mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
[linux-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
eccb52e7 86bool cgroup_memory_noswap __read_mostly;
c077719b 87#else
eccb52e7 88#define cgroup_memory_noswap 1
2d1c4980 89#endif
c077719b 90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
eccb52e7 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
217bc319
KH
202enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 204 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
207 NR_CHARGE_TYPE,
208};
209
8c7c6e34 210/* for encoding cft->private value on file */
86ae53e1
GC
211enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
510fc4e1 215 _KMEM,
d55f90bf 216 _TCP,
86ae53e1
GC
217};
218
a0db00fc
KS
219#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 221#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
222/* Used for OOM nofiier */
223#define OOM_CONTROL (0)
8c7c6e34 224
b05706f1
KT
225/*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230#define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235#define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
7775face
TH
240static inline bool should_force_charge(void)
241{
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244}
245
70ddf637
AV
246/* Some nice accessors for the vmpressure. */
247struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248{
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252}
253
254struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255{
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257}
258
84c07d11 259#ifdef CONFIG_MEMCG_KMEM
55007d84 260/*
f7ce3190 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
55007d84 267 *
dbcf73e2
VD
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
55007d84 270 */
dbcf73e2
VD
271static DEFINE_IDA(memcg_cache_ida);
272int memcg_nr_cache_ids;
749c5415 273
05257a1a
VD
274/* Protects memcg_nr_cache_ids */
275static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277void memcg_get_cache_ids(void)
278{
279 down_read(&memcg_cache_ids_sem);
280}
281
282void memcg_put_cache_ids(void)
283{
284 up_read(&memcg_cache_ids_sem);
285}
286
55007d84
GC
287/*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
b8627835 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
297 * increase ours as well if it increases.
298 */
299#define MEMCG_CACHES_MIN_SIZE 4
b8627835 300#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 301
d7f25f8a
GC
302/*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
ef12947c 308DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 309EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 310
17cc4dfe 311struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 312#endif
17cc4dfe 313
0a4465d3
KT
314static int memcg_shrinker_map_size;
315static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318{
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320}
321
322static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324{
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
86daf94e 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350}
351
352static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353{
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368}
369
370static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371{
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
86daf94e 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392}
393
394int memcg_expand_shrinker_maps(int new_id)
395{
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 414 goto unlock;
75866af6 415 }
0a4465d3
KT
416 }
417unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422}
fae91d6d
KT
423
424void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425{
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
fae91d6d
KT
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436}
437
ad7fa852
TH
438/**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
ad7fa852
TH
448 */
449struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450{
451 struct mem_cgroup *memcg;
452
ad7fa852
TH
453 memcg = page->mem_cgroup;
454
9e10a130 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
456 memcg = root_mem_cgroup;
457
ad7fa852
TH
458 return &memcg->css;
459}
460
2fc04524
VD
461/**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474ino_t page_cgroup_ino(struct page *page)
475{
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
221ec5c0 480 if (PageSlab(page) && !PageTail(page))
4d96ba35
RG
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490}
491
ef8f2327
MG
492static struct mem_cgroup_per_node *
493mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 494{
97a6c37b 495 int nid = page_to_nid(page);
f64c3f54 496
ef8f2327 497 return memcg->nodeinfo[nid];
f64c3f54
BS
498}
499
ef8f2327
MG
500static struct mem_cgroup_tree_per_node *
501soft_limit_tree_node(int nid)
bb4cc1a8 502{
ef8f2327 503 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
504}
505
ef8f2327 506static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
507soft_limit_tree_from_page(struct page *page)
508{
509 int nid = page_to_nid(page);
bb4cc1a8 510
ef8f2327 511 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
512}
513
ef8f2327
MG
514static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 516 unsigned long new_usage_in_excess)
bb4cc1a8
AM
517{
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
ef8f2327 520 struct mem_cgroup_per_node *mz_node;
fa90b2fd 521 bool rightmost = true;
bb4cc1a8
AM
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
ef8f2327 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 532 tree_node);
fa90b2fd 533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 534 p = &(*p)->rb_left;
fa90b2fd
DB
535 rightmost = false;
536 }
537
bb4cc1a8
AM
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
fa90b2fd
DB
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
bb4cc1a8
AM
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552}
553
ef8f2327
MG
554static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
556{
557 if (!mz->on_tree)
558 return;
fa90b2fd
DB
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
bb4cc1a8
AM
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565}
566
ef8f2327
MG
567static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 569{
0a31bc97
JW
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 573 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 574 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
575}
576
3e32cb2e
JW
577static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578{
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587}
bb4cc1a8
AM
588
589static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590{
3e32cb2e 591 unsigned long excess;
ef8f2327
MG
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 594
e231875b 595 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
596 if (!mctz)
597 return;
bb4cc1a8
AM
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 603 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 604 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
0a31bc97
JW
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
613 /* if on-tree, remove it */
614 if (mz->on_tree)
cf2c8127 615 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
cf2c8127 620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 621 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
622 }
623 }
624}
625
626static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627{
ef8f2327
MG
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
bb4cc1a8 631
e231875b 632 for_each_node(nid) {
ef8f2327
MG
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
637 }
638}
639
ef8f2327
MG
640static struct mem_cgroup_per_node *
641__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 642{
ef8f2327 643 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
644
645retry:
646 mz = NULL;
fa90b2fd 647 if (!mctz->rb_rightmost)
bb4cc1a8
AM
648 goto done; /* Nothing to reclaim from */
649
fa90b2fd
DB
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
cf2c8127 657 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 658 if (!soft_limit_excess(mz->memcg) ||
8965aa28 659 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
660 goto retry;
661done:
662 return mz;
663}
664
ef8f2327
MG
665static struct mem_cgroup_per_node *
666mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 667{
ef8f2327 668 struct mem_cgroup_per_node *mz;
bb4cc1a8 669
0a31bc97 670 spin_lock_irq(&mctz->lock);
bb4cc1a8 671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 672 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
673 return mz;
674}
675
db9adbcb
JW
676/**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683{
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
691 struct mem_cgroup *mi;
692
766a4c19
YS
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703}
704
42a30035
JW
705static struct mem_cgroup_per_node *
706parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707{
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714}
715
db9adbcb
JW
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
42a30035 729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 730 struct mem_cgroup_per_node *pn;
42a30035 731 struct mem_cgroup *memcg;
db9adbcb
JW
732 long x;
733
734 /* Update node */
42a30035 735 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 741 memcg = pn->memcg;
db9adbcb
JW
742
743 /* Update memcg */
42a30035 744 __mod_memcg_state(memcg, idx, val);
db9adbcb 745
b4c46484
RG
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
db9adbcb
JW
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
751 struct mem_cgroup_per_node *pi;
752
42a30035
JW
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758}
759
ec9f0238
RG
760void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761{
4f103c63 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
4f103c63 767 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
867e5e1d 773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777}
778
8380ce47
RG
779void mod_memcg_obj_state(void *p, int idx, int val)
780{
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788}
789
db9adbcb
JW
790/**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798{
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
806 struct mem_cgroup *mi;
807
766a4c19
YS
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818}
819
42a30035 820static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 821{
871789d4 822 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
823}
824
42a30035
JW
825static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826{
815744d7
JW
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
42a30035
JW
833}
834
c0ff4b85 835static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 836 struct page *page,
3fba69a5 837 int nr_pages)
d52aa412 838{
e401f176
KH
839 /* pagein of a big page is an event. So, ignore page size */
840 if (nr_pages > 0)
c9019e9b 841 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 842 else {
c9019e9b 843 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
844 nr_pages = -nr_pages; /* for event */
845 }
e401f176 846
871789d4 847 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
848}
849
f53d7ce3
JW
850static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
851 enum mem_cgroup_events_target target)
7a159cc9
JW
852{
853 unsigned long val, next;
854
871789d4
CD
855 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
856 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 857 /* from time_after() in jiffies.h */
6a1a8b80 858 if ((long)(next - val) < 0) {
f53d7ce3
JW
859 switch (target) {
860 case MEM_CGROUP_TARGET_THRESH:
861 next = val + THRESHOLDS_EVENTS_TARGET;
862 break;
bb4cc1a8
AM
863 case MEM_CGROUP_TARGET_SOFTLIMIT:
864 next = val + SOFTLIMIT_EVENTS_TARGET;
865 break;
f53d7ce3
JW
866 default:
867 break;
868 }
871789d4 869 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 870 return true;
7a159cc9 871 }
f53d7ce3 872 return false;
d2265e6f
KH
873}
874
875/*
876 * Check events in order.
877 *
878 */
c0ff4b85 879static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
880{
881 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
882 if (unlikely(mem_cgroup_event_ratelimit(memcg,
883 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 884 bool do_softlimit;
f53d7ce3 885
bb4cc1a8
AM
886 do_softlimit = mem_cgroup_event_ratelimit(memcg,
887 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 888 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
889 if (unlikely(do_softlimit))
890 mem_cgroup_update_tree(memcg, page);
0a31bc97 891 }
d2265e6f
KH
892}
893
cf475ad2 894struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 895{
31a78f23
BS
896 /*
897 * mm_update_next_owner() may clear mm->owner to NULL
898 * if it races with swapoff, page migration, etc.
899 * So this can be called with p == NULL.
900 */
901 if (unlikely(!p))
902 return NULL;
903
073219e9 904 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 905}
33398cf2 906EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 907
d46eb14b
SB
908/**
909 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
910 * @mm: mm from which memcg should be extracted. It can be NULL.
911 *
912 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
913 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
914 * returned.
915 */
916struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 917{
d46eb14b
SB
918 struct mem_cgroup *memcg;
919
920 if (mem_cgroup_disabled())
921 return NULL;
0b7f569e 922
54595fe2
KH
923 rcu_read_lock();
924 do {
6f6acb00
MH
925 /*
926 * Page cache insertions can happen withou an
927 * actual mm context, e.g. during disk probing
928 * on boot, loopback IO, acct() writes etc.
929 */
930 if (unlikely(!mm))
df381975 931 memcg = root_mem_cgroup;
6f6acb00
MH
932 else {
933 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
934 if (unlikely(!memcg))
935 memcg = root_mem_cgroup;
936 }
00d484f3 937 } while (!css_tryget(&memcg->css));
54595fe2 938 rcu_read_unlock();
c0ff4b85 939 return memcg;
54595fe2 940}
d46eb14b
SB
941EXPORT_SYMBOL(get_mem_cgroup_from_mm);
942
f745c6f5
SB
943/**
944 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
945 * @page: page from which memcg should be extracted.
946 *
947 * Obtain a reference on page->memcg and returns it if successful. Otherwise
948 * root_mem_cgroup is returned.
949 */
950struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
951{
952 struct mem_cgroup *memcg = page->mem_cgroup;
953
954 if (mem_cgroup_disabled())
955 return NULL;
956
957 rcu_read_lock();
8965aa28
SB
958 /* Page should not get uncharged and freed memcg under us. */
959 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
960 memcg = root_mem_cgroup;
961 rcu_read_unlock();
962 return memcg;
963}
964EXPORT_SYMBOL(get_mem_cgroup_from_page);
965
d46eb14b
SB
966/**
967 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
968 */
969static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
970{
971 if (unlikely(current->active_memcg)) {
8965aa28 972 struct mem_cgroup *memcg;
d46eb14b
SB
973
974 rcu_read_lock();
8965aa28
SB
975 /* current->active_memcg must hold a ref. */
976 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
977 memcg = root_mem_cgroup;
978 else
d46eb14b
SB
979 memcg = current->active_memcg;
980 rcu_read_unlock();
981 return memcg;
982 }
983 return get_mem_cgroup_from_mm(current->mm);
984}
54595fe2 985
5660048c
JW
986/**
987 * mem_cgroup_iter - iterate over memory cgroup hierarchy
988 * @root: hierarchy root
989 * @prev: previously returned memcg, NULL on first invocation
990 * @reclaim: cookie for shared reclaim walks, NULL for full walks
991 *
992 * Returns references to children of the hierarchy below @root, or
993 * @root itself, or %NULL after a full round-trip.
994 *
995 * Caller must pass the return value in @prev on subsequent
996 * invocations for reference counting, or use mem_cgroup_iter_break()
997 * to cancel a hierarchy walk before the round-trip is complete.
998 *
b213b54f 999 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1000 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1001 * reclaimers operating on the same node and priority.
5660048c 1002 */
694fbc0f 1003struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1004 struct mem_cgroup *prev,
694fbc0f 1005 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1006{
33398cf2 1007 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1008 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1009 struct mem_cgroup *memcg = NULL;
5ac8fb31 1010 struct mem_cgroup *pos = NULL;
711d3d2c 1011
694fbc0f
AM
1012 if (mem_cgroup_disabled())
1013 return NULL;
5660048c 1014
9f3a0d09
JW
1015 if (!root)
1016 root = root_mem_cgroup;
7d74b06f 1017
9f3a0d09 1018 if (prev && !reclaim)
5ac8fb31 1019 pos = prev;
14067bb3 1020
9f3a0d09
JW
1021 if (!root->use_hierarchy && root != root_mem_cgroup) {
1022 if (prev)
5ac8fb31 1023 goto out;
694fbc0f 1024 return root;
9f3a0d09 1025 }
14067bb3 1026
542f85f9 1027 rcu_read_lock();
5f578161 1028
5ac8fb31 1029 if (reclaim) {
ef8f2327 1030 struct mem_cgroup_per_node *mz;
5ac8fb31 1031
ef8f2327 1032 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1033 iter = &mz->iter;
5ac8fb31
JW
1034
1035 if (prev && reclaim->generation != iter->generation)
1036 goto out_unlock;
1037
6df38689 1038 while (1) {
4db0c3c2 1039 pos = READ_ONCE(iter->position);
6df38689
VD
1040 if (!pos || css_tryget(&pos->css))
1041 break;
5ac8fb31 1042 /*
6df38689
VD
1043 * css reference reached zero, so iter->position will
1044 * be cleared by ->css_released. However, we should not
1045 * rely on this happening soon, because ->css_released
1046 * is called from a work queue, and by busy-waiting we
1047 * might block it. So we clear iter->position right
1048 * away.
5ac8fb31 1049 */
6df38689
VD
1050 (void)cmpxchg(&iter->position, pos, NULL);
1051 }
5ac8fb31
JW
1052 }
1053
1054 if (pos)
1055 css = &pos->css;
1056
1057 for (;;) {
1058 css = css_next_descendant_pre(css, &root->css);
1059 if (!css) {
1060 /*
1061 * Reclaimers share the hierarchy walk, and a
1062 * new one might jump in right at the end of
1063 * the hierarchy - make sure they see at least
1064 * one group and restart from the beginning.
1065 */
1066 if (!prev)
1067 continue;
1068 break;
527a5ec9 1069 }
7d74b06f 1070
5ac8fb31
JW
1071 /*
1072 * Verify the css and acquire a reference. The root
1073 * is provided by the caller, so we know it's alive
1074 * and kicking, and don't take an extra reference.
1075 */
1076 memcg = mem_cgroup_from_css(css);
14067bb3 1077
5ac8fb31
JW
1078 if (css == &root->css)
1079 break;
14067bb3 1080
0b8f73e1
JW
1081 if (css_tryget(css))
1082 break;
9f3a0d09 1083
5ac8fb31 1084 memcg = NULL;
9f3a0d09 1085 }
5ac8fb31
JW
1086
1087 if (reclaim) {
5ac8fb31 1088 /*
6df38689
VD
1089 * The position could have already been updated by a competing
1090 * thread, so check that the value hasn't changed since we read
1091 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1092 */
6df38689
VD
1093 (void)cmpxchg(&iter->position, pos, memcg);
1094
5ac8fb31
JW
1095 if (pos)
1096 css_put(&pos->css);
1097
1098 if (!memcg)
1099 iter->generation++;
1100 else if (!prev)
1101 reclaim->generation = iter->generation;
9f3a0d09 1102 }
5ac8fb31 1103
542f85f9
MH
1104out_unlock:
1105 rcu_read_unlock();
5ac8fb31 1106out:
c40046f3
MH
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109
9f3a0d09 1110 return memcg;
14067bb3 1111}
7d74b06f 1112
5660048c
JW
1113/**
1114 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1115 * @root: hierarchy root
1116 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1117 */
1118void mem_cgroup_iter_break(struct mem_cgroup *root,
1119 struct mem_cgroup *prev)
9f3a0d09
JW
1120{
1121 if (!root)
1122 root = root_mem_cgroup;
1123 if (prev && prev != root)
1124 css_put(&prev->css);
1125}
7d74b06f 1126
54a83d6b
MC
1127static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1128 struct mem_cgroup *dead_memcg)
6df38689 1129{
6df38689 1130 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1131 struct mem_cgroup_per_node *mz;
1132 int nid;
6df38689 1133
54a83d6b
MC
1134 for_each_node(nid) {
1135 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1136 iter = &mz->iter;
1137 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1138 }
1139}
1140
54a83d6b
MC
1141static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1142{
1143 struct mem_cgroup *memcg = dead_memcg;
1144 struct mem_cgroup *last;
1145
1146 do {
1147 __invalidate_reclaim_iterators(memcg, dead_memcg);
1148 last = memcg;
1149 } while ((memcg = parent_mem_cgroup(memcg)));
1150
1151 /*
1152 * When cgruop1 non-hierarchy mode is used,
1153 * parent_mem_cgroup() does not walk all the way up to the
1154 * cgroup root (root_mem_cgroup). So we have to handle
1155 * dead_memcg from cgroup root separately.
1156 */
1157 if (last != root_mem_cgroup)
1158 __invalidate_reclaim_iterators(root_mem_cgroup,
1159 dead_memcg);
1160}
1161
7c5f64f8
VD
1162/**
1163 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1164 * @memcg: hierarchy root
1165 * @fn: function to call for each task
1166 * @arg: argument passed to @fn
1167 *
1168 * This function iterates over tasks attached to @memcg or to any of its
1169 * descendants and calls @fn for each task. If @fn returns a non-zero
1170 * value, the function breaks the iteration loop and returns the value.
1171 * Otherwise, it will iterate over all tasks and return 0.
1172 *
1173 * This function must not be called for the root memory cgroup.
1174 */
1175int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1176 int (*fn)(struct task_struct *, void *), void *arg)
1177{
1178 struct mem_cgroup *iter;
1179 int ret = 0;
1180
1181 BUG_ON(memcg == root_mem_cgroup);
1182
1183 for_each_mem_cgroup_tree(iter, memcg) {
1184 struct css_task_iter it;
1185 struct task_struct *task;
1186
f168a9a5 1187 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1188 while (!ret && (task = css_task_iter_next(&it)))
1189 ret = fn(task, arg);
1190 css_task_iter_end(&it);
1191 if (ret) {
1192 mem_cgroup_iter_break(memcg, iter);
1193 break;
1194 }
1195 }
1196 return ret;
1197}
1198
925b7673 1199/**
dfe0e773 1200 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1201 * @page: the page
f144c390 1202 * @pgdat: pgdat of the page
dfe0e773 1203 *
a0b5b414
JW
1204 * This function relies on page->mem_cgroup being stable - see the
1205 * access rules in commit_charge().
925b7673 1206 */
599d0c95 1207struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1208{
ef8f2327 1209 struct mem_cgroup_per_node *mz;
925b7673 1210 struct mem_cgroup *memcg;
bea8c150 1211 struct lruvec *lruvec;
6d12e2d8 1212
bea8c150 1213 if (mem_cgroup_disabled()) {
867e5e1d 1214 lruvec = &pgdat->__lruvec;
bea8c150
HD
1215 goto out;
1216 }
925b7673 1217
1306a85a 1218 memcg = page->mem_cgroup;
7512102c 1219 /*
dfe0e773 1220 * Swapcache readahead pages are added to the LRU - and
29833315 1221 * possibly migrated - before they are charged.
7512102c 1222 */
29833315
JW
1223 if (!memcg)
1224 memcg = root_mem_cgroup;
7512102c 1225
ef8f2327 1226 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1227 lruvec = &mz->lruvec;
1228out:
1229 /*
1230 * Since a node can be onlined after the mem_cgroup was created,
1231 * we have to be prepared to initialize lruvec->zone here;
1232 * and if offlined then reonlined, we need to reinitialize it.
1233 */
599d0c95
MG
1234 if (unlikely(lruvec->pgdat != pgdat))
1235 lruvec->pgdat = pgdat;
bea8c150 1236 return lruvec;
08e552c6 1237}
b69408e8 1238
925b7673 1239/**
fa9add64
HD
1240 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1241 * @lruvec: mem_cgroup per zone lru vector
1242 * @lru: index of lru list the page is sitting on
b4536f0c 1243 * @zid: zone id of the accounted pages
fa9add64 1244 * @nr_pages: positive when adding or negative when removing
925b7673 1245 *
ca707239
HD
1246 * This function must be called under lru_lock, just before a page is added
1247 * to or just after a page is removed from an lru list (that ordering being
1248 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1249 */
fa9add64 1250void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1251 int zid, int nr_pages)
3f58a829 1252{
ef8f2327 1253 struct mem_cgroup_per_node *mz;
fa9add64 1254 unsigned long *lru_size;
ca707239 1255 long size;
3f58a829
MK
1256
1257 if (mem_cgroup_disabled())
1258 return;
1259
ef8f2327 1260 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1261 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1262
1263 if (nr_pages < 0)
1264 *lru_size += nr_pages;
1265
1266 size = *lru_size;
b4536f0c
MH
1267 if (WARN_ONCE(size < 0,
1268 "%s(%p, %d, %d): lru_size %ld\n",
1269 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1270 VM_BUG_ON(1);
1271 *lru_size = 0;
1272 }
1273
1274 if (nr_pages > 0)
1275 *lru_size += nr_pages;
08e552c6 1276}
544122e5 1277
19942822 1278/**
9d11ea9f 1279 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1280 * @memcg: the memory cgroup
19942822 1281 *
9d11ea9f 1282 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1283 * pages.
19942822 1284 */
c0ff4b85 1285static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1286{
3e32cb2e
JW
1287 unsigned long margin = 0;
1288 unsigned long count;
1289 unsigned long limit;
9d11ea9f 1290
3e32cb2e 1291 count = page_counter_read(&memcg->memory);
bbec2e15 1292 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1293 if (count < limit)
1294 margin = limit - count;
1295
7941d214 1296 if (do_memsw_account()) {
3e32cb2e 1297 count = page_counter_read(&memcg->memsw);
bbec2e15 1298 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1299 if (count < limit)
3e32cb2e 1300 margin = min(margin, limit - count);
cbedbac3
LR
1301 else
1302 margin = 0;
3e32cb2e
JW
1303 }
1304
1305 return margin;
19942822
JW
1306}
1307
32047e2a 1308/*
bdcbb659 1309 * A routine for checking "mem" is under move_account() or not.
32047e2a 1310 *
bdcbb659
QH
1311 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1312 * moving cgroups. This is for waiting at high-memory pressure
1313 * caused by "move".
32047e2a 1314 */
c0ff4b85 1315static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1316{
2bd9bb20
KH
1317 struct mem_cgroup *from;
1318 struct mem_cgroup *to;
4b534334 1319 bool ret = false;
2bd9bb20
KH
1320 /*
1321 * Unlike task_move routines, we access mc.to, mc.from not under
1322 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1323 */
1324 spin_lock(&mc.lock);
1325 from = mc.from;
1326 to = mc.to;
1327 if (!from)
1328 goto unlock;
3e92041d 1329
2314b42d
JW
1330 ret = mem_cgroup_is_descendant(from, memcg) ||
1331 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1332unlock:
1333 spin_unlock(&mc.lock);
4b534334
KH
1334 return ret;
1335}
1336
c0ff4b85 1337static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1338{
1339 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1340 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1341 DEFINE_WAIT(wait);
1342 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1343 /* moving charge context might have finished. */
1344 if (mc.moving_task)
1345 schedule();
1346 finish_wait(&mc.waitq, &wait);
1347 return true;
1348 }
1349 }
1350 return false;
1351}
1352
c8713d0b
JW
1353static char *memory_stat_format(struct mem_cgroup *memcg)
1354{
1355 struct seq_buf s;
1356 int i;
71cd3113 1357
c8713d0b
JW
1358 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1359 if (!s.buffer)
1360 return NULL;
1361
1362 /*
1363 * Provide statistics on the state of the memory subsystem as
1364 * well as cumulative event counters that show past behavior.
