mm/memcg: kill mem_cgroup_lru_del()
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
e9f8974f
JW
95enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
7a159cc9
JW
103/*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 112 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
113 MEM_CGROUP_NTARGETS,
114};
115#define THRESHOLDS_EVENTS_TARGET (128)
116#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 117#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 118
d52aa412 119struct mem_cgroup_stat_cpu {
7a159cc9 120 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 122 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
123};
124
527a5ec9
JW
125struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130};
131
6d12e2d8
KH
132/*
133 * per-zone information in memory controller.
134 */
6d12e2d8 135struct mem_cgroup_per_zone {
6290df54 136 struct lruvec lruvec;
1eb49272 137 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 138
527a5ec9
JW
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
f64c3f54
BS
141 struct rb_node tree_node; /* RB tree node */
142 unsigned long long usage_in_excess;/* Set to the value by which */
143 /* the soft limit is exceeded*/
144 bool on_tree;
d79154bb 145 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 146 /* use container_of */
6d12e2d8 147};
6d12e2d8
KH
148
149struct mem_cgroup_per_node {
150 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151};
152
153struct mem_cgroup_lru_info {
154 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155};
156
f64c3f54
BS
157/*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162struct mem_cgroup_tree_per_zone {
163 struct rb_root rb_root;
164 spinlock_t lock;
165};
166
167struct mem_cgroup_tree_per_node {
168 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169};
170
171struct mem_cgroup_tree {
172 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173};
174
175static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
2e72b634
KS
177struct mem_cgroup_threshold {
178 struct eventfd_ctx *eventfd;
179 u64 threshold;
180};
181
9490ff27 182/* For threshold */
2e72b634
KS
183struct mem_cgroup_threshold_ary {
184 /* An array index points to threshold just below usage. */
5407a562 185 int current_threshold;
2e72b634
KS
186 /* Size of entries[] */
187 unsigned int size;
188 /* Array of thresholds */
189 struct mem_cgroup_threshold entries[0];
190};
2c488db2
KS
191
192struct mem_cgroup_thresholds {
193 /* Primary thresholds array */
194 struct mem_cgroup_threshold_ary *primary;
195 /*
196 * Spare threshold array.
197 * This is needed to make mem_cgroup_unregister_event() "never fail".
198 * It must be able to store at least primary->size - 1 entries.
199 */
200 struct mem_cgroup_threshold_ary *spare;
201};
202
9490ff27
KH
203/* for OOM */
204struct mem_cgroup_eventfd_list {
205 struct list_head list;
206 struct eventfd_ctx *eventfd;
207};
2e72b634 208
c0ff4b85
R
209static void mem_cgroup_threshold(struct mem_cgroup *memcg);
210static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 211
8cdea7c0
BS
212/*
213 * The memory controller data structure. The memory controller controls both
214 * page cache and RSS per cgroup. We would eventually like to provide
215 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
216 * to help the administrator determine what knobs to tune.
217 *
218 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
219 * we hit the water mark. May be even add a low water mark, such that
220 * no reclaim occurs from a cgroup at it's low water mark, this is
221 * a feature that will be implemented much later in the future.
8cdea7c0
BS
222 */
223struct mem_cgroup {
224 struct cgroup_subsys_state css;
225 /*
226 * the counter to account for memory usage
227 */
228 struct res_counter res;
59927fb9
HD
229
230 union {
231 /*
232 * the counter to account for mem+swap usage.
233 */
234 struct res_counter memsw;
235
236 /*
237 * rcu_freeing is used only when freeing struct mem_cgroup,
238 * so put it into a union to avoid wasting more memory.
239 * It must be disjoint from the css field. It could be
240 * in a union with the res field, but res plays a much
241 * larger part in mem_cgroup life than memsw, and might
242 * be of interest, even at time of free, when debugging.
243 * So share rcu_head with the less interesting memsw.
244 */
245 struct rcu_head rcu_freeing;
246 /*
247 * But when using vfree(), that cannot be done at
248 * interrupt time, so we must then queue the work.
249 */
250 struct work_struct work_freeing;
251 };
252
78fb7466
PE
253 /*
254 * Per cgroup active and inactive list, similar to the
255 * per zone LRU lists.
78fb7466 256 */
6d12e2d8 257 struct mem_cgroup_lru_info info;
889976db
YH
258 int last_scanned_node;
259#if MAX_NUMNODES > 1
260 nodemask_t scan_nodes;
453a9bf3
KH
261 atomic_t numainfo_events;
262 atomic_t numainfo_updating;
889976db 263#endif
18f59ea7
BS
264 /*
265 * Should the accounting and control be hierarchical, per subtree?
266 */
267 bool use_hierarchy;
79dfdacc
MH
268
269 bool oom_lock;
270 atomic_t under_oom;
271
8c7c6e34 272 atomic_t refcnt;
14797e23 273
1f4c025b 274 int swappiness;
3c11ecf4
KH
275 /* OOM-Killer disable */
276 int oom_kill_disable;
a7885eb8 277
22a668d7
KH
278 /* set when res.limit == memsw.limit */
279 bool memsw_is_minimum;
280
2e72b634
KS
281 /* protect arrays of thresholds */
282 struct mutex thresholds_lock;
283
284 /* thresholds for memory usage. RCU-protected */
2c488db2 285 struct mem_cgroup_thresholds thresholds;
907860ed 286
2e72b634 287 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 288 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 289
9490ff27
KH
290 /* For oom notifier event fd */
291 struct list_head oom_notify;
185efc0f 292
7dc74be0
DN
293 /*
294 * Should we move charges of a task when a task is moved into this
295 * mem_cgroup ? And what type of charges should we move ?
296 */
297 unsigned long move_charge_at_immigrate;
619d094b
KH
298 /*
299 * set > 0 if pages under this cgroup are moving to other cgroup.
300 */
301 atomic_t moving_account;
312734c0
KH
302 /* taken only while moving_account > 0 */
303 spinlock_t move_lock;
d52aa412 304 /*
c62b1a3b 305 * percpu counter.
d52aa412 306 */
c62b1a3b 307 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
308 /*
309 * used when a cpu is offlined or other synchronizations
310 * See mem_cgroup_read_stat().
311 */
312 struct mem_cgroup_stat_cpu nocpu_base;
313 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
314
315#ifdef CONFIG_INET
316 struct tcp_memcontrol tcp_mem;
317#endif
8cdea7c0
BS
318};
319
7dc74be0
DN
320/* Stuffs for move charges at task migration. */
321/*
322 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
323 * left-shifted bitmap of these types.
324 */
325enum move_type {
4ffef5fe 326 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 327 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
328 NR_MOVE_TYPE,
329};
330
4ffef5fe
DN
331/* "mc" and its members are protected by cgroup_mutex */
332static struct move_charge_struct {
b1dd693e 333 spinlock_t lock; /* for from, to */
4ffef5fe
DN
334 struct mem_cgroup *from;
335 struct mem_cgroup *to;
336 unsigned long precharge;
854ffa8d 337 unsigned long moved_charge;
483c30b5 338 unsigned long moved_swap;
8033b97c
DN
339 struct task_struct *moving_task; /* a task moving charges */
340 wait_queue_head_t waitq; /* a waitq for other context */
341} mc = {
2bd9bb20 342 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
343 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
344};
4ffef5fe 345
90254a65
DN
346static bool move_anon(void)
347{
348 return test_bit(MOVE_CHARGE_TYPE_ANON,
349 &mc.to->move_charge_at_immigrate);
350}
351
87946a72
DN
352static bool move_file(void)
353{
354 return test_bit(MOVE_CHARGE_TYPE_FILE,
355 &mc.to->move_charge_at_immigrate);
356}
357
4e416953
BS
358/*
359 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
360 * limit reclaim to prevent infinite loops, if they ever occur.
361 */
362#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
363#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
364
217bc319
KH
365enum charge_type {
366 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
367 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 368 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 369 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 370 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 371 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
372 NR_CHARGE_TYPE,
373};
374
8c7c6e34 375/* for encoding cft->private value on file */
65c64ce8
GC
376#define _MEM (0)
377#define _MEMSWAP (1)
378#define _OOM_TYPE (2)
8c7c6e34
KH
379#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
380#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
381#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
382/* Used for OOM nofiier */
383#define OOM_CONTROL (0)
8c7c6e34 384
75822b44
BS
385/*
386 * Reclaim flags for mem_cgroup_hierarchical_reclaim
387 */
388#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
389#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
390#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
391#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
392
c0ff4b85
R
393static void mem_cgroup_get(struct mem_cgroup *memcg);
394static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
395
396/* Writing them here to avoid exposing memcg's inner layout */
397#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 398#include <net/sock.h>
d1a4c0b3 399#include <net/ip.h>
e1aab161
GC
400
401static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
402void sock_update_memcg(struct sock *sk)
403{
376be5ff 404 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
405 struct mem_cgroup *memcg;
406
407 BUG_ON(!sk->sk_prot->proto_cgroup);
408
f3f511e1
GC
409 /* Socket cloning can throw us here with sk_cgrp already
410 * filled. It won't however, necessarily happen from
411 * process context. So the test for root memcg given
412 * the current task's memcg won't help us in this case.
413 *
414 * Respecting the original socket's memcg is a better
415 * decision in this case.
416 */
417 if (sk->sk_cgrp) {
418 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
419 mem_cgroup_get(sk->sk_cgrp->memcg);
420 return;
421 }
422
e1aab161
GC
423 rcu_read_lock();
424 memcg = mem_cgroup_from_task(current);
425 if (!mem_cgroup_is_root(memcg)) {
426 mem_cgroup_get(memcg);
427 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
428 }
429 rcu_read_unlock();
430 }
431}
432EXPORT_SYMBOL(sock_update_memcg);
433
434void sock_release_memcg(struct sock *sk)
435{
376be5ff 436 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
437 struct mem_cgroup *memcg;
438 WARN_ON(!sk->sk_cgrp->memcg);
439 memcg = sk->sk_cgrp->memcg;
440 mem_cgroup_put(memcg);
441 }
442}
d1a4c0b3 443
319d3b9c 444#ifdef CONFIG_INET
d1a4c0b3
GC
445struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
446{
447 if (!memcg || mem_cgroup_is_root(memcg))
448 return NULL;
449
450 return &memcg->tcp_mem.cg_proto;
451}
452EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
453#endif /* CONFIG_INET */
454#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
455
c0ff4b85 456static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 457
f64c3f54 458static struct mem_cgroup_per_zone *
c0ff4b85 459mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 460{
c0ff4b85 461 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
462}
463
c0ff4b85 464struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 465{
c0ff4b85 466 return &memcg->css;
d324236b
WF
467}
468
f64c3f54 469static struct mem_cgroup_per_zone *
c0ff4b85 470page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 471{
97a6c37b
JW
472 int nid = page_to_nid(page);
473 int zid = page_zonenum(page);
f64c3f54 474
c0ff4b85 475 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
476}
477
478static struct mem_cgroup_tree_per_zone *
479soft_limit_tree_node_zone(int nid, int zid)
480{
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482}
483
484static struct mem_cgroup_tree_per_zone *
485soft_limit_tree_from_page(struct page *page)
486{
487 int nid = page_to_nid(page);
488 int zid = page_zonenum(page);
489
490 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
491}
492
493static void
c0ff4b85 494__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 495 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
496 struct mem_cgroup_tree_per_zone *mctz,
497 unsigned long long new_usage_in_excess)
f64c3f54
BS
498{
499 struct rb_node **p = &mctz->rb_root.rb_node;
500 struct rb_node *parent = NULL;
501 struct mem_cgroup_per_zone *mz_node;
502
503 if (mz->on_tree)
504 return;
505
ef8745c1
KH
506 mz->usage_in_excess = new_usage_in_excess;
507 if (!mz->usage_in_excess)
508 return;
f64c3f54
BS
509 while (*p) {
510 parent = *p;
511 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
512 tree_node);
513 if (mz->usage_in_excess < mz_node->usage_in_excess)
514 p = &(*p)->rb_left;
515 /*
516 * We can't avoid mem cgroups that are over their soft
517 * limit by the same amount
518 */
519 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
520 p = &(*p)->rb_right;
521 }
522 rb_link_node(&mz->tree_node, parent, p);
523 rb_insert_color(&mz->tree_node, &mctz->rb_root);
524 mz->on_tree = true;
4e416953
BS
525}
526
527static void
c0ff4b85 528__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
529 struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
531{
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536}
537
f64c3f54 538static void
c0ff4b85 539mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
540 struct mem_cgroup_per_zone *mz,
541 struct mem_cgroup_tree_per_zone *mctz)
542{
543 spin_lock(&mctz->lock);
c0ff4b85 544 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
545 spin_unlock(&mctz->lock);
546}
547
f64c3f54 548
c0ff4b85 549static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 550{
ef8745c1 551 unsigned long long excess;
f64c3f54
BS
552 struct mem_cgroup_per_zone *mz;
553 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
554 int nid = page_to_nid(page);
555 int zid = page_zonenum(page);
f64c3f54
BS
556 mctz = soft_limit_tree_from_page(page);
557
558 /*
4e649152
KH
559 * Necessary to update all ancestors when hierarchy is used.
560 * because their event counter is not touched.
f64c3f54 561 */
c0ff4b85
R
562 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
563 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
564 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
565 /*
566 * We have to update the tree if mz is on RB-tree or
567 * mem is over its softlimit.
568 */
ef8745c1 569 if (excess || mz->on_tree) {
4e649152
KH
570 spin_lock(&mctz->lock);
571 /* if on-tree, remove it */
572 if (mz->on_tree)
c0ff4b85 573 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 574 /*
ef8745c1
KH
575 * Insert again. mz->usage_in_excess will be updated.
576 * If excess is 0, no tree ops.
4e649152 577 */
c0ff4b85 578 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
579 spin_unlock(&mctz->lock);
580 }
f64c3f54
BS
581 }
582}
583
c0ff4b85 584static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
585{
586 int node, zone;
587 struct mem_cgroup_per_zone *mz;
588 struct mem_cgroup_tree_per_zone *mctz;
589
3ed28fa1 590 for_each_node(node) {
f64c3f54 591 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 592 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 593 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 594 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
595 }
596 }
597}
598
4e416953
BS
599static struct mem_cgroup_per_zone *
600__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
601{
602 struct rb_node *rightmost = NULL;
26251eaf 603 struct mem_cgroup_per_zone *mz;
4e416953
BS
604
605retry:
26251eaf 606 mz = NULL;
4e416953
BS
607 rightmost = rb_last(&mctz->rb_root);
608 if (!rightmost)
609 goto done; /* Nothing to reclaim from */
610
611 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
612 /*
613 * Remove the node now but someone else can add it back,
614 * we will to add it back at the end of reclaim to its correct
615 * position in the tree.
616 */
d79154bb
HD
617 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
618 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
619 !css_tryget(&mz->memcg->css))
4e416953
BS
620 goto retry;
621done:
622 return mz;
623}
624
625static struct mem_cgroup_per_zone *
626mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
627{
628 struct mem_cgroup_per_zone *mz;
629
630 spin_lock(&mctz->lock);
631 mz = __mem_cgroup_largest_soft_limit_node(mctz);
632 spin_unlock(&mctz->lock);
633 return mz;
634}
635
711d3d2c
KH
636/*
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronizion of counter in memcg's counter.
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threashold and synchonization as vmstat[] should be
653 * implemented.
654 */
c0ff4b85 655static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 656 enum mem_cgroup_stat_index idx)
c62b1a3b 657{
7a159cc9 658 long val = 0;
c62b1a3b 659 int cpu;
c62b1a3b 660
711d3d2c
KH
661 get_online_cpus();
662 for_each_online_cpu(cpu)
c0ff4b85 663 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 664#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
665 spin_lock(&memcg->pcp_counter_lock);
666 val += memcg->nocpu_base.count[idx];
667 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
668#endif
669 put_online_cpus();
c62b1a3b
KH
670 return val;
671}
672
c0ff4b85 673static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
674 bool charge)
675{
676 int val = (charge) ? 1 : -1;
c0ff4b85 677 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
678}
679
c0ff4b85 680static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
681 enum mem_cgroup_events_index idx)
682{
683 unsigned long val = 0;
684 int cpu;
685
686 for_each_online_cpu(cpu)
c0ff4b85 687 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 688#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
689 spin_lock(&memcg->pcp_counter_lock);
690 val += memcg->nocpu_base.events[idx];
691 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
692#endif
693 return val;
694}
695
c0ff4b85 696static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 697 bool anon, int nr_pages)
d52aa412 698{
c62b1a3b
KH
699 preempt_disable();
700
b2402857
KH
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
705 if (anon)
706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 707 nr_pages);
d52aa412 708 else
b2402857 709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 710 nr_pages);
55e462b0 711
e401f176
KH
712 /* pagein of a big page is an event. So, ignore page size */
713 if (nr_pages > 0)
c0ff4b85 714 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 715 else {
c0ff4b85 716 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
717 nr_pages = -nr_pages; /* for event */
718 }
e401f176 719
c0ff4b85 720 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 721
c62b1a3b 722 preempt_enable();
6d12e2d8
KH
723}
724
bb2a0de9 725unsigned long
c0ff4b85 726mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 727 unsigned int lru_mask)
889976db
YH
728{
729 struct mem_cgroup_per_zone *mz;
f156ab93 730 enum lru_list lru;
bb2a0de9
KH
731 unsigned long ret = 0;
732
c0ff4b85 733 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 734
f156ab93
HD
735 for_each_lru(lru) {
736 if (BIT(lru) & lru_mask)
737 ret += mz->lru_size[lru];
bb2a0de9
KH
738 }
739 return ret;
740}
741
742static unsigned long
c0ff4b85 743mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
744 int nid, unsigned int lru_mask)
745{
889976db
YH
746 u64 total = 0;
747 int zid;
748
bb2a0de9 749 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
750 total += mem_cgroup_zone_nr_lru_pages(memcg,
751 nid, zid, lru_mask);
bb2a0de9 752
889976db
YH
753 return total;
754}
bb2a0de9 755
c0ff4b85 756static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 757 unsigned int lru_mask)
6d12e2d8 758{
889976db 759 int nid;
6d12e2d8
KH
760 u64 total = 0;
761
bb2a0de9 762 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 763 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 764 return total;
d52aa412
KH
765}
766
f53d7ce3
JW
767static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
768 enum mem_cgroup_events_target target)
7a159cc9
JW
769{
770 unsigned long val, next;
771
4799401f
SR
772 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
773 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 774 /* from time_after() in jiffies.h */
f53d7ce3
JW
775 if ((long)next - (long)val < 0) {
776 switch (target) {
777 case MEM_CGROUP_TARGET_THRESH:
778 next = val + THRESHOLDS_EVENTS_TARGET;
779 break;
780 case MEM_CGROUP_TARGET_SOFTLIMIT:
781 next = val + SOFTLIMIT_EVENTS_TARGET;
782 break;
783 case MEM_CGROUP_TARGET_NUMAINFO:
784 next = val + NUMAINFO_EVENTS_TARGET;
785 break;
786 default:
787 break;
788 }
789 __this_cpu_write(memcg->stat->targets[target], next);
790 return true;
7a159cc9 791 }
f53d7ce3 792 return false;
d2265e6f
KH
793}
794
795/*
796 * Check events in order.
797 *
798 */
c0ff4b85 799static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 800{
4799401f 801 preempt_disable();
d2265e6f 802 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
803 if (unlikely(mem_cgroup_event_ratelimit(memcg,
804 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
805 bool do_softlimit;
806 bool do_numainfo __maybe_unused;
f53d7ce3
JW
807
808 do_softlimit = mem_cgroup_event_ratelimit(memcg,
809 MEM_CGROUP_TARGET_SOFTLIMIT);
810#if MAX_NUMNODES > 1
811 do_numainfo = mem_cgroup_event_ratelimit(memcg,
812 MEM_CGROUP_TARGET_NUMAINFO);
813#endif
814 preempt_enable();
815
c0ff4b85 816 mem_cgroup_threshold(memcg);
f53d7ce3 817 if (unlikely(do_softlimit))
c0ff4b85 818 mem_cgroup_update_tree(memcg, page);
453a9bf3 819#if MAX_NUMNODES > 1
f53d7ce3 820 if (unlikely(do_numainfo))
c0ff4b85 821 atomic_inc(&memcg->numainfo_events);
453a9bf3 822#endif
f53d7ce3
JW
823 } else
824 preempt_enable();
d2265e6f
KH
825}
826
d1a4c0b3 827struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
828{
829 return container_of(cgroup_subsys_state(cont,
830 mem_cgroup_subsys_id), struct mem_cgroup,
831 css);
832}
833
cf475ad2 834struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 835{
31a78f23
BS
836 /*
837 * mm_update_next_owner() may clear mm->owner to NULL
838 * if it races with swapoff, page migration, etc.
839 * So this can be called with p == NULL.
840 */
841 if (unlikely(!p))
842 return NULL;
843
78fb7466
PE
844 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
845 struct mem_cgroup, css);
846}
847
a433658c 848struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 849{
c0ff4b85 850 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
851
852 if (!mm)
853 return NULL;
54595fe2
KH
854 /*
855 * Because we have no locks, mm->owner's may be being moved to other
856 * cgroup. We use css_tryget() here even if this looks
857 * pessimistic (rather than adding locks here).
858 */
859 rcu_read_lock();
860 do {
c0ff4b85
R
861 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
862 if (unlikely(!memcg))
54595fe2 863 break;
c0ff4b85 864 } while (!css_tryget(&memcg->css));
54595fe2 865 rcu_read_unlock();
c0ff4b85 866 return memcg;
54595fe2
KH
867}
868
5660048c
JW
869/**
870 * mem_cgroup_iter - iterate over memory cgroup hierarchy
871 * @root: hierarchy root
872 * @prev: previously returned memcg, NULL on first invocation
873 * @reclaim: cookie for shared reclaim walks, NULL for full walks
874 *
875 * Returns references to children of the hierarchy below @root, or
876 * @root itself, or %NULL after a full round-trip.
