memcg: __mem_cgroup_free: remove stale disarm_static_keys comment
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
510fc4e1
GC
372};
373
510fc4e1
GC
374#ifdef CONFIG_MEMCG_KMEM
375static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376{
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378}
7de37682
GC
379
380static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381{
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383}
384
510fc4e1
GC
385#endif
386
7dc74be0
DN
387/* Stuffs for move charges at task migration. */
388/*
ee5e8472
GC
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
391 */
392enum move_type {
4ffef5fe 393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
395 NR_MOVE_TYPE,
396};
397
4ffef5fe
DN
398/* "mc" and its members are protected by cgroup_mutex */
399static struct move_charge_struct {
b1dd693e 400 spinlock_t lock; /* for from, to */
4ffef5fe
DN
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
ee5e8472 403 unsigned long immigrate_flags;
4ffef5fe 404 unsigned long precharge;
854ffa8d 405 unsigned long moved_charge;
483c30b5 406 unsigned long moved_swap;
8033b97c
DN
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409} mc = {
2bd9bb20 410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412};
4ffef5fe 413
90254a65
DN
414static bool move_anon(void)
415{
ee5e8472 416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
417}
418
87946a72
DN
419static bool move_file(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
422}
423
4e416953
BS
424/*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
a0db00fc 428#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 429#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 430
217bc319
KH
431enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 433 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
436 NR_CHARGE_TYPE,
437};
438
8c7c6e34 439/* for encoding cft->private value on file */
86ae53e1
GC
440enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
510fc4e1 444 _KMEM,
86ae53e1
GC
445};
446
a0db00fc
KS
447#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 449#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
450/* Used for OOM nofiier */
451#define OOM_CONTROL (0)
8c7c6e34 452
0999821b
GC
453/*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458static DEFINE_MUTEX(memcg_create_mutex);
459
b2145145
WL
460struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461{
a7c6d554 462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
463}
464
70ddf637
AV
465/* Some nice accessors for the vmpressure. */
466struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467{
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471}
472
473struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474{
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476}
477
7ffc0edc
MH
478static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479{
480 return (memcg == root_mem_cgroup);
481}
482
4219b2da
LZ
483/*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487#define MEM_CGROUP_ID_MAX USHRT_MAX
488
34c00c31
LZ
489static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490{
15a4c835 491 return memcg->css.id;
34c00c31
LZ
492}
493
494static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495{
496 struct cgroup_subsys_state *css;
497
7d699ddb 498 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
499 return mem_cgroup_from_css(css);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 530 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
3f134619 533 sk->sk_cgrp = cg_proto;
e1aab161
GC
534 }
535 rcu_read_unlock();
536 }
537}
538EXPORT_SYMBOL(sock_update_memcg);
539
540void sock_release_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
5347e5ae 546 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
547 }
548}
d1a4c0b3
GC
549
550struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551{
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
2e685cad 555 return &memcg->tcp_mem;
d1a4c0b3
GC
556}
557EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 558
3f134619
GC
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
2e685cad 561 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564}
565#else
566static void disarm_sock_keys(struct mem_cgroup *memcg)
567{
568}
569#endif
570
a8964b9b 571#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
572/*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
55007d84
GC
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
585int memcg_limited_groups_array_size;
586
55007d84
GC
587/*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
b8627835 593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
597 * increase ours as well if it increases.
598 */
599#define MEMCG_CACHES_MIN_SIZE 4
b8627835 600#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 601
d7f25f8a
GC
602/*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
a8964b9b 608struct static_key memcg_kmem_enabled_key;
d7f25f8a 609EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 610
f3bb3043
VD
611static void memcg_free_cache_id(int id);
612
a8964b9b
GC
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
55007d84 615 if (memcg_kmem_is_active(memcg)) {
a8964b9b 616 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 617 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 618 }
bea207c8
GC
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
3e32cb2e 623 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
624}
625#else
626static void disarm_kmem_keys(struct mem_cgroup *memcg)
627{
628}
629#endif /* CONFIG_MEMCG_KMEM */
630
631static void disarm_static_keys(struct mem_cgroup *memcg)
632{
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635}
636
f64c3f54 637static struct mem_cgroup_per_zone *
e231875b 638mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 639{
e231875b
JZ
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
54f72fe0 643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
644}
645
c0ff4b85 646struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 647{
c0ff4b85 648 return &memcg->css;
d324236b
WF
649}
650
f64c3f54 651static struct mem_cgroup_per_zone *
e231875b 652mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 653{
97a6c37b
JW
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
f64c3f54 656
e231875b 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
bb4cc1a8
AM
660static struct mem_cgroup_tree_per_zone *
661soft_limit_tree_node_zone(int nid, int zid)
662{
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664}
665
666static struct mem_cgroup_tree_per_zone *
667soft_limit_tree_from_page(struct page *page)
668{
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673}
674
cf2c8127
JW
675static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 677 unsigned long new_usage_in_excess)
bb4cc1a8
AM
678{
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705}
706
cf2c8127
JW
707static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
709{
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714}
715
cf2c8127
JW
716static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 718{
0a31bc97
JW
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 722 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 723 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
724}
725
3e32cb2e
JW
726static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727{
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736}
bb4cc1a8
AM
737
738static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739{
3e32cb2e 740 unsigned long excess;
bb4cc1a8
AM
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 743
e231875b 744 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 750 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 751 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
0a31bc97
JW
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
760 /* if on-tree, remove it */
761 if (mz->on_tree)
cf2c8127 762 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
cf2c8127 767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 768 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
769 }
770 }
771}
772
773static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774{
bb4cc1a8 775 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
bb4cc1a8 778
e231875b
JZ
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 783 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
784 }
785 }
786}
787
788static struct mem_cgroup_per_zone *
789__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790{
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
cf2c8127 806 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 807 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 808 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
809 goto retry;
810done:
811 return mz;
812}
813
814static struct mem_cgroup_per_zone *
815mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct mem_cgroup_per_zone *mz;
818
0a31bc97 819 spin_lock_irq(&mctz->lock);
bb4cc1a8 820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 821 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
822 return mz;
823}
824
711d3d2c
KH
825/*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
c0ff4b85 844static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 845 enum mem_cgroup_stat_index idx)
c62b1a3b 846{
7a159cc9 847 long val = 0;
c62b1a3b 848 int cpu;
c62b1a3b 849
711d3d2c
KH
850 get_online_cpus();
851 for_each_online_cpu(cpu)
c0ff4b85 852 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 853#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
857#endif
858 put_online_cpus();
c62b1a3b
KH
859 return val;
860}
861
c0ff4b85 862static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
863 enum mem_cgroup_events_index idx)
864{
865 unsigned long val = 0;
866 int cpu;
867
9c567512 868 get_online_cpus();
e9f8974f 869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 875#endif
9c567512 876 put_online_cpus();
e9f8974f
JW
877 return val;
878}
879
c0ff4b85 880static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 881 struct page *page,
0a31bc97 882 int nr_pages)
d52aa412 883{
b2402857
KH
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
0a31bc97 888 if (PageAnon(page))
b2402857 889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 890 nr_pages);
d52aa412 891 else
b2402857 892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 893 nr_pages);
55e462b0 894
b070e65c
DR
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
e401f176
KH
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
c0ff4b85 901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 902 else {
c0ff4b85 903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
904 nr_pages = -nr_pages; /* for event */
905 }
e401f176 906
13114716 907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
908}
909
e231875b 910unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
911{
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916}
917
e231875b
JZ
918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
bb2a0de9 921{
e231875b 922 unsigned long nr = 0;
889976db
YH
923 int zid;
924
e231875b 925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 926
e231875b
JZ
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
889976db 939}
bb2a0de9 940
c0ff4b85 941static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 942 unsigned int lru_mask)
6d12e2d8 943{
e231875b 944 unsigned long nr = 0;
889976db 945 int nid;
6d12e2d8 946
31aaea4a 947 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
d52aa412
KH
950}
951
f53d7ce3
JW
952static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
7a159cc9
JW
954{
955 unsigned long val, next;
956
13114716 957 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 958 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 959 /* from time_after() in jiffies.h */
f53d7ce3
JW
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
bb4cc1a8
AM
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
f53d7ce3
JW
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
c0ff4b85 984static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
985{
986 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 989 bool do_softlimit;
82b3f2a7 990 bool do_numainfo __maybe_unused;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
994#if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997#endif
c0ff4b85 998 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
453a9bf3 1001#if MAX_NUMNODES > 1
f53d7ce3 1002 if (unlikely(do_numainfo))
c0ff4b85 1003 atomic_inc(&memcg->numainfo_events);
453a9bf3 1004#endif
0a31bc97 1005 }
d2265e6f
KH
1006}
1007
cf475ad2 1008struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1009{
31a78f23
BS
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
073219e9 1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1019}
1020
df381975 1021static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1022{
c0ff4b85 1023 struct mem_cgroup *memcg = NULL;
0b7f569e 1024
54595fe2
KH
1025 rcu_read_lock();
1026 do {
6f6acb00
MH
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
df381975 1033 memcg = root_mem_cgroup;
6f6acb00
MH
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
ec903c0c 1039 } while (!css_tryget_online(&memcg->css));
54595fe2 1040 rcu_read_unlock();
c0ff4b85 1041 return memcg;
54595fe2
KH
1042}
1043
5660048c
JW
1044/**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
694fbc0f 1061struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1062 struct mem_cgroup *prev,
694fbc0f 1063 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1064{
5ac8fb31
JW
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1067 struct mem_cgroup *memcg = NULL;
5ac8fb31 1068 struct mem_cgroup *pos = NULL;
711d3d2c 1069
694fbc0f
AM
1070 if (mem_cgroup_disabled())
1071 return NULL;
5660048c 1072
9f3a0d09
JW
1073 if (!root)
1074 root = root_mem_cgroup;
7d74b06f 1075
9f3a0d09 1076 if (prev && !reclaim)
5ac8fb31 1077 pos = prev;
14067bb3 1078
9f3a0d09
JW
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
5ac8fb31 1081 goto out;
694fbc0f 1082 return root;
9f3a0d09 1083 }
14067bb3 1084
542f85f9 1085 rcu_read_lock();
5f578161 1086
5ac8fb31
JW
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
527a5ec9 1121 }
7d74b06f 1122
5ac8fb31
JW
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
14067bb3 1129
5ac8fb31
JW
1130 if (css == &root->css)
1131 break;
14067bb3 1132
b2052564 1133 if (css_tryget(css)) {
5ac8fb31
JW
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
542f85f9 1141
5ac8fb31 1142 css_put(css);
527a5ec9 1143 }
9f3a0d09 1144
5ac8fb31 1145 memcg = NULL;
9f3a0d09 1146 }
5ac8fb31
JW
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
9f3a0d09 1167 }
5ac8fb31 1168
542f85f9
MH
1169out_unlock:
1170 rcu_read_unlock();
5ac8fb31 1171out:
c40046f3
MH
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
9f3a0d09 1175 return memcg;
14067bb3 1176}
7d74b06f 1177
5660048c
JW
1178/**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
9f3a0d09
JW
1185{
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190}
7d74b06f 1191
9f3a0d09
JW
1192/*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1199 iter != NULL; \
527a5ec9 1200 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1201
9f3a0d09 1202#define for_each_mem_cgroup(iter) \
527a5ec9 1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1204 iter != NULL; \
527a5ec9 1205 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1206
68ae564b 1207void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1208{
c0ff4b85 1209 struct mem_cgroup *memcg;
456f998e 1210
456f998e 1211 rcu_read_lock();
c0ff4b85
R
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
456f998e
YH
1214 goto out;
1215
1216 switch (idx) {
456f998e 1217 case PGFAULT:
0e574a93
JW
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1222 break;
1223 default:
1224 BUG();
1225 }
1226out:
1227 rcu_read_unlock();
1228}
68ae564b 1229EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1230
925b7673
JW
1231/**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
fa9add64 1234 * @memcg: memcg of the wanted lruvec
925b7673
JW
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242{
1243 struct mem_cgroup_per_zone *mz;
bea8c150 1244 struct lruvec *lruvec;
925b7673 1245
bea8c150
HD
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
925b7673 1250
e231875b 1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1252 lruvec = &mz->lruvec;
1253out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
925b7673
JW
1262}
1263
925b7673 1264/**
dfe0e773 1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1266 * @page: the page
fa9add64 1267 * @zone: zone of the page
dfe0e773
JW
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1272 */
fa9add64 1273struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1274{
08e552c6 1275 struct mem_cgroup_per_zone *mz;
925b7673 1276 struct mem_cgroup *memcg;
bea8c150 1277 struct lruvec *lruvec;
6d12e2d8 1278
bea8c150
HD
1279 if (mem_cgroup_disabled()) {
1280 lruvec = &zone->lruvec;
1281 goto out;
1282 }
925b7673 1283
1306a85a 1284 memcg = page->mem_cgroup;
7512102c 1285 /*
dfe0e773 1286 * Swapcache readahead pages are added to the LRU - and
29833315 1287 * possibly migrated - before they are charged.
7512102c 1288 */
29833315
JW
1289 if (!memcg)
1290 memcg = root_mem_cgroup;
7512102c 1291
e231875b 1292 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1293 lruvec = &mz->lruvec;
1294out:
1295 /*
1296 * Since a node can be onlined after the mem_cgroup was created,
1297 * we have to be prepared to initialize lruvec->zone here;
1298 * and if offlined then reonlined, we need to reinitialize it.
1299 */
1300 if (unlikely(lruvec->zone != zone))
1301 lruvec->zone = zone;
1302 return lruvec;
08e552c6 1303}
b69408e8 1304
925b7673 1305/**
fa9add64
HD
1306 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1307 * @lruvec: mem_cgroup per zone lru vector
1308 * @lru: index of lru list the page is sitting on
1309 * @nr_pages: positive when adding or negative when removing
925b7673 1310 *
fa9add64
HD
1311 * This function must be called when a page is added to or removed from an
1312 * lru list.
3f58a829 1313 */
fa9add64
HD
1314void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1315 int nr_pages)
3f58a829
MK
1316{
1317 struct mem_cgroup_per_zone *mz;
fa9add64 1318 unsigned long *lru_size;
3f58a829
MK
1319
1320 if (mem_cgroup_disabled())
1321 return;
1322
fa9add64
HD
1323 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1324 lru_size = mz->lru_size + lru;
1325 *lru_size += nr_pages;
1326 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1327}
544122e5 1328
2314b42d 1329bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1330{
2314b42d 1331 if (root == memcg)
91c63734 1332 return true;
2314b42d 1333 if (!root->use_hierarchy)
91c63734 1334 return false;
2314b42d 1335 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1336}
1337
2314b42d 1338bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1339{
2314b42d 1340 struct mem_cgroup *task_memcg;
158e0a2d 1341 struct task_struct *p;
ffbdccf5 1342 bool ret;
4c4a2214 1343
158e0a2d 1344 p = find_lock_task_mm(task);
de077d22 1345 if (p) {
2314b42d 1346 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1347 task_unlock(p);
1348 } else {
1349 /*
1350 * All threads may have already detached their mm's, but the oom
1351 * killer still needs to detect if they have already been oom
1352 * killed to prevent needlessly killing additional tasks.
1353 */
ffbdccf5 1354 rcu_read_lock();
2314b42d
JW
1355 task_memcg = mem_cgroup_from_task(task);
1356 css_get(&task_memcg->css);
ffbdccf5 1357 rcu_read_unlock();
de077d22 1358 }
2314b42d
JW
1359 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1360 css_put(&task_memcg->css);
4c4a2214
DR
1361 return ret;
1362}
1363
c56d5c7d 1364int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1365{
9b272977 1366 unsigned long inactive_ratio;
14797e23 1367 unsigned long inactive;
9b272977 1368 unsigned long active;
c772be93 1369 unsigned long gb;
14797e23 1370
4d7dcca2
HD
1371 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1372 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1373
c772be93
KM
1374 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1375 if (gb)
1376 inactive_ratio = int_sqrt(10 * gb);
1377 else
1378 inactive_ratio = 1;
1379
9b272977 1380 return inactive * inactive_ratio < active;
14797e23
KM
1381}
1382
3e32cb2e 1383#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1384 container_of(counter, struct mem_cgroup, member)
1385
19942822 1386/**
9d11ea9f 1387 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1388 * @memcg: the memory cgroup
19942822 1389 *
9d11ea9f 1390 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1391 * pages.
19942822 1392 */
c0ff4b85 1393static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1394{
3e32cb2e
JW
1395 unsigned long margin = 0;
1396 unsigned long count;
1397 unsigned long limit;
9d11ea9f 1398
3e32cb2e
JW
1399 count = page_counter_read(&memcg->memory);
1400 limit = ACCESS_ONCE(memcg->memory.limit);
1401 if (count < limit)
1402 margin = limit - count;
1403
1404 if (do_swap_account) {
1405 count = page_counter_read(&memcg->memsw);
1406 limit = ACCESS_ONCE(memcg->memsw.limit);
1407 if (count <= limit)
1408 margin = min(margin, limit - count);
1409 }
1410
1411 return margin;
19942822
JW
1412}
1413
1f4c025b 1414int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1415{
a7885eb8 1416 /* root ? */
14208b0e 1417 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1418 return vm_swappiness;
1419
bf1ff263 1420 return memcg->swappiness;
a7885eb8
KM
1421}
1422
32047e2a 1423/*
bdcbb659 1424 * A routine for checking "mem" is under move_account() or not.
32047e2a 1425 *
bdcbb659
QH
1426 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1427 * moving cgroups. This is for waiting at high-memory pressure
1428 * caused by "move".
32047e2a 1429 */
c0ff4b85 1430static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1431{
2bd9bb20
KH
1432 struct mem_cgroup *from;
1433 struct mem_cgroup *to;
4b534334 1434 bool ret = false;
2bd9bb20
KH
1435 /*
1436 * Unlike task_move routines, we access mc.to, mc.from not under
1437 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1438 */
1439 spin_lock(&mc.lock);
1440 from = mc.from;
1441 to = mc.to;
1442 if (!from)
1443 goto unlock;
3e92041d 1444
2314b42d
JW
1445 ret = mem_cgroup_is_descendant(from, memcg) ||
1446 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1447unlock:
1448 spin_unlock(&mc.lock);
4b534334
KH
1449 return ret;
1450}
1451
c0ff4b85 1452static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1453{
1454 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1455 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1456 DEFINE_WAIT(wait);
1457 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1458 /* moving charge context might have finished. */
1459 if (mc.moving_task)
1460 schedule();
1461 finish_wait(&mc.waitq, &wait);
1462 return true;
1463 }
1464 }
1465 return false;
1466}
1467
58cf188e 1468#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1469/**
58cf188e 1470 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1471 * @memcg: The memory cgroup that went over limit
1472 * @p: Task that is going to be killed
1473 *
1474 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1475 * enabled
1476 */
1477void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1478{
e61734c5 1479 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1480 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1481 struct mem_cgroup *iter;
1482 unsigned int i;
e222432b 1483
58cf188e 1484 if (!p)
e222432b
BS
1485 return;
1486
08088cb9 1487 mutex_lock(&oom_info_lock);
e222432b
BS
1488 rcu_read_lock();
1489
e61734c5
TH
1490 pr_info("Task in ");
1491 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1492 pr_info(" killed as a result of limit of ");
1493 pr_cont_cgroup_path(memcg->css.cgroup);
1494 pr_info("\n");
e222432b 1495
e222432b
BS
1496 rcu_read_unlock();
1497
3e32cb2e
JW
1498 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1499 K((u64)page_counter_read(&memcg->memory)),
1500 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1501 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1502 K((u64)page_counter_read(&memcg->memsw)),
1503 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1504 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1505 K((u64)page_counter_read(&memcg->kmem)),
1506 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1507
1508 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1509 pr_info("Memory cgroup stats for ");
1510 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1511 pr_cont(":");
1512
1513 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1514 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1515 continue;
1516 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1517 K(mem_cgroup_read_stat(iter, i)));
1518 }
1519
1520 for (i = 0; i < NR_LRU_LISTS; i++)
1521 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1522 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1523
1524 pr_cont("\n");
1525 }
08088cb9 1526 mutex_unlock(&oom_info_lock);
e222432b
BS
1527}
1528
81d39c20
KH
1529/*
1530 * This function returns the number of memcg under hierarchy tree. Returns
1531 * 1(self count) if no children.