1365 *
1366 * This list is ordered following a combination of these gradients:
1367 * 1) generic big picture -> specifics and details
1368 * 2) reflecting userspace activity -> reflecting kernel heuristics
1369 *
1370 * Current memory state:
1371 */
1372
1373 seq_buf_printf(&s, "anon %llu\n",
be5d0a74 1374 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
c8713d0b
JW
1375 PAGE_SIZE);
1376 seq_buf_printf(&s, "file %llu\n",
0d1c2072 1377 (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
c8713d0b
JW
1378 PAGE_SIZE);
1379 seq_buf_printf(&s, "kernel_stack %llu\n",
1380 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1381 1024);
1382 seq_buf_printf(&s, "slab %llu\n",
1383 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1384 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1385 PAGE_SIZE);
1386 seq_buf_printf(&s, "sock %llu\n",
1387 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1388 PAGE_SIZE);
1389
1390 seq_buf_printf(&s, "shmem %llu\n",
1391 (u64)memcg_page_state(memcg, NR_SHMEM) *
1392 PAGE_SIZE);
1393 seq_buf_printf(&s, "file_mapped %llu\n",
1394 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1395 PAGE_SIZE);
1396 seq_buf_printf(&s, "file_dirty %llu\n",
1397 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1398 PAGE_SIZE);
1399 seq_buf_printf(&s, "file_writeback %llu\n",
1400 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1401 PAGE_SIZE);
1402
468c3982 1403#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 1404 seq_buf_printf(&s, "anon_thp %llu\n",
468c3982
JW
1405 (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1406 HPAGE_PMD_SIZE);
1407#endif
c8713d0b
JW
1408
1409 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1410 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1411 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1412 PAGE_SIZE);
1413
1414 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1415 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1418 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1419 PAGE_SIZE);
1420
1421 /* Accumulated memory events */
1422
ebc5d83d
KK
1423 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1424 memcg_events(memcg, PGFAULT));
1425 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1426 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1427
1428 seq_buf_printf(&s, "workingset_refault %lu\n",
1429 memcg_page_state(memcg, WORKINGSET_REFAULT));
1430 seq_buf_printf(&s, "workingset_activate %lu\n",
1431 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
a6f5576b
YS
1432 seq_buf_printf(&s, "workingset_restore %lu\n",
1433 memcg_page_state(memcg, WORKINGSET_RESTORE));
c8713d0b
JW
1434 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1435 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1436
ebc5d83d
KK
1437 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1438 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1439 seq_buf_printf(&s, "pgscan %lu\n",
1440 memcg_events(memcg, PGSCAN_KSWAPD) +
1441 memcg_events(memcg, PGSCAN_DIRECT));
1442 seq_buf_printf(&s, "pgsteal %lu\n",
1443 memcg_events(memcg, PGSTEAL_KSWAPD) +
1444 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1446 memcg_events(memcg, PGACTIVATE));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1448 memcg_events(memcg, PGDEACTIVATE));
1449 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1450 memcg_events(memcg, PGLAZYFREE));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1452 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1453
1454#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1456 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1458 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1459#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1460
1461 /* The above should easily fit into one page */
1462 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1463
1464 return s.buffer;
1465}
71cd3113 1466
58cf188e 1467#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1468/**
f0c867d9 1469 * mem_cgroup_print_oom_context: Print OOM information relevant to
1470 * memory controller.
e222432b
BS
1471 * @memcg: The memory cgroup that went over limit
1472 * @p: Task that is going to be killed
1473 *
1474 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1475 * enabled
1476 */
f0c867d9 1477void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1478{
e222432b
BS
1479 rcu_read_lock();
1480
f0c867d9 1481 if (memcg) {
1482 pr_cont(",oom_memcg=");
1483 pr_cont_cgroup_path(memcg->css.cgroup);
1484 } else
1485 pr_cont(",global_oom");
2415b9f5 1486 if (p) {
f0c867d9 1487 pr_cont(",task_memcg=");
2415b9f5 1488 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1489 }
e222432b 1490 rcu_read_unlock();
f0c867d9 1491}
1492
1493/**
1494 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1495 * memory controller.
1496 * @memcg: The memory cgroup that went over limit
1497 */
1498void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1499{
c8713d0b 1500 char *buf;
e222432b 1501
3e32cb2e
JW
1502 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1503 K((u64)page_counter_read(&memcg->memory)),
15b42562 1504 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1505 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1506 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1507 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1508 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1509 else {
1510 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 K((u64)page_counter_read(&memcg->memsw)),
1512 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1513 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1514 K((u64)page_counter_read(&memcg->kmem)),
1515 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1516 }
c8713d0b
JW
1517
1518 pr_info("Memory cgroup stats for ");
1519 pr_cont_cgroup_path(memcg->css.cgroup);
1520 pr_cont(":");
1521 buf = memory_stat_format(memcg);
1522 if (!buf)
1523 return;
1524 pr_info("%s", buf);
1525 kfree(buf);
e222432b
BS
1526}
1527
a63d83f4
DR
1528/*
1529 * Return the memory (and swap, if configured) limit for a memcg.
1530 */
bbec2e15 1531unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1532{
bbec2e15 1533 unsigned long max;
f3e8eb70 1534
15b42562 1535 max = READ_ONCE(memcg->memory.max);
9a5a8f19 1536 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1537 unsigned long memsw_max;
1538 unsigned long swap_max;
9a5a8f19 1539
bbec2e15 1540 memsw_max = memcg->memsw.max;
32d087cd 1541 swap_max = READ_ONCE(memcg->swap.max);
bbec2e15
RG
1542 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1543 max = min(max + swap_max, memsw_max);
9a5a8f19 1544 }
bbec2e15 1545 return max;
a63d83f4
DR
1546}
1547
9783aa99
CD
1548unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1549{
1550 return page_counter_read(&memcg->memory);
1551}
1552
b6e6edcf 1553static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1554 int order)
9cbb78bb 1555{
6e0fc46d
DR
1556 struct oom_control oc = {
1557 .zonelist = NULL,
1558 .nodemask = NULL,
2a966b77 1559 .memcg = memcg,
6e0fc46d
DR
1560 .gfp_mask = gfp_mask,
1561 .order = order,
6e0fc46d 1562 };
7c5f64f8 1563 bool ret;
9cbb78bb 1564
7775face
TH
1565 if (mutex_lock_killable(&oom_lock))
1566 return true;
1567 /*
1568 * A few threads which were not waiting at mutex_lock_killable() can
1569 * fail to bail out. Therefore, check again after holding oom_lock.
1570 */
1571 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1572 mutex_unlock(&oom_lock);
7c5f64f8 1573 return ret;
9cbb78bb
DR
1574}
1575
0608f43d 1576static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1577 pg_data_t *pgdat,
0608f43d
AM
1578 gfp_t gfp_mask,
1579 unsigned long *total_scanned)
1580{
1581 struct mem_cgroup *victim = NULL;
1582 int total = 0;
1583 int loop = 0;
1584 unsigned long excess;
1585 unsigned long nr_scanned;
1586 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1587 .pgdat = pgdat,
0608f43d
AM
1588 };
1589
3e32cb2e 1590 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1591
1592 while (1) {
1593 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1594 if (!victim) {
1595 loop++;
1596 if (loop >= 2) {
1597 /*
1598 * If we have not been able to reclaim
1599 * anything, it might because there are
1600 * no reclaimable pages under this hierarchy
1601 */
1602 if (!total)
1603 break;
1604 /*
1605 * We want to do more targeted reclaim.
1606 * excess >> 2 is not to excessive so as to
1607 * reclaim too much, nor too less that we keep
1608 * coming back to reclaim from this cgroup
1609 */
1610 if (total >= (excess >> 2) ||
1611 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1612 break;
1613 }
1614 continue;
1615 }
a9dd0a83 1616 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1617 pgdat, &nr_scanned);
0608f43d 1618 *total_scanned += nr_scanned;
3e32cb2e 1619 if (!soft_limit_excess(root_memcg))
0608f43d 1620 break;
6d61ef40 1621 }
0608f43d
AM
1622 mem_cgroup_iter_break(root_memcg, victim);
1623 return total;
6d61ef40
BS
1624}
1625
0056f4e6
JW
1626#ifdef CONFIG_LOCKDEP
1627static struct lockdep_map memcg_oom_lock_dep_map = {
1628 .name = "memcg_oom_lock",
1629};
1630#endif
1631
fb2a6fc5
JW
1632static DEFINE_SPINLOCK(memcg_oom_lock);
1633
867578cb
KH
1634/*
1635 * Check OOM-Killer is already running under our hierarchy.
1636 * If someone is running, return false.
1637 */
fb2a6fc5 1638static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1639{
79dfdacc 1640 struct mem_cgroup *iter, *failed = NULL;
a636b327 1641
fb2a6fc5
JW
1642 spin_lock(&memcg_oom_lock);
1643
9f3a0d09 1644 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1645 if (iter->oom_lock) {
79dfdacc
MH
1646 /*
1647 * this subtree of our hierarchy is already locked
1648 * so we cannot give a lock.
1649 */
79dfdacc 1650 failed = iter;
9f3a0d09
JW
1651 mem_cgroup_iter_break(memcg, iter);
1652 break;
23751be0
JW
1653 } else
1654 iter->oom_lock = true;
7d74b06f 1655 }
867578cb 1656
fb2a6fc5
JW
1657 if (failed) {
1658 /*
1659 * OK, we failed to lock the whole subtree so we have
1660 * to clean up what we set up to the failing subtree
1661 */
1662 for_each_mem_cgroup_tree(iter, memcg) {
1663 if (iter == failed) {
1664 mem_cgroup_iter_break(memcg, iter);
1665 break;
1666 }
1667 iter->oom_lock = false;
79dfdacc 1668 }
0056f4e6
JW
1669 } else
1670 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1671
1672 spin_unlock(&memcg_oom_lock);
1673
1674 return !failed;
a636b327 1675}
0b7f569e 1676
fb2a6fc5 1677static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1678{
7d74b06f
KH
1679 struct mem_cgroup *iter;
1680
fb2a6fc5 1681 spin_lock(&memcg_oom_lock);
5facae4f 1682 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1683 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1684 iter->oom_lock = false;
fb2a6fc5 1685 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1686}
1687
c0ff4b85 1688static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1689{
1690 struct mem_cgroup *iter;
1691
c2b42d3c 1692 spin_lock(&memcg_oom_lock);
c0ff4b85 1693 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1694 iter->under_oom++;
1695 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1696}
1697
c0ff4b85 1698static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1699{
1700 struct mem_cgroup *iter;
1701
867578cb
KH
1702 /*
1703 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1704 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1705 */
c2b42d3c 1706 spin_lock(&memcg_oom_lock);
c0ff4b85 1707 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1708 if (iter->under_oom > 0)
1709 iter->under_oom--;
1710 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1711}
1712
867578cb
KH
1713static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1714
dc98df5a 1715struct oom_wait_info {
d79154bb 1716 struct mem_cgroup *memcg;
ac6424b9 1717 wait_queue_entry_t wait;
dc98df5a
KH
1718};
1719
ac6424b9 1720static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1721 unsigned mode, int sync, void *arg)
1722{
d79154bb
HD
1723 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1724 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1725 struct oom_wait_info *oom_wait_info;
1726
1727 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1728 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1729
2314b42d
JW
1730 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1731 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1732 return 0;
dc98df5a
KH
1733 return autoremove_wake_function(wait, mode, sync, arg);
1734}
1735
c0ff4b85 1736static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1737{
c2b42d3c
TH
1738 /*
1739 * For the following lockless ->under_oom test, the only required
1740 * guarantee is that it must see the state asserted by an OOM when
1741 * this function is called as a result of userland actions
1742 * triggered by the notification of the OOM. This is trivially
1743 * achieved by invoking mem_cgroup_mark_under_oom() before
1744 * triggering notification.
1745 */
1746 if (memcg && memcg->under_oom)
f4b90b70 1747 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1748}
1749
29ef680a
MH
1750enum oom_status {
1751 OOM_SUCCESS,
1752 OOM_FAILED,
1753 OOM_ASYNC,
1754 OOM_SKIPPED
1755};
1756
1757static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1758{
7056d3a3
MH
1759 enum oom_status ret;
1760 bool locked;
1761
29ef680a
MH
1762 if (order > PAGE_ALLOC_COSTLY_ORDER)
1763 return OOM_SKIPPED;
1764
7a1adfdd
RG
1765 memcg_memory_event(memcg, MEMCG_OOM);
1766
867578cb 1767 /*
49426420
JW
1768 * We are in the middle of the charge context here, so we
1769 * don't want to block when potentially sitting on a callstack
1770 * that holds all kinds of filesystem and mm locks.
1771 *
29ef680a
MH
1772 * cgroup1 allows disabling the OOM killer and waiting for outside
1773 * handling until the charge can succeed; remember the context and put
1774 * the task to sleep at the end of the page fault when all locks are
1775 * released.
49426420 1776 *
29ef680a
MH
1777 * On the other hand, in-kernel OOM killer allows for an async victim
1778 * memory reclaim (oom_reaper) and that means that we are not solely
1779 * relying on the oom victim to make a forward progress and we can
1780 * invoke the oom killer here.
1781 *
1782 * Please note that mem_cgroup_out_of_memory might fail to find a
1783 * victim and then we have to bail out from the charge path.
867578cb 1784 */
29ef680a
MH
1785 if (memcg->oom_kill_disable) {
1786 if (!current->in_user_fault)
1787 return OOM_SKIPPED;
1788 css_get(&memcg->css);
1789 current->memcg_in_oom = memcg;
1790 current->memcg_oom_gfp_mask = mask;
1791 current->memcg_oom_order = order;
1792
1793 return OOM_ASYNC;
1794 }
1795
7056d3a3
MH
1796 mem_cgroup_mark_under_oom(memcg);
1797
1798 locked = mem_cgroup_oom_trylock(memcg);
1799
1800 if (locked)
1801 mem_cgroup_oom_notify(memcg);
1802
1803 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1804 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1805 ret = OOM_SUCCESS;
1806 else
1807 ret = OOM_FAILED;
1808
1809 if (locked)
1810 mem_cgroup_oom_unlock(memcg);
29ef680a 1811
7056d3a3 1812 return ret;
3812c8c8
JW
1813}
1814
1815/**
1816 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1817 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1818 *
49426420
JW
1819 * This has to be called at the end of a page fault if the memcg OOM
1820 * handler was enabled.
3812c8c8 1821 *
49426420 1822 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1823 * sleep on a waitqueue until the userspace task resolves the
1824 * situation. Sleeping directly in the charge context with all kinds
1825 * of locks held is not a good idea, instead we remember an OOM state
1826 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1827 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1828 *
1829 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1830 * completed, %false otherwise.
3812c8c8 1831 */
49426420 1832bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1833{
626ebc41 1834 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1835 struct oom_wait_info owait;
49426420 1836 bool locked;
3812c8c8
JW
1837
1838 /* OOM is global, do not handle */
3812c8c8 1839 if (!memcg)
49426420 1840 return false;
3812c8c8 1841
7c5f64f8 1842 if (!handle)
49426420 1843 goto cleanup;
3812c8c8
JW
1844
1845 owait.memcg = memcg;
1846 owait.wait.flags = 0;
1847 owait.wait.func = memcg_oom_wake_function;
1848 owait.wait.private = current;
2055da97 1849 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1850
3812c8c8 1851 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1852 mem_cgroup_mark_under_oom(memcg);
1853
1854 locked = mem_cgroup_oom_trylock(memcg);
1855
1856 if (locked)
1857 mem_cgroup_oom_notify(memcg);
1858
1859 if (locked && !memcg->oom_kill_disable) {
1860 mem_cgroup_unmark_under_oom(memcg);
1861 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1862 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1863 current->memcg_oom_order);
49426420 1864 } else {
3812c8c8 1865 schedule();
49426420
JW
1866 mem_cgroup_unmark_under_oom(memcg);
1867 finish_wait(&memcg_oom_waitq, &owait.wait);
1868 }
1869
1870 if (locked) {
fb2a6fc5
JW
1871 mem_cgroup_oom_unlock(memcg);
1872 /*
1873 * There is no guarantee that an OOM-lock contender
1874 * sees the wakeups triggered by the OOM kill
1875 * uncharges. Wake any sleepers explicitely.
1876 */
1877 memcg_oom_recover(memcg);
1878 }
49426420 1879cleanup:
626ebc41 1880 current->memcg_in_oom = NULL;
3812c8c8 1881 css_put(&memcg->css);
867578cb 1882 return true;
0b7f569e
KH
1883}
1884
3d8b38eb
RG
1885/**
1886 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1887 * @victim: task to be killed by the OOM killer
1888 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1889 *
1890 * Returns a pointer to a memory cgroup, which has to be cleaned up
1891 * by killing all belonging OOM-killable tasks.
1892 *
1893 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1894 */
1895struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1896 struct mem_cgroup *oom_domain)
1897{
1898 struct mem_cgroup *oom_group = NULL;
1899 struct mem_cgroup *memcg;
1900
1901 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1902 return NULL;
1903
1904 if (!oom_domain)
1905 oom_domain = root_mem_cgroup;
1906
1907 rcu_read_lock();
1908
1909 memcg = mem_cgroup_from_task(victim);
1910 if (memcg == root_mem_cgroup)
1911 goto out;
1912
48fe267c
RG
1913 /*
1914 * If the victim task has been asynchronously moved to a different
1915 * memory cgroup, we might end up killing tasks outside oom_domain.
1916 * In this case it's better to ignore memory.group.oom.
1917 */
1918 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1919 goto out;
1920
3d8b38eb
RG
1921 /*
1922 * Traverse the memory cgroup hierarchy from the victim task's
1923 * cgroup up to the OOMing cgroup (or root) to find the
1924 * highest-level memory cgroup with oom.group set.
1925 */
1926 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1927 if (memcg->oom_group)
1928 oom_group = memcg;
1929
1930 if (memcg == oom_domain)
1931 break;
1932 }
1933
1934 if (oom_group)
1935 css_get(&oom_group->css);
1936out:
1937 rcu_read_unlock();
1938
1939 return oom_group;
1940}
1941
1942void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1943{
1944 pr_info("Tasks in ");
1945 pr_cont_cgroup_path(memcg->css.cgroup);
1946 pr_cont(" are going to be killed due to memory.oom.group set\n");
1947}
1948
d7365e78 1949/**
81f8c3a4
JW
1950 * lock_page_memcg - lock a page->mem_cgroup binding
1951 * @page: the page
32047e2a 1952 *
81f8c3a4 1953 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1954 * another cgroup.
1955 *
1956 * It ensures lifetime of the returned memcg. Caller is responsible
1957 * for the lifetime of the page; __unlock_page_memcg() is available
1958 * when @page might get freed inside the locked section.
d69b042f 1959 */
739f79fc 1960struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 1961{
9da7b521 1962 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 1963 struct mem_cgroup *memcg;
6de22619 1964 unsigned long flags;
89c06bd5 1965
6de22619
JW
1966 /*
1967 * The RCU lock is held throughout the transaction. The fast
1968 * path can get away without acquiring the memcg->move_lock
1969 * because page moving starts with an RCU grace period.
739f79fc
JW
1970 *
1971 * The RCU lock also protects the memcg from being freed when
1972 * the page state that is going to change is the only thing
1973 * preventing the page itself from being freed. E.g. writeback
1974 * doesn't hold a page reference and relies on PG_writeback to
1975 * keep off truncation, migration and so forth.
1976 */
d7365e78
JW
1977 rcu_read_lock();
1978
1979 if (mem_cgroup_disabled())
739f79fc 1980 return NULL;
89c06bd5 1981again:
9da7b521 1982 memcg = head->mem_cgroup;
29833315 1983 if (unlikely(!memcg))
739f79fc 1984 return NULL;
d7365e78 1985
bdcbb659 1986 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1987 return memcg;
89c06bd5 1988
6de22619 1989 spin_lock_irqsave(&memcg->move_lock, flags);
9da7b521 1990 if (memcg != head->mem_cgroup) {
6de22619 1991 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1992 goto again;
1993 }
6de22619
JW
1994
1995 /*
1996 * When charge migration first begins, we can have locked and
1997 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1998 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1999 */
2000 memcg->move_lock_task = current;
2001 memcg->move_lock_flags = flags;
d7365e78 2002
739f79fc 2003 return memcg;
89c06bd5 2004}
81f8c3a4 2005EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2006
d7365e78 2007/**
739f79fc
JW
2008 * __unlock_page_memcg - unlock and unpin a memcg
2009 * @memcg: the memcg
2010 *
2011 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2012 */
739f79fc 2013void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2014{
6de22619
JW
2015 if (memcg && memcg->move_lock_task == current) {
2016 unsigned long flags = memcg->move_lock_flags;
2017
2018 memcg->move_lock_task = NULL;
2019 memcg->move_lock_flags = 0;
2020
2021 spin_unlock_irqrestore(&memcg->move_lock, flags);
2022 }
89c06bd5 2023
d7365e78 2024 rcu_read_unlock();
89c06bd5 2025}
739f79fc
JW
2026
2027/**
2028 * unlock_page_memcg - unlock a page->mem_cgroup binding
2029 * @page: the page
2030 */
2031void unlock_page_memcg(struct page *page)
2032{
9da7b521
JW
2033 struct page *head = compound_head(page);
2034
2035 __unlock_page_memcg(head->mem_cgroup);
739f79fc 2036}
81f8c3a4 2037EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2038
cdec2e42
KH
2039struct memcg_stock_pcp {
2040 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2041 unsigned int nr_pages;
cdec2e42 2042 struct work_struct work;
26fe6168 2043 unsigned long flags;
a0db00fc 2044#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2045};
2046static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2047static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2048
a0956d54
SS
2049/**
2050 * consume_stock: Try to consume stocked charge on this cpu.
2051 * @memcg: memcg to consume from.
2052 * @nr_pages: how many pages to charge.
2053 *
2054 * The charges will only happen if @memcg matches the current cpu's memcg
2055 * stock, and at least @nr_pages are available in that stock. Failure to
2056 * service an allocation will refill the stock.
2057 *
2058 * returns true if successful, false otherwise.
cdec2e42 2059 */
a0956d54 2060static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2061{
2062 struct memcg_stock_pcp *stock;
db2ba40c 2063 unsigned long flags;
3e32cb2e 2064 bool ret = false;
cdec2e42 2065
a983b5eb 2066 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2067 return ret;
a0956d54 2068
db2ba40c
JW
2069 local_irq_save(flags);
2070
2071 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2072 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2073 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2074 ret = true;
2075 }
db2ba40c
JW
2076
2077 local_irq_restore(flags);
2078
cdec2e42
KH
2079 return ret;
2080}
2081
2082/*
3e32cb2e 2083 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2084 */
2085static void drain_stock(struct memcg_stock_pcp *stock)
2086{
2087 struct mem_cgroup *old = stock->cached;
2088
11c9ea4e 2089 if (stock->nr_pages) {
3e32cb2e 2090 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2091 if (do_memsw_account())
3e32cb2e 2092 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2093 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2094 stock->nr_pages = 0;
cdec2e42
KH
2095 }
2096 stock->cached = NULL;
cdec2e42
KH
2097}
2098
cdec2e42
KH
2099static void drain_local_stock(struct work_struct *dummy)
2100{
db2ba40c
JW
2101 struct memcg_stock_pcp *stock;
2102 unsigned long flags;
2103
72f0184c
MH
2104 /*
2105 * The only protection from memory hotplug vs. drain_stock races is
2106 * that we always operate on local CPU stock here with IRQ disabled
2107 */
db2ba40c
JW
2108 local_irq_save(flags);
2109
2110 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2111 drain_stock(stock);
26fe6168 2112 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2113
2114 local_irq_restore(flags);
cdec2e42
KH
2115}
2116
2117/*
3e32cb2e 2118 * Cache charges(val) to local per_cpu area.
320cc51d 2119 * This will be consumed by consume_stock() function, later.
cdec2e42 2120 */
c0ff4b85 2121static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2122{
db2ba40c
JW
2123 struct memcg_stock_pcp *stock;
2124 unsigned long flags;
2125
2126 local_irq_save(flags);
cdec2e42 2127
db2ba40c 2128 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2129 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2130 drain_stock(stock);
c0ff4b85 2131 stock->cached = memcg;
cdec2e42 2132 }
11c9ea4e 2133 stock->nr_pages += nr_pages;
db2ba40c 2134
a983b5eb 2135 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2136 drain_stock(stock);
2137
db2ba40c 2138 local_irq_restore(flags);
cdec2e42
KH
2139}
2140
2141/*
c0ff4b85 2142 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2143 * of the hierarchy under it.
cdec2e42 2144 */
6d3d6aa2 2145static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2146{
26fe6168 2147 int cpu, curcpu;
d38144b7 2148
6d3d6aa2
JW
2149 /* If someone's already draining, avoid adding running more workers. */
2150 if (!mutex_trylock(&percpu_charge_mutex))
2151 return;
72f0184c
MH
2152 /*
2153 * Notify other cpus that system-wide "drain" is running
2154 * We do not care about races with the cpu hotplug because cpu down
2155 * as well as workers from this path always operate on the local
2156 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2157 */
5af12d0e 2158 curcpu = get_cpu();
cdec2e42
KH
2159 for_each_online_cpu(cpu) {
2160 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2161 struct mem_cgroup *memcg;
e1a366be 2162 bool flush = false;
26fe6168 2163
e1a366be 2164 rcu_read_lock();
c0ff4b85 2165 memcg = stock->cached;
e1a366be
RG
2166 if (memcg && stock->nr_pages &&
2167 mem_cgroup_is_descendant(memcg, root_memcg))
2168 flush = true;
2169 rcu_read_unlock();
2170
2171 if (flush &&
2172 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2173 if (cpu == curcpu)
2174 drain_local_stock(&stock->work);
2175 else
2176 schedule_work_on(cpu, &stock->work);
2177 }
cdec2e42 2178 }
5af12d0e 2179 put_cpu();
9f50fad6 2180 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2181}
2182
308167fc 2183static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2184{
cdec2e42 2185 struct memcg_stock_pcp *stock;
42a30035 2186 struct mem_cgroup *memcg, *mi;
cdec2e42 2187
cdec2e42
KH
2188 stock = &per_cpu(memcg_stock, cpu);
2189 drain_stock(stock);
a983b5eb
JW
2190
2191 for_each_mem_cgroup(memcg) {
2192 int i;
2193
2194 for (i = 0; i < MEMCG_NR_STAT; i++) {
2195 int nid;
2196 long x;
2197
871789d4 2198 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2199 if (x)
42a30035
JW
2200 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2201 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2202
2203 if (i >= NR_VM_NODE_STAT_ITEMS)
2204 continue;
2205
2206 for_each_node(nid) {
2207 struct mem_cgroup_per_node *pn;
2208
2209 pn = mem_cgroup_nodeinfo(memcg, nid);
2210 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2211 if (x)
42a30035
JW
2212 do {
2213 atomic_long_add(x, &pn->lruvec_stat[i]);
2214 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2215 }
2216 }
2217
e27be240 2218 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2219 long x;
2220
871789d4 2221 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2222 if (x)
42a30035
JW
2223 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2224 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2225 }
2226 }
2227
308167fc 2228 return 0;
cdec2e42
KH
2229}
2230
f7e1cb6e
JW
2231static void reclaim_high(struct mem_cgroup *memcg,
2232 unsigned int nr_pages,
2233 gfp_t gfp_mask)
2234{
2235 do {
d1663a90
JK
2236 if (page_counter_read(&memcg->memory) <=
2237 READ_ONCE(memcg->memory.high))
f7e1cb6e 2238 continue;
e27be240 2239 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e 2240 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
4bf17307
CD
2241 } while ((memcg = parent_mem_cgroup(memcg)) &&
2242 !mem_cgroup_is_root(memcg));
f7e1cb6e
JW
2243}
2244
2245static void high_work_func(struct work_struct *work)
2246{
2247 struct mem_cgroup *memcg;
2248
2249 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2250 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2251}
2252
0e4b01df
CD
2253/*
2254 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2255 * enough to still cause a significant slowdown in most cases, while still
2256 * allowing diagnostics and tracing to proceed without becoming stuck.
