memcg: soft limit reclaim should end at limit not below
[linux-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
d2265e6f
KH
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 85
d52aa412
KH
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
109};
110
6d12e2d8
KH
111/*
112 * per-zone information in memory controller.
113 */
6d12e2d8 114struct mem_cgroup_per_zone {
072c56c1
KH
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
b69408e8
CL
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
120
121 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
4e416953
BS
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
6d12e2d8
KH
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
f64c3f54
BS
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
2e72b634
KS
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
9490ff27 165/* For threshold */
2e72b634
KS
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
5407a562 168 int current_threshold;
2e72b634
KS
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
2c488db2
KS
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
9490ff27
KH
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
2e72b634 191
2e72b634 192static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 194
8cdea7c0
BS
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
8cdea7c0
BS
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
8c7c6e34
KH
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
78fb7466
PE
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
78fb7466 219 */
6d12e2d8 220 struct mem_cgroup_lru_info info;
072c56c1 221
2733c06a
KM
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
6d61ef40 227 /*
af901ca1 228 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 229 * reclaimed from.
6d61ef40 230 */
04046e1a 231 int last_scanned_child;
18f59ea7
BS
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
867578cb 236 atomic_t oom_lock;
8c7c6e34 237 atomic_t refcnt;
14797e23 238
a7885eb8 239 unsigned int swappiness;
3c11ecf4
KH
240 /* OOM-Killer disable */
241 int oom_kill_disable;
a7885eb8 242
22a668d7
KH
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
2e72b634
KS
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
2c488db2 250 struct mem_cgroup_thresholds thresholds;
907860ed 251
2e72b634 252 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 253 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 254
9490ff27
KH
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
7dc74be0
DN
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
d52aa412 263 /*
c62b1a3b 264 * percpu counter.
d52aa412 265 */
c62b1a3b 266 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
8cdea7c0
BS
273};
274
7dc74be0
DN
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
4ffef5fe 281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
283 NR_MOVE_TYPE,
284};
285
4ffef5fe
DN
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
b1dd693e 288 spinlock_t lock; /* for from, to */
4ffef5fe
DN
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
854ffa8d 292 unsigned long moved_charge;
483c30b5 293 unsigned long moved_swap;
8033b97c
DN
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296} mc = {
2bd9bb20 297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
4ffef5fe 300
90254a65
DN
301static bool move_anon(void)
302{
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305}
306
87946a72
DN
307static bool move_file(void)
308{
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311}
312
4e416953
BS
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
217bc319
KH
320enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
327 NR_CHARGE_TYPE,
328};
329
52d4b9ac
KH
330/* only for here (for easy reading.) */
331#define PCGF_CACHE (1UL << PCG_CACHE)
332#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 333#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
334/* Not used, but added here for completeness */
335#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 336
8c7c6e34
KH
337/* for encoding cft->private value on file */
338#define _MEM (0)
339#define _MEMSWAP (1)
9490ff27 340#define _OOM_TYPE (2)
8c7c6e34
KH
341#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
344/* Used for OOM nofiier */
345#define OOM_CONTROL (0)
8c7c6e34 346
75822b44
BS
347/*
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
349 */
