mm: use unsigned long constant for page flags
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
264a0ae1 210 struct mm_struct *mm;
4ffef5fe
DN
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
1dfab5ab 213 unsigned long flags;
4ffef5fe 214 unsigned long precharge;
854ffa8d 215 unsigned long moved_charge;
483c30b5 216 unsigned long moved_swap;
8033b97c
DN
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
2bd9bb20 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
4ffef5fe 223
4e416953
BS
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
a0db00fc 228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 230
217bc319
KH
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 233 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
236 NR_CHARGE_TYPE,
237};
238
8c7c6e34 239/* for encoding cft->private value on file */
86ae53e1
GC
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
510fc4e1 244 _KMEM,
d55f90bf 245 _TCP,
86ae53e1
GC
246};
247
a0db00fc
KS
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 250#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
8c7c6e34 253
70ddf637
AV
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
7ffc0edc
MH
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
127424c8 272#ifndef CONFIG_SLOB
55007d84 273/*
f7ce3190 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
55007d84 280 *
dbcf73e2
VD
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
55007d84 283 */
dbcf73e2
VD
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
749c5415 286
05257a1a
VD
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
55007d84
GC
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
b8627835 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
b8627835 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 314
d7f25f8a
GC
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
ef12947c 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 323
127424c8 324#endif /* !CONFIG_SLOB */
a8964b9b 325
f64c3f54 326static struct mem_cgroup_per_zone *
e231875b 327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 328{
e231875b
JZ
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
54f72fe0 332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
333}
334
ad7fa852
TH
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
ad7fa852
TH
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
ad7fa852
TH
350 memcg = page->mem_cgroup;
351
9e10a130 352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
353 memcg = root_mem_cgroup;
354
ad7fa852
TH
355 return &memcg->css;
356}
357
2fc04524
VD
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
f64c3f54 386static struct mem_cgroup_per_zone *
e231875b 387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 388{
97a6c37b
JW
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
f64c3f54 391
e231875b 392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
393}
394
bb4cc1a8
AM
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
cf2c8127
JW
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 412 unsigned long new_usage_in_excess)
bb4cc1a8
AM
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
cf2c8127
JW
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
cf2c8127
JW
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 453{
0a31bc97
JW
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 457 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 458 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
459}
460
3e32cb2e
JW
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
bb4cc1a8
AM
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
3e32cb2e 475 unsigned long excess;
bb4cc1a8
AM
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 478
e231875b 479 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 485 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 486 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
0a31bc97
JW
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
495 /* if on-tree, remove it */
496 if (mz->on_tree)
cf2c8127 497 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
cf2c8127 502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 503 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
bb4cc1a8 510 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
bb4cc1a8 513
e231875b
JZ
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 518 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
cf2c8127 541 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 542 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 543 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
0a31bc97 554 spin_lock_irq(&mctz->lock);
bb4cc1a8 555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 556 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
557 return mz;
558}
559
711d3d2c 560/*
484ebb3b
GT
561 * Return page count for single (non recursive) @memcg.
562 *
711d3d2c
KH
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 568 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 578 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
579 * implemented.
580 */
484ebb3b
GT
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 583{
7a159cc9 584 long val = 0;
c62b1a3b 585 int cpu;
c62b1a3b 586
484ebb3b 587 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
c62b1a3b
KH
596 return val;
597}
598
c0ff4b85 599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
733a572e 605 for_each_possible_cpu(cpu)
c0ff4b85 606 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
607 return val;
608}
609
c0ff4b85 610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 611 struct page *page,
f627c2f5 612 bool compound, int nr_pages)
d52aa412 613{
b2402857
KH
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
0a31bc97 618 if (PageAnon(page))
b2402857 619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 620 nr_pages);
d52aa412 621 else
b2402857 622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 623 nr_pages);
55e462b0 624
f627c2f5
KS
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
f627c2f5 629 }
b070e65c 630
e401f176
KH
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
c0ff4b85 633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 634 else {
c0ff4b85 635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
636 nr_pages = -nr_pages; /* for event */
637 }
e401f176 638
13114716 639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
640}
641
0a6b76dd
VD
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
bb2a0de9 644{
e231875b 645 unsigned long nr = 0;
889976db
YH
646 int zid;
647
e231875b 648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 649
e231875b
JZ
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
889976db 662}
bb2a0de9 663
c0ff4b85 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 665 unsigned int lru_mask)
6d12e2d8 666{
e231875b 667 unsigned long nr = 0;
889976db 668 int nid;
6d12e2d8 669
31aaea4a 670 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
d52aa412
KH
673}
674
f53d7ce3
JW
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
7a159cc9
JW
677{
678 unsigned long val, next;
679
13114716 680 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 681 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 682 /* from time_after() in jiffies.h */
f53d7ce3
JW
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
bb4cc1a8
AM
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
f53d7ce3
JW
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
7a159cc9 699 }
f53d7ce3 700 return false;
d2265e6f
KH
701}
702
703/*
704 * Check events in order.
705 *
706 */
c0ff4b85 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
708{
709 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 712 bool do_softlimit;
82b3f2a7 713 bool do_numainfo __maybe_unused;
f53d7ce3 714
bb4cc1a8
AM
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
c0ff4b85 721 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
453a9bf3 724#if MAX_NUMNODES > 1
f53d7ce3 725 if (unlikely(do_numainfo))
c0ff4b85 726 atomic_inc(&memcg->numainfo_events);
453a9bf3 727#endif
0a31bc97 728 }
d2265e6f
KH
729}
730
cf475ad2 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 732{
31a78f23
BS
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
073219e9 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 742}
33398cf2 743EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 744
df381975 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 746{
c0ff4b85 747 struct mem_cgroup *memcg = NULL;
0b7f569e 748
54595fe2
KH
749 rcu_read_lock();
750 do {
6f6acb00
MH
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
df381975 757 memcg = root_mem_cgroup;
6f6acb00
MH
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
ec903c0c 763 } while (!css_tryget_online(&memcg->css));
54595fe2 764 rcu_read_unlock();
c0ff4b85 765 return memcg;
54595fe2
KH
766}
767
5660048c
JW
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
694fbc0f 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 786 struct mem_cgroup *prev,
694fbc0f 787 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 788{
33398cf2 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 790 struct cgroup_subsys_state *css = NULL;
9f3a0d09 791 struct mem_cgroup *memcg = NULL;
5ac8fb31 792 struct mem_cgroup *pos = NULL;
711d3d2c 793
694fbc0f
AM
794 if (mem_cgroup_disabled())
795 return NULL;
5660048c 796
9f3a0d09
JW
797 if (!root)
798 root = root_mem_cgroup;
7d74b06f 799
9f3a0d09 800 if (prev && !reclaim)
5ac8fb31 801 pos = prev;
14067bb3 802
9f3a0d09
JW
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
5ac8fb31 805 goto out;
694fbc0f 806 return root;
9f3a0d09 807 }
14067bb3 808
542f85f9 809 rcu_read_lock();
5f578161 810
5ac8fb31
JW
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
6df38689 820 while (1) {
4db0c3c2 821 pos = READ_ONCE(iter->position);
6df38689
VD
822 if (!pos || css_tryget(&pos->css))
823 break;
5ac8fb31 824 /*
6df38689
VD
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
5ac8fb31 831 */
6df38689
VD
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
5ac8fb31
JW
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
527a5ec9 851 }
7d74b06f 852
5ac8fb31
JW
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
14067bb3 859
5ac8fb31
JW
860 if (css == &root->css)
861 break;
14067bb3 862
0b8f73e1
JW
863 if (css_tryget(css))
864 break;
9f3a0d09 865
5ac8fb31 866 memcg = NULL;
9f3a0d09 867 }
5ac8fb31
JW
868
869 if (reclaim) {
5ac8fb31 870 /*
6df38689
VD
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 874 */
6df38689
VD
875 (void)cmpxchg(&iter->position, pos, memcg);
876
5ac8fb31
JW
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
9f3a0d09 884 }
5ac8fb31 885
542f85f9
MH
886out_unlock:
887 rcu_read_unlock();
5ac8fb31 888out:
c40046f3
MH
889 if (prev && prev != root)
890 css_put(&prev->css);
891
9f3a0d09 892 return memcg;
14067bb3 893}
7d74b06f 894
5660048c
JW
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
9f3a0d09
JW
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
7d74b06f 908
6df38689
VD
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
9f3a0d09
JW
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 938 iter != NULL; \
527a5ec9 939 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 940
9f3a0d09 941#define for_each_mem_cgroup(iter) \
527a5ec9 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 943 iter != NULL; \
527a5ec9 944 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 945
925b7673
JW
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
fa9add64 949 * @memcg: memcg of the wanted lruvec
925b7673
JW
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
bea8c150 959 struct lruvec *lruvec;
925b7673 960
bea8c150
HD
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
925b7673 965
e231875b 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
925b7673
JW
977}
978
925b7673 979/**
dfe0e773 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 981 * @page: the page
fa9add64 982 * @zone: zone of the page
dfe0e773
JW
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 987 */
fa9add64 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 989{
08e552c6 990 struct mem_cgroup_per_zone *mz;
925b7673 991 struct mem_cgroup *memcg;
bea8c150 992 struct lruvec *lruvec;
6d12e2d8 993
bea8c150
HD
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
925b7673 998
1306a85a 999 memcg = page->mem_cgroup;
7512102c 1000 /*
dfe0e773 1001 * Swapcache readahead pages are added to the LRU - and
29833315 1002 * possibly migrated - before they are charged.
7512102c 1003 */
29833315
JW
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
7512102c 1006
e231875b 1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
08e552c6 1018}
b69408e8 1019
925b7673 1020/**
fa9add64
HD
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
925b7673 1025 *
ca707239
HD
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1029 */
fa9add64
HD
1030void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 int nr_pages)
3f58a829
MK
1032{
1033 struct mem_cgroup_per_zone *mz;
fa9add64 1034 unsigned long *lru_size;
ca707239
HD
1035 long size;
1036 bool empty;
3f58a829 1037
9d5e6a9f
HD
1038 __update_lru_size(lruvec, lru, nr_pages);
1039
3f58a829
MK
1040 if (mem_cgroup_disabled())
1041 return;
1042
fa9add64
HD
1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 lru_size = mz->lru_size + lru;
ca707239
HD
1045 empty = list_empty(lruvec->lists + lru);
1046
1047 if (nr_pages < 0)
1048 *lru_size += nr_pages;
1049
1050 size = *lru_size;
1051 if (WARN_ONCE(size < 0 || empty != !size,
1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 VM_BUG_ON(1);
1055 *lru_size = 0;
1056 }
1057
1058 if (nr_pages > 0)
1059 *lru_size += nr_pages;
08e552c6 1060}
544122e5 1061
2314b42d 1062bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1063{
2314b42d 1064 struct mem_cgroup *task_memcg;
158e0a2d 1065 struct task_struct *p;
ffbdccf5 1066 bool ret;
4c4a2214 1067
158e0a2d 1068 p = find_lock_task_mm(task);
de077d22 1069 if (p) {
2314b42d 1070 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1071 task_unlock(p);
1072 } else {
1073 /*
1074 * All threads may have already detached their mm's, but the oom
1075 * killer still needs to detect if they have already been oom
1076 * killed to prevent needlessly killing additional tasks.
1077 */
ffbdccf5 1078 rcu_read_lock();
2314b42d
JW
1079 task_memcg = mem_cgroup_from_task(task);
1080 css_get(&task_memcg->css);
ffbdccf5 1081 rcu_read_unlock();
de077d22 1082 }
2314b42d
JW
1083 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 css_put(&task_memcg->css);
4c4a2214
DR
1085 return ret;
1086}
1087
19942822 1088/**
9d11ea9f 1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1090 * @memcg: the memory cgroup
19942822 1091 *
9d11ea9f 1092 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1093 * pages.
19942822 1094 */
c0ff4b85 1095static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1096{
3e32cb2e
JW
1097 unsigned long margin = 0;
1098 unsigned long count;
1099 unsigned long limit;
9d11ea9f 1100
3e32cb2e 1101 count = page_counter_read(&memcg->memory);
4db0c3c2 1102 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1103 if (count < limit)
1104 margin = limit - count;
1105
7941d214 1106 if (do_memsw_account()) {
3e32cb2e 1107 count = page_counter_read(&memcg->memsw);
4db0c3c2 1108 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1109 if (count <= limit)
1110 margin = min(margin, limit - count);
1111 }
1112
1113 return margin;
19942822
JW
1114}
1115
32047e2a 1116/*
bdcbb659 1117 * A routine for checking "mem" is under move_account() or not.
32047e2a 1118 *
bdcbb659
QH
1119 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1120 * moving cgroups. This is for waiting at high-memory pressure
1121 * caused by "move".
32047e2a 1122 */
c0ff4b85 1123static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1124{
2bd9bb20
KH
1125 struct mem_cgroup *from;
1126 struct mem_cgroup *to;
4b534334 1127 bool ret = false;
2bd9bb20
KH
1128 /*
1129 * Unlike task_move routines, we access mc.to, mc.from not under
1130 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1131 */
1132 spin_lock(&mc.lock);
1133 from = mc.from;
1134 to = mc.to;
1135 if (!from)
1136 goto unlock;
3e92041d 1137
2314b42d
JW
1138 ret = mem_cgroup_is_descendant(from, memcg) ||
1139 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1140unlock:
1141 spin_unlock(&mc.lock);
4b534334
KH
1142 return ret;
1143}
1144
c0ff4b85 1145static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1146{
1147 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1148 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1149 DEFINE_WAIT(wait);
1150 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1151 /* moving charge context might have finished. */
1152 if (mc.moving_task)
1153 schedule();
1154 finish_wait(&mc.waitq, &wait);
1155 return true;
1156 }
1157 }
1158 return false;
1159}
1160
58cf188e 1161#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1162/**
58cf188e 1163 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1164 * @memcg: The memory cgroup that went over limit
1165 * @p: Task that is going to be killed
1166 *
1167 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1168 * enabled
1169 */
1170void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1171{
58cf188e
SZ
1172 struct mem_cgroup *iter;
1173 unsigned int i;
e222432b 1174
e222432b
BS
1175 rcu_read_lock();
1176
2415b9f5
BV
1177 if (p) {
1178 pr_info("Task in ");
1179 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1180 pr_cont(" killed as a result of limit of ");
1181 } else {
1182 pr_info("Memory limit reached of cgroup ");
1183 }
1184
e61734c5 1185 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1186 pr_cont("\n");
e222432b 1187
e222432b
BS
1188 rcu_read_unlock();
1189
3e32cb2e
JW
1190 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1191 K((u64)page_counter_read(&memcg->memory)),
1192 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1193 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1194 K((u64)page_counter_read(&memcg->memsw)),
1195 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1196 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1197 K((u64)page_counter_read(&memcg->kmem)),
1198 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1201 pr_info("Memory cgroup stats for ");
1202 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1203 pr_cont(":");
1204
1205 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1206 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1207 continue;
484ebb3b 1208 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1209 K(mem_cgroup_read_stat(iter, i)));
1210 }
1211
1212 for (i = 0; i < NR_LRU_LISTS; i++)
1213 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1214 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1215
1216 pr_cont("\n");
1217 }
e222432b
BS
1218}
1219
81d39c20
KH
1220/*
1221 * This function returns the number of memcg under hierarchy tree. Returns
1222 * 1(self count) if no children.
1223 */
c0ff4b85 1224static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1225{
1226 int num = 0;
7d74b06f
KH
1227 struct mem_cgroup *iter;
1228
c0ff4b85 1229 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1230 num++;
81d39c20
KH
1231 return num;
1232}
1233
a63d83f4
DR
1234/*
1235 * Return the memory (and swap, if configured) limit for a memcg.
1236 */
3e32cb2e 1237static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1238{
3e32cb2e 1239 unsigned long limit;
f3e8eb70 1240
3e32cb2e 1241 limit = memcg->memory.limit;
9a5a8f19 1242 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1243 unsigned long memsw_limit;
37e84351 1244 unsigned long swap_limit;
9a5a8f19 1245
3e32cb2e 1246 memsw_limit = memcg->memsw.limit;
37e84351
VD
1247 swap_limit = memcg->swap.limit;
1248 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1249 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1250 }
9a5a8f19 1251 return limit;
a63d83f4
DR
1252}
1253
b6e6edcf 1254static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1255 int order)
9cbb78bb 1256{
6e0fc46d
DR
1257 struct oom_control oc = {
1258 .zonelist = NULL,
1259 .nodemask = NULL,
1260 .gfp_mask = gfp_mask,
1261 .order = order,
6e0fc46d 1262 };
9cbb78bb
DR
1263 struct mem_cgroup *iter;
1264 unsigned long chosen_points = 0;
1265 unsigned long totalpages;
1266 unsigned int points = 0;
1267 struct task_struct *chosen = NULL;
1268
dc56401f
JW
1269 mutex_lock(&oom_lock);
1270
876aafbf 1271 /*
465adcf1
DR
1272 * If current has a pending SIGKILL or is exiting, then automatically
1273 * select it. The goal is to allow it to allocate so that it may
1274 * quickly exit and free its memory.
876aafbf 1275 */
d003f371 1276 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1277 mark_oom_victim(current);
3ef22dff 1278 try_oom_reaper(current);
dc56401f 1279 goto unlock;
876aafbf
DR
1280 }
1281
6e0fc46d 1282 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1283 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1284 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1285 struct css_task_iter it;
9cbb78bb
DR
1286 struct task_struct *task;
1287
72ec7029
TH
1288 css_task_iter_start(&iter->css, &it);
1289 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1290 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1291 case OOM_SCAN_SELECT:
1292 if (chosen)
1293 put_task_struct(chosen);
1294 chosen = task;
1295 chosen_points = ULONG_MAX;
1296 get_task_struct(chosen);
1297 /* fall through */
1298 case OOM_SCAN_CONTINUE:
1299 continue;
1300 case OOM_SCAN_ABORT:
72ec7029 1301 css_task_iter_end(&it);
9cbb78bb
DR
1302 mem_cgroup_iter_break(memcg, iter);
1303 if (chosen)
1304 put_task_struct(chosen);
dc56401f 1305 goto unlock;
9cbb78bb
DR
1306 case OOM_SCAN_OK:
1307 break;
1308 };
1309 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1310 if (!points || points < chosen_points)
1311 continue;
1312 /* Prefer thread group leaders for display purposes */
1313 if (points == chosen_points &&
1314 thread_group_leader(chosen))
1315 continue;
1316
1317 if (chosen)
1318 put_task_struct(chosen);
1319 chosen = task;
1320 chosen_points = points;
1321 get_task_struct(chosen);
9cbb78bb 1322 }
72ec7029 1323 css_task_iter_end(&it);
9cbb78bb
DR
1324 }
1325
dc56401f
JW
1326 if (chosen) {
1327 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1328 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1329 "Memory cgroup out of memory");
dc56401f
JW
1330 }
1331unlock:
1332 mutex_unlock(&oom_lock);
b6e6edcf 1333 return chosen;
9cbb78bb
DR
1334}
1335
ae6e71d3
MC
1336#if MAX_NUMNODES > 1
1337
4d0c066d
KH
1338/**
1339 * test_mem_cgroup_node_reclaimable
dad7557e 1340 * @memcg: the target memcg
4d0c066d
KH
1341 * @nid: the node ID to be checked.
1342 * @noswap : specify true here if the user wants flle only information.
1343 *
1344 * This function returns whether the specified memcg contains any
1345 * reclaimable pages on a node. Returns true if there are any reclaimable
1346 * pages in the node.
1347 */
c0ff4b85 1348static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1349 int nid, bool noswap)
1350{
c0ff4b85 1351 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1352 return true;
1353 if (noswap || !total_swap_pages)
1354 return false;
c0ff4b85 1355 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1356 return true;
1357 return false;
1358
1359}
889976db
YH
1360
1361/*
1362 * Always updating the nodemask is not very good - even if we have an empty
1363 * list or the wrong list here, we can start from some node and traverse all
1364 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1365 *
1366 */
c0ff4b85 1367static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1368{
1369 int nid;
453a9bf3
KH
1370 /*
1371 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1372 * pagein/pageout changes since the last update.
1373 */
c0ff4b85 1374 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1375 return;
c0ff4b85 1376 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1377 return;
1378
889976db 1379 /* make a nodemask where this memcg uses memory from */
31aaea4a 1380 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1381
31aaea4a 1382 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1383
c0ff4b85
R
1384 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1385 node_clear(nid, memcg->scan_nodes);
889976db 1386 }
453a9bf3 1387
c0ff4b85
R
1388 atomic_set(&memcg->numainfo_events, 0);
1389 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1390}
1391
1392/*
1393 * Selecting a node where we start reclaim from. Because what we need is just
1394 * reducing usage counter, start from anywhere is O,K. Considering
1395 * memory reclaim from current node, there are pros. and cons.