2257 */
2258#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2259
2260/*
2261 * When calculating the delay, we use these either side of the exponentiation to
2262 * maintain precision and scale to a reasonable number of jiffies (see the table
2263 * below.
2264 *
2265 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2266 * overage ratio to a delay.
2267 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2268 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2269 * to produce a reasonable delay curve.
2270 *
2271 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2272 * reasonable delay curve compared to precision-adjusted overage, not
2273 * penalising heavily at first, but still making sure that growth beyond the
2274 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2275 * example, with a high of 100 megabytes:
2276 *
2277 * +-------+------------------------+
2278 * | usage | time to allocate in ms |
2279 * +-------+------------------------+
2280 * | 100M | 0 |
2281 * | 101M | 6 |
2282 * | 102M | 25 |
2283 * | 103M | 57 |
2284 * | 104M | 102 |
2285 * | 105M | 159 |
2286 * | 106M | 230 |
2287 * | 107M | 313 |
2288 * | 108M | 409 |
2289 * | 109M | 518 |
2290 * | 110M | 639 |
2291 * | 111M | 774 |
2292 * | 112M | 921 |
2293 * | 113M | 1081 |
2294 * | 114M | 1254 |
2295 * | 115M | 1439 |
2296 * | 116M | 1638 |
2297 * | 117M | 1849 |
2298 * | 118M | 2000 |
2299 * | 119M | 2000 |
2300 * | 120M | 2000 |
2301 * +-------+------------------------+
2302 */
2303 #define MEMCG_DELAY_PRECISION_SHIFT 20
2304 #define MEMCG_DELAY_SCALING_SHIFT 14
2305
8a5dbc65 2306static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2307{
8a5dbc65 2308 u64 overage;
b23afb93 2309
8a5dbc65
JK
2310 if (usage <= high)
2311 return 0;
e26733e0 2312
8a5dbc65
JK
2313 /*
2314 * Prevent division by 0 in overage calculation by acting as if
2315 * it was a threshold of 1 page
2316 */
2317 high = max(high, 1UL);
9b8b1754 2318
8a5dbc65
JK
2319 overage = usage - high;
2320 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2321 return div64_u64(overage, high);
2322}
e26733e0 2323
8a5dbc65
JK
2324static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2325{
2326 u64 overage, max_overage = 0;
e26733e0 2327
8a5dbc65
JK
2328 do {
2329 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2330 READ_ONCE(memcg->memory.high));
8a5dbc65 2331 max_overage = max(overage, max_overage);
e26733e0
CD
2332 } while ((memcg = parent_mem_cgroup(memcg)) &&
2333 !mem_cgroup_is_root(memcg));
2334
8a5dbc65
JK
2335 return max_overage;
2336}
2337
4b82ab4f
JK
2338static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2339{
2340 u64 overage, max_overage = 0;
2341
2342 do {
2343 overage = calculate_overage(page_counter_read(&memcg->swap),
2344 READ_ONCE(memcg->swap.high));
2345 if (overage)
2346 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2347 max_overage = max(overage, max_overage);
2348 } while ((memcg = parent_mem_cgroup(memcg)) &&
2349 !mem_cgroup_is_root(memcg));
2350
2351 return max_overage;
2352}
2353
8a5dbc65
JK
2354/*
2355 * Get the number of jiffies that we should penalise a mischievous cgroup which
2356 * is exceeding its memory.high by checking both it and its ancestors.
2357 */
2358static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2359 unsigned int nr_pages,
2360 u64 max_overage)
2361{
2362 unsigned long penalty_jiffies;
2363
e26733e0
CD
2364 if (!max_overage)
2365 return 0;
0e4b01df
CD
2366
2367 /*
0e4b01df
CD
2368 * We use overage compared to memory.high to calculate the number of
2369 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2370 * fairly lenient on small overages, and increasingly harsh when the
2371 * memcg in question makes it clear that it has no intention of stopping
2372 * its crazy behaviour, so we exponentially increase the delay based on
2373 * overage amount.
2374 */
e26733e0
CD
2375 penalty_jiffies = max_overage * max_overage * HZ;
2376 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2377 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2378
2379 /*
2380 * Factor in the task's own contribution to the overage, such that four
2381 * N-sized allocations are throttled approximately the same as one
2382 * 4N-sized allocation.
2383 *
2384 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2385 * larger the current charge patch is than that.
2386 */
ff144e69 2387 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2388}
2389
2390/*
2391 * Scheduled by try_charge() to be executed from the userland return path
2392 * and reclaims memory over the high limit.
2393 */
2394void mem_cgroup_handle_over_high(void)
2395{
2396 unsigned long penalty_jiffies;
2397 unsigned long pflags;
2398 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2399 struct mem_cgroup *memcg;
2400
2401 if (likely(!nr_pages))
2402 return;
2403
2404 memcg = get_mem_cgroup_from_mm(current->mm);
2405 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2406 current->memcg_nr_pages_over_high = 0;
2407
2408 /*
2409 * memory.high is breached and reclaim is unable to keep up. Throttle
2410 * allocators proactively to slow down excessive growth.
2411 */
8a5dbc65
JK
2412 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2413 mem_find_max_overage(memcg));
0e4b01df 2414
4b82ab4f
JK
2415 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2416 swap_find_max_overage(memcg));
2417
ff144e69
JK
2418 /*
2419 * Clamp the max delay per usermode return so as to still keep the
2420 * application moving forwards and also permit diagnostics, albeit
2421 * extremely slowly.
2422 */
2423 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2424
0e4b01df
CD
2425 /*
2426 * Don't sleep if the amount of jiffies this memcg owes us is so low
2427 * that it's not even worth doing, in an attempt to be nice to those who
2428 * go only a small amount over their memory.high value and maybe haven't
2429 * been aggressively reclaimed enough yet.
2430 */
2431 if (penalty_jiffies <= HZ / 100)
2432 goto out;
2433
2434 /*
2435 * If we exit early, we're guaranteed to die (since
2436 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2437 * need to account for any ill-begotten jiffies to pay them off later.
2438 */
2439 psi_memstall_enter(&pflags);
2440 schedule_timeout_killable(penalty_jiffies);
2441 psi_memstall_leave(&pflags);
2442
2443out:
2444 css_put(&memcg->css);
b23afb93
TH
2445}
2446
00501b53
JW
2447static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2448 unsigned int nr_pages)
8a9f3ccd 2449{
a983b5eb 2450 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2451 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2452 struct mem_cgroup *mem_over_limit;
3e32cb2e 2453 struct page_counter *counter;
6539cc05 2454 unsigned long nr_reclaimed;
b70a2a21
JW
2455 bool may_swap = true;
2456 bool drained = false;
29ef680a 2457 enum oom_status oom_status;
a636b327 2458
ce00a967 2459 if (mem_cgroup_is_root(memcg))
10d53c74 2460 return 0;
6539cc05 2461retry:
b6b6cc72 2462 if (consume_stock(memcg, nr_pages))
10d53c74 2463 return 0;
8a9f3ccd 2464
7941d214 2465 if (!do_memsw_account() ||
6071ca52
JW
2466 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2467 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2468 goto done_restock;
7941d214 2469 if (do_memsw_account())
3e32cb2e
JW
2470 page_counter_uncharge(&memcg->memsw, batch);
2471 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2472 } else {
3e32cb2e 2473 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2474 may_swap = false;
3fbe7244 2475 }
7a81b88c 2476
6539cc05
JW
2477 if (batch > nr_pages) {
2478 batch = nr_pages;
2479 goto retry;
2480 }
6d61ef40 2481
869712fd
JW
2482 /*
2483 * Memcg doesn't have a dedicated reserve for atomic
2484 * allocations. But like the global atomic pool, we need to
2485 * put the burden of reclaim on regular allocation requests
2486 * and let these go through as privileged allocations.
2487 */
2488 if (gfp_mask & __GFP_ATOMIC)
2489 goto force;
2490
06b078fc
JW
2491 /*
2492 * Unlike in global OOM situations, memcg is not in a physical
2493 * memory shortage. Allow dying and OOM-killed tasks to
2494 * bypass the last charges so that they can exit quickly and
2495 * free their memory.
2496 */
7775face 2497 if (unlikely(should_force_charge()))
10d53c74 2498 goto force;
06b078fc 2499
89a28483
JW
2500 /*
2501 * Prevent unbounded recursion when reclaim operations need to
2502 * allocate memory. This might exceed the limits temporarily,
2503 * but we prefer facilitating memory reclaim and getting back
2504 * under the limit over triggering OOM kills in these cases.
2505 */
2506 if (unlikely(current->flags & PF_MEMALLOC))
2507 goto force;
2508
06b078fc
JW
2509 if (unlikely(task_in_memcg_oom(current)))
2510 goto nomem;
2511
d0164adc 2512 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2513 goto nomem;
4b534334 2514
e27be240 2515 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2516
b70a2a21
JW
2517 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2518 gfp_mask, may_swap);
6539cc05 2519
61e02c74 2520 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2521 goto retry;
28c34c29 2522
b70a2a21 2523 if (!drained) {
6d3d6aa2 2524 drain_all_stock(mem_over_limit);
b70a2a21
JW
2525 drained = true;
2526 goto retry;
2527 }
2528
28c34c29
JW
2529 if (gfp_mask & __GFP_NORETRY)
2530 goto nomem;
6539cc05
JW
2531 /*
2532 * Even though the limit is exceeded at this point, reclaim
2533 * may have been able to free some pages. Retry the charge
2534 * before killing the task.
2535 *
2536 * Only for regular pages, though: huge pages are rather
2537 * unlikely to succeed so close to the limit, and we fall back
2538 * to regular pages anyway in case of failure.
2539 */
61e02c74 2540 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2541 goto retry;
2542 /*
2543 * At task move, charge accounts can be doubly counted. So, it's
2544 * better to wait until the end of task_move if something is going on.
2545 */
2546 if (mem_cgroup_wait_acct_move(mem_over_limit))
2547 goto retry;
2548
9b130619
JW
2549 if (nr_retries--)
2550 goto retry;
2551
38d38493 2552 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2553 goto nomem;
2554
06b078fc 2555 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2556 goto force;
06b078fc 2557
6539cc05 2558 if (fatal_signal_pending(current))
10d53c74 2559 goto force;
6539cc05 2560
29ef680a
MH
2561 /*
2562 * keep retrying as long as the memcg oom killer is able to make
2563 * a forward progress or bypass the charge if the oom killer
2564 * couldn't make any progress.
2565 */
2566 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2567 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2568 switch (oom_status) {
2569 case OOM_SUCCESS:
2570 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2571 goto retry;
2572 case OOM_FAILED:
2573 goto force;
2574 default:
2575 goto nomem;
2576 }
7a81b88c 2577nomem:
6d1fdc48 2578 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2579 return -ENOMEM;
10d53c74
TH
2580force:
2581 /*
2582 * The allocation either can't fail or will lead to more memory
2583 * being freed very soon. Allow memory usage go over the limit
2584 * temporarily by force charging it.
2585 */
2586 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2587 if (do_memsw_account())
10d53c74
TH
2588 page_counter_charge(&memcg->memsw, nr_pages);
2589 css_get_many(&memcg->css, nr_pages);
2590
2591 return 0;
6539cc05
JW
2592
2593done_restock:
e8ea14cc 2594 css_get_many(&memcg->css, batch);
6539cc05
JW
2595 if (batch > nr_pages)
2596 refill_stock(memcg, batch - nr_pages);
b23afb93 2597
241994ed 2598 /*
b23afb93
TH
2599 * If the hierarchy is above the normal consumption range, schedule
2600 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2601 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2602 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2603 * not recorded as it most likely matches current's and won't
2604 * change in the meantime. As high limit is checked again before
2605 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2606 */
2607 do {
4b82ab4f
JK
2608 bool mem_high, swap_high;
2609
2610 mem_high = page_counter_read(&memcg->memory) >
2611 READ_ONCE(memcg->memory.high);
2612 swap_high = page_counter_read(&memcg->swap) >
2613 READ_ONCE(memcg->swap.high);
2614
2615 /* Don't bother a random interrupted task */
2616 if (in_interrupt()) {
2617 if (mem_high) {
f7e1cb6e
JW
2618 schedule_work(&memcg->high_work);
2619 break;
2620 }
4b82ab4f
JK
2621 continue;
2622 }
2623
2624 if (mem_high || swap_high) {
2625 /*
2626 * The allocating tasks in this cgroup will need to do
2627 * reclaim or be throttled to prevent further growth
2628 * of the memory or swap footprints.
2629 *
2630 * Target some best-effort fairness between the tasks,
2631 * and distribute reclaim work and delay penalties
2632 * based on how much each task is actually allocating.
2633 */
9516a18a 2634 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2635 set_notify_resume(current);
2636 break;
2637 }
241994ed 2638 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2639
2640 return 0;
7a81b88c 2641}
8a9f3ccd 2642
f0e45fb4 2643#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2644static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2645{
ce00a967
JW
2646 if (mem_cgroup_is_root(memcg))
2647 return;
2648
3e32cb2e 2649 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2650 if (do_memsw_account())
3e32cb2e 2651 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2652
e8ea14cc 2653 css_put_many(&memcg->css, nr_pages);
d01dd17f 2654}
f0e45fb4 2655#endif
d01dd17f 2656
d9eb1ea2 2657static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2658{
1306a85a 2659 VM_BUG_ON_PAGE(page->mem_cgroup, page);
0a31bc97 2660 /*
a0b5b414 2661 * Any of the following ensures page->mem_cgroup stability:
0a31bc97 2662 *
a0b5b414
JW
2663 * - the page lock
2664 * - LRU isolation
2665 * - lock_page_memcg()
2666 * - exclusive reference
0a31bc97 2667 */
1306a85a 2668 page->mem_cgroup = memcg;
7a81b88c 2669}
66e1707b 2670
84c07d11 2671#ifdef CONFIG_MEMCG_KMEM
8380ce47
RG
2672/*
2673 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2674 *
2675 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2676 * cgroup_mutex, etc.
2677 */
2678struct mem_cgroup *mem_cgroup_from_obj(void *p)
2679{
2680 struct page *page;
2681
2682 if (mem_cgroup_disabled())
2683 return NULL;
2684
2685 page = virt_to_head_page(p);
2686
2687 /*
2688 * Slab pages don't have page->mem_cgroup set because corresponding
2689 * kmem caches can be reparented during the lifetime. That's why
2690 * memcg_from_slab_page() should be used instead.
2691 */
2692 if (PageSlab(page))
2693 return memcg_from_slab_page(page);
2694
2695 /* All other pages use page->mem_cgroup */
2696 return page->mem_cgroup;
2697}
2698
f3bb3043 2699static int memcg_alloc_cache_id(void)
55007d84 2700{
f3bb3043
VD
2701 int id, size;
2702 int err;
2703
dbcf73e2 2704 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2705 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2706 if (id < 0)
2707 return id;
55007d84 2708
dbcf73e2 2709 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2710 return id;
2711
2712 /*
2713 * There's no space for the new id in memcg_caches arrays,
2714 * so we have to grow them.
2715 */
05257a1a 2716 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2717
2718 size = 2 * (id + 1);
55007d84
GC
2719 if (size < MEMCG_CACHES_MIN_SIZE)
2720 size = MEMCG_CACHES_MIN_SIZE;
2721 else if (size > MEMCG_CACHES_MAX_SIZE)
2722 size = MEMCG_CACHES_MAX_SIZE;
2723
f3bb3043 2724 err = memcg_update_all_caches(size);
60d3fd32
VD
2725 if (!err)
2726 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2727 if (!err)
2728 memcg_nr_cache_ids = size;
2729
2730 up_write(&memcg_cache_ids_sem);
2731
f3bb3043 2732 if (err) {
dbcf73e2 2733 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2734 return err;
2735 }
2736 return id;
2737}
2738
2739static void memcg_free_cache_id(int id)
2740{
dbcf73e2 2741 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2742}
2743
d5b3cf71 2744struct memcg_kmem_cache_create_work {
5722d094
VD
2745 struct mem_cgroup *memcg;
2746 struct kmem_cache *cachep;
2747 struct work_struct work;
2748};
2749
d5b3cf71 2750static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2751{
d5b3cf71
VD
2752 struct memcg_kmem_cache_create_work *cw =
2753 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2754 struct mem_cgroup *memcg = cw->memcg;
2755 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2756
d5b3cf71 2757 memcg_create_kmem_cache(memcg, cachep);
bd673145 2758
5722d094 2759 css_put(&memcg->css);
d7f25f8a
GC
2760 kfree(cw);
2761}
2762
2763/*
2764 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2765 */
85cfb245 2766static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2767 struct kmem_cache *cachep)
d7f25f8a 2768{
d5b3cf71 2769 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2770
f0a3a24b
RG
2771 if (!css_tryget_online(&memcg->css))
2772 return;
2773
c892fd82 2774 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2775 if (!cw)
d7f25f8a 2776 return;
8135be5a 2777
d7f25f8a
GC
2778 cw->memcg = memcg;
2779 cw->cachep = cachep;
d5b3cf71 2780 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2781
17cc4dfe 2782 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2783}
2784
45264778
VD
2785static inline bool memcg_kmem_bypass(void)
2786{
50d53d7c
ZL
2787 if (in_interrupt())
2788 return true;
2789
2790 /* Allow remote memcg charging in kthread contexts. */
2791 if ((!current->mm || (current->flags & PF_KTHREAD)) &&
2792 !current->active_memcg)
45264778
VD
2793 return true;
2794 return false;
2795}
2796
2797/**
2798 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2799 * @cachep: the original global kmem cache
2800 *
d7f25f8a
GC
2801 * Return the kmem_cache we're supposed to use for a slab allocation.
2802 * We try to use the current memcg's version of the cache.
2803 *
45264778
VD
2804 * If the cache does not exist yet, if we are the first user of it, we
2805 * create it asynchronously in a workqueue and let the current allocation
2806 * go through with the original cache.
d7f25f8a 2807 *
45264778
VD
2808 * This function takes a reference to the cache it returns to assure it
2809 * won't get destroyed while we are working with it. Once the caller is
2810 * done with it, memcg_kmem_put_cache() must be called to release the
2811 * reference.
d7f25f8a 2812 */
45264778 2813struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2814{
2815 struct mem_cgroup *memcg;
959c8963 2816 struct kmem_cache *memcg_cachep;
f0a3a24b 2817 struct memcg_cache_array *arr;
2a4db7eb 2818 int kmemcg_id;
d7f25f8a 2819
f7ce3190 2820 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2821
45264778 2822 if (memcg_kmem_bypass())
230e9fc2
VD
2823 return cachep;
2824
f0a3a24b
RG
2825 rcu_read_lock();
2826
2827 if (unlikely(current->active_memcg))
2828 memcg = current->active_memcg;
2829 else
2830 memcg = mem_cgroup_from_task(current);
2831
2832 if (!memcg || memcg == root_mem_cgroup)
2833 goto out_unlock;
2834
4db0c3c2 2835 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2836 if (kmemcg_id < 0)
f0a3a24b 2837 goto out_unlock;
d7f25f8a 2838
f0a3a24b
RG
2839 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2840
2841 /*
2842 * Make sure we will access the up-to-date value. The code updating
2843 * memcg_caches issues a write barrier to match the data dependency
2844 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2845 */
2846 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2847
2848 /*
2849 * If we are in a safe context (can wait, and not in interrupt
2850 * context), we could be be predictable and return right away.
2851 * This would guarantee that the allocation being performed
2852 * already belongs in the new cache.
2853 *
2854 * However, there are some clashes that can arrive from locking.
2855 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2856 * memcg_create_kmem_cache, this means no further allocation
2857 * could happen with the slab_mutex held. So it's better to
2858 * defer everything.
f0a3a24b
RG
2859 *
2860 * If the memcg is dying or memcg_cache is about to be released,
2861 * don't bother creating new kmem_caches. Because memcg_cachep
2862 * is ZEROed as the fist step of kmem offlining, we don't need
2863 * percpu_ref_tryget_live() here. css_tryget_online() check in
2864 * memcg_schedule_kmem_cache_create() will prevent us from
2865 * creation of a new kmem_cache.
ca0dde97 2866 */
f0a3a24b
RG
2867 if (unlikely(!memcg_cachep))
2868 memcg_schedule_kmem_cache_create(memcg, cachep);
2869 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2870 cachep = memcg_cachep;
2871out_unlock:
2872 rcu_read_unlock();
ca0dde97 2873 return cachep;
d7f25f8a 2874}
d7f25f8a 2875
45264778
VD
2876/**
2877 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2878 * @cachep: the cache returned by memcg_kmem_get_cache
2879 */
2880void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2881{
2882 if (!is_root_cache(cachep))
f0a3a24b 2883 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2884}
2885
45264778 2886/**
4b13f64d 2887 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 2888 * @memcg: memory cgroup to charge
45264778 2889 * @gfp: reclaim mode
92d0510c 2890 * @nr_pages: number of pages to charge
45264778
VD
2891 *
2892 * Returns 0 on success, an error code on failure.
2893 */
4b13f64d
RG
2894int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2895 unsigned int nr_pages)
7ae1e1d0 2896{
f3ccb2c4 2897 struct page_counter *counter;
7ae1e1d0
GC
2898 int ret;
2899
f3ccb2c4 2900 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2901 if (ret)
f3ccb2c4 2902 return ret;
52c29b04
JW
2903
2904 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2905 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2906
2907 /*
2908 * Enforce __GFP_NOFAIL allocation because callers are not
2909 * prepared to see failures and likely do not have any failure
2910 * handling code.
2911 */
2912 if (gfp & __GFP_NOFAIL) {
2913 page_counter_charge(&memcg->kmem, nr_pages);
2914 return 0;
2915 }
52c29b04
JW
2916 cancel_charge(memcg, nr_pages);
2917 return -ENOMEM;
7ae1e1d0 2918 }
f3ccb2c4 2919 return 0;
7ae1e1d0
GC
2920}
2921
4b13f64d
RG
2922/**
2923 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2924 * @memcg: memcg to uncharge
2925 * @nr_pages: number of pages to uncharge
2926 */
2927void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2928{
2929 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2930 page_counter_uncharge(&memcg->kmem, nr_pages);
2931
2932 page_counter_uncharge(&memcg->memory, nr_pages);
2933 if (do_memsw_account())
2934 page_counter_uncharge(&memcg->memsw, nr_pages);
2935}
2936
45264778 2937/**
f4b00eab 2938 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2939 * @page: page to charge
2940 * @gfp: reclaim mode
2941 * @order: allocation order
2942 *
2943 * Returns 0 on success, an error code on failure.
2944 */
f4b00eab 2945int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2946{
f3ccb2c4 2947 struct mem_cgroup *memcg;
fcff7d7e 2948 int ret = 0;
7ae1e1d0 2949
60cd4bcd 2950 if (memcg_kmem_bypass())
45264778
VD
2951 return 0;
2952
d46eb14b 2953 memcg = get_mem_cgroup_from_current();
c4159a75 2954 if (!mem_cgroup_is_root(memcg)) {
4b13f64d 2955 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
2956 if (!ret) {
2957 page->mem_cgroup = memcg;
c4159a75 2958 __SetPageKmemcg(page);
4d96ba35 2959 }
c4159a75 2960 }
7ae1e1d0 2961 css_put(&memcg->css);
d05e83a6 2962 return ret;
7ae1e1d0 2963}
49a18eae 2964
45264778 2965/**
f4b00eab 2966 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
2967 * @page: page to uncharge
2968 * @order: allocation order
2969 */
f4b00eab 2970void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 2971{
1306a85a 2972 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2973 unsigned int nr_pages = 1 << order;
7ae1e1d0 2974
7ae1e1d0
GC
2975 if (!memcg)
2976 return;
2977
309381fe 2978 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 2979 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 2980 page->mem_cgroup = NULL;
c4159a75
VD
2981
2982 /* slab pages do not have PageKmemcg flag set */
2983 if (PageKmemcg(page))
2984 __ClearPageKmemcg(page);
2985
f3ccb2c4 2986 css_put_many(&memcg->css, nr_pages);
60d3fd32 2987}
84c07d11 2988#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2989
ca3e0214
KH
2990#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2991
ca3e0214
KH
2992/*
2993 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2994 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2995 */
e94c8a9c 2996void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2997{
e94c8a9c 2998 int i;
ca3e0214 2999
3d37c4a9
KH
3000 if (mem_cgroup_disabled())
3001 return;
b070e65c 3002
29833315 3003 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3004 head[i].mem_cgroup = head->mem_cgroup;
ca3e0214 3005}
12d27107 3006#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3007
c255a458 3008#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3009/**
3010 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3011 * @entry: swap entry to be moved
3012 * @from: mem_cgroup which the entry is moved from
3013 * @to: mem_cgroup which the entry is moved to
3014 *
3015 * It succeeds only when the swap_cgroup's record for this entry is the same
3016 * as the mem_cgroup's id of @from.
3017 *
3018 * Returns 0 on success, -EINVAL on failure.
3019 *
3e32cb2e 3020 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3021 * both res and memsw, and called css_get().