1532 */
c0ff4b85 1533static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1534{
1535 int num = 0;
7d74b06f
KH
1536 struct mem_cgroup *iter;
1537
c0ff4b85 1538 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1539 num++;
81d39c20
KH
1540 return num;
1541}
1542
a63d83f4
DR
1543/*
1544 * Return the memory (and swap, if configured) limit for a memcg.
1545 */
3e32cb2e 1546static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1547{
3e32cb2e 1548 unsigned long limit;
f3e8eb70 1549
3e32cb2e 1550 limit = memcg->memory.limit;
9a5a8f19 1551 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1552 unsigned long memsw_limit;
9a5a8f19 1553
3e32cb2e
JW
1554 memsw_limit = memcg->memsw.limit;
1555 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1556 }
9a5a8f19 1557 return limit;
a63d83f4
DR
1558}
1559
19965460
DR
1560static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1561 int order)
9cbb78bb
DR
1562{
1563 struct mem_cgroup *iter;
1564 unsigned long chosen_points = 0;
1565 unsigned long totalpages;
1566 unsigned int points = 0;
1567 struct task_struct *chosen = NULL;
1568
876aafbf 1569 /*
465adcf1
DR
1570 * If current has a pending SIGKILL or is exiting, then automatically
1571 * select it. The goal is to allow it to allocate so that it may
1572 * quickly exit and free its memory.
876aafbf 1573 */
465adcf1 1574 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1575 set_thread_flag(TIF_MEMDIE);
1576 return;
1577 }
1578
1579 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1580 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1581 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1582 struct css_task_iter it;
9cbb78bb
DR
1583 struct task_struct *task;
1584
72ec7029
TH
1585 css_task_iter_start(&iter->css, &it);
1586 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1587 switch (oom_scan_process_thread(task, totalpages, NULL,
1588 false)) {
1589 case OOM_SCAN_SELECT:
1590 if (chosen)
1591 put_task_struct(chosen);
1592 chosen = task;
1593 chosen_points = ULONG_MAX;
1594 get_task_struct(chosen);
1595 /* fall through */
1596 case OOM_SCAN_CONTINUE:
1597 continue;
1598 case OOM_SCAN_ABORT:
72ec7029 1599 css_task_iter_end(&it);
9cbb78bb
DR
1600 mem_cgroup_iter_break(memcg, iter);
1601 if (chosen)
1602 put_task_struct(chosen);
1603 return;
1604 case OOM_SCAN_OK:
1605 break;
1606 };
1607 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1608 if (!points || points < chosen_points)
1609 continue;
1610 /* Prefer thread group leaders for display purposes */
1611 if (points == chosen_points &&
1612 thread_group_leader(chosen))
1613 continue;
1614
1615 if (chosen)
1616 put_task_struct(chosen);
1617 chosen = task;
1618 chosen_points = points;
1619 get_task_struct(chosen);
9cbb78bb 1620 }
72ec7029 1621 css_task_iter_end(&it);
9cbb78bb
DR
1622 }
1623
1624 if (!chosen)
1625 return;
1626 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1627 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1628 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1629}
1630
4d0c066d
KH
1631/**
1632 * test_mem_cgroup_node_reclaimable
dad7557e 1633 * @memcg: the target memcg
4d0c066d
KH
1634 * @nid: the node ID to be checked.
1635 * @noswap : specify true here if the user wants flle only information.
1636 *
1637 * This function returns whether the specified memcg contains any
1638 * reclaimable pages on a node. Returns true if there are any reclaimable
1639 * pages in the node.
1640 */
c0ff4b85 1641static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1642 int nid, bool noswap)
1643{
c0ff4b85 1644 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1645 return true;
1646 if (noswap || !total_swap_pages)
1647 return false;
c0ff4b85 1648 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1649 return true;
1650 return false;
1651
1652}
bb4cc1a8 1653#if MAX_NUMNODES > 1
889976db
YH
1654
1655/*
1656 * Always updating the nodemask is not very good - even if we have an empty
1657 * list or the wrong list here, we can start from some node and traverse all
1658 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1659 *
1660 */
c0ff4b85 1661static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1662{
1663 int nid;
453a9bf3
KH
1664 /*
1665 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1666 * pagein/pageout changes since the last update.
1667 */
c0ff4b85 1668 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1669 return;
c0ff4b85 1670 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1671 return;
1672
889976db 1673 /* make a nodemask where this memcg uses memory from */
31aaea4a 1674 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1675
31aaea4a 1676 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1677
c0ff4b85
R
1678 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1679 node_clear(nid, memcg->scan_nodes);
889976db 1680 }
453a9bf3 1681
c0ff4b85
R
1682 atomic_set(&memcg->numainfo_events, 0);
1683 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1684}
1685
1686/*
1687 * Selecting a node where we start reclaim from. Because what we need is just
1688 * reducing usage counter, start from anywhere is O,K. Considering
1689 * memory reclaim from current node, there are pros. and cons.
1690 *
1691 * Freeing memory from current node means freeing memory from a node which
1692 * we'll use or we've used. So, it may make LRU bad. And if several threads
1693 * hit limits, it will see a contention on a node. But freeing from remote
1694 * node means more costs for memory reclaim because of memory latency.
1695 *
1696 * Now, we use round-robin. Better algorithm is welcomed.
1697 */
c0ff4b85 1698int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1699{
1700 int node;
1701
c0ff4b85
R
1702 mem_cgroup_may_update_nodemask(memcg);
1703 node = memcg->last_scanned_node;
889976db 1704
c0ff4b85 1705 node = next_node(node, memcg->scan_nodes);
889976db 1706 if (node == MAX_NUMNODES)
c0ff4b85 1707 node = first_node(memcg->scan_nodes);
889976db
YH
1708 /*
1709 * We call this when we hit limit, not when pages are added to LRU.
1710 * No LRU may hold pages because all pages are UNEVICTABLE or
1711 * memcg is too small and all pages are not on LRU. In that case,
1712 * we use curret node.
1713 */
1714 if (unlikely(node == MAX_NUMNODES))
1715 node = numa_node_id();
1716
c0ff4b85 1717 memcg->last_scanned_node = node;
889976db
YH
1718 return node;
1719}
889976db 1720#else
c0ff4b85 1721int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1722{
1723 return 0;
1724}
1725#endif
1726
0608f43d
AM
1727static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1728 struct zone *zone,
1729 gfp_t gfp_mask,
1730 unsigned long *total_scanned)
1731{
1732 struct mem_cgroup *victim = NULL;
1733 int total = 0;
1734 int loop = 0;
1735 unsigned long excess;
1736 unsigned long nr_scanned;
1737 struct mem_cgroup_reclaim_cookie reclaim = {
1738 .zone = zone,
1739 .priority = 0,
1740 };
1741
3e32cb2e 1742 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1743
1744 while (1) {
1745 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1746 if (!victim) {
1747 loop++;
1748 if (loop >= 2) {
1749 /*
1750 * If we have not been able to reclaim
1751 * anything, it might because there are
1752 * no reclaimable pages under this hierarchy
1753 */
1754 if (!total)
1755 break;
1756 /*
1757 * We want to do more targeted reclaim.
1758 * excess >> 2 is not to excessive so as to
1759 * reclaim too much, nor too less that we keep
1760 * coming back to reclaim from this cgroup
1761 */
1762 if (total >= (excess >> 2) ||
1763 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1764 break;
1765 }
1766 continue;
1767 }
0608f43d
AM
1768 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1769 zone, &nr_scanned);
1770 *total_scanned += nr_scanned;
3e32cb2e 1771 if (!soft_limit_excess(root_memcg))
0608f43d 1772 break;
6d61ef40 1773 }
0608f43d
AM
1774 mem_cgroup_iter_break(root_memcg, victim);
1775 return total;
6d61ef40
BS
1776}
1777
0056f4e6
JW
1778#ifdef CONFIG_LOCKDEP
1779static struct lockdep_map memcg_oom_lock_dep_map = {
1780 .name = "memcg_oom_lock",
1781};
1782#endif
1783
fb2a6fc5
JW
1784static DEFINE_SPINLOCK(memcg_oom_lock);
1785
867578cb
KH
1786/*
1787 * Check OOM-Killer is already running under our hierarchy.
1788 * If someone is running, return false.
1789 */
fb2a6fc5 1790static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1791{
79dfdacc 1792 struct mem_cgroup *iter, *failed = NULL;
a636b327 1793
fb2a6fc5
JW
1794 spin_lock(&memcg_oom_lock);
1795
9f3a0d09 1796 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1797 if (iter->oom_lock) {
79dfdacc
MH
1798 /*
1799 * this subtree of our hierarchy is already locked
1800 * so we cannot give a lock.
1801 */
79dfdacc 1802 failed = iter;
9f3a0d09
JW
1803 mem_cgroup_iter_break(memcg, iter);
1804 break;
23751be0
JW
1805 } else
1806 iter->oom_lock = true;
7d74b06f 1807 }
867578cb 1808
fb2a6fc5
JW
1809 if (failed) {
1810 /*
1811 * OK, we failed to lock the whole subtree so we have
1812 * to clean up what we set up to the failing subtree
1813 */
1814 for_each_mem_cgroup_tree(iter, memcg) {
1815 if (iter == failed) {
1816 mem_cgroup_iter_break(memcg, iter);
1817 break;
1818 }
1819 iter->oom_lock = false;
79dfdacc 1820 }
0056f4e6
JW
1821 } else
1822 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1823
1824 spin_unlock(&memcg_oom_lock);
1825
1826 return !failed;
a636b327 1827}
0b7f569e 1828
fb2a6fc5 1829static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1830{
7d74b06f
KH
1831 struct mem_cgroup *iter;
1832
fb2a6fc5 1833 spin_lock(&memcg_oom_lock);
0056f4e6 1834 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1835 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1836 iter->oom_lock = false;
fb2a6fc5 1837 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1838}
1839
c0ff4b85 1840static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1841{
1842 struct mem_cgroup *iter;
1843
c0ff4b85 1844 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1845 atomic_inc(&iter->under_oom);
1846}
1847
c0ff4b85 1848static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1849{
1850 struct mem_cgroup *iter;
1851
867578cb
KH
1852 /*
1853 * When a new child is created while the hierarchy is under oom,
1854 * mem_cgroup_oom_lock() may not be called. We have to use
1855 * atomic_add_unless() here.
1856 */
c0ff4b85 1857 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1858 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1859}
1860
867578cb
KH
1861static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1862
dc98df5a 1863struct oom_wait_info {
d79154bb 1864 struct mem_cgroup *memcg;
dc98df5a
KH
1865 wait_queue_t wait;
1866};
1867
1868static int memcg_oom_wake_function(wait_queue_t *wait,
1869 unsigned mode, int sync, void *arg)
1870{
d79154bb
HD
1871 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1872 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1873 struct oom_wait_info *oom_wait_info;
1874
1875 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1876 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1877
2314b42d
JW
1878 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1879 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1880 return 0;
dc98df5a
KH
1881 return autoremove_wake_function(wait, mode, sync, arg);
1882}
1883
c0ff4b85 1884static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1885{
3812c8c8 1886 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1887 /* for filtering, pass "memcg" as argument. */
1888 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1889}
1890
c0ff4b85 1891static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1892{
c0ff4b85
R
1893 if (memcg && atomic_read(&memcg->under_oom))
1894 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1895}
1896
3812c8c8 1897static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1898{
3812c8c8
JW
1899 if (!current->memcg_oom.may_oom)
1900 return;
867578cb 1901 /*
49426420
JW
1902 * We are in the middle of the charge context here, so we
1903 * don't want to block when potentially sitting on a callstack
1904 * that holds all kinds of filesystem and mm locks.
1905 *
1906 * Also, the caller may handle a failed allocation gracefully
1907 * (like optional page cache readahead) and so an OOM killer
1908 * invocation might not even be necessary.
1909 *
1910 * That's why we don't do anything here except remember the
1911 * OOM context and then deal with it at the end of the page
1912 * fault when the stack is unwound, the locks are released,
1913 * and when we know whether the fault was overall successful.
867578cb 1914 */
49426420
JW
1915 css_get(&memcg->css);
1916 current->memcg_oom.memcg = memcg;
1917 current->memcg_oom.gfp_mask = mask;
1918 current->memcg_oom.order = order;
3812c8c8
JW
1919}
1920
1921/**
1922 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1923 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1924 *
49426420
JW
1925 * This has to be called at the end of a page fault if the memcg OOM
1926 * handler was enabled.
3812c8c8 1927 *
49426420 1928 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1929 * sleep on a waitqueue until the userspace task resolves the
1930 * situation. Sleeping directly in the charge context with all kinds
1931 * of locks held is not a good idea, instead we remember an OOM state
1932 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1933 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1934 *
1935 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1936 * completed, %false otherwise.
3812c8c8 1937 */
49426420 1938bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1939{
49426420 1940 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1941 struct oom_wait_info owait;
49426420 1942 bool locked;
3812c8c8
JW
1943
1944 /* OOM is global, do not handle */
3812c8c8 1945 if (!memcg)
49426420 1946 return false;
3812c8c8 1947
49426420
JW
1948 if (!handle)
1949 goto cleanup;
3812c8c8
JW
1950
1951 owait.memcg = memcg;
1952 owait.wait.flags = 0;
1953 owait.wait.func = memcg_oom_wake_function;
1954 owait.wait.private = current;
1955 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1956
3812c8c8 1957 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1958 mem_cgroup_mark_under_oom(memcg);
1959
1960 locked = mem_cgroup_oom_trylock(memcg);
1961
1962 if (locked)
1963 mem_cgroup_oom_notify(memcg);
1964
1965 if (locked && !memcg->oom_kill_disable) {
1966 mem_cgroup_unmark_under_oom(memcg);
1967 finish_wait(&memcg_oom_waitq, &owait.wait);
1968 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1969 current->memcg_oom.order);
1970 } else {
3812c8c8 1971 schedule();
49426420
JW
1972 mem_cgroup_unmark_under_oom(memcg);
1973 finish_wait(&memcg_oom_waitq, &owait.wait);
1974 }
1975
1976 if (locked) {
fb2a6fc5
JW
1977 mem_cgroup_oom_unlock(memcg);
1978 /*
1979 * There is no guarantee that an OOM-lock contender
1980 * sees the wakeups triggered by the OOM kill
1981 * uncharges. Wake any sleepers explicitely.
1982 */
1983 memcg_oom_recover(memcg);
1984 }
49426420
JW
1985cleanup:
1986 current->memcg_oom.memcg = NULL;
3812c8c8 1987 css_put(&memcg->css);
867578cb 1988 return true;
0b7f569e
KH
1989}
1990
d7365e78
JW
1991/**
1992 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1993 * @page: page that is going to change accounted state
1994 * @locked: &memcg->move_lock slowpath was taken
1995 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 1996 *
d7365e78
JW
1997 * This function must mark the beginning of an accounted page state
1998 * change to prevent double accounting when the page is concurrently
1999 * being moved to another memcg:
32047e2a 2000 *
d7365e78
JW
2001 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2002 * if (TestClearPageState(page))
2003 * mem_cgroup_update_page_stat(memcg, state, -1);
2004 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2005 *
d7365e78
JW
2006 * The RCU lock is held throughout the transaction. The fast path can
2007 * get away without acquiring the memcg->move_lock (@locked is false)
2008 * because page moving starts with an RCU grace period.
32047e2a 2009 *
d7365e78
JW
2010 * The RCU lock also protects the memcg from being freed when the page
2011 * state that is going to change is the only thing preventing the page
2012 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2013 * which allows migration to go ahead and uncharge the page before the
2014 * account transaction might be complete.
d69b042f 2015 */
d7365e78
JW
2016struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2017 bool *locked,
2018 unsigned long *flags)
89c06bd5
KH
2019{
2020 struct mem_cgroup *memcg;
89c06bd5 2021
d7365e78
JW
2022 rcu_read_lock();
2023
2024 if (mem_cgroup_disabled())
2025 return NULL;
89c06bd5 2026again:
1306a85a 2027 memcg = page->mem_cgroup;
29833315 2028 if (unlikely(!memcg))
d7365e78
JW
2029 return NULL;
2030
2031 *locked = false;
bdcbb659 2032 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2033 return memcg;
89c06bd5 2034
354a4783 2035 spin_lock_irqsave(&memcg->move_lock, *flags);
1306a85a 2036 if (memcg != page->mem_cgroup) {
354a4783 2037 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5
KH
2038 goto again;
2039 }
2040 *locked = true;
d7365e78
JW
2041
2042 return memcg;
89c06bd5
KH
2043}
2044
d7365e78
JW
2045/**
2046 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2047 * @memcg: the memcg that was accounted against
2048 * @locked: value received from mem_cgroup_begin_page_stat()
2049 * @flags: value received from mem_cgroup_begin_page_stat()
2050 */
e4bd6a02
MH
2051void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
2052 unsigned long *flags)
89c06bd5 2053{
e4bd6a02
MH
2054 if (memcg && *locked)
2055 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5 2056
d7365e78 2057 rcu_read_unlock();
89c06bd5
KH
2058}
2059
d7365e78
JW
2060/**
2061 * mem_cgroup_update_page_stat - update page state statistics
2062 * @memcg: memcg to account against
2063 * @idx: page state item to account
2064 * @val: number of pages (positive or negative)
2065 *
2066 * See mem_cgroup_begin_page_stat() for locking requirements.
2067 */
2068void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2069 enum mem_cgroup_stat_index idx, int val)
d69b042f 2070{
658b72c5 2071 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2072
d7365e78
JW
2073 if (memcg)
2074 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2075}
26174efd 2076
cdec2e42
KH
2077/*
2078 * size of first charge trial. "32" comes from vmscan.c's magic value.
2079 * TODO: maybe necessary to use big numbers in big irons.
2080 */
7ec99d62 2081#define CHARGE_BATCH 32U
cdec2e42
KH
2082struct memcg_stock_pcp {
2083 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2084 unsigned int nr_pages;
cdec2e42 2085 struct work_struct work;
26fe6168 2086 unsigned long flags;
a0db00fc 2087#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2088};
2089static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2090static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2091
a0956d54
SS
2092/**
2093 * consume_stock: Try to consume stocked charge on this cpu.
2094 * @memcg: memcg to consume from.
2095 * @nr_pages: how many pages to charge.
2096 *
2097 * The charges will only happen if @memcg matches the current cpu's memcg
2098 * stock, and at least @nr_pages are available in that stock. Failure to
2099 * service an allocation will refill the stock.
2100 *
2101 * returns true if successful, false otherwise.
cdec2e42 2102 */
a0956d54 2103static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2104{
2105 struct memcg_stock_pcp *stock;
3e32cb2e 2106 bool ret = false;
cdec2e42 2107
a0956d54 2108 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2109 return ret;
a0956d54 2110
cdec2e42 2111 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2112 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2113 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2114 ret = true;
2115 }
cdec2e42
KH
2116 put_cpu_var(memcg_stock);
2117 return ret;
2118}
2119
2120/*
3e32cb2e 2121 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2122 */
2123static void drain_stock(struct memcg_stock_pcp *stock)
2124{
2125 struct mem_cgroup *old = stock->cached;
2126
11c9ea4e 2127 if (stock->nr_pages) {
3e32cb2e 2128 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2129 if (do_swap_account)
3e32cb2e 2130 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2131 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2132 stock->nr_pages = 0;
cdec2e42
KH
2133 }
2134 stock->cached = NULL;
cdec2e42
KH
2135}
2136
2137/*
2138 * This must be called under preempt disabled or must be called by
2139 * a thread which is pinned to local cpu.
2140 */
2141static void drain_local_stock(struct work_struct *dummy)
2142{
7c8e0181 2143 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2144 drain_stock(stock);
26fe6168 2145 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2146}
2147
e4777496
MH
2148static void __init memcg_stock_init(void)
2149{
2150 int cpu;
2151
2152 for_each_possible_cpu(cpu) {
2153 struct memcg_stock_pcp *stock =
2154 &per_cpu(memcg_stock, cpu);
2155 INIT_WORK(&stock->work, drain_local_stock);
2156 }
2157}
2158
cdec2e42 2159/*
3e32cb2e 2160 * Cache charges(val) to local per_cpu area.
