGET_SWAP;
5316 if (target)
5317 target->ent = ent;
4ffef5fe 5318 }
4ffef5fe
DN
5319 return ret;
5320}
5321
5322static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5323 unsigned long addr, unsigned long end,
5324 struct mm_walk *walk)
5325{
5326 struct vm_area_struct *vma = walk->private;
5327 pte_t *pte;
5328 spinlock_t *ptl;
5329
03319327
DH
5330 split_huge_page_pmd(walk->mm, pmd);
5331
4ffef5fe
DN
5332 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5333 for (; addr != end; pte++, addr += PAGE_SIZE)
5334 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5335 mc.precharge++; /* increment precharge temporarily */
5336 pte_unmap_unlock(pte - 1, ptl);
5337 cond_resched();
5338
7dc74be0
DN
5339 return 0;
5340}
5341
4ffef5fe
DN
5342static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5343{
5344 unsigned long precharge;
5345 struct vm_area_struct *vma;
5346
dfe076b0 5347 down_read(&mm->mmap_sem);
4ffef5fe
DN
5348 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5349 struct mm_walk mem_cgroup_count_precharge_walk = {
5350 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5351 .mm = mm,
5352 .private = vma,
5353 };
5354 if (is_vm_hugetlb_page(vma))
5355 continue;
4ffef5fe
DN
5356 walk_page_range(vma->vm_start, vma->vm_end,
5357 &mem_cgroup_count_precharge_walk);
5358 }
dfe076b0 5359 up_read(&mm->mmap_sem);
4ffef5fe
DN
5360
5361 precharge = mc.precharge;
5362 mc.precharge = 0;
5363
5364 return precharge;
5365}
5366
4ffef5fe
DN
5367static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5368{
dfe076b0
DN
5369 unsigned long precharge = mem_cgroup_count_precharge(mm);
5370
5371 VM_BUG_ON(mc.moving_task);
5372 mc.moving_task = current;
5373 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5374}
5375
dfe076b0
DN
5376/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5377static void __mem_cgroup_clear_mc(void)
4ffef5fe 5378{
2bd9bb20
KH
5379 struct mem_cgroup *from = mc.from;
5380 struct mem_cgroup *to = mc.to;
5381
4ffef5fe 5382 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5383 if (mc.precharge) {
5384 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5385 mc.precharge = 0;
5386 }
5387 /*
5388 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5389 * we must uncharge here.
5390 */
5391 if (mc.moved_charge) {
5392 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5393 mc.moved_charge = 0;
4ffef5fe 5394 }
483c30b5
DN
5395 /* we must fixup refcnts and charges */
5396 if (mc.moved_swap) {
483c30b5
DN
5397 /* uncharge swap account from the old cgroup */
5398 if (!mem_cgroup_is_root(mc.from))
5399 res_counter_uncharge(&mc.from->memsw,
5400 PAGE_SIZE * mc.moved_swap);
5401 __mem_cgroup_put(mc.from, mc.moved_swap);
5402
5403 if (!mem_cgroup_is_root(mc.to)) {
5404 /*
5405 * we charged both to->res and to->memsw, so we should
5406 * uncharge to->res.
5407 */
5408 res_counter_uncharge(&mc.to->res,
5409 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5410 }
5411 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5412 mc.moved_swap = 0;
5413 }
dfe076b0
DN
5414 memcg_oom_recover(from);
5415 memcg_oom_recover(to);
5416 wake_up_all(&mc.waitq);
5417}
5418
5419static void mem_cgroup_clear_mc(void)
5420{
5421 struct mem_cgroup *from = mc.from;
5422
5423 /*
5424 * we must clear moving_task before waking up waiters at the end of
5425 * task migration.