3022 */
3023static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3024 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3025{
3026 unsigned short old_id, new_id;
3027
34c00c31
LZ
3028 old_id = mem_cgroup_id(from);
3029 new_id = mem_cgroup_id(to);
02491447
DN
3030
3031 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3032 mod_memcg_state(from, MEMCG_SWAP, -1);
3033 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3034 return 0;
3035 }
3036 return -EINVAL;
3037}
3038#else
3039static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3040 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3041{
3042 return -EINVAL;
3043}
8c7c6e34 3044#endif
d13d1443 3045
bbec2e15 3046static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3047
bbec2e15
RG
3048static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3049 unsigned long max, bool memsw)
628f4235 3050{
3e32cb2e 3051 bool enlarge = false;
bb4a7ea2 3052 bool drained = false;
3e32cb2e 3053 int ret;
c054a78c
YZ
3054 bool limits_invariant;
3055 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3056
3e32cb2e 3057 do {
628f4235
KH
3058 if (signal_pending(current)) {
3059 ret = -EINTR;
3060 break;
3061 }
3e32cb2e 3062
bbec2e15 3063 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3064 /*
3065 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3066 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3067 */
15b42562 3068 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3069 max <= memcg->memsw.max;
c054a78c 3070 if (!limits_invariant) {
bbec2e15 3071 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3072 ret = -EINVAL;
8c7c6e34
KH
3073 break;
3074 }
bbec2e15 3075 if (max > counter->max)
3e32cb2e 3076 enlarge = true;
bbec2e15
RG
3077 ret = page_counter_set_max(counter, max);
3078 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3079
3080 if (!ret)
3081 break;
3082
bb4a7ea2
SB
3083 if (!drained) {
3084 drain_all_stock(memcg);
3085 drained = true;
3086 continue;
3087 }
3088
1ab5c056
AR
3089 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3090 GFP_KERNEL, !memsw)) {
3091 ret = -EBUSY;
3092 break;
3093 }
3094 } while (true);
3e32cb2e 3095
3c11ecf4
KH
3096 if (!ret && enlarge)
3097 memcg_oom_recover(memcg);
3e32cb2e 3098
628f4235
KH
3099 return ret;
3100}
3101
ef8f2327 3102unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3103 gfp_t gfp_mask,
3104 unsigned long *total_scanned)
3105{
3106 unsigned long nr_reclaimed = 0;
ef8f2327 3107 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3108 unsigned long reclaimed;
3109 int loop = 0;
ef8f2327 3110 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3111 unsigned long excess;
0608f43d
AM
3112 unsigned long nr_scanned;
3113
3114 if (order > 0)
3115 return 0;
3116
ef8f2327 3117 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3118
3119 /*
3120 * Do not even bother to check the largest node if the root
3121 * is empty. Do it lockless to prevent lock bouncing. Races
3122 * are acceptable as soft limit is best effort anyway.
3123 */
bfc7228b 3124 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3125 return 0;
3126
0608f43d
AM
3127 /*
3128 * This loop can run a while, specially if mem_cgroup's continuously
3129 * keep exceeding their soft limit and putting the system under
3130 * pressure
3131 */
3132 do {
3133 if (next_mz)
3134 mz = next_mz;
3135 else
3136 mz = mem_cgroup_largest_soft_limit_node(mctz);
3137 if (!mz)
3138 break;
3139
3140 nr_scanned = 0;
ef8f2327 3141 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3142 gfp_mask, &nr_scanned);
3143 nr_reclaimed += reclaimed;
3144 *total_scanned += nr_scanned;
0a31bc97 3145 spin_lock_irq(&mctz->lock);
bc2f2e7f 3146 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3147
3148 /*
3149 * If we failed to reclaim anything from this memory cgroup
3150 * it is time to move on to the next cgroup
3151 */
3152 next_mz = NULL;
bc2f2e7f
VD
3153 if (!reclaimed)
3154 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3155
3e32cb2e 3156 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3157 /*
3158 * One school of thought says that we should not add
3159 * back the node to the tree if reclaim returns 0.
3160 * But our reclaim could return 0, simply because due
3161 * to priority we are exposing a smaller subset of
3162 * memory to reclaim from. Consider this as a longer
3163 * term TODO.
3164 */
3165 /* If excess == 0, no tree ops */
cf2c8127 3166 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3167 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3168 css_put(&mz->memcg->css);
3169 loop++;
3170 /*
3171 * Could not reclaim anything and there are no more
3172 * mem cgroups to try or we seem to be looping without
3173 * reclaiming anything.
3174 */
3175 if (!nr_reclaimed &&
3176 (next_mz == NULL ||
3177 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3178 break;
3179 } while (!nr_reclaimed);
3180 if (next_mz)
3181 css_put(&next_mz->memcg->css);
3182 return nr_reclaimed;
3183}
3184
ea280e7b
TH
3185/*
3186 * Test whether @memcg has children, dead or alive. Note that this
3187 * function doesn't care whether @memcg has use_hierarchy enabled and
3188 * returns %true if there are child csses according to the cgroup
b8f2935f 3189 * hierarchy. Testing use_hierarchy is the caller's responsibility.
ea280e7b 3190 */
b5f99b53
GC
3191static inline bool memcg_has_children(struct mem_cgroup *memcg)
3192{
ea280e7b
TH
3193 bool ret;
3194
ea280e7b
TH
3195 rcu_read_lock();
3196 ret = css_next_child(NULL, &memcg->css);
3197 rcu_read_unlock();
3198 return ret;
b5f99b53
GC
3199}
3200
c26251f9 3201/*
51038171 3202 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3203 *
3204 * Caller is responsible for holding css reference for memcg.
3205 */
3206static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3207{
3208 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3209
c1e862c1
KH
3210 /* we call try-to-free pages for make this cgroup empty */
3211 lru_add_drain_all();
d12c60f6
JS
3212
3213 drain_all_stock(memcg);
3214
f817ed48 3215 /* try to free all pages in this cgroup */
3e32cb2e 3216 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3217 int progress;
c1e862c1 3218
c26251f9
MH
3219 if (signal_pending(current))
3220 return -EINTR;
3221
b70a2a21
JW
3222 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3223 GFP_KERNEL, true);
c1e862c1 3224 if (!progress) {
f817ed48 3225 nr_retries--;
c1e862c1 3226 /* maybe some writeback is necessary */
8aa7e847 3227 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3228 }
f817ed48
KH
3229
3230 }
ab5196c2
MH
3231
3232 return 0;
cc847582
KH
3233}
3234
6770c64e
TH
3235static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3236 char *buf, size_t nbytes,
3237 loff_t off)
c1e862c1 3238{
6770c64e 3239 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3240
d8423011
MH
3241 if (mem_cgroup_is_root(memcg))
3242 return -EINVAL;
6770c64e 3243 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3244}
3245
182446d0
TH
3246static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3247 struct cftype *cft)
18f59ea7 3248{
182446d0 3249 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3250}
3251
182446d0
TH
3252static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3253 struct cftype *cft, u64 val)
18f59ea7
BS
3254{
3255 int retval = 0;
182446d0 3256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3257 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3258
567fb435 3259 if (memcg->use_hierarchy == val)
0b8f73e1 3260 return 0;
567fb435 3261
18f59ea7 3262 /*
af901ca1 3263 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3264 * in the child subtrees. If it is unset, then the change can
3265 * occur, provided the current cgroup has no children.
3266 *
3267 * For the root cgroup, parent_mem is NULL, we allow value to be
3268 * set if there are no children.
3269 */
c0ff4b85 3270 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3271 (val == 1 || val == 0)) {
ea280e7b 3272 if (!memcg_has_children(memcg))
c0ff4b85 3273 memcg->use_hierarchy = val;
18f59ea7
BS
3274 else
3275 retval = -EBUSY;
3276 } else
3277 retval = -EINVAL;
567fb435 3278
18f59ea7
BS
3279 return retval;
3280}
3281
6f646156 3282static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3283{
42a30035 3284 unsigned long val;
ce00a967 3285
3e32cb2e 3286 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3287 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3288 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3289 if (swap)
3290 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3291 } else {
ce00a967 3292 if (!swap)
3e32cb2e 3293 val = page_counter_read(&memcg->memory);
ce00a967 3294 else
3e32cb2e 3295 val = page_counter_read(&memcg->memsw);
ce00a967 3296 }
c12176d3 3297 return val;
ce00a967
JW
3298}
3299
3e32cb2e
JW
3300enum {
3301 RES_USAGE,
3302 RES_LIMIT,
3303 RES_MAX_USAGE,
3304 RES_FAILCNT,
3305 RES_SOFT_LIMIT,
3306};
ce00a967 3307
791badbd 3308static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3309 struct cftype *cft)
8cdea7c0 3310{
182446d0 3311 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3312 struct page_counter *counter;
af36f906 3313
3e32cb2e 3314 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3315 case _MEM:
3e32cb2e
JW
3316 counter = &memcg->memory;
3317 break;
8c7c6e34 3318 case _MEMSWAP:
3e32cb2e
JW
3319 counter = &memcg->memsw;
3320 break;
510fc4e1 3321 case _KMEM:
3e32cb2e 3322 counter = &memcg->kmem;
510fc4e1 3323 break;
d55f90bf 3324 case _TCP:
0db15298 3325 counter = &memcg->tcpmem;
d55f90bf 3326 break;
8c7c6e34
KH
3327 default:
3328 BUG();
8c7c6e34 3329 }
3e32cb2e
JW
3330
3331 switch (MEMFILE_ATTR(cft->private)) {
3332 case RES_USAGE:
3333 if (counter == &memcg->memory)
c12176d3 3334 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3335 if (counter == &memcg->memsw)
c12176d3 3336 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3337 return (u64)page_counter_read(counter) * PAGE_SIZE;
3338 case RES_LIMIT:
bbec2e15 3339 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3340 case RES_MAX_USAGE:
3341 return (u64)counter->watermark * PAGE_SIZE;
3342 case RES_FAILCNT:
3343 return counter->failcnt;
3344 case RES_SOFT_LIMIT:
3345 return (u64)memcg->soft_limit * PAGE_SIZE;
3346 default:
3347 BUG();
3348 }
8cdea7c0 3349}
510fc4e1 3350
4a87e2a2 3351static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3352{
4a87e2a2 3353 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3354 struct mem_cgroup *mi;
3355 int node, cpu, i;
c350a99e
RG
3356
3357 for_each_online_cpu(cpu)
4a87e2a2 3358 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3359 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3360
3361 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3362 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3363 atomic_long_add(stat[i], &mi->vmstats[i]);
3364
3365 for_each_node(node) {
3366 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3367 struct mem_cgroup_per_node *pi;
3368
4a87e2a2 3369 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3370 stat[i] = 0;
3371
3372 for_each_online_cpu(cpu)
4a87e2a2 3373 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3374 stat[i] += per_cpu(
3375 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3376
3377 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3378 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3379 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3380 }
3381}
3382
bb65f89b
RG
3383static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3384{
3385 unsigned long events[NR_VM_EVENT_ITEMS];
3386 struct mem_cgroup *mi;
3387 int cpu, i;
3388
3389 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3390 events[i] = 0;
3391
3392 for_each_online_cpu(cpu)
3393 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3394 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3395 cpu);
bb65f89b
RG
3396
3397 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3398 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3399 atomic_long_add(events[i], &mi->vmevents[i]);
3400}
3401
84c07d11 3402#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3403static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3404{
d6441637
VD
3405 int memcg_id;
3406
b313aeee
VD
3407 if (cgroup_memory_nokmem)
3408 return 0;
3409
2a4db7eb 3410 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3411 BUG_ON(memcg->kmem_state);
d6441637 3412
f3bb3043 3413 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3414 if (memcg_id < 0)
3415 return memcg_id;
d6441637 3416
ef12947c 3417 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3418 /*
567e9ab2 3419 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3420 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3421 * guarantee no one starts accounting before all call sites are
3422 * patched.
3423 */
900a38f0 3424 memcg->kmemcg_id = memcg_id;
567e9ab2 3425 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3426 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3427
3428 return 0;
d6441637
VD
3429}
3430
8e0a8912
JW
3431static void memcg_offline_kmem(struct mem_cgroup *memcg)
3432{
3433 struct cgroup_subsys_state *css;
3434 struct mem_cgroup *parent, *child;
3435 int kmemcg_id;
3436
3437 if (memcg->kmem_state != KMEM_ONLINE)
3438 return;
3439 /*
3440 * Clear the online state before clearing memcg_caches array
3441 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3442 * guarantees that no cache will be created for this cgroup
3443 * after we are done (see memcg_create_kmem_cache()).
3444 */
3445 memcg->kmem_state = KMEM_ALLOCATED;
3446
8e0a8912
JW
3447 parent = parent_mem_cgroup(memcg);
3448 if (!parent)
3449 parent = root_mem_cgroup;
3450
bee07b33 3451 /*
4a87e2a2 3452 * Deactivate and reparent kmem_caches.
bee07b33 3453 */
fb2f2b0a
RG
3454 memcg_deactivate_kmem_caches(memcg, parent);
3455
3456 kmemcg_id = memcg->kmemcg_id;
3457 BUG_ON(kmemcg_id < 0);
3458
8e0a8912
JW
3459 /*
3460 * Change kmemcg_id of this cgroup and all its descendants to the
3461 * parent's id, and then move all entries from this cgroup's list_lrus
3462 * to ones of the parent. After we have finished, all list_lrus
3463 * corresponding to this cgroup are guaranteed to remain empty. The
3464 * ordering is imposed by list_lru_node->lock taken by
3465 * memcg_drain_all_list_lrus().
3466 */
3a06bb78 3467 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3468 css_for_each_descendant_pre(css, &memcg->css) {
3469 child = mem_cgroup_from_css(css);
3470 BUG_ON(child->kmemcg_id != kmemcg_id);
3471 child->kmemcg_id = parent->kmemcg_id;
3472 if (!memcg->use_hierarchy)
3473 break;
3474 }
3a06bb78
TH
3475 rcu_read_unlock();
3476
9bec5c35 3477 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3478
3479 memcg_free_cache_id(kmemcg_id);
3480}
3481
3482static void memcg_free_kmem(struct mem_cgroup *memcg)
3483{
0b8f73e1
JW
3484 /* css_alloc() failed, offlining didn't happen */
3485 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3486 memcg_offline_kmem(memcg);
3487
8e0a8912 3488 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3489 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3490 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3491 }
8e0a8912 3492}
d6441637 3493#else
0b8f73e1 3494static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3495{
3496 return 0;
3497}
3498static void memcg_offline_kmem(struct mem_cgroup *memcg)
3499{
3500}
3501static void memcg_free_kmem(struct mem_cgroup *memcg)
3502{
3503}
84c07d11 3504#endif /* CONFIG_MEMCG_KMEM */
127424c8 3505
bbec2e15
RG
3506static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3507 unsigned long max)
d6441637 3508{
b313aeee 3509 int ret;
127424c8 3510
bbec2e15
RG
3511 mutex_lock(&memcg_max_mutex);
3512 ret = page_counter_set_max(&memcg->kmem, max);
3513 mutex_unlock(&memcg_max_mutex);
127424c8 3514 return ret;
d6441637 3515}
510fc4e1 3516
bbec2e15 3517static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3518{
3519 int ret;
3520
bbec2e15 3521 mutex_lock(&memcg_max_mutex);
d55f90bf 3522
bbec2e15 3523 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3524 if (ret)
3525 goto out;
3526
0db15298 3527 if (!memcg->tcpmem_active) {
d55f90bf
VD
3528 /*
3529 * The active flag needs to be written after the static_key
3530 * update. This is what guarantees that the socket activation
2d758073
JW
3531 * function is the last one to run. See mem_cgroup_sk_alloc()
3532 * for details, and note that we don't mark any socket as
3533 * belonging to this memcg until that flag is up.
d55f90bf
VD
3534 *
3535 * We need to do this, because static_keys will span multiple
3536 * sites, but we can't control their order. If we mark a socket
3537 * as accounted, but the accounting functions are not patched in
3538 * yet, we'll lose accounting.
3539 *
2d758073 3540 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3541 * because when this value change, the code to process it is not
3542 * patched in yet.
3543 */
3544 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3545 memcg->tcpmem_active = true;
d55f90bf
VD
3546 }
3547out:
bbec2e15 3548 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3549 return ret;
3550}
d55f90bf 3551
628f4235
KH
3552/*
3553 * The user of this function is...
3554 * RES_LIMIT.
3555 */
451af504
TH
3556static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3557 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3558{
451af504 3559 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3560 unsigned long nr_pages;
628f4235
KH
3561 int ret;
3562
451af504 3563 buf = strstrip(buf);
650c5e56 3564 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3565 if (ret)
3566 return ret;
af36f906 3567
3e32cb2e 3568 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3569 case RES_LIMIT:
4b3bde4c
BS
3570 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3571 ret = -EINVAL;
3572 break;
3573 }
3e32cb2e
JW
3574 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3575 case _MEM:
bbec2e15 3576 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3577 break;
3e32cb2e 3578 case _MEMSWAP:
bbec2e15 3579 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3580 break;
3e32cb2e 3581 case _KMEM:
0158115f
MH
3582 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3583 "Please report your usecase to linux-mm@kvack.org if you "
3584 "depend on this functionality.\n");
bbec2e15 3585 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3586 break;
d55f90bf 3587 case _TCP:
bbec2e15 3588 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3589 break;
3e32cb2e 3590 }
296c81d8 3591 break;
3e32cb2e
JW
3592 case RES_SOFT_LIMIT:
3593 memcg->soft_limit = nr_pages;
3594 ret = 0;
628f4235
KH
3595 break;
3596 }
451af504 3597 return ret ?: nbytes;
8cdea7c0
BS
3598}
3599
6770c64e
TH
3600static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3601 size_t nbytes, loff_t off)
c84872e1 3602{
6770c64e 3603 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3604 struct page_counter *counter;
c84872e1 3605
3e32cb2e
JW
3606 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3607 case _MEM:
3608 counter = &memcg->memory;
3609 break;
3610 case _MEMSWAP:
3611 counter = &memcg->memsw;
3612 break;
3613 case _KMEM:
3614 counter = &memcg->kmem;
3615 break;
d55f90bf 3616 case _TCP:
0db15298 3617 counter = &memcg->tcpmem;
d55f90bf 3618 break;
3e32cb2e
JW
3619 default:
3620 BUG();
3621 }
af36f906 3622
3e32cb2e 3623 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3624 case RES_MAX_USAGE:
3e32cb2e 3625 page_counter_reset_watermark(counter);
29f2a4da
PE
3626 break;
3627 case RES_FAILCNT:
3e32cb2e 3628 counter->failcnt = 0;
29f2a4da 3629 break;
3e32cb2e
JW
3630 default:
3631 BUG();
29f2a4da 3632 }
f64c3f54 3633
6770c64e 3634 return nbytes;
c84872e1
PE
3635}
3636
182446d0 3637static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3638 struct cftype *cft)
3639{
182446d0 3640 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3641}
3642
02491447 3643#ifdef CONFIG_MMU
182446d0 3644static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3645 struct cftype *cft, u64 val)
3646{
182446d0 3647 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3648
1dfab5ab 3649 if (val & ~MOVE_MASK)
7dc74be0 3650 return -EINVAL;
ee5e8472 3651
7dc74be0 3652 /*
ee5e8472
GC
3653 * No kind of locking is needed in here, because ->can_attach() will
3654 * check this value once in the beginning of the process, and then carry
3655 * on with stale data. This means that changes to this value will only
3656 * affect task migrations starting after the change.
7dc74be0 3657 */
c0ff4b85 3658 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3659 return 0;
3660}
02491447 3661#else
182446d0 3662static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3663 struct cftype *cft, u64 val)
3664{
3665 return -ENOSYS;
3666}
3667#endif
7dc74be0 3668
406eb0c9 3669#ifdef CONFIG_NUMA
113b7dfd
JW
3670
3671#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3672#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3673#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3674
3675static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3676 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3677{
867e5e1d 3678 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3679 unsigned long nr = 0;
3680 enum lru_list lru;
3681
3682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3683
3684 for_each_lru(lru) {
3685 if (!(BIT(lru) & lru_mask))
3686 continue;
dd8657b6
SB
3687 if (tree)
3688 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3689 else
3690 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3691 }
3692 return nr;
3693}
3694
3695static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3696 unsigned int lru_mask,
3697 bool tree)
113b7dfd
JW
3698{
3699 unsigned long nr = 0;
3700 enum lru_list lru;
3701
3702 for_each_lru(lru) {
3703 if (!(BIT(lru) & lru_mask))
3704 continue;
dd8657b6
SB
3705 if (tree)
3706 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3707 else
3708 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3709 }
3710 return nr;
3711}
3712
2da8ca82 3713static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3714{
25485de6
GT
3715 struct numa_stat {
3716 const char *name;
3717 unsigned int lru_mask;
3718 };
3719
3720 static const struct numa_stat stats[] = {
3721 { "total", LRU_ALL },
3722 { "file", LRU_ALL_FILE },
3723 { "anon", LRU_ALL_ANON },
3724 { "unevictable", BIT(LRU_UNEVICTABLE) },
3725 };
3726 const struct numa_stat *stat;
406eb0c9 3727 int nid;
aa9694bb 3728 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3729
25485de6 3730 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3731 seq_printf(m, "%s=%lu", stat->name,
3732 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3733 false));
3734 for_each_node_state(nid, N_MEMORY)
3735 seq_printf(m, " N%d=%lu", nid,
3736 mem_cgroup_node_nr_lru_pages(memcg, nid,
3737 stat->lru_mask, false));
25485de6 3738 seq_putc(m, '\n');
406eb0c9 3739 }
406eb0c9 3740
071aee13 3741 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3742
3743 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3744 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3745 true));
3746 for_each_node_state(nid, N_MEMORY)
3747 seq_printf(m, " N%d=%lu", nid,
3748 mem_cgroup_node_nr_lru_pages(memcg, nid,
3749 stat->lru_mask, true));
071aee13 3750 seq_putc(m, '\n');
406eb0c9 3751 }
406eb0c9 3752
406eb0c9
YH
3753 return 0;
3754}
3755#endif /* CONFIG_NUMA */
3756
c8713d0b 3757static const unsigned int memcg1_stats[] = {
0d1c2072 3758 NR_FILE_PAGES,
be5d0a74 3759 NR_ANON_MAPPED,
468c3982
JW
3760#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3761 NR_ANON_THPS,
3762#endif
c8713d0b
JW
3763 NR_SHMEM,
3764 NR_FILE_MAPPED,
3765 NR_FILE_DIRTY,
3766 NR_WRITEBACK,
3767 MEMCG_SWAP,
3768};
3769
3770static const char *const memcg1_stat_names[] = {
3771 "cache",
3772 "rss",
468c3982 3773#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3774 "rss_huge",
468c3982 3775#endif
c8713d0b
JW
3776 "shmem",
3777 "mapped_file",
3778 "dirty",
3779 "writeback",
3780 "swap",
3781};
3782
df0e53d0 3783/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3784static const unsigned int memcg1_events[] = {
df0e53d0
JW
3785 PGPGIN,
3786 PGPGOUT,
3787 PGFAULT,
3788 PGMAJFAULT,
3789};
3790
2da8ca82 3791static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3792{
aa9694bb 3793 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3794 unsigned long memory, memsw;
af7c4b0e
JW
3795 struct mem_cgroup *mi;
3796 unsigned int i;
406eb0c9 3797
71cd3113 3798 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3799
71cd3113 3800 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
3801 unsigned long nr;
3802
71cd3113 3803 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3804 continue;
468c3982
JW
3805 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3806#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3807 if (memcg1_stats[i] == NR_ANON_THPS)
3808 nr *= HPAGE_PMD_NR;
3809#endif
3810 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 3811 }
7b854121 3812
df0e53d0 3813 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3814 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3815 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3816
3817 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3818 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3819 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3820 PAGE_SIZE);
af7c4b0e 3821
14067bb3 3822 /* Hierarchical information */
3e32cb2e
JW
3823 memory = memsw = PAGE_COUNTER_MAX;
3824 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3825 memory = min(memory, READ_ONCE(mi->memory.max));
3826 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 3827 }
3e32cb2e
JW
3828 seq_printf(m, "hierarchical_memory_limit %llu\n",
3829 (u64)memory * PAGE_SIZE);
7941d214 3830 if (do_memsw_account())
3e32cb2e
JW
3831 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3832 (u64)memsw * PAGE_SIZE);
7f016ee8 3833
8de7ecc6 3834 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3835 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3836 continue;
8de7ecc6 3837 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3838 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3839 PAGE_SIZE);
af7c4b0e
JW
3840 }
3841
8de7ecc6 3842 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3843 seq_printf(m, "total_%s %llu\n",
3844 vm_event_name(memcg1_events[i]),
dd923990 3845 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3846
8de7ecc6 3847 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3848 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
3849 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3850 PAGE_SIZE);
14067bb3 3851
7f016ee8 3852#ifdef CONFIG_DEBUG_VM
7f016ee8 3853 {
ef8f2327
MG
3854 pg_data_t *pgdat;
3855 struct mem_cgroup_per_node *mz;
1431d4d1
JW
3856 unsigned long anon_cost = 0;
3857 unsigned long file_cost = 0;
7f016ee8 3858
ef8f2327
MG
3859 for_each_online_pgdat(pgdat) {
3860 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 3861
1431d4d1
JW
3862 anon_cost += mz->lruvec.anon_cost;
3863 file_cost += mz->lruvec.file_cost;
ef8f2327 3864 }
1431d4d1
JW
3865 seq_printf(m, "anon_cost %lu\n", anon_cost);
3866 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
3867 }
3868#endif
3869
d2ceb9b7
KH
3870 return 0;
3871}
3872
182446d0
TH
3873static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3874 struct cftype *cft)
a7885eb8 3875{
182446d0 3876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3877
1f4c025b 3878 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3879}
3880
182446d0
TH
3881static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3882 struct cftype *cft, u64 val)
a7885eb8 3883{
182446d0 3884 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3885
3dae7fec 3886 if (val > 100)
a7885eb8
KM
3887 return -EINVAL;
3888
14208b0e 3889 if (css->parent)
3dae7fec
JW
3890 memcg->swappiness = val;
3891 else
3892 vm_swappiness = val;
068b38c1 3893
a7885eb8
KM
3894 return 0;
3895}
3896
2e72b634
KS
3897static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3898{
3899 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3900 unsigned long usage;
2e72b634
KS
3901 int i;
3902
3903 rcu_read_lock();
3904 if (!swap)
2c488db2 3905 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3906 else
2c488db2 3907 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3908
3909 if (!t)
3910 goto unlock;
3911
ce00a967 3912 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3913
3914 /*
748dad36 3915 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3916 * If it's not true, a threshold was crossed after last
3917 * call of __mem_cgroup_threshold().
3918 */
5407a562 3919 i = t->current_threshold;
2e72b634
KS
3920
3921 /*
3922 * Iterate backward over array of thresholds starting from
3923 * current_threshold and check if a threshold is crossed.