320cc51d 2161 * This will be consumed by consume_stock() function, later.
cdec2e42 2162 */
c0ff4b85 2163static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2164{
2165 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2166
c0ff4b85 2167 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2168 drain_stock(stock);
c0ff4b85 2169 stock->cached = memcg;
cdec2e42 2170 }
11c9ea4e 2171 stock->nr_pages += nr_pages;
cdec2e42
KH
2172 put_cpu_var(memcg_stock);
2173}
2174
2175/*
c0ff4b85 2176 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2177 * of the hierarchy under it.
cdec2e42 2178 */
6d3d6aa2 2179static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2180{
26fe6168 2181 int cpu, curcpu;
d38144b7 2182
6d3d6aa2
JW
2183 /* If someone's already draining, avoid adding running more workers. */
2184 if (!mutex_trylock(&percpu_charge_mutex))
2185 return;
cdec2e42 2186 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2187 get_online_cpus();
5af12d0e 2188 curcpu = get_cpu();
cdec2e42
KH
2189 for_each_online_cpu(cpu) {
2190 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2191 struct mem_cgroup *memcg;
26fe6168 2192
c0ff4b85
R
2193 memcg = stock->cached;
2194 if (!memcg || !stock->nr_pages)
26fe6168 2195 continue;
2314b42d 2196 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2197 continue;
d1a05b69
MH
2198 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2199 if (cpu == curcpu)
2200 drain_local_stock(&stock->work);
2201 else
2202 schedule_work_on(cpu, &stock->work);
2203 }
cdec2e42 2204 }
5af12d0e 2205 put_cpu();
f894ffa8 2206 put_online_cpus();
9f50fad6 2207 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2208}
2209
711d3d2c
KH
2210/*
2211 * This function drains percpu counter value from DEAD cpu and
2212 * move it to local cpu. Note that this function can be preempted.
2213 */
c0ff4b85 2214static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2215{
2216 int i;
2217
c0ff4b85 2218 spin_lock(&memcg->pcp_counter_lock);
6104621d 2219 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2220 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2221
c0ff4b85
R
2222 per_cpu(memcg->stat->count[i], cpu) = 0;
2223 memcg->nocpu_base.count[i] += x;
711d3d2c 2224 }
e9f8974f 2225 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2226 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2227
c0ff4b85
R
2228 per_cpu(memcg->stat->events[i], cpu) = 0;
2229 memcg->nocpu_base.events[i] += x;
e9f8974f 2230 }
c0ff4b85 2231 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2232}
2233
0db0628d 2234static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2235 unsigned long action,
2236 void *hcpu)
2237{
2238 int cpu = (unsigned long)hcpu;
2239 struct memcg_stock_pcp *stock;
711d3d2c 2240 struct mem_cgroup *iter;
cdec2e42 2241
619d094b 2242 if (action == CPU_ONLINE)
1489ebad 2243 return NOTIFY_OK;
1489ebad 2244
d833049b 2245 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2246 return NOTIFY_OK;
711d3d2c 2247
9f3a0d09 2248 for_each_mem_cgroup(iter)
711d3d2c
KH
2249 mem_cgroup_drain_pcp_counter(iter, cpu);
2250
cdec2e42
KH
2251 stock = &per_cpu(memcg_stock, cpu);
2252 drain_stock(stock);
2253 return NOTIFY_OK;
2254}
2255
00501b53
JW
2256static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2257 unsigned int nr_pages)
8a9f3ccd 2258{
7ec99d62 2259 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2260 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2261 struct mem_cgroup *mem_over_limit;
3e32cb2e 2262 struct page_counter *counter;
6539cc05 2263 unsigned long nr_reclaimed;
b70a2a21
JW
2264 bool may_swap = true;
2265 bool drained = false;
05b84301 2266 int ret = 0;
a636b327 2267
ce00a967
JW
2268 if (mem_cgroup_is_root(memcg))
2269 goto done;
6539cc05 2270retry:
b6b6cc72
MH
2271 if (consume_stock(memcg, nr_pages))
2272 goto done;
8a9f3ccd 2273
3fbe7244 2274 if (!do_swap_account ||
3e32cb2e
JW
2275 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2276 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2277 goto done_restock;
3fbe7244 2278 if (do_swap_account)
3e32cb2e
JW
2279 page_counter_uncharge(&memcg->memsw, batch);
2280 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2281 } else {
3e32cb2e 2282 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2283 may_swap = false;
3fbe7244 2284 }
7a81b88c 2285
6539cc05
JW
2286 if (batch > nr_pages) {
2287 batch = nr_pages;
2288 goto retry;
2289 }
6d61ef40 2290
06b078fc
JW
2291 /*
2292 * Unlike in global OOM situations, memcg is not in a physical
2293 * memory shortage. Allow dying and OOM-killed tasks to
2294 * bypass the last charges so that they can exit quickly and
2295 * free their memory.
2296 */
2297 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2298 fatal_signal_pending(current) ||
2299 current->flags & PF_EXITING))
2300 goto bypass;
2301
2302 if (unlikely(task_in_memcg_oom(current)))
2303 goto nomem;
2304
6539cc05
JW
2305 if (!(gfp_mask & __GFP_WAIT))
2306 goto nomem;
4b534334 2307
b70a2a21
JW
2308 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2309 gfp_mask, may_swap);
6539cc05 2310
61e02c74 2311 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2312 goto retry;
28c34c29 2313
b70a2a21 2314 if (!drained) {
6d3d6aa2 2315 drain_all_stock(mem_over_limit);
b70a2a21
JW
2316 drained = true;
2317 goto retry;
2318 }
2319
28c34c29
JW
2320 if (gfp_mask & __GFP_NORETRY)
2321 goto nomem;
6539cc05
JW
2322 /*
2323 * Even though the limit is exceeded at this point, reclaim
2324 * may have been able to free some pages. Retry the charge
2325 * before killing the task.
2326 *
2327 * Only for regular pages, though: huge pages are rather
2328 * unlikely to succeed so close to the limit, and we fall back
2329 * to regular pages anyway in case of failure.
2330 */
61e02c74 2331 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2332 goto retry;
2333 /*
2334 * At task move, charge accounts can be doubly counted. So, it's
2335 * better to wait until the end of task_move if something is going on.
2336 */
2337 if (mem_cgroup_wait_acct_move(mem_over_limit))
2338 goto retry;
2339
9b130619
JW
2340 if (nr_retries--)
2341 goto retry;
2342
06b078fc
JW
2343 if (gfp_mask & __GFP_NOFAIL)
2344 goto bypass;
2345
6539cc05
JW
2346 if (fatal_signal_pending(current))
2347 goto bypass;
2348
61e02c74 2349 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2350nomem:
6d1fdc48 2351 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2352 return -ENOMEM;
867578cb 2353bypass:
ce00a967 2354 return -EINTR;
6539cc05
JW
2355
2356done_restock:
e8ea14cc 2357 css_get_many(&memcg->css, batch);
6539cc05
JW
2358 if (batch > nr_pages)
2359 refill_stock(memcg, batch - nr_pages);
2360done:
05b84301 2361 return ret;
7a81b88c 2362}
8a9f3ccd 2363
00501b53 2364static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2365{
ce00a967
JW
2366 if (mem_cgroup_is_root(memcg))
2367 return;
2368
3e32cb2e 2369 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2370 if (do_swap_account)
3e32cb2e 2371 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2372
e8ea14cc 2373 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2374}
2375
a3b2d692
KH
2376/*
2377 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2378 * rcu_read_lock(). The caller is responsible for calling
2379 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2380 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2381 */
2382static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2383{
a3b2d692
KH
2384 /* ID 0 is unused ID */
2385 if (!id)
2386 return NULL;
34c00c31 2387 return mem_cgroup_from_id(id);
a3b2d692
KH
2388}
2389
0a31bc97
JW
2390/*
2391 * try_get_mem_cgroup_from_page - look up page's memcg association
2392 * @page: the page
2393 *
2394 * Look up, get a css reference, and return the memcg that owns @page.
2395 *
2396 * The page must be locked to prevent racing with swap-in and page
2397 * cache charges. If coming from an unlocked page table, the caller
2398 * must ensure the page is on the LRU or this can race with charging.
2399 */
e42d9d5d 2400struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2401{
29833315 2402 struct mem_cgroup *memcg;
a3b2d692 2403 unsigned short id;
b5a84319
KH
2404 swp_entry_t ent;
2405
309381fe 2406 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2407
1306a85a 2408 memcg = page->mem_cgroup;
29833315
JW
2409 if (memcg) {
2410 if (!css_tryget_online(&memcg->css))
c0ff4b85 2411 memcg = NULL;
e42d9d5d 2412 } else if (PageSwapCache(page)) {
3c776e64 2413 ent.val = page_private(page);
9fb4b7cc 2414 id = lookup_swap_cgroup_id(ent);
a3b2d692 2415 rcu_read_lock();
c0ff4b85 2416 memcg = mem_cgroup_lookup(id);
ec903c0c 2417 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2418 memcg = NULL;
a3b2d692 2419 rcu_read_unlock();
3c776e64 2420 }
c0ff4b85 2421 return memcg;
b5a84319
KH
2422}
2423
0a31bc97
JW
2424static void lock_page_lru(struct page *page, int *isolated)
2425{
2426 struct zone *zone = page_zone(page);
2427
2428 spin_lock_irq(&zone->lru_lock);
2429 if (PageLRU(page)) {
2430 struct lruvec *lruvec;
2431
2432 lruvec = mem_cgroup_page_lruvec(page, zone);
2433 ClearPageLRU(page);
2434 del_page_from_lru_list(page, lruvec, page_lru(page));
2435 *isolated = 1;
2436 } else
2437 *isolated = 0;
2438}
2439
2440static void unlock_page_lru(struct page *page, int isolated)
2441{
2442 struct zone *zone = page_zone(page);
2443
2444 if (isolated) {
2445 struct lruvec *lruvec;
2446
2447 lruvec = mem_cgroup_page_lruvec(page, zone);
2448 VM_BUG_ON_PAGE(PageLRU(page), page);
2449 SetPageLRU(page);
2450 add_page_to_lru_list(page, lruvec, page_lru(page));
2451 }
2452 spin_unlock_irq(&zone->lru_lock);
2453}
2454
00501b53 2455static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2456 bool lrucare)
7a81b88c 2457{
0a31bc97 2458 int isolated;
9ce70c02 2459
1306a85a 2460 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2461
2462 /*
2463 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2464 * may already be on some other mem_cgroup's LRU. Take care of it.
2465 */
0a31bc97
JW
2466 if (lrucare)
2467 lock_page_lru(page, &isolated);
9ce70c02 2468
0a31bc97
JW
2469 /*
2470 * Nobody should be changing or seriously looking at
1306a85a 2471 * page->mem_cgroup at this point:
0a31bc97
JW
2472 *
2473 * - the page is uncharged
2474 *
2475 * - the page is off-LRU
2476 *
2477 * - an anonymous fault has exclusive page access, except for
2478 * a locked page table
2479 *
2480 * - a page cache insertion, a swapin fault, or a migration
2481 * have the page locked
2482 */
1306a85a 2483 page->mem_cgroup = memcg;
9ce70c02 2484
0a31bc97
JW
2485 if (lrucare)
2486 unlock_page_lru(page, isolated);
7a81b88c 2487}
66e1707b 2488
7ae1e1d0 2489#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2490/*
2491 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2492 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2493 */
2494static DEFINE_MUTEX(memcg_slab_mutex);
2495
1f458cbf
GC
2496/*
2497 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2498 * in the memcg_cache_params struct.
2499 */
2500static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2501{
2502 struct kmem_cache *cachep;
2503
2504 VM_BUG_ON(p->is_root_cache);
2505 cachep = p->root_cache;
7a67d7ab 2506 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2507}
2508
3e32cb2e
JW
2509static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2510 unsigned long nr_pages)
7ae1e1d0 2511{
3e32cb2e 2512 struct page_counter *counter;
7ae1e1d0 2513 int ret = 0;
7ae1e1d0 2514
3e32cb2e
JW
2515 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2516 if (ret < 0)
7ae1e1d0
GC
2517 return ret;
2518
3e32cb2e 2519 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2520 if (ret == -EINTR) {
2521 /*
00501b53
JW
2522 * try_charge() chose to bypass to root due to OOM kill or
2523 * fatal signal. Since our only options are to either fail
2524 * the allocation or charge it to this cgroup, do it as a
2525 * temporary condition. But we can't fail. From a kmem/slab
2526 * perspective, the cache has already been selected, by
2527 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2528 * our minds.
2529 *
2530 * This condition will only trigger if the task entered
00501b53
JW
2531 * memcg_charge_kmem in a sane state, but was OOM-killed
2532 * during try_charge() above. Tasks that were already dying
2533 * when the allocation triggers should have been already
7ae1e1d0
GC
2534 * directed to the root cgroup in memcontrol.h
2535 */
3e32cb2e 2536 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2537 if (do_swap_account)
3e32cb2e 2538 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2539 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2540 ret = 0;
2541 } else if (ret)
3e32cb2e 2542 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2543
2544 return ret;
2545}
2546
3e32cb2e
JW
2547static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2548 unsigned long nr_pages)
7ae1e1d0 2549{
3e32cb2e 2550 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2551 if (do_swap_account)
3e32cb2e 2552 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2553
64f21993 2554 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2555
e8ea14cc 2556 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2557}
2558
2633d7a0
GC
2559/*
2560 * helper for acessing a memcg's index. It will be used as an index in the
2561 * child cache array in kmem_cache, and also to derive its name. This function
2562 * will return -1 when this is not a kmem-limited memcg.
2563 */
2564int memcg_cache_id(struct mem_cgroup *memcg)
2565{
2566 return memcg ? memcg->kmemcg_id : -1;
2567}
2568
f3bb3043 2569static int memcg_alloc_cache_id(void)
55007d84 2570{
f3bb3043
VD
2571 int id, size;
2572 int err;
2573
2574 id = ida_simple_get(&kmem_limited_groups,
2575 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2576 if (id < 0)
2577 return id;
55007d84 2578
f3bb3043
VD
2579 if (id < memcg_limited_groups_array_size)
2580 return id;
2581
2582 /*
2583 * There's no space for the new id in memcg_caches arrays,
2584 * so we have to grow them.
2585 */
2586
2587 size = 2 * (id + 1);
55007d84
GC
2588 if (size < MEMCG_CACHES_MIN_SIZE)
2589 size = MEMCG_CACHES_MIN_SIZE;
2590 else if (size > MEMCG_CACHES_MAX_SIZE)
2591 size = MEMCG_CACHES_MAX_SIZE;
2592
f3bb3043
VD
2593 mutex_lock(&memcg_slab_mutex);
2594 err = memcg_update_all_caches(size);
2595 mutex_unlock(&memcg_slab_mutex);
2596
2597 if (err) {
2598 ida_simple_remove(&kmem_limited_groups, id);
2599 return err;
2600 }
2601 return id;
2602}
2603
2604static void memcg_free_cache_id(int id)
2605{
2606 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2607}
2608
2609/*
2610 * We should update the current array size iff all caches updates succeed. This
2611 * can only be done from the slab side. The slab mutex needs to be held when
2612 * calling this.
2613 */
2614void memcg_update_array_size(int num)
2615{
f3bb3043 2616 memcg_limited_groups_array_size = num;
55007d84
GC
2617}
2618
776ed0f0
VD
2619static void memcg_register_cache(struct mem_cgroup *memcg,
2620 struct kmem_cache *root_cache)
2633d7a0 2621{
93f39eea
VD
2622 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2623 memcg_slab_mutex */
bd673145 2624 struct kmem_cache *cachep;
d7f25f8a
GC
2625 int id;
2626
bd673145
VD
2627 lockdep_assert_held(&memcg_slab_mutex);
2628
2629 id = memcg_cache_id(memcg);
2630
2631 /*
2632 * Since per-memcg caches are created asynchronously on first
2633 * allocation (see memcg_kmem_get_cache()), several threads can try to
2634 * create the same cache, but only one of them may succeed.
2635 */
2636 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2637 return;
2638
073ee1c6 2639 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2640 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2641 /*
bd673145
VD
2642 * If we could not create a memcg cache, do not complain, because
2643 * that's not critical at all as we can always proceed with the root
2644 * cache.
2edefe11 2645 */
bd673145
VD
2646 if (!cachep)
2647 return;
2edefe11 2648
33a690c4 2649 css_get(&memcg->css);
bd673145 2650 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2651
d7f25f8a 2652 /*
959c8963
VD
2653 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2654 * barrier here to ensure nobody will see the kmem_cache partially
2655 * initialized.
d7f25f8a 2656 */
959c8963
VD
2657 smp_wmb();
2658
bd673145
VD
2659 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2660 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2661}
d7f25f8a 2662
776ed0f0 2663static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2664{
bd673145 2665 struct kmem_cache *root_cache;
1aa13254
VD
2666 struct mem_cgroup *memcg;
2667 int id;
2668
bd673145 2669 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2670
bd673145 2671 BUG_ON(is_root_cache(cachep));
2edefe11 2672
bd673145
VD
2673 root_cache = cachep->memcg_params->root_cache;
2674 memcg = cachep->memcg_params->memcg;
96403da2 2675 id = memcg_cache_id(memcg);
d7f25f8a 2676
bd673145
VD
2677 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2678 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2679
bd673145
VD
2680 list_del(&cachep->memcg_params->list);
2681
2682 kmem_cache_destroy(cachep);
33a690c4
VD
2683
2684 /* drop the reference taken in memcg_register_cache */
2685 css_put(&memcg->css);
2633d7a0
GC
2686}
2687
0e9d92f2
GC
2688/*
2689 * During the creation a new cache, we need to disable our accounting mechanism
2690 * altogether. This is true even if we are not creating, but rather just
2691 * enqueing new caches to be created.
2692 *
2693 * This is because that process will trigger allocations; some visible, like
2694 * explicit kmallocs to auxiliary data structures, name strings and internal
2695 * cache structures; some well concealed, like INIT_WORK() that can allocate
2696 * objects during debug.
2697 *
2698 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2699 * to it. This may not be a bounded recursion: since the first cache creation
2700 * failed to complete (waiting on the allocation), we'll just try to create the
2701 * cache again, failing at the same point.
2702 *
2703 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2704 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2705 * inside the following two functions.
2706 */
2707static inline void memcg_stop_kmem_account(void)
2708{
2709 VM_BUG_ON(!current->mm);
2710 current->memcg_kmem_skip_account++;
2711}
2712
2713static inline void memcg_resume_kmem_account(void)
2714{
2715 VM_BUG_ON(!current->mm);
2716 current->memcg_kmem_skip_account--;
2717}
2718
776ed0f0 2719int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2720{
2721 struct kmem_cache *c;
b8529907 2722 int i, failed = 0;
7cf27982 2723
bd673145 2724 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2725 for_each_memcg_cache_index(i) {
2726 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2727 if (!c)
2728 continue;
2729
776ed0f0 2730 memcg_unregister_cache(c);
b8529907
VD
2731
2732 if (cache_from_memcg_idx(s, i))
2733 failed++;
7cf27982 2734 }
bd673145 2735 mutex_unlock(&memcg_slab_mutex);
b8529907 2736 return failed;
7cf27982
GC
2737}
2738
776ed0f0 2739static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2740{
2741 struct kmem_cache *cachep;
bd673145 2742 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2743
2744 if (!memcg_kmem_is_active(memcg))
2745 return;
2746
bd673145
VD
2747 mutex_lock(&memcg_slab_mutex);
2748 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2749 cachep = memcg_params_to_cache(params);
bd673145
VD
2750 kmem_cache_shrink(cachep);
2751 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2752 memcg_unregister_cache(cachep);
1f458cbf 2753 }
bd673145 2754 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2755}
2756
776ed0f0 2757struct memcg_register_cache_work {
5722d094
VD
2758 struct mem_cgroup *memcg;
2759 struct kmem_cache *cachep;
2760 struct work_struct work;
2761};
2762
776ed0f0 2763static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2764{
776ed0f0
VD
2765 struct memcg_register_cache_work *cw =
2766 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2767 struct mem_cgroup *memcg = cw->memcg;
2768 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2769
bd673145 2770 mutex_lock(&memcg_slab_mutex);
776ed0f0 2771 memcg_register_cache(memcg, cachep);
bd673145
VD
2772 mutex_unlock(&memcg_slab_mutex);
2773
5722d094 2774 css_put(&memcg->css);
d7f25f8a
GC
2775 kfree(cw);
2776}
2777
2778/*
2779 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2780 */
776ed0f0
VD
2781static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2782 struct kmem_cache *cachep)
d7f25f8a 2783{
776ed0f0 2784 struct memcg_register_cache_work *cw;
d7f25f8a 2785
776ed0f0 2786 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2787 if (cw == NULL) {
2788 css_put(&memcg->css);
d7f25f8a
GC
2789 return;
2790 }
2791
2792 cw->memcg = memcg;
2793 cw->cachep = cachep;
2794
776ed0f0 2795 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2796 schedule_work(&cw->work);
2797}
2798
776ed0f0
VD
2799static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2800 struct kmem_cache *cachep)
0e9d92f2
GC
2801{
2802 /*
2803 * We need to stop accounting when we kmalloc, because if the
2804 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2805 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2806 *
2807 * However, it is better to enclose the whole function. Depending on
2808 * the debugging options enabled, INIT_WORK(), for instance, can
2809 * trigger an allocation. This too, will make us recurse. Because at
2810 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2811 * the safest choice is to do it like this, wrapping the whole function.