350#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
354#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 356
8c7c6e34
KH
357static void mem_cgroup_get(struct mem_cgroup *mem);
358static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 359static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 360static void drain_all_stock_async(void);
8c7c6e34 361
f64c3f54
BS
362static struct mem_cgroup_per_zone *
363mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364{
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366}
367
d324236b
WF
368struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369{
370 return &mem->css;
371}
372
f64c3f54
BS
373static struct mem_cgroup_per_zone *
374page_cgroup_zoneinfo(struct page_cgroup *pc)
375{
376 struct mem_cgroup *mem = pc->mem_cgroup;
377 int nid = page_cgroup_nid(pc);
378 int zid = page_cgroup_zid(pc);
379
380 if (!mem)
381 return NULL;
382
383 return mem_cgroup_zoneinfo(mem, nid, zid);
384}
385
386static struct mem_cgroup_tree_per_zone *
387soft_limit_tree_node_zone(int nid, int zid)
388{
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static struct mem_cgroup_tree_per_zone *
393soft_limit_tree_from_page(struct page *page)
394{
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
397
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static void
4e416953 402__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 403 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
404 struct mem_cgroup_tree_per_zone *mctz,
405 unsigned long long new_usage_in_excess)
f64c3f54
BS
406{
407 struct rb_node **p = &mctz->rb_root.rb_node;
408 struct rb_node *parent = NULL;
409 struct mem_cgroup_per_zone *mz_node;
410
411 if (mz->on_tree)
412 return;
413
ef8745c1
KH
414 mz->usage_in_excess = new_usage_in_excess;
415 if (!mz->usage_in_excess)
416 return;
f64c3f54
BS
417 while (*p) {
418 parent = *p;
419 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 tree_node);
421 if (mz->usage_in_excess < mz_node->usage_in_excess)
422 p = &(*p)->rb_left;
423 /*
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
426 */
427 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 p = &(*p)->rb_right;
429 }
430 rb_link_node(&mz->tree_node, parent, p);
431 rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = true;
4e416953
BS
433}
434
435static void
436__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
439{
440 if (!mz->on_tree)
441 return;
442 rb_erase(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = false;
444}
445
f64c3f54
BS
446static void
447mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz)
450{
451 spin_lock(&mctz->lock);
4e416953 452 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
453 spin_unlock(&mctz->lock);
454}
455
f64c3f54
BS
456
457static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458{
ef8745c1 459 unsigned long long excess;
f64c3f54
BS
460 struct mem_cgroup_per_zone *mz;
461 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
f64c3f54
BS
464 mctz = soft_limit_tree_from_page(page);
465
466 /*
4e649152
KH
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
f64c3f54 469 */
4e649152
KH
470 for (; mem; mem = parent_mem_cgroup(mem)) {
471 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 472 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
473 /*
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
476 */
ef8745c1 477 if (excess || mz->on_tree) {
4e649152
KH
478 spin_lock(&mctz->lock);
479 /* if on-tree, remove it */
480 if (mz->on_tree)
481 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482 /*
ef8745c1
KH
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
4e649152 485 */
ef8745c1 486 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
487 spin_unlock(&mctz->lock);
488 }
f64c3f54
BS
489 }
490}
491
492static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493{
494 int node, zone;
495 struct mem_cgroup_per_zone *mz;
496 struct mem_cgroup_tree_per_zone *mctz;
497
498 for_each_node_state(node, N_POSSIBLE) {
499 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 mz = mem_cgroup_zoneinfo(mem, node, zone);
501 mctz = soft_limit_tree_node_zone(node, zone);
502 mem_cgroup_remove_exceeded(mem, mz, mctz);
503 }
504 }
505}
506
4e416953
BS
507static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508{
509 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510}
511
512static struct mem_cgroup_per_zone *