877 *
878 * Caller must pass the return value in @prev on subsequent
879 * invocations for reference counting, or use mem_cgroup_iter_break()
880 * to cancel a hierarchy walk before the round-trip is complete.
881 *
882 * Reclaimers can specify a zone and a priority level in @reclaim to
883 * divide up the memcgs in the hierarchy among all concurrent
884 * reclaimers operating on the same zone and priority.
885 */
886struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
887 struct mem_cgroup *prev,
888 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 889{
9f3a0d09
JW
890 struct mem_cgroup *memcg = NULL;
891 int id = 0;
711d3d2c 892
5660048c
JW
893 if (mem_cgroup_disabled())
894 return NULL;
895
9f3a0d09
JW
896 if (!root)
897 root = root_mem_cgroup;
7d74b06f 898
9f3a0d09
JW
899 if (prev && !reclaim)
900 id = css_id(&prev->css);
14067bb3 901
9f3a0d09
JW
902 if (prev && prev != root)
903 css_put(&prev->css);
14067bb3 904
9f3a0d09
JW
905 if (!root->use_hierarchy && root != root_mem_cgroup) {
906 if (prev)
907 return NULL;
908 return root;
909 }
14067bb3 910
9f3a0d09 911 while (!memcg) {
527a5ec9 912 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 913 struct cgroup_subsys_state *css;
711d3d2c 914
527a5ec9
JW
915 if (reclaim) {
916 int nid = zone_to_nid(reclaim->zone);
917 int zid = zone_idx(reclaim->zone);
918 struct mem_cgroup_per_zone *mz;
919
920 mz = mem_cgroup_zoneinfo(root, nid, zid);
921 iter = &mz->reclaim_iter[reclaim->priority];
922 if (prev && reclaim->generation != iter->generation)
923 return NULL;
924 id = iter->position;
925 }
7d74b06f 926
9f3a0d09
JW
927 rcu_read_lock();
928 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
929 if (css) {
930 if (css == &root->css || css_tryget(css))
931 memcg = container_of(css,
932 struct mem_cgroup, css);
933 } else
934 id = 0;
14067bb3 935 rcu_read_unlock();
14067bb3 936
527a5ec9
JW
937 if (reclaim) {
938 iter->position = id;
939 if (!css)
940 iter->generation++;
941 else if (!prev && memcg)
942 reclaim->generation = iter->generation;
943 }
9f3a0d09
JW
944
945 if (prev && !css)
946 return NULL;
947 }
948 return memcg;
14067bb3 949}
7d74b06f 950
5660048c
JW
951/**
952 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
953 * @root: hierarchy root
954 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
955 */
956void mem_cgroup_iter_break(struct mem_cgroup *root,
957 struct mem_cgroup *prev)
9f3a0d09
JW
958{
959 if (!root)
960 root = root_mem_cgroup;
961 if (prev && prev != root)
962 css_put(&prev->css);
963}
7d74b06f 964
9f3a0d09
JW
965/*
966 * Iteration constructs for visiting all cgroups (under a tree). If
967 * loops are exited prematurely (break), mem_cgroup_iter_break() must
968 * be used for reference counting.
969 */
970#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 971 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 972 iter != NULL; \
527a5ec9 973 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 974
9f3a0d09 975#define for_each_mem_cgroup(iter) \
527a5ec9 976 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 977 iter != NULL; \
527a5ec9 978 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 979
c0ff4b85 980static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 981{
c0ff4b85 982 return (memcg == root_mem_cgroup);
4b3bde4c
BS
983}
984
456f998e
YH
985void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
986{
c0ff4b85 987 struct mem_cgroup *memcg;
456f998e
YH
988
989 if (!mm)
990 return;
991
992 rcu_read_lock();
c0ff4b85
R
993 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
994 if (unlikely(!memcg))
456f998e
YH
995 goto out;
996
997 switch (idx) {
456f998e 998 case PGFAULT:
0e574a93
JW
999 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1000 break;
1001 case PGMAJFAULT:
1002 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1003 break;
1004 default:
1005 BUG();
1006 }
1007out:
1008 rcu_read_unlock();
1009}
1010EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1011
925b7673
JW
1012/**
1013 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1014 * @zone: zone of the wanted lruvec
1015 * @mem: memcg of the wanted lruvec
1016 *
1017 * Returns the lru list vector holding pages for the given @zone and
1018 * @mem. This can be the global zone lruvec, if the memory controller
1019 * is disabled.
1020 */
1021struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1022 struct mem_cgroup *memcg)
1023{
1024 struct mem_cgroup_per_zone *mz;
1025
1026 if (mem_cgroup_disabled())
1027 return &zone->lruvec;
1028
1029 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1030 return &mz->lruvec;
1031}
1032
08e552c6
KH
1033/*
1034 * Following LRU functions are allowed to be used without PCG_LOCK.
1035 * Operations are called by routine of global LRU independently from memcg.
1036 * What we have to take care of here is validness of pc->mem_cgroup.
1037 *
1038 * Changes to pc->mem_cgroup happens when
1039 * 1. charge
1040 * 2. moving account
1041 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1042 * It is added to LRU before charge.
1043 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1044 * When moving account, the page is not on LRU. It's isolated.
1045 */
4f98a2fe 1046
925b7673
JW
1047/**
1048 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1049 * @zone: zone of the page
1050 * @page: the page
1051 * @lru: current lru
1052 *
1053 * This function accounts for @page being added to @lru, and returns
1054 * the lruvec for the given @zone and the memcg @page is charged to.
1055 *
1056 * The callsite is then responsible for physically linking the page to
1057 * the returned lruvec->lists[@lru].
1058 */
1059struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1060 enum lru_list lru)
08e552c6 1061{
08e552c6 1062 struct mem_cgroup_per_zone *mz;
925b7673
JW
1063 struct mem_cgroup *memcg;
1064 struct page_cgroup *pc;
6d12e2d8 1065
f8d66542 1066 if (mem_cgroup_disabled())
925b7673
JW
1067 return &zone->lruvec;
1068
08e552c6 1069 pc = lookup_page_cgroup(page);
38c5d72f 1070 memcg = pc->mem_cgroup;
7512102c
HD
1071
1072 /*
1073 * Surreptitiously switch any uncharged page to root:
1074 * an uncharged page off lru does nothing to secure
1075 * its former mem_cgroup from sudden removal.
1076 *
1077 * Our caller holds lru_lock, and PageCgroupUsed is updated
1078 * under page_cgroup lock: between them, they make all uses
1079 * of pc->mem_cgroup safe.
1080 */
1081 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1082 pc->mem_cgroup = memcg = root_mem_cgroup;
1083
925b7673
JW
1084 mz = page_cgroup_zoneinfo(memcg, page);
1085 /* compound_order() is stabilized through lru_lock */
1eb49272 1086 mz->lru_size[lru] += 1 << compound_order(page);
925b7673 1087 return &mz->lruvec;
08e552c6 1088}
b69408e8 1089
925b7673
JW
1090/**
1091 * mem_cgroup_lru_del_list - account for removing an lru page
1092 * @page: the page
1093 * @lru: target lru
1094 *
1095 * This function accounts for @page being removed from @lru.
1096 *
1097 * The callsite is then responsible for physically unlinking
1098 * @page->lru.
3f58a829 1099 */
925b7673 1100void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1101{
1102 struct mem_cgroup_per_zone *mz;
925b7673 1103 struct mem_cgroup *memcg;
3f58a829 1104 struct page_cgroup *pc;
3f58a829
MK
1105
1106 if (mem_cgroup_disabled())
1107 return;
1108
1109 pc = lookup_page_cgroup(page);
38c5d72f
KH
1110 memcg = pc->mem_cgroup;
1111 VM_BUG_ON(!memcg);
925b7673
JW
1112 mz = page_cgroup_zoneinfo(memcg, page);
1113 /* huge page split is done under lru_lock. so, we have no races. */
1eb49272
HD
1114 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1115 mz->lru_size[lru] -= 1 << compound_order(page);
3f58a829
MK
1116}
1117
925b7673
JW
1118/**
1119 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1120 * @zone: zone of the page
1121 * @page: the page
1122 * @from: current lru
1123 * @to: target lru
1124 *
1125 * This function accounts for @page being moved between the lrus @from
1126 * and @to, and returns the lruvec for the given @zone and the memcg
1127 * @page is charged to.
1128 *
1129 * The callsite is then responsible for physically relinking
1130 * @page->lru to the returned lruvec->lists[@to].
1131 */
1132struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1133 struct page *page,
1134 enum lru_list from,
1135 enum lru_list to)
66e1707b 1136{
925b7673
JW
1137 /* XXX: Optimize this, especially for @from == @to */
1138 mem_cgroup_lru_del_list(page, from);
1139 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1140}
544122e5 1141
3e92041d 1142/*
c0ff4b85 1143 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1144 * hierarchy subtree
1145 */
c3ac9a8a
JW
1146bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1147 struct mem_cgroup *memcg)
3e92041d 1148{
91c63734
JW
1149 if (root_memcg == memcg)
1150 return true;
1151 if (!root_memcg->use_hierarchy)
1152 return false;
c3ac9a8a
JW
1153 return css_is_ancestor(&memcg->css, &root_memcg->css);
1154}
1155
1156static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1157 struct mem_cgroup *memcg)
1158{
1159 bool ret;
1160
91c63734 1161 rcu_read_lock();
c3ac9a8a 1162 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1163 rcu_read_unlock();
1164 return ret;
3e92041d
MH
1165}
1166
c0ff4b85 1167int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1168{
1169 int ret;
0b7f569e 1170 struct mem_cgroup *curr = NULL;
158e0a2d 1171 struct task_struct *p;
4c4a2214 1172
158e0a2d 1173 p = find_lock_task_mm(task);
de077d22
DR
1174 if (p) {
1175 curr = try_get_mem_cgroup_from_mm(p->mm);
1176 task_unlock(p);
1177 } else {
1178 /*
1179 * All threads may have already detached their mm's, but the oom
1180 * killer still needs to detect if they have already been oom
1181 * killed to prevent needlessly killing additional tasks.
1182 */
1183 task_lock(task);
1184 curr = mem_cgroup_from_task(task);
1185 if (curr)
1186 css_get(&curr->css);
1187 task_unlock(task);
1188 }
0b7f569e
KH
1189 if (!curr)
1190 return 0;
d31f56db 1191 /*
c0ff4b85 1192 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1193 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1194 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1195 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1196 */
c0ff4b85 1197 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1198 css_put(&curr->css);
4c4a2214
DR
1199 return ret;
1200}
1201
9b272977 1202int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1203{
9b272977
JW
1204 unsigned long inactive_ratio;
1205 int nid = zone_to_nid(zone);
1206 int zid = zone_idx(zone);
14797e23 1207 unsigned long inactive;
9b272977 1208 unsigned long active;
c772be93 1209 unsigned long gb;
14797e23 1210
9b272977
JW
1211 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1212 BIT(LRU_INACTIVE_ANON));
1213 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1214 BIT(LRU_ACTIVE_ANON));
14797e23 1215
c772be93
KM
1216 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1217 if (gb)
1218 inactive_ratio = int_sqrt(10 * gb);
1219 else
1220 inactive_ratio = 1;
1221
9b272977 1222 return inactive * inactive_ratio < active;
14797e23
KM
1223}
1224
9b272977 1225int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1226{
1227 unsigned long active;
1228 unsigned long inactive;
9b272977
JW
1229 int zid = zone_idx(zone);
1230 int nid = zone_to_nid(zone);
56e49d21 1231
9b272977
JW
1232 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1233 BIT(LRU_INACTIVE_FILE));
1234 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1235 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1236
1237 return (active > inactive);
1238}
1239
3e2f41f1
KM
1240struct zone_reclaim_stat *
1241mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1242{
1243 struct page_cgroup *pc;
1244 struct mem_cgroup_per_zone *mz;
1245
1246 if (mem_cgroup_disabled())
1247 return NULL;
1248
1249 pc = lookup_page_cgroup(page);
bd112db8
DN
1250 if (!PageCgroupUsed(pc))
1251 return NULL;
713735b4
JW
1252 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1253 smp_rmb();
97a6c37b 1254 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
89abfab1 1255 return &mz->lruvec.reclaim_stat;
3e2f41f1
KM
1256}
1257
6d61ef40
BS
1258#define mem_cgroup_from_res_counter(counter, member) \
1259 container_of(counter, struct mem_cgroup, member)
1260
19942822 1261/**
9d11ea9f
JW
1262 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1263 * @mem: the memory cgroup
19942822 1264 *
9d11ea9f 1265 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1266 * pages.
19942822 1267 */
c0ff4b85 1268static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1269{
9d11ea9f
JW
1270 unsigned long long margin;
1271
c0ff4b85 1272 margin = res_counter_margin(&memcg->res);
9d11ea9f 1273 if (do_swap_account)
c0ff4b85 1274 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1275 return margin >> PAGE_SHIFT;
19942822
JW
1276}
1277
1f4c025b 1278int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1279{
1280 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1281
1282 /* root ? */
1283 if (cgrp->parent == NULL)
1284 return vm_swappiness;
1285
bf1ff263 1286 return memcg->swappiness;
a7885eb8
KM
1287}
1288
619d094b
KH
1289/*
1290 * memcg->moving_account is used for checking possibility that some thread is
1291 * calling move_account(). When a thread on CPU-A starts moving pages under
1292 * a memcg, other threads should check memcg->moving_account under
1293 * rcu_read_lock(), like this:
1294 *
1295 * CPU-A CPU-B
1296 * rcu_read_lock()
1297 * memcg->moving_account+1 if (memcg->mocing_account)
1298 * take heavy locks.
1299 * synchronize_rcu() update something.
1300 * rcu_read_unlock()
1301 * start move here.
1302 */
4331f7d3
KH
1303
1304/* for quick checking without looking up memcg */
1305atomic_t memcg_moving __read_mostly;
1306
c0ff4b85 1307static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1308{
4331f7d3 1309 atomic_inc(&memcg_moving);
619d094b 1310 atomic_inc(&memcg->moving_account);
32047e2a
KH
1311 synchronize_rcu();
1312}
1313
c0ff4b85 1314static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1315{
619d094b
KH
1316 /*
1317 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1318 * We check NULL in callee rather than caller.
1319 */
4331f7d3
KH
1320 if (memcg) {
1321 atomic_dec(&memcg_moving);
619d094b 1322 atomic_dec(&memcg->moving_account);
4331f7d3 1323 }
32047e2a 1324}
619d094b 1325
32047e2a
KH
1326/*
1327 * 2 routines for checking "mem" is under move_account() or not.
1328 *
13fd1dd9
AM
1329 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1330 * is used for avoiding races in accounting. If true,
32047e2a
KH
1331 * pc->mem_cgroup may be overwritten.
1332 *
1333 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1334 * under hierarchy of moving cgroups. This is for
1335 * waiting at hith-memory prressure caused by "move".
1336 */
1337
13fd1dd9 1338static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1339{
1340 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1341 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1342}
4b534334 1343
c0ff4b85 1344static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1345{
2bd9bb20
KH
1346 struct mem_cgroup *from;
1347 struct mem_cgroup *to;
4b534334 1348 bool ret = false;
2bd9bb20
KH
1349 /*
1350 * Unlike task_move routines, we access mc.to, mc.from not under
1351 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1352 */
1353 spin_lock(&mc.lock);
1354 from = mc.from;
1355 to = mc.to;
1356 if (!from)
1357 goto unlock;
3e92041d 1358
c0ff4b85
R
1359 ret = mem_cgroup_same_or_subtree(memcg, from)
1360 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1361unlock:
1362 spin_unlock(&mc.lock);
4b534334
KH
1363 return ret;
1364}
1365
c0ff4b85 1366static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1367{
1368 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1369 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1370 DEFINE_WAIT(wait);
1371 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1372 /* moving charge context might have finished. */
1373 if (mc.moving_task)
1374 schedule();
1375 finish_wait(&mc.waitq, &wait);
1376 return true;
1377 }
1378 }
1379 return false;
1380}
1381
312734c0
KH
1382/*
1383 * Take this lock when
1384 * - a code tries to modify page's memcg while it's USED.
1385 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1386 * see mem_cgroup_stolen(), too.
312734c0
KH
1387 */
1388static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1389 unsigned long *flags)
1390{
1391 spin_lock_irqsave(&memcg->move_lock, *flags);
1392}
1393
1394static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1395 unsigned long *flags)
1396{
1397 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1398}
1399
e222432b 1400/**
6a6135b6 1401 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1402 * @memcg: The memory cgroup that went over limit
1403 * @p: Task that is going to be killed
1404 *
1405 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1406 * enabled
1407 */
1408void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1409{
1410 struct cgroup *task_cgrp;
1411 struct cgroup *mem_cgrp;
1412 /*
1413 * Need a buffer in BSS, can't rely on allocations. The code relies
1414 * on the assumption that OOM is serialized for memory controller.
1415 * If this assumption is broken, revisit this code.
1416 */
1417 static char memcg_name[PATH_MAX];
1418 int ret;
1419
d31f56db 1420 if (!memcg || !p)
e222432b
BS
1421 return;
1422
e222432b
BS
1423 rcu_read_lock();
1424
1425 mem_cgrp = memcg->css.cgroup;
1426 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1427
1428 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1429 if (ret < 0) {
1430 /*
1431 * Unfortunately, we are unable to convert to a useful name
1432 * But we'll still print out the usage information
1433 */
1434 rcu_read_unlock();
1435 goto done;
1436 }
1437 rcu_read_unlock();
1438
1439 printk(KERN_INFO "Task in %s killed", memcg_name);
1440
1441 rcu_read_lock();
1442 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1443 if (ret < 0) {
1444 rcu_read_unlock();
1445 goto done;
1446 }
1447 rcu_read_unlock();
1448
1449 /*
1450 * Continues from above, so we don't need an KERN_ level
1451 */
1452 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1453done:
1454
1455 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1456 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1457 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1458 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1459 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1460 "failcnt %llu\n",
1461 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1462 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1463 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1464}
1465
81d39c20
KH
1466/*
1467 * This function returns the number of memcg under hierarchy tree. Returns
1468 * 1(self count) if no children.
1469 */
c0ff4b85 1470static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1471{
1472 int num = 0;
7d74b06f
KH
1473 struct mem_cgroup *iter;
1474
c0ff4b85 1475 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1476 num++;
81d39c20
KH
1477 return num;
1478}
1479
a63d83f4
DR
1480/*
1481 * Return the memory (and swap, if configured) limit for a memcg.
1482 */
1483u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1484{
1485 u64 limit;
1486 u64 memsw;
1487
f3e8eb70
JW
1488 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1489 limit += total_swap_pages << PAGE_SHIFT;
1490
a63d83f4
DR
1491 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1492 /*
1493 * If memsw is finite and limits the amount of swap space available
1494 * to this memcg, return that limit.
1495 */
1496 return min(limit, memsw);
1497}
1498
5660048c
JW
1499static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1500 gfp_t gfp_mask,
1501 unsigned long flags)
1502{
1503 unsigned long total = 0;
1504 bool noswap = false;
1505 int loop;
1506
1507 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1508 noswap = true;
1509 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1510 noswap = true;
1511
1512 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1513 if (loop)
1514 drain_all_stock_async(memcg);
1515 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1516 /*
1517 * Allow limit shrinkers, which are triggered directly
1518 * by userspace, to catch signals and stop reclaim
1519 * after minimal progress, regardless of the margin.
1520 */
1521 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1522 break;
1523 if (mem_cgroup_margin(memcg))
1524 break;
1525 /*
1526 * If nothing was reclaimed after two attempts, there
1527 * may be no reclaimable pages in this hierarchy.
1528 */
1529 if (loop && !total)
1530 break;
1531 }
1532 return total;
1533}
1534
4d0c066d
KH
1535/**
1536 * test_mem_cgroup_node_reclaimable
1537 * @mem: the target memcg
1538 * @nid: the node ID to be checked.
1539 * @noswap : specify true here if the user wants flle only information.
1540 *
1541 * This function returns whether the specified memcg contains any
1542 * reclaimable pages on a node. Returns true if there are any reclaimable
1543 * pages in the node.
1544 */
c0ff4b85 1545static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1546 int nid, bool noswap)
1547{
c0ff4b85 1548 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1549 return true;
1550 if (noswap || !total_swap_pages)
1551 return false;
c0ff4b85 1552 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1553 return true;
1554 return false;
1555
1556}
889976db
YH
1557#if MAX_NUMNODES > 1
1558
1559/*
1560 * Always updating the nodemask is not very good - even if we have an empty
1561 * list or the wrong list here, we can start from some node and traverse all
1562 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1563 *
1564 */
c0ff4b85 1565static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1566{
1567 int nid;
453a9bf3
KH
1568 /*
1569 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1570 * pagein/pageout changes since the last update.
1571 */
c0ff4b85 1572 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1573 return;
c0ff4b85 1574 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1575 return;
1576
889976db 1577 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1578 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1579
1580 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1581
c0ff4b85
R
1582 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1583 node_clear(nid, memcg->scan_nodes);
889976db 1584 }
453a9bf3 1585
c0ff4b85
R
1586 atomic_set(&memcg->numainfo_events, 0);
1587 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1588}
1589
1590/*
1591 * Selecting a node where we start reclaim from. Because what we need is just
1592 * reducing usage counter, start from anywhere is O,K. Considering
1593 * memory reclaim from current node, there are pros. and cons.
1594 *
1595 * Freeing memory from current node means freeing memory from a node which
1596 * we'll use or we've used. So, it may make LRU bad. And if several threads
1597 * hit limits, it will see a contention on a node. But freeing from remote
1598 * node means more costs for memory reclaim because of memory latency.