2812 */
2813 memcg_stop_kmem_account();
776ed0f0 2814 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
2815 memcg_resume_kmem_account();
2816}
c67a8a68
VD
2817
2818int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2819{
3e32cb2e 2820 unsigned int nr_pages = 1 << order;
c67a8a68
VD
2821 int res;
2822
3e32cb2e 2823 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 2824 if (!res)
3e32cb2e 2825 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2826 return res;
2827}
2828
2829void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2830{
3e32cb2e
JW
2831 unsigned int nr_pages = 1 << order;
2832
2833 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2834 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2835}
2836
d7f25f8a
GC
2837/*
2838 * Return the kmem_cache we're supposed to use for a slab allocation.
2839 * We try to use the current memcg's version of the cache.
2840 *
2841 * If the cache does not exist yet, if we are the first user of it,
2842 * we either create it immediately, if possible, or create it asynchronously
2843 * in a workqueue.
2844 * In the latter case, we will let the current allocation go through with
2845 * the original cache.
2846 *
2847 * Can't be called in interrupt context or from kernel threads.
2848 * This function needs to be called with rcu_read_lock() held.
2849 */
2850struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2851 gfp_t gfp)
2852{
2853 struct mem_cgroup *memcg;
959c8963 2854 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2855
2856 VM_BUG_ON(!cachep->memcg_params);
2857 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2858
0e9d92f2
GC
2859 if (!current->mm || current->memcg_kmem_skip_account)
2860 return cachep;
2861
d7f25f8a
GC
2862 rcu_read_lock();
2863 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 2864
cf2b8fbf 2865 if (!memcg_kmem_is_active(memcg))
ca0dde97 2866 goto out;
d7f25f8a 2867
959c8963
VD
2868 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2869 if (likely(memcg_cachep)) {
2870 cachep = memcg_cachep;
ca0dde97 2871 goto out;
d7f25f8a
GC
2872 }
2873
ca0dde97 2874 /* The corresponding put will be done in the workqueue. */
ec903c0c 2875 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
2876 goto out;
2877 rcu_read_unlock();
2878
2879 /*
2880 * If we are in a safe context (can wait, and not in interrupt
2881 * context), we could be be predictable and return right away.
2882 * This would guarantee that the allocation being performed
2883 * already belongs in the new cache.
2884 *
2885 * However, there are some clashes that can arrive from locking.
2886 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2887 * memcg_create_kmem_cache, this means no further allocation
2888 * could happen with the slab_mutex held. So it's better to
2889 * defer everything.
ca0dde97 2890 */
776ed0f0 2891 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
2892 return cachep;
2893out:
2894 rcu_read_unlock();
2895 return cachep;
d7f25f8a 2896}
d7f25f8a 2897
7ae1e1d0
GC
2898/*
2899 * We need to verify if the allocation against current->mm->owner's memcg is
2900 * possible for the given order. But the page is not allocated yet, so we'll
2901 * need a further commit step to do the final arrangements.
2902 *
2903 * It is possible for the task to switch cgroups in this mean time, so at
2904 * commit time, we can't rely on task conversion any longer. We'll then use
2905 * the handle argument to return to the caller which cgroup we should commit
2906 * against. We could also return the memcg directly and avoid the pointer
2907 * passing, but a boolean return value gives better semantics considering
2908 * the compiled-out case as well.
2909 *
2910 * Returning true means the allocation is possible.
2911 */
2912bool
2913__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2914{
2915 struct mem_cgroup *memcg;
2916 int ret;
2917
2918 *_memcg = NULL;
6d42c232
GC
2919
2920 /*
2921 * Disabling accounting is only relevant for some specific memcg
2922 * internal allocations. Therefore we would initially not have such
52383431
VD
2923 * check here, since direct calls to the page allocator that are
2924 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
2925 * outside memcg core. We are mostly concerned with cache allocations,
2926 * and by having this test at memcg_kmem_get_cache, we are already able
2927 * to relay the allocation to the root cache and bypass the memcg cache
2928 * altogether.
6d42c232
GC
2929 *
2930 * There is one exception, though: the SLUB allocator does not create
2931 * large order caches, but rather service large kmallocs directly from
2932 * the page allocator. Therefore, the following sequence when backed by
2933 * the SLUB allocator:
2934 *
f894ffa8
AM
2935 * memcg_stop_kmem_account();
2936 * kmalloc(<large_number>)
2937 * memcg_resume_kmem_account();
6d42c232
GC
2938 *
2939 * would effectively ignore the fact that we should skip accounting,
2940 * since it will drive us directly to this function without passing
2941 * through the cache selector memcg_kmem_get_cache. Such large
2942 * allocations are extremely rare but can happen, for instance, for the
2943 * cache arrays. We bring this test here.
2944 */
2945 if (!current->mm || current->memcg_kmem_skip_account)
2946 return true;
2947
df381975 2948 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2949
cf2b8fbf 2950 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2951 css_put(&memcg->css);
2952 return true;
2953 }
2954
3e32cb2e 2955 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2956 if (!ret)
2957 *_memcg = memcg;
7ae1e1d0
GC
2958
2959 css_put(&memcg->css);
2960 return (ret == 0);
2961}
2962
2963void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2964 int order)
2965{
7ae1e1d0
GC
2966 VM_BUG_ON(mem_cgroup_is_root(memcg));
2967
2968 /* The page allocation failed. Revert */
2969 if (!page) {
3e32cb2e 2970 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2971 return;
2972 }
1306a85a 2973 page->mem_cgroup = memcg;
7ae1e1d0
GC
2974}
2975
2976void __memcg_kmem_uncharge_pages(struct page *page, int order)
2977{
1306a85a 2978 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2979
7ae1e1d0
GC
2980 if (!memcg)
2981 return;
2982
309381fe 2983 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2984
3e32cb2e 2985 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2986 page->mem_cgroup = NULL;
7ae1e1d0 2987}
1f458cbf 2988#else
776ed0f0 2989static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2990{
2991}
7ae1e1d0
GC
2992#endif /* CONFIG_MEMCG_KMEM */
2993
ca3e0214
KH
2994#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2995
ca3e0214
KH
2996/*
2997 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2998 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2999 * charge/uncharge will be never happen and move_account() is done under
3000 * compound_lock(), so we don't have to take care of races.
ca3e0214 3001 */
e94c8a9c 3002void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3003{
e94c8a9c 3004 int i;
ca3e0214 3005
3d37c4a9
KH
3006 if (mem_cgroup_disabled())
3007 return;
b070e65c 3008
29833315 3009 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3010 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3011
1306a85a 3012 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 3013 HPAGE_PMD_NR);
ca3e0214 3014}
12d27107 3015#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3016
f817ed48 3017/**
de3638d9 3018 * mem_cgroup_move_account - move account of the page
5564e88b 3019 * @page: the page
7ec99d62 3020 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3021 * @from: mem_cgroup which the page is moved from.
3022 * @to: mem_cgroup which the page is moved to. @from != @to.
3023 *
3024 * The caller must confirm following.
08e552c6 3025 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3026 * - compound_lock is held when nr_pages > 1
f817ed48 3027 *
2f3479b1
KH
3028 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3029 * from old cgroup.
f817ed48 3030 */
7ec99d62
JW
3031static int mem_cgroup_move_account(struct page *page,
3032 unsigned int nr_pages,
7ec99d62 3033 struct mem_cgroup *from,
2f3479b1 3034 struct mem_cgroup *to)
f817ed48 3035{
de3638d9
JW
3036 unsigned long flags;
3037 int ret;
987eba66 3038
f817ed48 3039 VM_BUG_ON(from == to);
309381fe 3040 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3041 /*
3042 * The page is isolated from LRU. So, collapse function
3043 * will not handle this page. But page splitting can happen.
3044 * Do this check under compound_page_lock(). The caller should
3045 * hold it.
3046 */
3047 ret = -EBUSY;
7ec99d62 3048 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3049 goto out;
3050
0a31bc97 3051 /*
1306a85a 3052 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
0a31bc97
JW
3053 * of its source page while we change it: page migration takes
3054 * both pages off the LRU, but page cache replacement doesn't.
3055 */
3056 if (!trylock_page(page))
3057 goto out;
de3638d9
JW
3058
3059 ret = -EINVAL;
1306a85a 3060 if (page->mem_cgroup != from)
0a31bc97 3061 goto out_unlock;
de3638d9 3062
354a4783 3063 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 3064
0a31bc97 3065 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3066 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3067 nr_pages);
3068 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3069 nr_pages);
3070 }
3ea67d06 3071
59d1d256
JW
3072 if (PageWriteback(page)) {
3073 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3074 nr_pages);
3075 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3076 nr_pages);
3077 }
3ea67d06 3078
0a31bc97 3079 /*
1306a85a 3080 * It is safe to change page->mem_cgroup here because the page
0a31bc97
JW
3081 * is referenced, charged, and isolated - we can't race with
3082 * uncharging, charging, migration, or LRU putback.
3083 */
d69b042f 3084
854ffa8d 3085 /* caller should have done css_get */
1306a85a 3086 page->mem_cgroup = to;
354a4783
JW
3087 spin_unlock_irqrestore(&from->move_lock, flags);
3088
de3638d9 3089 ret = 0;
0a31bc97
JW
3090
3091 local_irq_disable();
3092 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3093 memcg_check_events(to, page);
0a31bc97 3094 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3095 memcg_check_events(from, page);
0a31bc97
JW
3096 local_irq_enable();
3097out_unlock:
3098 unlock_page(page);
de3638d9 3099out:
f817ed48
KH
3100 return ret;
3101}
3102
c255a458 3103#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3104static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3105 bool charge)
d13d1443 3106{
0a31bc97
JW
3107 int val = (charge) ? 1 : -1;
3108 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3109}
02491447
DN
3110
3111/**
3112 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3113 * @entry: swap entry to be moved
3114 * @from: mem_cgroup which the entry is moved from
3115 * @to: mem_cgroup which the entry is moved to
3116 *
3117 * It succeeds only when the swap_cgroup's record for this entry is the same
3118 * as the mem_cgroup's id of @from.
3119 *
3120 * Returns 0 on success, -EINVAL on failure.
3121 *
3e32cb2e 3122 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3123 * both res and memsw, and called css_get().
3124 */
3125static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3126 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3127{
3128 unsigned short old_id, new_id;
3129
34c00c31
LZ
3130 old_id = mem_cgroup_id(from);
3131 new_id = mem_cgroup_id(to);
02491447
DN
3132
3133 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3134 mem_cgroup_swap_statistics(from, false);
483c30b5 3135 mem_cgroup_swap_statistics(to, true);
02491447 3136 /*
483c30b5 3137 * This function is only called from task migration context now.
3e32cb2e 3138 * It postpones page_counter and refcount handling till the end
483c30b5 3139 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3140 * improvement. But we cannot postpone css_get(to) because if
3141 * the process that has been moved to @to does swap-in, the
3142 * refcount of @to might be decreased to 0.
3143 *
3144 * We are in attach() phase, so the cgroup is guaranteed to be
3145 * alive, so we can just call css_get().
02491447 3146 */
4050377b 3147 css_get(&to->css);
02491447
DN
3148 return 0;
3149 }
3150 return -EINVAL;
3151}
3152#else
3153static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3154 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3155{
3156 return -EINVAL;
3157}
8c7c6e34 3158#endif
d13d1443 3159
3e32cb2e 3160static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 3161
d38d2a75 3162static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3163 unsigned long limit)
628f4235 3164{
3e32cb2e
JW
3165 unsigned long curusage;
3166 unsigned long oldusage;
3167 bool enlarge = false;
81d39c20 3168 int retry_count;
3e32cb2e 3169 int ret;
81d39c20
KH
3170
3171 /*
3172 * For keeping hierarchical_reclaim simple, how long we should retry
3173 * is depends on callers. We set our retry-count to be function
3174 * of # of children which we should visit in this loop.
3175 */
3e32cb2e
JW
3176 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3177 mem_cgroup_count_children(memcg);
81d39c20 3178
3e32cb2e 3179 oldusage = page_counter_read(&memcg->memory);
628f4235 3180
3e32cb2e 3181 do {
628f4235
KH
3182 if (signal_pending(current)) {
3183 ret = -EINTR;
3184 break;
3185 }
3e32cb2e
JW
3186
3187 mutex_lock(&memcg_limit_mutex);
3188 if (limit > memcg->memsw.limit) {
3189 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3190 ret = -EINVAL;
628f4235
KH
3191 break;
3192 }
3e32cb2e
JW
3193 if (limit > memcg->memory.limit)
3194 enlarge = true;
3195 ret = page_counter_limit(&memcg->memory, limit);
3196 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3197
3198 if (!ret)
3199 break;
3200
b70a2a21
JW
3201 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3202
3e32cb2e 3203 curusage = page_counter_read(&memcg->memory);
81d39c20 3204 /* Usage is reduced ? */
f894ffa8 3205 if (curusage >= oldusage)
81d39c20
KH
3206 retry_count--;
3207 else
3208 oldusage = curusage;
3e32cb2e
JW
3209 } while (retry_count);
3210
3c11ecf4
KH
3211 if (!ret && enlarge)
3212 memcg_oom_recover(memcg);
14797e23 3213
8c7c6e34
KH
3214 return ret;
3215}
3216
338c8431 3217static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3218 unsigned long limit)
8c7c6e34 3219{
3e32cb2e
JW
3220 unsigned long curusage;
3221 unsigned long oldusage;
3222 bool enlarge = false;
81d39c20 3223 int retry_count;
3e32cb2e 3224 int ret;
8c7c6e34 3225
81d39c20 3226 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3227 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3228 mem_cgroup_count_children(memcg);
3229
3230 oldusage = page_counter_read(&memcg->memsw);
3231
3232 do {
8c7c6e34
KH
3233 if (signal_pending(current)) {
3234 ret = -EINTR;
3235 break;
3236 }
3e32cb2e
JW
3237
3238 mutex_lock(&memcg_limit_mutex);
3239 if (limit < memcg->memory.limit) {
3240 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3241 ret = -EINVAL;
8c7c6e34
KH
3242 break;
3243 }
3e32cb2e
JW
3244 if (limit > memcg->memsw.limit)
3245 enlarge = true;
3246 ret = page_counter_limit(&memcg->memsw, limit);
3247 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3248
3249 if (!ret)
3250 break;
3251
b70a2a21
JW
3252 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3253
3e32cb2e 3254 curusage = page_counter_read(&memcg->memsw);
81d39c20 3255 /* Usage is reduced ? */
8c7c6e34 3256 if (curusage >= oldusage)
628f4235 3257 retry_count--;
81d39c20
KH
3258 else
3259 oldusage = curusage;
3e32cb2e
JW
3260 } while (retry_count);
3261
3c11ecf4
KH
3262 if (!ret && enlarge)
3263 memcg_oom_recover(memcg);
3e32cb2e 3264
628f4235
KH
3265 return ret;
3266}
3267
0608f43d
AM
3268unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3269 gfp_t gfp_mask,
3270 unsigned long *total_scanned)
3271{
3272 unsigned long nr_reclaimed = 0;
3273 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3274 unsigned long reclaimed;
3275 int loop = 0;
3276 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3277 unsigned long excess;
0608f43d
AM
3278 unsigned long nr_scanned;
3279
3280 if (order > 0)
3281 return 0;
3282
3283 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3284 /*
3285 * This loop can run a while, specially if mem_cgroup's continuously
3286 * keep exceeding their soft limit and putting the system under
3287 * pressure
3288 */
3289 do {
3290 if (next_mz)
3291 mz = next_mz;
3292 else
3293 mz = mem_cgroup_largest_soft_limit_node(mctz);
3294 if (!mz)
3295 break;
3296
3297 nr_scanned = 0;
3298 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3299 gfp_mask, &nr_scanned);
3300 nr_reclaimed += reclaimed;
3301 *total_scanned += nr_scanned;
0a31bc97 3302 spin_lock_irq(&mctz->lock);
bc2f2e7f 3303 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3304
3305 /*
3306 * If we failed to reclaim anything from this memory cgroup
3307 * it is time to move on to the next cgroup
3308 */
3309 next_mz = NULL;
bc2f2e7f
VD
3310 if (!reclaimed)
3311 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3312
3e32cb2e 3313 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3314 /*
3315 * One school of thought says that we should not add
3316 * back the node to the tree if reclaim returns 0.
3317 * But our reclaim could return 0, simply because due
3318 * to priority we are exposing a smaller subset of
3319 * memory to reclaim from. Consider this as a longer
3320 * term TODO.
3321 */
3322 /* If excess == 0, no tree ops */
cf2c8127 3323 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3324 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3325 css_put(&mz->memcg->css);
3326 loop++;
3327 /*
3328 * Could not reclaim anything and there are no more
3329 * mem cgroups to try or we seem to be looping without
3330 * reclaiming anything.
3331 */
3332 if (!nr_reclaimed &&
3333 (next_mz == NULL ||
3334 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3335 break;
3336 } while (!nr_reclaimed);
3337 if (next_mz)
3338 css_put(&next_mz->memcg->css);
3339 return nr_reclaimed;
3340}
3341
ea280e7b
TH
3342/*
3343 * Test whether @memcg has children, dead or alive. Note that this
3344 * function doesn't care whether @memcg has use_hierarchy enabled and
3345 * returns %true if there are child csses according to the cgroup
3346 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3347 */
b5f99b53
GC
3348static inline bool memcg_has_children(struct mem_cgroup *memcg)
3349{
ea280e7b
TH
3350 bool ret;
3351
696ac172 3352 /*
ea280e7b
TH
3353 * The lock does not prevent addition or deletion of children, but
3354 * it prevents a new child from being initialized based on this
3355 * parent in css_online(), so it's enough to decide whether
3356 * hierarchically inherited attributes can still be changed or not.
696ac172 3357 */
ea280e7b
TH
3358 lockdep_assert_held(&memcg_create_mutex);
3359
3360 rcu_read_lock();
3361 ret = css_next_child(NULL, &memcg->css);
3362 rcu_read_unlock();
3363 return ret;
b5f99b53
GC
3364}
3365
c26251f9
MH
3366/*
3367 * Reclaims as many pages from the given memcg as possible and moves
3368 * the rest to the parent.
3369 *
3370 * Caller is responsible for holding css reference for memcg.