3924 * If none of thresholds below usage is crossed, we read
3925 * only one element of the array here.
3926 */
3927 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3928 eventfd_signal(t->entries[i].eventfd, 1);
3929
3930 /* i = current_threshold + 1 */
3931 i++;
3932
3933 /*
3934 * Iterate forward over array of thresholds starting from
3935 * current_threshold+1 and check if a threshold is crossed.
3936 * If none of thresholds above usage is crossed, we read
3937 * only one element of the array here.
3938 */
3939 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3940 eventfd_signal(t->entries[i].eventfd, 1);
3941
3942 /* Update current_threshold */
5407a562 3943 t->current_threshold = i - 1;
2e72b634
KS
3944unlock:
3945 rcu_read_unlock();
3946}
3947
3948static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3949{
ad4ca5f4
KS
3950 while (memcg) {
3951 __mem_cgroup_threshold(memcg, false);
7941d214 3952 if (do_memsw_account())
ad4ca5f4
KS
3953 __mem_cgroup_threshold(memcg, true);
3954
3955 memcg = parent_mem_cgroup(memcg);
3956 }
2e72b634
KS
3957}
3958
3959static int compare_thresholds(const void *a, const void *b)
3960{
3961 const struct mem_cgroup_threshold *_a = a;
3962 const struct mem_cgroup_threshold *_b = b;
3963
2bff24a3
GT
3964 if (_a->threshold > _b->threshold)
3965 return 1;
3966
3967 if (_a->threshold < _b->threshold)
3968 return -1;
3969
3970 return 0;
2e72b634
KS
3971}
3972
c0ff4b85 3973static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3974{
3975 struct mem_cgroup_eventfd_list *ev;
3976
2bcf2e92
MH
3977 spin_lock(&memcg_oom_lock);
3978
c0ff4b85 3979 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3980 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3981
3982 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3983 return 0;
3984}
3985
c0ff4b85 3986static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3987{
7d74b06f
KH
3988 struct mem_cgroup *iter;
3989
c0ff4b85 3990 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3991 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3992}
3993
59b6f873 3994static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3995 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3996{
2c488db2
KS
3997 struct mem_cgroup_thresholds *thresholds;
3998 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3999 unsigned long threshold;
4000 unsigned long usage;
2c488db2 4001 int i, size, ret;
2e72b634 4002
650c5e56 4003 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4004 if (ret)
4005 return ret;
4006
4007 mutex_lock(&memcg->thresholds_lock);
2c488db2 4008
05b84301 4009 if (type == _MEM) {
2c488db2 4010 thresholds = &memcg->thresholds;
ce00a967 4011 usage = mem_cgroup_usage(memcg, false);
05b84301 4012 } else if (type == _MEMSWAP) {
2c488db2 4013 thresholds = &memcg->memsw_thresholds;
ce00a967 4014 usage = mem_cgroup_usage(memcg, true);
05b84301 4015 } else
2e72b634
KS
4016 BUG();
4017
2e72b634 4018 /* Check if a threshold crossed before adding a new one */
2c488db2 4019 if (thresholds->primary)
2e72b634
KS
4020 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4021
2c488db2 4022 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4023
4024 /* Allocate memory for new array of thresholds */
67b8046f 4025 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4026 if (!new) {
2e72b634
KS
4027 ret = -ENOMEM;
4028 goto unlock;
4029 }
2c488db2 4030 new->size = size;
2e72b634
KS
4031
4032 /* Copy thresholds (if any) to new array */
2c488db2
KS
4033 if (thresholds->primary) {
4034 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4035 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4036 }
4037
2e72b634 4038 /* Add new threshold */
2c488db2
KS
4039 new->entries[size - 1].eventfd = eventfd;
4040 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4041
4042 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4043 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4044 compare_thresholds, NULL);
4045
4046 /* Find current threshold */
2c488db2 4047 new->current_threshold = -1;
2e72b634 4048 for (i = 0; i < size; i++) {
748dad36 4049 if (new->entries[i].threshold <= usage) {
2e72b634 4050 /*
2c488db2
KS
4051 * new->current_threshold will not be used until
4052 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4053 * it here.
4054 */
2c488db2 4055 ++new->current_threshold;
748dad36
SZ
4056 } else
4057 break;
2e72b634
KS
4058 }
4059
2c488db2
KS
4060 /* Free old spare buffer and save old primary buffer as spare */
4061 kfree(thresholds->spare);
4062 thresholds->spare = thresholds->primary;
4063
4064 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4065
907860ed 4066 /* To be sure that nobody uses thresholds */
2e72b634
KS
4067 synchronize_rcu();
4068
2e72b634
KS
4069unlock:
4070 mutex_unlock(&memcg->thresholds_lock);
4071
4072 return ret;
4073}
4074
59b6f873 4075static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4076 struct eventfd_ctx *eventfd, const char *args)
4077{
59b6f873 4078 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4079}
4080
59b6f873 4081static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4082 struct eventfd_ctx *eventfd, const char *args)
4083{
59b6f873 4084 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4085}
4086
59b6f873 4087static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4088 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4089{
2c488db2
KS
4090 struct mem_cgroup_thresholds *thresholds;
4091 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4092 unsigned long usage;
7d36665a 4093 int i, j, size, entries;
2e72b634
KS
4094
4095 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4096
4097 if (type == _MEM) {
2c488db2 4098 thresholds = &memcg->thresholds;
ce00a967 4099 usage = mem_cgroup_usage(memcg, false);
05b84301 4100 } else if (type == _MEMSWAP) {
2c488db2 4101 thresholds = &memcg->memsw_thresholds;
ce00a967 4102 usage = mem_cgroup_usage(memcg, true);
05b84301 4103 } else
2e72b634
KS
4104 BUG();
4105
371528ca
AV
4106 if (!thresholds->primary)
4107 goto unlock;
4108
2e72b634
KS
4109 /* Check if a threshold crossed before removing */
4110 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4111
4112 /* Calculate new number of threshold */
7d36665a 4113 size = entries = 0;
2c488db2
KS
4114 for (i = 0; i < thresholds->primary->size; i++) {
4115 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4116 size++;
7d36665a
CX
4117 else
4118 entries++;
2e72b634
KS
4119 }
4120
2c488db2 4121 new = thresholds->spare;
907860ed 4122
7d36665a
CX
4123 /* If no items related to eventfd have been cleared, nothing to do */
4124 if (!entries)
4125 goto unlock;
4126
2e72b634
KS
4127 /* Set thresholds array to NULL if we don't have thresholds */
4128 if (!size) {
2c488db2
KS
4129 kfree(new);
4130 new = NULL;
907860ed 4131 goto swap_buffers;
2e72b634
KS
4132 }
4133
2c488db2 4134 new->size = size;
2e72b634
KS
4135
4136 /* Copy thresholds and find current threshold */
2c488db2
KS
4137 new->current_threshold = -1;
4138 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4139 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4140 continue;
4141
2c488db2 4142 new->entries[j] = thresholds->primary->entries[i];
748dad36 4143 if (new->entries[j].threshold <= usage) {
2e72b634 4144 /*
2c488db2 4145 * new->current_threshold will not be used
2e72b634
KS
4146 * until rcu_assign_pointer(), so it's safe to increment
4147 * it here.
4148 */
2c488db2 4149 ++new->current_threshold;
2e72b634
KS
4150 }
4151 j++;
4152 }
4153
907860ed 4154swap_buffers:
2c488db2
KS
4155 /* Swap primary and spare array */
4156 thresholds->spare = thresholds->primary;
8c757763 4157
2c488db2 4158 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4159
907860ed 4160 /* To be sure that nobody uses thresholds */
2e72b634 4161 synchronize_rcu();
6611d8d7
MC
4162
4163 /* If all events are unregistered, free the spare array */
4164 if (!new) {
4165 kfree(thresholds->spare);
4166 thresholds->spare = NULL;
4167 }
371528ca 4168unlock:
2e72b634 4169 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4170}
c1e862c1 4171
59b6f873 4172static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4173 struct eventfd_ctx *eventfd)
4174{
59b6f873 4175 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4176}
4177
59b6f873 4178static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4179 struct eventfd_ctx *eventfd)
4180{
59b6f873 4181 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4182}
4183
59b6f873 4184static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4185 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4186{
9490ff27 4187 struct mem_cgroup_eventfd_list *event;
9490ff27 4188
9490ff27
KH
4189 event = kmalloc(sizeof(*event), GFP_KERNEL);
4190 if (!event)
4191 return -ENOMEM;
4192
1af8efe9 4193 spin_lock(&memcg_oom_lock);
9490ff27
KH
4194
4195 event->eventfd = eventfd;
4196 list_add(&event->list, &memcg->oom_notify);
4197
4198 /* already in OOM ? */
c2b42d3c 4199 if (memcg->under_oom)
9490ff27 4200 eventfd_signal(eventfd, 1);
1af8efe9 4201 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4202
4203 return 0;
4204}
4205
59b6f873 4206static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4207 struct eventfd_ctx *eventfd)
9490ff27 4208{
9490ff27 4209 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4210
1af8efe9 4211 spin_lock(&memcg_oom_lock);
9490ff27 4212
c0ff4b85 4213 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4214 if (ev->eventfd == eventfd) {
4215 list_del(&ev->list);
4216 kfree(ev);
4217 }
4218 }
4219
1af8efe9 4220 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4221}
4222
2da8ca82 4223static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4224{
aa9694bb 4225 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4226
791badbd 4227 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4228 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4229 seq_printf(sf, "oom_kill %lu\n",
4230 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4231 return 0;
4232}
4233
182446d0 4234static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4235 struct cftype *cft, u64 val)
4236{
182446d0 4237 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4238
4239 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4240 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4241 return -EINVAL;
4242
c0ff4b85 4243 memcg->oom_kill_disable = val;
4d845ebf 4244 if (!val)
c0ff4b85 4245 memcg_oom_recover(memcg);
3dae7fec 4246
3c11ecf4
KH
4247 return 0;
4248}
4249
52ebea74
TH
4250#ifdef CONFIG_CGROUP_WRITEBACK
4251
3a8e9ac8
TH
4252#include <trace/events/writeback.h>
4253
841710aa
TH
4254static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4255{
4256 return wb_domain_init(&memcg->cgwb_domain, gfp);
4257}
4258
4259static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4260{
4261 wb_domain_exit(&memcg->cgwb_domain);
4262}
4263
2529bb3a
TH
4264static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4265{
4266 wb_domain_size_changed(&memcg->cgwb_domain);
4267}
4268
841710aa
TH
4269struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4270{
4271 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4272
4273 if (!memcg->css.parent)
4274 return NULL;
4275
4276 return &memcg->cgwb_domain;
4277}
4278
0b3d6e6f
GT
4279/*
4280 * idx can be of type enum memcg_stat_item or node_stat_item.
4281 * Keep in sync with memcg_exact_page().
4282 */
4283static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4284{
871789d4 4285 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4286 int cpu;
4287
4288 for_each_online_cpu(cpu)
871789d4 4289 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4290 if (x < 0)
4291 x = 0;
4292 return x;
4293}
4294
c2aa723a
TH
4295/**
4296 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4297 * @wb: bdi_writeback in question
c5edf9cd
TH
4298 * @pfilepages: out parameter for number of file pages
4299 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4300 * @pdirty: out parameter for number of dirty pages
4301 * @pwriteback: out parameter for number of pages under writeback
4302 *
c5edf9cd
TH
4303 * Determine the numbers of file, headroom, dirty, and writeback pages in
4304 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4305 * is a bit more involved.
c2aa723a 4306 *
c5edf9cd
TH
4307 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4308 * headroom is calculated as the lowest headroom of itself and the
4309 * ancestors. Note that this doesn't consider the actual amount of
4310 * available memory in the system. The caller should further cap
4311 * *@pheadroom accordingly.
c2aa723a 4312 */
c5edf9cd
TH
4313void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4314 unsigned long *pheadroom, unsigned long *pdirty,
4315 unsigned long *pwriteback)
c2aa723a
TH
4316{
4317 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4318 struct mem_cgroup *parent;
c2aa723a 4319
0b3d6e6f 4320 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4321
0b3d6e6f 4322 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4323 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4324 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4325 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4326
c2aa723a 4327 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4328 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4329 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4330 unsigned long used = page_counter_read(&memcg->memory);
4331
c5edf9cd 4332 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4333 memcg = parent;
4334 }
c2aa723a
TH
4335}
4336
97b27821
TH
4337/*
4338 * Foreign dirty flushing
4339 *
4340 * There's an inherent mismatch between memcg and writeback. The former
4341 * trackes ownership per-page while the latter per-inode. This was a
4342 * deliberate design decision because honoring per-page ownership in the
4343 * writeback path is complicated, may lead to higher CPU and IO overheads
4344 * and deemed unnecessary given that write-sharing an inode across
4345 * different cgroups isn't a common use-case.
4346 *
4347 * Combined with inode majority-writer ownership switching, this works well
4348 * enough in most cases but there are some pathological cases. For
4349 * example, let's say there are two cgroups A and B which keep writing to
4350 * different but confined parts of the same inode. B owns the inode and
4351 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4352 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4353 * triggering background writeback. A will be slowed down without a way to
4354 * make writeback of the dirty pages happen.
4355 *
4356 * Conditions like the above can lead to a cgroup getting repatedly and
4357 * severely throttled after making some progress after each
4358 * dirty_expire_interval while the underyling IO device is almost
4359 * completely idle.
4360 *
4361 * Solving this problem completely requires matching the ownership tracking
4362 * granularities between memcg and writeback in either direction. However,
4363 * the more egregious behaviors can be avoided by simply remembering the
4364 * most recent foreign dirtying events and initiating remote flushes on
4365 * them when local writeback isn't enough to keep the memory clean enough.
4366 *
4367 * The following two functions implement such mechanism. When a foreign
4368 * page - a page whose memcg and writeback ownerships don't match - is
4369 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4370 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4371 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4372 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4373 * foreign bdi_writebacks which haven't expired. Both the numbers of
4374 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4375 * limited to MEMCG_CGWB_FRN_CNT.
4376 *
4377 * The mechanism only remembers IDs and doesn't hold any object references.
4378 * As being wrong occasionally doesn't matter, updates and accesses to the
4379 * records are lockless and racy.
4380 */
4381void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4382 struct bdi_writeback *wb)
4383{
4384 struct mem_cgroup *memcg = page->mem_cgroup;
4385 struct memcg_cgwb_frn *frn;
4386 u64 now = get_jiffies_64();
4387 u64 oldest_at = now;
4388 int oldest = -1;
4389 int i;
4390
3a8e9ac8
TH
4391 trace_track_foreign_dirty(page, wb);
4392
97b27821
TH
4393 /*
4394 * Pick the slot to use. If there is already a slot for @wb, keep
4395 * using it. If not replace the oldest one which isn't being
4396 * written out.
4397 */
4398 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4399 frn = &memcg->cgwb_frn[i];
4400 if (frn->bdi_id == wb->bdi->id &&
4401 frn->memcg_id == wb->memcg_css->id)
4402 break;
4403 if (time_before64(frn->at, oldest_at) &&
4404 atomic_read(&frn->done.cnt) == 1) {
4405 oldest = i;
4406 oldest_at = frn->at;
4407 }
4408 }
4409
4410 if (i < MEMCG_CGWB_FRN_CNT) {
4411 /*
4412 * Re-using an existing one. Update timestamp lazily to
4413 * avoid making the cacheline hot. We want them to be
4414 * reasonably up-to-date and significantly shorter than
4415 * dirty_expire_interval as that's what expires the record.
4416 * Use the shorter of 1s and dirty_expire_interval / 8.
4417 */
4418 unsigned long update_intv =
4419 min_t(unsigned long, HZ,
4420 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4421
4422 if (time_before64(frn->at, now - update_intv))
4423 frn->at = now;
4424 } else if (oldest >= 0) {
4425 /* replace the oldest free one */
4426 frn = &memcg->cgwb_frn[oldest];
4427 frn->bdi_id = wb->bdi->id;
4428 frn->memcg_id = wb->memcg_css->id;
4429 frn->at = now;
4430 }
4431}
4432
4433/* issue foreign writeback flushes for recorded foreign dirtying events */
4434void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4435{
4436 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4437 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4438 u64 now = jiffies_64;
4439 int i;
4440
4441 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4442 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4443
4444 /*
4445 * If the record is older than dirty_expire_interval,
4446 * writeback on it has already started. No need to kick it
4447 * off again. Also, don't start a new one if there's
4448 * already one in flight.
4449 */
4450 if (time_after64(frn->at, now - intv) &&
4451 atomic_read(&frn->done.cnt) == 1) {
4452 frn->at = 0;
3a8e9ac8 4453 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4454 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4455 WB_REASON_FOREIGN_FLUSH,
4456 &frn->done);
4457 }
4458 }
4459}
4460
841710aa
TH
4461#else /* CONFIG_CGROUP_WRITEBACK */
4462
4463static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4464{
4465 return 0;
4466}
4467
4468static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4469{
4470}
4471
2529bb3a
TH
4472static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4473{
4474}
4475
52ebea74
TH
4476#endif /* CONFIG_CGROUP_WRITEBACK */
4477
3bc942f3
TH
4478/*
4479 * DO NOT USE IN NEW FILES.
4480 *
4481 * "cgroup.event_control" implementation.
4482 *
4483 * This is way over-engineered. It tries to support fully configurable
4484 * events for each user. Such level of flexibility is completely
4485 * unnecessary especially in the light of the planned unified hierarchy.
4486 *
4487 * Please deprecate this and replace with something simpler if at all
4488 * possible.
4489 */
4490
79bd9814
TH
4491/*
4492 * Unregister event and free resources.
4493 *
4494 * Gets called from workqueue.
4495 */
3bc942f3 4496static void memcg_event_remove(struct work_struct *work)
79bd9814 4497{
3bc942f3
TH
4498 struct mem_cgroup_event *event =
4499 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4500 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4501
4502 remove_wait_queue(event->wqh, &event->wait);
4503
59b6f873 4504 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4505
4506 /* Notify userspace the event is going away. */
4507 eventfd_signal(event->eventfd, 1);
4508
4509 eventfd_ctx_put(event->eventfd);
4510 kfree(event);
59b6f873 4511 css_put(&memcg->css);
79bd9814
TH
4512}
4513
4514/*
a9a08845 4515 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4516 *
4517 * Called with wqh->lock held and interrupts disabled.
4518 */
ac6424b9 4519static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4520 int sync, void *key)
79bd9814 4521{
3bc942f3
TH
4522 struct mem_cgroup_event *event =
4523 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4524 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4525 __poll_t flags = key_to_poll(key);
79bd9814 4526
a9a08845 4527 if (flags & EPOLLHUP) {
79bd9814
TH
4528 /*
4529 * If the event has been detached at cgroup removal, we
4530 * can simply return knowing the other side will cleanup
4531 * for us.
4532 *
4533 * We can't race against event freeing since the other
4534 * side will require wqh->lock via remove_wait_queue(),
4535 * which we hold.
4536 */
fba94807 4537 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4538 if (!list_empty(&event->list)) {
4539 list_del_init(&event->list);
4540 /*
4541 * We are in atomic context, but cgroup_event_remove()
4542 * may sleep, so we have to call it in workqueue.
4543 */
4544 schedule_work(&event->remove);
4545 }
fba94807 4546 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4547 }
4548
4549 return 0;
4550}
4551
3bc942f3 4552static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4553 wait_queue_head_t *wqh, poll_table *pt)
4554{
3bc942f3
TH
4555 struct mem_cgroup_event *event =
4556 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4557
4558 event->wqh = wqh;
4559 add_wait_queue(wqh, &event->wait);
4560}
4561
4562/*
3bc942f3
TH
4563 * DO NOT USE IN NEW FILES.
4564 *
79bd9814
TH
4565 * Parse input and register new cgroup event handler.
4566 *
4567 * Input must be in format '<event_fd> <control_fd> <args>'.
4568 * Interpretation of args is defined by control file implementation.
4569 */
451af504
TH
4570static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4571 char *buf, size_t nbytes, loff_t off)
79bd9814 4572{
451af504 4573 struct cgroup_subsys_state *css = of_css(of);
fba94807 4574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4575 struct mem_cgroup_event *event;
79bd9814
TH
4576 struct cgroup_subsys_state *cfile_css;
4577 unsigned int efd, cfd;
4578 struct fd efile;
4579 struct fd cfile;
fba94807 4580 const char *name;
79bd9814
TH
4581 char *endp;
4582 int ret;
4583
451af504
TH
4584 buf = strstrip(buf);
4585
4586 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4587 if (*endp != ' ')
4588 return -EINVAL;
451af504 4589 buf = endp + 1;
79bd9814 4590
451af504 4591 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4592 if ((*endp != ' ') && (*endp != '\0'))
4593 return -EINVAL;
451af504 4594 buf = endp + 1;
79bd9814
TH
4595
4596 event = kzalloc(sizeof(*event), GFP_KERNEL);
4597 if (!event)
4598 return -ENOMEM;
4599
59b6f873 4600 event->memcg = memcg;
79bd9814 4601 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4602 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4603 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4604 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4605
4606 efile = fdget(efd);
4607 if (!efile.file) {
4608 ret = -EBADF;
4609 goto out_kfree;
4610 }
4611
4612 event->eventfd = eventfd_ctx_fileget(efile.file);
4613 if (IS_ERR(event->eventfd)) {
4614 ret = PTR_ERR(event->eventfd);
4615 goto out_put_efile;
4616 }
4617
4618 cfile = fdget(cfd);
4619 if (!cfile.file) {
4620 ret = -EBADF;
4621 goto out_put_eventfd;
4622 }
4623
4624 /* the process need read permission on control file */
4625 /* AV: shouldn't we check that it's been opened for read instead? */
4626 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4627 if (ret < 0)
4628 goto out_put_cfile;
4629
fba94807
TH
4630 /*
4631 * Determine the event callbacks and set them in @event. This used
4632 * to be done via struct cftype but cgroup core no longer knows
4633 * about these events. The following is crude but the whole thing
4634 * is for compatibility anyway.
3bc942f3
TH
4635 *
4636 * DO NOT ADD NEW FILES.
fba94807 4637 */
b583043e 4638 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4639
4640 if (!strcmp(name, "memory.usage_in_bytes")) {
4641 event->register_event = mem_cgroup_usage_register_event;
4642 event->unregister_event = mem_cgroup_usage_unregister_event;
4643 } else if (!strcmp(name, "memory.oom_control")) {
4644 event->register_event = mem_cgroup_oom_register_event;
4645 event->unregister_event = mem_cgroup_oom_unregister_event;
4646 } else if (!strcmp(name, "memory.pressure_level")) {
4647 event->register_event = vmpressure_register_event;
4648 event->unregister_event = vmpressure_unregister_event;
4649 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4650 event->register_event = memsw_cgroup_usage_register_event;
4651 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4652 } else {
4653 ret = -EINVAL;
4654 goto out_put_cfile;
4655 }
4656
79bd9814 4657 /*
b5557c4c
TH
4658 * Verify @cfile should belong to @css. Also, remaining events are
4659 * automatically removed on cgroup destruction but the removal is
4660 * asynchronous, so take an extra ref on @css.