1599 *
1600 * Now, we use round-robin. Better algorithm is welcomed.
1601 */
c0ff4b85 1602int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1603{
1604 int node;
1605
c0ff4b85
R
1606 mem_cgroup_may_update_nodemask(memcg);
1607 node = memcg->last_scanned_node;
889976db 1608
c0ff4b85 1609 node = next_node(node, memcg->scan_nodes);
889976db 1610 if (node == MAX_NUMNODES)
c0ff4b85 1611 node = first_node(memcg->scan_nodes);
889976db
YH
1612 /*
1613 * We call this when we hit limit, not when pages are added to LRU.
1614 * No LRU may hold pages because all pages are UNEVICTABLE or
1615 * memcg is too small and all pages are not on LRU. In that case,
1616 * we use curret node.
1617 */
1618 if (unlikely(node == MAX_NUMNODES))
1619 node = numa_node_id();
1620
c0ff4b85 1621 memcg->last_scanned_node = node;
889976db
YH
1622 return node;
1623}
1624
4d0c066d
KH
1625/*
1626 * Check all nodes whether it contains reclaimable pages or not.
1627 * For quick scan, we make use of scan_nodes. This will allow us to skip
1628 * unused nodes. But scan_nodes is lazily updated and may not cotain
1629 * enough new information. We need to do double check.
1630 */
c0ff4b85 1631bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1632{
1633 int nid;
1634
1635 /*
1636 * quick check...making use of scan_node.
1637 * We can skip unused nodes.
1638 */
c0ff4b85
R
1639 if (!nodes_empty(memcg->scan_nodes)) {
1640 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1641 nid < MAX_NUMNODES;
c0ff4b85 1642 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1643
c0ff4b85 1644 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1645 return true;
1646 }
1647 }
1648 /*
1649 * Check rest of nodes.
1650 */
1651 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1652 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1653 continue;
c0ff4b85 1654 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1655 return true;
1656 }
1657 return false;
1658}
1659
889976db 1660#else
c0ff4b85 1661int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1662{
1663 return 0;
1664}
4d0c066d 1665
c0ff4b85 1666bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1667{
c0ff4b85 1668 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1669}
889976db
YH
1670#endif
1671
5660048c
JW
1672static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1673 struct zone *zone,
1674 gfp_t gfp_mask,
1675 unsigned long *total_scanned)
6d61ef40 1676{
9f3a0d09 1677 struct mem_cgroup *victim = NULL;
5660048c 1678 int total = 0;
04046e1a 1679 int loop = 0;
9d11ea9f 1680 unsigned long excess;
185efc0f 1681 unsigned long nr_scanned;
527a5ec9
JW
1682 struct mem_cgroup_reclaim_cookie reclaim = {
1683 .zone = zone,
1684 .priority = 0,
1685 };
9d11ea9f 1686
c0ff4b85 1687 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1688
4e416953 1689 while (1) {
527a5ec9 1690 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1691 if (!victim) {
04046e1a 1692 loop++;
4e416953
BS
1693 if (loop >= 2) {
1694 /*
1695 * If we have not been able to reclaim
1696 * anything, it might because there are
1697 * no reclaimable pages under this hierarchy
1698 */
5660048c 1699 if (!total)
4e416953 1700 break;
4e416953 1701 /*
25985edc 1702 * We want to do more targeted reclaim.
4e416953
BS
1703 * excess >> 2 is not to excessive so as to
1704 * reclaim too much, nor too less that we keep
1705 * coming back to reclaim from this cgroup
1706 */
1707 if (total >= (excess >> 2) ||
9f3a0d09 1708 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1709 break;
4e416953 1710 }
9f3a0d09 1711 continue;
4e416953 1712 }
5660048c 1713 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1714 continue;
5660048c
JW
1715 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1716 zone, &nr_scanned);
1717 *total_scanned += nr_scanned;
1718 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1719 break;
6d61ef40 1720 }
9f3a0d09 1721 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1722 return total;
6d61ef40
BS
1723}
1724
867578cb
KH
1725/*
1726 * Check OOM-Killer is already running under our hierarchy.
1727 * If someone is running, return false.
1af8efe9 1728 * Has to be called with memcg_oom_lock
867578cb 1729 */
c0ff4b85 1730static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1731{
79dfdacc 1732 struct mem_cgroup *iter, *failed = NULL;
a636b327 1733
9f3a0d09 1734 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1735 if (iter->oom_lock) {
79dfdacc
MH
1736 /*
1737 * this subtree of our hierarchy is already locked
1738 * so we cannot give a lock.
1739 */
79dfdacc 1740 failed = iter;
9f3a0d09
JW
1741 mem_cgroup_iter_break(memcg, iter);
1742 break;
23751be0
JW
1743 } else
1744 iter->oom_lock = true;
7d74b06f 1745 }
867578cb 1746
79dfdacc 1747 if (!failed)
23751be0 1748 return true;
79dfdacc
MH
1749
1750 /*
1751 * OK, we failed to lock the whole subtree so we have to clean up
1752 * what we set up to the failing subtree
1753 */
9f3a0d09 1754 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1755 if (iter == failed) {
9f3a0d09
JW
1756 mem_cgroup_iter_break(memcg, iter);
1757 break;
79dfdacc
MH
1758 }
1759 iter->oom_lock = false;
1760 }
23751be0 1761 return false;
a636b327 1762}
0b7f569e 1763
79dfdacc 1764/*
1af8efe9 1765 * Has to be called with memcg_oom_lock
79dfdacc 1766 */
c0ff4b85 1767static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1768{
7d74b06f
KH
1769 struct mem_cgroup *iter;
1770
c0ff4b85 1771 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1772 iter->oom_lock = false;
1773 return 0;
1774}
1775
c0ff4b85 1776static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1777{
1778 struct mem_cgroup *iter;
1779
c0ff4b85 1780 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1781 atomic_inc(&iter->under_oom);
1782}
1783
c0ff4b85 1784static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1785{
1786 struct mem_cgroup *iter;
1787
867578cb
KH
1788 /*
1789 * When a new child is created while the hierarchy is under oom,
1790 * mem_cgroup_oom_lock() may not be called. We have to use
1791 * atomic_add_unless() here.
1792 */
c0ff4b85 1793 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1794 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1795}
1796
1af8efe9 1797static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1798static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1799
dc98df5a 1800struct oom_wait_info {
d79154bb 1801 struct mem_cgroup *memcg;
dc98df5a
KH
1802 wait_queue_t wait;
1803};
1804
1805static int memcg_oom_wake_function(wait_queue_t *wait,
1806 unsigned mode, int sync, void *arg)
1807{
d79154bb
HD
1808 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1809 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1810 struct oom_wait_info *oom_wait_info;
1811
1812 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1813 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1814
dc98df5a 1815 /*
d79154bb 1816 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1817 * Then we can use css_is_ancestor without taking care of RCU.
1818 */
c0ff4b85
R
1819 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1820 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1821 return 0;
dc98df5a
KH
1822 return autoremove_wake_function(wait, mode, sync, arg);
1823}
1824
c0ff4b85 1825static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1826{
c0ff4b85
R
1827 /* for filtering, pass "memcg" as argument. */
1828 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1829}
1830
c0ff4b85 1831static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1832{
c0ff4b85
R
1833 if (memcg && atomic_read(&memcg->under_oom))
1834 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1835}
1836
867578cb
KH
1837/*
1838 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1839 */
e845e199 1840bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1841{
dc98df5a 1842 struct oom_wait_info owait;
3c11ecf4 1843 bool locked, need_to_kill;
867578cb 1844
d79154bb 1845 owait.memcg = memcg;
dc98df5a
KH
1846 owait.wait.flags = 0;
1847 owait.wait.func = memcg_oom_wake_function;
1848 owait.wait.private = current;
1849 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1850 need_to_kill = true;
c0ff4b85 1851 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1852
c0ff4b85 1853 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1854 spin_lock(&memcg_oom_lock);
c0ff4b85 1855 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1856 /*
1857 * Even if signal_pending(), we can't quit charge() loop without
1858 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1859 * under OOM is always welcomed, use TASK_KILLABLE here.
1860 */
3c11ecf4 1861 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1862 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1863 need_to_kill = false;
1864 if (locked)
c0ff4b85 1865 mem_cgroup_oom_notify(memcg);
1af8efe9 1866 spin_unlock(&memcg_oom_lock);
867578cb 1867
3c11ecf4
KH
1868 if (need_to_kill) {
1869 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1870 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1871 } else {
867578cb 1872 schedule();
dc98df5a 1873 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1874 }
1af8efe9 1875 spin_lock(&memcg_oom_lock);
79dfdacc 1876 if (locked)
c0ff4b85
R
1877 mem_cgroup_oom_unlock(memcg);
1878 memcg_wakeup_oom(memcg);
1af8efe9 1879 spin_unlock(&memcg_oom_lock);
867578cb 1880
c0ff4b85 1881 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1882
867578cb
KH
1883 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1884 return false;
1885 /* Give chance to dying process */
715a5ee8 1886 schedule_timeout_uninterruptible(1);
867578cb 1887 return true;
0b7f569e
KH
1888}
1889
d69b042f
BS
1890/*
1891 * Currently used to update mapped file statistics, but the routine can be
1892 * generalized to update other statistics as well.
32047e2a
KH
1893 *
1894 * Notes: Race condition
1895 *
1896 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1897 * it tends to be costly. But considering some conditions, we doesn't need
1898 * to do so _always_.
1899 *
1900 * Considering "charge", lock_page_cgroup() is not required because all
1901 * file-stat operations happen after a page is attached to radix-tree. There
1902 * are no race with "charge".
1903 *
1904 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1905 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1906 * if there are race with "uncharge". Statistics itself is properly handled
1907 * by flags.
1908 *
1909 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1910 * small, we check mm->moving_account and detect there are possibility of race
1911 * If there is, we take a lock.
d69b042f 1912 */
26174efd 1913
89c06bd5
KH
1914void __mem_cgroup_begin_update_page_stat(struct page *page,
1915 bool *locked, unsigned long *flags)
1916{
1917 struct mem_cgroup *memcg;
1918 struct page_cgroup *pc;
1919
1920 pc = lookup_page_cgroup(page);
1921again:
1922 memcg = pc->mem_cgroup;
1923 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1924 return;
1925 /*
1926 * If this memory cgroup is not under account moving, we don't
1927 * need to take move_lock_page_cgroup(). Because we already hold
1928 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1929 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1930 */
13fd1dd9 1931 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1932 return;
1933
1934 move_lock_mem_cgroup(memcg, flags);
1935 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1936 move_unlock_mem_cgroup(memcg, flags);
1937 goto again;
1938 }
1939 *locked = true;
1940}
1941
1942void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1943{
1944 struct page_cgroup *pc = lookup_page_cgroup(page);
1945
1946 /*
1947 * It's guaranteed that pc->mem_cgroup never changes while
1948 * lock is held because a routine modifies pc->mem_cgroup
1949 * should take move_lock_page_cgroup().
1950 */
1951 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1952}
1953
2a7106f2
GT
1954void mem_cgroup_update_page_stat(struct page *page,
1955 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1956{
c0ff4b85 1957 struct mem_cgroup *memcg;
32047e2a 1958 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1959 unsigned long uninitialized_var(flags);
d69b042f 1960
cfa44946 1961 if (mem_cgroup_disabled())
d69b042f 1962 return;
89c06bd5 1963
c0ff4b85
R
1964 memcg = pc->mem_cgroup;
1965 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1966 return;
26174efd 1967
26174efd 1968 switch (idx) {
2a7106f2 1969 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1970 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1971 break;
1972 default:
1973 BUG();
8725d541 1974 }
d69b042f 1975
c0ff4b85 1976 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1977}
26174efd 1978
cdec2e42
KH
1979/*
1980 * size of first charge trial. "32" comes from vmscan.c's magic value.
1981 * TODO: maybe necessary to use big numbers in big irons.
1982 */
7ec99d62 1983#define CHARGE_BATCH 32U
cdec2e42
KH
1984struct memcg_stock_pcp {
1985 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1986 unsigned int nr_pages;
cdec2e42 1987 struct work_struct work;
26fe6168
KH
1988 unsigned long flags;
1989#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1990};
1991static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1992static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1993
1994/*
11c9ea4e 1995 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1996 * from local stock and true is returned. If the stock is 0 or charges from a
1997 * cgroup which is not current target, returns false. This stock will be
1998 * refilled.
1999 */
c0ff4b85 2000static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2001{
2002 struct memcg_stock_pcp *stock;
2003 bool ret = true;
2004
2005 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2006 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2007 stock->nr_pages--;
cdec2e42
KH
2008 else /* need to call res_counter_charge */
2009 ret = false;
2010 put_cpu_var(memcg_stock);
2011 return ret;
2012}
2013
2014/*
2015 * Returns stocks cached in percpu to res_counter and reset cached information.
2016 */
2017static void drain_stock(struct memcg_stock_pcp *stock)
2018{
2019 struct mem_cgroup *old = stock->cached;
2020
11c9ea4e
JW
2021 if (stock->nr_pages) {
2022 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2023
2024 res_counter_uncharge(&old->res, bytes);
cdec2e42 2025 if (do_swap_account)
11c9ea4e
JW
2026 res_counter_uncharge(&old->memsw, bytes);
2027 stock->nr_pages = 0;
cdec2e42
KH
2028 }
2029 stock->cached = NULL;
cdec2e42
KH
2030}
2031
2032/*
2033 * This must be called under preempt disabled or must be called by
2034 * a thread which is pinned to local cpu.
2035 */
2036static void drain_local_stock(struct work_struct *dummy)
2037{
2038 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2039 drain_stock(stock);
26fe6168 2040 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2041}
2042
2043/*
2044 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2045 * This will be consumed by consume_stock() function, later.
cdec2e42 2046 */
c0ff4b85 2047static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2048{
2049 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2050
c0ff4b85 2051 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2052 drain_stock(stock);
c0ff4b85 2053 stock->cached = memcg;
cdec2e42 2054 }
11c9ea4e 2055 stock->nr_pages += nr_pages;
cdec2e42
KH
2056 put_cpu_var(memcg_stock);
2057}
2058
2059/*
c0ff4b85 2060 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2061 * of the hierarchy under it. sync flag says whether we should block
2062 * until the work is done.
cdec2e42 2063 */
c0ff4b85 2064static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2065{
26fe6168 2066 int cpu, curcpu;
d38144b7 2067
cdec2e42 2068 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2069 get_online_cpus();
5af12d0e 2070 curcpu = get_cpu();
cdec2e42
KH
2071 for_each_online_cpu(cpu) {
2072 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2073 struct mem_cgroup *memcg;
26fe6168 2074
c0ff4b85
R
2075 memcg = stock->cached;
2076 if (!memcg || !stock->nr_pages)
26fe6168 2077 continue;
c0ff4b85 2078 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2079 continue;
d1a05b69
MH
2080 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2081 if (cpu == curcpu)
2082 drain_local_stock(&stock->work);
2083 else
2084 schedule_work_on(cpu, &stock->work);
2085 }
cdec2e42 2086 }
5af12d0e 2087 put_cpu();
d38144b7
MH
2088
2089 if (!sync)
2090 goto out;
2091
2092 for_each_online_cpu(cpu) {
2093 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2094 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2095 flush_work(&stock->work);
2096 }
2097out:
cdec2e42 2098 put_online_cpus();
d38144b7
MH
2099}
2100
2101/*
2102 * Tries to drain stocked charges in other cpus. This function is asynchronous
2103 * and just put a work per cpu for draining localy on each cpu. Caller can
2104 * expects some charges will be back to res_counter later but cannot wait for
2105 * it.
2106 */
c0ff4b85 2107static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2108{
9f50fad6
MH
2109 /*
2110 * If someone calls draining, avoid adding more kworker runs.
2111 */
2112 if (!mutex_trylock(&percpu_charge_mutex))
2113 return;
c0ff4b85 2114 drain_all_stock(root_memcg, false);
9f50fad6 2115 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2116}
2117
2118/* This is a synchronous drain interface. */
c0ff4b85 2119static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2120{
2121 /* called when force_empty is called */
9f50fad6 2122 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2123 drain_all_stock(root_memcg, true);
9f50fad6 2124 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2125}
2126
711d3d2c
KH
2127/*
2128 * This function drains percpu counter value from DEAD cpu and
2129 * move it to local cpu. Note that this function can be preempted.
2130 */
c0ff4b85 2131static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2132{
2133 int i;
2134
c0ff4b85 2135 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2136 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2137 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2138
c0ff4b85
R
2139 per_cpu(memcg->stat->count[i], cpu) = 0;
2140 memcg->nocpu_base.count[i] += x;
711d3d2c 2141 }
e9f8974f 2142 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2143 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2144
c0ff4b85
R
2145 per_cpu(memcg->stat->events[i], cpu) = 0;
2146 memcg->nocpu_base.events[i] += x;
e9f8974f 2147 }
c0ff4b85 2148 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2149}
2150
2151static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2152 unsigned long action,
2153 void *hcpu)
2154{
2155 int cpu = (unsigned long)hcpu;
2156 struct memcg_stock_pcp *stock;
711d3d2c 2157 struct mem_cgroup *iter;
cdec2e42 2158
619d094b 2159 if (action == CPU_ONLINE)
1489ebad 2160 return NOTIFY_OK;
1489ebad 2161
d833049b 2162 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2163 return NOTIFY_OK;
711d3d2c 2164
9f3a0d09 2165 for_each_mem_cgroup(iter)
711d3d2c
KH
2166 mem_cgroup_drain_pcp_counter(iter, cpu);
2167
cdec2e42
KH
2168 stock = &per_cpu(memcg_stock, cpu);
2169 drain_stock(stock);
2170 return NOTIFY_OK;
2171}
2172
4b534334
KH
2173
2174/* See __mem_cgroup_try_charge() for details */
2175enum {
2176 CHARGE_OK, /* success */
2177 CHARGE_RETRY, /* need to retry but retry is not bad */
2178 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2179 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2180 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2181};
2182
c0ff4b85 2183static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2184 unsigned int nr_pages, bool oom_check)
4b534334 2185{
7ec99d62 2186 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2187 struct mem_cgroup *mem_over_limit;
2188 struct res_counter *fail_res;
2189 unsigned long flags = 0;
2190 int ret;
2191
c0ff4b85 2192 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2193
2194 if (likely(!ret)) {
2195 if (!do_swap_account)
2196 return CHARGE_OK;
c0ff4b85 2197 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2198 if (likely(!ret))
2199 return CHARGE_OK;
2200
c0ff4b85 2201 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2202 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2203 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2204 } else
2205 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2206 /*
7ec99d62
JW
2207 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2208 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2209 *
2210 * Never reclaim on behalf of optional batching, retry with a
2211 * single page instead.
2212 */
7ec99d62 2213 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2214 return CHARGE_RETRY;
2215
2216 if (!(gfp_mask & __GFP_WAIT))
2217 return CHARGE_WOULDBLOCK;
2218
5660048c 2219 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2220 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2221 return CHARGE_RETRY;
4b534334 2222 /*
19942822
JW
2223 * Even though the limit is exceeded at this point, reclaim
2224 * may have been able to free some pages. Retry the charge
2225 * before killing the task.
2226 *
2227 * Only for regular pages, though: huge pages are rather
2228 * unlikely to succeed so close to the limit, and we fall back
2229 * to regular pages anyway in case of failure.
4b534334 2230 */
7ec99d62 2231 if (nr_pages == 1 && ret)
4b534334
KH
2232 return CHARGE_RETRY;
2233
2234 /*
2235 * At task move, charge accounts can be doubly counted. So, it's
2236 * better to wait until the end of task_move if something is going on.
2237 */
2238 if (mem_cgroup_wait_acct_move(mem_over_limit))
2239 return CHARGE_RETRY;
2240
2241 /* If we don't need to call oom-killer at el, return immediately */
2242 if (!oom_check)
2243 return CHARGE_NOMEM;
2244 /* check OOM */
e845e199 2245 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2246 return CHARGE_OOM_DIE;
2247
2248 return CHARGE_RETRY;
2249}
2250
f817ed48 2251/*
38c5d72f
KH
2252 * __mem_cgroup_try_charge() does
2253 * 1. detect memcg to be charged against from passed *mm and *ptr,
2254 * 2. update res_counter
2255 * 3. call memory reclaim if necessary.
2256 *
2257 * In some special case, if the task is fatal, fatal_signal_pending() or
2258 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2259 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2260 * as possible without any hazards. 2: all pages should have a valid
2261 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2262 * pointer, that is treated as a charge to root_mem_cgroup.
2263 *
2264 * So __mem_cgroup_try_charge() will return
2265 * 0 ... on success, filling *ptr with a valid memcg pointer.
2266 * -ENOMEM ... charge failure because of resource limits.
2267 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2268 *
2269 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2270 * the oom-killer can be invoked.
8a9f3ccd 2271 */
f817ed48 2272static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2273 gfp_t gfp_mask,
7ec99d62 2274 unsigned int nr_pages,
c0ff4b85 2275 struct mem_cgroup **ptr,
7ec99d62 2276 bool oom)
8a9f3ccd 2277{
7ec99d62 2278 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2279 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2280 struct mem_cgroup *memcg = NULL;
4b534334 2281 int ret;
a636b327 2282
867578cb
KH
2283 /*
2284 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2285 * in system level. So, allow to go ahead dying process in addition to
2286 * MEMDIE process.
2287 */
2288 if (unlikely(test_thread_flag(TIF_MEMDIE)
2289 || fatal_signal_pending(current)))
2290 goto bypass;
a636b327 2291
8a9f3ccd 2292 /*
3be91277
HD
2293 * We always charge the cgroup the mm_struct belongs to.
2294 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2295 * thread group leader migrates. It's possible that mm is not
2296 * set, if so charge the init_mm (happens for pagecache usage).