3371 */
3372static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3373{
3374 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3375
c1e862c1
KH
3376 /* we call try-to-free pages for make this cgroup empty */
3377 lru_add_drain_all();
f817ed48 3378 /* try to free all pages in this cgroup */
3e32cb2e 3379 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3380 int progress;
c1e862c1 3381
c26251f9
MH
3382 if (signal_pending(current))
3383 return -EINTR;
3384
b70a2a21
JW
3385 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3386 GFP_KERNEL, true);
c1e862c1 3387 if (!progress) {
f817ed48 3388 nr_retries--;
c1e862c1 3389 /* maybe some writeback is necessary */
8aa7e847 3390 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3391 }
f817ed48
KH
3392
3393 }
ab5196c2
MH
3394
3395 return 0;
cc847582
KH
3396}
3397
6770c64e
TH
3398static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3399 char *buf, size_t nbytes,
3400 loff_t off)
c1e862c1 3401{
6770c64e 3402 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3403
d8423011
MH
3404 if (mem_cgroup_is_root(memcg))
3405 return -EINVAL;
6770c64e 3406 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3407}
3408
182446d0
TH
3409static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3410 struct cftype *cft)
18f59ea7 3411{
182446d0 3412 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3413}
3414
182446d0
TH
3415static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3416 struct cftype *cft, u64 val)
18f59ea7
BS
3417{
3418 int retval = 0;
182446d0 3419 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3420 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3421
0999821b 3422 mutex_lock(&memcg_create_mutex);
567fb435
GC
3423
3424 if (memcg->use_hierarchy == val)
3425 goto out;
3426
18f59ea7 3427 /*
af901ca1 3428 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3429 * in the child subtrees. If it is unset, then the change can
3430 * occur, provided the current cgroup has no children.
3431 *
3432 * For the root cgroup, parent_mem is NULL, we allow value to be
3433 * set if there are no children.
3434 */
c0ff4b85 3435 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3436 (val == 1 || val == 0)) {
ea280e7b 3437 if (!memcg_has_children(memcg))
c0ff4b85 3438 memcg->use_hierarchy = val;
18f59ea7
BS
3439 else
3440 retval = -EBUSY;
3441 } else
3442 retval = -EINVAL;
567fb435
GC
3443
3444out:
0999821b 3445 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3446
3447 return retval;
3448}
3449
3e32cb2e
JW
3450static unsigned long tree_stat(struct mem_cgroup *memcg,
3451 enum mem_cgroup_stat_index idx)
ce00a967
JW
3452{
3453 struct mem_cgroup *iter;
3454 long val = 0;
3455
3456 /* Per-cpu values can be negative, use a signed accumulator */
3457 for_each_mem_cgroup_tree(iter, memcg)
3458 val += mem_cgroup_read_stat(iter, idx);
3459
3460 if (val < 0) /* race ? */
3461 val = 0;
3462 return val;
3463}
3464
3465static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3466{
3467 u64 val;
3468
3e32cb2e
JW
3469 if (mem_cgroup_is_root(memcg)) {
3470 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3471 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3472 if (swap)
3473 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3474 } else {
ce00a967 3475 if (!swap)
3e32cb2e 3476 val = page_counter_read(&memcg->memory);
ce00a967 3477 else
3e32cb2e 3478 val = page_counter_read(&memcg->memsw);
ce00a967 3479 }
ce00a967
JW
3480 return val << PAGE_SHIFT;
3481}
3482
3e32cb2e
JW
3483enum {
3484 RES_USAGE,
3485 RES_LIMIT,
3486 RES_MAX_USAGE,
3487 RES_FAILCNT,
3488 RES_SOFT_LIMIT,
3489};
ce00a967 3490
791badbd 3491static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3492 struct cftype *cft)
8cdea7c0 3493{
182446d0 3494 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3495 struct page_counter *counter;
af36f906 3496
3e32cb2e 3497 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3498 case _MEM:
3e32cb2e
JW
3499 counter = &memcg->memory;
3500 break;
8c7c6e34 3501 case _MEMSWAP:
3e32cb2e
JW
3502 counter = &memcg->memsw;
3503 break;
510fc4e1 3504 case _KMEM:
3e32cb2e 3505 counter = &memcg->kmem;
510fc4e1 3506 break;
8c7c6e34
KH
3507 default:
3508 BUG();
8c7c6e34 3509 }
3e32cb2e
JW
3510
3511 switch (MEMFILE_ATTR(cft->private)) {
3512 case RES_USAGE:
3513 if (counter == &memcg->memory)
3514 return mem_cgroup_usage(memcg, false);
3515 if (counter == &memcg->memsw)
3516 return mem_cgroup_usage(memcg, true);
3517 return (u64)page_counter_read(counter) * PAGE_SIZE;
3518 case RES_LIMIT:
3519 return (u64)counter->limit * PAGE_SIZE;
3520 case RES_MAX_USAGE:
3521 return (u64)counter->watermark * PAGE_SIZE;
3522 case RES_FAILCNT:
3523 return counter->failcnt;
3524 case RES_SOFT_LIMIT:
3525 return (u64)memcg->soft_limit * PAGE_SIZE;
3526 default:
3527 BUG();
3528 }
8cdea7c0 3529}
510fc4e1 3530
510fc4e1 3531#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3532static int memcg_activate_kmem(struct mem_cgroup *memcg,
3533 unsigned long nr_pages)
d6441637
VD
3534{
3535 int err = 0;
3536 int memcg_id;
3537
3538 if (memcg_kmem_is_active(memcg))
3539 return 0;
3540
3541 /*
3542 * We are going to allocate memory for data shared by all memory
3543 * cgroups so let's stop accounting here.
3544 */
3545 memcg_stop_kmem_account();
3546
510fc4e1
GC
3547 /*
3548 * For simplicity, we won't allow this to be disabled. It also can't
3549 * be changed if the cgroup has children already, or if tasks had
3550 * already joined.
3551 *
3552 * If tasks join before we set the limit, a person looking at
3553 * kmem.usage_in_bytes will have no way to determine when it took
3554 * place, which makes the value quite meaningless.
3555 *
3556 * After it first became limited, changes in the value of the limit are
3557 * of course permitted.
510fc4e1 3558 */
0999821b 3559 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3560 if (cgroup_has_tasks(memcg->css.cgroup) ||
3561 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3562 err = -EBUSY;
3563 mutex_unlock(&memcg_create_mutex);
3564 if (err)
3565 goto out;
510fc4e1 3566
f3bb3043 3567 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3568 if (memcg_id < 0) {
3569 err = memcg_id;
3570 goto out;
3571 }
3572
d6441637
VD
3573 memcg->kmemcg_id = memcg_id;
3574 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
3575
3576 /*
3577 * We couldn't have accounted to this cgroup, because it hasn't got the
3578 * active bit set yet, so this should succeed.
3579 */
3e32cb2e 3580 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3581 VM_BUG_ON(err);
3582
3583 static_key_slow_inc(&memcg_kmem_enabled_key);
3584 /*
3585 * Setting the active bit after enabling static branching will
3586 * guarantee no one starts accounting before all call sites are
3587 * patched.
3588 */
3589 memcg_kmem_set_active(memcg);
510fc4e1 3590out:
d6441637
VD
3591 memcg_resume_kmem_account();
3592 return err;
d6441637
VD
3593}
3594
d6441637 3595static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3596 unsigned long limit)
d6441637
VD
3597{
3598 int ret;
3599
3e32cb2e 3600 mutex_lock(&memcg_limit_mutex);
d6441637 3601 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3602 ret = memcg_activate_kmem(memcg, limit);
d6441637 3603 else
3e32cb2e
JW
3604 ret = page_counter_limit(&memcg->kmem, limit);
3605 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3606 return ret;
3607}
3608
55007d84 3609static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3610{
55007d84 3611 int ret = 0;
510fc4e1 3612 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3613
d6441637
VD
3614 if (!parent)
3615 return 0;
55007d84 3616
8c0145b6 3617 mutex_lock(&memcg_limit_mutex);
55007d84 3618 /*
d6441637
VD
3619 * If the parent cgroup is not kmem-active now, it cannot be activated
3620 * after this point, because it has at least one child already.
55007d84 3621 */
d6441637 3622 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3623 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3624 mutex_unlock(&memcg_limit_mutex);
55007d84 3625 return ret;
510fc4e1 3626}
d6441637
VD
3627#else
3628static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3629 unsigned long limit)
d6441637
VD
3630{
3631 return -EINVAL;
3632}
6d043990 3633#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3634
628f4235
KH
3635/*
3636 * The user of this function is...
3637 * RES_LIMIT.
3638 */
451af504
TH
3639static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3640 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3641{
451af504 3642 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3643 unsigned long nr_pages;
628f4235
KH
3644 int ret;
3645
451af504 3646 buf = strstrip(buf);
3e32cb2e
JW
3647 ret = page_counter_memparse(buf, &nr_pages);
3648 if (ret)
3649 return ret;
af36f906 3650
3e32cb2e 3651 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3652 case RES_LIMIT:
4b3bde4c
BS
3653 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3654 ret = -EINVAL;
3655 break;
3656 }
3e32cb2e
JW
3657 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3658 case _MEM:
3659 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3660 break;
3e32cb2e
JW
3661 case _MEMSWAP:
3662 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3663 break;
3e32cb2e
JW
3664 case _KMEM:
3665 ret = memcg_update_kmem_limit(memcg, nr_pages);
3666 break;
3667 }
296c81d8 3668 break;
3e32cb2e
JW
3669 case RES_SOFT_LIMIT:
3670 memcg->soft_limit = nr_pages;
3671 ret = 0;
628f4235
KH
3672 break;
3673 }
451af504 3674 return ret ?: nbytes;
8cdea7c0
BS
3675}
3676
6770c64e
TH
3677static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3678 size_t nbytes, loff_t off)
c84872e1 3679{
6770c64e 3680 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3681 struct page_counter *counter;
c84872e1 3682
3e32cb2e
JW
3683 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3684 case _MEM:
3685 counter = &memcg->memory;
3686 break;
3687 case _MEMSWAP:
3688 counter = &memcg->memsw;
3689 break;
3690 case _KMEM:
3691 counter = &memcg->kmem;
3692 break;
3693 default:
3694 BUG();
3695 }
af36f906 3696
3e32cb2e 3697 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3698 case RES_MAX_USAGE:
3e32cb2e 3699 page_counter_reset_watermark(counter);
29f2a4da
PE
3700 break;
3701 case RES_FAILCNT:
3e32cb2e 3702 counter->failcnt = 0;
29f2a4da 3703 break;
3e32cb2e
JW
3704 default:
3705 BUG();
29f2a4da 3706 }
f64c3f54 3707
6770c64e 3708 return nbytes;
c84872e1
PE
3709}
3710
182446d0 3711static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3712 struct cftype *cft)
3713{
182446d0 3714 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3715}
3716
02491447 3717#ifdef CONFIG_MMU
182446d0 3718static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3719 struct cftype *cft, u64 val)
3720{
182446d0 3721 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3722
3723 if (val >= (1 << NR_MOVE_TYPE))
3724 return -EINVAL;
ee5e8472 3725
7dc74be0 3726 /*
ee5e8472
GC
3727 * No kind of locking is needed in here, because ->can_attach() will
3728 * check this value once in the beginning of the process, and then carry
3729 * on with stale data. This means that changes to this value will only
3730 * affect task migrations starting after the change.
7dc74be0 3731 */
c0ff4b85 3732 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3733 return 0;
3734}
02491447 3735#else
182446d0 3736static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3737 struct cftype *cft, u64 val)
3738{
3739 return -ENOSYS;
3740}
3741#endif
7dc74be0 3742
406eb0c9 3743#ifdef CONFIG_NUMA
2da8ca82 3744static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3745{
25485de6
GT
3746 struct numa_stat {
3747 const char *name;
3748 unsigned int lru_mask;
3749 };
3750
3751 static const struct numa_stat stats[] = {
3752 { "total", LRU_ALL },
3753 { "file", LRU_ALL_FILE },
3754 { "anon", LRU_ALL_ANON },
3755 { "unevictable", BIT(LRU_UNEVICTABLE) },
3756 };
3757 const struct numa_stat *stat;
406eb0c9 3758 int nid;
25485de6 3759 unsigned long nr;
2da8ca82 3760 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3761
25485de6
GT
3762 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3763 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3764 seq_printf(m, "%s=%lu", stat->name, nr);
3765 for_each_node_state(nid, N_MEMORY) {
3766 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3767 stat->lru_mask);
3768 seq_printf(m, " N%d=%lu", nid, nr);
3769 }
3770 seq_putc(m, '\n');
406eb0c9 3771 }
406eb0c9 3772
071aee13
YH
3773 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3774 struct mem_cgroup *iter;
3775
3776 nr = 0;
3777 for_each_mem_cgroup_tree(iter, memcg)
3778 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3779 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3780 for_each_node_state(nid, N_MEMORY) {
3781 nr = 0;
3782 for_each_mem_cgroup_tree(iter, memcg)
3783 nr += mem_cgroup_node_nr_lru_pages(
3784 iter, nid, stat->lru_mask);
3785 seq_printf(m, " N%d=%lu", nid, nr);
3786 }
3787 seq_putc(m, '\n');
406eb0c9 3788 }
406eb0c9 3789
406eb0c9
YH
3790 return 0;
3791}
3792#endif /* CONFIG_NUMA */
3793
af7c4b0e
JW
3794static inline void mem_cgroup_lru_names_not_uptodate(void)
3795{
3796 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3797}
3798
2da8ca82 3799static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3800{
2da8ca82 3801 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3802 unsigned long memory, memsw;
af7c4b0e
JW
3803 struct mem_cgroup *mi;
3804 unsigned int i;
406eb0c9 3805
af7c4b0e 3806 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3807 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3808 continue;
af7c4b0e
JW
3809 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3810 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3811 }
7b854121 3812
af7c4b0e
JW
3813 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3814 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3815 mem_cgroup_read_events(memcg, i));
3816
3817 for (i = 0; i < NR_LRU_LISTS; i++)
3818 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3819 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3820
14067bb3 3821 /* Hierarchical information */
3e32cb2e
JW
3822 memory = memsw = PAGE_COUNTER_MAX;
3823 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3824 memory = min(memory, mi->memory.limit);
3825 memsw = min(memsw, mi->memsw.limit);
fee7b548 3826 }
3e32cb2e
JW
3827 seq_printf(m, "hierarchical_memory_limit %llu\n",
3828 (u64)memory * PAGE_SIZE);
3829 if (do_swap_account)
3830 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3831 (u64)memsw * PAGE_SIZE);
7f016ee8 3832
af7c4b0e
JW
3833 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3834 long long val = 0;
3835
bff6bb83 3836 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3837 continue;
af7c4b0e
JW
3838 for_each_mem_cgroup_tree(mi, memcg)
3839 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3840 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3841 }
3842
3843 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3844 unsigned long long val = 0;
3845
3846 for_each_mem_cgroup_tree(mi, memcg)
3847 val += mem_cgroup_read_events(mi, i);
3848 seq_printf(m, "total_%s %llu\n",
3849 mem_cgroup_events_names[i], val);
3850 }
3851
3852 for (i = 0; i < NR_LRU_LISTS; i++) {
3853 unsigned long long val = 0;
3854
3855 for_each_mem_cgroup_tree(mi, memcg)
3856 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3857 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3858 }
14067bb3 3859
7f016ee8 3860#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3861 {
3862 int nid, zid;
3863 struct mem_cgroup_per_zone *mz;
89abfab1 3864 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3865 unsigned long recent_rotated[2] = {0, 0};
3866 unsigned long recent_scanned[2] = {0, 0};
3867
3868 for_each_online_node(nid)
3869 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3870 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3871 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3872
89abfab1
HD
3873 recent_rotated[0] += rstat->recent_rotated[0];
3874 recent_rotated[1] += rstat->recent_rotated[1];
3875 recent_scanned[0] += rstat->recent_scanned[0];
3876 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3877 }
78ccf5b5
JW
3878 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3879 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3880 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3881 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3882 }
3883#endif
3884
d2ceb9b7
KH
3885 return 0;
3886}
3887
182446d0
TH
3888static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3889 struct cftype *cft)
a7885eb8 3890{
182446d0 3891 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3892
1f4c025b 3893 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3894}
3895
182446d0
TH
3896static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3897 struct cftype *cft, u64 val)
a7885eb8 3898{
182446d0 3899 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3900
3dae7fec 3901 if (val > 100)
a7885eb8
KM
3902 return -EINVAL;
3903
14208b0e 3904 if (css->parent)
3dae7fec
JW
3905 memcg->swappiness = val;
3906 else
3907 vm_swappiness = val;
068b38c1 3908
a7885eb8
KM
3909 return 0;
3910}
3911
2e72b634
KS
3912static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3913{
3914 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3915 unsigned long usage;
2e72b634
KS
3916 int i;
3917
3918 rcu_read_lock();
3919 if (!swap)
2c488db2 3920 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3921 else
2c488db2 3922 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3923
3924 if (!t)
3925 goto unlock;
3926
ce00a967 3927 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3928
3929 /*
748dad36 3930 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3931 * If it's not true, a threshold was crossed after last
3932 * call of __mem_cgroup_threshold().
3933 */
5407a562 3934 i = t->current_threshold;
2e72b634
KS
3935
3936 /*
3937 * Iterate backward over array of thresholds starting from
3938 * current_threshold and check if a threshold is crossed.
3939 * If none of thresholds below usage is crossed, we read
3940 * only one element of the array here.
3941 */
3942 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3943 eventfd_signal(t->entries[i].eventfd, 1);
3944
3945 /* i = current_threshold + 1 */
3946 i++;
3947
3948 /*
3949 * Iterate forward over array of thresholds starting from
3950 * current_threshold+1 and check if a threshold is crossed.
3951 * If none of thresholds above usage is crossed, we read
3952 * only one element of the array here.
3953 */
3954 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3955 eventfd_signal(t->entries[i].eventfd, 1);
3956
3957 /* Update current_threshold */
5407a562 3958 t->current_threshold = i - 1;
2e72b634
KS
3959unlock:
3960 rcu_read_unlock();
3961}
3962
3963static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3964{
ad4ca5f4
KS
3965 while (memcg) {
3966 __mem_cgroup_threshold(memcg, false);
3967 if (do_swap_account)
3968 __mem_cgroup_threshold(memcg, true);
3969
3970 memcg = parent_mem_cgroup(memcg);
3971 }
2e72b634
KS
3972}
3973
3974static int compare_thresholds(const void *a, const void *b)
3975{
3976 const struct mem_cgroup_threshold *_a = a;
3977 const struct mem_cgroup_threshold *_b = b;
3978
2bff24a3
GT
3979 if (_a->threshold > _b->threshold)
3980 return 1;
3981
3982 if (_a->threshold < _b->threshold)
3983 return -1;
3984
3985 return 0;
2e72b634
KS
3986}
3987
c0ff4b85 3988static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3989{
3990 struct mem_cgroup_eventfd_list *ev;
3991
2bcf2e92
MH
3992 spin_lock(&memcg_oom_lock);
3993
c0ff4b85 3994 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3995 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3996
3997 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3998 return 0;
3999}
4000
c0ff4b85 4001static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4002{
7d74b06f
KH
4003 struct mem_cgroup *iter;
4004
c0ff4b85 4005 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4006 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4007}
4008
59b6f873 4009static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4010 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4011{
2c488db2
KS
4012 struct mem_cgroup_thresholds *thresholds;
4013 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4014 unsigned long threshold;
4015 unsigned long usage;
2c488db2 4016 int i, size, ret;
2e72b634 4017
3e32cb2e 4018 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4019 if (ret)
4020 return ret;
4021
4022 mutex_lock(&memcg->thresholds_lock);
2c488db2 4023
05b84301 4024 if (type == _MEM) {
2c488db2 4025 thresholds = &memcg->thresholds;
ce00a967 4026 usage = mem_cgroup_usage(memcg, false);
05b84301 4027 } else if (type == _MEMSWAP) {
2c488db2 4028 thresholds = &memcg->memsw_thresholds;
ce00a967 4029 usage = mem_cgroup_usage(memcg, true);
05b84301 4030 } else
2e72b634
KS
4031 BUG();
4032
2e72b634 4033 /* Check if a threshold crossed before adding a new one */
2c488db2 4034 if (thresholds->primary)
2e72b634
KS
4035 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4036
2c488db2 4037 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4038
4039 /* Allocate memory for new array of thresholds */
2c488db2 4040 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4041 GFP_KERNEL);
2c488db2 4042 if (!new) {
2e72b634
KS
4043 ret = -ENOMEM;
4044 goto unlock;
4045 }
2c488db2 4046 new->size = size;
2e72b634
KS
4047
4048 /* Copy thresholds (if any) to new array */
2c488db2
KS
4049 if (thresholds->primary) {
4050 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4051 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4052 }
4053
2e72b634 4054 /* Add new threshold */
2c488db2
KS
4055 new->entries[size - 1].eventfd = eventfd;
4056 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4057
4058 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4059 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4060 compare_thresholds, NULL);
4061
4062 /* Find current threshold */
2c488db2 4063 new->current_threshold = -1;
2e72b634 4064 for (i = 0; i < size; i++) {
748dad36 4065 if (new->entries[i].threshold <= usage) {
2e72b634 4066 /*
2c488db2
KS
4067 * new->current_threshold will not be used until
4068 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4069 * it here.