1396 *
1397 * Freeing memory from current node means freeing memory from a node which
1398 * we'll use or we've used. So, it may make LRU bad. And if several threads
1399 * hit limits, it will see a contention on a node. But freeing from remote
1400 * node means more costs for memory reclaim because of memory latency.
1401 *
1402 * Now, we use round-robin. Better algorithm is welcomed.
1403 */
c0ff4b85 1404int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1405{
1406 int node;
1407
c0ff4b85
R
1408 mem_cgroup_may_update_nodemask(memcg);
1409 node = memcg->last_scanned_node;
889976db 1410
0edaf86c 1411 node = next_node_in(node, memcg->scan_nodes);
889976db 1412 /*
fda3d69b
MH
1413 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1414 * last time it really checked all the LRUs due to rate limiting.
1415 * Fallback to the current node in that case for simplicity.
889976db
YH
1416 */
1417 if (unlikely(node == MAX_NUMNODES))
1418 node = numa_node_id();
1419
c0ff4b85 1420 memcg->last_scanned_node = node;
889976db
YH
1421 return node;
1422}
889976db 1423#else
c0ff4b85 1424int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1425{
1426 return 0;
1427}
1428#endif
1429
0608f43d
AM
1430static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1431 struct zone *zone,
1432 gfp_t gfp_mask,
1433 unsigned long *total_scanned)
1434{
1435 struct mem_cgroup *victim = NULL;
1436 int total = 0;
1437 int loop = 0;
1438 unsigned long excess;
1439 unsigned long nr_scanned;
1440 struct mem_cgroup_reclaim_cookie reclaim = {
1441 .zone = zone,
1442 .priority = 0,
1443 };
1444
3e32cb2e 1445 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1446
1447 while (1) {
1448 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1449 if (!victim) {
1450 loop++;
1451 if (loop >= 2) {
1452 /*
1453 * If we have not been able to reclaim
1454 * anything, it might because there are
1455 * no reclaimable pages under this hierarchy
1456 */
1457 if (!total)
1458 break;
1459 /*
1460 * We want to do more targeted reclaim.
1461 * excess >> 2 is not to excessive so as to
1462 * reclaim too much, nor too less that we keep
1463 * coming back to reclaim from this cgroup
1464 */
1465 if (total >= (excess >> 2) ||
1466 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1467 break;
1468 }
1469 continue;
1470 }
0608f43d
AM
1471 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1472 zone, &nr_scanned);
1473 *total_scanned += nr_scanned;
3e32cb2e 1474 if (!soft_limit_excess(root_memcg))
0608f43d 1475 break;
6d61ef40 1476 }
0608f43d
AM
1477 mem_cgroup_iter_break(root_memcg, victim);
1478 return total;
6d61ef40
BS
1479}
1480
0056f4e6
JW
1481#ifdef CONFIG_LOCKDEP
1482static struct lockdep_map memcg_oom_lock_dep_map = {
1483 .name = "memcg_oom_lock",
1484};
1485#endif
1486
fb2a6fc5
JW
1487static DEFINE_SPINLOCK(memcg_oom_lock);
1488
867578cb
KH
1489/*
1490 * Check OOM-Killer is already running under our hierarchy.
1491 * If someone is running, return false.
1492 */
fb2a6fc5 1493static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1494{
79dfdacc 1495 struct mem_cgroup *iter, *failed = NULL;
a636b327 1496
fb2a6fc5
JW
1497 spin_lock(&memcg_oom_lock);
1498
9f3a0d09 1499 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1500 if (iter->oom_lock) {
79dfdacc
MH
1501 /*
1502 * this subtree of our hierarchy is already locked
1503 * so we cannot give a lock.
1504 */
79dfdacc 1505 failed = iter;
9f3a0d09
JW
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
23751be0
JW
1508 } else
1509 iter->oom_lock = true;
7d74b06f 1510 }
867578cb 1511
fb2a6fc5
JW
1512 if (failed) {
1513 /*
1514 * OK, we failed to lock the whole subtree so we have
1515 * to clean up what we set up to the failing subtree
1516 */
1517 for_each_mem_cgroup_tree(iter, memcg) {
1518 if (iter == failed) {
1519 mem_cgroup_iter_break(memcg, iter);
1520 break;
1521 }
1522 iter->oom_lock = false;
79dfdacc 1523 }
0056f4e6
JW
1524 } else
1525 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1526
1527 spin_unlock(&memcg_oom_lock);
1528
1529 return !failed;
a636b327 1530}
0b7f569e 1531
fb2a6fc5 1532static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1533{
7d74b06f
KH
1534 struct mem_cgroup *iter;
1535
fb2a6fc5 1536 spin_lock(&memcg_oom_lock);
0056f4e6 1537 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1538 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1539 iter->oom_lock = false;
fb2a6fc5 1540 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1541}
1542
c0ff4b85 1543static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1544{
1545 struct mem_cgroup *iter;
1546
c2b42d3c 1547 spin_lock(&memcg_oom_lock);
c0ff4b85 1548 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1549 iter->under_oom++;
1550 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1551}
1552
c0ff4b85 1553static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1554{
1555 struct mem_cgroup *iter;
1556
867578cb
KH
1557 /*
1558 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1559 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1560 */
c2b42d3c 1561 spin_lock(&memcg_oom_lock);
c0ff4b85 1562 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1563 if (iter->under_oom > 0)
1564 iter->under_oom--;
1565 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1566}
1567
867578cb
KH
1568static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1569
dc98df5a 1570struct oom_wait_info {
d79154bb 1571 struct mem_cgroup *memcg;
dc98df5a
KH
1572 wait_queue_t wait;
1573};
1574
1575static int memcg_oom_wake_function(wait_queue_t *wait,
1576 unsigned mode, int sync, void *arg)
1577{
d79154bb
HD
1578 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1579 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1580 struct oom_wait_info *oom_wait_info;
1581
1582 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1583 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1584
2314b42d
JW
1585 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1586 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1587 return 0;
dc98df5a
KH
1588 return autoremove_wake_function(wait, mode, sync, arg);
1589}
1590
c0ff4b85 1591static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1592{
c2b42d3c
TH
1593 /*
1594 * For the following lockless ->under_oom test, the only required
1595 * guarantee is that it must see the state asserted by an OOM when
1596 * this function is called as a result of userland actions
1597 * triggered by the notification of the OOM. This is trivially
1598 * achieved by invoking mem_cgroup_mark_under_oom() before
1599 * triggering notification.
1600 */
1601 if (memcg && memcg->under_oom)
f4b90b70 1602 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1603}
1604
3812c8c8 1605static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1606{
626ebc41 1607 if (!current->memcg_may_oom)
3812c8c8 1608 return;
867578cb 1609 /*
49426420
JW
1610 * We are in the middle of the charge context here, so we
1611 * don't want to block when potentially sitting on a callstack
1612 * that holds all kinds of filesystem and mm locks.
1613 *
1614 * Also, the caller may handle a failed allocation gracefully
1615 * (like optional page cache readahead) and so an OOM killer
1616 * invocation might not even be necessary.
1617 *
1618 * That's why we don't do anything here except remember the
1619 * OOM context and then deal with it at the end of the page
1620 * fault when the stack is unwound, the locks are released,
1621 * and when we know whether the fault was overall successful.
867578cb 1622 */
49426420 1623 css_get(&memcg->css);
626ebc41
TH
1624 current->memcg_in_oom = memcg;
1625 current->memcg_oom_gfp_mask = mask;
1626 current->memcg_oom_order = order;
3812c8c8
JW
1627}
1628
1629/**
1630 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1631 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1632 *
49426420
JW
1633 * This has to be called at the end of a page fault if the memcg OOM
1634 * handler was enabled.
3812c8c8 1635 *
49426420 1636 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1637 * sleep on a waitqueue until the userspace task resolves the
1638 * situation. Sleeping directly in the charge context with all kinds
1639 * of locks held is not a good idea, instead we remember an OOM state
1640 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1641 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1642 *
1643 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1644 * completed, %false otherwise.
3812c8c8 1645 */
49426420 1646bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1647{
626ebc41 1648 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1649 struct oom_wait_info owait;
49426420 1650 bool locked;
3812c8c8
JW
1651
1652 /* OOM is global, do not handle */
3812c8c8 1653 if (!memcg)
49426420 1654 return false;
3812c8c8 1655
c32b3cbe 1656 if (!handle || oom_killer_disabled)
49426420 1657 goto cleanup;
3812c8c8
JW
1658
1659 owait.memcg = memcg;
1660 owait.wait.flags = 0;
1661 owait.wait.func = memcg_oom_wake_function;
1662 owait.wait.private = current;
1663 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1664
3812c8c8 1665 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1666 mem_cgroup_mark_under_oom(memcg);
1667
1668 locked = mem_cgroup_oom_trylock(memcg);
1669
1670 if (locked)
1671 mem_cgroup_oom_notify(memcg);
1672
1673 if (locked && !memcg->oom_kill_disable) {
1674 mem_cgroup_unmark_under_oom(memcg);
1675 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1676 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1677 current->memcg_oom_order);
49426420 1678 } else {
3812c8c8 1679 schedule();
49426420
JW
1680 mem_cgroup_unmark_under_oom(memcg);
1681 finish_wait(&memcg_oom_waitq, &owait.wait);
1682 }
1683
1684 if (locked) {
fb2a6fc5
JW
1685 mem_cgroup_oom_unlock(memcg);
1686 /*
1687 * There is no guarantee that an OOM-lock contender
1688 * sees the wakeups triggered by the OOM kill
1689 * uncharges. Wake any sleepers explicitely.
1690 */
1691 memcg_oom_recover(memcg);
1692 }
49426420 1693cleanup:
626ebc41 1694 current->memcg_in_oom = NULL;
3812c8c8 1695 css_put(&memcg->css);
867578cb 1696 return true;
0b7f569e
KH
1697}
1698
d7365e78 1699/**
81f8c3a4
JW
1700 * lock_page_memcg - lock a page->mem_cgroup binding
1701 * @page: the page
32047e2a 1702 *
81f8c3a4
JW
1703 * This function protects unlocked LRU pages from being moved to
1704 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1705 */
62cccb8c 1706void lock_page_memcg(struct page *page)
89c06bd5
KH
1707{
1708 struct mem_cgroup *memcg;
6de22619 1709 unsigned long flags;
89c06bd5 1710
6de22619
JW
1711 /*
1712 * The RCU lock is held throughout the transaction. The fast
1713 * path can get away without acquiring the memcg->move_lock
1714 * because page moving starts with an RCU grace period.
6de22619 1715 */
d7365e78
JW
1716 rcu_read_lock();
1717
1718 if (mem_cgroup_disabled())
62cccb8c 1719 return;
89c06bd5 1720again:
1306a85a 1721 memcg = page->mem_cgroup;
29833315 1722 if (unlikely(!memcg))
62cccb8c 1723 return;
d7365e78 1724
bdcbb659 1725 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1726 return;
89c06bd5 1727
6de22619 1728 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1729 if (memcg != page->mem_cgroup) {
6de22619 1730 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1731 goto again;
1732 }
6de22619
JW
1733
1734 /*
1735 * When charge migration first begins, we can have locked and
1736 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1737 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1738 */
1739 memcg->move_lock_task = current;
1740 memcg->move_lock_flags = flags;
d7365e78 1741
62cccb8c 1742 return;
89c06bd5 1743}
81f8c3a4 1744EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1745
d7365e78 1746/**
81f8c3a4 1747 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1748 * @page: the page
d7365e78 1749 */
62cccb8c 1750void unlock_page_memcg(struct page *page)
89c06bd5 1751{
62cccb8c
JW
1752 struct mem_cgroup *memcg = page->mem_cgroup;
1753
6de22619
JW
1754 if (memcg && memcg->move_lock_task == current) {
1755 unsigned long flags = memcg->move_lock_flags;
1756
1757 memcg->move_lock_task = NULL;
1758 memcg->move_lock_flags = 0;
1759
1760 spin_unlock_irqrestore(&memcg->move_lock, flags);
1761 }
89c06bd5 1762
d7365e78 1763 rcu_read_unlock();
89c06bd5 1764}
81f8c3a4 1765EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1766
cdec2e42
KH
1767/*
1768 * size of first charge trial. "32" comes from vmscan.c's magic value.
1769 * TODO: maybe necessary to use big numbers in big irons.
1770 */
7ec99d62 1771#define CHARGE_BATCH 32U
cdec2e42
KH
1772struct memcg_stock_pcp {
1773 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1774 unsigned int nr_pages;
cdec2e42 1775 struct work_struct work;
26fe6168 1776 unsigned long flags;
a0db00fc 1777#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1778};
1779static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1780static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1781
a0956d54
SS
1782/**
1783 * consume_stock: Try to consume stocked charge on this cpu.
1784 * @memcg: memcg to consume from.
1785 * @nr_pages: how many pages to charge.
1786 *
1787 * The charges will only happen if @memcg matches the current cpu's memcg
1788 * stock, and at least @nr_pages are available in that stock. Failure to
1789 * service an allocation will refill the stock.
1790 *
1791 * returns true if successful, false otherwise.
cdec2e42 1792 */
a0956d54 1793static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1794{
1795 struct memcg_stock_pcp *stock;
3e32cb2e 1796 bool ret = false;
cdec2e42 1797
a0956d54 1798 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1799 return ret;
a0956d54 1800
cdec2e42 1801 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1802 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1803 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1804 ret = true;
1805 }
cdec2e42
KH
1806 put_cpu_var(memcg_stock);
1807 return ret;
1808}
1809
1810/*
3e32cb2e 1811 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1812 */
1813static void drain_stock(struct memcg_stock_pcp *stock)
1814{
1815 struct mem_cgroup *old = stock->cached;
1816
11c9ea4e 1817 if (stock->nr_pages) {
3e32cb2e 1818 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1819 if (do_memsw_account())
3e32cb2e 1820 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1821 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1822 stock->nr_pages = 0;
cdec2e42
KH
1823 }
1824 stock->cached = NULL;
cdec2e42
KH
1825}
1826
1827/*
1828 * This must be called under preempt disabled or must be called by
1829 * a thread which is pinned to local cpu.
1830 */
1831static void drain_local_stock(struct work_struct *dummy)
1832{
7c8e0181 1833 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1834 drain_stock(stock);
26fe6168 1835 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1836}
1837
1838/*
3e32cb2e 1839 * Cache charges(val) to local per_cpu area.
320cc51d 1840 * This will be consumed by consume_stock() function, later.
cdec2e42 1841 */
c0ff4b85 1842static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1843{
1844 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1845
c0ff4b85 1846 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1847 drain_stock(stock);
c0ff4b85 1848 stock->cached = memcg;
cdec2e42 1849 }
11c9ea4e 1850 stock->nr_pages += nr_pages;
cdec2e42
KH
1851 put_cpu_var(memcg_stock);
1852}
1853
1854/*
c0ff4b85 1855 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1856 * of the hierarchy under it.
cdec2e42 1857 */
6d3d6aa2 1858static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1859{
26fe6168 1860 int cpu, curcpu;
d38144b7 1861
6d3d6aa2
JW
1862 /* If someone's already draining, avoid adding running more workers. */
1863 if (!mutex_trylock(&percpu_charge_mutex))
1864 return;
cdec2e42 1865 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1866 get_online_cpus();
5af12d0e 1867 curcpu = get_cpu();
cdec2e42
KH
1868 for_each_online_cpu(cpu) {
1869 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1870 struct mem_cgroup *memcg;
26fe6168 1871
c0ff4b85
R
1872 memcg = stock->cached;
1873 if (!memcg || !stock->nr_pages)
26fe6168 1874 continue;
2314b42d 1875 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1876 continue;
d1a05b69
MH
1877 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1878 if (cpu == curcpu)
1879 drain_local_stock(&stock->work);
1880 else
1881 schedule_work_on(cpu, &stock->work);
1882 }
cdec2e42 1883 }
5af12d0e 1884 put_cpu();
f894ffa8 1885 put_online_cpus();
9f50fad6 1886 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1887}
1888
0db0628d 1889static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1890 unsigned long action,
1891 void *hcpu)
1892{
1893 int cpu = (unsigned long)hcpu;
1894 struct memcg_stock_pcp *stock;
1895
619d094b 1896 if (action == CPU_ONLINE)
1489ebad 1897 return NOTIFY_OK;
1489ebad 1898
d833049b 1899 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1900 return NOTIFY_OK;
711d3d2c 1901
cdec2e42
KH
1902 stock = &per_cpu(memcg_stock, cpu);
1903 drain_stock(stock);
1904 return NOTIFY_OK;
1905}
1906
f7e1cb6e
JW
1907static void reclaim_high(struct mem_cgroup *memcg,
1908 unsigned int nr_pages,
1909 gfp_t gfp_mask)
1910{
1911 do {
1912 if (page_counter_read(&memcg->memory) <= memcg->high)
1913 continue;
1914 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1915 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1916 } while ((memcg = parent_mem_cgroup(memcg)));
1917}
1918
1919static void high_work_func(struct work_struct *work)
1920{
1921 struct mem_cgroup *memcg;
1922
1923 memcg = container_of(work, struct mem_cgroup, high_work);
1924 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1925}
1926
b23afb93
TH
1927/*
1928 * Scheduled by try_charge() to be executed from the userland return path
1929 * and reclaims memory over the high limit.
1930 */
1931void mem_cgroup_handle_over_high(void)
1932{
1933 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1934 struct mem_cgroup *memcg;
b23afb93
TH
1935
1936 if (likely(!nr_pages))
1937 return;
1938
f7e1cb6e
JW
1939 memcg = get_mem_cgroup_from_mm(current->mm);
1940 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1941 css_put(&memcg->css);
1942 current->memcg_nr_pages_over_high = 0;
1943}
1944
00501b53
JW
1945static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1946 unsigned int nr_pages)
8a9f3ccd 1947{
7ec99d62 1948 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1949 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1950 struct mem_cgroup *mem_over_limit;
3e32cb2e 1951 struct page_counter *counter;
6539cc05 1952 unsigned long nr_reclaimed;
b70a2a21
JW
1953 bool may_swap = true;
1954 bool drained = false;
a636b327 1955
ce00a967 1956 if (mem_cgroup_is_root(memcg))
10d53c74 1957 return 0;
6539cc05 1958retry:
b6b6cc72 1959 if (consume_stock(memcg, nr_pages))
10d53c74 1960 return 0;
8a9f3ccd 1961
7941d214 1962 if (!do_memsw_account() ||
6071ca52
JW
1963 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1964 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1965 goto done_restock;
7941d214 1966 if (do_memsw_account())
3e32cb2e
JW
1967 page_counter_uncharge(&memcg->memsw, batch);
1968 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1969 } else {
3e32cb2e 1970 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1971 may_swap = false;
3fbe7244 1972 }
7a81b88c 1973
6539cc05
JW
1974 if (batch > nr_pages) {
1975 batch = nr_pages;
1976 goto retry;
1977 }
6d61ef40 1978
06b078fc
JW
1979 /*
1980 * Unlike in global OOM situations, memcg is not in a physical
1981 * memory shortage. Allow dying and OOM-killed tasks to
1982 * bypass the last charges so that they can exit quickly and
1983 * free their memory.
1984 */
1985 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1986 fatal_signal_pending(current) ||
1987 current->flags & PF_EXITING))
10d53c74 1988 goto force;
06b078fc
JW
1989
1990 if (unlikely(task_in_memcg_oom(current)))
1991 goto nomem;
1992
d0164adc 1993 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1994 goto nomem;
4b534334 1995
241994ed
JW
1996 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1997
b70a2a21
JW
1998 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1999 gfp_mask, may_swap);
6539cc05 2000
61e02c74 2001 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2002 goto retry;
28c34c29 2003
b70a2a21 2004 if (!drained) {
6d3d6aa2 2005 drain_all_stock(mem_over_limit);
b70a2a21
JW
2006 drained = true;
2007 goto retry;
2008 }
2009
28c34c29
JW
2010 if (gfp_mask & __GFP_NORETRY)
2011 goto nomem;
6539cc05
JW
2012 /*
2013 * Even though the limit is exceeded at this point, reclaim
2014 * may have been able to free some pages. Retry the charge
2015 * before killing the task.
2016 *
2017 * Only for regular pages, though: huge pages are rather
2018 * unlikely to succeed so close to the limit, and we fall back
2019 * to regular pages anyway in case of failure.