2297 */
c0ff4b85 2298 if (!*ptr && !mm)
38c5d72f 2299 *ptr = root_mem_cgroup;
f75ca962 2300again:
c0ff4b85
R
2301 if (*ptr) { /* css should be a valid one */
2302 memcg = *ptr;
2303 VM_BUG_ON(css_is_removed(&memcg->css));
2304 if (mem_cgroup_is_root(memcg))
f75ca962 2305 goto done;
c0ff4b85 2306 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2307 goto done;
c0ff4b85 2308 css_get(&memcg->css);
4b534334 2309 } else {
f75ca962 2310 struct task_struct *p;
54595fe2 2311
f75ca962
KH
2312 rcu_read_lock();
2313 p = rcu_dereference(mm->owner);
f75ca962 2314 /*
ebb76ce1 2315 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2316 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2317 * race with swapoff. Then, we have small risk of mis-accouning.
2318 * But such kind of mis-account by race always happens because
2319 * we don't have cgroup_mutex(). It's overkill and we allo that
2320 * small race, here.
2321 * (*) swapoff at el will charge against mm-struct not against
2322 * task-struct. So, mm->owner can be NULL.
f75ca962 2323 */
c0ff4b85 2324 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2325 if (!memcg)
2326 memcg = root_mem_cgroup;
2327 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2328 rcu_read_unlock();
2329 goto done;
2330 }
c0ff4b85 2331 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2332 /*
2333 * It seems dagerous to access memcg without css_get().
2334 * But considering how consume_stok works, it's not
2335 * necessary. If consume_stock success, some charges
2336 * from this memcg are cached on this cpu. So, we
2337 * don't need to call css_get()/css_tryget() before
2338 * calling consume_stock().
2339 */
2340 rcu_read_unlock();
2341 goto done;
2342 }
2343 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2344 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2345 rcu_read_unlock();
2346 goto again;
2347 }
2348 rcu_read_unlock();
2349 }
8a9f3ccd 2350
4b534334
KH
2351 do {
2352 bool oom_check;
7a81b88c 2353
4b534334 2354 /* If killed, bypass charge */
f75ca962 2355 if (fatal_signal_pending(current)) {
c0ff4b85 2356 css_put(&memcg->css);
4b534334 2357 goto bypass;
f75ca962 2358 }
6d61ef40 2359
4b534334
KH
2360 oom_check = false;
2361 if (oom && !nr_oom_retries) {
2362 oom_check = true;
2363 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2364 }
66e1707b 2365
c0ff4b85 2366 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2367 switch (ret) {
2368 case CHARGE_OK:
2369 break;
2370 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2371 batch = nr_pages;
c0ff4b85
R
2372 css_put(&memcg->css);
2373 memcg = NULL;
f75ca962 2374 goto again;
4b534334 2375 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2376 css_put(&memcg->css);
4b534334
KH
2377 goto nomem;
2378 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2379 if (!oom) {
c0ff4b85 2380 css_put(&memcg->css);
867578cb 2381 goto nomem;
f75ca962 2382 }
4b534334
KH
2383 /* If oom, we never return -ENOMEM */
2384 nr_oom_retries--;
2385 break;
2386 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2387 css_put(&memcg->css);
867578cb 2388 goto bypass;
66e1707b 2389 }
4b534334
KH
2390 } while (ret != CHARGE_OK);
2391
7ec99d62 2392 if (batch > nr_pages)
c0ff4b85
R
2393 refill_stock(memcg, batch - nr_pages);
2394 css_put(&memcg->css);
0c3e73e8 2395done:
c0ff4b85 2396 *ptr = memcg;
7a81b88c
KH
2397 return 0;
2398nomem:
c0ff4b85 2399 *ptr = NULL;
7a81b88c 2400 return -ENOMEM;
867578cb 2401bypass:
38c5d72f
KH
2402 *ptr = root_mem_cgroup;
2403 return -EINTR;
7a81b88c 2404}
8a9f3ccd 2405
a3032a2c
DN
2406/*
2407 * Somemtimes we have to undo a charge we got by try_charge().
2408 * This function is for that and do uncharge, put css's refcnt.
2409 * gotten by try_charge().
2410 */
c0ff4b85 2411static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2412 unsigned int nr_pages)
a3032a2c 2413{
c0ff4b85 2414 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2415 unsigned long bytes = nr_pages * PAGE_SIZE;
2416
c0ff4b85 2417 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2418 if (do_swap_account)
c0ff4b85 2419 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2420 }
854ffa8d
DN
2421}
2422
a3b2d692
KH
2423/*
2424 * A helper function to get mem_cgroup from ID. must be called under
2425 * rcu_read_lock(). The caller must check css_is_removed() or some if
2426 * it's concern. (dropping refcnt from swap can be called against removed
2427 * memcg.)
2428 */
2429static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2430{
2431 struct cgroup_subsys_state *css;
2432
2433 /* ID 0 is unused ID */
2434 if (!id)
2435 return NULL;
2436 css = css_lookup(&mem_cgroup_subsys, id);
2437 if (!css)
2438 return NULL;
2439 return container_of(css, struct mem_cgroup, css);
2440}
2441
e42d9d5d 2442struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2443{
c0ff4b85 2444 struct mem_cgroup *memcg = NULL;
3c776e64 2445 struct page_cgroup *pc;
a3b2d692 2446 unsigned short id;
b5a84319
KH
2447 swp_entry_t ent;
2448
3c776e64
DN
2449 VM_BUG_ON(!PageLocked(page));
2450
3c776e64 2451 pc = lookup_page_cgroup(page);
c0bd3f63 2452 lock_page_cgroup(pc);
a3b2d692 2453 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2454 memcg = pc->mem_cgroup;
2455 if (memcg && !css_tryget(&memcg->css))
2456 memcg = NULL;
e42d9d5d 2457 } else if (PageSwapCache(page)) {
3c776e64 2458 ent.val = page_private(page);
9fb4b7cc 2459 id = lookup_swap_cgroup_id(ent);
a3b2d692 2460 rcu_read_lock();
c0ff4b85
R
2461 memcg = mem_cgroup_lookup(id);
2462 if (memcg && !css_tryget(&memcg->css))
2463 memcg = NULL;
a3b2d692 2464 rcu_read_unlock();
3c776e64 2465 }
c0bd3f63 2466 unlock_page_cgroup(pc);
c0ff4b85 2467 return memcg;
b5a84319
KH
2468}
2469
c0ff4b85 2470static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2471 struct page *page,
7ec99d62 2472 unsigned int nr_pages,
9ce70c02
HD
2473 enum charge_type ctype,
2474 bool lrucare)
7a81b88c 2475{
ce587e65 2476 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02
HD
2477 struct zone *uninitialized_var(zone);
2478 bool was_on_lru = false;
b2402857 2479 bool anon;
9ce70c02 2480
ca3e0214
KH
2481 lock_page_cgroup(pc);
2482 if (unlikely(PageCgroupUsed(pc))) {
2483 unlock_page_cgroup(pc);
c0ff4b85 2484 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2485 return;
2486 }
2487 /*
2488 * we don't need page_cgroup_lock about tail pages, becase they are not
2489 * accessed by any other context at this point.
2490 */
9ce70c02
HD
2491
2492 /*
2493 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2494 * may already be on some other mem_cgroup's LRU. Take care of it.
2495 */
2496 if (lrucare) {
2497 zone = page_zone(page);
2498 spin_lock_irq(&zone->lru_lock);
2499 if (PageLRU(page)) {
2500 ClearPageLRU(page);
2501 del_page_from_lru_list(zone, page, page_lru(page));
2502 was_on_lru = true;
2503 }
2504 }
2505
c0ff4b85 2506 pc->mem_cgroup = memcg;
261fb61a
KH
2507 /*
2508 * We access a page_cgroup asynchronously without lock_page_cgroup().
2509 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2510 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2511 * before USED bit, we need memory barrier here.
2512 * See mem_cgroup_add_lru_list(), etc.
2513 */
08e552c6 2514 smp_wmb();
b2402857 2515 SetPageCgroupUsed(pc);
3be91277 2516
9ce70c02
HD
2517 if (lrucare) {
2518 if (was_on_lru) {
2519 VM_BUG_ON(PageLRU(page));
2520 SetPageLRU(page);
2521 add_page_to_lru_list(zone, page, page_lru(page));
2522 }
2523 spin_unlock_irq(&zone->lru_lock);
2524 }
2525
b2402857
KH
2526 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2527 anon = true;
2528 else
2529 anon = false;
2530
2531 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2532 unlock_page_cgroup(pc);
9ce70c02 2533
430e4863
KH
2534 /*
2535 * "charge_statistics" updated event counter. Then, check it.
2536 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2537 * if they exceeds softlimit.
2538 */
c0ff4b85 2539 memcg_check_events(memcg, page);
7a81b88c 2540}
66e1707b 2541
ca3e0214
KH
2542#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2543
312734c0 2544#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
ca3e0214
KH
2545/*
2546 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2547 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2548 * charge/uncharge will be never happen and move_account() is done under
2549 * compound_lock(), so we don't have to take care of races.
ca3e0214 2550 */
e94c8a9c 2551void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2552{
2553 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2554 struct page_cgroup *pc;
2555 int i;
ca3e0214 2556
3d37c4a9
KH
2557 if (mem_cgroup_disabled())
2558 return;
e94c8a9c
KH
2559 for (i = 1; i < HPAGE_PMD_NR; i++) {
2560 pc = head_pc + i;
2561 pc->mem_cgroup = head_pc->mem_cgroup;
2562 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2563 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2564 }
ca3e0214 2565}
12d27107 2566#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2567
f817ed48 2568/**
de3638d9 2569 * mem_cgroup_move_account - move account of the page
5564e88b 2570 * @page: the page
7ec99d62 2571 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2572 * @pc: page_cgroup of the page.
2573 * @from: mem_cgroup which the page is moved from.
2574 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2575 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2576 *
2577 * The caller must confirm following.
08e552c6 2578 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2579 * - compound_lock is held when nr_pages > 1
f817ed48 2580 *
854ffa8d 2581 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2582 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2583 * true, this function does "uncharge" from old cgroup, but it doesn't if
2584 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2585 */
7ec99d62
JW
2586static int mem_cgroup_move_account(struct page *page,
2587 unsigned int nr_pages,
2588 struct page_cgroup *pc,
2589 struct mem_cgroup *from,
2590 struct mem_cgroup *to,
2591 bool uncharge)
f817ed48 2592{
de3638d9
JW
2593 unsigned long flags;
2594 int ret;
b2402857 2595 bool anon = PageAnon(page);
987eba66 2596
f817ed48 2597 VM_BUG_ON(from == to);
5564e88b 2598 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2599 /*
2600 * The page is isolated from LRU. So, collapse function
2601 * will not handle this page. But page splitting can happen.
2602 * Do this check under compound_page_lock(). The caller should
2603 * hold it.
2604 */
2605 ret = -EBUSY;
7ec99d62 2606 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2607 goto out;
2608
2609 lock_page_cgroup(pc);
2610
2611 ret = -EINVAL;
2612 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2613 goto unlock;
2614
312734c0 2615 move_lock_mem_cgroup(from, &flags);
f817ed48 2616
2ff76f11 2617 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2618 /* Update mapped_file data for mem_cgroup */
2619 preempt_disable();
2620 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2621 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2622 preempt_enable();
d69b042f 2623 }
b2402857 2624 mem_cgroup_charge_statistics(from, anon, -nr_pages);
854ffa8d
DN
2625 if (uncharge)
2626 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2627 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2628
854ffa8d 2629 /* caller should have done css_get */
08e552c6 2630 pc->mem_cgroup = to;
b2402857 2631 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2632 /*
2633 * We charges against "to" which may not have any tasks. Then, "to"
2634 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2635 * this function is just force_empty() and move charge, so it's
25985edc 2636 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2637 * status here.
88703267 2638 */
312734c0 2639 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2640 ret = 0;
2641unlock:
57f9fd7d 2642 unlock_page_cgroup(pc);
d2265e6f
KH
2643 /*
2644 * check events
2645 */
5564e88b
JW
2646 memcg_check_events(to, page);
2647 memcg_check_events(from, page);
de3638d9 2648out:
f817ed48
KH
2649 return ret;
2650}
2651
2652/*
2653 * move charges to its parent.
2654 */
2655
5564e88b
JW
2656static int mem_cgroup_move_parent(struct page *page,
2657 struct page_cgroup *pc,
f817ed48
KH
2658 struct mem_cgroup *child,
2659 gfp_t gfp_mask)
2660{
2661 struct cgroup *cg = child->css.cgroup;
2662 struct cgroup *pcg = cg->parent;
2663 struct mem_cgroup *parent;
7ec99d62 2664 unsigned int nr_pages;
4be4489f 2665 unsigned long uninitialized_var(flags);
f817ed48
KH
2666 int ret;
2667
2668 /* Is ROOT ? */
2669 if (!pcg)
2670 return -EINVAL;
2671
57f9fd7d
DN
2672 ret = -EBUSY;
2673 if (!get_page_unless_zero(page))
2674 goto out;
2675 if (isolate_lru_page(page))
2676 goto put;
52dbb905 2677
7ec99d62 2678 nr_pages = hpage_nr_pages(page);
08e552c6 2679
f817ed48 2680 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2681 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2682 if (ret)
57f9fd7d 2683 goto put_back;
f817ed48 2684
7ec99d62 2685 if (nr_pages > 1)
987eba66
KH
2686 flags = compound_lock_irqsave(page);
2687
7ec99d62 2688 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2689 if (ret)
7ec99d62 2690 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2691
7ec99d62 2692 if (nr_pages > 1)
987eba66 2693 compound_unlock_irqrestore(page, flags);
8dba474f 2694put_back:
08e552c6 2695 putback_lru_page(page);
57f9fd7d 2696put:
40d58138 2697 put_page(page);
57f9fd7d 2698out:
f817ed48
KH
2699 return ret;
2700}
2701
7a81b88c
KH
2702/*
2703 * Charge the memory controller for page usage.
2704 * Return
2705 * 0 if the charge was successful
2706 * < 0 if the cgroup is over its limit
2707 */
2708static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2709 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2710{
c0ff4b85 2711 struct mem_cgroup *memcg = NULL;
7ec99d62 2712 unsigned int nr_pages = 1;
8493ae43 2713 bool oom = true;
7a81b88c 2714 int ret;
ec168510 2715
37c2ac78 2716 if (PageTransHuge(page)) {
7ec99d62 2717 nr_pages <<= compound_order(page);
37c2ac78 2718 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2719 /*
2720 * Never OOM-kill a process for a huge page. The
2721 * fault handler will fall back to regular pages.
2722 */
2723 oom = false;
37c2ac78 2724 }
7a81b88c 2725
c0ff4b85 2726 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2727 if (ret == -ENOMEM)
7a81b88c 2728 return ret;
ce587e65 2729 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2730 return 0;
8a9f3ccd
BS
2731}
2732
7a81b88c
KH
2733int mem_cgroup_newpage_charge(struct page *page,
2734 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2735{
f8d66542 2736 if (mem_cgroup_disabled())
cede86ac 2737 return 0;
7a0524cf
JW
2738 VM_BUG_ON(page_mapped(page));
2739 VM_BUG_ON(page->mapping && !PageAnon(page));
2740 VM_BUG_ON(!mm);
217bc319 2741 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2742 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2743}
2744
83aae4c7
DN
2745static void
2746__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2747 enum charge_type ctype);
2748
e1a1cd59
BS
2749int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2750 gfp_t gfp_mask)
8697d331 2751{
c0ff4b85 2752 struct mem_cgroup *memcg = NULL;
dc67d504 2753 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2754 int ret;
2755
f8d66542 2756 if (mem_cgroup_disabled())
cede86ac 2757 return 0;
52d4b9ac
KH
2758 if (PageCompound(page))
2759 return 0;
accf163e 2760
73045c47 2761 if (unlikely(!mm))
8697d331 2762 mm = &init_mm;
dc67d504
KH
2763 if (!page_is_file_cache(page))
2764 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2765
38c5d72f 2766 if (!PageSwapCache(page))
dc67d504 2767 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2768 else { /* page is swapcache/shmem */
c0ff4b85 2769 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2770 if (!ret)
dc67d504
KH
2771 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2772 }
b5a84319 2773 return ret;
e8589cc1
KH
2774}
2775
54595fe2
KH
2776/*
2777 * While swap-in, try_charge -> commit or cancel, the page is locked.
2778 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2779 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2780 * "commit()" or removed by "cancel()"
2781 */
8c7c6e34
KH
2782int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2783 struct page *page,
72835c86 2784 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2785{
c0ff4b85 2786 struct mem_cgroup *memcg;
54595fe2 2787 int ret;
8c7c6e34 2788
72835c86 2789 *memcgp = NULL;
56039efa 2790
f8d66542 2791 if (mem_cgroup_disabled())
8c7c6e34
KH
2792 return 0;
2793
2794 if (!do_swap_account)
2795 goto charge_cur_mm;
8c7c6e34
KH
2796 /*
2797 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2798 * the pte, and even removed page from swap cache: in those cases
2799 * do_swap_page()'s pte_same() test will fail; but there's also a
2800 * KSM case which does need to charge the page.
8c7c6e34
KH
2801 */
2802 if (!PageSwapCache(page))
407f9c8b 2803 goto charge_cur_mm;
c0ff4b85
R
2804 memcg = try_get_mem_cgroup_from_page(page);
2805 if (!memcg)
54595fe2 2806 goto charge_cur_mm;
72835c86
JW
2807 *memcgp = memcg;
2808 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2809 css_put(&memcg->css);
38c5d72f
KH
2810 if (ret == -EINTR)
2811 ret = 0;
54595fe2 2812 return ret;
8c7c6e34
KH
2813charge_cur_mm:
2814 if (unlikely(!mm))
2815 mm = &init_mm;
38c5d72f
KH
2816 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2817 if (ret == -EINTR)
2818 ret = 0;
2819 return ret;
8c7c6e34
KH
2820}
2821
83aae4c7 2822static void
72835c86 2823__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2824 enum charge_type ctype)
7a81b88c 2825{
f8d66542 2826 if (mem_cgroup_disabled())
7a81b88c 2827 return;
72835c86 2828 if (!memcg)
7a81b88c 2829 return;
72835c86 2830 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2831
ce587e65 2832 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2833 /*
2834 * Now swap is on-memory. This means this page may be
2835 * counted both as mem and swap....double count.
03f3c433
KH
2836 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2837 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2838 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2839 */
03f3c433 2840 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2841 swp_entry_t ent = {.val = page_private(page)};
86493009 2842 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2843 }
88703267
KH
2844 /*
2845 * At swapin, we may charge account against cgroup which has no tasks.
2846 * So, rmdir()->pre_destroy() can be called while we do this charge.
2847 * In that case, we need to call pre_destroy() again. check it here.
2848 */
72835c86 2849 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2850}
2851
72835c86
JW
2852void mem_cgroup_commit_charge_swapin(struct page *page,
2853 struct mem_cgroup *memcg)
83aae4c7 2854{
72835c86
JW
2855 __mem_cgroup_commit_charge_swapin(page, memcg,
2856 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2857}
2858
c0ff4b85 2859void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2860{
f8d66542 2861 if (mem_cgroup_disabled())
7a81b88c 2862 return;
c0ff4b85 2863 if (!memcg)
7a81b88c 2864 return;
c0ff4b85 2865 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2866}
2867
c0ff4b85 2868static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2869 unsigned int nr_pages,
2870 const enum charge_type ctype)
569b846d
KH
2871{
2872 struct memcg_batch_info *batch = NULL;
2873 bool uncharge_memsw = true;
7ec99d62 2874
569b846d
KH
2875 /* If swapout, usage of swap doesn't decrease */
2876 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2877 uncharge_memsw = false;
569b846d
KH
2878
2879 batch = &current->memcg_batch;
2880 /*
2881 * In usual, we do css_get() when we remember memcg pointer.
2882 * But in this case, we keep res->usage until end of a series of
2883 * uncharges. Then, it's ok to ignore memcg's refcnt.
2884 */
2885 if (!batch->memcg)
c0ff4b85 2886 batch->memcg = memcg;
3c11ecf4
KH
2887 /*
2888 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2889 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2890 * the same cgroup and we have chance to coalesce uncharges.
2891 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2892 * because we want to do uncharge as soon as possible.
2893 */
2894
2895 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2896 goto direct_uncharge;
2897
7ec99d62 2898 if (nr_pages > 1)
ec168510
AA
2899 goto direct_uncharge;
2900
569b846d
KH
2901 /*
2902 * In typical case, batch->memcg == mem. This means we can
2903 * merge a series of uncharges to an uncharge of res_counter.
2904 * If not, we uncharge res_counter ony by one.