4070 */
2c488db2 4071 ++new->current_threshold;
748dad36
SZ
4072 } else
4073 break;
2e72b634
KS
4074 }
4075
2c488db2
KS
4076 /* Free old spare buffer and save old primary buffer as spare */
4077 kfree(thresholds->spare);
4078 thresholds->spare = thresholds->primary;
4079
4080 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4081
907860ed 4082 /* To be sure that nobody uses thresholds */
2e72b634
KS
4083 synchronize_rcu();
4084
2e72b634
KS
4085unlock:
4086 mutex_unlock(&memcg->thresholds_lock);
4087
4088 return ret;
4089}
4090
59b6f873 4091static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4092 struct eventfd_ctx *eventfd, const char *args)
4093{
59b6f873 4094 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4095}
4096
59b6f873 4097static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4098 struct eventfd_ctx *eventfd, const char *args)
4099{
59b6f873 4100 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4101}
4102
59b6f873 4103static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4104 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4105{
2c488db2
KS
4106 struct mem_cgroup_thresholds *thresholds;
4107 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4108 unsigned long usage;
2c488db2 4109 int i, j, size;
2e72b634
KS
4110
4111 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4112
4113 if (type == _MEM) {
2c488db2 4114 thresholds = &memcg->thresholds;
ce00a967 4115 usage = mem_cgroup_usage(memcg, false);
05b84301 4116 } else if (type == _MEMSWAP) {
2c488db2 4117 thresholds = &memcg->memsw_thresholds;
ce00a967 4118 usage = mem_cgroup_usage(memcg, true);
05b84301 4119 } else
2e72b634
KS
4120 BUG();
4121
371528ca
AV
4122 if (!thresholds->primary)
4123 goto unlock;
4124
2e72b634
KS
4125 /* Check if a threshold crossed before removing */
4126 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4127
4128 /* Calculate new number of threshold */
2c488db2
KS
4129 size = 0;
4130 for (i = 0; i < thresholds->primary->size; i++) {
4131 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4132 size++;
4133 }
4134
2c488db2 4135 new = thresholds->spare;
907860ed 4136
2e72b634
KS
4137 /* Set thresholds array to NULL if we don't have thresholds */
4138 if (!size) {
2c488db2
KS
4139 kfree(new);
4140 new = NULL;
907860ed 4141 goto swap_buffers;
2e72b634
KS
4142 }
4143
2c488db2 4144 new->size = size;
2e72b634
KS
4145
4146 /* Copy thresholds and find current threshold */
2c488db2
KS
4147 new->current_threshold = -1;
4148 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4149 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4150 continue;
4151
2c488db2 4152 new->entries[j] = thresholds->primary->entries[i];
748dad36 4153 if (new->entries[j].threshold <= usage) {
2e72b634 4154 /*
2c488db2 4155 * new->current_threshold will not be used
2e72b634
KS
4156 * until rcu_assign_pointer(), so it's safe to increment
4157 * it here.
4158 */
2c488db2 4159 ++new->current_threshold;
2e72b634
KS
4160 }
4161 j++;
4162 }
4163
907860ed 4164swap_buffers:
2c488db2
KS
4165 /* Swap primary and spare array */
4166 thresholds->spare = thresholds->primary;
8c757763
SZ
4167 /* If all events are unregistered, free the spare array */
4168 if (!new) {
4169 kfree(thresholds->spare);
4170 thresholds->spare = NULL;
4171 }
4172
2c488db2 4173 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4174
907860ed 4175 /* To be sure that nobody uses thresholds */
2e72b634 4176 synchronize_rcu();
371528ca 4177unlock:
2e72b634 4178 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4179}
c1e862c1 4180
59b6f873 4181static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4182 struct eventfd_ctx *eventfd)
4183{
59b6f873 4184 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4185}
4186
59b6f873 4187static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4188 struct eventfd_ctx *eventfd)
4189{
59b6f873 4190 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4191}
4192
59b6f873 4193static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4194 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4195{
9490ff27 4196 struct mem_cgroup_eventfd_list *event;
9490ff27 4197
9490ff27
KH
4198 event = kmalloc(sizeof(*event), GFP_KERNEL);
4199 if (!event)
4200 return -ENOMEM;
4201
1af8efe9 4202 spin_lock(&memcg_oom_lock);
9490ff27
KH
4203
4204 event->eventfd = eventfd;
4205 list_add(&event->list, &memcg->oom_notify);
4206
4207 /* already in OOM ? */
79dfdacc 4208 if (atomic_read(&memcg->under_oom))
9490ff27 4209 eventfd_signal(eventfd, 1);
1af8efe9 4210 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4211
4212 return 0;
4213}
4214
59b6f873 4215static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4216 struct eventfd_ctx *eventfd)
9490ff27 4217{
9490ff27 4218 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4219
1af8efe9 4220 spin_lock(&memcg_oom_lock);
9490ff27 4221
c0ff4b85 4222 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4223 if (ev->eventfd == eventfd) {
4224 list_del(&ev->list);
4225 kfree(ev);
4226 }
4227 }
4228
1af8efe9 4229 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4230}
4231
2da8ca82 4232static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4233{
2da8ca82 4234 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4235
791badbd
TH
4236 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4237 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4238 return 0;
4239}
4240
182446d0 4241static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4242 struct cftype *cft, u64 val)
4243{
182446d0 4244 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4245
4246 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4247 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4248 return -EINVAL;
4249
c0ff4b85 4250 memcg->oom_kill_disable = val;
4d845ebf 4251 if (!val)
c0ff4b85 4252 memcg_oom_recover(memcg);
3dae7fec 4253
3c11ecf4
KH
4254 return 0;
4255}
4256
c255a458 4257#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4258static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4259{
55007d84
GC
4260 int ret;
4261
2633d7a0 4262 memcg->kmemcg_id = -1;
55007d84
GC
4263 ret = memcg_propagate_kmem(memcg);
4264 if (ret)
4265 return ret;
2633d7a0 4266
1d62e436 4267 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4268}
e5671dfa 4269
10d5ebf4 4270static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4271{
1d62e436 4272 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4273}
e5671dfa 4274#else
cbe128e3 4275static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4276{
4277 return 0;
4278}
d1a4c0b3 4279
10d5ebf4
LZ
4280static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4281{
4282}
e5671dfa
GC
4283#endif
4284
3bc942f3
TH
4285/*
4286 * DO NOT USE IN NEW FILES.
4287 *
4288 * "cgroup.event_control" implementation.
4289 *
4290 * This is way over-engineered. It tries to support fully configurable
4291 * events for each user. Such level of flexibility is completely
4292 * unnecessary especially in the light of the planned unified hierarchy.
4293 *
4294 * Please deprecate this and replace with something simpler if at all
4295 * possible.
4296 */
4297
79bd9814
TH
4298/*
4299 * Unregister event and free resources.
4300 *
4301 * Gets called from workqueue.
4302 */
3bc942f3 4303static void memcg_event_remove(struct work_struct *work)
79bd9814 4304{
3bc942f3
TH
4305 struct mem_cgroup_event *event =
4306 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4307 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4308
4309 remove_wait_queue(event->wqh, &event->wait);
4310
59b6f873 4311 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4312
4313 /* Notify userspace the event is going away. */
4314 eventfd_signal(event->eventfd, 1);
4315
4316 eventfd_ctx_put(event->eventfd);
4317 kfree(event);
59b6f873 4318 css_put(&memcg->css);
79bd9814
TH
4319}
4320
4321/*
4322 * Gets called on POLLHUP on eventfd when user closes it.
4323 *
4324 * Called with wqh->lock held and interrupts disabled.
4325 */
3bc942f3
TH
4326static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4327 int sync, void *key)
79bd9814 4328{
3bc942f3
TH
4329 struct mem_cgroup_event *event =
4330 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4331 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4332 unsigned long flags = (unsigned long)key;
4333
4334 if (flags & POLLHUP) {
4335 /*
4336 * If the event has been detached at cgroup removal, we
4337 * can simply return knowing the other side will cleanup
4338 * for us.
4339 *
4340 * We can't race against event freeing since the other
4341 * side will require wqh->lock via remove_wait_queue(),
4342 * which we hold.
4343 */
fba94807 4344 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4345 if (!list_empty(&event->list)) {
4346 list_del_init(&event->list);
4347 /*
4348 * We are in atomic context, but cgroup_event_remove()
4349 * may sleep, so we have to call it in workqueue.
4350 */
4351 schedule_work(&event->remove);
4352 }
fba94807 4353 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4354 }
4355
4356 return 0;
4357}
4358
3bc942f3 4359static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4360 wait_queue_head_t *wqh, poll_table *pt)
4361{
3bc942f3
TH
4362 struct mem_cgroup_event *event =
4363 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4364
4365 event->wqh = wqh;
4366 add_wait_queue(wqh, &event->wait);
4367}
4368
4369/*
3bc942f3
TH
4370 * DO NOT USE IN NEW FILES.
4371 *
79bd9814
TH
4372 * Parse input and register new cgroup event handler.
4373 *
4374 * Input must be in format '<event_fd> <control_fd> <args>'.
4375 * Interpretation of args is defined by control file implementation.
4376 */
451af504
TH
4377static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4378 char *buf, size_t nbytes, loff_t off)
79bd9814 4379{
451af504 4380 struct cgroup_subsys_state *css = of_css(of);
fba94807 4381 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4382 struct mem_cgroup_event *event;
79bd9814
TH
4383 struct cgroup_subsys_state *cfile_css;
4384 unsigned int efd, cfd;
4385 struct fd efile;
4386 struct fd cfile;
fba94807 4387 const char *name;
79bd9814
TH
4388 char *endp;
4389 int ret;
4390
451af504
TH
4391 buf = strstrip(buf);
4392
4393 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4394 if (*endp != ' ')
4395 return -EINVAL;
451af504 4396 buf = endp + 1;
79bd9814 4397
451af504 4398 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4399 if ((*endp != ' ') && (*endp != '\0'))
4400 return -EINVAL;
451af504 4401 buf = endp + 1;
79bd9814
TH
4402
4403 event = kzalloc(sizeof(*event), GFP_KERNEL);
4404 if (!event)
4405 return -ENOMEM;
4406
59b6f873 4407 event->memcg = memcg;
79bd9814 4408 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4409 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4410 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4411 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4412
4413 efile = fdget(efd);
4414 if (!efile.file) {
4415 ret = -EBADF;
4416 goto out_kfree;
4417 }
4418
4419 event->eventfd = eventfd_ctx_fileget(efile.file);
4420 if (IS_ERR(event->eventfd)) {
4421 ret = PTR_ERR(event->eventfd);
4422 goto out_put_efile;
4423 }
4424
4425 cfile = fdget(cfd);
4426 if (!cfile.file) {
4427 ret = -EBADF;
4428 goto out_put_eventfd;
4429 }
4430
4431 /* the process need read permission on control file */
4432 /* AV: shouldn't we check that it's been opened for read instead? */
4433 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4434 if (ret < 0)
4435 goto out_put_cfile;
4436
fba94807
TH
4437 /*
4438 * Determine the event callbacks and set them in @event. This used
4439 * to be done via struct cftype but cgroup core no longer knows
4440 * about these events. The following is crude but the whole thing
4441 * is for compatibility anyway.
3bc942f3
TH
4442 *
4443 * DO NOT ADD NEW FILES.
fba94807 4444 */
b583043e 4445 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4446
4447 if (!strcmp(name, "memory.usage_in_bytes")) {
4448 event->register_event = mem_cgroup_usage_register_event;
4449 event->unregister_event = mem_cgroup_usage_unregister_event;
4450 } else if (!strcmp(name, "memory.oom_control")) {
4451 event->register_event = mem_cgroup_oom_register_event;
4452 event->unregister_event = mem_cgroup_oom_unregister_event;
4453 } else if (!strcmp(name, "memory.pressure_level")) {
4454 event->register_event = vmpressure_register_event;
4455 event->unregister_event = vmpressure_unregister_event;
4456 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4457 event->register_event = memsw_cgroup_usage_register_event;
4458 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4459 } else {
4460 ret = -EINVAL;
4461 goto out_put_cfile;
4462 }
4463
79bd9814 4464 /*
b5557c4c
TH
4465 * Verify @cfile should belong to @css. Also, remaining events are
4466 * automatically removed on cgroup destruction but the removal is
4467 * asynchronous, so take an extra ref on @css.
79bd9814 4468 */
b583043e 4469 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4470 &memory_cgrp_subsys);
79bd9814 4471 ret = -EINVAL;
5a17f543 4472 if (IS_ERR(cfile_css))
79bd9814 4473 goto out_put_cfile;
5a17f543
TH
4474 if (cfile_css != css) {
4475 css_put(cfile_css);
79bd9814 4476 goto out_put_cfile;
5a17f543 4477 }
79bd9814 4478
451af504 4479 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4480 if (ret)
4481 goto out_put_css;
4482
4483 efile.file->f_op->poll(efile.file, &event->pt);
4484
fba94807
TH
4485 spin_lock(&memcg->event_list_lock);
4486 list_add(&event->list, &memcg->event_list);
4487 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4488
4489 fdput(cfile);
4490 fdput(efile);
4491
451af504 4492 return nbytes;
79bd9814
TH
4493
4494out_put_css:
b5557c4c 4495 css_put(css);
79bd9814
TH
4496out_put_cfile:
4497 fdput(cfile);
4498out_put_eventfd:
4499 eventfd_ctx_put(event->eventfd);
4500out_put_efile:
4501 fdput(efile);
4502out_kfree:
4503 kfree(event);
4504
4505 return ret;
4506}
4507
8cdea7c0
BS
4508static struct cftype mem_cgroup_files[] = {
4509 {
0eea1030 4510 .name = "usage_in_bytes",
8c7c6e34 4511 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4512 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4513 },
c84872e1
PE
4514 {
4515 .name = "max_usage_in_bytes",
8c7c6e34 4516 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4517 .write = mem_cgroup_reset,
791badbd 4518 .read_u64 = mem_cgroup_read_u64,
c84872e1 4519 },
8cdea7c0 4520 {
0eea1030 4521 .name = "limit_in_bytes",
8c7c6e34 4522 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4523 .write = mem_cgroup_write,
791badbd 4524 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4525 },
296c81d8
BS
4526 {
4527 .name = "soft_limit_in_bytes",
4528 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4529 .write = mem_cgroup_write,
791badbd 4530 .read_u64 = mem_cgroup_read_u64,
296c81d8 4531 },
8cdea7c0
BS
4532 {
4533 .name = "failcnt",
8c7c6e34 4534 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4535 .write = mem_cgroup_reset,
791badbd 4536 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4537 },
d2ceb9b7
KH
4538 {
4539 .name = "stat",
2da8ca82 4540 .seq_show = memcg_stat_show,
d2ceb9b7 4541 },
c1e862c1
KH
4542 {
4543 .name = "force_empty",
6770c64e 4544 .write = mem_cgroup_force_empty_write,
c1e862c1 4545 },
18f59ea7
BS
4546 {
4547 .name = "use_hierarchy",
4548 .write_u64 = mem_cgroup_hierarchy_write,
4549 .read_u64 = mem_cgroup_hierarchy_read,
4550 },
79bd9814 4551 {
3bc942f3 4552 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4553 .write = memcg_write_event_control,
79bd9814
TH
4554 .flags = CFTYPE_NO_PREFIX,
4555 .mode = S_IWUGO,
4556 },
a7885eb8
KM
4557 {
4558 .name = "swappiness",
4559 .read_u64 = mem_cgroup_swappiness_read,
4560 .write_u64 = mem_cgroup_swappiness_write,
4561 },
7dc74be0
DN
4562 {
4563 .name = "move_charge_at_immigrate",
4564 .read_u64 = mem_cgroup_move_charge_read,
4565 .write_u64 = mem_cgroup_move_charge_write,
4566 },
9490ff27
KH
4567 {
4568 .name = "oom_control",
2da8ca82 4569 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4570 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4571 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4572 },
70ddf637
AV
4573 {
4574 .name = "pressure_level",
70ddf637 4575 },
406eb0c9
YH
4576#ifdef CONFIG_NUMA
4577 {
4578 .name = "numa_stat",
2da8ca82 4579 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4580 },
4581#endif
510fc4e1
GC
4582#ifdef CONFIG_MEMCG_KMEM
4583 {
4584 .name = "kmem.limit_in_bytes",
4585 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4586 .write = mem_cgroup_write,
791badbd 4587 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4588 },
4589 {
4590 .name = "kmem.usage_in_bytes",
4591 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4592 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4593 },
4594 {
4595 .name = "kmem.failcnt",
4596 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4597 .write = mem_cgroup_reset,
791badbd 4598 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4599 },
4600 {
4601 .name = "kmem.max_usage_in_bytes",
4602 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4603 .write = mem_cgroup_reset,
791badbd 4604 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4605 },
749c5415
GC
4606#ifdef CONFIG_SLABINFO
4607 {
4608 .name = "kmem.slabinfo",
b047501c
VD
4609 .seq_start = slab_start,
4610 .seq_next = slab_next,
4611 .seq_stop = slab_stop,
4612 .seq_show = memcg_slab_show,
749c5415
GC
4613 },
4614#endif
8c7c6e34 4615#endif
6bc10349 4616 { }, /* terminate */
af36f906 4617};
8c7c6e34 4618
2d11085e
MH
4619#ifdef CONFIG_MEMCG_SWAP
4620static struct cftype memsw_cgroup_files[] = {
4621 {
4622 .name = "memsw.usage_in_bytes",
4623 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4624 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4625 },
4626 {
4627 .name = "memsw.max_usage_in_bytes",
4628 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4629 .write = mem_cgroup_reset,
791badbd 4630 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4631 },
4632 {
4633 .name = "memsw.limit_in_bytes",
4634 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4635 .write = mem_cgroup_write,
791badbd 4636 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4637 },
4638 {
4639 .name = "memsw.failcnt",
4640 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4641 .write = mem_cgroup_reset,
791badbd 4642 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4643 },
4644 { }, /* terminate */
4645};
4646#endif
c0ff4b85 4647static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4648{
4649 struct mem_cgroup_per_node *pn;
1ecaab2b 4650 struct mem_cgroup_per_zone *mz;
41e3355d 4651 int zone, tmp = node;
1ecaab2b
KH
4652 /*
4653 * This routine is called against possible nodes.
4654 * But it's BUG to call kmalloc() against offline node.
4655 *
4656 * TODO: this routine can waste much memory for nodes which will
4657 * never be onlined. It's better to use memory hotplug callback
4658 * function.
4659 */
41e3355d
KH
4660 if (!node_state(node, N_NORMAL_MEMORY))
4661 tmp = -1;
17295c88 4662 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4663 if (!pn)
4664 return 1;
1ecaab2b 4665
1ecaab2b
KH
4666 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4667 mz = &pn->zoneinfo[zone];
bea8c150 4668 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4669 mz->usage_in_excess = 0;
4670 mz->on_tree = false;
d79154bb 4671 mz->memcg = memcg;
1ecaab2b 4672 }
54f72fe0 4673 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4674 return 0;
4675}
4676
c0ff4b85 4677static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4678{
54f72fe0 4679 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4680}
4681
33327948
KH
4682static struct mem_cgroup *mem_cgroup_alloc(void)
4683{
d79154bb 4684 struct mem_cgroup *memcg;
8ff69e2c 4685 size_t size;
33327948 4686
8ff69e2c
VD
4687 size = sizeof(struct mem_cgroup);
4688 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4689
8ff69e2c 4690 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4691 if (!memcg)
e7bbcdf3
DC
4692 return NULL;
4693
d79154bb
HD
4694 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4695 if (!memcg->stat)
d2e61b8d 4696 goto out_free;
d79154bb
HD
4697 spin_lock_init(&memcg->pcp_counter_lock);
4698 return memcg;
d2e61b8d
DC
4699
4700out_free:
8ff69e2c 4701 kfree(memcg);
d2e61b8d 4702 return NULL;
33327948
KH
4703}
4704
59927fb9 4705/*
c8b2a36f
GC
4706 * At destroying mem_cgroup, references from swap_cgroup can remain.