513__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514{
515 struct rb_node *rightmost = NULL;
26251eaf 516 struct mem_cgroup_per_zone *mz;
4e416953
BS
517
518retry:
26251eaf 519 mz = NULL;
4e416953
BS
520 rightmost = rb_last(&mctz->rb_root);
521 if (!rightmost)
522 goto done; /* Nothing to reclaim from */
523
524 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 /*
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
529 */
530 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 !css_tryget(&mz->mem->css))
533 goto retry;
534done:
535 return mz;
536}
537
538static struct mem_cgroup_per_zone *
539mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540{
541 struct mem_cgroup_per_zone *mz;
542
543 spin_lock(&mctz->lock);
544 mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 spin_unlock(&mctz->lock);
546 return mz;
547}
548
711d3d2c
KH
549/*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
c62b1a3b
KH
568static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 enum mem_cgroup_stat_index idx)
570{
571 int cpu;
572 s64 val = 0;
573
711d3d2c
KH
574 get_online_cpus();
575 for_each_online_cpu(cpu)
c62b1a3b 576 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
577#ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem->pcp_counter_lock);
579 val += mem->nocpu_base.count[idx];
580 spin_unlock(&mem->pcp_counter_lock);
581#endif
582 put_online_cpus();
c62b1a3b
KH
583 return val;
584}
585
586static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587{
588 s64 ret;
589
590 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 return ret;
593}
594
0c3e73e8
BS
595static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 bool charge)
597{
598 int val = (charge) ? 1 : -1;
c62b1a3b 599 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
600}
601
c05555b5 602static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 603 bool file, int nr_pages)
d52aa412 604{
c62b1a3b
KH
605 preempt_disable();
606
e401f176
KH
607 if (file)
608 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 609 else
e401f176 610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 611
e401f176
KH
612 /* pagein of a big page is an event. So, ignore page size */
613 if (nr_pages > 0)
c62b1a3b 614 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
3751d604 615 else {
c62b1a3b 616 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
3751d604
KH
617 nr_pages = -nr_pages; /* for event */
618 }
e401f176
KH
619
620 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
2e72b634 621
c62b1a3b 622 preempt_enable();
6d12e2d8
KH
623}
624
14067bb3 625static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 626 enum lru_list idx)
6d12e2d8
KH
627{
628 int nid, zid;
629 struct mem_cgroup_per_zone *mz;
630 u64 total = 0;
631
632 for_each_online_node(nid)
633 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634 mz = mem_cgroup_zoneinfo(mem, nid, zid);
635 total += MEM_CGROUP_ZSTAT(mz, idx);
636 }
637 return total;
d52aa412
KH
638}
639
d2265e6f
KH
640static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
641{
642 s64 val;
643
644 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
645
646 return !(val & ((1 << event_mask_shift) - 1));
647}
648
649/*
650 * Check events in order.
651 *
652 */
653static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
654{
655 /* threshold event is triggered in finer grain than soft limit */
656 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657 mem_cgroup_threshold(mem);
658 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659 mem_cgroup_update_tree(mem, page);
660 }
661}
662
d5b69e38 663static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
664{
665 return container_of(cgroup_subsys_state(cont,
666 mem_cgroup_subsys_id), struct mem_cgroup,
667 css);
668}
669
cf475ad2 670struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 671{
31a78f23
BS
672 /*
673 * mm_update_next_owner() may clear mm->owner to NULL
674 * if it races with swapoff, page migration, etc.
675 * So this can be called with p == NULL.
676 */
677 if (unlikely(!p))
678 return NULL;
679
78fb7466
PE
680 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681 struct mem_cgroup, css);
682}
683
54595fe2
KH
684static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
685{
686 struct mem_cgroup *mem = NULL;
0b7f569e
KH
687
688 if (!mm)
689 return NULL;