2905 */
c0ff4b85 2906 if (batch->memcg != memcg)
569b846d
KH
2907 goto direct_uncharge;
2908 /* remember freed charge and uncharge it later */
7ffd4ca7 2909 batch->nr_pages++;
569b846d 2910 if (uncharge_memsw)
7ffd4ca7 2911 batch->memsw_nr_pages++;
569b846d
KH
2912 return;
2913direct_uncharge:
c0ff4b85 2914 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2915 if (uncharge_memsw)
c0ff4b85
R
2916 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2917 if (unlikely(batch->memcg != memcg))
2918 memcg_oom_recover(memcg);
569b846d 2919}
7a81b88c 2920
8a9f3ccd 2921/*
69029cd5 2922 * uncharge if !page_mapped(page)
8a9f3ccd 2923 */
8c7c6e34 2924static struct mem_cgroup *
69029cd5 2925__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2926{
c0ff4b85 2927 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2928 unsigned int nr_pages = 1;
2929 struct page_cgroup *pc;
b2402857 2930 bool anon;
8a9f3ccd 2931
f8d66542 2932 if (mem_cgroup_disabled())
8c7c6e34 2933 return NULL;
4077960e 2934
d13d1443 2935 if (PageSwapCache(page))
8c7c6e34 2936 return NULL;
d13d1443 2937
37c2ac78 2938 if (PageTransHuge(page)) {
7ec99d62 2939 nr_pages <<= compound_order(page);
37c2ac78
AA
2940 VM_BUG_ON(!PageTransHuge(page));
2941 }
8697d331 2942 /*
3c541e14 2943 * Check if our page_cgroup is valid
8697d331 2944 */
52d4b9ac 2945 pc = lookup_page_cgroup(page);
cfa44946 2946 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2947 return NULL;
b9c565d5 2948
52d4b9ac 2949 lock_page_cgroup(pc);
d13d1443 2950
c0ff4b85 2951 memcg = pc->mem_cgroup;
8c7c6e34 2952
d13d1443
KH
2953 if (!PageCgroupUsed(pc))
2954 goto unlock_out;
2955
b2402857
KH
2956 anon = PageAnon(page);
2957
d13d1443
KH
2958 switch (ctype) {
2959 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2ff76f11
KH
2960 /*
2961 * Generally PageAnon tells if it's the anon statistics to be
2962 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2963 * used before page reached the stage of being marked PageAnon.
2964 */
b2402857
KH
2965 anon = true;
2966 /* fallthrough */
8a9478ca 2967 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2968 /* See mem_cgroup_prepare_migration() */
2969 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2970 goto unlock_out;
2971 break;
2972 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2973 if (!PageAnon(page)) { /* Shared memory */
2974 if (page->mapping && !page_is_file_cache(page))
2975 goto unlock_out;
2976 } else if (page_mapped(page)) /* Anon */
2977 goto unlock_out;
2978 break;
2979 default:
2980 break;
52d4b9ac 2981 }
d13d1443 2982
b2402857 2983 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 2984
52d4b9ac 2985 ClearPageCgroupUsed(pc);
544122e5
KH
2986 /*
2987 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2988 * freed from LRU. This is safe because uncharged page is expected not
2989 * to be reused (freed soon). Exception is SwapCache, it's handled by
2990 * special functions.
2991 */
b9c565d5 2992
52d4b9ac 2993 unlock_page_cgroup(pc);
f75ca962 2994 /*
c0ff4b85 2995 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
2996 * will never be freed.
2997 */
c0ff4b85 2998 memcg_check_events(memcg, page);
f75ca962 2999 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3000 mem_cgroup_swap_statistics(memcg, true);
3001 mem_cgroup_get(memcg);
f75ca962 3002 }
c0ff4b85
R
3003 if (!mem_cgroup_is_root(memcg))
3004 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3005
c0ff4b85 3006 return memcg;
d13d1443
KH
3007
3008unlock_out:
3009 unlock_page_cgroup(pc);
8c7c6e34 3010 return NULL;
3c541e14
BS
3011}
3012
69029cd5
KH
3013void mem_cgroup_uncharge_page(struct page *page)
3014{
52d4b9ac
KH
3015 /* early check. */
3016 if (page_mapped(page))
3017 return;
40f23a21 3018 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3019 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3020}
3021
3022void mem_cgroup_uncharge_cache_page(struct page *page)
3023{
3024 VM_BUG_ON(page_mapped(page));
b7abea96 3025 VM_BUG_ON(page->mapping);
69029cd5
KH
3026 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3027}
3028
569b846d
KH
3029/*
3030 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3031 * In that cases, pages are freed continuously and we can expect pages
3032 * are in the same memcg. All these calls itself limits the number of
3033 * pages freed at once, then uncharge_start/end() is called properly.
3034 * This may be called prural(2) times in a context,
3035 */
3036
3037void mem_cgroup_uncharge_start(void)
3038{
3039 current->memcg_batch.do_batch++;
3040 /* We can do nest. */
3041 if (current->memcg_batch.do_batch == 1) {
3042 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3043 current->memcg_batch.nr_pages = 0;
3044 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3045 }
3046}
3047
3048void mem_cgroup_uncharge_end(void)
3049{
3050 struct memcg_batch_info *batch = &current->memcg_batch;
3051
3052 if (!batch->do_batch)
3053 return;
3054
3055 batch->do_batch--;
3056 if (batch->do_batch) /* If stacked, do nothing. */
3057 return;
3058
3059 if (!batch->memcg)
3060 return;
3061 /*
3062 * This "batch->memcg" is valid without any css_get/put etc...
3063 * bacause we hide charges behind us.
3064 */
7ffd4ca7
JW
3065 if (batch->nr_pages)
3066 res_counter_uncharge(&batch->memcg->res,
3067 batch->nr_pages * PAGE_SIZE);
3068 if (batch->memsw_nr_pages)
3069 res_counter_uncharge(&batch->memcg->memsw,
3070 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3071 memcg_oom_recover(batch->memcg);
569b846d
KH
3072 /* forget this pointer (for sanity check) */
3073 batch->memcg = NULL;
3074}
3075
e767e056 3076#ifdef CONFIG_SWAP
8c7c6e34 3077/*
e767e056 3078 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3079 * memcg information is recorded to swap_cgroup of "ent"
3080 */
8a9478ca
KH
3081void
3082mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3083{
3084 struct mem_cgroup *memcg;
8a9478ca
KH
3085 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3086
3087 if (!swapout) /* this was a swap cache but the swap is unused ! */
3088 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3089
3090 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3091
f75ca962
KH
3092 /*
3093 * record memcg information, if swapout && memcg != NULL,
3094 * mem_cgroup_get() was called in uncharge().
3095 */
3096 if (do_swap_account && swapout && memcg)
a3b2d692 3097 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3098}
e767e056 3099#endif
8c7c6e34
KH
3100
3101#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3102/*
3103 * called from swap_entry_free(). remove record in swap_cgroup and
3104 * uncharge "memsw" account.
3105 */
3106void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3107{
8c7c6e34 3108 struct mem_cgroup *memcg;
a3b2d692 3109 unsigned short id;
8c7c6e34
KH
3110
3111 if (!do_swap_account)
3112 return;
3113
a3b2d692
KH
3114 id = swap_cgroup_record(ent, 0);
3115 rcu_read_lock();
3116 memcg = mem_cgroup_lookup(id);
8c7c6e34 3117 if (memcg) {
a3b2d692
KH
3118 /*
3119 * We uncharge this because swap is freed.
3120 * This memcg can be obsolete one. We avoid calling css_tryget
3121 */
0c3e73e8 3122 if (!mem_cgroup_is_root(memcg))
4e649152 3123 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3124 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3125 mem_cgroup_put(memcg);
3126 }
a3b2d692 3127 rcu_read_unlock();
d13d1443 3128}
02491447
DN
3129
3130/**
3131 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3132 * @entry: swap entry to be moved
3133 * @from: mem_cgroup which the entry is moved from
3134 * @to: mem_cgroup which the entry is moved to
3135 *
3136 * It succeeds only when the swap_cgroup's record for this entry is the same
3137 * as the mem_cgroup's id of @from.
3138 *
3139 * Returns 0 on success, -EINVAL on failure.
3140 *
3141 * The caller must have charged to @to, IOW, called res_counter_charge() about
3142 * both res and memsw, and called css_get().
3143 */
3144static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3145 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3146{
3147 unsigned short old_id, new_id;
3148
3149 old_id = css_id(&from->css);
3150 new_id = css_id(&to->css);
3151
3152 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3153 mem_cgroup_swap_statistics(from, false);
483c30b5 3154 mem_cgroup_swap_statistics(to, true);
02491447 3155 /*
483c30b5
DN
3156 * This function is only called from task migration context now.
3157 * It postpones res_counter and refcount handling till the end
3158 * of task migration(mem_cgroup_clear_mc()) for performance
3159 * improvement. But we cannot postpone mem_cgroup_get(to)
3160 * because if the process that has been moved to @to does
3161 * swap-in, the refcount of @to might be decreased to 0.
02491447 3162 */
02491447 3163 mem_cgroup_get(to);
02491447
DN
3164 return 0;
3165 }
3166 return -EINVAL;
3167}
3168#else
3169static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3170 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3171{
3172 return -EINVAL;
3173}
8c7c6e34 3174#endif
d13d1443 3175
ae41be37 3176/*
01b1ae63
KH
3177 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3178 * page belongs to.
ae41be37 3179 */
ac39cf8c 3180int mem_cgroup_prepare_migration(struct page *page,
72835c86 3181 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3182{
c0ff4b85 3183 struct mem_cgroup *memcg = NULL;
7ec99d62 3184 struct page_cgroup *pc;
ac39cf8c 3185 enum charge_type ctype;
e8589cc1 3186 int ret = 0;
8869b8f6 3187
72835c86 3188 *memcgp = NULL;
56039efa 3189
ec168510 3190 VM_BUG_ON(PageTransHuge(page));
f8d66542 3191 if (mem_cgroup_disabled())
4077960e
BS
3192 return 0;
3193
52d4b9ac
KH
3194 pc = lookup_page_cgroup(page);
3195 lock_page_cgroup(pc);
3196 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3197 memcg = pc->mem_cgroup;
3198 css_get(&memcg->css);
ac39cf8c 3199 /*
3200 * At migrating an anonymous page, its mapcount goes down
3201 * to 0 and uncharge() will be called. But, even if it's fully
3202 * unmapped, migration may fail and this page has to be
3203 * charged again. We set MIGRATION flag here and delay uncharge
3204 * until end_migration() is called
3205 *
3206 * Corner Case Thinking
3207 * A)
3208 * When the old page was mapped as Anon and it's unmap-and-freed
3209 * while migration was ongoing.
3210 * If unmap finds the old page, uncharge() of it will be delayed
3211 * until end_migration(). If unmap finds a new page, it's
3212 * uncharged when it make mapcount to be 1->0. If unmap code
3213 * finds swap_migration_entry, the new page will not be mapped
3214 * and end_migration() will find it(mapcount==0).
3215 *
3216 * B)
3217 * When the old page was mapped but migraion fails, the kernel
3218 * remaps it. A charge for it is kept by MIGRATION flag even
3219 * if mapcount goes down to 0. We can do remap successfully
3220 * without charging it again.
3221 *
3222 * C)
3223 * The "old" page is under lock_page() until the end of
3224 * migration, so, the old page itself will not be swapped-out.
3225 * If the new page is swapped out before end_migraton, our
3226 * hook to usual swap-out path will catch the event.
3227 */
3228 if (PageAnon(page))
3229 SetPageCgroupMigration(pc);
e8589cc1 3230 }
52d4b9ac 3231 unlock_page_cgroup(pc);
ac39cf8c 3232 /*
3233 * If the page is not charged at this point,
3234 * we return here.
3235 */
c0ff4b85 3236 if (!memcg)
ac39cf8c 3237 return 0;
01b1ae63 3238
72835c86
JW
3239 *memcgp = memcg;
3240 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3241 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3242 if (ret) {
ac39cf8c 3243 if (PageAnon(page)) {
3244 lock_page_cgroup(pc);
3245 ClearPageCgroupMigration(pc);
3246 unlock_page_cgroup(pc);
3247 /*
3248 * The old page may be fully unmapped while we kept it.
3249 */
3250 mem_cgroup_uncharge_page(page);
3251 }
38c5d72f 3252 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3253 return -ENOMEM;
e8589cc1 3254 }
ac39cf8c 3255 /*
3256 * We charge new page before it's used/mapped. So, even if unlock_page()
3257 * is called before end_migration, we can catch all events on this new
3258 * page. In the case new page is migrated but not remapped, new page's
3259 * mapcount will be finally 0 and we call uncharge in end_migration().
3260 */
ac39cf8c 3261 if (PageAnon(page))
3262 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3263 else if (page_is_file_cache(page))
3264 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3265 else
3266 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ce587e65 3267 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
e8589cc1 3268 return ret;
ae41be37 3269}
8869b8f6 3270
69029cd5 3271/* remove redundant charge if migration failed*/
c0ff4b85 3272void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3273 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3274{
ac39cf8c 3275 struct page *used, *unused;
01b1ae63 3276 struct page_cgroup *pc;
b2402857 3277 bool anon;
01b1ae63 3278
c0ff4b85 3279 if (!memcg)
01b1ae63 3280 return;
ac39cf8c 3281 /* blocks rmdir() */
c0ff4b85 3282 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3283 if (!migration_ok) {
ac39cf8c 3284 used = oldpage;
3285 unused = newpage;
01b1ae63 3286 } else {
ac39cf8c 3287 used = newpage;
01b1ae63
KH
3288 unused = oldpage;
3289 }
69029cd5 3290 /*
ac39cf8c 3291 * We disallowed uncharge of pages under migration because mapcount
3292 * of the page goes down to zero, temporarly.
3293 * Clear the flag and check the page should be charged.
01b1ae63 3294 */
ac39cf8c 3295 pc = lookup_page_cgroup(oldpage);
3296 lock_page_cgroup(pc);
3297 ClearPageCgroupMigration(pc);
3298 unlock_page_cgroup(pc);
b2402857
KH
3299 anon = PageAnon(used);
3300 __mem_cgroup_uncharge_common(unused,
3301 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3302 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3303
01b1ae63 3304 /*
ac39cf8c 3305 * If a page is a file cache, radix-tree replacement is very atomic
3306 * and we can skip this check. When it was an Anon page, its mapcount
3307 * goes down to 0. But because we added MIGRATION flage, it's not
3308 * uncharged yet. There are several case but page->mapcount check
3309 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3310 * check. (see prepare_charge() also)
69029cd5 3311 */
b2402857 3312 if (anon)
ac39cf8c 3313 mem_cgroup_uncharge_page(used);
88703267 3314 /*
ac39cf8c 3315 * At migration, we may charge account against cgroup which has no
3316 * tasks.
88703267
KH
3317 * So, rmdir()->pre_destroy() can be called while we do this charge.
3318 * In that case, we need to call pre_destroy() again. check it here.
3319 */
c0ff4b85 3320 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3321}
78fb7466 3322
ab936cbc
KH
3323/*
3324 * At replace page cache, newpage is not under any memcg but it's on
3325 * LRU. So, this function doesn't touch res_counter but handles LRU
3326 * in correct way. Both pages are locked so we cannot race with uncharge.
3327 */
3328void mem_cgroup_replace_page_cache(struct page *oldpage,
3329 struct page *newpage)
3330{
bde05d1c 3331 struct mem_cgroup *memcg = NULL;
ab936cbc 3332 struct page_cgroup *pc;
ab936cbc 3333 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3334
3335 if (mem_cgroup_disabled())
3336 return;
3337
3338 pc = lookup_page_cgroup(oldpage);
3339 /* fix accounting on old pages */
3340 lock_page_cgroup(pc);
bde05d1c
HD
3341 if (PageCgroupUsed(pc)) {
3342 memcg = pc->mem_cgroup;
3343 mem_cgroup_charge_statistics(memcg, false, -1);
3344 ClearPageCgroupUsed(pc);
3345 }
ab936cbc
KH
3346 unlock_page_cgroup(pc);
3347
bde05d1c
HD
3348 /*
3349 * When called from shmem_replace_page(), in some cases the
3350 * oldpage has already been charged, and in some cases not.
3351 */
3352 if (!memcg)
3353 return;
3354
ab936cbc
KH
3355 if (PageSwapBacked(oldpage))
3356 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3357
ab936cbc
KH
3358 /*
3359 * Even if newpage->mapping was NULL before starting replacement,
3360 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3361 * LRU while we overwrite pc->mem_cgroup.
3362 */
ce587e65 3363 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3364}
3365
f212ad7c
DN
3366#ifdef CONFIG_DEBUG_VM
3367static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3368{
3369 struct page_cgroup *pc;
3370
3371 pc = lookup_page_cgroup(page);
cfa44946
JW
3372 /*
3373 * Can be NULL while feeding pages into the page allocator for
3374 * the first time, i.e. during boot or memory hotplug;
3375 * or when mem_cgroup_disabled().
3376 */
f212ad7c
DN
3377 if (likely(pc) && PageCgroupUsed(pc))
3378 return pc;
3379 return NULL;
3380}
3381
3382bool mem_cgroup_bad_page_check(struct page *page)
3383{
3384 if (mem_cgroup_disabled())
3385 return false;
3386
3387 return lookup_page_cgroup_used(page) != NULL;
3388}
3389
3390void mem_cgroup_print_bad_page(struct page *page)
3391{
3392 struct page_cgroup *pc;
3393
3394 pc = lookup_page_cgroup_used(page);
3395 if (pc) {
90b3feae 3396 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3397 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3398 }
3399}
3400#endif
3401
8c7c6e34
KH
3402static DEFINE_MUTEX(set_limit_mutex);
3403
d38d2a75 3404static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3405 unsigned long long val)
628f4235 3406{
81d39c20 3407 int retry_count;
3c11ecf4 3408 u64 memswlimit, memlimit;
628f4235 3409 int ret = 0;
81d39c20
KH
3410 int children = mem_cgroup_count_children(memcg);
3411 u64 curusage, oldusage;
3c11ecf4 3412 int enlarge;
81d39c20
KH
3413
3414 /*
3415 * For keeping hierarchical_reclaim simple, how long we should retry
3416 * is depends on callers. We set our retry-count to be function
3417 * of # of children which we should visit in this loop.
3418 */
3419 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3420
3421 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3422
3c11ecf4 3423 enlarge = 0;
8c7c6e34 3424 while (retry_count) {
628f4235
KH
3425 if (signal_pending(current)) {
3426 ret = -EINTR;
3427 break;
3428 }
8c7c6e34
KH
3429 /*
3430 * Rather than hide all in some function, I do this in
3431 * open coded manner. You see what this really does.
c0ff4b85 3432 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3433 */
3434 mutex_lock(&set_limit_mutex);
3435 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3436 if (memswlimit < val) {
3437 ret = -EINVAL;
3438 mutex_unlock(&set_limit_mutex);
628f4235
KH
3439 break;
3440 }
3c11ecf4
KH
3441
3442 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3443 if (memlimit < val)
3444 enlarge = 1;
3445
8c7c6e34 3446 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3447 if (!ret) {
3448 if (memswlimit == val)
3449 memcg->memsw_is_minimum = true;
3450 else
3451 memcg->memsw_is_minimum = false;
3452 }
8c7c6e34
KH
3453 mutex_unlock(&set_limit_mutex);
3454
3455 if (!ret)
3456 break;
3457
5660048c
JW
3458 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3459 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3460 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3461 /* Usage is reduced ? */
3462 if (curusage >= oldusage)
3463 retry_count--;
3464 else
3465 oldusage = curusage;
8c7c6e34 3466 }
3c11ecf4
KH
3467 if (!ret && enlarge)
3468 memcg_oom_recover(memcg);
14797e23 3469
8c7c6e34
KH
3470 return ret;
3471}
3472
338c8431
LZ
3473static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3474 unsigned long long val)
8c7c6e34 3475{
81d39c20 3476 int retry_count;
3c11ecf4 3477 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3478 int children = mem_cgroup_count_children(memcg);
3479 int ret = -EBUSY;
3c11ecf4 3480 int enlarge = 0;
8c7c6e34 3481
81d39c20
KH
3482 /* see mem_cgroup_resize_res_limit */
3483 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3484 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3485 while (retry_count) {
3486 if (signal_pending(current)) {
3487 ret = -EINTR;
3488 break;
3489 }
3490 /*
3491 * Rather than hide all in some function, I do this in
3492 * open coded manner. You see what this really does.
c0ff4b85 3493 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3494 */
3495 mutex_lock(&set_limit_mutex);
3496 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3497 if (memlimit > val) {
3498 ret = -EINVAL;
3499 mutex_unlock(&set_limit_mutex);
3500 break;
3501 }
3c11ecf4
KH
3502 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3503 if (memswlimit < val)
3504 enlarge = 1;
8c7c6e34 3505 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3506 if (!ret) {
3507 if (memlimit == val)
3508 memcg->memsw_is_minimum = true;
3509 else
3510 memcg->memsw_is_minimum = false;
3511 }
8c7c6e34
KH
3512 mutex_unlock(&set_limit_mutex);
3513
3514 if (!ret)
3515 break;
3516
5660048c
JW
3517 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3518 MEM_CGROUP_RECLAIM_NOSWAP |
3519 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3520 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3521 /* Usage is reduced ? */
8c7c6e34 3522 if (curusage >= oldusage)
628f4235 3523 retry_count--;
81d39c20
KH
3524 else
3525 oldusage = curusage;
628f4235 3526 }
3c11ecf4
KH
3527 if (!ret && enlarge)
3528 memcg_oom_recover(memcg);
628f4235
KH
3529 return ret;
3530}
3531
4e416953 3532unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3533 gfp_t gfp_mask,
3534 unsigned long *total_scanned)
4e416953
BS
3535{
3536 unsigned long nr_reclaimed = 0;
3537 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3538 unsigned long reclaimed;
3539 int loop = 0;
3540 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3541 unsigned long long excess;
0ae5e89c 3542 unsigned long nr_scanned;
4e416953
BS
3543
3544 if (order > 0)
3545 return 0;
3546
00918b6a 3547 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3548 /*
3549 * This loop can run a while, specially if mem_cgroup's continuously
3550 * keep exceeding their soft limit and putting the system under
3551 * pressure
3552 */
3553 do {
3554 if (next_mz)
3555 mz = next_mz;
3556 else
3557 mz = mem_cgroup_largest_soft_limit_node(mctz);
3558 if (!mz)
3559 break;
3560
0ae5e89c 3561 nr_scanned = 0;
d79154bb 3562 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3563 gfp_mask, &nr_scanned);
4e416953 3564 nr_reclaimed += reclaimed;
0ae5e89c 3565 *total_scanned += nr_scanned;
4e416953
BS
3566 spin_lock(&mctz->lock);
3567
3568 /*
3569 * If we failed to reclaim anything from this memory cgroup
3570 * it is time to move on to the next cgroup
3571 */
3572 next_mz = NULL;
3573 if (!reclaimed) {
3574 do {
3575 /*
3576 * Loop until we find yet another one.