79bd9814 4661 */
b583043e 4662 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4663 &memory_cgrp_subsys);
79bd9814 4664 ret = -EINVAL;
5a17f543 4665 if (IS_ERR(cfile_css))
79bd9814 4666 goto out_put_cfile;
5a17f543
TH
4667 if (cfile_css != css) {
4668 css_put(cfile_css);
79bd9814 4669 goto out_put_cfile;
5a17f543 4670 }
79bd9814 4671
451af504 4672 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4673 if (ret)
4674 goto out_put_css;
4675
9965ed17 4676 vfs_poll(efile.file, &event->pt);
79bd9814 4677
fba94807
TH
4678 spin_lock(&memcg->event_list_lock);
4679 list_add(&event->list, &memcg->event_list);
4680 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4681
4682 fdput(cfile);
4683 fdput(efile);
4684
451af504 4685 return nbytes;
79bd9814
TH
4686
4687out_put_css:
b5557c4c 4688 css_put(css);
79bd9814
TH
4689out_put_cfile:
4690 fdput(cfile);
4691out_put_eventfd:
4692 eventfd_ctx_put(event->eventfd);
4693out_put_efile:
4694 fdput(efile);
4695out_kfree:
4696 kfree(event);
4697
4698 return ret;
4699}
4700
241994ed 4701static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4702 {
0eea1030 4703 .name = "usage_in_bytes",
8c7c6e34 4704 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4705 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4706 },
c84872e1
PE
4707 {
4708 .name = "max_usage_in_bytes",
8c7c6e34 4709 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4710 .write = mem_cgroup_reset,
791badbd 4711 .read_u64 = mem_cgroup_read_u64,
c84872e1 4712 },
8cdea7c0 4713 {
0eea1030 4714 .name = "limit_in_bytes",
8c7c6e34 4715 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4716 .write = mem_cgroup_write,
791badbd 4717 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4718 },
296c81d8
BS
4719 {
4720 .name = "soft_limit_in_bytes",
4721 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4722 .write = mem_cgroup_write,
791badbd 4723 .read_u64 = mem_cgroup_read_u64,
296c81d8 4724 },
8cdea7c0
BS
4725 {
4726 .name = "failcnt",
8c7c6e34 4727 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4728 .write = mem_cgroup_reset,
791badbd 4729 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4730 },
d2ceb9b7
KH
4731 {
4732 .name = "stat",
2da8ca82 4733 .seq_show = memcg_stat_show,
d2ceb9b7 4734 },
c1e862c1
KH
4735 {
4736 .name = "force_empty",
6770c64e 4737 .write = mem_cgroup_force_empty_write,
c1e862c1 4738 },
18f59ea7
BS
4739 {
4740 .name = "use_hierarchy",
4741 .write_u64 = mem_cgroup_hierarchy_write,
4742 .read_u64 = mem_cgroup_hierarchy_read,
4743 },
79bd9814 4744 {
3bc942f3 4745 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4746 .write = memcg_write_event_control,
7dbdb199 4747 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4748 },
a7885eb8
KM
4749 {
4750 .name = "swappiness",
4751 .read_u64 = mem_cgroup_swappiness_read,
4752 .write_u64 = mem_cgroup_swappiness_write,
4753 },
7dc74be0
DN
4754 {
4755 .name = "move_charge_at_immigrate",
4756 .read_u64 = mem_cgroup_move_charge_read,
4757 .write_u64 = mem_cgroup_move_charge_write,
4758 },
9490ff27
KH
4759 {
4760 .name = "oom_control",
2da8ca82 4761 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4762 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4763 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4764 },
70ddf637
AV
4765 {
4766 .name = "pressure_level",
70ddf637 4767 },
406eb0c9
YH
4768#ifdef CONFIG_NUMA
4769 {
4770 .name = "numa_stat",
2da8ca82 4771 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4772 },
4773#endif
510fc4e1
GC
4774 {
4775 .name = "kmem.limit_in_bytes",
4776 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4777 .write = mem_cgroup_write,
791badbd 4778 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4779 },
4780 {
4781 .name = "kmem.usage_in_bytes",
4782 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4783 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4784 },
4785 {
4786 .name = "kmem.failcnt",
4787 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4788 .write = mem_cgroup_reset,
791badbd 4789 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4790 },
4791 {
4792 .name = "kmem.max_usage_in_bytes",
4793 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4794 .write = mem_cgroup_reset,
791badbd 4795 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4796 },
a87425a3
YS
4797#if defined(CONFIG_MEMCG_KMEM) && \
4798 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4799 {
4800 .name = "kmem.slabinfo",
bc2791f8
TH
4801 .seq_start = memcg_slab_start,
4802 .seq_next = memcg_slab_next,
4803 .seq_stop = memcg_slab_stop,
b047501c 4804 .seq_show = memcg_slab_show,
749c5415
GC
4805 },
4806#endif
d55f90bf
VD
4807 {
4808 .name = "kmem.tcp.limit_in_bytes",
4809 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4810 .write = mem_cgroup_write,
4811 .read_u64 = mem_cgroup_read_u64,
4812 },
4813 {
4814 .name = "kmem.tcp.usage_in_bytes",
4815 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4816 .read_u64 = mem_cgroup_read_u64,
4817 },
4818 {
4819 .name = "kmem.tcp.failcnt",
4820 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4821 .write = mem_cgroup_reset,
4822 .read_u64 = mem_cgroup_read_u64,
4823 },
4824 {
4825 .name = "kmem.tcp.max_usage_in_bytes",
4826 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4827 .write = mem_cgroup_reset,
4828 .read_u64 = mem_cgroup_read_u64,
4829 },
6bc10349 4830 { }, /* terminate */
af36f906 4831};
8c7c6e34 4832
73f576c0
JW
4833/*
4834 * Private memory cgroup IDR
4835 *
4836 * Swap-out records and page cache shadow entries need to store memcg
4837 * references in constrained space, so we maintain an ID space that is
4838 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4839 * memory-controlled cgroups to 64k.
4840 *
b8f2935f 4841 * However, there usually are many references to the offline CSS after
73f576c0
JW
4842 * the cgroup has been destroyed, such as page cache or reclaimable
4843 * slab objects, that don't need to hang on to the ID. We want to keep
4844 * those dead CSS from occupying IDs, or we might quickly exhaust the
4845 * relatively small ID space and prevent the creation of new cgroups
4846 * even when there are much fewer than 64k cgroups - possibly none.
4847 *
4848 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4849 * be freed and recycled when it's no longer needed, which is usually
4850 * when the CSS is offlined.
4851 *
4852 * The only exception to that are records of swapped out tmpfs/shmem
4853 * pages that need to be attributed to live ancestors on swapin. But
4854 * those references are manageable from userspace.
4855 */
4856
4857static DEFINE_IDR(mem_cgroup_idr);
4858
7e97de0b
KT
4859static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4860{
4861 if (memcg->id.id > 0) {
4862 idr_remove(&mem_cgroup_idr, memcg->id.id);
4863 memcg->id.id = 0;
4864 }
4865}
4866
c1514c0a
VF
4867static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4868 unsigned int n)
73f576c0 4869{
1c2d479a 4870 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4871}
4872
615d66c3 4873static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4874{
1c2d479a 4875 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4876 mem_cgroup_id_remove(memcg);
73f576c0
JW
4877
4878 /* Memcg ID pins CSS */
4879 css_put(&memcg->css);
4880 }
4881}
4882
615d66c3
VD
4883static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4884{
4885 mem_cgroup_id_put_many(memcg, 1);
4886}
4887
73f576c0
JW
4888/**
4889 * mem_cgroup_from_id - look up a memcg from a memcg id
4890 * @id: the memcg id to look up
4891 *
4892 * Caller must hold rcu_read_lock().
4893 */
4894struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4895{
4896 WARN_ON_ONCE(!rcu_read_lock_held());
4897 return idr_find(&mem_cgroup_idr, id);
4898}
4899
ef8f2327 4900static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4901{
4902 struct mem_cgroup_per_node *pn;
ef8f2327 4903 int tmp = node;
1ecaab2b
KH
4904 /*
4905 * This routine is called against possible nodes.
4906 * But it's BUG to call kmalloc() against offline node.
4907 *
4908 * TODO: this routine can waste much memory for nodes which will
4909 * never be onlined. It's better to use memory hotplug callback
4910 * function.
4911 */
41e3355d
KH
4912 if (!node_state(node, N_NORMAL_MEMORY))
4913 tmp = -1;
17295c88 4914 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4915 if (!pn)
4916 return 1;
1ecaab2b 4917
815744d7
JW
4918 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4919 if (!pn->lruvec_stat_local) {
4920 kfree(pn);
4921 return 1;
4922 }
4923
a983b5eb
JW
4924 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4925 if (!pn->lruvec_stat_cpu) {
815744d7 4926 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4927 kfree(pn);
4928 return 1;
4929 }
4930
ef8f2327
MG
4931 lruvec_init(&pn->lruvec);
4932 pn->usage_in_excess = 0;
4933 pn->on_tree = false;
4934 pn->memcg = memcg;
4935
54f72fe0 4936 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4937 return 0;
4938}
4939
ef8f2327 4940static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4941{
00f3ca2c
JW
4942 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4943
4eaf431f
MH
4944 if (!pn)
4945 return;
4946
a983b5eb 4947 free_percpu(pn->lruvec_stat_cpu);
815744d7 4948 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4949 kfree(pn);
1ecaab2b
KH
4950}
4951
40e952f9 4952static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4953{
c8b2a36f 4954 int node;
59927fb9 4955
c8b2a36f 4956 for_each_node(node)
ef8f2327 4957 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4958 free_percpu(memcg->vmstats_percpu);
815744d7 4959 free_percpu(memcg->vmstats_local);
8ff69e2c 4960 kfree(memcg);
59927fb9 4961}
3afe36b1 4962
40e952f9
TE
4963static void mem_cgroup_free(struct mem_cgroup *memcg)
4964{
4965 memcg_wb_domain_exit(memcg);
7961eee3
SB
4966 /*
4967 * Flush percpu vmstats and vmevents to guarantee the value correctness
4968 * on parent's and all ancestor levels.
4969 */
4a87e2a2 4970 memcg_flush_percpu_vmstats(memcg);
7961eee3 4971 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
4972 __mem_cgroup_free(memcg);
4973}
4974
0b8f73e1 4975static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4976{
d142e3e6 4977 struct mem_cgroup *memcg;
b9726c26 4978 unsigned int size;
6d12e2d8 4979 int node;
97b27821 4980 int __maybe_unused i;
11d67612 4981 long error = -ENOMEM;
8cdea7c0 4982
0b8f73e1
JW
4983 size = sizeof(struct mem_cgroup);
4984 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4985
4986 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4987 if (!memcg)
11d67612 4988 return ERR_PTR(error);
0b8f73e1 4989
73f576c0
JW
4990 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4991 1, MEM_CGROUP_ID_MAX,
4992 GFP_KERNEL);
11d67612
YS
4993 if (memcg->id.id < 0) {
4994 error = memcg->id.id;
73f576c0 4995 goto fail;
11d67612 4996 }
73f576c0 4997
815744d7
JW
4998 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4999 if (!memcg->vmstats_local)
5000 goto fail;
5001
871789d4
CD
5002 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5003 if (!memcg->vmstats_percpu)
0b8f73e1 5004 goto fail;
78fb7466 5005
3ed28fa1 5006 for_each_node(node)
ef8f2327 5007 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5008 goto fail;
f64c3f54 5009
0b8f73e1
JW
5010 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5011 goto fail;
28dbc4b6 5012
f7e1cb6e 5013 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5014 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5015 mutex_init(&memcg->thresholds_lock);
5016 spin_lock_init(&memcg->move_lock);
70ddf637 5017 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5018 INIT_LIST_HEAD(&memcg->event_list);
5019 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5020 memcg->socket_pressure = jiffies;
84c07d11 5021#ifdef CONFIG_MEMCG_KMEM
900a38f0 5022 memcg->kmemcg_id = -1;
900a38f0 5023#endif
52ebea74
TH
5024#ifdef CONFIG_CGROUP_WRITEBACK
5025 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5026 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5027 memcg->cgwb_frn[i].done =
5028 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5029#endif
5030#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5031 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5032 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5033 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5034#endif
73f576c0 5035 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5036 return memcg;
5037fail:
7e97de0b 5038 mem_cgroup_id_remove(memcg);
40e952f9 5039 __mem_cgroup_free(memcg);
11d67612 5040 return ERR_PTR(error);
d142e3e6
GC
5041}
5042
0b8f73e1
JW
5043static struct cgroup_subsys_state * __ref
5044mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5045{
0b8f73e1
JW
5046 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5047 struct mem_cgroup *memcg;
5048 long error = -ENOMEM;
d142e3e6 5049
0b8f73e1 5050 memcg = mem_cgroup_alloc();
11d67612
YS
5051 if (IS_ERR(memcg))
5052 return ERR_CAST(memcg);
d142e3e6 5053
d1663a90 5054 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5055 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5056 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5057 if (parent) {
5058 memcg->swappiness = mem_cgroup_swappiness(parent);
5059 memcg->oom_kill_disable = parent->oom_kill_disable;
5060 }
5061 if (parent && parent->use_hierarchy) {
5062 memcg->use_hierarchy = true;
3e32cb2e 5063 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5064 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5065 page_counter_init(&memcg->memsw, &parent->memsw);
5066 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5067 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5068 } else {
3e32cb2e 5069 page_counter_init(&memcg->memory, NULL);
37e84351 5070 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5071 page_counter_init(&memcg->memsw, NULL);
5072 page_counter_init(&memcg->kmem, NULL);
0db15298 5073 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5074 /*
5075 * Deeper hierachy with use_hierarchy == false doesn't make
5076 * much sense so let cgroup subsystem know about this
5077 * unfortunate state in our controller.
5078 */
d142e3e6 5079 if (parent != root_mem_cgroup)
073219e9 5080 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5081 }
d6441637 5082
0b8f73e1
JW
5083 /* The following stuff does not apply to the root */
5084 if (!parent) {
fb2f2b0a
RG
5085#ifdef CONFIG_MEMCG_KMEM
5086 INIT_LIST_HEAD(&memcg->kmem_caches);
5087#endif
0b8f73e1
JW
5088 root_mem_cgroup = memcg;
5089 return &memcg->css;
5090 }
5091
b313aeee 5092 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5093 if (error)
5094 goto fail;
127424c8 5095
f7e1cb6e 5096 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5097 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5098
0b8f73e1
JW
5099 return &memcg->css;
5100fail:
7e97de0b 5101 mem_cgroup_id_remove(memcg);
0b8f73e1 5102 mem_cgroup_free(memcg);
11d67612 5103 return ERR_PTR(error);
0b8f73e1
JW
5104}
5105
73f576c0 5106static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5107{
58fa2a55
VD
5108 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5109
0a4465d3
KT
5110 /*
5111 * A memcg must be visible for memcg_expand_shrinker_maps()
5112 * by the time the maps are allocated. So, we allocate maps
5113 * here, when for_each_mem_cgroup() can't skip it.
5114 */
5115 if (memcg_alloc_shrinker_maps(memcg)) {
5116 mem_cgroup_id_remove(memcg);
5117 return -ENOMEM;
5118 }
5119
73f576c0 5120 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5121 refcount_set(&memcg->id.ref, 1);
73f576c0 5122 css_get(css);
2f7dd7a4 5123 return 0;
8cdea7c0
BS
5124}
5125
eb95419b 5126static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5127{
eb95419b 5128 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5129 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5130
5131 /*
5132 * Unregister events and notify userspace.
5133 * Notify userspace about cgroup removing only after rmdir of cgroup
5134 * directory to avoid race between userspace and kernelspace.
5135 */
fba94807
TH
5136 spin_lock(&memcg->event_list_lock);
5137 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5138 list_del_init(&event->list);
5139 schedule_work(&event->remove);
5140 }
fba94807 5141 spin_unlock(&memcg->event_list_lock);
ec64f515 5142
bf8d5d52 5143 page_counter_set_min(&memcg->memory, 0);
23067153 5144 page_counter_set_low(&memcg->memory, 0);
63677c74 5145
567e9ab2 5146 memcg_offline_kmem(memcg);
52ebea74 5147 wb_memcg_offline(memcg);
73f576c0 5148
591edfb1
RG
5149 drain_all_stock(memcg);
5150
73f576c0 5151 mem_cgroup_id_put(memcg);
df878fb0
KH
5152}
5153
6df38689
VD
5154static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5155{
5156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5157
5158 invalidate_reclaim_iterators(memcg);
5159}
5160
eb95419b 5161static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5162{
eb95419b 5163 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5164 int __maybe_unused i;
c268e994 5165
97b27821
TH
5166#ifdef CONFIG_CGROUP_WRITEBACK
5167 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5168 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5169#endif
f7e1cb6e 5170 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5171 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5172
0db15298 5173 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5174 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5175
0b8f73e1
JW
5176 vmpressure_cleanup(&memcg->vmpressure);
5177 cancel_work_sync(&memcg->high_work);
5178 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5179 memcg_free_shrinker_maps(memcg);
d886f4e4 5180 memcg_free_kmem(memcg);
0b8f73e1 5181 mem_cgroup_free(memcg);
8cdea7c0
BS
5182}
5183
1ced953b
TH
5184/**
5185 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5186 * @css: the target css
5187 *
5188 * Reset the states of the mem_cgroup associated with @css. This is
5189 * invoked when the userland requests disabling on the default hierarchy
5190 * but the memcg is pinned through dependency. The memcg should stop
5191 * applying policies and should revert to the vanilla state as it may be
5192 * made visible again.
5193 *
5194 * The current implementation only resets the essential configurations.
5195 * This needs to be expanded to cover all the visible parts.
5196 */
5197static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5198{
5199 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5200
bbec2e15
RG
5201 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5202 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5203 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5204 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5205 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5206 page_counter_set_min(&memcg->memory, 0);
23067153 5207 page_counter_set_low(&memcg->memory, 0);
d1663a90 5208 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5209 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5210 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5211 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5212}
5213
02491447 5214#ifdef CONFIG_MMU
7dc74be0 5215/* Handlers for move charge at task migration. */
854ffa8d 5216static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5217{
05b84301 5218 int ret;
9476db97 5219
d0164adc
MG
5220 /* Try a single bulk charge without reclaim first, kswapd may wake */
5221 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5222 if (!ret) {
854ffa8d 5223 mc.precharge += count;
854ffa8d
DN
5224 return ret;
5225 }
9476db97 5226
3674534b 5227 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5228 while (count--) {
3674534b 5229 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5230 if (ret)
38c5d72f 5231 return ret;
854ffa8d 5232 mc.precharge++;
9476db97 5233 cond_resched();
854ffa8d 5234 }
9476db97 5235 return 0;
4ffef5fe
DN
5236}
5237
4ffef5fe
DN
5238union mc_target {
5239 struct page *page;
02491447 5240 swp_entry_t ent;
4ffef5fe
DN
5241};
5242
4ffef5fe 5243enum mc_target_type {
8d32ff84 5244 MC_TARGET_NONE = 0,
4ffef5fe 5245 MC_TARGET_PAGE,
02491447 5246 MC_TARGET_SWAP,
c733a828 5247 MC_TARGET_DEVICE,
4ffef5fe
DN
5248};
5249
90254a65
DN
5250static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5251 unsigned long addr, pte_t ptent)
4ffef5fe 5252{
25b2995a 5253 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5254
90254a65
DN
5255 if (!page || !page_mapped(page))
5256 return NULL;
5257 if (PageAnon(page)) {
1dfab5ab 5258 if (!(mc.flags & MOVE_ANON))
90254a65 5259 return NULL;
1dfab5ab
JW
5260 } else {
5261 if (!(mc.flags & MOVE_FILE))
5262 return NULL;
5263 }
90254a65
DN
5264 if (!get_page_unless_zero(page))
5265 return NULL;
5266
5267 return page;
5268}
5269
c733a828 5270#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5271static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5272 pte_t ptent, swp_entry_t *entry)
90254a65 5273{
90254a65
DN
5274 struct page *page = NULL;
5275 swp_entry_t ent = pte_to_swp_entry(ptent);
5276
1dfab5ab 5277 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5278 return NULL;
c733a828
JG
5279
5280 /*
5281 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5282 * a device and because they are not accessible by CPU they are store
5283 * as special swap entry in the CPU page table.
5284 */
5285 if (is_device_private_entry(ent)) {
5286 page = device_private_entry_to_page(ent);
5287 /*
5288 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5289 * a refcount of 1 when free (unlike normal page)
5290 */
5291 if (!page_ref_add_unless(page, 1, 1))
5292 return NULL;
5293 return page;
5294 }
5295
4b91355e
KH
5296 /*
5297 * Because lookup_swap_cache() updates some statistics counter,
5298 * we call find_get_page() with swapper_space directly.
5299 */
f6ab1f7f 5300 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5301 entry->val = ent.val;
90254a65
DN
5302
5303 return page;
5304}
4b91355e
KH
5305#else
5306static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5307 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5308{
5309 return NULL;
5310}
5311#endif
90254a65 5312
87946a72
DN
5313static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5314 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5315{
5316 struct page *page = NULL;
87946a72
DN
5317 struct address_space *mapping;
5318 pgoff_t pgoff;
5319
5320 if (!vma->vm_file) /* anonymous vma */
5321 return NULL;
1dfab5ab 5322 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5323 return NULL;
5324
87946a72 5325 mapping = vma->vm_file->f_mapping;
0661a336 5326 pgoff = linear_page_index(vma, addr);
87946a72
DN
5327
5328 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5329#ifdef CONFIG_SWAP
5330 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5331 if (shmem_mapping(mapping)) {
5332 page = find_get_entry(mapping, pgoff);
3159f943 5333 if (xa_is_value(page)) {
139b6a6f 5334 swp_entry_t swp = radix_to_swp_entry(page);
2d1c4980 5335 *entry = swp;
f6ab1f7f
HY
5336 page = find_get_page(swap_address_space(swp),
5337 swp_offset(swp));
139b6a6f
JW
5338 }
5339 } else
5340 page = find_get_page(mapping, pgoff);
5341#else
5342 page = find_get_page(mapping, pgoff);
aa3b1895 5343#endif
87946a72
DN
5344 return page;
5345}
5346
b1b0deab
CG
5347/**
5348 * mem_cgroup_move_account - move account of the page
5349 * @page: the page
25843c2b 5350 * @compound: charge the page as compound or small page
b1b0deab
CG
5351 * @from: mem_cgroup which the page is moved from.
5352 * @to: mem_cgroup which the page is moved to. @from != @to.
5353 *
3ac808fd 5354 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5355 *
5356 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5357 * from old cgroup.
5358 */
5359static int mem_cgroup_move_account(struct page *page,
f627c2f5 5360 bool compound,
b1b0deab
CG
5361 struct mem_cgroup *from,
5362 struct mem_cgroup *to)
5363{
ae8af438
KK
5364 struct lruvec *from_vec, *to_vec;
5365 struct pglist_data *pgdat;
f627c2f5 5366 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab
CG
5367 int ret;
5368
5369 VM_BUG_ON(from == to);
5370 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5371 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5372
5373 /*
6a93ca8f 5374 * Prevent mem_cgroup_migrate() from looking at
45637bab 5375 * page->mem_cgroup of its source page while we change it.
b1b0deab 5376 */
f627c2f5 5377 ret = -EBUSY;
b1b0deab
CG
5378 if (!trylock_page(page))
5379 goto out;
5380
5381 ret = -EINVAL;
5382 if (page->mem_cgroup != from)
5383 goto out_unlock;
5384
ae8af438 5385 pgdat = page_pgdat(page);
867e5e1d
JW
5386 from_vec = mem_cgroup_lruvec(from, pgdat);
5387 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5388
abb242f5 5389 lock_page_memcg(page);
b1b0deab 5390
be5d0a74
JW
5391 if (PageAnon(page)) {
5392 if (page_mapped(page)) {
5393 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5394 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982
JW
5395 if (PageTransHuge(page)) {
5396 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5397 -nr_pages);
5398 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5399 nr_pages);
5400 }
5401
be5d0a74
JW
5402 }
5403 } else {
0d1c2072
JW
5404 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5405 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5406
5407 if (PageSwapBacked(page)) {
5408 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5409 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5410 }
5411
49e50d27
JW
5412 if (page_mapped(page)) {
5413 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5414 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5415 }
b1b0deab 5416
49e50d27
JW
5417 if (PageDirty(page)) {
5418 struct address_space *mapping = page_mapping(page);
c4843a75 5419
49e50d27
JW
5420 if (mapping_cap_account_dirty(mapping)) {
5421 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5422 -nr_pages);
5423 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5424 nr_pages);
5425 }
c4843a75
GT
5426 }
5427 }
5428
b1b0deab 5429 if (PageWriteback(page)) {
ae8af438
KK
5430 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5431 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5432 }
5433
5434 /*
abb242f5
JW
5435 * All state has been migrated, let's switch to the new memcg.
5436 *
b1b0deab 5437 * It is safe to change page->mem_cgroup here because the page
abb242f5
JW
5438 * is referenced, charged, isolated, and locked: we can't race
5439 * with (un)charging, migration, LRU putback, or anything else
5440 * that would rely on a stable page->mem_cgroup.
5441 *
5442 * Note that lock_page_memcg is a memcg lock, not a page lock,
5443 * to save space. As soon as we switch page->mem_cgroup to a
5444 * new memcg that isn't locked, the above state can change
5445 * concurrently again. Make sure we're truly done with it.
b1b0deab 5446 */
abb242f5 5447 smp_mb();
b1b0deab 5448
abb242f5 5449 page->mem_cgroup = to; /* caller should have done css_get */
87eaceb3 5450
abb242f5 5451 __unlock_page_memcg(from);
b1b0deab
CG
5452
5453 ret = 0;
5454
5455 local_irq_disable();
3fba69a5 5456 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5457 memcg_check_events(to, page);
3fba69a5 5458 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5459 memcg_check_events(from, page);
5460 local_irq_enable();
5461out_unlock:
5462 unlock_page(page);
5463out:
5464 return ret;
5465}
5466
7cf7806c
LR
5467/**
5468 * get_mctgt_type - get target type of moving charge
5469 * @vma: the vma the pte to be checked belongs
5470 * @addr: the address corresponding to the pte to be checked
5471 * @ptent: the pte to be checked
5472 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5473 *
5474 * Returns
5475 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5476 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5477 * move charge. if @target is not NULL, the page is stored in target->page
5478 * with extra refcnt got(Callers should handle it).
5479 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5480 * target for charge migration. if @target is not NULL, the entry is stored
5481 * in target->ent.
25b2995a
CH
5482 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5483 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5484 * For now we such page is charge like a regular page would be as for all
5485 * intent and purposes it is just special memory taking the place of a
5486 * regular page.
c733a828
JG
5487 *
5488 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5489 *
5490 * Called with pte lock held.
5491 */
5492
8d32ff84 5493static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5494 unsigned long addr, pte_t ptent, union mc_target *target)
5495{
5496 struct page *page = NULL;
8d32ff84 5497 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5498 swp_entry_t ent = { .val = 0 };
5499
5500 if (pte_present(ptent))
5501 page = mc_handle_present_pte(vma, addr, ptent);
5502 else if (is_swap_pte(ptent))
48406ef8 5503 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5504 else if (pte_none(ptent))
87946a72 5505 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5506
5507 if (!page && !ent.val)
8d32ff84 5508 return ret;
02491447 5509 if (page) {
02491447 5510 /*
0a31bc97 5511 * Do only loose check w/o serialization.
1306a85a 5512 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5513 * not under LRU exclusion.
02491447 5514 */
1306a85a 5515 if (page->mem_cgroup == mc.from) {
02491447 5516 ret = MC_TARGET_PAGE;
25b2995a 5517 if (is_device_private_page(page))
c733a828 5518 ret = MC_TARGET_DEVICE;
02491447
DN
5519 if (target)
5520 target->page = page;
5521 }
5522 if (!ret || !target)
5523 put_page(page);
5524 }
3e14a57b
HY
5525 /*
5526 * There is a swap entry and a page doesn't exist or isn't charged.
5527 * But we cannot move a tail-page in a THP.
5528 */
5529 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5530 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5531 ret = MC_TARGET_SWAP;
5532 if (target)
5533 target->ent = ent;
4ffef5fe 5534 }
4ffef5fe
DN
5535 return ret;
5536}
5537
12724850
NH
5538#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5539/*
d6810d73
HY
5540 * We don't consider PMD mapped swapping or file mapped pages because THP does
5541 * not support them for now.
12724850
NH
5542 * Caller should make sure that pmd_trans_huge(pmd) is true.