2020 */
61e02c74 2021 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2022 goto retry;
2023 /*
2024 * At task move, charge accounts can be doubly counted. So, it's
2025 * better to wait until the end of task_move if something is going on.
2026 */
2027 if (mem_cgroup_wait_acct_move(mem_over_limit))
2028 goto retry;
2029
9b130619
JW
2030 if (nr_retries--)
2031 goto retry;
2032
06b078fc 2033 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2034 goto force;
06b078fc 2035
6539cc05 2036 if (fatal_signal_pending(current))
10d53c74 2037 goto force;
6539cc05 2038
241994ed
JW
2039 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2040
3608de07
JM
2041 mem_cgroup_oom(mem_over_limit, gfp_mask,
2042 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2043nomem:
6d1fdc48 2044 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2045 return -ENOMEM;
10d53c74
TH
2046force:
2047 /*
2048 * The allocation either can't fail or will lead to more memory
2049 * being freed very soon. Allow memory usage go over the limit
2050 * temporarily by force charging it.
2051 */
2052 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2053 if (do_memsw_account())
10d53c74
TH
2054 page_counter_charge(&memcg->memsw, nr_pages);
2055 css_get_many(&memcg->css, nr_pages);
2056
2057 return 0;
6539cc05
JW
2058
2059done_restock:
e8ea14cc 2060 css_get_many(&memcg->css, batch);
6539cc05
JW
2061 if (batch > nr_pages)
2062 refill_stock(memcg, batch - nr_pages);
b23afb93 2063
241994ed 2064 /*
b23afb93
TH
2065 * If the hierarchy is above the normal consumption range, schedule
2066 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2067 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2068 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2069 * not recorded as it most likely matches current's and won't
2070 * change in the meantime. As high limit is checked again before
2071 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2072 */
2073 do {
b23afb93 2074 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2075 /* Don't bother a random interrupted task */
2076 if (in_interrupt()) {
2077 schedule_work(&memcg->high_work);
2078 break;
2079 }
9516a18a 2080 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2081 set_notify_resume(current);
2082 break;
2083 }
241994ed 2084 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2085
2086 return 0;
7a81b88c 2087}
8a9f3ccd 2088
00501b53 2089static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2090{
ce00a967
JW
2091 if (mem_cgroup_is_root(memcg))
2092 return;
2093
3e32cb2e 2094 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2095 if (do_memsw_account())
3e32cb2e 2096 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2097
e8ea14cc 2098 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2099}
2100
0a31bc97
JW
2101static void lock_page_lru(struct page *page, int *isolated)
2102{
2103 struct zone *zone = page_zone(page);
2104
2105 spin_lock_irq(&zone->lru_lock);
2106 if (PageLRU(page)) {
2107 struct lruvec *lruvec;
2108
2109 lruvec = mem_cgroup_page_lruvec(page, zone);
2110 ClearPageLRU(page);
2111 del_page_from_lru_list(page, lruvec, page_lru(page));
2112 *isolated = 1;
2113 } else
2114 *isolated = 0;
2115}
2116
2117static void unlock_page_lru(struct page *page, int isolated)
2118{
2119 struct zone *zone = page_zone(page);
2120
2121 if (isolated) {
2122 struct lruvec *lruvec;
2123
2124 lruvec = mem_cgroup_page_lruvec(page, zone);
2125 VM_BUG_ON_PAGE(PageLRU(page), page);
2126 SetPageLRU(page);
2127 add_page_to_lru_list(page, lruvec, page_lru(page));
2128 }
2129 spin_unlock_irq(&zone->lru_lock);
2130}
2131
00501b53 2132static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2133 bool lrucare)
7a81b88c 2134{
0a31bc97 2135 int isolated;
9ce70c02 2136
1306a85a 2137 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2138
2139 /*
2140 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2141 * may already be on some other mem_cgroup's LRU. Take care of it.
2142 */
0a31bc97
JW
2143 if (lrucare)
2144 lock_page_lru(page, &isolated);
9ce70c02 2145
0a31bc97
JW
2146 /*
2147 * Nobody should be changing or seriously looking at
1306a85a 2148 * page->mem_cgroup at this point:
0a31bc97
JW
2149 *
2150 * - the page is uncharged
2151 *
2152 * - the page is off-LRU
2153 *
2154 * - an anonymous fault has exclusive page access, except for
2155 * a locked page table
2156 *
2157 * - a page cache insertion, a swapin fault, or a migration
2158 * have the page locked
2159 */
1306a85a 2160 page->mem_cgroup = memcg;
9ce70c02 2161
0a31bc97
JW
2162 if (lrucare)
2163 unlock_page_lru(page, isolated);
7a81b88c 2164}
66e1707b 2165
127424c8 2166#ifndef CONFIG_SLOB
f3bb3043 2167static int memcg_alloc_cache_id(void)
55007d84 2168{
f3bb3043
VD
2169 int id, size;
2170 int err;
2171
dbcf73e2 2172 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2173 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2174 if (id < 0)
2175 return id;
55007d84 2176
dbcf73e2 2177 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2178 return id;
2179
2180 /*
2181 * There's no space for the new id in memcg_caches arrays,
2182 * so we have to grow them.
2183 */
05257a1a 2184 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2185
2186 size = 2 * (id + 1);
55007d84
GC
2187 if (size < MEMCG_CACHES_MIN_SIZE)
2188 size = MEMCG_CACHES_MIN_SIZE;
2189 else if (size > MEMCG_CACHES_MAX_SIZE)
2190 size = MEMCG_CACHES_MAX_SIZE;
2191
f3bb3043 2192 err = memcg_update_all_caches(size);
60d3fd32
VD
2193 if (!err)
2194 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2195 if (!err)
2196 memcg_nr_cache_ids = size;
2197
2198 up_write(&memcg_cache_ids_sem);
2199
f3bb3043 2200 if (err) {
dbcf73e2 2201 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2202 return err;
2203 }
2204 return id;
2205}
2206
2207static void memcg_free_cache_id(int id)
2208{
dbcf73e2 2209 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2210}
2211
d5b3cf71 2212struct memcg_kmem_cache_create_work {
5722d094
VD
2213 struct mem_cgroup *memcg;
2214 struct kmem_cache *cachep;
2215 struct work_struct work;
2216};
2217
d5b3cf71 2218static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2219{
d5b3cf71
VD
2220 struct memcg_kmem_cache_create_work *cw =
2221 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2222 struct mem_cgroup *memcg = cw->memcg;
2223 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2224
d5b3cf71 2225 memcg_create_kmem_cache(memcg, cachep);
bd673145 2226
5722d094 2227 css_put(&memcg->css);
d7f25f8a
GC
2228 kfree(cw);
2229}
2230
2231/*
2232 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2233 */
d5b3cf71
VD
2234static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2235 struct kmem_cache *cachep)
d7f25f8a 2236{
d5b3cf71 2237 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2238
776ed0f0 2239 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2240 if (!cw)
d7f25f8a 2241 return;
8135be5a
VD
2242
2243 css_get(&memcg->css);
d7f25f8a
GC
2244
2245 cw->memcg = memcg;
2246 cw->cachep = cachep;
d5b3cf71 2247 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2248
d7f25f8a
GC
2249 schedule_work(&cw->work);
2250}
2251
d5b3cf71
VD
2252static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2253 struct kmem_cache *cachep)
0e9d92f2
GC
2254{
2255 /*
2256 * We need to stop accounting when we kmalloc, because if the
2257 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2258 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2259 *
2260 * However, it is better to enclose the whole function. Depending on
2261 * the debugging options enabled, INIT_WORK(), for instance, can
2262 * trigger an allocation. This too, will make us recurse. Because at
2263 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2264 * the safest choice is to do it like this, wrapping the whole function.
2265 */
6f185c29 2266 current->memcg_kmem_skip_account = 1;
d5b3cf71 2267 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2268 current->memcg_kmem_skip_account = 0;
0e9d92f2 2269}
c67a8a68 2270
d7f25f8a
GC
2271/*
2272 * Return the kmem_cache we're supposed to use for a slab allocation.
2273 * We try to use the current memcg's version of the cache.
2274 *
2275 * If the cache does not exist yet, if we are the first user of it,
2276 * we either create it immediately, if possible, or create it asynchronously
2277 * in a workqueue.
2278 * In the latter case, we will let the current allocation go through with
2279 * the original cache.
2280 *
2281 * Can't be called in interrupt context or from kernel threads.
2282 * This function needs to be called with rcu_read_lock() held.
2283 */
230e9fc2 2284struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2285{
2286 struct mem_cgroup *memcg;
959c8963 2287 struct kmem_cache *memcg_cachep;
2a4db7eb 2288 int kmemcg_id;
d7f25f8a 2289
f7ce3190 2290 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2291
230e9fc2
VD
2292 if (cachep->flags & SLAB_ACCOUNT)
2293 gfp |= __GFP_ACCOUNT;
2294
2295 if (!(gfp & __GFP_ACCOUNT))
2296 return cachep;
2297
9d100c5e 2298 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2299 return cachep;
2300
8135be5a 2301 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2302 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2303 if (kmemcg_id < 0)
ca0dde97 2304 goto out;
d7f25f8a 2305
2a4db7eb 2306 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2307 if (likely(memcg_cachep))
2308 return memcg_cachep;
ca0dde97
LZ
2309
2310 /*
2311 * If we are in a safe context (can wait, and not in interrupt
2312 * context), we could be be predictable and return right away.
2313 * This would guarantee that the allocation being performed
2314 * already belongs in the new cache.
2315 *
2316 * However, there are some clashes that can arrive from locking.
2317 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2318 * memcg_create_kmem_cache, this means no further allocation
2319 * could happen with the slab_mutex held. So it's better to
2320 * defer everything.
ca0dde97 2321 */
d5b3cf71 2322 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2323out:
8135be5a 2324 css_put(&memcg->css);
ca0dde97 2325 return cachep;
d7f25f8a 2326}
d7f25f8a 2327
8135be5a
VD
2328void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2329{
2330 if (!is_root_cache(cachep))
f7ce3190 2331 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2332}
2333
f3ccb2c4
VD
2334int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2335 struct mem_cgroup *memcg)
7ae1e1d0 2336{
f3ccb2c4
VD
2337 unsigned int nr_pages = 1 << order;
2338 struct page_counter *counter;
7ae1e1d0
GC
2339 int ret;
2340
f3ccb2c4 2341 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2342 if (ret)
f3ccb2c4 2343 return ret;
52c29b04
JW
2344
2345 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2346 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2347 cancel_charge(memcg, nr_pages);
2348 return -ENOMEM;
7ae1e1d0
GC
2349 }
2350
f3ccb2c4 2351 page->mem_cgroup = memcg;
7ae1e1d0 2352
f3ccb2c4 2353 return 0;
7ae1e1d0
GC
2354}
2355
f3ccb2c4 2356int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2357{
f3ccb2c4 2358 struct mem_cgroup *memcg;
fcff7d7e 2359 int ret = 0;
7ae1e1d0 2360
f3ccb2c4 2361 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2362 if (!mem_cgroup_is_root(memcg))
fcff7d7e 2363 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2364 css_put(&memcg->css);
d05e83a6 2365 return ret;
7ae1e1d0
GC
2366}
2367
d05e83a6 2368void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2369{
1306a85a 2370 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2371 unsigned int nr_pages = 1 << order;
7ae1e1d0 2372
7ae1e1d0
GC
2373 if (!memcg)
2374 return;
2375
309381fe 2376 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2377
52c29b04
JW
2378 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2379 page_counter_uncharge(&memcg->kmem, nr_pages);
2380
f3ccb2c4 2381 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2382 if (do_memsw_account())
f3ccb2c4 2383 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2384
1306a85a 2385 page->mem_cgroup = NULL;
f3ccb2c4 2386 css_put_many(&memcg->css, nr_pages);
60d3fd32 2387}
127424c8 2388#endif /* !CONFIG_SLOB */
7ae1e1d0 2389
ca3e0214
KH
2390#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2391
ca3e0214
KH
2392/*
2393 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2394 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2395 */
e94c8a9c 2396void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2397{
e94c8a9c 2398 int i;
ca3e0214 2399
3d37c4a9
KH
2400 if (mem_cgroup_disabled())
2401 return;
b070e65c 2402
29833315 2403 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2404 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2405
1306a85a 2406 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2407 HPAGE_PMD_NR);
ca3e0214 2408}
12d27107 2409#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2410
c255a458 2411#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2412static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2413 bool charge)
d13d1443 2414{
0a31bc97
JW
2415 int val = (charge) ? 1 : -1;
2416 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2417}
02491447
DN
2418
2419/**
2420 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2421 * @entry: swap entry to be moved
2422 * @from: mem_cgroup which the entry is moved from
2423 * @to: mem_cgroup which the entry is moved to
2424 *
2425 * It succeeds only when the swap_cgroup's record for this entry is the same
2426 * as the mem_cgroup's id of @from.
2427 *
2428 * Returns 0 on success, -EINVAL on failure.
2429 *
3e32cb2e 2430 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2431 * both res and memsw, and called css_get().
2432 */
2433static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2434 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2435{
2436 unsigned short old_id, new_id;
2437
34c00c31
LZ
2438 old_id = mem_cgroup_id(from);
2439 new_id = mem_cgroup_id(to);
02491447
DN
2440
2441 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2442 mem_cgroup_swap_statistics(from, false);
483c30b5 2443 mem_cgroup_swap_statistics(to, true);
02491447
DN
2444 return 0;
2445 }
2446 return -EINVAL;
2447}
2448#else
2449static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2450 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2451{
2452 return -EINVAL;
2453}
8c7c6e34 2454#endif
d13d1443 2455
3e32cb2e 2456static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2457
d38d2a75 2458static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2459 unsigned long limit)
628f4235 2460{
3e32cb2e
JW
2461 unsigned long curusage;
2462 unsigned long oldusage;
2463 bool enlarge = false;
81d39c20 2464 int retry_count;
3e32cb2e 2465 int ret;
81d39c20
KH
2466
2467 /*
2468 * For keeping hierarchical_reclaim simple, how long we should retry
2469 * is depends on callers. We set our retry-count to be function
2470 * of # of children which we should visit in this loop.
2471 */
3e32cb2e
JW
2472 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2473 mem_cgroup_count_children(memcg);
81d39c20 2474
3e32cb2e 2475 oldusage = page_counter_read(&memcg->memory);
628f4235 2476
3e32cb2e 2477 do {
628f4235
KH
2478 if (signal_pending(current)) {
2479 ret = -EINTR;
2480 break;
2481 }
3e32cb2e
JW
2482
2483 mutex_lock(&memcg_limit_mutex);
2484 if (limit > memcg->memsw.limit) {
2485 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2486 ret = -EINVAL;
628f4235
KH
2487 break;
2488 }
3e32cb2e
JW
2489 if (limit > memcg->memory.limit)
2490 enlarge = true;
2491 ret = page_counter_limit(&memcg->memory, limit);
2492 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2493
2494 if (!ret)
2495 break;
2496
b70a2a21
JW
2497 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2498
3e32cb2e 2499 curusage = page_counter_read(&memcg->memory);
81d39c20 2500 /* Usage is reduced ? */
f894ffa8 2501 if (curusage >= oldusage)
81d39c20
KH
2502 retry_count--;
2503 else
2504 oldusage = curusage;
3e32cb2e
JW
2505 } while (retry_count);
2506
3c11ecf4
KH
2507 if (!ret && enlarge)
2508 memcg_oom_recover(memcg);
14797e23 2509
8c7c6e34
KH
2510 return ret;
2511}
2512
338c8431 2513static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2514 unsigned long limit)
8c7c6e34 2515{
3e32cb2e
JW
2516 unsigned long curusage;
2517 unsigned long oldusage;
2518 bool enlarge = false;
81d39c20 2519 int retry_count;
3e32cb2e 2520 int ret;
8c7c6e34 2521
81d39c20 2522 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2523 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2524 mem_cgroup_count_children(memcg);
2525
2526 oldusage = page_counter_read(&memcg->memsw);
2527
2528 do {
8c7c6e34
KH
2529 if (signal_pending(current)) {
2530 ret = -EINTR;
2531 break;
2532 }
3e32cb2e
JW
2533
2534 mutex_lock(&memcg_limit_mutex);
2535 if (limit < memcg->memory.limit) {
2536 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2537 ret = -EINVAL;
8c7c6e34
KH
2538 break;
2539 }
3e32cb2e
JW
2540 if (limit > memcg->memsw.limit)
2541 enlarge = true;
2542 ret = page_counter_limit(&memcg->memsw, limit);
2543 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2544
2545 if (!ret)
2546 break;
2547
b70a2a21
JW
2548 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2549
3e32cb2e 2550 curusage = page_counter_read(&memcg->memsw);
81d39c20 2551 /* Usage is reduced ? */
8c7c6e34 2552 if (curusage >= oldusage)
628f4235 2553 retry_count--;
81d39c20
KH
2554 else
2555 oldusage = curusage;
3e32cb2e
JW
2556 } while (retry_count);
2557
3c11ecf4
KH
2558 if (!ret && enlarge)
2559 memcg_oom_recover(memcg);
3e32cb2e 2560
628f4235
KH
2561 return ret;
2562}
2563
0608f43d
AM
2564unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2565 gfp_t gfp_mask,
2566 unsigned long *total_scanned)
2567{
2568 unsigned long nr_reclaimed = 0;
2569 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2570 unsigned long reclaimed;
2571 int loop = 0;
2572 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2573 unsigned long excess;
0608f43d
AM
2574 unsigned long nr_scanned;
2575
2576 if (order > 0)
2577 return 0;
2578
2579 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2580 /*
2581 * This loop can run a while, specially if mem_cgroup's continuously
2582 * keep exceeding their soft limit and putting the system under
2583 * pressure
2584 */
2585 do {
2586 if (next_mz)
2587 mz = next_mz;
2588 else
2589 mz = mem_cgroup_largest_soft_limit_node(mctz);
2590 if (!mz)
2591 break;
2592
2593 nr_scanned = 0;
2594 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2595 gfp_mask, &nr_scanned);
2596 nr_reclaimed += reclaimed;
2597 *total_scanned += nr_scanned;
0a31bc97 2598 spin_lock_irq(&mctz->lock);
bc2f2e7f 2599 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2600
2601 /*
2602 * If we failed to reclaim anything from this memory cgroup
2603 * it is time to move on to the next cgroup
2604 */
2605 next_mz = NULL;
bc2f2e7f
VD
2606 if (!reclaimed)
2607 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2608
3e32cb2e 2609 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2610 /*
2611 * One school of thought says that we should not add
2612 * back the node to the tree if reclaim returns 0.
2613 * But our reclaim could return 0, simply because due
2614 * to priority we are exposing a smaller subset of
2615 * memory to reclaim from. Consider this as a longer
2616 * term TODO.
2617 */
2618 /* If excess == 0, no tree ops */
cf2c8127 2619 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2620 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2621 css_put(&mz->memcg->css);
2622 loop++;
2623 /*
2624 * Could not reclaim anything and there are no more
2625 * mem cgroups to try or we seem to be looping without
2626 * reclaiming anything.
2627 */
2628 if (!nr_reclaimed &&
2629 (next_mz == NULL ||
2630 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2631 break;
2632 } while (!nr_reclaimed);
2633 if (next_mz)
2634 css_put(&next_mz->memcg->css);
2635 return nr_reclaimed;
2636}
2637
ea280e7b
TH
2638/*
2639 * Test whether @memcg has children, dead or alive. Note that this
2640 * function doesn't care whether @memcg has use_hierarchy enabled and
2641 * returns %true if there are child csses according to the cgroup
2642 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2643 */
b5f99b53
GC
2644static inline bool memcg_has_children(struct mem_cgroup *memcg)
2645{
ea280e7b
TH
2646 bool ret;
2647
ea280e7b
TH
2648 rcu_read_lock();
2649 ret = css_next_child(NULL, &memcg->css);
2650 rcu_read_unlock();
2651 return ret;
b5f99b53
GC
2652}
2653
c26251f9
MH
2654/*
2655 * Reclaims as many pages from the given memcg as possible and moves
2656 * the rest to the parent.
2657 *
2658 * Caller is responsible for holding css reference for memcg.