5426 */
5427 mc.moving_task = NULL;
5428 __mem_cgroup_clear_mc();
2bd9bb20 5429 spin_lock(&mc.lock);
4ffef5fe
DN
5430 mc.from = NULL;
5431 mc.to = NULL;
2bd9bb20 5432 spin_unlock(&mc.lock);
32047e2a 5433 mem_cgroup_end_move(from);
4ffef5fe
DN
5434}
5435
7dc74be0
DN
5436static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5437 struct cgroup *cgroup,
f780bdb7 5438 struct task_struct *p)
7dc74be0
DN
5439{
5440 int ret = 0;
c0ff4b85 5441 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5442
c0ff4b85 5443 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5444 struct mm_struct *mm;
5445 struct mem_cgroup *from = mem_cgroup_from_task(p);
5446
c0ff4b85 5447 VM_BUG_ON(from == memcg);
7dc74be0
DN
5448
5449 mm = get_task_mm(p);
5450 if (!mm)
5451 return 0;
7dc74be0 5452 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5453 if (mm->owner == p) {
5454 VM_BUG_ON(mc.from);
5455 VM_BUG_ON(mc.to);
5456 VM_BUG_ON(mc.precharge);
854ffa8d 5457 VM_BUG_ON(mc.moved_charge);
483c30b5 5458 VM_BUG_ON(mc.moved_swap);
32047e2a 5459 mem_cgroup_start_move(from);
2bd9bb20 5460 spin_lock(&mc.lock);
4ffef5fe 5461 mc.from = from;
c0ff4b85 5462 mc.to = memcg;
2bd9bb20 5463 spin_unlock(&mc.lock);
dfe076b0 5464 /* We set mc.moving_task later */
4ffef5fe
DN
5465
5466 ret = mem_cgroup_precharge_mc(mm);
5467 if (ret)
5468 mem_cgroup_clear_mc();
dfe076b0
DN
5469 }
5470 mmput(mm);
7dc74be0
DN
5471 }
5472 return ret;
5473}
5474
5475static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5476 struct cgroup *cgroup,
f780bdb7 5477 struct task_struct *p)
7dc74be0 5478{
4ffef5fe 5479 mem_cgroup_clear_mc();
7dc74be0
DN
5480}
5481
4ffef5fe
DN
5482static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5483 unsigned long addr, unsigned long end,
5484 struct mm_walk *walk)
7dc74be0 5485{
4ffef5fe
DN
5486 int ret = 0;
5487 struct vm_area_struct *vma = walk->private;
5488 pte_t *pte;
5489 spinlock_t *ptl;
5490
03319327 5491 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5492retry:
5493 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5494 for (; addr != end; addr += PAGE_SIZE) {
5495 pte_t ptent = *(pte++);
5496 union mc_target target;
5497 int type;
5498 struct page *page;
5499 struct page_cgroup *pc;
02491447 5500 swp_entry_t ent;
4ffef5fe
DN
5501
5502 if (!mc.precharge)
5503 break;
5504
5505 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5506 switch (type) {
5507 case MC_TARGET_PAGE:
5508 page = target.page;
5509 if (isolate_lru_page(page))
5510 goto put;
5511 pc = lookup_page_cgroup(page);
7ec99d62
JW
5512 if (!mem_cgroup_move_account(page, 1, pc,
5513 mc.from, mc.to, false)) {
4ffef5fe 5514 mc.precharge--;
854ffa8d
DN
5515 /* we uncharge from mc.from later. */
5516 mc.moved_charge++;
4ffef5fe
DN
5517 }
5518 putback_lru_page(page);
5519put: /* is_target_pte_for_mc() gets the page */
5520 put_page(page);
5521 break;
02491447
DN
5522 case MC_TARGET_SWAP:
5523 ent = target.ent;
483c30b5
DN
5524 if (!mem_cgroup_move_swap_account(ent,
5525 mc.from, mc.to, false)) {
02491447 5526 mc.precharge--;
483c30b5
DN
5527 /* we fixup refcnts and charges later. */
5528 mc.moved_swap++;
5529 }
02491447 5530 break;
4ffef5fe
DN
5531 default:
5532 break;
5533 }
5534 }
5535 pte_unmap_unlock(pte - 1, ptl);
5536 cond_resched();
5537
5538 if (addr != end) {
5539 /*
5540 * We have consumed all precharges we got in can_attach().