5543 */
5544static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5545 unsigned long addr, pmd_t pmd, union mc_target *target)
5546{
5547 struct page *page = NULL;
12724850
NH
5548 enum mc_target_type ret = MC_TARGET_NONE;
5549
84c3fc4e
ZY
5550 if (unlikely(is_swap_pmd(pmd))) {
5551 VM_BUG_ON(thp_migration_supported() &&
5552 !is_pmd_migration_entry(pmd));
5553 return ret;
5554 }
12724850 5555 page = pmd_page(pmd);
309381fe 5556 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5557 if (!(mc.flags & MOVE_ANON))
12724850 5558 return ret;
1306a85a 5559 if (page->mem_cgroup == mc.from) {
12724850
NH
5560 ret = MC_TARGET_PAGE;
5561 if (target) {
5562 get_page(page);
5563 target->page = page;
5564 }
5565 }
5566 return ret;
5567}
5568#else
5569static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5570 unsigned long addr, pmd_t pmd, union mc_target *target)
5571{
5572 return MC_TARGET_NONE;
5573}
5574#endif
5575
4ffef5fe
DN
5576static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5577 unsigned long addr, unsigned long end,
5578 struct mm_walk *walk)
5579{
26bcd64a 5580 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5581 pte_t *pte;
5582 spinlock_t *ptl;
5583
b6ec57f4
KS
5584 ptl = pmd_trans_huge_lock(pmd, vma);
5585 if (ptl) {
c733a828
JG
5586 /*
5587 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5588 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5589 * this might change.
c733a828 5590 */
12724850
NH
5591 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5592 mc.precharge += HPAGE_PMD_NR;
bf929152 5593 spin_unlock(ptl);
1a5a9906 5594 return 0;
12724850 5595 }
03319327 5596
45f83cef
AA
5597 if (pmd_trans_unstable(pmd))
5598 return 0;
4ffef5fe
DN
5599 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5600 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5601 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5602 mc.precharge++; /* increment precharge temporarily */
5603 pte_unmap_unlock(pte - 1, ptl);
5604 cond_resched();
5605
7dc74be0
DN
5606 return 0;
5607}
5608
7b86ac33
CH
5609static const struct mm_walk_ops precharge_walk_ops = {
5610 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5611};
5612
4ffef5fe
DN
5613static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5614{
5615 unsigned long precharge;
4ffef5fe 5616
d8ed45c5 5617 mmap_read_lock(mm);
7b86ac33 5618 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5619 mmap_read_unlock(mm);
4ffef5fe
DN
5620
5621 precharge = mc.precharge;
5622 mc.precharge = 0;
5623
5624 return precharge;
5625}
5626
4ffef5fe
DN
5627static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5628{
dfe076b0
DN
5629 unsigned long precharge = mem_cgroup_count_precharge(mm);
5630
5631 VM_BUG_ON(mc.moving_task);
5632 mc.moving_task = current;
5633 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5634}
5635
dfe076b0
DN
5636/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5637static void __mem_cgroup_clear_mc(void)
4ffef5fe 5638{
2bd9bb20
KH
5639 struct mem_cgroup *from = mc.from;
5640 struct mem_cgroup *to = mc.to;
5641
4ffef5fe 5642 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5643 if (mc.precharge) {
00501b53 5644 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5645 mc.precharge = 0;
5646 }
5647 /*
5648 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5649 * we must uncharge here.
5650 */
5651 if (mc.moved_charge) {
00501b53 5652 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5653 mc.moved_charge = 0;
4ffef5fe 5654 }
483c30b5
DN
5655 /* we must fixup refcnts and charges */
5656 if (mc.moved_swap) {
483c30b5 5657 /* uncharge swap account from the old cgroup */
ce00a967 5658 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5659 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5660
615d66c3
VD
5661 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5662
05b84301 5663 /*
3e32cb2e
JW
5664 * we charged both to->memory and to->memsw, so we
5665 * should uncharge to->memory.
05b84301 5666 */
ce00a967 5667 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5668 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5669
615d66c3
VD
5670 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5671 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5672
483c30b5
DN
5673 mc.moved_swap = 0;
5674 }
dfe076b0
DN
5675 memcg_oom_recover(from);
5676 memcg_oom_recover(to);
5677 wake_up_all(&mc.waitq);
5678}
5679
5680static void mem_cgroup_clear_mc(void)
5681{
264a0ae1
TH
5682 struct mm_struct *mm = mc.mm;
5683
dfe076b0
DN
5684 /*
5685 * we must clear moving_task before waking up waiters at the end of
5686 * task migration.
5687 */
5688 mc.moving_task = NULL;
5689 __mem_cgroup_clear_mc();
2bd9bb20 5690 spin_lock(&mc.lock);
4ffef5fe
DN
5691 mc.from = NULL;
5692 mc.to = NULL;
264a0ae1 5693 mc.mm = NULL;
2bd9bb20 5694 spin_unlock(&mc.lock);
264a0ae1
TH
5695
5696 mmput(mm);
4ffef5fe
DN
5697}
5698
1f7dd3e5 5699static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5700{
1f7dd3e5 5701 struct cgroup_subsys_state *css;
eed67d75 5702 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5703 struct mem_cgroup *from;
4530eddb 5704 struct task_struct *leader, *p;
9f2115f9 5705 struct mm_struct *mm;
1dfab5ab 5706 unsigned long move_flags;
9f2115f9 5707 int ret = 0;
7dc74be0 5708
1f7dd3e5
TH
5709 /* charge immigration isn't supported on the default hierarchy */
5710 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5711 return 0;
5712
4530eddb
TH
5713 /*
5714 * Multi-process migrations only happen on the default hierarchy
5715 * where charge immigration is not used. Perform charge
5716 * immigration if @tset contains a leader and whine if there are
5717 * multiple.
5718 */
5719 p = NULL;
1f7dd3e5 5720 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5721 WARN_ON_ONCE(p);
5722 p = leader;
1f7dd3e5 5723 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5724 }
5725 if (!p)
5726 return 0;
5727
1f7dd3e5
TH
5728 /*
5729 * We are now commited to this value whatever it is. Changes in this
5730 * tunable will only affect upcoming migrations, not the current one.
5731 * So we need to save it, and keep it going.
5732 */
5733 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5734 if (!move_flags)
5735 return 0;
5736
9f2115f9
TH
5737 from = mem_cgroup_from_task(p);
5738
5739 VM_BUG_ON(from == memcg);
5740
5741 mm = get_task_mm(p);
5742 if (!mm)
5743 return 0;
5744 /* We move charges only when we move a owner of the mm */
5745 if (mm->owner == p) {
5746 VM_BUG_ON(mc.from);
5747 VM_BUG_ON(mc.to);
5748 VM_BUG_ON(mc.precharge);
5749 VM_BUG_ON(mc.moved_charge);
5750 VM_BUG_ON(mc.moved_swap);
5751
5752 spin_lock(&mc.lock);
264a0ae1 5753 mc.mm = mm;
9f2115f9
TH
5754 mc.from = from;
5755 mc.to = memcg;
5756 mc.flags = move_flags;
5757 spin_unlock(&mc.lock);
5758 /* We set mc.moving_task later */
5759
5760 ret = mem_cgroup_precharge_mc(mm);
5761 if (ret)
5762 mem_cgroup_clear_mc();
264a0ae1
TH
5763 } else {
5764 mmput(mm);
7dc74be0
DN
5765 }
5766 return ret;
5767}
5768
1f7dd3e5 5769static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5770{
4e2f245d
JW
5771 if (mc.to)
5772 mem_cgroup_clear_mc();
7dc74be0
DN
5773}
5774
4ffef5fe
DN
5775static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5776 unsigned long addr, unsigned long end,
5777 struct mm_walk *walk)
7dc74be0 5778{
4ffef5fe 5779 int ret = 0;
26bcd64a 5780 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5781 pte_t *pte;
5782 spinlock_t *ptl;
12724850
NH
5783 enum mc_target_type target_type;
5784 union mc_target target;
5785 struct page *page;
4ffef5fe 5786
b6ec57f4
KS
5787 ptl = pmd_trans_huge_lock(pmd, vma);
5788 if (ptl) {
62ade86a 5789 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5790 spin_unlock(ptl);
12724850
NH
5791 return 0;
5792 }
5793 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5794 if (target_type == MC_TARGET_PAGE) {
5795 page = target.page;
5796 if (!isolate_lru_page(page)) {
f627c2f5 5797 if (!mem_cgroup_move_account(page, true,
1306a85a 5798 mc.from, mc.to)) {
12724850
NH
5799 mc.precharge -= HPAGE_PMD_NR;
5800 mc.moved_charge += HPAGE_PMD_NR;
5801 }
5802 putback_lru_page(page);
5803 }
5804 put_page(page);
c733a828
JG
5805 } else if (target_type == MC_TARGET_DEVICE) {
5806 page = target.page;
5807 if (!mem_cgroup_move_account(page, true,
5808 mc.from, mc.to)) {
5809 mc.precharge -= HPAGE_PMD_NR;
5810 mc.moved_charge += HPAGE_PMD_NR;
5811 }
5812 put_page(page);
12724850 5813 }
bf929152 5814 spin_unlock(ptl);
1a5a9906 5815 return 0;
12724850
NH
5816 }
5817
45f83cef
AA
5818 if (pmd_trans_unstable(pmd))
5819 return 0;
4ffef5fe
DN
5820retry:
5821 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5822 for (; addr != end; addr += PAGE_SIZE) {
5823 pte_t ptent = *(pte++);
c733a828 5824 bool device = false;
02491447 5825 swp_entry_t ent;
4ffef5fe
DN
5826
5827 if (!mc.precharge)
5828 break;
5829
8d32ff84 5830 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5831 case MC_TARGET_DEVICE:
5832 device = true;
e4a9bc58 5833 fallthrough;
4ffef5fe
DN
5834 case MC_TARGET_PAGE:
5835 page = target.page;
53f9263b
KS
5836 /*
5837 * We can have a part of the split pmd here. Moving it
5838 * can be done but it would be too convoluted so simply
5839 * ignore such a partial THP and keep it in original
5840 * memcg. There should be somebody mapping the head.
5841 */
5842 if (PageTransCompound(page))
5843 goto put;
c733a828 5844 if (!device && isolate_lru_page(page))
4ffef5fe 5845 goto put;
f627c2f5
KS
5846 if (!mem_cgroup_move_account(page, false,
5847 mc.from, mc.to)) {
4ffef5fe 5848 mc.precharge--;
854ffa8d
DN
5849 /* we uncharge from mc.from later. */
5850 mc.moved_charge++;
4ffef5fe 5851 }
c733a828
JG
5852 if (!device)
5853 putback_lru_page(page);
8d32ff84 5854put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5855 put_page(page);
5856 break;
02491447
DN
5857 case MC_TARGET_SWAP:
5858 ent = target.ent;
e91cbb42 5859 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5860 mc.precharge--;
483c30b5
DN
5861 /* we fixup refcnts and charges later. */
5862 mc.moved_swap++;
5863 }
02491447 5864 break;
4ffef5fe
DN
5865 default:
5866 break;
5867 }
5868 }
5869 pte_unmap_unlock(pte - 1, ptl);
5870 cond_resched();
5871
5872 if (addr != end) {
5873 /*
5874 * We have consumed all precharges we got in can_attach().
5875 * We try charge one by one, but don't do any additional
5876 * charges to mc.to if we have failed in charge once in attach()
5877 * phase.
5878 */
854ffa8d 5879 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5880 if (!ret)
5881 goto retry;
5882 }
5883
5884 return ret;
5885}
5886
7b86ac33
CH
5887static const struct mm_walk_ops charge_walk_ops = {
5888 .pmd_entry = mem_cgroup_move_charge_pte_range,
5889};
5890
264a0ae1 5891static void mem_cgroup_move_charge(void)
4ffef5fe 5892{
4ffef5fe 5893 lru_add_drain_all();
312722cb 5894 /*
81f8c3a4
JW
5895 * Signal lock_page_memcg() to take the memcg's move_lock
5896 * while we're moving its pages to another memcg. Then wait
5897 * for already started RCU-only updates to finish.
312722cb
JW
5898 */
5899 atomic_inc(&mc.from->moving_account);
5900 synchronize_rcu();
dfe076b0 5901retry:
d8ed45c5 5902 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0
DN
5903 /*
5904 * Someone who are holding the mmap_sem might be waiting in
5905 * waitq. So we cancel all extra charges, wake up all waiters,
5906 * and retry. Because we cancel precharges, we might not be able
5907 * to move enough charges, but moving charge is a best-effort
5908 * feature anyway, so it wouldn't be a big problem.
5909 */
5910 __mem_cgroup_clear_mc();
5911 cond_resched();
5912 goto retry;
5913 }
26bcd64a
NH
5914 /*
5915 * When we have consumed all precharges and failed in doing
5916 * additional charge, the page walk just aborts.
5917 */
7b86ac33
CH
5918 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5919 NULL);
0247f3f4 5920
d8ed45c5 5921 mmap_read_unlock(mc.mm);
312722cb 5922 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5923}
5924
264a0ae1 5925static void mem_cgroup_move_task(void)
67e465a7 5926{
264a0ae1
TH
5927 if (mc.to) {
5928 mem_cgroup_move_charge();
a433658c 5929 mem_cgroup_clear_mc();
264a0ae1 5930 }
67e465a7 5931}
5cfb80a7 5932#else /* !CONFIG_MMU */
1f7dd3e5 5933static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5934{
5935 return 0;
5936}
1f7dd3e5 5937static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5938{
5939}
264a0ae1 5940static void mem_cgroup_move_task(void)
5cfb80a7
DN
5941{
5942}
5943#endif
67e465a7 5944
f00baae7
TH
5945/*
5946 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5947 * to verify whether we're attached to the default hierarchy on each mount
5948 * attempt.
f00baae7 5949 */
eb95419b 5950static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5951{
5952 /*
aa6ec29b 5953 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5954 * guarantees that @root doesn't have any children, so turning it
5955 * on for the root memcg is enough.
5956 */
9e10a130 5957 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5958 root_mem_cgroup->use_hierarchy = true;
5959 else
5960 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5961}
5962
677dc973
CD
5963static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5964{
5965 if (value == PAGE_COUNTER_MAX)
5966 seq_puts(m, "max\n");
5967 else
5968 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5969
5970 return 0;
5971}
5972
241994ed
JW
5973static u64 memory_current_read(struct cgroup_subsys_state *css,
5974 struct cftype *cft)
5975{
f5fc3c5d
JW
5976 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5977
5978 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5979}
5980
bf8d5d52
RG
5981static int memory_min_show(struct seq_file *m, void *v)
5982{
677dc973
CD
5983 return seq_puts_memcg_tunable(m,
5984 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5985}
5986
5987static ssize_t memory_min_write(struct kernfs_open_file *of,
5988 char *buf, size_t nbytes, loff_t off)
5989{
5990 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5991 unsigned long min;
5992 int err;
5993
5994 buf = strstrip(buf);
5995 err = page_counter_memparse(buf, "max", &min);
5996 if (err)
5997 return err;
5998
5999 page_counter_set_min(&memcg->memory, min);
6000
6001 return nbytes;
6002}
6003
241994ed
JW
6004static int memory_low_show(struct seq_file *m, void *v)
6005{
677dc973
CD
6006 return seq_puts_memcg_tunable(m,
6007 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6008}
6009
6010static ssize_t memory_low_write(struct kernfs_open_file *of,
6011 char *buf, size_t nbytes, loff_t off)
6012{
6013 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6014 unsigned long low;
6015 int err;
6016
6017 buf = strstrip(buf);
d2973697 6018 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6019 if (err)
6020 return err;
6021
23067153 6022 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6023
6024 return nbytes;
6025}
6026
6027static int memory_high_show(struct seq_file *m, void *v)
6028{
d1663a90
JK
6029 return seq_puts_memcg_tunable(m,
6030 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6031}
6032
6033static ssize_t memory_high_write(struct kernfs_open_file *of,
6034 char *buf, size_t nbytes, loff_t off)
6035{
6036 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8c8c383c
JW
6037 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6038 bool drained = false;
241994ed
JW
6039 unsigned long high;
6040 int err;
6041
6042 buf = strstrip(buf);
d2973697 6043 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6044 if (err)
6045 return err;
6046
d1663a90 6047 page_counter_set_high(&memcg->memory, high);
241994ed 6048
8c8c383c
JW
6049 for (;;) {
6050 unsigned long nr_pages = page_counter_read(&memcg->memory);
6051 unsigned long reclaimed;
6052
6053 if (nr_pages <= high)
6054 break;
6055
6056 if (signal_pending(current))
6057 break;
6058
6059 if (!drained) {
6060 drain_all_stock(memcg);
6061 drained = true;
6062 continue;
6063 }
6064
6065 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6066 GFP_KERNEL, true);
6067
6068 if (!reclaimed && !nr_retries--)
6069 break;
6070 }
588083bb 6071
241994ed
JW
6072 return nbytes;
6073}
6074
6075static int memory_max_show(struct seq_file *m, void *v)
6076{
677dc973
CD
6077 return seq_puts_memcg_tunable(m,
6078 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6079}
6080
6081static ssize_t memory_max_write(struct kernfs_open_file *of,
6082 char *buf, size_t nbytes, loff_t off)
6083{
6084 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6085 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6086 bool drained = false;
241994ed
JW
6087 unsigned long max;
6088 int err;
6089
6090 buf = strstrip(buf);
d2973697 6091 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6092 if (err)
6093 return err;
6094
bbec2e15 6095 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6096
6097 for (;;) {
6098 unsigned long nr_pages = page_counter_read(&memcg->memory);
6099
6100 if (nr_pages <= max)
6101 break;
6102
7249c9f0 6103 if (signal_pending(current))
b6e6edcf 6104 break;
b6e6edcf
JW
6105
6106 if (!drained) {
6107 drain_all_stock(memcg);
6108 drained = true;
6109 continue;
6110 }
6111
6112 if (nr_reclaims) {
6113 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6114 GFP_KERNEL, true))
6115 nr_reclaims--;
6116 continue;
6117 }
6118
e27be240 6119 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6120 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6121 break;
6122 }
241994ed 6123
2529bb3a 6124 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6125 return nbytes;
6126}
6127
1e577f97
SB
6128static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6129{
6130 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6131 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6132 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6133 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6134 seq_printf(m, "oom_kill %lu\n",
6135 atomic_long_read(&events[MEMCG_OOM_KILL]));
6136}
6137
241994ed
JW
6138static int memory_events_show(struct seq_file *m, void *v)
6139{
aa9694bb 6140 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6141
1e577f97
SB
6142 __memory_events_show(m, memcg->memory_events);
6143 return 0;
6144}
6145
6146static int memory_events_local_show(struct seq_file *m, void *v)
6147{
6148 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6149
1e577f97 6150 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6151 return 0;
6152}
6153
587d9f72
JW
6154static int memory_stat_show(struct seq_file *m, void *v)
6155{
aa9694bb 6156 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6157 char *buf;
1ff9e6e1 6158
c8713d0b
JW
6159 buf = memory_stat_format(memcg);
6160 if (!buf)
6161 return -ENOMEM;
6162 seq_puts(m, buf);
6163 kfree(buf);
587d9f72
JW
6164 return 0;
6165}
6166
3d8b38eb
RG
6167static int memory_oom_group_show(struct seq_file *m, void *v)
6168{
aa9694bb 6169 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6170
6171 seq_printf(m, "%d\n", memcg->oom_group);
6172
6173 return 0;
6174}
6175
6176static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6177 char *buf, size_t nbytes, loff_t off)
6178{
6179 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6180 int ret, oom_group;
6181
6182 buf = strstrip(buf);
6183 if (!buf)
6184 return -EINVAL;
6185
6186 ret = kstrtoint(buf, 0, &oom_group);
6187 if (ret)
6188 return ret;
6189
6190 if (oom_group != 0 && oom_group != 1)
6191 return -EINVAL;
6192
6193 memcg->oom_group = oom_group;
6194
6195 return nbytes;
6196}
6197
241994ed
JW
6198static struct cftype memory_files[] = {
6199 {
6200 .name = "current",
f5fc3c5d 6201 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6202 .read_u64 = memory_current_read,
6203 },
bf8d5d52
RG
6204 {
6205 .name = "min",
6206 .flags = CFTYPE_NOT_ON_ROOT,
6207 .seq_show = memory_min_show,
6208 .write = memory_min_write,
6209 },
241994ed
JW
6210 {
6211 .name = "low",
6212 .flags = CFTYPE_NOT_ON_ROOT,
6213 .seq_show = memory_low_show,
6214 .write = memory_low_write,
6215 },
6216 {
6217 .name = "high",
6218 .flags = CFTYPE_NOT_ON_ROOT,
6219 .seq_show = memory_high_show,
6220 .write = memory_high_write,
6221 },
6222 {
6223 .name = "max",
6224 .flags = CFTYPE_NOT_ON_ROOT,
6225 .seq_show = memory_max_show,
6226 .write = memory_max_write,
6227 },
6228 {
6229 .name = "events",
6230 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6231 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6232 .seq_show = memory_events_show,
6233 },
1e577f97
SB
6234 {
6235 .name = "events.local",
6236 .flags = CFTYPE_NOT_ON_ROOT,
6237 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6238 .seq_show = memory_events_local_show,
6239 },
587d9f72
JW
6240 {
6241 .name = "stat",
587d9f72
JW
6242 .seq_show = memory_stat_show,
6243 },
3d8b38eb
RG
6244 {
6245 .name = "oom.group",
6246 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6247 .seq_show = memory_oom_group_show,
6248 .write = memory_oom_group_write,
6249 },
241994ed
JW
6250 { } /* terminate */
6251};
6252
073219e9 6253struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6254 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6255 .css_online = mem_cgroup_css_online,
92fb9748 6256 .css_offline = mem_cgroup_css_offline,
6df38689 6257 .css_released = mem_cgroup_css_released,
92fb9748 6258 .css_free = mem_cgroup_css_free,
1ced953b 6259 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6260 .can_attach = mem_cgroup_can_attach,
6261 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6262 .post_attach = mem_cgroup_move_task,
f00baae7 6263 .bind = mem_cgroup_bind,
241994ed
JW
6264 .dfl_cftypes = memory_files,
6265 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6266 .early_init = 0,
8cdea7c0 6267};
c077719b 6268
bc50bcc6
JW
6269/*
6270 * This function calculates an individual cgroup's effective
6271 * protection which is derived from its own memory.min/low, its
6272 * parent's and siblings' settings, as well as the actual memory
6273 * distribution in the tree.
6274 *
6275 * The following rules apply to the effective protection values:
6276 *
6277 * 1. At the first level of reclaim, effective protection is equal to
6278 * the declared protection in memory.min and memory.low.
6279 *
6280 * 2. To enable safe delegation of the protection configuration, at
6281 * subsequent levels the effective protection is capped to the
6282 * parent's effective protection.
6283 *
6284 * 3. To make complex and dynamic subtrees easier to configure, the
6285 * user is allowed to overcommit the declared protection at a given
6286 * level. If that is the case, the parent's effective protection is
6287 * distributed to the children in proportion to how much protection
6288 * they have declared and how much of it they are utilizing.
6289 *
6290 * This makes distribution proportional, but also work-conserving:
6291 * if one cgroup claims much more protection than it uses memory,
6292 * the unused remainder is available to its siblings.
6293 *
6294 * 4. Conversely, when the declared protection is undercommitted at a
6295 * given level, the distribution of the larger parental protection
6296 * budget is NOT proportional. A cgroup's protection from a sibling
6297 * is capped to its own memory.min/low setting.
6298 *
8a931f80
JW
6299 * 5. However, to allow protecting recursive subtrees from each other
6300 * without having to declare each individual cgroup's fixed share
6301 * of the ancestor's claim to protection, any unutilized -
6302 * "floating" - protection from up the tree is distributed in
6303 * proportion to each cgroup's *usage*. This makes the protection
6304 * neutral wrt sibling cgroups and lets them compete freely over
6305 * the shared parental protection budget, but it protects the
6306 * subtree as a whole from neighboring subtrees.
6307 *
6308 * Note that 4. and 5. are not in conflict: 4. is about protecting
6309 * against immediate siblings whereas 5. is about protecting against
6310 * neighboring subtrees.
bc50bcc6
JW
6311 */
6312static unsigned long effective_protection(unsigned long usage,
8a931f80 6313 unsigned long parent_usage,
bc50bcc6
JW
6314 unsigned long setting,
6315 unsigned long parent_effective,
6316 unsigned long siblings_protected)
6317{
6318 unsigned long protected;
8a931f80 6319 unsigned long ep;
bc50bcc6
JW
6320
6321 protected = min(usage, setting);
6322 /*
6323 * If all cgroups at this level combined claim and use more
6324 * protection then what the parent affords them, distribute
6325 * shares in proportion to utilization.
6326 *
6327 * We are using actual utilization rather than the statically
6328 * claimed protection in order to be work-conserving: claimed
6329 * but unused protection is available to siblings that would
6330 * otherwise get a smaller chunk than what they claimed.
6331 */
6332 if (siblings_protected > parent_effective)
6333 return protected * parent_effective / siblings_protected;
6334
6335 /*
6336 * Ok, utilized protection of all children is within what the
6337 * parent affords them, so we know whatever this child claims
6338 * and utilizes is effectively protected.
6339 *
6340 * If there is unprotected usage beyond this value, reclaim
6341 * will apply pressure in proportion to that amount.
6342 *
6343 * If there is unutilized protection, the cgroup will be fully
6344 * shielded from reclaim, but we do return a smaller value for
6345 * protection than what the group could enjoy in theory. This
6346 * is okay. With the overcommit distribution above, effective
6347 * protection is always dependent on how memory is actually
6348 * consumed among the siblings anyway.
6349 */
8a931f80
JW
6350 ep = protected;
6351
6352 /*
6353 * If the children aren't claiming (all of) the protection
6354 * afforded to them by the parent, distribute the remainder in
6355 * proportion to the (unprotected) memory of each cgroup. That
6356 * way, cgroups that aren't explicitly prioritized wrt each
6357 * other compete freely over the allowance, but they are
6358 * collectively protected from neighboring trees.
6359 *
6360 * We're using unprotected memory for the weight so that if
6361 * some cgroups DO claim explicit protection, we don't protect
6362 * the same bytes twice.