2659 */
2660static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2661{
2662 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2663
c1e862c1
KH
2664 /* we call try-to-free pages for make this cgroup empty */
2665 lru_add_drain_all();
f817ed48 2666 /* try to free all pages in this cgroup */
3e32cb2e 2667 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2668 int progress;
c1e862c1 2669
c26251f9
MH
2670 if (signal_pending(current))
2671 return -EINTR;
2672
b70a2a21
JW
2673 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2674 GFP_KERNEL, true);
c1e862c1 2675 if (!progress) {
f817ed48 2676 nr_retries--;
c1e862c1 2677 /* maybe some writeback is necessary */
8aa7e847 2678 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2679 }
f817ed48
KH
2680
2681 }
ab5196c2
MH
2682
2683 return 0;
cc847582
KH
2684}
2685
6770c64e
TH
2686static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2687 char *buf, size_t nbytes,
2688 loff_t off)
c1e862c1 2689{
6770c64e 2690 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2691
d8423011
MH
2692 if (mem_cgroup_is_root(memcg))
2693 return -EINVAL;
6770c64e 2694 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2695}
2696
182446d0
TH
2697static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2698 struct cftype *cft)
18f59ea7 2699{
182446d0 2700 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2701}
2702
182446d0
TH
2703static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2704 struct cftype *cft, u64 val)
18f59ea7
BS
2705{
2706 int retval = 0;
182446d0 2707 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2708 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2709
567fb435 2710 if (memcg->use_hierarchy == val)
0b8f73e1 2711 return 0;
567fb435 2712
18f59ea7 2713 /*
af901ca1 2714 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2715 * in the child subtrees. If it is unset, then the change can
2716 * occur, provided the current cgroup has no children.
2717 *
2718 * For the root cgroup, parent_mem is NULL, we allow value to be
2719 * set if there are no children.
2720 */
c0ff4b85 2721 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2722 (val == 1 || val == 0)) {
ea280e7b 2723 if (!memcg_has_children(memcg))
c0ff4b85 2724 memcg->use_hierarchy = val;
18f59ea7
BS
2725 else
2726 retval = -EBUSY;
2727 } else
2728 retval = -EINVAL;
567fb435 2729
18f59ea7
BS
2730 return retval;
2731}
2732
72b54e73 2733static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2734{
2735 struct mem_cgroup *iter;
72b54e73 2736 int i;
ce00a967 2737
72b54e73 2738 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2739
72b54e73
VD
2740 for_each_mem_cgroup_tree(iter, memcg) {
2741 for (i = 0; i < MEMCG_NR_STAT; i++)
2742 stat[i] += mem_cgroup_read_stat(iter, i);
2743 }
ce00a967
JW
2744}
2745
72b54e73 2746static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2747{
2748 struct mem_cgroup *iter;
72b54e73 2749 int i;
587d9f72 2750
72b54e73 2751 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2752
72b54e73
VD
2753 for_each_mem_cgroup_tree(iter, memcg) {
2754 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2755 events[i] += mem_cgroup_read_events(iter, i);
2756 }
587d9f72
JW
2757}
2758
6f646156 2759static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2760{
72b54e73 2761 unsigned long val = 0;
ce00a967 2762
3e32cb2e 2763 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2764 struct mem_cgroup *iter;
2765
2766 for_each_mem_cgroup_tree(iter, memcg) {
2767 val += mem_cgroup_read_stat(iter,
2768 MEM_CGROUP_STAT_CACHE);
2769 val += mem_cgroup_read_stat(iter,
2770 MEM_CGROUP_STAT_RSS);
2771 if (swap)
2772 val += mem_cgroup_read_stat(iter,
2773 MEM_CGROUP_STAT_SWAP);
2774 }
3e32cb2e 2775 } else {
ce00a967 2776 if (!swap)
3e32cb2e 2777 val = page_counter_read(&memcg->memory);
ce00a967 2778 else
3e32cb2e 2779 val = page_counter_read(&memcg->memsw);
ce00a967 2780 }
c12176d3 2781 return val;
ce00a967
JW
2782}
2783
3e32cb2e
JW
2784enum {
2785 RES_USAGE,
2786 RES_LIMIT,
2787 RES_MAX_USAGE,
2788 RES_FAILCNT,
2789 RES_SOFT_LIMIT,
2790};
ce00a967 2791
791badbd 2792static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2793 struct cftype *cft)
8cdea7c0 2794{
182446d0 2795 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2796 struct page_counter *counter;
af36f906 2797
3e32cb2e 2798 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2799 case _MEM:
3e32cb2e
JW
2800 counter = &memcg->memory;
2801 break;
8c7c6e34 2802 case _MEMSWAP:
3e32cb2e
JW
2803 counter = &memcg->memsw;
2804 break;
510fc4e1 2805 case _KMEM:
3e32cb2e 2806 counter = &memcg->kmem;
510fc4e1 2807 break;
d55f90bf 2808 case _TCP:
0db15298 2809 counter = &memcg->tcpmem;
d55f90bf 2810 break;
8c7c6e34
KH
2811 default:
2812 BUG();
8c7c6e34 2813 }
3e32cb2e
JW
2814
2815 switch (MEMFILE_ATTR(cft->private)) {
2816 case RES_USAGE:
2817 if (counter == &memcg->memory)
c12176d3 2818 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2819 if (counter == &memcg->memsw)
c12176d3 2820 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2821 return (u64)page_counter_read(counter) * PAGE_SIZE;
2822 case RES_LIMIT:
2823 return (u64)counter->limit * PAGE_SIZE;
2824 case RES_MAX_USAGE:
2825 return (u64)counter->watermark * PAGE_SIZE;
2826 case RES_FAILCNT:
2827 return counter->failcnt;
2828 case RES_SOFT_LIMIT:
2829 return (u64)memcg->soft_limit * PAGE_SIZE;
2830 default:
2831 BUG();
2832 }
8cdea7c0 2833}
510fc4e1 2834
127424c8 2835#ifndef CONFIG_SLOB
567e9ab2 2836static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2837{
d6441637
VD
2838 int memcg_id;
2839
b313aeee
VD
2840 if (cgroup_memory_nokmem)
2841 return 0;
2842
2a4db7eb 2843 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2844 BUG_ON(memcg->kmem_state);
d6441637 2845
f3bb3043 2846 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2847 if (memcg_id < 0)
2848 return memcg_id;
d6441637 2849
ef12947c 2850 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2851 /*
567e9ab2 2852 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2853 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2854 * guarantee no one starts accounting before all call sites are
2855 * patched.
2856 */
900a38f0 2857 memcg->kmemcg_id = memcg_id;
567e9ab2 2858 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2859
2860 return 0;
d6441637
VD
2861}
2862
8e0a8912
JW
2863static void memcg_offline_kmem(struct mem_cgroup *memcg)
2864{
2865 struct cgroup_subsys_state *css;
2866 struct mem_cgroup *parent, *child;
2867 int kmemcg_id;
2868
2869 if (memcg->kmem_state != KMEM_ONLINE)
2870 return;
2871 /*
2872 * Clear the online state before clearing memcg_caches array
2873 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2874 * guarantees that no cache will be created for this cgroup
2875 * after we are done (see memcg_create_kmem_cache()).
2876 */
2877 memcg->kmem_state = KMEM_ALLOCATED;
2878
2879 memcg_deactivate_kmem_caches(memcg);
2880
2881 kmemcg_id = memcg->kmemcg_id;
2882 BUG_ON(kmemcg_id < 0);
2883
2884 parent = parent_mem_cgroup(memcg);
2885 if (!parent)
2886 parent = root_mem_cgroup;
2887
2888 /*
2889 * Change kmemcg_id of this cgroup and all its descendants to the
2890 * parent's id, and then move all entries from this cgroup's list_lrus
2891 * to ones of the parent. After we have finished, all list_lrus
2892 * corresponding to this cgroup are guaranteed to remain empty. The
2893 * ordering is imposed by list_lru_node->lock taken by
2894 * memcg_drain_all_list_lrus().
2895 */
2896 css_for_each_descendant_pre(css, &memcg->css) {
2897 child = mem_cgroup_from_css(css);
2898 BUG_ON(child->kmemcg_id != kmemcg_id);
2899 child->kmemcg_id = parent->kmemcg_id;
2900 if (!memcg->use_hierarchy)
2901 break;
2902 }
2903 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2904
2905 memcg_free_cache_id(kmemcg_id);
2906}
2907
2908static void memcg_free_kmem(struct mem_cgroup *memcg)
2909{
0b8f73e1
JW
2910 /* css_alloc() failed, offlining didn't happen */
2911 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2912 memcg_offline_kmem(memcg);
2913
8e0a8912
JW
2914 if (memcg->kmem_state == KMEM_ALLOCATED) {
2915 memcg_destroy_kmem_caches(memcg);
2916 static_branch_dec(&memcg_kmem_enabled_key);
2917 WARN_ON(page_counter_read(&memcg->kmem));
2918 }
8e0a8912 2919}
d6441637 2920#else
0b8f73e1 2921static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2922{
2923 return 0;
2924}
2925static void memcg_offline_kmem(struct mem_cgroup *memcg)
2926{
2927}
2928static void memcg_free_kmem(struct mem_cgroup *memcg)
2929{
2930}
2931#endif /* !CONFIG_SLOB */
2932
d6441637 2933static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2934 unsigned long limit)
d6441637 2935{
b313aeee 2936 int ret;
127424c8
JW
2937
2938 mutex_lock(&memcg_limit_mutex);
127424c8 2939 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2940 mutex_unlock(&memcg_limit_mutex);
2941 return ret;
d6441637 2942}
510fc4e1 2943
d55f90bf
VD
2944static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2945{
2946 int ret;
2947
2948 mutex_lock(&memcg_limit_mutex);
2949
0db15298 2950 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2951 if (ret)
2952 goto out;
2953
0db15298 2954 if (!memcg->tcpmem_active) {
d55f90bf
VD
2955 /*
2956 * The active flag needs to be written after the static_key
2957 * update. This is what guarantees that the socket activation
2958 * function is the last one to run. See sock_update_memcg() for
2959 * details, and note that we don't mark any socket as belonging
2960 * to this memcg until that flag is up.
2961 *
2962 * We need to do this, because static_keys will span multiple
2963 * sites, but we can't control their order. If we mark a socket
2964 * as accounted, but the accounting functions are not patched in
2965 * yet, we'll lose accounting.
2966 *
2967 * We never race with the readers in sock_update_memcg(),
2968 * because when this value change, the code to process it is not
2969 * patched in yet.
2970 */
2971 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2972 memcg->tcpmem_active = true;
d55f90bf
VD
2973 }
2974out:
2975 mutex_unlock(&memcg_limit_mutex);
2976 return ret;
2977}
d55f90bf 2978
628f4235
KH
2979/*
2980 * The user of this function is...
2981 * RES_LIMIT.
2982 */
451af504
TH
2983static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2984 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2985{
451af504 2986 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2987 unsigned long nr_pages;
628f4235
KH
2988 int ret;
2989
451af504 2990 buf = strstrip(buf);
650c5e56 2991 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2992 if (ret)
2993 return ret;
af36f906 2994
3e32cb2e 2995 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2996 case RES_LIMIT:
4b3bde4c
BS
2997 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2998 ret = -EINVAL;
2999 break;
3000 }
3e32cb2e
JW
3001 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3002 case _MEM:
3003 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3004 break;
3e32cb2e
JW
3005 case _MEMSWAP:
3006 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3007 break;
3e32cb2e
JW
3008 case _KMEM:
3009 ret = memcg_update_kmem_limit(memcg, nr_pages);
3010 break;
d55f90bf
VD
3011 case _TCP:
3012 ret = memcg_update_tcp_limit(memcg, nr_pages);
3013 break;
3e32cb2e 3014 }
296c81d8 3015 break;
3e32cb2e
JW
3016 case RES_SOFT_LIMIT:
3017 memcg->soft_limit = nr_pages;
3018 ret = 0;
628f4235
KH
3019 break;
3020 }
451af504 3021 return ret ?: nbytes;
8cdea7c0
BS
3022}
3023
6770c64e
TH
3024static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3025 size_t nbytes, loff_t off)
c84872e1 3026{
6770c64e 3027 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3028 struct page_counter *counter;
c84872e1 3029
3e32cb2e
JW
3030 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3031 case _MEM:
3032 counter = &memcg->memory;
3033 break;
3034 case _MEMSWAP:
3035 counter = &memcg->memsw;
3036 break;
3037 case _KMEM:
3038 counter = &memcg->kmem;
3039 break;
d55f90bf 3040 case _TCP:
0db15298 3041 counter = &memcg->tcpmem;
d55f90bf 3042 break;
3e32cb2e
JW
3043 default:
3044 BUG();
3045 }
af36f906 3046
3e32cb2e 3047 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3048 case RES_MAX_USAGE:
3e32cb2e 3049 page_counter_reset_watermark(counter);
29f2a4da
PE
3050 break;
3051 case RES_FAILCNT:
3e32cb2e 3052 counter->failcnt = 0;
29f2a4da 3053 break;
3e32cb2e
JW
3054 default:
3055 BUG();
29f2a4da 3056 }
f64c3f54 3057
6770c64e 3058 return nbytes;
c84872e1
PE
3059}
3060
182446d0 3061static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3062 struct cftype *cft)
3063{
182446d0 3064 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3065}
3066
02491447 3067#ifdef CONFIG_MMU
182446d0 3068static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3069 struct cftype *cft, u64 val)
3070{
182446d0 3071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3072
1dfab5ab 3073 if (val & ~MOVE_MASK)
7dc74be0 3074 return -EINVAL;
ee5e8472 3075
7dc74be0 3076 /*
ee5e8472
GC
3077 * No kind of locking is needed in here, because ->can_attach() will
3078 * check this value once in the beginning of the process, and then carry
3079 * on with stale data. This means that changes to this value will only
3080 * affect task migrations starting after the change.
7dc74be0 3081 */
c0ff4b85 3082 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3083 return 0;
3084}
02491447 3085#else
182446d0 3086static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3087 struct cftype *cft, u64 val)
3088{
3089 return -ENOSYS;
3090}
3091#endif
7dc74be0 3092
406eb0c9 3093#ifdef CONFIG_NUMA
2da8ca82 3094static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3095{
25485de6
GT
3096 struct numa_stat {
3097 const char *name;
3098 unsigned int lru_mask;
3099 };
3100
3101 static const struct numa_stat stats[] = {
3102 { "total", LRU_ALL },
3103 { "file", LRU_ALL_FILE },
3104 { "anon", LRU_ALL_ANON },
3105 { "unevictable", BIT(LRU_UNEVICTABLE) },
3106 };
3107 const struct numa_stat *stat;
406eb0c9 3108 int nid;
25485de6 3109 unsigned long nr;
2da8ca82 3110 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3111
25485de6
GT
3112 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3113 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3114 seq_printf(m, "%s=%lu", stat->name, nr);
3115 for_each_node_state(nid, N_MEMORY) {
3116 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3117 stat->lru_mask);
3118 seq_printf(m, " N%d=%lu", nid, nr);
3119 }
3120 seq_putc(m, '\n');
406eb0c9 3121 }
406eb0c9 3122
071aee13
YH
3123 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3124 struct mem_cgroup *iter;
3125
3126 nr = 0;
3127 for_each_mem_cgroup_tree(iter, memcg)
3128 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3129 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3130 for_each_node_state(nid, N_MEMORY) {
3131 nr = 0;
3132 for_each_mem_cgroup_tree(iter, memcg)
3133 nr += mem_cgroup_node_nr_lru_pages(
3134 iter, nid, stat->lru_mask);
3135 seq_printf(m, " N%d=%lu", nid, nr);
3136 }
3137 seq_putc(m, '\n');
406eb0c9 3138 }
406eb0c9 3139
406eb0c9
YH
3140 return 0;
3141}
3142#endif /* CONFIG_NUMA */
3143
2da8ca82 3144static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3145{
2da8ca82 3146 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3147 unsigned long memory, memsw;
af7c4b0e
JW
3148 struct mem_cgroup *mi;
3149 unsigned int i;
406eb0c9 3150
0ca44b14
GT
3151 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3152 MEM_CGROUP_STAT_NSTATS);
3153 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3154 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3155 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3156
af7c4b0e 3157 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3158 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3159 continue;
484ebb3b 3160 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3161 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3162 }
7b854121 3163
af7c4b0e
JW
3164 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3165 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3166 mem_cgroup_read_events(memcg, i));
3167
3168 for (i = 0; i < NR_LRU_LISTS; i++)
3169 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3170 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3171
14067bb3 3172 /* Hierarchical information */
3e32cb2e
JW
3173 memory = memsw = PAGE_COUNTER_MAX;
3174 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3175 memory = min(memory, mi->memory.limit);
3176 memsw = min(memsw, mi->memsw.limit);
fee7b548 3177 }
3e32cb2e
JW
3178 seq_printf(m, "hierarchical_memory_limit %llu\n",
3179 (u64)memory * PAGE_SIZE);
7941d214 3180 if (do_memsw_account())
3e32cb2e
JW
3181 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3182 (u64)memsw * PAGE_SIZE);
7f016ee8 3183
af7c4b0e 3184 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3185 unsigned long long val = 0;
af7c4b0e 3186
7941d214 3187 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3188 continue;
af7c4b0e
JW
3189 for_each_mem_cgroup_tree(mi, memcg)
3190 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3191 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3192 }
3193
3194 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3195 unsigned long long val = 0;
3196
3197 for_each_mem_cgroup_tree(mi, memcg)
3198 val += mem_cgroup_read_events(mi, i);
3199 seq_printf(m, "total_%s %llu\n",
3200 mem_cgroup_events_names[i], val);
3201 }
3202
3203 for (i = 0; i < NR_LRU_LISTS; i++) {
3204 unsigned long long val = 0;
3205
3206 for_each_mem_cgroup_tree(mi, memcg)
3207 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3208 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3209 }
14067bb3 3210
7f016ee8 3211#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3212 {
3213 int nid, zid;
3214 struct mem_cgroup_per_zone *mz;
89abfab1 3215 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3216 unsigned long recent_rotated[2] = {0, 0};
3217 unsigned long recent_scanned[2] = {0, 0};
3218
3219 for_each_online_node(nid)
3220 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3221 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3222 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3223
89abfab1
HD
3224 recent_rotated[0] += rstat->recent_rotated[0];
3225 recent_rotated[1] += rstat->recent_rotated[1];
3226 recent_scanned[0] += rstat->recent_scanned[0];
3227 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3228 }
78ccf5b5
JW
3229 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3230 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3231 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3232 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3233 }
3234#endif
3235
d2ceb9b7
KH
3236 return 0;
3237}
3238
182446d0
TH
3239static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3240 struct cftype *cft)
a7885eb8 3241{
182446d0 3242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3243
1f4c025b 3244 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3245}
3246
182446d0
TH
3247static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3248 struct cftype *cft, u64 val)
a7885eb8 3249{
182446d0 3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3251
3dae7fec 3252 if (val > 100)
a7885eb8
KM
3253 return -EINVAL;
3254
14208b0e 3255 if (css->parent)
3dae7fec
JW
3256 memcg->swappiness = val;
3257 else
3258 vm_swappiness = val;
068b38c1 3259
a7885eb8
KM
3260 return 0;
3261}
3262
2e72b634
KS
3263static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3264{
3265 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3266 unsigned long usage;
2e72b634
KS
3267 int i;
3268
3269 rcu_read_lock();
3270 if (!swap)
2c488db2 3271 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3272 else
2c488db2 3273 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3274
3275 if (!t)
3276 goto unlock;
3277
ce00a967 3278 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3279
3280 /*
748dad36 3281 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3282 * If it's not true, a threshold was crossed after last
3283 * call of __mem_cgroup_threshold().
3284 */
5407a562 3285 i = t->current_threshold;
2e72b634
KS
3286
3287 /*
3288 * Iterate backward over array of thresholds starting from
3289 * current_threshold and check if a threshold is crossed.
3290 * If none of thresholds below usage is crossed, we read
3291 * only one element of the array here.
3292 */
3293 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3294 eventfd_signal(t->entries[i].eventfd, 1);
3295
3296 /* i = current_threshold + 1 */
3297 i++;
3298
3299 /*
3300 * Iterate forward over array of thresholds starting from
3301 * current_threshold+1 and check if a threshold is crossed.
3302 * If none of thresholds above usage is crossed, we read
3303 * only one element of the array here.