4707 * (scanning all at force_empty is too costly...)
4708 *
4709 * Instead of clearing all references at force_empty, we remember
4710 * the number of reference from swap_cgroup and free mem_cgroup when
4711 * it goes down to 0.
4712 *
4713 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4714 */
c8b2a36f
GC
4715
4716static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4717{
c8b2a36f 4718 int node;
59927fb9 4719
bb4cc1a8 4720 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4721
4722 for_each_node(node)
4723 free_mem_cgroup_per_zone_info(memcg, node);
4724
4725 free_percpu(memcg->stat);
4726
a8964b9b 4727 disarm_static_keys(memcg);
8ff69e2c 4728 kfree(memcg);
59927fb9 4729}
3afe36b1 4730
7bcc1bb1
DN
4731/*
4732 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4733 */
e1aab161 4734struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4735{
3e32cb2e 4736 if (!memcg->memory.parent)
7bcc1bb1 4737 return NULL;
3e32cb2e 4738 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4739}
e1aab161 4740EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4741
bb4cc1a8
AM
4742static void __init mem_cgroup_soft_limit_tree_init(void)
4743{
4744 struct mem_cgroup_tree_per_node *rtpn;
4745 struct mem_cgroup_tree_per_zone *rtpz;
4746 int tmp, node, zone;
4747
4748 for_each_node(node) {
4749 tmp = node;
4750 if (!node_state(node, N_NORMAL_MEMORY))
4751 tmp = -1;
4752 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4753 BUG_ON(!rtpn);
4754
4755 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4756
4757 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4758 rtpz = &rtpn->rb_tree_per_zone[zone];
4759 rtpz->rb_root = RB_ROOT;
4760 spin_lock_init(&rtpz->lock);
4761 }
4762 }
4763}
4764
0eb253e2 4765static struct cgroup_subsys_state * __ref
eb95419b 4766mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4767{
d142e3e6 4768 struct mem_cgroup *memcg;
04046e1a 4769 long error = -ENOMEM;
6d12e2d8 4770 int node;
8cdea7c0 4771
c0ff4b85
R
4772 memcg = mem_cgroup_alloc();
4773 if (!memcg)
04046e1a 4774 return ERR_PTR(error);
78fb7466 4775
3ed28fa1 4776 for_each_node(node)
c0ff4b85 4777 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4778 goto free_out;
f64c3f54 4779
c077719b 4780 /* root ? */
eb95419b 4781 if (parent_css == NULL) {
a41c58a6 4782 root_mem_cgroup = memcg;
3e32cb2e
JW
4783 page_counter_init(&memcg->memory, NULL);
4784 page_counter_init(&memcg->memsw, NULL);
4785 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4786 }
28dbc4b6 4787
d142e3e6
GC
4788 memcg->last_scanned_node = MAX_NUMNODES;
4789 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4790 memcg->move_charge_at_immigrate = 0;
4791 mutex_init(&memcg->thresholds_lock);
4792 spin_lock_init(&memcg->move_lock);
70ddf637 4793 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4794 INIT_LIST_HEAD(&memcg->event_list);
4795 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
4796
4797 return &memcg->css;
4798
4799free_out:
4800 __mem_cgroup_free(memcg);
4801 return ERR_PTR(error);
4802}
4803
4804static int
eb95419b 4805mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4806{
eb95419b 4807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4808 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4809 int ret;
d142e3e6 4810
15a4c835 4811 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4812 return -ENOSPC;
4813
63876986 4814 if (!parent)
d142e3e6
GC
4815 return 0;
4816
0999821b 4817 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4818
4819 memcg->use_hierarchy = parent->use_hierarchy;
4820 memcg->oom_kill_disable = parent->oom_kill_disable;
4821 memcg->swappiness = mem_cgroup_swappiness(parent);
4822
4823 if (parent->use_hierarchy) {
3e32cb2e
JW
4824 page_counter_init(&memcg->memory, &parent->memory);
4825 page_counter_init(&memcg->memsw, &parent->memsw);
4826 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4827
7bcc1bb1 4828 /*
8d76a979
LZ
4829 * No need to take a reference to the parent because cgroup
4830 * core guarantees its existence.
7bcc1bb1 4831 */
18f59ea7 4832 } else {
3e32cb2e
JW
4833 page_counter_init(&memcg->memory, NULL);
4834 page_counter_init(&memcg->memsw, NULL);
4835 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4836 /*
4837 * Deeper hierachy with use_hierarchy == false doesn't make
4838 * much sense so let cgroup subsystem know about this
4839 * unfortunate state in our controller.
4840 */
d142e3e6 4841 if (parent != root_mem_cgroup)
073219e9 4842 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4843 }
0999821b 4844 mutex_unlock(&memcg_create_mutex);
d6441637 4845
2f7dd7a4
JW
4846 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4847 if (ret)
4848 return ret;
4849
4850 /*
4851 * Make sure the memcg is initialized: mem_cgroup_iter()
4852 * orders reading memcg->initialized against its callers
4853 * reading the memcg members.
4854 */
4855 smp_store_release(&memcg->initialized, 1);
4856
4857 return 0;
8cdea7c0
BS
4858}
4859
eb95419b 4860static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4861{
eb95419b 4862 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4863 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4864
4865 /*
4866 * Unregister events and notify userspace.
4867 * Notify userspace about cgroup removing only after rmdir of cgroup
4868 * directory to avoid race between userspace and kernelspace.
4869 */
fba94807
TH
4870 spin_lock(&memcg->event_list_lock);
4871 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4872 list_del_init(&event->list);
4873 schedule_work(&event->remove);
4874 }
fba94807 4875 spin_unlock(&memcg->event_list_lock);
ec64f515 4876
776ed0f0 4877 memcg_unregister_all_caches(memcg);
33cb876e 4878 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4879}
4880
eb95419b 4881static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4882{
eb95419b 4883 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4884
10d5ebf4 4885 memcg_destroy_kmem(memcg);
465939a1 4886 __mem_cgroup_free(memcg);
8cdea7c0
BS
4887}
4888
1ced953b
TH
4889/**
4890 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4891 * @css: the target css
4892 *
4893 * Reset the states of the mem_cgroup associated with @css. This is
4894 * invoked when the userland requests disabling on the default hierarchy
4895 * but the memcg is pinned through dependency. The memcg should stop
4896 * applying policies and should revert to the vanilla state as it may be
4897 * made visible again.
4898 *
4899 * The current implementation only resets the essential configurations.
4900 * This needs to be expanded to cover all the visible parts.
4901 */
4902static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4903{
4904 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4905
3e32cb2e
JW
4906 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4907 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4908 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4909 memcg->soft_limit = 0;
1ced953b
TH
4910}
4911
02491447 4912#ifdef CONFIG_MMU
7dc74be0 4913/* Handlers for move charge at task migration. */
854ffa8d 4914static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4915{
05b84301 4916 int ret;
9476db97
JW
4917
4918 /* Try a single bulk charge without reclaim first */
00501b53 4919 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4920 if (!ret) {
854ffa8d 4921 mc.precharge += count;
854ffa8d
DN
4922 return ret;
4923 }
692e7c45 4924 if (ret == -EINTR) {
00501b53 4925 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4926 return ret;
4927 }
9476db97
JW
4928
4929 /* Try charges one by one with reclaim */
854ffa8d 4930 while (count--) {
00501b53 4931 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4932 /*
4933 * In case of failure, any residual charges against
4934 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4935 * later on. However, cancel any charges that are
4936 * bypassed to root right away or they'll be lost.
9476db97 4937 */
692e7c45 4938 if (ret == -EINTR)
00501b53 4939 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4940 if (ret)
38c5d72f 4941 return ret;
854ffa8d 4942 mc.precharge++;
9476db97 4943 cond_resched();
854ffa8d 4944 }
9476db97 4945 return 0;
4ffef5fe
DN
4946}
4947
4948/**
8d32ff84 4949 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4950 * @vma: the vma the pte to be checked belongs
4951 * @addr: the address corresponding to the pte to be checked
4952 * @ptent: the pte to be checked
02491447 4953 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4954 *
4955 * Returns
4956 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4957 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4958 * move charge. if @target is not NULL, the page is stored in target->page
4959 * with extra refcnt got(Callers should handle it).
02491447
DN
4960 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4961 * target for charge migration. if @target is not NULL, the entry is stored
4962 * in target->ent.
4ffef5fe
DN
4963 *
4964 * Called with pte lock held.
4965 */
4ffef5fe
DN
4966union mc_target {
4967 struct page *page;
02491447 4968 swp_entry_t ent;
4ffef5fe
DN
4969};
4970
4ffef5fe 4971enum mc_target_type {
8d32ff84 4972 MC_TARGET_NONE = 0,
4ffef5fe 4973 MC_TARGET_PAGE,
02491447 4974 MC_TARGET_SWAP,
4ffef5fe
DN
4975};
4976
90254a65
DN
4977static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4978 unsigned long addr, pte_t ptent)
4ffef5fe 4979{
90254a65 4980 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4981
90254a65
DN
4982 if (!page || !page_mapped(page))
4983 return NULL;
4984 if (PageAnon(page)) {
4985 /* we don't move shared anon */
4b91355e 4986 if (!move_anon())
90254a65 4987 return NULL;
87946a72
DN
4988 } else if (!move_file())
4989 /* we ignore mapcount for file pages */
90254a65
DN
4990 return NULL;
4991 if (!get_page_unless_zero(page))
4992 return NULL;
4993
4994 return page;
4995}
4996
4b91355e 4997#ifdef CONFIG_SWAP
90254a65
DN
4998static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4999 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5000{
90254a65
DN
5001 struct page *page = NULL;
5002 swp_entry_t ent = pte_to_swp_entry(ptent);
5003
5004 if (!move_anon() || non_swap_entry(ent))
5005 return NULL;
4b91355e
KH
5006 /*
5007 * Because lookup_swap_cache() updates some statistics counter,
5008 * we call find_get_page() with swapper_space directly.
5009 */
33806f06 5010 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5011 if (do_swap_account)
5012 entry->val = ent.val;
5013
5014 return page;
5015}
4b91355e
KH
5016#else
5017static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5018 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5019{
5020 return NULL;
5021}
5022#endif
90254a65 5023
87946a72
DN
5024static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5025 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5026{
5027 struct page *page = NULL;
87946a72
DN
5028 struct address_space *mapping;
5029 pgoff_t pgoff;
5030
5031 if (!vma->vm_file) /* anonymous vma */
5032 return NULL;
5033 if (!move_file())
5034 return NULL;
5035
87946a72
DN
5036 mapping = vma->vm_file->f_mapping;
5037 if (pte_none(ptent))
5038 pgoff = linear_page_index(vma, addr);
5039 else /* pte_file(ptent) is true */
5040 pgoff = pte_to_pgoff(ptent);
5041
5042 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5043#ifdef CONFIG_SWAP
5044 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5045 if (shmem_mapping(mapping)) {
5046 page = find_get_entry(mapping, pgoff);
5047 if (radix_tree_exceptional_entry(page)) {
5048 swp_entry_t swp = radix_to_swp_entry(page);
5049 if (do_swap_account)
5050 *entry = swp;
5051 page = find_get_page(swap_address_space(swp), swp.val);
5052 }
5053 } else
5054 page = find_get_page(mapping, pgoff);
5055#else
5056 page = find_get_page(mapping, pgoff);
aa3b1895 5057#endif
87946a72
DN
5058 return page;
5059}
5060
8d32ff84 5061static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5062 unsigned long addr, pte_t ptent, union mc_target *target)
5063{
5064 struct page *page = NULL;
8d32ff84 5065 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5066 swp_entry_t ent = { .val = 0 };
5067
5068 if (pte_present(ptent))
5069 page = mc_handle_present_pte(vma, addr, ptent);
5070 else if (is_swap_pte(ptent))
5071 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5072 else if (pte_none(ptent) || pte_file(ptent))
5073 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5074
5075 if (!page && !ent.val)
8d32ff84 5076 return ret;
02491447 5077 if (page) {
02491447 5078 /*
0a31bc97 5079 * Do only loose check w/o serialization.
1306a85a 5080 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5081 * not under LRU exclusion.
02491447 5082 */
1306a85a 5083 if (page->mem_cgroup == mc.from) {
02491447
DN
5084 ret = MC_TARGET_PAGE;
5085 if (target)
5086 target->page = page;
5087 }
5088 if (!ret || !target)
5089 put_page(page);
5090 }
90254a65
DN
5091 /* There is a swap entry and a page doesn't exist or isn't charged */
5092 if (ent.val && !ret &&
34c00c31 5093 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5094 ret = MC_TARGET_SWAP;
5095 if (target)
5096 target->ent = ent;
4ffef5fe 5097 }
4ffef5fe
DN
5098 return ret;
5099}
5100
12724850
NH
5101#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5102/*
5103 * We don't consider swapping or file mapped pages because THP does not
5104 * support them for now.
5105 * Caller should make sure that pmd_trans_huge(pmd) is true.
5106 */
5107static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5108 unsigned long addr, pmd_t pmd, union mc_target *target)
5109{
5110 struct page *page = NULL;
12724850
NH
5111 enum mc_target_type ret = MC_TARGET_NONE;
5112
5113 page = pmd_page(pmd);
309381fe 5114 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5115 if (!move_anon())
5116 return ret;
1306a85a 5117 if (page->mem_cgroup == mc.from) {
12724850
NH
5118 ret = MC_TARGET_PAGE;
5119 if (target) {
5120 get_page(page);
5121 target->page = page;
5122 }
5123 }
5124 return ret;
5125}
5126#else
5127static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5128 unsigned long addr, pmd_t pmd, union mc_target *target)
5129{
5130 return MC_TARGET_NONE;
5131}
5132#endif
5133
4ffef5fe
DN
5134static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5135 unsigned long addr, unsigned long end,
5136 struct mm_walk *walk)
5137{
5138 struct vm_area_struct *vma = walk->private;
5139 pte_t *pte;
5140 spinlock_t *ptl;
5141
bf929152 5142 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5143 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5144 mc.precharge += HPAGE_PMD_NR;
bf929152 5145 spin_unlock(ptl);
1a5a9906 5146 return 0;
12724850 5147 }
03319327 5148
45f83cef
AA
5149 if (pmd_trans_unstable(pmd))
5150 return 0;
4ffef5fe
DN
5151 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5152 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5153 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5154 mc.precharge++; /* increment precharge temporarily */
5155 pte_unmap_unlock(pte - 1, ptl);
5156 cond_resched();
5157
7dc74be0
DN
5158 return 0;
5159}
5160
4ffef5fe
DN
5161static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5162{
5163 unsigned long precharge;
5164 struct vm_area_struct *vma;
5165
dfe076b0 5166 down_read(&mm->mmap_sem);
4ffef5fe
DN
5167 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5168 struct mm_walk mem_cgroup_count_precharge_walk = {
5169 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5170 .mm = mm,
5171 .private = vma,
5172 };
5173 if (is_vm_hugetlb_page(vma))
5174 continue;
4ffef5fe
DN
5175 walk_page_range(vma->vm_start, vma->vm_end,
5176 &mem_cgroup_count_precharge_walk);
5177 }
dfe076b0 5178 up_read(&mm->mmap_sem);
4ffef5fe
DN
5179
5180 precharge = mc.precharge;
5181 mc.precharge = 0;
5182
5183 return precharge;
5184}
5185
4ffef5fe
DN
5186static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5187{
dfe076b0
DN
5188 unsigned long precharge = mem_cgroup_count_precharge(mm);
5189
5190 VM_BUG_ON(mc.moving_task);
5191 mc.moving_task = current;
5192 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5193}
5194
dfe076b0
DN
5195/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5196static void __mem_cgroup_clear_mc(void)
4ffef5fe 5197{
2bd9bb20
KH
5198 struct mem_cgroup *from = mc.from;
5199 struct mem_cgroup *to = mc.to;
5200
4ffef5fe 5201 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5202 if (mc.precharge) {
00501b53 5203 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5204 mc.precharge = 0;
5205 }
5206 /*
5207 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5208 * we must uncharge here.
5209 */
5210 if (mc.moved_charge) {
00501b53 5211 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5212 mc.moved_charge = 0;
4ffef5fe 5213 }
483c30b5
DN
5214 /* we must fixup refcnts and charges */
5215 if (mc.moved_swap) {
483c30b5 5216 /* uncharge swap account from the old cgroup */
ce00a967 5217 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5218 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5219
05b84301 5220 /*
3e32cb2e
JW
5221 * we charged both to->memory and to->memsw, so we
5222 * should uncharge to->memory.
05b84301 5223 */
ce00a967 5224 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5225 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5226
e8ea14cc 5227 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5228
4050377b 5229 /* we've already done css_get(mc.to) */
483c30b5
DN
5230 mc.moved_swap = 0;
5231 }
dfe076b0
DN
5232 memcg_oom_recover(from);
5233 memcg_oom_recover(to);
5234 wake_up_all(&mc.waitq);
5235}
5236
5237static void mem_cgroup_clear_mc(void)
5238{
dfe076b0
DN
5239 /*
5240 * we must clear moving_task before waking up waiters at the end of
5241 * task migration.
5242 */
5243 mc.moving_task = NULL;
5244 __mem_cgroup_clear_mc();
2bd9bb20 5245 spin_lock(&mc.lock);
4ffef5fe
DN
5246 mc.from = NULL;
5247 mc.to = NULL;
2bd9bb20 5248 spin_unlock(&mc.lock);
4ffef5fe
DN
5249}
5250
eb95419b 5251static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5252 struct cgroup_taskset *tset)
7dc74be0 5253{
2f7ee569 5254 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5255 int ret = 0;
eb95419b 5256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5257 unsigned long move_charge_at_immigrate;
7dc74be0 5258
ee5e8472
GC
5259 /*
5260 * We are now commited to this value whatever it is. Changes in this
5261 * tunable will only affect upcoming migrations, not the current one.
5262 * So we need to save it, and keep it going.
5263 */
5264 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5265 if (move_charge_at_immigrate) {
7dc74be0
DN
5266 struct mm_struct *mm;
5267 struct mem_cgroup *from = mem_cgroup_from_task(p);
5268
c0ff4b85 5269 VM_BUG_ON(from == memcg);
7dc74be0
DN
5270
5271 mm = get_task_mm(p);
5272 if (!mm)
5273 return 0;
7dc74be0 5274 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5275 if (mm->owner == p) {
5276 VM_BUG_ON(mc.from);
5277 VM_BUG_ON(mc.to);
5278 VM_BUG_ON(mc.precharge);
854ffa8d 5279 VM_BUG_ON(mc.moved_charge);
483c30b5 5280 VM_BUG_ON(mc.moved_swap);
247b1447 5281
2bd9bb20 5282 spin_lock(&mc.lock);
4ffef5fe 5283 mc.from = from;
c0ff4b85 5284 mc.to = memcg;
ee5e8472 5285 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5286 spin_unlock(&mc.lock);
dfe076b0 5287 /* We set mc.moving_task later */
4ffef5fe
DN
5288
5289 ret = mem_cgroup_precharge_mc(mm);
5290 if (ret)
5291 mem_cgroup_clear_mc();
dfe076b0
DN
5292 }
5293 mmput(mm);
7dc74be0
DN
5294 }
5295 return ret;
5296}
5297
eb95419b 5298static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5299 struct cgroup_taskset *tset)
7dc74be0 5300{
4e2f245d
JW
5301 if (mc.to)
5302 mem_cgroup_clear_mc();
7dc74be0
DN
5303}
5304
4ffef5fe
DN
5305static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5306 unsigned long addr, unsigned long end,
5307 struct mm_walk *walk)
7dc74be0 5308{
4ffef5fe
DN
5309 int ret = 0;
5310 struct vm_area_struct *vma = walk->private;
5311 pte_t *pte;
5312 spinlock_t *ptl;
12724850
NH
5313 enum mc_target_type target_type;
5314 union mc_target target;
5315 struct page *page;
4ffef5fe 5316
12724850
NH
5317 /*
5318 * We don't take compound_lock() here but no race with splitting thp
5319 * happens because:
5320 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5321 * under splitting, which means there's no concurrent thp split,
5322 * - if another thread runs into split_huge_page() just after we
5323 * entered this if-block, the thread must wait for page table lock
5324 * to be unlocked in __split_huge_page_splitting(), where the main
5325 * part of thp split is not executed yet.