6363 */
6364 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6365 return ep;
6366
6367 if (parent_effective > siblings_protected && usage > protected) {
6368 unsigned long unclaimed;
6369
6370 unclaimed = parent_effective - siblings_protected;
6371 unclaimed *= usage - protected;
6372 unclaimed /= parent_usage - siblings_protected;
6373
6374 ep += unclaimed;
6375 }
6376
6377 return ep;
bc50bcc6
JW
6378}
6379
241994ed 6380/**
bf8d5d52 6381 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6382 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6383 * @memcg: the memory cgroup to check
6384 *
23067153
RG
6385 * WARNING: This function is not stateless! It can only be used as part
6386 * of a top-down tree iteration, not for isolated queries.
34c81057 6387 *
bf8d5d52
RG
6388 * Returns one of the following:
6389 * MEMCG_PROT_NONE: cgroup memory is not protected
6390 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6391 * an unprotected supply of reclaimable memory from other cgroups.
6392 * MEMCG_PROT_MIN: cgroup memory is protected
241994ed 6393 */
bf8d5d52
RG
6394enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6395 struct mem_cgroup *memcg)
241994ed 6396{
8a931f80 6397 unsigned long usage, parent_usage;
23067153
RG
6398 struct mem_cgroup *parent;
6399
241994ed 6400 if (mem_cgroup_disabled())
bf8d5d52 6401 return MEMCG_PROT_NONE;
241994ed 6402
34c81057
SC
6403 if (!root)
6404 root = root_mem_cgroup;
6405 if (memcg == root)
bf8d5d52 6406 return MEMCG_PROT_NONE;
241994ed 6407
23067153 6408 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6409 if (!usage)
6410 return MEMCG_PROT_NONE;
6411
bf8d5d52 6412 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6413 /* No parent means a non-hierarchical mode on v1 memcg */
6414 if (!parent)
6415 return MEMCG_PROT_NONE;
6416
bc50bcc6 6417 if (parent == root) {
c3d53200 6418 memcg->memory.emin = READ_ONCE(memcg->memory.min);
bc50bcc6
JW
6419 memcg->memory.elow = memcg->memory.low;
6420 goto out;
bf8d5d52
RG
6421 }
6422
8a931f80
JW
6423 parent_usage = page_counter_read(&parent->memory);
6424
b3a7822e 6425 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6426 READ_ONCE(memcg->memory.min),
6427 READ_ONCE(parent->memory.emin),
b3a7822e 6428 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6429
b3a7822e 6430 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
bc50bcc6 6431 memcg->memory.low, READ_ONCE(parent->memory.elow),
b3a7822e 6432 atomic_long_read(&parent->memory.children_low_usage)));
23067153 6433
bc50bcc6
JW
6434out:
6435 if (usage <= memcg->memory.emin)
bf8d5d52 6436 return MEMCG_PROT_MIN;
bc50bcc6 6437 else if (usage <= memcg->memory.elow)
bf8d5d52
RG
6438 return MEMCG_PROT_LOW;
6439 else
6440 return MEMCG_PROT_NONE;
241994ed
JW
6441}
6442
00501b53 6443/**
f0e45fb4 6444 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6445 * @page: page to charge
6446 * @mm: mm context of the victim
6447 * @gfp_mask: reclaim mode
00501b53
JW
6448 *
6449 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6450 * pages according to @gfp_mask if necessary.
6451 *
f0e45fb4 6452 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6453 */
d9eb1ea2 6454int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6455{
3fba69a5 6456 unsigned int nr_pages = hpage_nr_pages(page);
00501b53 6457 struct mem_cgroup *memcg = NULL;
00501b53
JW
6458 int ret = 0;
6459
6460 if (mem_cgroup_disabled())
6461 goto out;
6462
6463 if (PageSwapCache(page)) {
2d1c4980
JW
6464 swp_entry_t ent = { .val = page_private(page), };
6465 unsigned short id;
6466
00501b53
JW
6467 /*
6468 * Every swap fault against a single page tries to charge the
6469 * page, bail as early as possible. shmem_unuse() encounters
eccb52e7
JW
6470 * already charged pages, too. page->mem_cgroup is protected
6471 * by the page lock, which serializes swap cache removal, which
00501b53
JW
6472 * in turn serializes uncharging.
6473 */
e993d905 6474 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6475 if (compound_head(page)->mem_cgroup)
00501b53 6476 goto out;
e993d905 6477
2d1c4980
JW
6478 id = lookup_swap_cgroup_id(ent);
6479 rcu_read_lock();
6480 memcg = mem_cgroup_from_id(id);
6481 if (memcg && !css_tryget_online(&memcg->css))
6482 memcg = NULL;
6483 rcu_read_unlock();
00501b53
JW
6484 }
6485
00501b53
JW
6486 if (!memcg)
6487 memcg = get_mem_cgroup_from_mm(mm);
6488
6489 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6490 if (ret)
6491 goto out_put;
00501b53 6492
d9eb1ea2 6493 commit_charge(page, memcg);
6abb5a86 6494
6abb5a86 6495 local_irq_disable();
3fba69a5 6496 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6497 memcg_check_events(memcg, page);
6498 local_irq_enable();
00501b53 6499
2d1c4980 6500 if (PageSwapCache(page)) {
00501b53
JW
6501 swp_entry_t entry = { .val = page_private(page) };
6502 /*
6503 * The swap entry might not get freed for a long time,
6504 * let's not wait for it. The page already received a
6505 * memory+swap charge, drop the swap entry duplicate.
6506 */
38d8b4e6 6507 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6508 }
00501b53 6509
f0e45fb4
JW
6510out_put:
6511 css_put(&memcg->css);
6512out:
6513 return ret;
3fea5a49
JW
6514}
6515
a9d5adee
JG
6516struct uncharge_gather {
6517 struct mem_cgroup *memcg;
9f762dbe 6518 unsigned long nr_pages;
a9d5adee 6519 unsigned long pgpgout;
a9d5adee 6520 unsigned long nr_kmem;
a9d5adee
JG
6521 struct page *dummy_page;
6522};
6523
6524static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6525{
a9d5adee
JG
6526 memset(ug, 0, sizeof(*ug));
6527}
6528
6529static void uncharge_batch(const struct uncharge_gather *ug)
6530{
747db954
JW
6531 unsigned long flags;
6532
a9d5adee 6533 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6534 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6535 if (do_memsw_account())
9f762dbe 6536 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6537 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6538 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6539 memcg_oom_recover(ug->memcg);
ce00a967 6540 }
747db954
JW
6541
6542 local_irq_save(flags);
c9019e9b 6543 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6544 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6545 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6546 local_irq_restore(flags);
e8ea14cc 6547
a9d5adee 6548 if (!mem_cgroup_is_root(ug->memcg))
9f762dbe 6549 css_put_many(&ug->memcg->css, ug->nr_pages);
a9d5adee
JG
6550}
6551
6552static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6553{
9f762dbe
JW
6554 unsigned long nr_pages;
6555
a9d5adee 6556 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee
JG
6557
6558 if (!page->mem_cgroup)
6559 return;
6560
6561 /*
6562 * Nobody should be changing or seriously looking at
6563 * page->mem_cgroup at this point, we have fully
6564 * exclusive access to the page.
6565 */
6566
6567 if (ug->memcg != page->mem_cgroup) {
6568 if (ug->memcg) {
6569 uncharge_batch(ug);
6570 uncharge_gather_clear(ug);
6571 }
6572 ug->memcg = page->mem_cgroup;
6573 }
6574
9f762dbe
JW
6575 nr_pages = compound_nr(page);
6576 ug->nr_pages += nr_pages;
a9d5adee 6577
9f762dbe 6578 if (!PageKmemcg(page)) {
a9d5adee
JG
6579 ug->pgpgout++;
6580 } else {
9f762dbe 6581 ug->nr_kmem += nr_pages;
a9d5adee
JG
6582 __ClearPageKmemcg(page);
6583 }
6584
6585 ug->dummy_page = page;
6586 page->mem_cgroup = NULL;
747db954
JW
6587}
6588
6589static void uncharge_list(struct list_head *page_list)
6590{
a9d5adee 6591 struct uncharge_gather ug;
747db954 6592 struct list_head *next;
a9d5adee
JG
6593
6594 uncharge_gather_clear(&ug);
747db954 6595
8b592656
JW
6596 /*
6597 * Note that the list can be a single page->lru; hence the
6598 * do-while loop instead of a simple list_for_each_entry().
6599 */
747db954
JW
6600 next = page_list->next;
6601 do {
a9d5adee
JG
6602 struct page *page;
6603
747db954
JW
6604 page = list_entry(next, struct page, lru);
6605 next = page->lru.next;
6606
a9d5adee 6607 uncharge_page(page, &ug);
747db954
JW
6608 } while (next != page_list);
6609
a9d5adee
JG
6610 if (ug.memcg)
6611 uncharge_batch(&ug);
747db954
JW
6612}
6613
0a31bc97
JW
6614/**
6615 * mem_cgroup_uncharge - uncharge a page
6616 * @page: page to uncharge
6617 *
f0e45fb4 6618 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6619 */
6620void mem_cgroup_uncharge(struct page *page)
6621{
a9d5adee
JG
6622 struct uncharge_gather ug;
6623
0a31bc97
JW
6624 if (mem_cgroup_disabled())
6625 return;
6626
747db954 6627 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6628 if (!page->mem_cgroup)
0a31bc97
JW
6629 return;
6630
a9d5adee
JG
6631 uncharge_gather_clear(&ug);
6632 uncharge_page(page, &ug);
6633 uncharge_batch(&ug);
747db954 6634}
0a31bc97 6635
747db954
JW
6636/**
6637 * mem_cgroup_uncharge_list - uncharge a list of page
6638 * @page_list: list of pages to uncharge
6639 *
6640 * Uncharge a list of pages previously charged with
f0e45fb4 6641 * mem_cgroup_charge().
747db954
JW
6642 */
6643void mem_cgroup_uncharge_list(struct list_head *page_list)
6644{
6645 if (mem_cgroup_disabled())
6646 return;
0a31bc97 6647
747db954
JW
6648 if (!list_empty(page_list))
6649 uncharge_list(page_list);
0a31bc97
JW
6650}
6651
6652/**
6a93ca8f
JW
6653 * mem_cgroup_migrate - charge a page's replacement
6654 * @oldpage: currently circulating page
6655 * @newpage: replacement page
0a31bc97 6656 *
6a93ca8f
JW
6657 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6658 * be uncharged upon free.
0a31bc97
JW
6659 *
6660 * Both pages must be locked, @newpage->mapping must be set up.
6661 */
6a93ca8f 6662void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6663{
29833315 6664 struct mem_cgroup *memcg;
44b7a8d3 6665 unsigned int nr_pages;
d93c4130 6666 unsigned long flags;
0a31bc97
JW
6667
6668 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6669 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6670 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6671 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6672 newpage);
0a31bc97
JW
6673
6674 if (mem_cgroup_disabled())
6675 return;
6676
6677 /* Page cache replacement: new page already charged? */
1306a85a 6678 if (newpage->mem_cgroup)
0a31bc97
JW
6679 return;
6680
45637bab 6681 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6682 memcg = oldpage->mem_cgroup;
29833315 6683 if (!memcg)
0a31bc97
JW
6684 return;
6685
44b7a8d3 6686 /* Force-charge the new page. The old one will be freed soon */
92855270 6687 nr_pages = hpage_nr_pages(newpage);
44b7a8d3
JW
6688
6689 page_counter_charge(&memcg->memory, nr_pages);
6690 if (do_memsw_account())
6691 page_counter_charge(&memcg->memsw, nr_pages);
6692 css_get_many(&memcg->css, nr_pages);
0a31bc97 6693
d9eb1ea2 6694 commit_charge(newpage, memcg);
44b7a8d3 6695
d93c4130 6696 local_irq_save(flags);
3fba69a5 6697 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6698 memcg_check_events(memcg, newpage);
d93c4130 6699 local_irq_restore(flags);
0a31bc97
JW
6700}
6701
ef12947c 6702DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6703EXPORT_SYMBOL(memcg_sockets_enabled_key);
6704
2d758073 6705void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6706{
6707 struct mem_cgroup *memcg;
6708
2d758073
JW
6709 if (!mem_cgroup_sockets_enabled)
6710 return;
6711
e876ecc6
SB
6712 /* Do not associate the sock with unrelated interrupted task's memcg. */
6713 if (in_interrupt())
6714 return;
6715
11092087
JW
6716 rcu_read_lock();
6717 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6718 if (memcg == root_mem_cgroup)
6719 goto out;
0db15298 6720 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6721 goto out;
8965aa28 6722 if (css_tryget(&memcg->css))
11092087 6723 sk->sk_memcg = memcg;
f7e1cb6e 6724out:
11092087
JW
6725 rcu_read_unlock();
6726}
11092087 6727
2d758073 6728void mem_cgroup_sk_free(struct sock *sk)
11092087 6729{
2d758073
JW
6730 if (sk->sk_memcg)
6731 css_put(&sk->sk_memcg->css);
11092087
JW
6732}
6733
6734/**
6735 * mem_cgroup_charge_skmem - charge socket memory
6736 * @memcg: memcg to charge
6737 * @nr_pages: number of pages to charge
6738 *
6739 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6740 * @memcg's configured limit, %false if the charge had to be forced.
6741 */
6742bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6743{
f7e1cb6e 6744 gfp_t gfp_mask = GFP_KERNEL;
11092087 6745
f7e1cb6e 6746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6747 struct page_counter *fail;
f7e1cb6e 6748
0db15298
JW
6749 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6750 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6751 return true;
6752 }
0db15298
JW
6753 page_counter_charge(&memcg->tcpmem, nr_pages);
6754 memcg->tcpmem_pressure = 1;
f7e1cb6e 6755 return false;
11092087 6756 }
d886f4e4 6757
f7e1cb6e
JW
6758 /* Don't block in the packet receive path */
6759 if (in_softirq())
6760 gfp_mask = GFP_NOWAIT;
6761
c9019e9b 6762 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6763
f7e1cb6e
JW
6764 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6765 return true;
6766
6767 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6768 return false;
6769}
6770
6771/**
6772 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6773 * @memcg: memcg to uncharge
6774 * @nr_pages: number of pages to uncharge
11092087
JW
6775 */
6776void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6777{
f7e1cb6e 6778 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6779 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6780 return;
6781 }
d886f4e4 6782
c9019e9b 6783 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6784
475d0487 6785 refill_stock(memcg, nr_pages);
11092087
JW
6786}
6787
f7e1cb6e
JW
6788static int __init cgroup_memory(char *s)
6789{
6790 char *token;
6791
6792 while ((token = strsep(&s, ",")) != NULL) {
6793 if (!*token)
6794 continue;
6795 if (!strcmp(token, "nosocket"))
6796 cgroup_memory_nosocket = true;
04823c83
VD
6797 if (!strcmp(token, "nokmem"))
6798 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6799 }
6800 return 0;
6801}
6802__setup("cgroup.memory=", cgroup_memory);
11092087 6803
2d11085e 6804/*
1081312f
MH
6805 * subsys_initcall() for memory controller.
6806 *
308167fc
SAS
6807 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6808 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6809 * basically everything that doesn't depend on a specific mem_cgroup structure
6810 * should be initialized from here.
2d11085e
MH
6811 */
6812static int __init mem_cgroup_init(void)
6813{
95a045f6
JW
6814 int cpu, node;
6815
84c07d11 6816#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6817 /*
6818 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6819 * so use a workqueue with limited concurrency to avoid stalling
6820 * all worker threads in case lots of cgroups are created and
6821 * destroyed simultaneously.
13583c3d 6822 */
17cc4dfe
TH
6823 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6824 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6825#endif
6826
308167fc
SAS
6827 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6828 memcg_hotplug_cpu_dead);
95a045f6
JW
6829
6830 for_each_possible_cpu(cpu)
6831 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6832 drain_local_stock);
6833
6834 for_each_node(node) {
6835 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6836
6837 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6838 node_online(node) ? node : NUMA_NO_NODE);
6839
ef8f2327 6840 rtpn->rb_root = RB_ROOT;
fa90b2fd 6841 rtpn->rb_rightmost = NULL;
ef8f2327 6842 spin_lock_init(&rtpn->lock);
95a045f6
JW
6843 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6844 }
6845
2d11085e
MH
6846 return 0;
6847}
6848subsys_initcall(mem_cgroup_init);
21afa38e
JW
6849
6850#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6851static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6852{
1c2d479a 6853 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6854 /*
6855 * The root cgroup cannot be destroyed, so it's refcount must
6856 * always be >= 1.
6857 */
6858 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6859 VM_BUG_ON(1);
6860 break;
6861 }
6862 memcg = parent_mem_cgroup(memcg);
6863 if (!memcg)
6864 memcg = root_mem_cgroup;
6865 }
6866 return memcg;
6867}
6868
21afa38e
JW
6869/**
6870 * mem_cgroup_swapout - transfer a memsw charge to swap
6871 * @page: page whose memsw charge to transfer
6872 * @entry: swap entry to move the charge to
6873 *
6874 * Transfer the memsw charge of @page to @entry.
6875 */
6876void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6877{
1f47b61f 6878 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6879 unsigned int nr_entries;
21afa38e
JW
6880 unsigned short oldid;
6881
6882 VM_BUG_ON_PAGE(PageLRU(page), page);
6883 VM_BUG_ON_PAGE(page_count(page), page);
6884
2d1c4980 6885 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
6886 return;
6887
6888 memcg = page->mem_cgroup;
6889
6890 /* Readahead page, never charged */
6891 if (!memcg)
6892 return;
6893
1f47b61f
VD
6894 /*
6895 * In case the memcg owning these pages has been offlined and doesn't
6896 * have an ID allocated to it anymore, charge the closest online
6897 * ancestor for the swap instead and transfer the memory+swap charge.
6898 */
6899 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6900 nr_entries = hpage_nr_pages(page);
6901 /* Get references for the tail pages, too */
6902 if (nr_entries > 1)
6903 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6904 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6905 nr_entries);
21afa38e 6906 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6907 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6908
6909 page->mem_cgroup = NULL;
6910
6911 if (!mem_cgroup_is_root(memcg))
d6810d73 6912 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6913
2d1c4980 6914 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 6915 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6916 page_counter_charge(&swap_memcg->memsw, nr_entries);
6917 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6918 }
6919
ce9ce665
SAS
6920 /*
6921 * Interrupts should be disabled here because the caller holds the
b93b0163 6922 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6923 * important here to have the interrupts disabled because it is the
b93b0163 6924 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6925 */
6926 VM_BUG_ON(!irqs_disabled());
3fba69a5 6927 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 6928 memcg_check_events(memcg, page);
73f576c0
JW
6929
6930 if (!mem_cgroup_is_root(memcg))
d08afa14 6931 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6932}
6933
38d8b4e6
HY
6934/**
6935 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6936 * @page: page being added to swap
6937 * @entry: swap entry to charge
6938 *
38d8b4e6 6939 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6940 *
6941 * Returns 0 on success, -ENOMEM on failure.
6942 */
6943int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6944{
38d8b4e6 6945 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6946 struct page_counter *counter;
38d8b4e6 6947 struct mem_cgroup *memcg;
37e84351
VD
6948 unsigned short oldid;
6949
2d1c4980 6950 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
6951 return 0;
6952
6953 memcg = page->mem_cgroup;
6954
6955 /* Readahead page, never charged */
6956 if (!memcg)
6957 return 0;
6958
f3a53a3a
TH
6959 if (!entry.val) {
6960 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6961 return 0;
f3a53a3a 6962 }
bb98f2c5 6963
1f47b61f
VD
6964 memcg = mem_cgroup_id_get_online(memcg);
6965
2d1c4980 6966 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 6967 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6968 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6969 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6970 mem_cgroup_id_put(memcg);
37e84351 6971 return -ENOMEM;
1f47b61f 6972 }
37e84351 6973
38d8b4e6
HY
6974 /* Get references for the tail pages, too */
6975 if (nr_pages > 1)
6976 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6977 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6978 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6979 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6980
37e84351
VD
6981 return 0;
6982}
6983
21afa38e 6984/**
38d8b4e6 6985 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6986 * @entry: swap entry to uncharge
38d8b4e6 6987 * @nr_pages: the amount of swap space to uncharge
21afa38e 6988 */
38d8b4e6 6989void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6990{
6991 struct mem_cgroup *memcg;
6992 unsigned short id;
6993
38d8b4e6 6994 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6995 rcu_read_lock();
adbe427b 6996 memcg = mem_cgroup_from_id(id);
21afa38e 6997 if (memcg) {
2d1c4980 6998 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 6999 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7000 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7001 else
38d8b4e6 7002 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7003 }
c9019e9b 7004 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7005 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7006 }
7007 rcu_read_unlock();
7008}
7009
d8b38438
VD
7010long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7011{
7012 long nr_swap_pages = get_nr_swap_pages();
7013
eccb52e7 7014 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7015 return nr_swap_pages;
7016 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7017 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7018 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7019 page_counter_read(&memcg->swap));
7020 return nr_swap_pages;
7021}
7022
5ccc5aba
VD
7023bool mem_cgroup_swap_full(struct page *page)
7024{
7025 struct mem_cgroup *memcg;
7026
7027 VM_BUG_ON_PAGE(!PageLocked(page), page);
7028
7029 if (vm_swap_full())
7030 return true;
eccb52e7 7031 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7032 return false;
7033
7034 memcg = page->mem_cgroup;
7035 if (!memcg)
7036 return false;
7037
4b82ab4f
JK
7038 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7039 unsigned long usage = page_counter_read(&memcg->swap);
7040
7041 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7042 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7043 return true;
4b82ab4f 7044 }
5ccc5aba
VD
7045
7046 return false;
7047}
7048
eccb52e7 7049static int __init setup_swap_account(char *s)
21afa38e
JW
7050{
7051 if (!strcmp(s, "1"))
eccb52e7 7052 cgroup_memory_noswap = 0;
21afa38e 7053 else if (!strcmp(s, "0"))
eccb52e7 7054 cgroup_memory_noswap = 1;
21afa38e
JW
7055 return 1;
7056}
eccb52e7 7057__setup("swapaccount=", setup_swap_account);
21afa38e 7058
37e84351
VD
7059static u64 swap_current_read(struct cgroup_subsys_state *css,
7060 struct cftype *cft)
7061{
7062 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7063
7064 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7065}
7066
4b82ab4f
JK
7067static int swap_high_show(struct seq_file *m, void *v)
7068{
7069 return seq_puts_memcg_tunable(m,
7070 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7071}
7072
7073static ssize_t swap_high_write(struct kernfs_open_file *of,
7074 char *buf, size_t nbytes, loff_t off)
7075{
7076 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7077 unsigned long high;
7078 int err;
7079
7080 buf = strstrip(buf);
7081 err = page_counter_memparse(buf, "max", &high);
7082 if (err)
7083 return err;
7084
7085 page_counter_set_high(&memcg->swap, high);
7086
7087 return nbytes;
7088}
7089
37e84351
VD
7090static int swap_max_show(struct seq_file *m, void *v)
7091{
677dc973
CD
7092 return seq_puts_memcg_tunable(m,
7093 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7094}
7095
7096static ssize_t swap_max_write(struct kernfs_open_file *of,
7097 char *buf, size_t nbytes, loff_t off)
7098{
7099 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7100 unsigned long max;
7101 int err;
7102
7103 buf = strstrip(buf);
7104 err = page_counter_memparse(buf, "max", &max);
7105 if (err)
7106 return err;
7107
be09102b 7108 xchg(&memcg->swap.max, max);
37e84351
VD
7109
7110 return nbytes;
7111}
7112
f3a53a3a
TH
7113static int swap_events_show(struct seq_file *m, void *v)
7114{
aa9694bb 7115 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7116
4b82ab4f
JK
7117 seq_printf(m, "high %lu\n",
7118 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7119 seq_printf(m, "max %lu\n",
7120 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7121 seq_printf(m, "fail %lu\n",
7122 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7123
7124 return 0;
7125}
7126
37e84351
VD
7127static struct cftype swap_files[] = {
7128 {
7129 .name = "swap.current",
7130 .flags = CFTYPE_NOT_ON_ROOT,
7131 .read_u64 = swap_current_read,
7132 },
4b82ab4f
JK
7133 {
7134 .name = "swap.high",
7135 .flags = CFTYPE_NOT_ON_ROOT,
7136 .seq_show = swap_high_show,
7137 .write = swap_high_write,
7138 },
37e84351
VD
7139 {
7140 .name = "swap.max",
7141 .flags = CFTYPE_NOT_ON_ROOT,
7142 .seq_show = swap_max_show,
7143 .write = swap_max_write,
7144 },
f3a53a3a
TH
7145 {
7146 .name = "swap.events",
7147 .flags = CFTYPE_NOT_ON_ROOT,
7148 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7149 .seq_show = swap_events_show,
7150 },
37e84351
VD
7151 { } /* terminate */
7152};
7153
eccb52e7 7154static struct cftype memsw_files[] = {
21afa38e
JW
7155 {
7156 .name = "memsw.usage_in_bytes",
7157 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7158 .read_u64 = mem_cgroup_read_u64,
7159 },
7160 {
7161 .name = "memsw.max_usage_in_bytes",
7162 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7163 .write = mem_cgroup_reset,
7164 .read_u64 = mem_cgroup_read_u64,
7165 },
7166 {
7167 .name = "memsw.limit_in_bytes",
7168 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7169 .write = mem_cgroup_write,
7170 .read_u64 = mem_cgroup_read_u64,
7171 },
7172 {
7173 .name = "memsw.failcnt",
7174 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7175 .write = mem_cgroup_reset,
7176 .read_u64 = mem_cgroup_read_u64,
7177 },
7178 { }, /* terminate */
7179};
7180
7181static int __init mem_cgroup_swap_init(void)
7182{
2d1c4980
JW
7183 /* No memory control -> no swap control */
7184 if (mem_cgroup_disabled())
7185 cgroup_memory_noswap = true;
7186
7187 if (cgroup_memory_noswap)
eccb52e7
JW
7188 return 0;
7189
7190 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7191 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7192
21afa38e
JW
7193 return 0;
7194}
7195subsys_initcall(mem_cgroup_swap_init);
7196
7197#endif /* CONFIG_MEMCG_SWAP */