3304 */
3305 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3306 eventfd_signal(t->entries[i].eventfd, 1);
3307
3308 /* Update current_threshold */
5407a562 3309 t->current_threshold = i - 1;
2e72b634
KS
3310unlock:
3311 rcu_read_unlock();
3312}
3313
3314static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3315{
ad4ca5f4
KS
3316 while (memcg) {
3317 __mem_cgroup_threshold(memcg, false);
7941d214 3318 if (do_memsw_account())
ad4ca5f4
KS
3319 __mem_cgroup_threshold(memcg, true);
3320
3321 memcg = parent_mem_cgroup(memcg);
3322 }
2e72b634
KS
3323}
3324
3325static int compare_thresholds(const void *a, const void *b)
3326{
3327 const struct mem_cgroup_threshold *_a = a;
3328 const struct mem_cgroup_threshold *_b = b;
3329
2bff24a3
GT
3330 if (_a->threshold > _b->threshold)
3331 return 1;
3332
3333 if (_a->threshold < _b->threshold)
3334 return -1;
3335
3336 return 0;
2e72b634
KS
3337}
3338
c0ff4b85 3339static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3340{
3341 struct mem_cgroup_eventfd_list *ev;
3342
2bcf2e92
MH
3343 spin_lock(&memcg_oom_lock);
3344
c0ff4b85 3345 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3346 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3347
3348 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3349 return 0;
3350}
3351
c0ff4b85 3352static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3353{
7d74b06f
KH
3354 struct mem_cgroup *iter;
3355
c0ff4b85 3356 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3357 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3358}
3359
59b6f873 3360static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3361 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3362{
2c488db2
KS
3363 struct mem_cgroup_thresholds *thresholds;
3364 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3365 unsigned long threshold;
3366 unsigned long usage;
2c488db2 3367 int i, size, ret;
2e72b634 3368
650c5e56 3369 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3370 if (ret)
3371 return ret;
3372
3373 mutex_lock(&memcg->thresholds_lock);
2c488db2 3374
05b84301 3375 if (type == _MEM) {
2c488db2 3376 thresholds = &memcg->thresholds;
ce00a967 3377 usage = mem_cgroup_usage(memcg, false);
05b84301 3378 } else if (type == _MEMSWAP) {
2c488db2 3379 thresholds = &memcg->memsw_thresholds;
ce00a967 3380 usage = mem_cgroup_usage(memcg, true);
05b84301 3381 } else
2e72b634
KS
3382 BUG();
3383
2e72b634 3384 /* Check if a threshold crossed before adding a new one */
2c488db2 3385 if (thresholds->primary)
2e72b634
KS
3386 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3387
2c488db2 3388 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3389
3390 /* Allocate memory for new array of thresholds */
2c488db2 3391 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3392 GFP_KERNEL);
2c488db2 3393 if (!new) {
2e72b634
KS
3394 ret = -ENOMEM;
3395 goto unlock;
3396 }
2c488db2 3397 new->size = size;
2e72b634
KS
3398
3399 /* Copy thresholds (if any) to new array */
2c488db2
KS
3400 if (thresholds->primary) {
3401 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3402 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3403 }
3404
2e72b634 3405 /* Add new threshold */
2c488db2
KS
3406 new->entries[size - 1].eventfd = eventfd;
3407 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3408
3409 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3410 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3411 compare_thresholds, NULL);
3412
3413 /* Find current threshold */
2c488db2 3414 new->current_threshold = -1;
2e72b634 3415 for (i = 0; i < size; i++) {
748dad36 3416 if (new->entries[i].threshold <= usage) {
2e72b634 3417 /*
2c488db2
KS
3418 * new->current_threshold will not be used until
3419 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3420 * it here.
3421 */
2c488db2 3422 ++new->current_threshold;
748dad36
SZ
3423 } else
3424 break;
2e72b634
KS
3425 }
3426
2c488db2
KS
3427 /* Free old spare buffer and save old primary buffer as spare */
3428 kfree(thresholds->spare);
3429 thresholds->spare = thresholds->primary;
3430
3431 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3432
907860ed 3433 /* To be sure that nobody uses thresholds */
2e72b634
KS
3434 synchronize_rcu();
3435
2e72b634
KS
3436unlock:
3437 mutex_unlock(&memcg->thresholds_lock);
3438
3439 return ret;
3440}
3441
59b6f873 3442static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3443 struct eventfd_ctx *eventfd, const char *args)
3444{
59b6f873 3445 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3446}
3447
59b6f873 3448static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3449 struct eventfd_ctx *eventfd, const char *args)
3450{
59b6f873 3451 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3452}
3453
59b6f873 3454static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3455 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3456{
2c488db2
KS
3457 struct mem_cgroup_thresholds *thresholds;
3458 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3459 unsigned long usage;
2c488db2 3460 int i, j, size;
2e72b634
KS
3461
3462 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3463
3464 if (type == _MEM) {
2c488db2 3465 thresholds = &memcg->thresholds;
ce00a967 3466 usage = mem_cgroup_usage(memcg, false);
05b84301 3467 } else if (type == _MEMSWAP) {
2c488db2 3468 thresholds = &memcg->memsw_thresholds;
ce00a967 3469 usage = mem_cgroup_usage(memcg, true);
05b84301 3470 } else
2e72b634
KS
3471 BUG();
3472
371528ca
AV
3473 if (!thresholds->primary)
3474 goto unlock;
3475
2e72b634
KS
3476 /* Check if a threshold crossed before removing */
3477 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3478
3479 /* Calculate new number of threshold */
2c488db2
KS
3480 size = 0;
3481 for (i = 0; i < thresholds->primary->size; i++) {
3482 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3483 size++;
3484 }
3485
2c488db2 3486 new = thresholds->spare;
907860ed 3487
2e72b634
KS
3488 /* Set thresholds array to NULL if we don't have thresholds */
3489 if (!size) {
2c488db2
KS
3490 kfree(new);
3491 new = NULL;
907860ed 3492 goto swap_buffers;
2e72b634
KS
3493 }
3494
2c488db2 3495 new->size = size;
2e72b634
KS
3496
3497 /* Copy thresholds and find current threshold */
2c488db2
KS
3498 new->current_threshold = -1;
3499 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3500 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3501 continue;
3502
2c488db2 3503 new->entries[j] = thresholds->primary->entries[i];
748dad36 3504 if (new->entries[j].threshold <= usage) {
2e72b634 3505 /*
2c488db2 3506 * new->current_threshold will not be used
2e72b634
KS
3507 * until rcu_assign_pointer(), so it's safe to increment
3508 * it here.
3509 */
2c488db2 3510 ++new->current_threshold;
2e72b634
KS
3511 }
3512 j++;
3513 }
3514
907860ed 3515swap_buffers:
2c488db2
KS
3516 /* Swap primary and spare array */
3517 thresholds->spare = thresholds->primary;
8c757763 3518
2c488db2 3519 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3520
907860ed 3521 /* To be sure that nobody uses thresholds */
2e72b634 3522 synchronize_rcu();
6611d8d7
MC
3523
3524 /* If all events are unregistered, free the spare array */
3525 if (!new) {
3526 kfree(thresholds->spare);
3527 thresholds->spare = NULL;
3528 }
371528ca 3529unlock:
2e72b634 3530 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3531}
c1e862c1 3532
59b6f873 3533static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3534 struct eventfd_ctx *eventfd)
3535{
59b6f873 3536 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3537}
3538
59b6f873 3539static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3540 struct eventfd_ctx *eventfd)
3541{
59b6f873 3542 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3543}
3544
59b6f873 3545static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3546 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3547{
9490ff27 3548 struct mem_cgroup_eventfd_list *event;
9490ff27 3549
9490ff27
KH
3550 event = kmalloc(sizeof(*event), GFP_KERNEL);
3551 if (!event)
3552 return -ENOMEM;
3553
1af8efe9 3554 spin_lock(&memcg_oom_lock);
9490ff27
KH
3555
3556 event->eventfd = eventfd;
3557 list_add(&event->list, &memcg->oom_notify);
3558
3559 /* already in OOM ? */
c2b42d3c 3560 if (memcg->under_oom)
9490ff27 3561 eventfd_signal(eventfd, 1);
1af8efe9 3562 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3563
3564 return 0;
3565}
3566
59b6f873 3567static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3568 struct eventfd_ctx *eventfd)
9490ff27 3569{
9490ff27 3570 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3571
1af8efe9 3572 spin_lock(&memcg_oom_lock);
9490ff27 3573
c0ff4b85 3574 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3575 if (ev->eventfd == eventfd) {
3576 list_del(&ev->list);
3577 kfree(ev);
3578 }
3579 }
3580
1af8efe9 3581 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3582}
3583
2da8ca82 3584static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3585{
2da8ca82 3586 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3587
791badbd 3588 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3589 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3590 return 0;
3591}
3592
182446d0 3593static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3594 struct cftype *cft, u64 val)
3595{
182446d0 3596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3597
3598 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3599 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3600 return -EINVAL;
3601
c0ff4b85 3602 memcg->oom_kill_disable = val;
4d845ebf 3603 if (!val)
c0ff4b85 3604 memcg_oom_recover(memcg);
3dae7fec 3605
3c11ecf4
KH
3606 return 0;
3607}
3608
52ebea74
TH
3609#ifdef CONFIG_CGROUP_WRITEBACK
3610
3611struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3612{
3613 return &memcg->cgwb_list;
3614}
3615
841710aa
TH
3616static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3617{
3618 return wb_domain_init(&memcg->cgwb_domain, gfp);
3619}
3620
3621static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3622{
3623 wb_domain_exit(&memcg->cgwb_domain);
3624}
3625
2529bb3a
TH
3626static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3627{
3628 wb_domain_size_changed(&memcg->cgwb_domain);
3629}
3630
841710aa
TH
3631struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3632{
3633 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3634
3635 if (!memcg->css.parent)
3636 return NULL;
3637
3638 return &memcg->cgwb_domain;
3639}
3640
c2aa723a
TH
3641/**
3642 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3643 * @wb: bdi_writeback in question
c5edf9cd
TH
3644 * @pfilepages: out parameter for number of file pages
3645 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3646 * @pdirty: out parameter for number of dirty pages
3647 * @pwriteback: out parameter for number of pages under writeback
3648 *
c5edf9cd
TH
3649 * Determine the numbers of file, headroom, dirty, and writeback pages in
3650 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3651 * is a bit more involved.
c2aa723a 3652 *
c5edf9cd
TH
3653 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3654 * headroom is calculated as the lowest headroom of itself and the
3655 * ancestors. Note that this doesn't consider the actual amount of
3656 * available memory in the system. The caller should further cap
3657 * *@pheadroom accordingly.
c2aa723a 3658 */
c5edf9cd
TH
3659void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3660 unsigned long *pheadroom, unsigned long *pdirty,
3661 unsigned long *pwriteback)
c2aa723a
TH
3662{
3663 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3664 struct mem_cgroup *parent;
c2aa723a
TH
3665
3666 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3667
3668 /* this should eventually include NR_UNSTABLE_NFS */
3669 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3670 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3671 (1 << LRU_ACTIVE_FILE));
3672 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3673
c2aa723a
TH
3674 while ((parent = parent_mem_cgroup(memcg))) {
3675 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3676 unsigned long used = page_counter_read(&memcg->memory);
3677
c5edf9cd 3678 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3679 memcg = parent;
3680 }
c2aa723a
TH
3681}
3682
841710aa
TH
3683#else /* CONFIG_CGROUP_WRITEBACK */
3684
3685static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3686{
3687 return 0;
3688}
3689
3690static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3691{
3692}
3693
2529bb3a
TH
3694static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3695{
3696}
3697
52ebea74
TH
3698#endif /* CONFIG_CGROUP_WRITEBACK */
3699
3bc942f3
TH
3700/*
3701 * DO NOT USE IN NEW FILES.
3702 *
3703 * "cgroup.event_control" implementation.
3704 *
3705 * This is way over-engineered. It tries to support fully configurable
3706 * events for each user. Such level of flexibility is completely
3707 * unnecessary especially in the light of the planned unified hierarchy.
3708 *
3709 * Please deprecate this and replace with something simpler if at all
3710 * possible.
3711 */
3712
79bd9814
TH
3713/*
3714 * Unregister event and free resources.
3715 *
3716 * Gets called from workqueue.
3717 */
3bc942f3 3718static void memcg_event_remove(struct work_struct *work)
79bd9814 3719{
3bc942f3
TH
3720 struct mem_cgroup_event *event =
3721 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3722 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3723
3724 remove_wait_queue(event->wqh, &event->wait);
3725
59b6f873 3726 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3727
3728 /* Notify userspace the event is going away. */
3729 eventfd_signal(event->eventfd, 1);
3730
3731 eventfd_ctx_put(event->eventfd);
3732 kfree(event);
59b6f873 3733 css_put(&memcg->css);
79bd9814
TH
3734}
3735
3736/*
3737 * Gets called on POLLHUP on eventfd when user closes it.
3738 *
3739 * Called with wqh->lock held and interrupts disabled.
3740 */
3bc942f3
TH
3741static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3742 int sync, void *key)
79bd9814 3743{
3bc942f3
TH
3744 struct mem_cgroup_event *event =
3745 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3746 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3747 unsigned long flags = (unsigned long)key;
3748
3749 if (flags & POLLHUP) {
3750 /*
3751 * If the event has been detached at cgroup removal, we
3752 * can simply return knowing the other side will cleanup
3753 * for us.
3754 *
3755 * We can't race against event freeing since the other
3756 * side will require wqh->lock via remove_wait_queue(),
3757 * which we hold.
3758 */
fba94807 3759 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3760 if (!list_empty(&event->list)) {
3761 list_del_init(&event->list);
3762 /*
3763 * We are in atomic context, but cgroup_event_remove()
3764 * may sleep, so we have to call it in workqueue.
3765 */
3766 schedule_work(&event->remove);
3767 }
fba94807 3768 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3769 }
3770
3771 return 0;
3772}
3773
3bc942f3 3774static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3775 wait_queue_head_t *wqh, poll_table *pt)
3776{
3bc942f3
TH
3777 struct mem_cgroup_event *event =
3778 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3779
3780 event->wqh = wqh;
3781 add_wait_queue(wqh, &event->wait);
3782}
3783
3784/*
3bc942f3
TH
3785 * DO NOT USE IN NEW FILES.
3786 *
79bd9814
TH
3787 * Parse input and register new cgroup event handler.
3788 *
3789 * Input must be in format '<event_fd> <control_fd> <args>'.
3790 * Interpretation of args is defined by control file implementation.
3791 */
451af504
TH
3792static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3793 char *buf, size_t nbytes, loff_t off)
79bd9814 3794{
451af504 3795 struct cgroup_subsys_state *css = of_css(of);
fba94807 3796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3797 struct mem_cgroup_event *event;
79bd9814
TH
3798 struct cgroup_subsys_state *cfile_css;
3799 unsigned int efd, cfd;
3800 struct fd efile;
3801 struct fd cfile;
fba94807 3802 const char *name;
79bd9814
TH
3803 char *endp;
3804 int ret;
3805
451af504
TH
3806 buf = strstrip(buf);
3807
3808 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3809 if (*endp != ' ')
3810 return -EINVAL;
451af504 3811 buf = endp + 1;
79bd9814 3812
451af504 3813 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3814 if ((*endp != ' ') && (*endp != '\0'))
3815 return -EINVAL;
451af504 3816 buf = endp + 1;
79bd9814
TH
3817
3818 event = kzalloc(sizeof(*event), GFP_KERNEL);
3819 if (!event)
3820 return -ENOMEM;
3821
59b6f873 3822 event->memcg = memcg;
79bd9814 3823 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3824 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3825 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3826 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3827
3828 efile = fdget(efd);
3829 if (!efile.file) {
3830 ret = -EBADF;
3831 goto out_kfree;
3832 }
3833
3834 event->eventfd = eventfd_ctx_fileget(efile.file);
3835 if (IS_ERR(event->eventfd)) {
3836 ret = PTR_ERR(event->eventfd);
3837 goto out_put_efile;
3838 }
3839
3840 cfile = fdget(cfd);
3841 if (!cfile.file) {
3842 ret = -EBADF;
3843 goto out_put_eventfd;
3844 }
3845
3846 /* the process need read permission on control file */
3847 /* AV: shouldn't we check that it's been opened for read instead? */
3848 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3849 if (ret < 0)
3850 goto out_put_cfile;
3851
fba94807
TH
3852 /*
3853 * Determine the event callbacks and set them in @event. This used
3854 * to be done via struct cftype but cgroup core no longer knows
3855 * about these events. The following is crude but the whole thing
3856 * is for compatibility anyway.
3bc942f3
TH
3857 *
3858 * DO NOT ADD NEW FILES.
fba94807 3859 */
b583043e 3860 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3861
3862 if (!strcmp(name, "memory.usage_in_bytes")) {
3863 event->register_event = mem_cgroup_usage_register_event;
3864 event->unregister_event = mem_cgroup_usage_unregister_event;
3865 } else if (!strcmp(name, "memory.oom_control")) {
3866 event->register_event = mem_cgroup_oom_register_event;
3867 event->unregister_event = mem_cgroup_oom_unregister_event;
3868 } else if (!strcmp(name, "memory.pressure_level")) {
3869 event->register_event = vmpressure_register_event;
3870 event->unregister_event = vmpressure_unregister_event;
3871 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3872 event->register_event = memsw_cgroup_usage_register_event;
3873 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3874 } else {
3875 ret = -EINVAL;
3876 goto out_put_cfile;
3877 }
3878
79bd9814 3879 /*
b5557c4c
TH
3880 * Verify @cfile should belong to @css. Also, remaining events are
3881 * automatically removed on cgroup destruction but the removal is
3882 * asynchronous, so take an extra ref on @css.
79bd9814 3883 */
b583043e 3884 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3885 &memory_cgrp_subsys);
79bd9814 3886 ret = -EINVAL;
5a17f543 3887 if (IS_ERR(cfile_css))
79bd9814 3888 goto out_put_cfile;
5a17f543
TH
3889 if (cfile_css != css) {
3890 css_put(cfile_css);
79bd9814 3891 goto out_put_cfile;
5a17f543 3892 }
79bd9814 3893
451af504 3894 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3895 if (ret)
3896 goto out_put_css;
3897
3898 efile.file->f_op->poll(efile.file, &event->pt);
3899
fba94807
TH
3900 spin_lock(&memcg->event_list_lock);
3901 list_add(&event->list, &memcg->event_list);
3902 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3903
3904 fdput(cfile);
3905 fdput(efile);
3906
451af504 3907 return nbytes;
79bd9814
TH
3908
3909out_put_css:
b5557c4c 3910 css_put(css);
79bd9814
TH
3911out_put_cfile:
3912 fdput(cfile);
3913out_put_eventfd:
3914 eventfd_ctx_put(event->eventfd);
3915out_put_efile:
3916 fdput(efile);
3917out_kfree:
3918 kfree(event);
3919
3920 return ret;
3921}
3922
241994ed 3923static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3924 {
0eea1030 3925 .name = "usage_in_bytes",
8c7c6e34 3926 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3927 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3928 },
c84872e1
PE
3929 {
3930 .name = "max_usage_in_bytes",
8c7c6e34 3931 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3932 .write = mem_cgroup_reset,
791badbd 3933 .read_u64 = mem_cgroup_read_u64,
c84872e1 3934 },
8cdea7c0 3935 {
0eea1030 3936 .name = "limit_in_bytes",
8c7c6e34 3937 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3938 .write = mem_cgroup_write,
791badbd 3939 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3940 },
296c81d8
BS
3941 {
3942 .name = "soft_limit_in_bytes",
3943 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3944 .write = mem_cgroup_write,
791badbd 3945 .read_u64 = mem_cgroup_read_u64,
296c81d8 3946 },
8cdea7c0
BS
3947 {
3948 .name = "failcnt",
8c7c6e34 3949 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3950 .write = mem_cgroup_reset,
791badbd 3951 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3952 },
d2ceb9b7
KH
3953 {
3954 .name = "stat",
2da8ca82 3955 .seq_show = memcg_stat_show,
d2ceb9b7 3956 },
c1e862c1
KH
3957 {
3958 .name = "force_empty",
6770c64e 3959 .write = mem_cgroup_force_empty_write,
c1e862c1 3960 },
18f59ea7
BS
3961 {
3962 .name = "use_hierarchy",
3963 .write_u64 = mem_cgroup_hierarchy_write,
3964 .read_u64 = mem_cgroup_hierarchy_read,
3965 },
79bd9814 3966 {
3bc942f3 3967 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3968 .write = memcg_write_event_control,
7dbdb199 3969 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3970 },
a7885eb8
KM
3971 {
3972 .name = "swappiness",
3973 .read_u64 = mem_cgroup_swappiness_read,
3974 .write_u64 = mem_cgroup_swappiness_write,
3975 },
7dc74be0
DN
3976 {
3977 .name = "move_charge_at_immigrate",
3978 .read_u64 = mem_cgroup_move_charge_read,
3979 .write_u64 = mem_cgroup_move_charge_write,
3980 },
9490ff27
KH
3981 {
3982 .name = "oom_control",
2da8ca82 3983 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3984 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3985 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3986 },
70ddf637
AV
3987 {
3988 .name = "pressure_level",
70ddf637 3989 },
406eb0c9
YH
3990#ifdef CONFIG_NUMA
3991 {
3992 .name = "numa_stat",
2da8ca82 3993 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3994 },
3995#endif
510fc4e1
GC
3996 {
3997 .name = "kmem.limit_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3999 .write = mem_cgroup_write,
791badbd 4000 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4001 },
4002 {
4003 .name = "kmem.usage_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4005 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4006 },
4007 {
4008 .name = "kmem.failcnt",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4010 .write = mem_cgroup_reset,
791badbd 4011 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4012 },
4013 {
4014 .name = "kmem.max_usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4016 .write = mem_cgroup_reset,
791badbd 4017 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4018 },
749c5415
GC
4019#ifdef CONFIG_SLABINFO
4020 {
4021 .name = "kmem.slabinfo",
b047501c
VD
4022 .seq_start = slab_start,
4023 .seq_next = slab_next,
4024 .seq_stop = slab_stop,
4025 .seq_show = memcg_slab_show,
749c5415
GC
4026 },
4027#endif
d55f90bf
VD
4028 {
4029 .name = "kmem.tcp.limit_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4031 .write = mem_cgroup_write,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 {
4035 .name = "kmem.tcp.usage_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4037 .read_u64 = mem_cgroup_read_u64,
4038 },
4039 {
4040 .name = "kmem.tcp.failcnt",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4042 .write = mem_cgroup_reset,
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.max_usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4048 .write = mem_cgroup_reset,
4049 .read_u64 = mem_cgroup_read_u64,
4050 },
6bc10349 4051 { }, /* terminate */
af36f906 4052};
8c7c6e34 4053
c0ff4b85 4054static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4055{
4056 struct mem_cgroup_per_node *pn;
1ecaab2b 4057 struct mem_cgroup_per_zone *mz;
41e3355d 4058 int zone, tmp = node;
1ecaab2b
KH
4059 /*
4060 * This routine is called against possible nodes.