5326 */
bf929152 5327 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5328 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5329 spin_unlock(ptl);
12724850
NH
5330 return 0;
5331 }
5332 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5333 if (target_type == MC_TARGET_PAGE) {
5334 page = target.page;
5335 if (!isolate_lru_page(page)) {
12724850 5336 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5337 mc.from, mc.to)) {
12724850
NH
5338 mc.precharge -= HPAGE_PMD_NR;
5339 mc.moved_charge += HPAGE_PMD_NR;
5340 }
5341 putback_lru_page(page);
5342 }
5343 put_page(page);
5344 }
bf929152 5345 spin_unlock(ptl);
1a5a9906 5346 return 0;
12724850
NH
5347 }
5348
45f83cef
AA
5349 if (pmd_trans_unstable(pmd))
5350 return 0;
4ffef5fe
DN
5351retry:
5352 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5353 for (; addr != end; addr += PAGE_SIZE) {
5354 pte_t ptent = *(pte++);
02491447 5355 swp_entry_t ent;
4ffef5fe
DN
5356
5357 if (!mc.precharge)
5358 break;
5359
8d32ff84 5360 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5361 case MC_TARGET_PAGE:
5362 page = target.page;
5363 if (isolate_lru_page(page))
5364 goto put;
1306a85a 5365 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5366 mc.precharge--;
854ffa8d
DN
5367 /* we uncharge from mc.from later. */
5368 mc.moved_charge++;
4ffef5fe
DN
5369 }
5370 putback_lru_page(page);
8d32ff84 5371put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5372 put_page(page);
5373 break;
02491447
DN
5374 case MC_TARGET_SWAP:
5375 ent = target.ent;
e91cbb42 5376 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5377 mc.precharge--;
483c30b5
DN
5378 /* we fixup refcnts and charges later. */
5379 mc.moved_swap++;
5380 }
02491447 5381 break;
4ffef5fe
DN
5382 default:
5383 break;
5384 }
5385 }
5386 pte_unmap_unlock(pte - 1, ptl);
5387 cond_resched();
5388
5389 if (addr != end) {
5390 /*
5391 * We have consumed all precharges we got in can_attach().
5392 * We try charge one by one, but don't do any additional
5393 * charges to mc.to if we have failed in charge once in attach()
5394 * phase.
5395 */
854ffa8d 5396 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5397 if (!ret)
5398 goto retry;
5399 }
5400
5401 return ret;
5402}
5403
5404static void mem_cgroup_move_charge(struct mm_struct *mm)
5405{
5406 struct vm_area_struct *vma;
5407
5408 lru_add_drain_all();
312722cb
JW
5409 /*
5410 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5411 * move_lock while we're moving its pages to another memcg.
5412 * Then wait for already started RCU-only updates to finish.
5413 */
5414 atomic_inc(&mc.from->moving_account);
5415 synchronize_rcu();
dfe076b0
DN
5416retry:
5417 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5418 /*
5419 * Someone who are holding the mmap_sem might be waiting in
5420 * waitq. So we cancel all extra charges, wake up all waiters,
5421 * and retry. Because we cancel precharges, we might not be able
5422 * to move enough charges, but moving charge is a best-effort
5423 * feature anyway, so it wouldn't be a big problem.
5424 */
5425 __mem_cgroup_clear_mc();
5426 cond_resched();
5427 goto retry;
5428 }
4ffef5fe
DN
5429 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5430 int ret;
5431 struct mm_walk mem_cgroup_move_charge_walk = {
5432 .pmd_entry = mem_cgroup_move_charge_pte_range,
5433 .mm = mm,
5434 .private = vma,
5435 };
5436 if (is_vm_hugetlb_page(vma))
5437 continue;
4ffef5fe
DN
5438 ret = walk_page_range(vma->vm_start, vma->vm_end,
5439 &mem_cgroup_move_charge_walk);
5440 if (ret)
5441 /*
5442 * means we have consumed all precharges and failed in
5443 * doing additional charge. Just abandon here.
5444 */
5445 break;
5446 }
dfe076b0 5447 up_read(&mm->mmap_sem);
312722cb 5448 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5449}
5450
eb95419b 5451static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5452 struct cgroup_taskset *tset)
67e465a7 5453{
2f7ee569 5454 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5455 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5456
dfe076b0 5457 if (mm) {
a433658c
KM
5458 if (mc.to)
5459 mem_cgroup_move_charge(mm);
dfe076b0
DN
5460 mmput(mm);
5461 }
a433658c
KM
5462 if (mc.to)
5463 mem_cgroup_clear_mc();
67e465a7 5464}
5cfb80a7 5465#else /* !CONFIG_MMU */
eb95419b 5466static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5467 struct cgroup_taskset *tset)
5cfb80a7
DN
5468{
5469 return 0;
5470}
eb95419b 5471static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5472 struct cgroup_taskset *tset)
5cfb80a7
DN
5473{
5474}
eb95419b 5475static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5476 struct cgroup_taskset *tset)
5cfb80a7
DN
5477{
5478}
5479#endif
67e465a7 5480
f00baae7
TH
5481/*
5482 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5483 * to verify whether we're attached to the default hierarchy on each mount
5484 * attempt.
f00baae7 5485 */
eb95419b 5486static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5487{
5488 /*
aa6ec29b 5489 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5490 * guarantees that @root doesn't have any children, so turning it
5491 * on for the root memcg is enough.
5492 */
aa6ec29b 5493 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5494 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5495}
5496
073219e9 5497struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5498 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5499 .css_online = mem_cgroup_css_online,
92fb9748
TH
5500 .css_offline = mem_cgroup_css_offline,
5501 .css_free = mem_cgroup_css_free,
1ced953b 5502 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5503 .can_attach = mem_cgroup_can_attach,
5504 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5505 .attach = mem_cgroup_move_task,
f00baae7 5506 .bind = mem_cgroup_bind,
5577964e 5507 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5508 .early_init = 0,
8cdea7c0 5509};
c077719b 5510
c255a458 5511#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5512static int __init enable_swap_account(char *s)
5513{
a2c8990a 5514 if (!strcmp(s, "1"))
a42c390c 5515 really_do_swap_account = 1;
a2c8990a 5516 else if (!strcmp(s, "0"))
a42c390c
MH
5517 really_do_swap_account = 0;
5518 return 1;
5519}
a2c8990a 5520__setup("swapaccount=", enable_swap_account);
c077719b 5521
2d11085e
MH
5522static void __init memsw_file_init(void)
5523{
2cf669a5
TH
5524 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5525 memsw_cgroup_files));
6acc8b02
MH
5526}
5527
5528static void __init enable_swap_cgroup(void)
5529{
5530 if (!mem_cgroup_disabled() && really_do_swap_account) {
5531 do_swap_account = 1;
5532 memsw_file_init();
5533 }
2d11085e 5534}
6acc8b02 5535
2d11085e 5536#else
6acc8b02 5537static void __init enable_swap_cgroup(void)
2d11085e
MH
5538{
5539}
c077719b 5540#endif
2d11085e 5541
0a31bc97
JW
5542#ifdef CONFIG_MEMCG_SWAP
5543/**
5544 * mem_cgroup_swapout - transfer a memsw charge to swap
5545 * @page: page whose memsw charge to transfer
5546 * @entry: swap entry to move the charge to
5547 *
5548 * Transfer the memsw charge of @page to @entry.
5549 */
5550void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5551{
7bdd143c 5552 struct mem_cgroup *memcg;
0a31bc97
JW
5553 unsigned short oldid;
5554
5555 VM_BUG_ON_PAGE(PageLRU(page), page);
5556 VM_BUG_ON_PAGE(page_count(page), page);
5557
5558 if (!do_swap_account)
5559 return;
5560
1306a85a 5561 memcg = page->mem_cgroup;
0a31bc97
JW
5562
5563 /* Readahead page, never charged */
29833315 5564 if (!memcg)
0a31bc97
JW
5565 return;
5566
7bdd143c 5567 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5568 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5569 mem_cgroup_swap_statistics(memcg, true);
5570
1306a85a 5571 page->mem_cgroup = NULL;
0a31bc97 5572
7bdd143c
JW
5573 if (!mem_cgroup_is_root(memcg))
5574 page_counter_uncharge(&memcg->memory, 1);
5575
5576 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5577 VM_BUG_ON(!irqs_disabled());
0a31bc97 5578
7bdd143c
JW
5579 mem_cgroup_charge_statistics(memcg, page, -1);
5580 memcg_check_events(memcg, page);
0a31bc97
JW
5581}
5582
5583/**
5584 * mem_cgroup_uncharge_swap - uncharge a swap entry
5585 * @entry: swap entry to uncharge
5586 *
5587 * Drop the memsw charge associated with @entry.
5588 */
5589void mem_cgroup_uncharge_swap(swp_entry_t entry)
5590{
5591 struct mem_cgroup *memcg;
5592 unsigned short id;
5593
5594 if (!do_swap_account)
5595 return;
5596
5597 id = swap_cgroup_record(entry, 0);
5598 rcu_read_lock();
5599 memcg = mem_cgroup_lookup(id);
5600 if (memcg) {
ce00a967 5601 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5602 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5603 mem_cgroup_swap_statistics(memcg, false);
5604 css_put(&memcg->css);
5605 }
5606 rcu_read_unlock();
5607}
5608#endif
5609
00501b53
JW
5610/**
5611 * mem_cgroup_try_charge - try charging a page
5612 * @page: page to charge
5613 * @mm: mm context of the victim
5614 * @gfp_mask: reclaim mode
5615 * @memcgp: charged memcg return
5616 *
5617 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5618 * pages according to @gfp_mask if necessary.
5619 *
5620 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5621 * Otherwise, an error code is returned.
5622 *
5623 * After page->mapping has been set up, the caller must finalize the
5624 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5625 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5626 */
5627int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5628 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5629{
5630 struct mem_cgroup *memcg = NULL;
5631 unsigned int nr_pages = 1;
5632 int ret = 0;
5633
5634 if (mem_cgroup_disabled())
5635 goto out;
5636
5637 if (PageSwapCache(page)) {
00501b53
JW
5638 /*
5639 * Every swap fault against a single page tries to charge the
5640 * page, bail as early as possible. shmem_unuse() encounters
5641 * already charged pages, too. The USED bit is protected by
5642 * the page lock, which serializes swap cache removal, which
5643 * in turn serializes uncharging.
5644 */
1306a85a 5645 if (page->mem_cgroup)
00501b53
JW
5646 goto out;
5647 }
5648
5649 if (PageTransHuge(page)) {
5650 nr_pages <<= compound_order(page);
5651 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5652 }
5653
5654 if (do_swap_account && PageSwapCache(page))
5655 memcg = try_get_mem_cgroup_from_page(page);
5656 if (!memcg)
5657 memcg = get_mem_cgroup_from_mm(mm);
5658
5659 ret = try_charge(memcg, gfp_mask, nr_pages);
5660
5661 css_put(&memcg->css);
5662
5663 if (ret == -EINTR) {
5664 memcg = root_mem_cgroup;
5665 ret = 0;
5666 }
5667out:
5668 *memcgp = memcg;
5669 return ret;
5670}
5671
5672/**
5673 * mem_cgroup_commit_charge - commit a page charge
5674 * @page: page to charge
5675 * @memcg: memcg to charge the page to
5676 * @lrucare: page might be on LRU already
5677 *
5678 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5679 * after page->mapping has been set up. This must happen atomically
5680 * as part of the page instantiation, i.e. under the page table lock
5681 * for anonymous pages, under the page lock for page and swap cache.
5682 *
5683 * In addition, the page must not be on the LRU during the commit, to
5684 * prevent racing with task migration. If it might be, use @lrucare.
5685 *
5686 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5687 */
5688void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5689 bool lrucare)
5690{
5691 unsigned int nr_pages = 1;
5692
5693 VM_BUG_ON_PAGE(!page->mapping, page);
5694 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5695
5696 if (mem_cgroup_disabled())
5697 return;
5698 /*
5699 * Swap faults will attempt to charge the same page multiple
5700 * times. But reuse_swap_page() might have removed the page
5701 * from swapcache already, so we can't check PageSwapCache().
5702 */
5703 if (!memcg)
5704 return;
5705
6abb5a86
JW
5706 commit_charge(page, memcg, lrucare);
5707
00501b53
JW
5708 if (PageTransHuge(page)) {
5709 nr_pages <<= compound_order(page);
5710 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5711 }
5712
6abb5a86
JW
5713 local_irq_disable();
5714 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5715 memcg_check_events(memcg, page);
5716 local_irq_enable();
00501b53
JW
5717
5718 if (do_swap_account && PageSwapCache(page)) {
5719 swp_entry_t entry = { .val = page_private(page) };
5720 /*
5721 * The swap entry might not get freed for a long time,
5722 * let's not wait for it. The page already received a
5723 * memory+swap charge, drop the swap entry duplicate.
5724 */
5725 mem_cgroup_uncharge_swap(entry);
5726 }
5727}
5728
5729/**
5730 * mem_cgroup_cancel_charge - cancel a page charge
5731 * @page: page to charge
5732 * @memcg: memcg to charge the page to
5733 *
5734 * Cancel a charge transaction started by mem_cgroup_try_charge().
5735 */
5736void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5737{
5738 unsigned int nr_pages = 1;
5739
5740 if (mem_cgroup_disabled())
5741 return;
5742 /*
5743 * Swap faults will attempt to charge the same page multiple
5744 * times. But reuse_swap_page() might have removed the page
5745 * from swapcache already, so we can't check PageSwapCache().
5746 */
5747 if (!memcg)
5748 return;
5749
5750 if (PageTransHuge(page)) {
5751 nr_pages <<= compound_order(page);
5752 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5753 }
5754
5755 cancel_charge(memcg, nr_pages);
5756}
5757
747db954 5758static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5759 unsigned long nr_anon, unsigned long nr_file,
5760 unsigned long nr_huge, struct page *dummy_page)
5761{
18eca2e6 5762 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5763 unsigned long flags;
5764
ce00a967 5765 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5766 page_counter_uncharge(&memcg->memory, nr_pages);
5767 if (do_swap_account)
5768 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5769 memcg_oom_recover(memcg);
5770 }
747db954
JW
5771
5772 local_irq_save(flags);
5773 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5774 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5775 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5776 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5777 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5778 memcg_check_events(memcg, dummy_page);
5779 local_irq_restore(flags);
e8ea14cc
JW
5780
5781 if (!mem_cgroup_is_root(memcg))
18eca2e6 5782 css_put_many(&memcg->css, nr_pages);
747db954
JW
5783}
5784
5785static void uncharge_list(struct list_head *page_list)
5786{
5787 struct mem_cgroup *memcg = NULL;
747db954
JW
5788 unsigned long nr_anon = 0;
5789 unsigned long nr_file = 0;
5790 unsigned long nr_huge = 0;
5791 unsigned long pgpgout = 0;
747db954
JW
5792 struct list_head *next;
5793 struct page *page;
5794
5795 next = page_list->next;
5796 do {
5797 unsigned int nr_pages = 1;
747db954
JW
5798
5799 page = list_entry(next, struct page, lru);
5800 next = page->lru.next;
5801
5802 VM_BUG_ON_PAGE(PageLRU(page), page);
5803 VM_BUG_ON_PAGE(page_count(page), page);
5804
1306a85a 5805 if (!page->mem_cgroup)
747db954
JW
5806 continue;
5807
5808 /*
5809 * Nobody should be changing or seriously looking at
1306a85a 5810 * page->mem_cgroup at this point, we have fully
29833315 5811 * exclusive access to the page.
747db954
JW
5812 */
5813
1306a85a 5814 if (memcg != page->mem_cgroup) {
747db954 5815 if (memcg) {
18eca2e6
JW
5816 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5817 nr_huge, page);
5818 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5819 }
1306a85a 5820 memcg = page->mem_cgroup;
747db954
JW
5821 }
5822
5823 if (PageTransHuge(page)) {
5824 nr_pages <<= compound_order(page);
5825 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5826 nr_huge += nr_pages;
5827 }
5828
5829 if (PageAnon(page))
5830 nr_anon += nr_pages;
5831 else
5832 nr_file += nr_pages;
5833
1306a85a 5834 page->mem_cgroup = NULL;
747db954
JW
5835
5836 pgpgout++;
5837 } while (next != page_list);
5838
5839 if (memcg)
18eca2e6
JW
5840 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5841 nr_huge, page);
747db954
JW
5842}
5843
0a31bc97
JW
5844/**
5845 * mem_cgroup_uncharge - uncharge a page
5846 * @page: page to uncharge
5847 *
5848 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5849 * mem_cgroup_commit_charge().
5850 */
5851void mem_cgroup_uncharge(struct page *page)
5852{
0a31bc97
JW
5853 if (mem_cgroup_disabled())
5854 return;
5855
747db954 5856 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5857 if (!page->mem_cgroup)
0a31bc97
JW
5858 return;
5859
747db954
JW
5860 INIT_LIST_HEAD(&page->lru);
5861 uncharge_list(&page->lru);
5862}
0a31bc97 5863
747db954
JW
5864/**
5865 * mem_cgroup_uncharge_list - uncharge a list of page
5866 * @page_list: list of pages to uncharge
5867 *
5868 * Uncharge a list of pages previously charged with
5869 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5870 */
5871void mem_cgroup_uncharge_list(struct list_head *page_list)
5872{
5873 if (mem_cgroup_disabled())
5874 return;
0a31bc97 5875
747db954
JW
5876 if (!list_empty(page_list))
5877 uncharge_list(page_list);
0a31bc97
JW
5878}
5879
5880/**
5881 * mem_cgroup_migrate - migrate a charge to another page
5882 * @oldpage: currently charged page
5883 * @newpage: page to transfer the charge to
5884 * @lrucare: both pages might be on the LRU already
5885 *
5886 * Migrate the charge from @oldpage to @newpage.
5887 *
5888 * Both pages must be locked, @newpage->mapping must be set up.
5889 */
5890void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5891 bool lrucare)
5892{
29833315 5893 struct mem_cgroup *memcg;
0a31bc97
JW
5894 int isolated;
5895
5896 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5897 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5898 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5899 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5900 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5901 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5902 newpage);
0a31bc97
JW
5903
5904 if (mem_cgroup_disabled())
5905 return;
5906
5907 /* Page cache replacement: new page already charged? */
1306a85a 5908 if (newpage->mem_cgroup)
0a31bc97
JW
5909 return;
5910
7d5e3245
JW
5911 /*
5912 * Swapcache readahead pages can get migrated before being
5913 * charged, and migration from compaction can happen to an
5914 * uncharged page when the PFN walker finds a page that
5915 * reclaim just put back on the LRU but has not released yet.
5916 */
1306a85a 5917 memcg = oldpage->mem_cgroup;
29833315 5918 if (!memcg)
0a31bc97
JW
5919 return;
5920
0a31bc97
JW
5921 if (lrucare)
5922 lock_page_lru(oldpage, &isolated);
5923
1306a85a 5924 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5925
5926 if (lrucare)
5927 unlock_page_lru(oldpage, isolated);
5928
29833315 5929 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5930}
5931
2d11085e 5932/*
1081312f
MH
5933 * subsys_initcall() for memory controller.
5934 *
5935 * Some parts like hotcpu_notifier() have to be initialized from this context
5936 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5937 * everything that doesn't depend on a specific mem_cgroup structure should
5938 * be initialized from here.
2d11085e
MH
5939 */
5940static int __init mem_cgroup_init(void)
5941{
5942 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 5943 enable_swap_cgroup();
bb4cc1a8 5944 mem_cgroup_soft_limit_tree_init();
e4777496 5945 memcg_stock_init();
2d11085e
MH
5946 return 0;
5947}
5948subsys_initcall(mem_cgroup_init);