54595fe2
KH
690 /*
691 * Because we have no locks, mm->owner's may be being moved to other
692 * cgroup. We use css_tryget() here even if this looks
693 * pessimistic (rather than adding locks here).
694 */
695 rcu_read_lock();
696 do {
697 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698 if (unlikely(!mem))
699 break;
700 } while (!css_tryget(&mem->css));
701 rcu_read_unlock();
702 return mem;
703}
704
7d74b06f
KH
705/* The caller has to guarantee "mem" exists before calling this */
706static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 707{
711d3d2c
KH
708 struct cgroup_subsys_state *css;
709 int found;
710
711 if (!mem) /* ROOT cgroup has the smallest ID */
712 return root_mem_cgroup; /*css_put/get against root is ignored*/
713 if (!mem->use_hierarchy) {
714 if (css_tryget(&mem->css))
715 return mem;
716 return NULL;
717 }
718 rcu_read_lock();
719 /*
720 * searching a memory cgroup which has the smallest ID under given
721 * ROOT cgroup. (ID >= 1)
722 */
723 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724 if (css && css_tryget(css))
725 mem = container_of(css, struct mem_cgroup, css);
726 else
727 mem = NULL;
728 rcu_read_unlock();
729 return mem;
7d74b06f
KH
730}
731
732static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733 struct mem_cgroup *root,
734 bool cond)
735{
736 int nextid = css_id(&iter->css) + 1;
737 int found;
738 int hierarchy_used;
14067bb3 739 struct cgroup_subsys_state *css;
14067bb3 740
7d74b06f 741 hierarchy_used = iter->use_hierarchy;
14067bb3 742
7d74b06f 743 css_put(&iter->css);
711d3d2c
KH
744 /* If no ROOT, walk all, ignore hierarchy */
745 if (!cond || (root && !hierarchy_used))
7d74b06f 746 return NULL;
14067bb3 747
711d3d2c
KH
748 if (!root)
749 root = root_mem_cgroup;
750
7d74b06f
KH
751 do {
752 iter = NULL;
14067bb3 753 rcu_read_lock();
7d74b06f
KH
754
755 css = css_get_next(&mem_cgroup_subsys, nextid,
756 &root->css, &found);
14067bb3 757 if (css && css_tryget(css))
7d74b06f 758 iter = container_of(css, struct mem_cgroup, css);
14067bb3 759 rcu_read_unlock();
7d74b06f 760 /* If css is NULL, no more cgroups will be found */
14067bb3 761 nextid = found + 1;
7d74b06f 762 } while (css && !iter);
14067bb3 763
7d74b06f 764 return iter;
14067bb3 765}
7d74b06f
KH
766/*
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
770 */
771#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772 for (iter = mem_cgroup_start_loop(root);\
773 iter != NULL;\
774 iter = mem_cgroup_get_next(iter, root, cond))
775
776#define for_each_mem_cgroup_tree(iter, root) \
777 for_each_mem_cgroup_tree_cond(iter, root, true)
778
711d3d2c
KH
779#define for_each_mem_cgroup_all(iter) \
780 for_each_mem_cgroup_tree_cond(iter, NULL, true)
781
14067bb3 782
4b3bde4c
BS
783static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
784{
785 return (mem == root_mem_cgroup);
786}
787
08e552c6
KH
788/*
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
792 *
793 * Changes to pc->mem_cgroup happens when
794 * 1. charge
795 * 2. moving account
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
800 */
4f98a2fe 801
08e552c6
KH
802void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
803{
804 struct page_cgroup *pc;
08e552c6 805 struct mem_cgroup_per_zone *mz;
6d12e2d8 806
f8d66542 807 if (mem_cgroup_disabled())
08e552c6
KH
808 return;
809 pc = lookup_page_cgroup(page);
810 /* can happen while we handle swapcache. */
4b3bde4c 811 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 812 return;
4b3bde4c 813 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
814 /*
815 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 * removed from global LRU.
817 */
08e552c6 818 mz = page_cgroup_zoneinfo(pc);
ece35ca8
KH
819 /* huge page split is done under lru_lock. so, we have no races. */
820 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
821 if (mem_cgroup_is_root(pc->mem_cgroup))
822 return;
823 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 824 list_del_init(&pc->lru);
6d12e2d8
KH
825}
826
08e552c6 827void mem_cgroup_del_lru(struct page *page)
6d12e2d8 828{
08e552c6
KH
829 mem_cgroup_del_lru_list(page, page_lru(page));
830}
b69408e8 831
3f58a829
MK
832/*
833 * Writeback is about to end against a page which has been marked for immediate
834 * reclaim. If it still appears to be reclaimable, move it to the tail of the
835 * inactive list.