4061 * But it's BUG to call kmalloc() against offline node.
4062 *
4063 * TODO: this routine can waste much memory for nodes which will
4064 * never be onlined. It's better to use memory hotplug callback
4065 * function.
4066 */
41e3355d
KH
4067 if (!node_state(node, N_NORMAL_MEMORY))
4068 tmp = -1;
17295c88 4069 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4070 if (!pn)
4071 return 1;
1ecaab2b 4072
1ecaab2b
KH
4073 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4074 mz = &pn->zoneinfo[zone];
bea8c150 4075 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4076 mz->usage_in_excess = 0;
4077 mz->on_tree = false;
d79154bb 4078 mz->memcg = memcg;
1ecaab2b 4079 }
54f72fe0 4080 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4081 return 0;
4082}
4083
c0ff4b85 4084static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4085{
54f72fe0 4086 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4087}
4088
0b8f73e1 4089static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4090{
c8b2a36f 4091 int node;
59927fb9 4092
0b8f73e1 4093 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4094 for_each_node(node)
4095 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4096 free_percpu(memcg->stat);
8ff69e2c 4097 kfree(memcg);
59927fb9 4098}
3afe36b1 4099
0b8f73e1 4100static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4101{
d142e3e6 4102 struct mem_cgroup *memcg;
0b8f73e1 4103 size_t size;
6d12e2d8 4104 int node;
8cdea7c0 4105
0b8f73e1
JW
4106 size = sizeof(struct mem_cgroup);
4107 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4108
4109 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4110 if (!memcg)
0b8f73e1
JW
4111 return NULL;
4112
4113 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4114 if (!memcg->stat)
4115 goto fail;
78fb7466 4116
3ed28fa1 4117 for_each_node(node)
c0ff4b85 4118 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4119 goto fail;
f64c3f54 4120
0b8f73e1
JW
4121 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4122 goto fail;
28dbc4b6 4123
f7e1cb6e 4124 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4125 memcg->last_scanned_node = MAX_NUMNODES;
4126 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4127 mutex_init(&memcg->thresholds_lock);
4128 spin_lock_init(&memcg->move_lock);
70ddf637 4129 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4130 INIT_LIST_HEAD(&memcg->event_list);
4131 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4132 memcg->socket_pressure = jiffies;
127424c8 4133#ifndef CONFIG_SLOB
900a38f0 4134 memcg->kmemcg_id = -1;
900a38f0 4135#endif
52ebea74
TH
4136#ifdef CONFIG_CGROUP_WRITEBACK
4137 INIT_LIST_HEAD(&memcg->cgwb_list);
4138#endif
0b8f73e1
JW
4139 return memcg;
4140fail:
4141 mem_cgroup_free(memcg);
4142 return NULL;
d142e3e6
GC
4143}
4144
0b8f73e1
JW
4145static struct cgroup_subsys_state * __ref
4146mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4147{
0b8f73e1
JW
4148 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4149 struct mem_cgroup *memcg;
4150 long error = -ENOMEM;
d142e3e6 4151
0b8f73e1
JW
4152 memcg = mem_cgroup_alloc();
4153 if (!memcg)
4154 return ERR_PTR(error);
d142e3e6 4155
0b8f73e1
JW
4156 memcg->high = PAGE_COUNTER_MAX;
4157 memcg->soft_limit = PAGE_COUNTER_MAX;
4158 if (parent) {
4159 memcg->swappiness = mem_cgroup_swappiness(parent);
4160 memcg->oom_kill_disable = parent->oom_kill_disable;
4161 }
4162 if (parent && parent->use_hierarchy) {
4163 memcg->use_hierarchy = true;
3e32cb2e 4164 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4165 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4166 page_counter_init(&memcg->memsw, &parent->memsw);
4167 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4168 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4169 } else {
3e32cb2e 4170 page_counter_init(&memcg->memory, NULL);
37e84351 4171 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4172 page_counter_init(&memcg->memsw, NULL);
4173 page_counter_init(&memcg->kmem, NULL);
0db15298 4174 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4175 /*
4176 * Deeper hierachy with use_hierarchy == false doesn't make
4177 * much sense so let cgroup subsystem know about this
4178 * unfortunate state in our controller.
4179 */
d142e3e6 4180 if (parent != root_mem_cgroup)
073219e9 4181 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4182 }
d6441637 4183
0b8f73e1
JW
4184 /* The following stuff does not apply to the root */
4185 if (!parent) {
4186 root_mem_cgroup = memcg;
4187 return &memcg->css;
4188 }
4189
b313aeee 4190 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4191 if (error)
4192 goto fail;
127424c8 4193
f7e1cb6e 4194 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4195 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4196
0b8f73e1
JW
4197 return &memcg->css;
4198fail:
4199 mem_cgroup_free(memcg);
4200 return NULL;
4201}
4202
4203static int
4204mem_cgroup_css_online(struct cgroup_subsys_state *css)
4205{
4206 if (css->id > MEM_CGROUP_ID_MAX)
4207 return -ENOSPC;
2f7dd7a4
JW
4208
4209 return 0;
8cdea7c0
BS
4210}
4211
eb95419b 4212static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4213{
eb95419b 4214 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4215 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4216
4217 /*
4218 * Unregister events and notify userspace.
4219 * Notify userspace about cgroup removing only after rmdir of cgroup
4220 * directory to avoid race between userspace and kernelspace.
4221 */
fba94807
TH
4222 spin_lock(&memcg->event_list_lock);
4223 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4224 list_del_init(&event->list);
4225 schedule_work(&event->remove);
4226 }
fba94807 4227 spin_unlock(&memcg->event_list_lock);
ec64f515 4228
567e9ab2 4229 memcg_offline_kmem(memcg);
52ebea74 4230 wb_memcg_offline(memcg);
df878fb0
KH
4231}
4232
6df38689
VD
4233static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4234{
4235 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4236
4237 invalidate_reclaim_iterators(memcg);
4238}
4239
eb95419b 4240static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4241{
eb95419b 4242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4243
f7e1cb6e 4244 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4245 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4246
0db15298 4247 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4248 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4249
0b8f73e1
JW
4250 vmpressure_cleanup(&memcg->vmpressure);
4251 cancel_work_sync(&memcg->high_work);
4252 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4253 memcg_free_kmem(memcg);
0b8f73e1 4254 mem_cgroup_free(memcg);
8cdea7c0
BS
4255}
4256
1ced953b
TH
4257/**
4258 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4259 * @css: the target css
4260 *
4261 * Reset the states of the mem_cgroup associated with @css. This is
4262 * invoked when the userland requests disabling on the default hierarchy
4263 * but the memcg is pinned through dependency. The memcg should stop
4264 * applying policies and should revert to the vanilla state as it may be
4265 * made visible again.
4266 *
4267 * The current implementation only resets the essential configurations.
4268 * This needs to be expanded to cover all the visible parts.
4269 */
4270static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4271{
4272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4273
d334c9bc
VD
4274 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4275 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4276 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4277 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4278 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4279 memcg->low = 0;
4280 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4281 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4282 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4283}
4284
02491447 4285#ifdef CONFIG_MMU
7dc74be0 4286/* Handlers for move charge at task migration. */
854ffa8d 4287static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4288{
05b84301 4289 int ret;
9476db97 4290
d0164adc
MG
4291 /* Try a single bulk charge without reclaim first, kswapd may wake */
4292 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4293 if (!ret) {
854ffa8d 4294 mc.precharge += count;
854ffa8d
DN
4295 return ret;
4296 }
9476db97
JW
4297
4298 /* Try charges one by one with reclaim */
854ffa8d 4299 while (count--) {
00501b53 4300 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4301 if (ret)
38c5d72f 4302 return ret;
854ffa8d 4303 mc.precharge++;
9476db97 4304 cond_resched();
854ffa8d 4305 }
9476db97 4306 return 0;
4ffef5fe
DN
4307}
4308
4309/**
8d32ff84 4310 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4311 * @vma: the vma the pte to be checked belongs
4312 * @addr: the address corresponding to the pte to be checked
4313 * @ptent: the pte to be checked
02491447 4314 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4315 *
4316 * Returns
4317 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4318 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4319 * move charge. if @target is not NULL, the page is stored in target->page
4320 * with extra refcnt got(Callers should handle it).
02491447
DN
4321 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4322 * target for charge migration. if @target is not NULL, the entry is stored
4323 * in target->ent.
4ffef5fe
DN
4324 *
4325 * Called with pte lock held.
4326 */
4ffef5fe
DN
4327union mc_target {
4328 struct page *page;
02491447 4329 swp_entry_t ent;
4ffef5fe
DN
4330};
4331
4ffef5fe 4332enum mc_target_type {
8d32ff84 4333 MC_TARGET_NONE = 0,
4ffef5fe 4334 MC_TARGET_PAGE,
02491447 4335 MC_TARGET_SWAP,
4ffef5fe
DN
4336};
4337
90254a65
DN
4338static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4339 unsigned long addr, pte_t ptent)
4ffef5fe 4340{
90254a65 4341 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4342
90254a65
DN
4343 if (!page || !page_mapped(page))
4344 return NULL;
4345 if (PageAnon(page)) {
1dfab5ab 4346 if (!(mc.flags & MOVE_ANON))
90254a65 4347 return NULL;
1dfab5ab
JW
4348 } else {
4349 if (!(mc.flags & MOVE_FILE))
4350 return NULL;
4351 }
90254a65
DN
4352 if (!get_page_unless_zero(page))
4353 return NULL;
4354
4355 return page;
4356}
4357
4b91355e 4358#ifdef CONFIG_SWAP
90254a65
DN
4359static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4360 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4361{
90254a65
DN
4362 struct page *page = NULL;
4363 swp_entry_t ent = pte_to_swp_entry(ptent);
4364
1dfab5ab 4365 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4366 return NULL;
4b91355e
KH
4367 /*
4368 * Because lookup_swap_cache() updates some statistics counter,
4369 * we call find_get_page() with swapper_space directly.
4370 */
33806f06 4371 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4372 if (do_memsw_account())
90254a65
DN
4373 entry->val = ent.val;
4374
4375 return page;
4376}
4b91355e
KH
4377#else
4378static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4379 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4380{
4381 return NULL;
4382}
4383#endif
90254a65 4384
87946a72
DN
4385static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4386 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4387{
4388 struct page *page = NULL;
87946a72
DN
4389 struct address_space *mapping;
4390 pgoff_t pgoff;
4391
4392 if (!vma->vm_file) /* anonymous vma */
4393 return NULL;
1dfab5ab 4394 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4395 return NULL;
4396
87946a72 4397 mapping = vma->vm_file->f_mapping;
0661a336 4398 pgoff = linear_page_index(vma, addr);
87946a72
DN
4399
4400 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4401#ifdef CONFIG_SWAP
4402 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4403 if (shmem_mapping(mapping)) {
4404 page = find_get_entry(mapping, pgoff);
4405 if (radix_tree_exceptional_entry(page)) {
4406 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4407 if (do_memsw_account())
139b6a6f
JW
4408 *entry = swp;
4409 page = find_get_page(swap_address_space(swp), swp.val);
4410 }
4411 } else
4412 page = find_get_page(mapping, pgoff);
4413#else
4414 page = find_get_page(mapping, pgoff);
aa3b1895 4415#endif
87946a72
DN
4416 return page;
4417}
4418
b1b0deab
CG
4419/**
4420 * mem_cgroup_move_account - move account of the page
4421 * @page: the page
4422 * @nr_pages: number of regular pages (>1 for huge pages)
4423 * @from: mem_cgroup which the page is moved from.
4424 * @to: mem_cgroup which the page is moved to. @from != @to.
4425 *
3ac808fd 4426 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4427 *
4428 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4429 * from old cgroup.
4430 */
4431static int mem_cgroup_move_account(struct page *page,
f627c2f5 4432 bool compound,
b1b0deab
CG
4433 struct mem_cgroup *from,
4434 struct mem_cgroup *to)
4435{
4436 unsigned long flags;
f627c2f5 4437 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4438 int ret;
c4843a75 4439 bool anon;
b1b0deab
CG
4440
4441 VM_BUG_ON(from == to);
4442 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4443 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4444
4445 /*
6a93ca8f 4446 * Prevent mem_cgroup_migrate() from looking at
45637bab 4447 * page->mem_cgroup of its source page while we change it.
b1b0deab 4448 */
f627c2f5 4449 ret = -EBUSY;
b1b0deab
CG
4450 if (!trylock_page(page))
4451 goto out;
4452
4453 ret = -EINVAL;
4454 if (page->mem_cgroup != from)
4455 goto out_unlock;
4456
c4843a75
GT
4457 anon = PageAnon(page);
4458
b1b0deab
CG
4459 spin_lock_irqsave(&from->move_lock, flags);
4460
c4843a75 4461 if (!anon && page_mapped(page)) {
b1b0deab
CG
4462 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4463 nr_pages);
4464 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4465 nr_pages);
4466 }
4467
c4843a75
GT
4468 /*
4469 * move_lock grabbed above and caller set from->moving_account, so
4470 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4471 * So mapping should be stable for dirty pages.
4472 */
4473 if (!anon && PageDirty(page)) {
4474 struct address_space *mapping = page_mapping(page);
4475
4476 if (mapping_cap_account_dirty(mapping)) {
4477 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4478 nr_pages);
4479 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4480 nr_pages);
4481 }
4482 }
4483
b1b0deab
CG
4484 if (PageWriteback(page)) {
4485 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4486 nr_pages);
4487 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4488 nr_pages);
4489 }
4490
4491 /*
4492 * It is safe to change page->mem_cgroup here because the page
4493 * is referenced, charged, and isolated - we can't race with
4494 * uncharging, charging, migration, or LRU putback.
4495 */
4496
4497 /* caller should have done css_get */
4498 page->mem_cgroup = to;
4499 spin_unlock_irqrestore(&from->move_lock, flags);
4500
4501 ret = 0;
4502
4503 local_irq_disable();
f627c2f5 4504 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4505 memcg_check_events(to, page);
f627c2f5 4506 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4507 memcg_check_events(from, page);
4508 local_irq_enable();
4509out_unlock:
4510 unlock_page(page);
4511out:
4512 return ret;
4513}
4514
8d32ff84 4515static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4516 unsigned long addr, pte_t ptent, union mc_target *target)
4517{
4518 struct page *page = NULL;
8d32ff84 4519 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4520 swp_entry_t ent = { .val = 0 };
4521
4522 if (pte_present(ptent))
4523 page = mc_handle_present_pte(vma, addr, ptent);
4524 else if (is_swap_pte(ptent))
4525 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4526 else if (pte_none(ptent))
87946a72 4527 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4528
4529 if (!page && !ent.val)
8d32ff84 4530 return ret;
02491447 4531 if (page) {
02491447 4532 /*
0a31bc97 4533 * Do only loose check w/o serialization.
1306a85a 4534 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4535 * not under LRU exclusion.
02491447 4536 */
1306a85a 4537 if (page->mem_cgroup == mc.from) {
02491447
DN
4538 ret = MC_TARGET_PAGE;
4539 if (target)
4540 target->page = page;
4541 }
4542 if (!ret || !target)
4543 put_page(page);
4544 }
90254a65
DN
4545 /* There is a swap entry and a page doesn't exist or isn't charged */
4546 if (ent.val && !ret &&
34c00c31 4547 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4548 ret = MC_TARGET_SWAP;
4549 if (target)
4550 target->ent = ent;
4ffef5fe 4551 }
4ffef5fe
DN
4552 return ret;
4553}
4554
12724850
NH
4555#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4556/*
4557 * We don't consider swapping or file mapped pages because THP does not
4558 * support them for now.
4559 * Caller should make sure that pmd_trans_huge(pmd) is true.
4560 */
4561static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4562 unsigned long addr, pmd_t pmd, union mc_target *target)
4563{
4564 struct page *page = NULL;
12724850
NH
4565 enum mc_target_type ret = MC_TARGET_NONE;
4566
4567 page = pmd_page(pmd);
309381fe 4568 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4569 if (!(mc.flags & MOVE_ANON))
12724850 4570 return ret;
1306a85a 4571 if (page->mem_cgroup == mc.from) {
12724850
NH
4572 ret = MC_TARGET_PAGE;
4573 if (target) {
4574 get_page(page);
4575 target->page = page;
4576 }
4577 }
4578 return ret;
4579}
4580#else
4581static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4582 unsigned long addr, pmd_t pmd, union mc_target *target)
4583{
4584 return MC_TARGET_NONE;
4585}
4586#endif
4587
4ffef5fe
DN
4588static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4589 unsigned long addr, unsigned long end,
4590 struct mm_walk *walk)
4591{
26bcd64a 4592 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4593 pte_t *pte;
4594 spinlock_t *ptl;
4595
b6ec57f4
KS
4596 ptl = pmd_trans_huge_lock(pmd, vma);
4597 if (ptl) {
12724850
NH
4598 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4599 mc.precharge += HPAGE_PMD_NR;
bf929152 4600 spin_unlock(ptl);
1a5a9906 4601 return 0;
12724850 4602 }
03319327 4603
45f83cef
AA
4604 if (pmd_trans_unstable(pmd))
4605 return 0;
4ffef5fe
DN
4606 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4607 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4608 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4609 mc.precharge++; /* increment precharge temporarily */
4610 pte_unmap_unlock(pte - 1, ptl);
4611 cond_resched();
4612
7dc74be0
DN
4613 return 0;
4614}
4615
4ffef5fe
DN
4616static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4617{
4618 unsigned long precharge;
4ffef5fe 4619
26bcd64a
NH
4620 struct mm_walk mem_cgroup_count_precharge_walk = {
4621 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4622 .mm = mm,
4623 };
dfe076b0 4624 down_read(&mm->mmap_sem);
26bcd64a 4625 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4626 up_read(&mm->mmap_sem);
4ffef5fe
DN
4627
4628 precharge = mc.precharge;
4629 mc.precharge = 0;
4630
4631 return precharge;
4632}
4633
4ffef5fe
DN
4634static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4635{
dfe076b0
DN
4636 unsigned long precharge = mem_cgroup_count_precharge(mm);
4637
4638 VM_BUG_ON(mc.moving_task);
4639 mc.moving_task = current;
4640 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4641}
4642
dfe076b0
DN
4643/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4644static void __mem_cgroup_clear_mc(void)
4ffef5fe 4645{
2bd9bb20
KH
4646 struct mem_cgroup *from = mc.from;
4647 struct mem_cgroup *to = mc.to;
4648
4ffef5fe 4649 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4650 if (mc.precharge) {
00501b53 4651 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4652 mc.precharge = 0;
4653 }
4654 /*
4655 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4656 * we must uncharge here.