3577 *
3578 * By the time we get the soft_limit lock
3579 * again, someone might have aded the
3580 * group back on the RB tree. Iterate to
3581 * make sure we get a different mem.
3582 * mem_cgroup_largest_soft_limit_node returns
3583 * NULL if no other cgroup is present on
3584 * the tree
3585 */
3586 next_mz =
3587 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3588 if (next_mz == mz)
d79154bb 3589 css_put(&next_mz->memcg->css);
39cc98f1 3590 else /* next_mz == NULL or other memcg */
4e416953
BS
3591 break;
3592 } while (1);
3593 }
d79154bb
HD
3594 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3595 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3596 /*
3597 * One school of thought says that we should not add
3598 * back the node to the tree if reclaim returns 0.
3599 * But our reclaim could return 0, simply because due
3600 * to priority we are exposing a smaller subset of
3601 * memory to reclaim from. Consider this as a longer
3602 * term TODO.
3603 */
ef8745c1 3604 /* If excess == 0, no tree ops */
d79154bb 3605 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3606 spin_unlock(&mctz->lock);
d79154bb 3607 css_put(&mz->memcg->css);
4e416953
BS
3608 loop++;
3609 /*
3610 * Could not reclaim anything and there are no more
3611 * mem cgroups to try or we seem to be looping without
3612 * reclaiming anything.
3613 */
3614 if (!nr_reclaimed &&
3615 (next_mz == NULL ||
3616 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3617 break;
3618 } while (!nr_reclaimed);
3619 if (next_mz)
d79154bb 3620 css_put(&next_mz->memcg->css);
4e416953
BS
3621 return nr_reclaimed;
3622}
3623
cc847582
KH
3624/*
3625 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3626 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3627 */
c0ff4b85 3628static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3629 int node, int zid, enum lru_list lru)
cc847582 3630{
08e552c6 3631 struct mem_cgroup_per_zone *mz;
08e552c6 3632 unsigned long flags, loop;
072c56c1 3633 struct list_head *list;
925b7673
JW
3634 struct page *busy;
3635 struct zone *zone;
f817ed48 3636 int ret = 0;
072c56c1 3637
08e552c6 3638 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3639 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3640 list = &mz->lruvec.lists[lru];
cc847582 3641
1eb49272 3642 loop = mz->lru_size[lru];
f817ed48
KH
3643 /* give some margin against EBUSY etc...*/
3644 loop += 256;
3645 busy = NULL;
3646 while (loop--) {
925b7673 3647 struct page_cgroup *pc;
5564e88b
JW
3648 struct page *page;
3649
f817ed48 3650 ret = 0;
08e552c6 3651 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3652 if (list_empty(list)) {
08e552c6 3653 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3654 break;
f817ed48 3655 }
925b7673
JW
3656 page = list_entry(list->prev, struct page, lru);
3657 if (busy == page) {
3658 list_move(&page->lru, list);
648bcc77 3659 busy = NULL;
08e552c6 3660 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3661 continue;
3662 }
08e552c6 3663 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3664
925b7673 3665 pc = lookup_page_cgroup(page);
5564e88b 3666
c0ff4b85 3667 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3668 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3669 break;
f817ed48
KH
3670
3671 if (ret == -EBUSY || ret == -EINVAL) {
3672 /* found lock contention or "pc" is obsolete. */
925b7673 3673 busy = page;
f817ed48
KH
3674 cond_resched();
3675 } else
3676 busy = NULL;
cc847582 3677 }
08e552c6 3678
f817ed48
KH
3679 if (!ret && !list_empty(list))
3680 return -EBUSY;
3681 return ret;
cc847582
KH
3682}
3683
3684/*
3685 * make mem_cgroup's charge to be 0 if there is no task.
3686 * This enables deleting this mem_cgroup.
3687 */
c0ff4b85 3688static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3689{
f817ed48
KH
3690 int ret;
3691 int node, zid, shrink;
3692 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3693 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3694
c0ff4b85 3695 css_get(&memcg->css);
f817ed48
KH
3696
3697 shrink = 0;
c1e862c1
KH
3698 /* should free all ? */
3699 if (free_all)
3700 goto try_to_free;
f817ed48 3701move_account:
fce66477 3702 do {
f817ed48 3703 ret = -EBUSY;
c1e862c1
KH
3704 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3705 goto out;
3706 ret = -EINTR;
3707 if (signal_pending(current))
cc847582 3708 goto out;
52d4b9ac
KH
3709 /* This is for making all *used* pages to be on LRU. */
3710 lru_add_drain_all();
c0ff4b85 3711 drain_all_stock_sync(memcg);
f817ed48 3712 ret = 0;
c0ff4b85 3713 mem_cgroup_start_move(memcg);
299b4eaa 3714 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3715 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3716 enum lru_list lru;
3717 for_each_lru(lru) {
c0ff4b85 3718 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3719 node, zid, lru);
f817ed48
KH
3720 if (ret)
3721 break;
3722 }
1ecaab2b 3723 }
f817ed48
KH
3724 if (ret)
3725 break;
3726 }
c0ff4b85
R
3727 mem_cgroup_end_move(memcg);
3728 memcg_oom_recover(memcg);
f817ed48
KH
3729 /* it seems parent cgroup doesn't have enough mem */
3730 if (ret == -ENOMEM)
3731 goto try_to_free;
52d4b9ac 3732 cond_resched();
fce66477 3733 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3734 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3735out:
c0ff4b85 3736 css_put(&memcg->css);
cc847582 3737 return ret;
f817ed48
KH
3738
3739try_to_free:
c1e862c1
KH
3740 /* returns EBUSY if there is a task or if we come here twice. */
3741 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3742 ret = -EBUSY;
3743 goto out;
3744 }
c1e862c1
KH
3745 /* we call try-to-free pages for make this cgroup empty */
3746 lru_add_drain_all();
f817ed48
KH
3747 /* try to free all pages in this cgroup */
3748 shrink = 1;
569530fb 3749 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3750 int progress;
c1e862c1
KH
3751
3752 if (signal_pending(current)) {
3753 ret = -EINTR;
3754 goto out;
3755 }
c0ff4b85 3756 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3757 false);
c1e862c1 3758 if (!progress) {
f817ed48 3759 nr_retries--;
c1e862c1 3760 /* maybe some writeback is necessary */
8aa7e847 3761 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3762 }
f817ed48
KH
3763
3764 }
08e552c6 3765 lru_add_drain();
f817ed48 3766 /* try move_account...there may be some *locked* pages. */
fce66477 3767 goto move_account;
cc847582
KH
3768}
3769
c1e862c1
KH
3770int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3771{
3772 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3773}
3774
3775
18f59ea7
BS
3776static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3777{
3778 return mem_cgroup_from_cont(cont)->use_hierarchy;
3779}
3780
3781static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3782 u64 val)
3783{
3784 int retval = 0;
c0ff4b85 3785 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3786 struct cgroup *parent = cont->parent;
c0ff4b85 3787 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3788
3789 if (parent)
c0ff4b85 3790 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3791
3792 cgroup_lock();
3793 /*
af901ca1 3794 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3795 * in the child subtrees. If it is unset, then the change can
3796 * occur, provided the current cgroup has no children.
3797 *
3798 * For the root cgroup, parent_mem is NULL, we allow value to be
3799 * set if there are no children.
3800 */
c0ff4b85 3801 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3802 (val == 1 || val == 0)) {
3803 if (list_empty(&cont->children))
c0ff4b85 3804 memcg->use_hierarchy = val;
18f59ea7
BS
3805 else
3806 retval = -EBUSY;
3807 } else
3808 retval = -EINVAL;
3809 cgroup_unlock();
3810
3811 return retval;
3812}
3813
0c3e73e8 3814
c0ff4b85 3815static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3816 enum mem_cgroup_stat_index idx)
0c3e73e8 3817{
7d74b06f 3818 struct mem_cgroup *iter;
7a159cc9 3819 long val = 0;
0c3e73e8 3820
7a159cc9 3821 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3822 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3823 val += mem_cgroup_read_stat(iter, idx);
3824
3825 if (val < 0) /* race ? */
3826 val = 0;
3827 return val;
0c3e73e8
BS
3828}
3829
c0ff4b85 3830static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3831{
7d74b06f 3832 u64 val;
104f3928 3833
c0ff4b85 3834 if (!mem_cgroup_is_root(memcg)) {
104f3928 3835 if (!swap)
65c64ce8 3836 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3837 else
65c64ce8 3838 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3839 }
3840
c0ff4b85
R
3841 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3842 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3843
7d74b06f 3844 if (swap)
c0ff4b85 3845 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3846
3847 return val << PAGE_SHIFT;
3848}
3849
af36f906
TH
3850static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3851 struct file *file, char __user *buf,
3852 size_t nbytes, loff_t *ppos)
8cdea7c0 3853{
c0ff4b85 3854 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3855 char str[64];
104f3928 3856 u64 val;
af36f906 3857 int type, name, len;
8c7c6e34
KH
3858
3859 type = MEMFILE_TYPE(cft->private);
3860 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3861
3862 if (!do_swap_account && type == _MEMSWAP)
3863 return -EOPNOTSUPP;
3864
8c7c6e34
KH
3865 switch (type) {
3866 case _MEM:
104f3928 3867 if (name == RES_USAGE)
c0ff4b85 3868 val = mem_cgroup_usage(memcg, false);
104f3928 3869 else
c0ff4b85 3870 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3871 break;
3872 case _MEMSWAP:
104f3928 3873 if (name == RES_USAGE)
c0ff4b85 3874 val = mem_cgroup_usage(memcg, true);
104f3928 3875 else
c0ff4b85 3876 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3877 break;
3878 default:
3879 BUG();
8c7c6e34 3880 }
af36f906
TH
3881
3882 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3883 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3884}
628f4235
KH
3885/*
3886 * The user of this function is...
3887 * RES_LIMIT.
3888 */
856c13aa
PM
3889static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3890 const char *buffer)
8cdea7c0 3891{
628f4235 3892 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3893 int type, name;
628f4235
KH
3894 unsigned long long val;
3895 int ret;
3896
8c7c6e34
KH
3897 type = MEMFILE_TYPE(cft->private);
3898 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3899
3900 if (!do_swap_account && type == _MEMSWAP)
3901 return -EOPNOTSUPP;
3902
8c7c6e34 3903 switch (name) {
628f4235 3904 case RES_LIMIT:
4b3bde4c
BS
3905 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3906 ret = -EINVAL;
3907 break;
3908 }
628f4235
KH
3909 /* This function does all necessary parse...reuse it */
3910 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3911 if (ret)
3912 break;
3913 if (type == _MEM)
628f4235 3914 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3915 else
3916 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3917 break;
296c81d8
BS
3918 case RES_SOFT_LIMIT:
3919 ret = res_counter_memparse_write_strategy(buffer, &val);
3920 if (ret)
3921 break;
3922 /*
3923 * For memsw, soft limits are hard to implement in terms
3924 * of semantics, for now, we support soft limits for
3925 * control without swap
3926 */
3927 if (type == _MEM)
3928 ret = res_counter_set_soft_limit(&memcg->res, val);
3929 else
3930 ret = -EINVAL;
3931 break;
628f4235
KH
3932 default:
3933 ret = -EINVAL; /* should be BUG() ? */
3934 break;
3935 }
3936 return ret;
8cdea7c0
BS
3937}
3938
fee7b548
KH
3939static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3940 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3941{
3942 struct cgroup *cgroup;
3943 unsigned long long min_limit, min_memsw_limit, tmp;
3944
3945 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3946 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3947 cgroup = memcg->css.cgroup;
3948 if (!memcg->use_hierarchy)
3949 goto out;
3950
3951 while (cgroup->parent) {
3952 cgroup = cgroup->parent;
3953 memcg = mem_cgroup_from_cont(cgroup);
3954 if (!memcg->use_hierarchy)
3955 break;
3956 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3957 min_limit = min(min_limit, tmp);
3958 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3959 min_memsw_limit = min(min_memsw_limit, tmp);
3960 }
3961out:
3962 *mem_limit = min_limit;
3963 *memsw_limit = min_memsw_limit;
fee7b548
KH
3964}
3965
29f2a4da 3966static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3967{
af36f906 3968 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3969 int type, name;
c84872e1 3970
8c7c6e34
KH
3971 type = MEMFILE_TYPE(event);
3972 name = MEMFILE_ATTR(event);
af36f906
TH
3973
3974 if (!do_swap_account && type == _MEMSWAP)
3975 return -EOPNOTSUPP;
3976
8c7c6e34 3977 switch (name) {
29f2a4da 3978 case RES_MAX_USAGE:
8c7c6e34 3979 if (type == _MEM)
c0ff4b85 3980 res_counter_reset_max(&memcg->res);
8c7c6e34 3981 else
c0ff4b85 3982 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3983 break;
3984 case RES_FAILCNT:
8c7c6e34 3985 if (type == _MEM)
c0ff4b85 3986 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3987 else
c0ff4b85 3988 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3989 break;
3990 }
f64c3f54 3991
85cc59db 3992 return 0;
c84872e1
PE
3993}
3994
7dc74be0
DN
3995static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3996 struct cftype *cft)
3997{
3998 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3999}
4000
02491447 4001#ifdef CONFIG_MMU
7dc74be0
DN
4002static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4003 struct cftype *cft, u64 val)
4004{
c0ff4b85 4005 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4006
4007 if (val >= (1 << NR_MOVE_TYPE))
4008 return -EINVAL;
4009 /*
4010 * We check this value several times in both in can_attach() and
4011 * attach(), so we need cgroup lock to prevent this value from being
4012 * inconsistent.
4013 */
4014 cgroup_lock();
c0ff4b85 4015 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4016 cgroup_unlock();
4017
4018 return 0;
4019}
02491447
DN
4020#else
4021static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4022 struct cftype *cft, u64 val)
4023{
4024 return -ENOSYS;
4025}
4026#endif
7dc74be0 4027
14067bb3
KH
4028
4029/* For read statistics */
4030enum {
4031 MCS_CACHE,
4032 MCS_RSS,
d8046582 4033 MCS_FILE_MAPPED,
14067bb3
KH
4034 MCS_PGPGIN,
4035 MCS_PGPGOUT,
1dd3a273 4036 MCS_SWAP,
456f998e
YH
4037 MCS_PGFAULT,
4038 MCS_PGMAJFAULT,
14067bb3
KH
4039 MCS_INACTIVE_ANON,
4040 MCS_ACTIVE_ANON,
4041 MCS_INACTIVE_FILE,
4042 MCS_ACTIVE_FILE,
4043 MCS_UNEVICTABLE,
4044 NR_MCS_STAT,
4045};
4046
4047struct mcs_total_stat {
4048 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4049};
4050
14067bb3
KH
4051struct {
4052 char *local_name;
4053 char *total_name;
4054} memcg_stat_strings[NR_MCS_STAT] = {
4055 {"cache", "total_cache"},
4056 {"rss", "total_rss"},
d69b042f 4057 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4058 {"pgpgin", "total_pgpgin"},
4059 {"pgpgout", "total_pgpgout"},
1dd3a273 4060 {"swap", "total_swap"},
456f998e
YH
4061 {"pgfault", "total_pgfault"},
4062 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4063 {"inactive_anon", "total_inactive_anon"},
4064 {"active_anon", "total_active_anon"},
4065 {"inactive_file", "total_inactive_file"},
4066 {"active_file", "total_active_file"},
4067 {"unevictable", "total_unevictable"}
4068};
4069
4070
7d74b06f 4071static void
c0ff4b85 4072mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4073{
14067bb3
KH
4074 s64 val;
4075
4076 /* per cpu stat */
c0ff4b85 4077 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4078 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4079 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4080 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4081 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4082 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4083 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4084 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4085 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4086 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4087 if (do_swap_account) {
c0ff4b85 4088 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4089 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4090 }
c0ff4b85 4091 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4092 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4093 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4094 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4095
4096 /* per zone stat */
c0ff4b85 4097 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4098 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4099 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4100 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4101 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4102 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4103 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4104 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4105 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4106 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4107}
4108
4109static void
c0ff4b85 4110mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4111{
7d74b06f
KH
4112 struct mem_cgroup *iter;
4113
c0ff4b85 4114 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4115 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4116}
4117
406eb0c9
YH
4118#ifdef CONFIG_NUMA
4119static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4120{
4121 int nid;
4122 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4123 unsigned long node_nr;
4124 struct cgroup *cont = m->private;
d79154bb 4125 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4126
d79154bb 4127 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4128 seq_printf(m, "total=%lu", total_nr);
4129 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4130 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4131 seq_printf(m, " N%d=%lu", nid, node_nr);
4132 }
4133 seq_putc(m, '\n');
4134
d79154bb 4135 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4136 seq_printf(m, "file=%lu", file_nr);
4137 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4138 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4139 LRU_ALL_FILE);
406eb0c9
YH
4140 seq_printf(m, " N%d=%lu", nid, node_nr);
4141 }
4142 seq_putc(m, '\n');
4143
d79154bb 4144 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4145 seq_printf(m, "anon=%lu", anon_nr);
4146 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4147 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4148 LRU_ALL_ANON);
406eb0c9
YH
4149 seq_printf(m, " N%d=%lu", nid, node_nr);
4150 }
4151 seq_putc(m, '\n');
4152
d79154bb 4153 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4154 seq_printf(m, "unevictable=%lu", unevictable_nr);
4155 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4156 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4157 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4158 seq_printf(m, " N%d=%lu", nid, node_nr);
4159 }
4160 seq_putc(m, '\n');
4161 return 0;
4162}
4163#endif /* CONFIG_NUMA */
4164
c64745cf
PM
4165static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4166 struct cgroup_map_cb *cb)
d2ceb9b7 4167{
d79154bb 4168 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
14067bb3 4169 struct mcs_total_stat mystat;
d2ceb9b7
KH
4170 int i;
4171
14067bb3 4172 memset(&mystat, 0, sizeof(mystat));
d79154bb 4173 mem_cgroup_get_local_stat(memcg, &mystat);
d2ceb9b7 4174
406eb0c9 4175
1dd3a273
DN
4176 for (i = 0; i < NR_MCS_STAT; i++) {
4177 if (i == MCS_SWAP && !do_swap_account)
4178 continue;
14067bb3 4179 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4180 }
7b854121 4181
14067bb3 4182 /* Hierarchical information */
fee7b548
KH
4183 {
4184 unsigned long long limit, memsw_limit;
d79154bb 4185 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
fee7b548
KH
4186 cb->fill(cb, "hierarchical_memory_limit", limit);
4187 if (do_swap_account)
4188 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4189 }
7f016ee8 4190
14067bb3 4191 memset(&mystat, 0, sizeof(mystat));
d79154bb 4192 mem_cgroup_get_total_stat(memcg, &mystat);
1dd3a273
DN
4193 for (i = 0; i < NR_MCS_STAT; i++) {
4194 if (i == MCS_SWAP && !do_swap_account)
4195 continue;
14067bb3 4196 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4197 }
14067bb3 4198
7f016ee8 4199#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4200 {
4201 int nid, zid;
4202 struct mem_cgroup_per_zone *mz;
89abfab1 4203 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4204 unsigned long recent_rotated[2] = {0, 0};
4205 unsigned long recent_scanned[2] = {0, 0};
4206
4207 for_each_online_node(nid)
4208 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4209 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4210 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4211
89abfab1
HD
4212 recent_rotated[0] += rstat->recent_rotated[0];
4213 recent_rotated[1] += rstat->recent_rotated[1];
4214 recent_scanned[0] += rstat->recent_scanned[0];
4215 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8
KM
4216 }
4217 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4218 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4219 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4220 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4221 }
4222#endif
4223
d2ceb9b7
KH
4224 return 0;
4225}
4226
a7885eb8
KM
4227static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4228{
4229 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4230
1f4c025b 4231 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4232}
4233
4234static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4235 u64 val)
4236{
4237 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4238 struct mem_cgroup *parent;
068b38c1 4239
a7885eb8
KM
4240 if (val > 100)
4241 return -EINVAL;
4242
4243 if (cgrp->parent == NULL)
4244 return -EINVAL;
4245
4246 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4247
4248 cgroup_lock();
4249
a7885eb8
KM
4250 /* If under hierarchy, only empty-root can set this value */
4251 if ((parent->use_hierarchy) ||
068b38c1
LZ
4252 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4253 cgroup_unlock();
a7885eb8 4254 return -EINVAL;
068b38c1 4255 }
a7885eb8 4256
a7885eb8 4257 memcg->swappiness = val;
a7885eb8 4258
068b38c1
LZ
4259 cgroup_unlock();
4260
a7885eb8
KM
4261 return 0;
4262}
4263
2e72b634
KS
4264static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4265{
4266 struct mem_cgroup_threshold_ary *t;
4267 u64 usage;
4268 int i;
4269
4270 rcu_read_lock();
4271 if (!swap)
2c488db2 4272 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4273 else
2c488db2 4274 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4275
4276 if (!t)
4277 goto unlock;
4278
4279 usage = mem_cgroup_usage(memcg, swap);
4280
4281 /*
4282 * current_threshold points to threshold just below usage.
4283 * If it's not true, a threshold was crossed after last
4284 * call of __mem_cgroup_threshold().
4285 */
5407a562 4286 i = t->current_threshold;
2e72b634
KS
4287
4288 /*
4289 * Iterate backward over array of thresholds starting from
4290 * current_threshold and check if a threshold is crossed.
4291 * If none of thresholds below usage is crossed, we read
4292 * only one element of the array here.
4293 */
4294 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4295 eventfd_signal(t->entries[i].eventfd, 1);
4296
4297 /* i = current_threshold + 1 */
4298 i++;
4299
4300 /*
4301 * Iterate forward over array of thresholds starting from
4302 * current_threshold+1 and check if a threshold is crossed.