5541 * We try charge one by one, but don't do any additional
5542 * charges to mc.to if we have failed in charge once in attach()
5543 * phase.
5544 */
854ffa8d 5545 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5546 if (!ret)
5547 goto retry;
5548 }
5549
5550 return ret;
5551}
5552
5553static void mem_cgroup_move_charge(struct mm_struct *mm)
5554{
5555 struct vm_area_struct *vma;
5556
5557 lru_add_drain_all();
dfe076b0
DN
5558retry:
5559 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5560 /*
5561 * Someone who are holding the mmap_sem might be waiting in
5562 * waitq. So we cancel all extra charges, wake up all waiters,
5563 * and retry. Because we cancel precharges, we might not be able
5564 * to move enough charges, but moving charge is a best-effort
5565 * feature anyway, so it wouldn't be a big problem.
5566 */
5567 __mem_cgroup_clear_mc();
5568 cond_resched();
5569 goto retry;
5570 }
4ffef5fe
DN
5571 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5572 int ret;
5573 struct mm_walk mem_cgroup_move_charge_walk = {
5574 .pmd_entry = mem_cgroup_move_charge_pte_range,
5575 .mm = mm,
5576 .private = vma,
5577 };
5578 if (is_vm_hugetlb_page(vma))
5579 continue;
4ffef5fe
DN
5580 ret = walk_page_range(vma->vm_start, vma->vm_end,
5581 &mem_cgroup_move_charge_walk);
5582 if (ret)
5583 /*
5584 * means we have consumed all precharges and failed in
5585 * doing additional charge. Just abandon here.
5586 */
5587 break;
5588 }
dfe076b0 5589 up_read(&mm->mmap_sem);
7dc74be0
DN
5590}
5591
67e465a7
BS
5592static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5593 struct cgroup *cont,
5594 struct cgroup *old_cont,
f780bdb7 5595 struct task_struct *p)
67e465a7 5596{
a433658c 5597 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5598
dfe076b0 5599 if (mm) {
a433658c
KM
5600 if (mc.to)
5601 mem_cgroup_move_charge(mm);
5602 put_swap_token(mm);
dfe076b0
DN
5603 mmput(mm);
5604 }
a433658c
KM
5605 if (mc.to)
5606 mem_cgroup_clear_mc();
67e465a7 5607}
5cfb80a7
DN
5608#else /* !CONFIG_MMU */
5609static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5610 struct cgroup *cgroup,
f780bdb7 5611 struct task_struct *p)
5cfb80a7
DN
5612{
5613 return 0;
5614}
5615static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5616 struct cgroup *cgroup,
f780bdb7 5617 struct task_struct *p)
5cfb80a7
DN
5618{
5619}
5620static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5621 struct cgroup *cont,
5622 struct cgroup *old_cont,
f780bdb7 5623 struct task_struct *p)
5cfb80a7
DN
5624{
5625}
5626#endif
67e465a7 5627
8cdea7c0
BS
5628struct cgroup_subsys mem_cgroup_subsys = {
5629 .name = "memory",
5630 .subsys_id = mem_cgroup_subsys_id,
5631 .create = mem_cgroup_create,
df878fb0 5632 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5633 .destroy = mem_cgroup_destroy,
5634 .populate = mem_cgroup_populate,
7dc74be0
DN
5635 .can_attach = mem_cgroup_can_attach,
5636 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5637 .attach = mem_cgroup_move_task,
6d12e2d8 5638 .early_init = 0,
04046e1a 5639 .use_id = 1,
8cdea7c0 5640};
c077719b
KH
5641
5642#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5643static int __init enable_swap_account(char *s)
5644{
5645 /* consider enabled if no parameter or 1 is given */
a2c8990a 5646 if (!strcmp(s, "1"))
a42c390c 5647 really_do_swap_account = 1;
a2c8990a 5648 else if (!strcmp(s, "0"))
a42c390c
MH
5649 really_do_swap_account = 0;
5650 return 1;
5651}
a2c8990a 5652__setup("swapaccount=", enable_swap_account);
c077719b 5653
c077719b 5654#endif