4657 */
4658 if (mc.moved_charge) {
00501b53 4659 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4660 mc.moved_charge = 0;
4ffef5fe 4661 }
483c30b5
DN
4662 /* we must fixup refcnts and charges */
4663 if (mc.moved_swap) {
483c30b5 4664 /* uncharge swap account from the old cgroup */
ce00a967 4665 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4666 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4667
05b84301 4668 /*
3e32cb2e
JW
4669 * we charged both to->memory and to->memsw, so we
4670 * should uncharge to->memory.
05b84301 4671 */
ce00a967 4672 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4673 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4674
e8ea14cc 4675 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4676
4050377b 4677 /* we've already done css_get(mc.to) */
483c30b5
DN
4678 mc.moved_swap = 0;
4679 }
dfe076b0
DN
4680 memcg_oom_recover(from);
4681 memcg_oom_recover(to);
4682 wake_up_all(&mc.waitq);
4683}
4684
4685static void mem_cgroup_clear_mc(void)
4686{
264a0ae1
TH
4687 struct mm_struct *mm = mc.mm;
4688
dfe076b0
DN
4689 /*
4690 * we must clear moving_task before waking up waiters at the end of
4691 * task migration.
4692 */
4693 mc.moving_task = NULL;
4694 __mem_cgroup_clear_mc();
2bd9bb20 4695 spin_lock(&mc.lock);
4ffef5fe
DN
4696 mc.from = NULL;
4697 mc.to = NULL;
264a0ae1 4698 mc.mm = NULL;
2bd9bb20 4699 spin_unlock(&mc.lock);
264a0ae1
TH
4700
4701 mmput(mm);
4ffef5fe
DN
4702}
4703
1f7dd3e5 4704static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4705{
1f7dd3e5 4706 struct cgroup_subsys_state *css;
eed67d75 4707 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4708 struct mem_cgroup *from;
4530eddb 4709 struct task_struct *leader, *p;
9f2115f9 4710 struct mm_struct *mm;
1dfab5ab 4711 unsigned long move_flags;
9f2115f9 4712 int ret = 0;
7dc74be0 4713
1f7dd3e5
TH
4714 /* charge immigration isn't supported on the default hierarchy */
4715 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4716 return 0;
4717
4530eddb
TH
4718 /*
4719 * Multi-process migrations only happen on the default hierarchy
4720 * where charge immigration is not used. Perform charge
4721 * immigration if @tset contains a leader and whine if there are
4722 * multiple.
4723 */
4724 p = NULL;
1f7dd3e5 4725 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4726 WARN_ON_ONCE(p);
4727 p = leader;
1f7dd3e5 4728 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4729 }
4730 if (!p)
4731 return 0;
4732
1f7dd3e5
TH
4733 /*
4734 * We are now commited to this value whatever it is. Changes in this
4735 * tunable will only affect upcoming migrations, not the current one.
4736 * So we need to save it, and keep it going.
4737 */
4738 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4739 if (!move_flags)
4740 return 0;
4741
9f2115f9
TH
4742 from = mem_cgroup_from_task(p);
4743
4744 VM_BUG_ON(from == memcg);
4745
4746 mm = get_task_mm(p);
4747 if (!mm)
4748 return 0;
4749 /* We move charges only when we move a owner of the mm */
4750 if (mm->owner == p) {
4751 VM_BUG_ON(mc.from);
4752 VM_BUG_ON(mc.to);
4753 VM_BUG_ON(mc.precharge);
4754 VM_BUG_ON(mc.moved_charge);
4755 VM_BUG_ON(mc.moved_swap);
4756
4757 spin_lock(&mc.lock);
264a0ae1 4758 mc.mm = mm;
9f2115f9
TH
4759 mc.from = from;
4760 mc.to = memcg;
4761 mc.flags = move_flags;
4762 spin_unlock(&mc.lock);
4763 /* We set mc.moving_task later */
4764
4765 ret = mem_cgroup_precharge_mc(mm);
4766 if (ret)
4767 mem_cgroup_clear_mc();
264a0ae1
TH
4768 } else {
4769 mmput(mm);
7dc74be0
DN
4770 }
4771 return ret;
4772}
4773
1f7dd3e5 4774static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4775{
4e2f245d
JW
4776 if (mc.to)
4777 mem_cgroup_clear_mc();
7dc74be0
DN
4778}
4779
4ffef5fe
DN
4780static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4781 unsigned long addr, unsigned long end,
4782 struct mm_walk *walk)
7dc74be0 4783{
4ffef5fe 4784 int ret = 0;
26bcd64a 4785 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4786 pte_t *pte;
4787 spinlock_t *ptl;
12724850
NH
4788 enum mc_target_type target_type;
4789 union mc_target target;
4790 struct page *page;
4ffef5fe 4791
b6ec57f4
KS
4792 ptl = pmd_trans_huge_lock(pmd, vma);
4793 if (ptl) {
62ade86a 4794 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4795 spin_unlock(ptl);
12724850
NH
4796 return 0;
4797 }
4798 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4799 if (target_type == MC_TARGET_PAGE) {
4800 page = target.page;
4801 if (!isolate_lru_page(page)) {
f627c2f5 4802 if (!mem_cgroup_move_account(page, true,
1306a85a 4803 mc.from, mc.to)) {
12724850
NH
4804 mc.precharge -= HPAGE_PMD_NR;
4805 mc.moved_charge += HPAGE_PMD_NR;
4806 }
4807 putback_lru_page(page);
4808 }
4809 put_page(page);
4810 }
bf929152 4811 spin_unlock(ptl);
1a5a9906 4812 return 0;
12724850
NH
4813 }
4814
45f83cef
AA
4815 if (pmd_trans_unstable(pmd))
4816 return 0;
4ffef5fe
DN
4817retry:
4818 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4819 for (; addr != end; addr += PAGE_SIZE) {
4820 pte_t ptent = *(pte++);
02491447 4821 swp_entry_t ent;
4ffef5fe
DN
4822
4823 if (!mc.precharge)
4824 break;
4825
8d32ff84 4826 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4827 case MC_TARGET_PAGE:
4828 page = target.page;
53f9263b
KS
4829 /*
4830 * We can have a part of the split pmd here. Moving it
4831 * can be done but it would be too convoluted so simply
4832 * ignore such a partial THP and keep it in original
4833 * memcg. There should be somebody mapping the head.
4834 */
4835 if (PageTransCompound(page))
4836 goto put;
4ffef5fe
DN
4837 if (isolate_lru_page(page))
4838 goto put;
f627c2f5
KS
4839 if (!mem_cgroup_move_account(page, false,
4840 mc.from, mc.to)) {
4ffef5fe 4841 mc.precharge--;
854ffa8d
DN
4842 /* we uncharge from mc.from later. */
4843 mc.moved_charge++;
4ffef5fe
DN
4844 }
4845 putback_lru_page(page);
8d32ff84 4846put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4847 put_page(page);
4848 break;
02491447
DN
4849 case MC_TARGET_SWAP:
4850 ent = target.ent;
e91cbb42 4851 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4852 mc.precharge--;
483c30b5
DN
4853 /* we fixup refcnts and charges later. */
4854 mc.moved_swap++;
4855 }
02491447 4856 break;
4ffef5fe
DN
4857 default:
4858 break;
4859 }
4860 }
4861 pte_unmap_unlock(pte - 1, ptl);
4862 cond_resched();
4863
4864 if (addr != end) {
4865 /*
4866 * We have consumed all precharges we got in can_attach().
4867 * We try charge one by one, but don't do any additional
4868 * charges to mc.to if we have failed in charge once in attach()
4869 * phase.
4870 */
854ffa8d 4871 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4872 if (!ret)
4873 goto retry;
4874 }
4875
4876 return ret;
4877}
4878
264a0ae1 4879static void mem_cgroup_move_charge(void)
4ffef5fe 4880{
26bcd64a
NH
4881 struct mm_walk mem_cgroup_move_charge_walk = {
4882 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4883 .mm = mc.mm,
26bcd64a 4884 };
4ffef5fe
DN
4885
4886 lru_add_drain_all();
312722cb 4887 /*
81f8c3a4
JW
4888 * Signal lock_page_memcg() to take the memcg's move_lock
4889 * while we're moving its pages to another memcg. Then wait
4890 * for already started RCU-only updates to finish.
312722cb
JW
4891 */
4892 atomic_inc(&mc.from->moving_account);
4893 synchronize_rcu();
dfe076b0 4894retry:
264a0ae1 4895 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4896 /*
4897 * Someone who are holding the mmap_sem might be waiting in
4898 * waitq. So we cancel all extra charges, wake up all waiters,
4899 * and retry. Because we cancel precharges, we might not be able
4900 * to move enough charges, but moving charge is a best-effort
4901 * feature anyway, so it wouldn't be a big problem.
4902 */
4903 __mem_cgroup_clear_mc();
4904 cond_resched();
4905 goto retry;
4906 }
26bcd64a
NH
4907 /*
4908 * When we have consumed all precharges and failed in doing
4909 * additional charge, the page walk just aborts.
4910 */
4911 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4912 up_read(&mc.mm->mmap_sem);
312722cb 4913 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4914}
4915
264a0ae1 4916static void mem_cgroup_move_task(void)
67e465a7 4917{
264a0ae1
TH
4918 if (mc.to) {
4919 mem_cgroup_move_charge();
a433658c 4920 mem_cgroup_clear_mc();
264a0ae1 4921 }
67e465a7 4922}
5cfb80a7 4923#else /* !CONFIG_MMU */
1f7dd3e5 4924static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4925{
4926 return 0;
4927}
1f7dd3e5 4928static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4929{
4930}
264a0ae1 4931static void mem_cgroup_move_task(void)
5cfb80a7
DN
4932{
4933}
4934#endif
67e465a7 4935
f00baae7
TH
4936/*
4937 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4938 * to verify whether we're attached to the default hierarchy on each mount
4939 * attempt.
f00baae7 4940 */
eb95419b 4941static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4942{
4943 /*
aa6ec29b 4944 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4945 * guarantees that @root doesn't have any children, so turning it
4946 * on for the root memcg is enough.
4947 */
9e10a130 4948 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4949 root_mem_cgroup->use_hierarchy = true;
4950 else
4951 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4952}
4953
241994ed
JW
4954static u64 memory_current_read(struct cgroup_subsys_state *css,
4955 struct cftype *cft)
4956{
f5fc3c5d
JW
4957 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4958
4959 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4960}
4961
4962static int memory_low_show(struct seq_file *m, void *v)
4963{
4964 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4965 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4966
4967 if (low == PAGE_COUNTER_MAX)
d2973697 4968 seq_puts(m, "max\n");
241994ed
JW
4969 else
4970 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4971
4972 return 0;
4973}
4974
4975static ssize_t memory_low_write(struct kernfs_open_file *of,
4976 char *buf, size_t nbytes, loff_t off)
4977{
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4979 unsigned long low;
4980 int err;
4981
4982 buf = strstrip(buf);
d2973697 4983 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
4984 if (err)
4985 return err;
4986
4987 memcg->low = low;
4988
4989 return nbytes;
4990}
4991
4992static int memory_high_show(struct seq_file *m, void *v)
4993{
4994 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4995 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
4996
4997 if (high == PAGE_COUNTER_MAX)
d2973697 4998 seq_puts(m, "max\n");
241994ed
JW
4999 else
5000 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5001
5002 return 0;
5003}
5004
5005static ssize_t memory_high_write(struct kernfs_open_file *of,
5006 char *buf, size_t nbytes, loff_t off)
5007{
5008 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5009 unsigned long nr_pages;
241994ed
JW
5010 unsigned long high;
5011 int err;
5012
5013 buf = strstrip(buf);
d2973697 5014 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5015 if (err)
5016 return err;
5017
5018 memcg->high = high;
5019
588083bb
JW
5020 nr_pages = page_counter_read(&memcg->memory);
5021 if (nr_pages > high)
5022 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5023 GFP_KERNEL, true);
5024
2529bb3a 5025 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5026 return nbytes;
5027}
5028
5029static int memory_max_show(struct seq_file *m, void *v)
5030{
5031 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5032 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5033
5034 if (max == PAGE_COUNTER_MAX)
d2973697 5035 seq_puts(m, "max\n");
241994ed
JW
5036 else
5037 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5038
5039 return 0;
5040}
5041
5042static ssize_t memory_max_write(struct kernfs_open_file *of,
5043 char *buf, size_t nbytes, loff_t off)
5044{
5045 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5046 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5047 bool drained = false;
241994ed
JW
5048 unsigned long max;
5049 int err;
5050
5051 buf = strstrip(buf);
d2973697 5052 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5053 if (err)
5054 return err;
5055
b6e6edcf
JW
5056 xchg(&memcg->memory.limit, max);
5057
5058 for (;;) {
5059 unsigned long nr_pages = page_counter_read(&memcg->memory);
5060
5061 if (nr_pages <= max)
5062 break;
5063
5064 if (signal_pending(current)) {
5065 err = -EINTR;
5066 break;
5067 }
5068
5069 if (!drained) {
5070 drain_all_stock(memcg);
5071 drained = true;
5072 continue;
5073 }
5074
5075 if (nr_reclaims) {
5076 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5077 GFP_KERNEL, true))
5078 nr_reclaims--;
5079 continue;
5080 }
5081
5082 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5083 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5084 break;
5085 }
241994ed 5086
2529bb3a 5087 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5088 return nbytes;
5089}
5090
5091static int memory_events_show(struct seq_file *m, void *v)
5092{
5093 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5094
5095 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5096 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5097 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5098 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5099
5100 return 0;
5101}
5102
587d9f72
JW
5103static int memory_stat_show(struct seq_file *m, void *v)
5104{
5105 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5106 unsigned long stat[MEMCG_NR_STAT];
5107 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5108 int i;
5109
5110 /*
5111 * Provide statistics on the state of the memory subsystem as
5112 * well as cumulative event counters that show past behavior.
5113 *
5114 * This list is ordered following a combination of these gradients:
5115 * 1) generic big picture -> specifics and details
5116 * 2) reflecting userspace activity -> reflecting kernel heuristics
5117 *
5118 * Current memory state:
5119 */
5120
72b54e73
VD
5121 tree_stat(memcg, stat);
5122 tree_events(memcg, events);
5123
587d9f72 5124 seq_printf(m, "anon %llu\n",
72b54e73 5125 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5126 seq_printf(m, "file %llu\n",
72b54e73 5127 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5128 seq_printf(m, "kernel_stack %llu\n",
5129 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5130 seq_printf(m, "slab %llu\n",
5131 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5132 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5133 seq_printf(m, "sock %llu\n",
72b54e73 5134 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5135
5136 seq_printf(m, "file_mapped %llu\n",
72b54e73 5137 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5138 seq_printf(m, "file_dirty %llu\n",
72b54e73 5139 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5140 seq_printf(m, "file_writeback %llu\n",
72b54e73 5141 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5142
5143 for (i = 0; i < NR_LRU_LISTS; i++) {
5144 struct mem_cgroup *mi;
5145 unsigned long val = 0;
5146
5147 for_each_mem_cgroup_tree(mi, memcg)
5148 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5149 seq_printf(m, "%s %llu\n",
5150 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5151 }
5152
27ee57c9
VD
5153 seq_printf(m, "slab_reclaimable %llu\n",
5154 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5155 seq_printf(m, "slab_unreclaimable %llu\n",
5156 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5157
587d9f72
JW
5158 /* Accumulated memory events */
5159
5160 seq_printf(m, "pgfault %lu\n",
72b54e73 5161 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5162 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5163 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5164
5165 return 0;
5166}
5167
241994ed
JW
5168static struct cftype memory_files[] = {
5169 {
5170 .name = "current",
f5fc3c5d 5171 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5172 .read_u64 = memory_current_read,
5173 },
5174 {
5175 .name = "low",
5176 .flags = CFTYPE_NOT_ON_ROOT,
5177 .seq_show = memory_low_show,
5178 .write = memory_low_write,
5179 },
5180 {
5181 .name = "high",
5182 .flags = CFTYPE_NOT_ON_ROOT,
5183 .seq_show = memory_high_show,
5184 .write = memory_high_write,
5185 },
5186 {
5187 .name = "max",
5188 .flags = CFTYPE_NOT_ON_ROOT,
5189 .seq_show = memory_max_show,
5190 .write = memory_max_write,
5191 },
5192 {
5193 .name = "events",
5194 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5195 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5196 .seq_show = memory_events_show,
5197 },
587d9f72
JW
5198 {
5199 .name = "stat",
5200 .flags = CFTYPE_NOT_ON_ROOT,
5201 .seq_show = memory_stat_show,
5202 },
241994ed
JW
5203 { } /* terminate */
5204};
5205
073219e9 5206struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5207 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5208 .css_online = mem_cgroup_css_online,
92fb9748 5209 .css_offline = mem_cgroup_css_offline,
6df38689 5210 .css_released = mem_cgroup_css_released,
92fb9748 5211 .css_free = mem_cgroup_css_free,
1ced953b 5212 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5213 .can_attach = mem_cgroup_can_attach,
5214 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5215 .post_attach = mem_cgroup_move_task,
f00baae7 5216 .bind = mem_cgroup_bind,
241994ed
JW
5217 .dfl_cftypes = memory_files,
5218 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5219 .early_init = 0,
8cdea7c0 5220};
c077719b 5221
241994ed
JW
5222/**
5223 * mem_cgroup_low - check if memory consumption is below the normal range
5224 * @root: the highest ancestor to consider
5225 * @memcg: the memory cgroup to check
5226 *
5227 * Returns %true if memory consumption of @memcg, and that of all
5228 * configurable ancestors up to @root, is below the normal range.
5229 */
5230bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5231{
5232 if (mem_cgroup_disabled())
5233 return false;
5234
5235 /*
5236 * The toplevel group doesn't have a configurable range, so
5237 * it's never low when looked at directly, and it is not
5238 * considered an ancestor when assessing the hierarchy.
5239 */
5240
5241 if (memcg == root_mem_cgroup)
5242 return false;
5243
4e54dede 5244 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5245 return false;
5246
5247 while (memcg != root) {
5248 memcg = parent_mem_cgroup(memcg);
5249
5250 if (memcg == root_mem_cgroup)
5251 break;
5252
4e54dede 5253 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5254 return false;
5255 }
5256 return true;
5257}
5258
00501b53
JW
5259/**
5260 * mem_cgroup_try_charge - try charging a page
5261 * @page: page to charge
5262 * @mm: mm context of the victim
5263 * @gfp_mask: reclaim mode
5264 * @memcgp: charged memcg return
5265 *
5266 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5267 * pages according to @gfp_mask if necessary.
5268 *
5269 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5270 * Otherwise, an error code is returned.
5271 *
5272 * After page->mapping has been set up, the caller must finalize the
5273 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5274 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5275 */
5276int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5277 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5278 bool compound)
00501b53
JW
5279{
5280 struct mem_cgroup *memcg = NULL;
f627c2f5 5281 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5282 int ret = 0;
5283
5284 if (mem_cgroup_disabled())
5285 goto out;
5286
5287 if (PageSwapCache(page)) {
00501b53
JW
5288 /*
5289 * Every swap fault against a single page tries to charge the
5290 * page, bail as early as possible. shmem_unuse() encounters
5291 * already charged pages, too. The USED bit is protected by
5292 * the page lock, which serializes swap cache removal, which
5293 * in turn serializes uncharging.
5294 */
e993d905 5295 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5296 if (page->mem_cgroup)
00501b53 5297 goto out;
e993d905 5298
37e84351 5299 if (do_swap_account) {
e993d905
VD
5300 swp_entry_t ent = { .val = page_private(page), };
5301 unsigned short id = lookup_swap_cgroup_id(ent);
5302
5303 rcu_read_lock();
5304 memcg = mem_cgroup_from_id(id);
5305 if (memcg && !css_tryget_online(&memcg->css))
5306 memcg = NULL;
5307 rcu_read_unlock();
5308 }
00501b53
JW
5309 }
5310
00501b53
JW
5311 if (!memcg)
5312 memcg = get_mem_cgroup_from_mm(mm);
5313
5314 ret = try_charge(memcg, gfp_mask, nr_pages);
5315
5316 css_put(&memcg->css);
00501b53
JW
5317out:
5318 *memcgp = memcg;
5319 return ret;
5320}
5321
5322/**
5323 * mem_cgroup_commit_charge - commit a page charge
5324 * @page: page to charge
5325 * @memcg: memcg to charge the page to
5326 * @lrucare: page might be on LRU already
5327 *
5328 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5329 * after page->mapping has been set up. This must happen atomically
5330 * as part of the page instantiation, i.e. under the page table lock
5331 * for anonymous pages, under the page lock for page and swap cache.