4303 * If none of thresholds above usage is crossed, we read
4304 * only one element of the array here.
4305 */
4306 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4307 eventfd_signal(t->entries[i].eventfd, 1);
4308
4309 /* Update current_threshold */
5407a562 4310 t->current_threshold = i - 1;
2e72b634
KS
4311unlock:
4312 rcu_read_unlock();
4313}
4314
4315static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4316{
ad4ca5f4
KS
4317 while (memcg) {
4318 __mem_cgroup_threshold(memcg, false);
4319 if (do_swap_account)
4320 __mem_cgroup_threshold(memcg, true);
4321
4322 memcg = parent_mem_cgroup(memcg);
4323 }
2e72b634
KS
4324}
4325
4326static int compare_thresholds(const void *a, const void *b)
4327{
4328 const struct mem_cgroup_threshold *_a = a;
4329 const struct mem_cgroup_threshold *_b = b;
4330
4331 return _a->threshold - _b->threshold;
4332}
4333
c0ff4b85 4334static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4335{
4336 struct mem_cgroup_eventfd_list *ev;
4337
c0ff4b85 4338 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4339 eventfd_signal(ev->eventfd, 1);
4340 return 0;
4341}
4342
c0ff4b85 4343static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4344{
7d74b06f
KH
4345 struct mem_cgroup *iter;
4346
c0ff4b85 4347 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4348 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4349}
4350
4351static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4352 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4353{
4354 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4355 struct mem_cgroup_thresholds *thresholds;
4356 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4357 int type = MEMFILE_TYPE(cft->private);
4358 u64 threshold, usage;
2c488db2 4359 int i, size, ret;
2e72b634
KS
4360
4361 ret = res_counter_memparse_write_strategy(args, &threshold);
4362 if (ret)
4363 return ret;
4364
4365 mutex_lock(&memcg->thresholds_lock);
2c488db2 4366
2e72b634 4367 if (type == _MEM)
2c488db2 4368 thresholds = &memcg->thresholds;
2e72b634 4369 else if (type == _MEMSWAP)
2c488db2 4370 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4371 else
4372 BUG();
4373
4374 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4375
4376 /* Check if a threshold crossed before adding a new one */
2c488db2 4377 if (thresholds->primary)
2e72b634
KS
4378 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4379
2c488db2 4380 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4381
4382 /* Allocate memory for new array of thresholds */
2c488db2 4383 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4384 GFP_KERNEL);
2c488db2 4385 if (!new) {
2e72b634
KS
4386 ret = -ENOMEM;
4387 goto unlock;
4388 }
2c488db2 4389 new->size = size;
2e72b634
KS
4390
4391 /* Copy thresholds (if any) to new array */
2c488db2
KS
4392 if (thresholds->primary) {
4393 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4394 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4395 }
4396
2e72b634 4397 /* Add new threshold */
2c488db2
KS
4398 new->entries[size - 1].eventfd = eventfd;
4399 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4400
4401 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4402 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4403 compare_thresholds, NULL);
4404
4405 /* Find current threshold */
2c488db2 4406 new->current_threshold = -1;
2e72b634 4407 for (i = 0; i < size; i++) {
2c488db2 4408 if (new->entries[i].threshold < usage) {
2e72b634 4409 /*
2c488db2
KS
4410 * new->current_threshold will not be used until
4411 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4412 * it here.
4413 */
2c488db2 4414 ++new->current_threshold;
2e72b634
KS
4415 }
4416 }
4417
2c488db2
KS
4418 /* Free old spare buffer and save old primary buffer as spare */
4419 kfree(thresholds->spare);
4420 thresholds->spare = thresholds->primary;
4421
4422 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4423
907860ed 4424 /* To be sure that nobody uses thresholds */
2e72b634
KS
4425 synchronize_rcu();
4426
2e72b634
KS
4427unlock:
4428 mutex_unlock(&memcg->thresholds_lock);
4429
4430 return ret;
4431}
4432
907860ed 4433static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4434 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4435{
4436 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4437 struct mem_cgroup_thresholds *thresholds;
4438 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4439 int type = MEMFILE_TYPE(cft->private);
4440 u64 usage;
2c488db2 4441 int i, j, size;
2e72b634
KS
4442
4443 mutex_lock(&memcg->thresholds_lock);
4444 if (type == _MEM)
2c488db2 4445 thresholds = &memcg->thresholds;
2e72b634 4446 else if (type == _MEMSWAP)
2c488db2 4447 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4448 else
4449 BUG();
4450
371528ca
AV
4451 if (!thresholds->primary)
4452 goto unlock;
4453
2e72b634
KS
4454 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4455
4456 /* Check if a threshold crossed before removing */
4457 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4458
4459 /* Calculate new number of threshold */
2c488db2
KS
4460 size = 0;
4461 for (i = 0; i < thresholds->primary->size; i++) {
4462 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4463 size++;
4464 }
4465
2c488db2 4466 new = thresholds->spare;
907860ed 4467
2e72b634
KS
4468 /* Set thresholds array to NULL if we don't have thresholds */
4469 if (!size) {
2c488db2
KS
4470 kfree(new);
4471 new = NULL;
907860ed 4472 goto swap_buffers;
2e72b634
KS
4473 }
4474
2c488db2 4475 new->size = size;
2e72b634
KS
4476
4477 /* Copy thresholds and find current threshold */
2c488db2
KS
4478 new->current_threshold = -1;
4479 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4480 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4481 continue;
4482
2c488db2
KS
4483 new->entries[j] = thresholds->primary->entries[i];
4484 if (new->entries[j].threshold < usage) {
2e72b634 4485 /*
2c488db2 4486 * new->current_threshold will not be used
2e72b634
KS
4487 * until rcu_assign_pointer(), so it's safe to increment
4488 * it here.
4489 */
2c488db2 4490 ++new->current_threshold;
2e72b634
KS
4491 }
4492 j++;
4493 }
4494
907860ed 4495swap_buffers:
2c488db2
KS
4496 /* Swap primary and spare array */
4497 thresholds->spare = thresholds->primary;
8c757763
SZ
4498 /* If all events are unregistered, free the spare array */
4499 if (!new) {
4500 kfree(thresholds->spare);
4501 thresholds->spare = NULL;
4502 }
4503
2c488db2 4504 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4505
907860ed 4506 /* To be sure that nobody uses thresholds */
2e72b634 4507 synchronize_rcu();
371528ca 4508unlock:
2e72b634 4509 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4510}
c1e862c1 4511
9490ff27
KH
4512static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4513 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4514{
4515 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4516 struct mem_cgroup_eventfd_list *event;
4517 int type = MEMFILE_TYPE(cft->private);
4518
4519 BUG_ON(type != _OOM_TYPE);
4520 event = kmalloc(sizeof(*event), GFP_KERNEL);
4521 if (!event)
4522 return -ENOMEM;
4523
1af8efe9 4524 spin_lock(&memcg_oom_lock);
9490ff27
KH
4525
4526 event->eventfd = eventfd;
4527 list_add(&event->list, &memcg->oom_notify);
4528
4529 /* already in OOM ? */
79dfdacc 4530 if (atomic_read(&memcg->under_oom))
9490ff27 4531 eventfd_signal(eventfd, 1);
1af8efe9 4532 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4533
4534 return 0;
4535}
4536
907860ed 4537static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4538 struct cftype *cft, struct eventfd_ctx *eventfd)
4539{
c0ff4b85 4540 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4541 struct mem_cgroup_eventfd_list *ev, *tmp;
4542 int type = MEMFILE_TYPE(cft->private);
4543
4544 BUG_ON(type != _OOM_TYPE);
4545
1af8efe9 4546 spin_lock(&memcg_oom_lock);
9490ff27 4547
c0ff4b85 4548 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4549 if (ev->eventfd == eventfd) {
4550 list_del(&ev->list);
4551 kfree(ev);
4552 }
4553 }
4554
1af8efe9 4555 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4556}
4557
3c11ecf4
KH
4558static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4559 struct cftype *cft, struct cgroup_map_cb *cb)
4560{
c0ff4b85 4561 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4562
c0ff4b85 4563 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4564
c0ff4b85 4565 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4566 cb->fill(cb, "under_oom", 1);
4567 else
4568 cb->fill(cb, "under_oom", 0);
4569 return 0;
4570}
4571
3c11ecf4
KH
4572static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4573 struct cftype *cft, u64 val)
4574{
c0ff4b85 4575 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4576 struct mem_cgroup *parent;
4577
4578 /* cannot set to root cgroup and only 0 and 1 are allowed */
4579 if (!cgrp->parent || !((val == 0) || (val == 1)))
4580 return -EINVAL;
4581
4582 parent = mem_cgroup_from_cont(cgrp->parent);
4583
4584 cgroup_lock();
4585 /* oom-kill-disable is a flag for subhierarchy. */
4586 if ((parent->use_hierarchy) ||
c0ff4b85 4587 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4588 cgroup_unlock();
4589 return -EINVAL;
4590 }
c0ff4b85 4591 memcg->oom_kill_disable = val;
4d845ebf 4592 if (!val)
c0ff4b85 4593 memcg_oom_recover(memcg);
3c11ecf4
KH
4594 cgroup_unlock();
4595 return 0;
4596}
4597
406eb0c9
YH
4598#ifdef CONFIG_NUMA
4599static const struct file_operations mem_control_numa_stat_file_operations = {
4600 .read = seq_read,
4601 .llseek = seq_lseek,
4602 .release = single_release,
4603};
4604
4605static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4606{
4607 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4608
4609 file->f_op = &mem_control_numa_stat_file_operations;
4610 return single_open(file, mem_control_numa_stat_show, cont);
4611}
4612#endif /* CONFIG_NUMA */
4613
e5671dfa 4614#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
cbe128e3 4615static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4616{
1d62e436 4617 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4618};
4619
1d62e436 4620static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4621{
1d62e436 4622 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4623}
e5671dfa 4624#else
cbe128e3 4625static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4626{
4627 return 0;
4628}
d1a4c0b3 4629
1d62e436 4630static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4631{
4632}
e5671dfa
GC
4633#endif
4634
8cdea7c0
BS
4635static struct cftype mem_cgroup_files[] = {
4636 {
0eea1030 4637 .name = "usage_in_bytes",
8c7c6e34 4638 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4639 .read = mem_cgroup_read,
9490ff27
KH
4640 .register_event = mem_cgroup_usage_register_event,
4641 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4642 },
c84872e1
PE
4643 {
4644 .name = "max_usage_in_bytes",
8c7c6e34 4645 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4646 .trigger = mem_cgroup_reset,
af36f906 4647 .read = mem_cgroup_read,
c84872e1 4648 },
8cdea7c0 4649 {
0eea1030 4650 .name = "limit_in_bytes",
8c7c6e34 4651 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4652 .write_string = mem_cgroup_write,
af36f906 4653 .read = mem_cgroup_read,
8cdea7c0 4654 },
296c81d8
BS
4655 {
4656 .name = "soft_limit_in_bytes",
4657 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4658 .write_string = mem_cgroup_write,
af36f906 4659 .read = mem_cgroup_read,
296c81d8 4660 },
8cdea7c0
BS
4661 {
4662 .name = "failcnt",
8c7c6e34 4663 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4664 .trigger = mem_cgroup_reset,
af36f906 4665 .read = mem_cgroup_read,
8cdea7c0 4666 },
d2ceb9b7
KH
4667 {
4668 .name = "stat",
c64745cf 4669 .read_map = mem_control_stat_show,
d2ceb9b7 4670 },
c1e862c1
KH
4671 {
4672 .name = "force_empty",
4673 .trigger = mem_cgroup_force_empty_write,
4674 },
18f59ea7
BS
4675 {
4676 .name = "use_hierarchy",
4677 .write_u64 = mem_cgroup_hierarchy_write,
4678 .read_u64 = mem_cgroup_hierarchy_read,
4679 },
a7885eb8
KM
4680 {
4681 .name = "swappiness",
4682 .read_u64 = mem_cgroup_swappiness_read,
4683 .write_u64 = mem_cgroup_swappiness_write,
4684 },
7dc74be0
DN
4685 {
4686 .name = "move_charge_at_immigrate",
4687 .read_u64 = mem_cgroup_move_charge_read,
4688 .write_u64 = mem_cgroup_move_charge_write,
4689 },
9490ff27
KH
4690 {
4691 .name = "oom_control",
3c11ecf4
KH
4692 .read_map = mem_cgroup_oom_control_read,
4693 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4694 .register_event = mem_cgroup_oom_register_event,
4695 .unregister_event = mem_cgroup_oom_unregister_event,
4696 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4697 },
406eb0c9
YH
4698#ifdef CONFIG_NUMA
4699 {
4700 .name = "numa_stat",
4701 .open = mem_control_numa_stat_open,
89577127 4702 .mode = S_IRUGO,
406eb0c9
YH
4703 },
4704#endif
8c7c6e34 4705#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
8c7c6e34
KH
4706 {
4707 .name = "memsw.usage_in_bytes",
4708 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4709 .read = mem_cgroup_read,
9490ff27
KH
4710 .register_event = mem_cgroup_usage_register_event,
4711 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4712 },
4713 {
4714 .name = "memsw.max_usage_in_bytes",
4715 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4716 .trigger = mem_cgroup_reset,
af36f906 4717 .read = mem_cgroup_read,
8c7c6e34
KH
4718 },
4719 {
4720 .name = "memsw.limit_in_bytes",
4721 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4722 .write_string = mem_cgroup_write,
af36f906 4723 .read = mem_cgroup_read,
8c7c6e34
KH
4724 },
4725 {
4726 .name = "memsw.failcnt",
4727 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4728 .trigger = mem_cgroup_reset,
af36f906 4729 .read = mem_cgroup_read,
8c7c6e34 4730 },
8c7c6e34 4731#endif
6bc10349 4732 { }, /* terminate */
af36f906 4733};
8c7c6e34 4734
c0ff4b85 4735static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4736{
4737 struct mem_cgroup_per_node *pn;
1ecaab2b 4738 struct mem_cgroup_per_zone *mz;
f156ab93 4739 enum lru_list lru;
41e3355d 4740 int zone, tmp = node;
1ecaab2b
KH
4741 /*
4742 * This routine is called against possible nodes.
4743 * But it's BUG to call kmalloc() against offline node.
4744 *
4745 * TODO: this routine can waste much memory for nodes which will
4746 * never be onlined. It's better to use memory hotplug callback
4747 * function.
4748 */
41e3355d
KH
4749 if (!node_state(node, N_NORMAL_MEMORY))
4750 tmp = -1;
17295c88 4751 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4752 if (!pn)
4753 return 1;
1ecaab2b 4754
1ecaab2b
KH
4755 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4756 mz = &pn->zoneinfo[zone];
f156ab93
HD
4757 for_each_lru(lru)
4758 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
f64c3f54 4759 mz->usage_in_excess = 0;
4e416953 4760 mz->on_tree = false;
d79154bb 4761 mz->memcg = memcg;
1ecaab2b 4762 }
0a619e58 4763 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4764 return 0;
4765}
4766
c0ff4b85 4767static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4768{
c0ff4b85 4769 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4770}
4771
33327948
KH
4772static struct mem_cgroup *mem_cgroup_alloc(void)
4773{
d79154bb 4774 struct mem_cgroup *memcg;
c62b1a3b 4775 int size = sizeof(struct mem_cgroup);
33327948 4776
c62b1a3b 4777 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4778 if (size < PAGE_SIZE)
d79154bb 4779 memcg = kzalloc(size, GFP_KERNEL);
33327948 4780 else
d79154bb 4781 memcg = vzalloc(size);
33327948 4782
d79154bb 4783 if (!memcg)
e7bbcdf3
DC
4784 return NULL;
4785
d79154bb
HD
4786 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4787 if (!memcg->stat)
d2e61b8d 4788 goto out_free;
d79154bb
HD
4789 spin_lock_init(&memcg->pcp_counter_lock);
4790 return memcg;
d2e61b8d
DC
4791
4792out_free:
4793 if (size < PAGE_SIZE)
d79154bb 4794 kfree(memcg);
d2e61b8d 4795 else
d79154bb 4796 vfree(memcg);
d2e61b8d 4797 return NULL;
33327948
KH
4798}
4799
59927fb9
HD
4800/*
4801 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4802 * but in process context. The work_freeing structure is overlaid
4803 * on the rcu_freeing structure, which itself is overlaid on memsw.
4804 */
4805static void vfree_work(struct work_struct *work)
4806{
4807 struct mem_cgroup *memcg;
4808
4809 memcg = container_of(work, struct mem_cgroup, work_freeing);
4810 vfree(memcg);
4811}
4812static void vfree_rcu(struct rcu_head *rcu_head)
4813{
4814 struct mem_cgroup *memcg;
4815
4816 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4817 INIT_WORK(&memcg->work_freeing, vfree_work);
4818 schedule_work(&memcg->work_freeing);
4819}
4820
8c7c6e34
KH
4821/*
4822 * At destroying mem_cgroup, references from swap_cgroup can remain.
4823 * (scanning all at force_empty is too costly...)
4824 *
4825 * Instead of clearing all references at force_empty, we remember
4826 * the number of reference from swap_cgroup and free mem_cgroup when
4827 * it goes down to 0.
4828 *
8c7c6e34
KH
4829 * Removal of cgroup itself succeeds regardless of refs from swap.
4830 */
4831
c0ff4b85 4832static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4833{
08e552c6
KH
4834 int node;
4835
c0ff4b85
R
4836 mem_cgroup_remove_from_trees(memcg);
4837 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4838
3ed28fa1 4839 for_each_node(node)
c0ff4b85 4840 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4841
c0ff4b85 4842 free_percpu(memcg->stat);
c62b1a3b 4843 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4844 kfree_rcu(memcg, rcu_freeing);
33327948 4845 else
59927fb9 4846 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4847}
4848
c0ff4b85 4849static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4850{
c0ff4b85 4851 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4852}
4853
c0ff4b85 4854static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4855{
c0ff4b85
R
4856 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4857 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4858 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4859 if (parent)
4860 mem_cgroup_put(parent);
4861 }
8c7c6e34
KH
4862}
4863
c0ff4b85 4864static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4865{
c0ff4b85 4866 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4867}
4868
7bcc1bb1
DN
4869/*
4870 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4871 */
e1aab161 4872struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4873{
c0ff4b85 4874 if (!memcg->res.parent)
7bcc1bb1 4875 return NULL;
c0ff4b85 4876 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4877}
e1aab161 4878EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4879
c077719b
KH
4880#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4881static void __init enable_swap_cgroup(void)
4882{
f8d66542 4883 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4884 do_swap_account = 1;
4885}
4886#else
4887static void __init enable_swap_cgroup(void)
4888{
4889}
4890#endif
4891
f64c3f54
BS
4892static int mem_cgroup_soft_limit_tree_init(void)
4893{
4894 struct mem_cgroup_tree_per_node *rtpn;
4895 struct mem_cgroup_tree_per_zone *rtpz;
4896 int tmp, node, zone;
4897
3ed28fa1 4898 for_each_node(node) {
f64c3f54
BS
4899 tmp = node;
4900 if (!node_state(node, N_NORMAL_MEMORY))
4901 tmp = -1;
4902 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4903 if (!rtpn)
c3cecc68 4904 goto err_cleanup;
f64c3f54
BS
4905
4906 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4907
4908 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4909 rtpz = &rtpn->rb_tree_per_zone[zone];
4910 rtpz->rb_root = RB_ROOT;
4911 spin_lock_init(&rtpz->lock);
4912 }
4913 }
4914 return 0;
c3cecc68
MH
4915
4916err_cleanup:
3ed28fa1 4917 for_each_node(node) {
c3cecc68
MH
4918 if (!soft_limit_tree.rb_tree_per_node[node])
4919 break;
4920 kfree(soft_limit_tree.rb_tree_per_node[node]);
4921 soft_limit_tree.rb_tree_per_node[node] = NULL;
4922 }
4923 return 1;
4924
f64c3f54
BS
4925}
4926
0eb253e2 4927static struct cgroup_subsys_state * __ref
761b3ef5 4928mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4929{
c0ff4b85 4930 struct mem_cgroup *memcg, *parent;
04046e1a 4931 long error = -ENOMEM;
6d12e2d8 4932 int node;
8cdea7c0 4933
c0ff4b85
R
4934 memcg = mem_cgroup_alloc();
4935 if (!memcg)
04046e1a 4936 return ERR_PTR(error);
78fb7466 4937
3ed28fa1 4938 for_each_node(node)
c0ff4b85 4939 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4940 goto free_out;
f64c3f54 4941
c077719b 4942 /* root ? */
28dbc4b6 4943 if (cont->parent == NULL) {
cdec2e42 4944 int cpu;
c077719b 4945 enable_swap_cgroup();
28dbc4b6 4946 parent = NULL;
f64c3f54
BS
4947 if (mem_cgroup_soft_limit_tree_init())
4948 goto free_out;
a41c58a6 4949 root_mem_cgroup = memcg;
cdec2e42
KH
4950 for_each_possible_cpu(cpu) {
4951 struct memcg_stock_pcp *stock =
4952 &per_cpu(memcg_stock, cpu);
4953 INIT_WORK(&stock->work, drain_local_stock);
4954 }
711d3d2c 4955 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4956 } else {
28dbc4b6 4957 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4958 memcg->use_hierarchy = parent->use_hierarchy;
4959 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4960 }
28dbc4b6 4961
18f59ea7 4962 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4963 res_counter_init(&memcg->res, &parent->res);
4964 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4965 /*
4966 * We increment refcnt of the parent to ensure that we can
4967 * safely access it on res_counter_charge/uncharge.
4968 * This refcnt will be decremented when freeing this
4969 * mem_cgroup(see mem_cgroup_put).