5332 *
5333 * In addition, the page must not be on the LRU during the commit, to
5334 * prevent racing with task migration. If it might be, use @lrucare.
5335 *
5336 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5337 */
5338void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5339 bool lrucare, bool compound)
00501b53 5340{
f627c2f5 5341 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5342
5343 VM_BUG_ON_PAGE(!page->mapping, page);
5344 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5345
5346 if (mem_cgroup_disabled())
5347 return;
5348 /*
5349 * Swap faults will attempt to charge the same page multiple
5350 * times. But reuse_swap_page() might have removed the page
5351 * from swapcache already, so we can't check PageSwapCache().
5352 */
5353 if (!memcg)
5354 return;
5355
6abb5a86
JW
5356 commit_charge(page, memcg, lrucare);
5357
6abb5a86 5358 local_irq_disable();
f627c2f5 5359 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5360 memcg_check_events(memcg, page);
5361 local_irq_enable();
00501b53 5362
7941d214 5363 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5364 swp_entry_t entry = { .val = page_private(page) };
5365 /*
5366 * The swap entry might not get freed for a long time,
5367 * let's not wait for it. The page already received a
5368 * memory+swap charge, drop the swap entry duplicate.
5369 */
5370 mem_cgroup_uncharge_swap(entry);
5371 }
5372}
5373
5374/**
5375 * mem_cgroup_cancel_charge - cancel a page charge
5376 * @page: page to charge
5377 * @memcg: memcg to charge the page to
5378 *
5379 * Cancel a charge transaction started by mem_cgroup_try_charge().
5380 */
f627c2f5
KS
5381void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5382 bool compound)
00501b53 5383{
f627c2f5 5384 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5385
5386 if (mem_cgroup_disabled())
5387 return;
5388 /*
5389 * Swap faults will attempt to charge the same page multiple
5390 * times. But reuse_swap_page() might have removed the page
5391 * from swapcache already, so we can't check PageSwapCache().
5392 */
5393 if (!memcg)
5394 return;
5395
00501b53
JW
5396 cancel_charge(memcg, nr_pages);
5397}
5398
747db954 5399static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5400 unsigned long nr_anon, unsigned long nr_file,
5401 unsigned long nr_huge, struct page *dummy_page)
5402{
18eca2e6 5403 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5404 unsigned long flags;
5405
ce00a967 5406 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5407 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5408 if (do_memsw_account())
18eca2e6 5409 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5410 memcg_oom_recover(memcg);
5411 }
747db954
JW
5412
5413 local_irq_save(flags);
5414 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5415 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5416 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5417 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5418 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5419 memcg_check_events(memcg, dummy_page);
5420 local_irq_restore(flags);
e8ea14cc
JW
5421
5422 if (!mem_cgroup_is_root(memcg))
18eca2e6 5423 css_put_many(&memcg->css, nr_pages);
747db954
JW
5424}
5425
5426static void uncharge_list(struct list_head *page_list)
5427{
5428 struct mem_cgroup *memcg = NULL;
747db954
JW
5429 unsigned long nr_anon = 0;
5430 unsigned long nr_file = 0;
5431 unsigned long nr_huge = 0;
5432 unsigned long pgpgout = 0;
747db954
JW
5433 struct list_head *next;
5434 struct page *page;
5435
8b592656
JW
5436 /*
5437 * Note that the list can be a single page->lru; hence the
5438 * do-while loop instead of a simple list_for_each_entry().
5439 */
747db954
JW
5440 next = page_list->next;
5441 do {
5442 unsigned int nr_pages = 1;
747db954
JW
5443
5444 page = list_entry(next, struct page, lru);
5445 next = page->lru.next;
5446
5447 VM_BUG_ON_PAGE(PageLRU(page), page);
5448 VM_BUG_ON_PAGE(page_count(page), page);
5449
1306a85a 5450 if (!page->mem_cgroup)
747db954
JW
5451 continue;
5452
5453 /*
5454 * Nobody should be changing or seriously looking at
1306a85a 5455 * page->mem_cgroup at this point, we have fully
29833315 5456 * exclusive access to the page.
747db954
JW
5457 */
5458
1306a85a 5459 if (memcg != page->mem_cgroup) {
747db954 5460 if (memcg) {
18eca2e6
JW
5461 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5462 nr_huge, page);
5463 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5464 }
1306a85a 5465 memcg = page->mem_cgroup;
747db954
JW
5466 }
5467
5468 if (PageTransHuge(page)) {
5469 nr_pages <<= compound_order(page);
5470 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5471 nr_huge += nr_pages;
5472 }
5473
5474 if (PageAnon(page))
5475 nr_anon += nr_pages;
5476 else
5477 nr_file += nr_pages;
5478
1306a85a 5479 page->mem_cgroup = NULL;
747db954
JW
5480
5481 pgpgout++;
5482 } while (next != page_list);
5483
5484 if (memcg)
18eca2e6
JW
5485 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5486 nr_huge, page);
747db954
JW
5487}
5488
0a31bc97
JW
5489/**
5490 * mem_cgroup_uncharge - uncharge a page
5491 * @page: page to uncharge
5492 *
5493 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5494 * mem_cgroup_commit_charge().
5495 */
5496void mem_cgroup_uncharge(struct page *page)
5497{
0a31bc97
JW
5498 if (mem_cgroup_disabled())
5499 return;
5500
747db954 5501 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5502 if (!page->mem_cgroup)
0a31bc97
JW
5503 return;
5504
747db954
JW
5505 INIT_LIST_HEAD(&page->lru);
5506 uncharge_list(&page->lru);
5507}
0a31bc97 5508
747db954
JW
5509/**
5510 * mem_cgroup_uncharge_list - uncharge a list of page
5511 * @page_list: list of pages to uncharge
5512 *
5513 * Uncharge a list of pages previously charged with
5514 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5515 */
5516void mem_cgroup_uncharge_list(struct list_head *page_list)
5517{
5518 if (mem_cgroup_disabled())
5519 return;
0a31bc97 5520
747db954
JW
5521 if (!list_empty(page_list))
5522 uncharge_list(page_list);
0a31bc97
JW
5523}
5524
5525/**
6a93ca8f
JW
5526 * mem_cgroup_migrate - charge a page's replacement
5527 * @oldpage: currently circulating page
5528 * @newpage: replacement page
0a31bc97 5529 *
6a93ca8f
JW
5530 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5531 * be uncharged upon free.
0a31bc97
JW
5532 *
5533 * Both pages must be locked, @newpage->mapping must be set up.
5534 */
6a93ca8f 5535void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5536{
29833315 5537 struct mem_cgroup *memcg;
44b7a8d3
JW
5538 unsigned int nr_pages;
5539 bool compound;
0a31bc97
JW
5540
5541 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5542 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5543 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5544 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5545 newpage);
0a31bc97
JW
5546
5547 if (mem_cgroup_disabled())
5548 return;
5549
5550 /* Page cache replacement: new page already charged? */
1306a85a 5551 if (newpage->mem_cgroup)
0a31bc97
JW
5552 return;
5553
45637bab 5554 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5555 memcg = oldpage->mem_cgroup;
29833315 5556 if (!memcg)
0a31bc97
JW
5557 return;
5558
44b7a8d3
JW
5559 /* Force-charge the new page. The old one will be freed soon */
5560 compound = PageTransHuge(newpage);
5561 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5562
5563 page_counter_charge(&memcg->memory, nr_pages);
5564 if (do_memsw_account())
5565 page_counter_charge(&memcg->memsw, nr_pages);
5566 css_get_many(&memcg->css, nr_pages);
0a31bc97 5567
9cf7666a 5568 commit_charge(newpage, memcg, false);
44b7a8d3
JW
5569
5570 local_irq_disable();
5571 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5572 memcg_check_events(memcg, newpage);
5573 local_irq_enable();
0a31bc97
JW
5574}
5575
ef12947c 5576DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5577EXPORT_SYMBOL(memcg_sockets_enabled_key);
5578
5579void sock_update_memcg(struct sock *sk)
5580{
5581 struct mem_cgroup *memcg;
5582
5583 /* Socket cloning can throw us here with sk_cgrp already
5584 * filled. It won't however, necessarily happen from
5585 * process context. So the test for root memcg given
5586 * the current task's memcg won't help us in this case.
5587 *
5588 * Respecting the original socket's memcg is a better
5589 * decision in this case.
5590 */
5591 if (sk->sk_memcg) {
5592 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5593 css_get(&sk->sk_memcg->css);
5594 return;
5595 }
5596
5597 rcu_read_lock();
5598 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5599 if (memcg == root_mem_cgroup)
5600 goto out;
0db15298 5601 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5602 goto out;
f7e1cb6e 5603 if (css_tryget_online(&memcg->css))
11092087 5604 sk->sk_memcg = memcg;
f7e1cb6e 5605out:
11092087
JW
5606 rcu_read_unlock();
5607}
5608EXPORT_SYMBOL(sock_update_memcg);
5609
5610void sock_release_memcg(struct sock *sk)
5611{
5612 WARN_ON(!sk->sk_memcg);
5613 css_put(&sk->sk_memcg->css);
5614}
5615
5616/**
5617 * mem_cgroup_charge_skmem - charge socket memory
5618 * @memcg: memcg to charge
5619 * @nr_pages: number of pages to charge
5620 *
5621 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5622 * @memcg's configured limit, %false if the charge had to be forced.
5623 */
5624bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5625{
f7e1cb6e 5626 gfp_t gfp_mask = GFP_KERNEL;
11092087 5627
f7e1cb6e 5628 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5629 struct page_counter *fail;
f7e1cb6e 5630
0db15298
JW
5631 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5632 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5633 return true;
5634 }
0db15298
JW
5635 page_counter_charge(&memcg->tcpmem, nr_pages);
5636 memcg->tcpmem_pressure = 1;
f7e1cb6e 5637 return false;
11092087 5638 }
d886f4e4 5639
f7e1cb6e
JW
5640 /* Don't block in the packet receive path */
5641 if (in_softirq())
5642 gfp_mask = GFP_NOWAIT;
5643
b2807f07
JW
5644 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5645
f7e1cb6e
JW
5646 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5647 return true;
5648
5649 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5650 return false;
5651}
5652
5653/**
5654 * mem_cgroup_uncharge_skmem - uncharge socket memory
5655 * @memcg - memcg to uncharge
5656 * @nr_pages - number of pages to uncharge
5657 */
5658void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5659{
f7e1cb6e 5660 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5661 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5662 return;
5663 }
d886f4e4 5664
b2807f07
JW
5665 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5666
f7e1cb6e
JW
5667 page_counter_uncharge(&memcg->memory, nr_pages);
5668 css_put_many(&memcg->css, nr_pages);
11092087
JW
5669}
5670
f7e1cb6e
JW
5671static int __init cgroup_memory(char *s)
5672{
5673 char *token;
5674
5675 while ((token = strsep(&s, ",")) != NULL) {
5676 if (!*token)
5677 continue;
5678 if (!strcmp(token, "nosocket"))
5679 cgroup_memory_nosocket = true;
04823c83
VD
5680 if (!strcmp(token, "nokmem"))
5681 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5682 }
5683 return 0;
5684}
5685__setup("cgroup.memory=", cgroup_memory);
11092087 5686
2d11085e 5687/*
1081312f
MH
5688 * subsys_initcall() for memory controller.
5689 *
5690 * Some parts like hotcpu_notifier() have to be initialized from this context
5691 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5692 * everything that doesn't depend on a specific mem_cgroup structure should
5693 * be initialized from here.
2d11085e
MH
5694 */
5695static int __init mem_cgroup_init(void)
5696{
95a045f6
JW
5697 int cpu, node;
5698
2d11085e 5699 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5700
5701 for_each_possible_cpu(cpu)
5702 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5703 drain_local_stock);
5704
5705 for_each_node(node) {
5706 struct mem_cgroup_tree_per_node *rtpn;
5707 int zone;
5708
5709 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5710 node_online(node) ? node : NUMA_NO_NODE);
5711
5712 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5713 struct mem_cgroup_tree_per_zone *rtpz;
5714
5715 rtpz = &rtpn->rb_tree_per_zone[zone];
5716 rtpz->rb_root = RB_ROOT;
5717 spin_lock_init(&rtpz->lock);
5718 }
5719 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5720 }
5721
2d11085e
MH
5722 return 0;
5723}
5724subsys_initcall(mem_cgroup_init);
21afa38e
JW
5725
5726#ifdef CONFIG_MEMCG_SWAP
5727/**
5728 * mem_cgroup_swapout - transfer a memsw charge to swap
5729 * @page: page whose memsw charge to transfer
5730 * @entry: swap entry to move the charge to
5731 *
5732 * Transfer the memsw charge of @page to @entry.
5733 */
5734void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5735{
5736 struct mem_cgroup *memcg;
5737 unsigned short oldid;
5738
5739 VM_BUG_ON_PAGE(PageLRU(page), page);
5740 VM_BUG_ON_PAGE(page_count(page), page);
5741
7941d214 5742 if (!do_memsw_account())
21afa38e
JW
5743 return;
5744
5745 memcg = page->mem_cgroup;
5746
5747 /* Readahead page, never charged */
5748 if (!memcg)
5749 return;
5750
5751 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5752 VM_BUG_ON_PAGE(oldid, page);
5753 mem_cgroup_swap_statistics(memcg, true);
5754
5755 page->mem_cgroup = NULL;
5756
5757 if (!mem_cgroup_is_root(memcg))
5758 page_counter_uncharge(&memcg->memory, 1);
5759
ce9ce665
SAS
5760 /*
5761 * Interrupts should be disabled here because the caller holds the
5762 * mapping->tree_lock lock which is taken with interrupts-off. It is
5763 * important here to have the interrupts disabled because it is the
5764 * only synchronisation we have for udpating the per-CPU variables.
5765 */
5766 VM_BUG_ON(!irqs_disabled());
f627c2f5 5767 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5768 memcg_check_events(memcg, page);
5769}
5770
37e84351
VD
5771/*
5772 * mem_cgroup_try_charge_swap - try charging a swap entry
5773 * @page: page being added to swap
5774 * @entry: swap entry to charge
5775 *
5776 * Try to charge @entry to the memcg that @page belongs to.
5777 *
5778 * Returns 0 on success, -ENOMEM on failure.
5779 */
5780int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5781{
5782 struct mem_cgroup *memcg;
5783 struct page_counter *counter;
5784 unsigned short oldid;
5785
5786 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5787 return 0;
5788
5789 memcg = page->mem_cgroup;
5790
5791 /* Readahead page, never charged */
5792 if (!memcg)
5793 return 0;
5794
5795 if (!mem_cgroup_is_root(memcg) &&
5796 !page_counter_try_charge(&memcg->swap, 1, &counter))
5797 return -ENOMEM;
5798
5799 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5800 VM_BUG_ON_PAGE(oldid, page);
5801 mem_cgroup_swap_statistics(memcg, true);
5802
5803 css_get(&memcg->css);
5804 return 0;
5805}
5806
21afa38e
JW
5807/**
5808 * mem_cgroup_uncharge_swap - uncharge a swap entry
5809 * @entry: swap entry to uncharge
5810 *
37e84351 5811 * Drop the swap charge associated with @entry.
21afa38e
JW
5812 */
5813void mem_cgroup_uncharge_swap(swp_entry_t entry)
5814{
5815 struct mem_cgroup *memcg;
5816 unsigned short id;
5817
37e84351 5818 if (!do_swap_account)
21afa38e
JW
5819 return;
5820
5821 id = swap_cgroup_record(entry, 0);
5822 rcu_read_lock();
adbe427b 5823 memcg = mem_cgroup_from_id(id);
21afa38e 5824 if (memcg) {
37e84351
VD
5825 if (!mem_cgroup_is_root(memcg)) {
5826 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5827 page_counter_uncharge(&memcg->swap, 1);
5828 else
5829 page_counter_uncharge(&memcg->memsw, 1);
5830 }
21afa38e
JW
5831 mem_cgroup_swap_statistics(memcg, false);
5832 css_put(&memcg->css);
5833 }
5834 rcu_read_unlock();
5835}
5836
d8b38438
VD
5837long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5838{
5839 long nr_swap_pages = get_nr_swap_pages();
5840
5841 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5842 return nr_swap_pages;
5843 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5844 nr_swap_pages = min_t(long, nr_swap_pages,
5845 READ_ONCE(memcg->swap.limit) -
5846 page_counter_read(&memcg->swap));
5847 return nr_swap_pages;
5848}
5849
5ccc5aba
VD
5850bool mem_cgroup_swap_full(struct page *page)
5851{
5852 struct mem_cgroup *memcg;
5853
5854 VM_BUG_ON_PAGE(!PageLocked(page), page);
5855
5856 if (vm_swap_full())
5857 return true;
5858 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5859 return false;
5860
5861 memcg = page->mem_cgroup;
5862 if (!memcg)
5863 return false;
5864
5865 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5866 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5867 return true;
5868
5869 return false;
5870}
5871
21afa38e
JW
5872/* for remember boot option*/
5873#ifdef CONFIG_MEMCG_SWAP_ENABLED
5874static int really_do_swap_account __initdata = 1;
5875#else
5876static int really_do_swap_account __initdata;
5877#endif
5878
5879static int __init enable_swap_account(char *s)
5880{
5881 if (!strcmp(s, "1"))
5882 really_do_swap_account = 1;
5883 else if (!strcmp(s, "0"))
5884 really_do_swap_account = 0;
5885 return 1;
5886}
5887__setup("swapaccount=", enable_swap_account);
5888
37e84351
VD
5889static u64 swap_current_read(struct cgroup_subsys_state *css,
5890 struct cftype *cft)
5891{
5892 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5893
5894 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5895}
5896
5897static int swap_max_show(struct seq_file *m, void *v)
5898{
5899 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5900 unsigned long max = READ_ONCE(memcg->swap.limit);
5901
5902 if (max == PAGE_COUNTER_MAX)
5903 seq_puts(m, "max\n");
5904 else
5905 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5906
5907 return 0;
5908}
5909
5910static ssize_t swap_max_write(struct kernfs_open_file *of,
5911 char *buf, size_t nbytes, loff_t off)
5912{
5913 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5914 unsigned long max;
5915 int err;
5916
5917 buf = strstrip(buf);
5918 err = page_counter_memparse(buf, "max", &max);
5919 if (err)
5920 return err;
5921
5922 mutex_lock(&memcg_limit_mutex);
5923 err = page_counter_limit(&memcg->swap, max);
5924 mutex_unlock(&memcg_limit_mutex);
5925 if (err)
5926 return err;
5927
5928 return nbytes;
5929}
5930
5931static struct cftype swap_files[] = {
5932 {
5933 .name = "swap.current",
5934 .flags = CFTYPE_NOT_ON_ROOT,
5935 .read_u64 = swap_current_read,
5936 },
5937 {
5938 .name = "swap.max",
5939 .flags = CFTYPE_NOT_ON_ROOT,
5940 .seq_show = swap_max_show,
5941 .write = swap_max_write,
5942 },
5943 { } /* terminate */
5944};
5945
21afa38e
JW
5946static struct cftype memsw_cgroup_files[] = {
5947 {
5948 .name = "memsw.usage_in_bytes",
5949 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5950 .read_u64 = mem_cgroup_read_u64,
5951 },
5952 {
5953 .name = "memsw.max_usage_in_bytes",
5954 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5955 .write = mem_cgroup_reset,
5956 .read_u64 = mem_cgroup_read_u64,
5957 },
5958 {
5959 .name = "memsw.limit_in_bytes",
5960 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5961 .write = mem_cgroup_write,
5962 .read_u64 = mem_cgroup_read_u64,
5963 },
5964 {
5965 .name = "memsw.failcnt",
5966 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5967 .write = mem_cgroup_reset,
5968 .read_u64 = mem_cgroup_read_u64,
5969 },
5970 { }, /* terminate */
5971};
5972
5973static int __init mem_cgroup_swap_init(void)
5974{
5975 if (!mem_cgroup_disabled() && really_do_swap_account) {
5976 do_swap_account = 1;
37e84351
VD
5977 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5978 swap_files));
21afa38e
JW
5979 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5980 memsw_cgroup_files));
5981 }
5982 return 0;
5983}
5984subsys_initcall(mem_cgroup_swap_init);
5985
5986#endif /* CONFIG_MEMCG_SWAP */