4970 */
4971 mem_cgroup_get(parent);
18f59ea7 4972 } else {
c0ff4b85
R
4973 res_counter_init(&memcg->res, NULL);
4974 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4975 }
c0ff4b85
R
4976 memcg->last_scanned_node = MAX_NUMNODES;
4977 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4978
a7885eb8 4979 if (parent)
c0ff4b85
R
4980 memcg->swappiness = mem_cgroup_swappiness(parent);
4981 atomic_set(&memcg->refcnt, 1);
4982 memcg->move_charge_at_immigrate = 0;
4983 mutex_init(&memcg->thresholds_lock);
312734c0 4984 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4985
4986 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4987 if (error) {
4988 /*
4989 * We call put now because our (and parent's) refcnts
4990 * are already in place. mem_cgroup_put() will internally
4991 * call __mem_cgroup_free, so return directly
4992 */
4993 mem_cgroup_put(memcg);
4994 return ERR_PTR(error);
4995 }
c0ff4b85 4996 return &memcg->css;
6d12e2d8 4997free_out:
c0ff4b85 4998 __mem_cgroup_free(memcg);
04046e1a 4999 return ERR_PTR(error);
8cdea7c0
BS
5000}
5001
761b3ef5 5002static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5003{
c0ff4b85 5004 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5005
c0ff4b85 5006 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5007}
5008
761b3ef5 5009static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5010{
c0ff4b85 5011 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5012
1d62e436 5013 kmem_cgroup_destroy(memcg);
d1a4c0b3 5014
c0ff4b85 5015 mem_cgroup_put(memcg);
8cdea7c0
BS
5016}
5017
02491447 5018#ifdef CONFIG_MMU
7dc74be0 5019/* Handlers for move charge at task migration. */
854ffa8d
DN
5020#define PRECHARGE_COUNT_AT_ONCE 256
5021static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5022{
854ffa8d
DN
5023 int ret = 0;
5024 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5025 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5026
c0ff4b85 5027 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5028 mc.precharge += count;
5029 /* we don't need css_get for root */
5030 return ret;
5031 }
5032 /* try to charge at once */
5033 if (count > 1) {
5034 struct res_counter *dummy;
5035 /*
c0ff4b85 5036 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5037 * by cgroup_lock_live_cgroup() that it is not removed and we
5038 * are still under the same cgroup_mutex. So we can postpone
5039 * css_get().
5040 */
c0ff4b85 5041 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5042 goto one_by_one;
c0ff4b85 5043 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5044 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5045 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5046 goto one_by_one;
5047 }
5048 mc.precharge += count;
854ffa8d
DN
5049 return ret;
5050 }
5051one_by_one:
5052 /* fall back to one by one charge */
5053 while (count--) {
5054 if (signal_pending(current)) {
5055 ret = -EINTR;
5056 break;
5057 }
5058 if (!batch_count--) {
5059 batch_count = PRECHARGE_COUNT_AT_ONCE;
5060 cond_resched();
5061 }
c0ff4b85
R
5062 ret = __mem_cgroup_try_charge(NULL,
5063 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5064 if (ret)
854ffa8d 5065 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5066 return ret;
854ffa8d
DN
5067 mc.precharge++;
5068 }
4ffef5fe
DN
5069 return ret;
5070}
5071
5072/**
8d32ff84 5073 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5074 * @vma: the vma the pte to be checked belongs
5075 * @addr: the address corresponding to the pte to be checked
5076 * @ptent: the pte to be checked
02491447 5077 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5078 *
5079 * Returns
5080 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5081 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5082 * move charge. if @target is not NULL, the page is stored in target->page
5083 * with extra refcnt got(Callers should handle it).
02491447
DN
5084 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5085 * target for charge migration. if @target is not NULL, the entry is stored
5086 * in target->ent.
4ffef5fe
DN
5087 *
5088 * Called with pte lock held.
5089 */
4ffef5fe
DN
5090union mc_target {
5091 struct page *page;
02491447 5092 swp_entry_t ent;
4ffef5fe
DN
5093};
5094
4ffef5fe 5095enum mc_target_type {
8d32ff84 5096 MC_TARGET_NONE = 0,
4ffef5fe 5097 MC_TARGET_PAGE,
02491447 5098 MC_TARGET_SWAP,
4ffef5fe
DN
5099};
5100
90254a65
DN
5101static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5102 unsigned long addr, pte_t ptent)
4ffef5fe 5103{
90254a65 5104 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5105
90254a65
DN
5106 if (!page || !page_mapped(page))
5107 return NULL;
5108 if (PageAnon(page)) {
5109 /* we don't move shared anon */
4b91355e 5110 if (!move_anon())
90254a65 5111 return NULL;
87946a72
DN
5112 } else if (!move_file())
5113 /* we ignore mapcount for file pages */
90254a65
DN
5114 return NULL;
5115 if (!get_page_unless_zero(page))
5116 return NULL;
5117
5118 return page;
5119}
5120
4b91355e 5121#ifdef CONFIG_SWAP
90254a65
DN
5122static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5123 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5124{
90254a65
DN
5125 struct page *page = NULL;
5126 swp_entry_t ent = pte_to_swp_entry(ptent);
5127
5128 if (!move_anon() || non_swap_entry(ent))
5129 return NULL;
4b91355e
KH
5130 /*
5131 * Because lookup_swap_cache() updates some statistics counter,
5132 * we call find_get_page() with swapper_space directly.
5133 */
5134 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5135 if (do_swap_account)
5136 entry->val = ent.val;
5137
5138 return page;
5139}
4b91355e
KH
5140#else
5141static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5142 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5143{
5144 return NULL;
5145}
5146#endif
90254a65 5147
87946a72
DN
5148static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5149 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5150{
5151 struct page *page = NULL;
5152 struct inode *inode;
5153 struct address_space *mapping;
5154 pgoff_t pgoff;
5155
5156 if (!vma->vm_file) /* anonymous vma */
5157 return NULL;
5158 if (!move_file())
5159 return NULL;
5160
5161 inode = vma->vm_file->f_path.dentry->d_inode;
5162 mapping = vma->vm_file->f_mapping;
5163 if (pte_none(ptent))
5164 pgoff = linear_page_index(vma, addr);
5165 else /* pte_file(ptent) is true */
5166 pgoff = pte_to_pgoff(ptent);
5167
5168 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5169 page = find_get_page(mapping, pgoff);
5170
5171#ifdef CONFIG_SWAP
5172 /* shmem/tmpfs may report page out on swap: account for that too. */
5173 if (radix_tree_exceptional_entry(page)) {
5174 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5175 if (do_swap_account)
aa3b1895
HD
5176 *entry = swap;
5177 page = find_get_page(&swapper_space, swap.val);
87946a72 5178 }
aa3b1895 5179#endif
87946a72
DN
5180 return page;
5181}
5182
8d32ff84 5183static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5184 unsigned long addr, pte_t ptent, union mc_target *target)
5185{
5186 struct page *page = NULL;
5187 struct page_cgroup *pc;
8d32ff84 5188 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5189 swp_entry_t ent = { .val = 0 };
5190
5191 if (pte_present(ptent))
5192 page = mc_handle_present_pte(vma, addr, ptent);
5193 else if (is_swap_pte(ptent))
5194 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5195 else if (pte_none(ptent) || pte_file(ptent))
5196 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5197
5198 if (!page && !ent.val)
8d32ff84 5199 return ret;
02491447
DN
5200 if (page) {
5201 pc = lookup_page_cgroup(page);
5202 /*
5203 * Do only loose check w/o page_cgroup lock.
5204 * mem_cgroup_move_account() checks the pc is valid or not under
5205 * the lock.
5206 */
5207 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5208 ret = MC_TARGET_PAGE;
5209 if (target)
5210 target->page = page;
5211 }
5212 if (!ret || !target)
5213 put_page(page);
5214 }
90254a65
DN
5215 /* There is a swap entry and a page doesn't exist or isn't charged */
5216 if (ent.val && !ret &&
9fb4b7cc 5217 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5218 ret = MC_TARGET_SWAP;
5219 if (target)
5220 target->ent = ent;
4ffef5fe 5221 }
4ffef5fe
DN
5222 return ret;
5223}
5224
12724850
NH
5225#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5226/*
5227 * We don't consider swapping or file mapped pages because THP does not
5228 * support them for now.
5229 * Caller should make sure that pmd_trans_huge(pmd) is true.
5230 */
5231static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5232 unsigned long addr, pmd_t pmd, union mc_target *target)
5233{
5234 struct page *page = NULL;
5235 struct page_cgroup *pc;
5236 enum mc_target_type ret = MC_TARGET_NONE;
5237
5238 page = pmd_page(pmd);
5239 VM_BUG_ON(!page || !PageHead(page));
5240 if (!move_anon())
5241 return ret;
5242 pc = lookup_page_cgroup(page);
5243 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5244 ret = MC_TARGET_PAGE;
5245 if (target) {
5246 get_page(page);
5247 target->page = page;
5248 }
5249 }
5250 return ret;
5251}
5252#else
5253static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5254 unsigned long addr, pmd_t pmd, union mc_target *target)
5255{
5256 return MC_TARGET_NONE;
5257}
5258#endif
5259
4ffef5fe
DN
5260static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5261 unsigned long addr, unsigned long end,
5262 struct mm_walk *walk)
5263{
5264 struct vm_area_struct *vma = walk->private;
5265 pte_t *pte;
5266 spinlock_t *ptl;
5267
12724850
NH
5268 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5269 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5270 mc.precharge += HPAGE_PMD_NR;
5271 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5272 return 0;
12724850 5273 }
03319327 5274
45f83cef
AA
5275 if (pmd_trans_unstable(pmd))
5276 return 0;
4ffef5fe
DN
5277 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5278 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5279 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5280 mc.precharge++; /* increment precharge temporarily */
5281 pte_unmap_unlock(pte - 1, ptl);
5282 cond_resched();
5283
7dc74be0
DN
5284 return 0;
5285}
5286
4ffef5fe
DN
5287static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5288{
5289 unsigned long precharge;
5290 struct vm_area_struct *vma;
5291
dfe076b0 5292 down_read(&mm->mmap_sem);
4ffef5fe
DN
5293 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5294 struct mm_walk mem_cgroup_count_precharge_walk = {
5295 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5296 .mm = mm,
5297 .private = vma,
5298 };
5299 if (is_vm_hugetlb_page(vma))
5300 continue;
4ffef5fe
DN
5301 walk_page_range(vma->vm_start, vma->vm_end,
5302 &mem_cgroup_count_precharge_walk);
5303 }
dfe076b0 5304 up_read(&mm->mmap_sem);
4ffef5fe
DN
5305
5306 precharge = mc.precharge;
5307 mc.precharge = 0;
5308
5309 return precharge;
5310}
5311
4ffef5fe
DN
5312static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5313{
dfe076b0
DN
5314 unsigned long precharge = mem_cgroup_count_precharge(mm);
5315
5316 VM_BUG_ON(mc.moving_task);
5317 mc.moving_task = current;
5318 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5319}
5320
dfe076b0
DN
5321/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5322static void __mem_cgroup_clear_mc(void)
4ffef5fe 5323{
2bd9bb20
KH
5324 struct mem_cgroup *from = mc.from;
5325 struct mem_cgroup *to = mc.to;
5326
4ffef5fe 5327 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5328 if (mc.precharge) {
5329 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5330 mc.precharge = 0;
5331 }
5332 /*
5333 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5334 * we must uncharge here.
5335 */
5336 if (mc.moved_charge) {
5337 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5338 mc.moved_charge = 0;
4ffef5fe 5339 }
483c30b5
DN
5340 /* we must fixup refcnts and charges */
5341 if (mc.moved_swap) {
483c30b5
DN
5342 /* uncharge swap account from the old cgroup */
5343 if (!mem_cgroup_is_root(mc.from))
5344 res_counter_uncharge(&mc.from->memsw,
5345 PAGE_SIZE * mc.moved_swap);
5346 __mem_cgroup_put(mc.from, mc.moved_swap);
5347
5348 if (!mem_cgroup_is_root(mc.to)) {
5349 /*
5350 * we charged both to->res and to->memsw, so we should
5351 * uncharge to->res.
5352 */
5353 res_counter_uncharge(&mc.to->res,
5354 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5355 }
5356 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5357 mc.moved_swap = 0;
5358 }
dfe076b0
DN
5359 memcg_oom_recover(from);
5360 memcg_oom_recover(to);
5361 wake_up_all(&mc.waitq);
5362}
5363
5364static void mem_cgroup_clear_mc(void)
5365{
5366 struct mem_cgroup *from = mc.from;
5367
5368 /*
5369 * we must clear moving_task before waking up waiters at the end of
5370 * task migration.
5371 */
5372 mc.moving_task = NULL;
5373 __mem_cgroup_clear_mc();
2bd9bb20 5374 spin_lock(&mc.lock);
4ffef5fe
DN
5375 mc.from = NULL;
5376 mc.to = NULL;
2bd9bb20 5377 spin_unlock(&mc.lock);
32047e2a 5378 mem_cgroup_end_move(from);
4ffef5fe
DN
5379}
5380
761b3ef5
LZ
5381static int mem_cgroup_can_attach(struct cgroup *cgroup,
5382 struct cgroup_taskset *tset)
7dc74be0 5383{
2f7ee569 5384 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5385 int ret = 0;
c0ff4b85 5386 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5387
c0ff4b85 5388 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5389 struct mm_struct *mm;
5390 struct mem_cgroup *from = mem_cgroup_from_task(p);
5391
c0ff4b85 5392 VM_BUG_ON(from == memcg);
7dc74be0
DN
5393
5394 mm = get_task_mm(p);
5395 if (!mm)
5396 return 0;
7dc74be0 5397 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5398 if (mm->owner == p) {
5399 VM_BUG_ON(mc.from);
5400 VM_BUG_ON(mc.to);
5401 VM_BUG_ON(mc.precharge);
854ffa8d 5402 VM_BUG_ON(mc.moved_charge);
483c30b5 5403 VM_BUG_ON(mc.moved_swap);
32047e2a 5404 mem_cgroup_start_move(from);
2bd9bb20 5405 spin_lock(&mc.lock);
4ffef5fe 5406 mc.from = from;
c0ff4b85 5407 mc.to = memcg;
2bd9bb20 5408 spin_unlock(&mc.lock);
dfe076b0 5409 /* We set mc.moving_task later */
4ffef5fe
DN
5410
5411 ret = mem_cgroup_precharge_mc(mm);
5412 if (ret)
5413 mem_cgroup_clear_mc();
dfe076b0
DN
5414 }
5415 mmput(mm);
7dc74be0
DN
5416 }
5417 return ret;
5418}
5419
761b3ef5
LZ
5420static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5421 struct cgroup_taskset *tset)
7dc74be0 5422{
4ffef5fe 5423 mem_cgroup_clear_mc();
7dc74be0
DN
5424}
5425
4ffef5fe
DN
5426static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5427 unsigned long addr, unsigned long end,
5428 struct mm_walk *walk)
7dc74be0 5429{
4ffef5fe
DN
5430 int ret = 0;
5431 struct vm_area_struct *vma = walk->private;
5432 pte_t *pte;
5433 spinlock_t *ptl;
12724850
NH
5434 enum mc_target_type target_type;
5435 union mc_target target;
5436 struct page *page;
5437 struct page_cgroup *pc;
4ffef5fe 5438
12724850
NH
5439 /*
5440 * We don't take compound_lock() here but no race with splitting thp
5441 * happens because:
5442 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5443 * under splitting, which means there's no concurrent thp split,
5444 * - if another thread runs into split_huge_page() just after we
5445 * entered this if-block, the thread must wait for page table lock
5446 * to be unlocked in __split_huge_page_splitting(), where the main
5447 * part of thp split is not executed yet.
5448 */
5449 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5450 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5451 spin_unlock(&vma->vm_mm->page_table_lock);
5452 return 0;
5453 }
5454 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5455 if (target_type == MC_TARGET_PAGE) {
5456 page = target.page;
5457 if (!isolate_lru_page(page)) {
5458 pc = lookup_page_cgroup(page);
5459 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5460 pc, mc.from, mc.to,
5461 false)) {
5462 mc.precharge -= HPAGE_PMD_NR;
5463 mc.moved_charge += HPAGE_PMD_NR;
5464 }
5465 putback_lru_page(page);
5466 }
5467 put_page(page);
5468 }
5469 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5470 return 0;
12724850
NH
5471 }
5472
45f83cef
AA
5473 if (pmd_trans_unstable(pmd))
5474 return 0;
4ffef5fe
DN
5475retry:
5476 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5477 for (; addr != end; addr += PAGE_SIZE) {
5478 pte_t ptent = *(pte++);
02491447 5479 swp_entry_t ent;
4ffef5fe
DN
5480
5481 if (!mc.precharge)
5482 break;
5483
8d32ff84 5484 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5485 case MC_TARGET_PAGE:
5486 page = target.page;
5487 if (isolate_lru_page(page))
5488 goto put;
5489 pc = lookup_page_cgroup(page);
7ec99d62
JW
5490 if (!mem_cgroup_move_account(page, 1, pc,
5491 mc.from, mc.to, false)) {
4ffef5fe 5492 mc.precharge--;
854ffa8d
DN
5493 /* we uncharge from mc.from later. */
5494 mc.moved_charge++;
4ffef5fe
DN
5495 }
5496 putback_lru_page(page);
8d32ff84 5497put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5498 put_page(page);
5499 break;
02491447
DN
5500 case MC_TARGET_SWAP:
5501 ent = target.ent;
e91cbb42 5502 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5503 mc.precharge--;
483c30b5
DN
5504 /* we fixup refcnts and charges later. */
5505 mc.moved_swap++;
5506 }
02491447 5507 break;
4ffef5fe
DN
5508 default:
5509 break;
5510 }
5511 }
5512 pte_unmap_unlock(pte - 1, ptl);
5513 cond_resched();
5514
5515 if (addr != end) {
5516 /*
5517 * We have consumed all precharges we got in can_attach().
5518 * We try charge one by one, but don't do any additional
5519 * charges to mc.to if we have failed in charge once in attach()
5520 * phase.
5521 */
854ffa8d 5522 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5523 if (!ret)
5524 goto retry;
5525 }
5526
5527 return ret;
5528}
5529
5530static void mem_cgroup_move_charge(struct mm_struct *mm)
5531{
5532 struct vm_area_struct *vma;
5533
5534 lru_add_drain_all();
dfe076b0
DN
5535retry:
5536 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5537 /*
5538 * Someone who are holding the mmap_sem might be waiting in
5539 * waitq. So we cancel all extra charges, wake up all waiters,
5540 * and retry. Because we cancel precharges, we might not be able
5541 * to move enough charges, but moving charge is a best-effort
5542 * feature anyway, so it wouldn't be a big problem.
5543 */
5544 __mem_cgroup_clear_mc();
5545 cond_resched();
5546 goto retry;
5547 }
4ffef5fe
DN
5548 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5549 int ret;
5550 struct mm_walk mem_cgroup_move_charge_walk = {
5551 .pmd_entry = mem_cgroup_move_charge_pte_range,
5552 .mm = mm,
5553 .private = vma,
5554 };
5555 if (is_vm_hugetlb_page(vma))
5556 continue;
4ffef5fe
DN
5557 ret = walk_page_range(vma->vm_start, vma->vm_end,
5558 &mem_cgroup_move_charge_walk);
5559 if (ret)
5560 /*
5561 * means we have consumed all precharges and failed in
5562 * doing additional charge. Just abandon here.
5563 */
5564 break;
5565 }
dfe076b0 5566 up_read(&mm->mmap_sem);
7dc74be0
DN
5567}
5568
761b3ef5
LZ
5569static void mem_cgroup_move_task(struct cgroup *cont,
5570 struct cgroup_taskset *tset)
67e465a7 5571{
2f7ee569 5572 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5573 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5574
dfe076b0 5575 if (mm) {
a433658c
KM
5576 if (mc.to)
5577 mem_cgroup_move_charge(mm);
dfe076b0
DN
5578 mmput(mm);
5579 }
a433658c
KM
5580 if (mc.to)
5581 mem_cgroup_clear_mc();
67e465a7 5582}
5cfb80a7 5583#else /* !CONFIG_MMU */
761b3ef5
LZ
5584static int mem_cgroup_can_attach(struct cgroup *cgroup,
5585 struct cgroup_taskset *tset)
5cfb80a7
DN
5586{
5587 return 0;
5588}
761b3ef5
LZ
5589static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5590 struct cgroup_taskset *tset)
5cfb80a7
DN
5591{
5592}
761b3ef5
LZ
5593static void mem_cgroup_move_task(struct cgroup *cont,
5594 struct cgroup_taskset *tset)
5cfb80a7
DN
5595{
5596}
5597#endif
67e465a7 5598
8cdea7c0
BS
5599struct cgroup_subsys mem_cgroup_subsys = {
5600 .name = "memory",
5601 .subsys_id = mem_cgroup_subsys_id,
5602 .create = mem_cgroup_create,
df878fb0 5603 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5604 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5605 .can_attach = mem_cgroup_can_attach,
5606 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5607 .attach = mem_cgroup_move_task,
6bc10349 5608 .base_cftypes = mem_cgroup_files,
6d12e2d8 5609 .early_init = 0,
04046e1a 5610 .use_id = 1,
48ddbe19 5611 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5612};
c077719b
KH
5613
5614#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5615static int __init enable_swap_account(char *s)
5616{
5617 /* consider enabled if no parameter or 1 is given */
a2c8990a 5618 if (!strcmp(s, "1"))
a42c390c 5619 really_do_swap_account = 1;
a2c8990a 5620 else if (!strcmp(s, "0"))
a42c390c
MH
5621 really_do_swap_account = 0;
5622 return 1;
5623}
a2c8990a 5624__setup("swapaccount=", enable_swap_account);
c077719b 5625
c077719b 5626#endif