836 */
837void mem_cgroup_rotate_reclaimable_page(struct page *page)
838{
839 struct mem_cgroup_per_zone *mz;
840 struct page_cgroup *pc;
841 enum lru_list lru = page_lru(page);
842
843 if (mem_cgroup_disabled())
844 return;
845
846 pc = lookup_page_cgroup(page);
847 /* unused or root page is not rotated. */
848 if (!PageCgroupUsed(pc))
849 return;
850 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
851 smp_rmb();
852 if (mem_cgroup_is_root(pc->mem_cgroup))
853 return;
854 mz = page_cgroup_zoneinfo(pc);
855 list_move_tail(&pc->lru, &mz->lists[lru]);
856}
857
08e552c6
KH
858void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
859{
860 struct mem_cgroup_per_zone *mz;
861 struct page_cgroup *pc;
b69408e8 862
f8d66542 863 if (mem_cgroup_disabled())
08e552c6 864 return;
6d12e2d8 865
08e552c6 866 pc = lookup_page_cgroup(page);
4b3bde4c 867 /* unused or root page is not rotated. */
713735b4
JW
868 if (!PageCgroupUsed(pc))
869 return;
870 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
871 smp_rmb();
872 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
873 return;
874 mz = page_cgroup_zoneinfo(pc);
875 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
876}
877
08e552c6 878void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 879{
08e552c6
KH
880 struct page_cgroup *pc;
881 struct mem_cgroup_per_zone *mz;
6d12e2d8 882
f8d66542 883 if (mem_cgroup_disabled())
08e552c6
KH
884 return;
885 pc = lookup_page_cgroup(page);
4b3bde4c 886 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 887 if (!PageCgroupUsed(pc))
894bc310 888 return;
713735b4
JW
889 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
890 smp_rmb();
08e552c6 891 mz = page_cgroup_zoneinfo(pc);
ece35ca8
KH
892 /* huge page split is done under lru_lock. so, we have no races. */
893 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
894 SetPageCgroupAcctLRU(pc);
895 if (mem_cgroup_is_root(pc->mem_cgroup))
896 return;
08e552c6
KH
897 list_add(&pc->lru, &mz->lists[lru]);
898}
544122e5 899
08e552c6 900/*
544122e5
KH
901 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
902 * lru because the page may.be reused after it's fully uncharged (because of
903 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
904 * it again. This function is only used to charge SwapCache. It's done under
905 * lock_page and expected that zone->lru_lock is never held.
08e552c6 906 */
544122e5 907static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 908{
544122e5
KH
909 unsigned long flags;
910 struct zone *zone = page_zone(page);
911 struct page_cgroup *pc = lookup_page_cgroup(page);
912
913 spin_lock_irqsave(&zone->lru_lock, flags);
914 /*
915 * Forget old LRU when this page_cgroup is *not* used. This Used bit
916 * is guarded by lock_page() because the page is SwapCache.
917 */
918 if (!PageCgroupUsed(pc))
919 mem_cgroup_del_lru_list(page, page_lru(page));
920 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
921}
922
544122e5
KH
923static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
924{
925 unsigned long flags;
926 struct zone *zone = page_zone(page);
927 struct page_cgroup *pc = lookup_page_cgroup(page);
928
929 spin_lock_irqsave(&zone->lru_lock, flags);
930 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 931 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
932 mem_cgroup_add_lru_list(page, page_lru(page));
933 spin_unlock_irqrestore(&zone->lru_lock, flags);
934}
935
936
08e552c6
KH
937void mem_cgroup_move_lists(struct page *page,
938 enum lru_list from, enum lru_list to)
939{
f8d66542 940 if (mem_cgroup_disabled())
08e552c6
KH
941 return;
942 mem_cgroup_del_lru_list(page, from);
943 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
944}
945
4c4a2214
DR
946int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
947{
948 int ret;
0b7f569e 949 struct mem_cgroup *curr = NULL;
158e0a2d 950 struct task_struct *p;
4c4a2214 951
158e0a2d
KH
952 p = find_lock_task_mm(task);
953 if (!p)
954 return 0;
955 curr = try_get_mem_cgroup_from_mm(p->mm);
956 task_unlock(p);
0b7f569e
KH
957 if (!curr)
958 return 0;
d31f56db
DN
959 /*
960 * We should check use_hierarchy of "mem" not "curr". Because checking
961 * use_hierarchy of "curr" here make this function true if hierarchy is
962 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
963 * hierarchy(even if use_hierarchy is disabled in "mem").
964 */
965 if (mem->use_hierarchy)
0b7f569e
KH
966 ret = css_is_ancestor(&curr->css, &mem->css);
967 else
968 ret = (curr == mem);
969 css_put(&curr->css);
4c4a2214
DR
970 return ret;
971}
972
c772be93 973static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
974{
975 unsigned long active;
976 unsigned long inactive;
c772be93
KM
977 unsigned long gb;
978 unsigned long inactive_ratio;
14797e23 979
14067bb3
KH
980 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
981 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 982
c772be93
KM
983 gb = (inactive + active) >> (30 - PAGE_SHIFT);
984 if (gb)
985 inactive_ratio = int_sqrt(10 * gb);
986 else
987 inactive_ratio = 1;
988
989 if (present_pages) {
990 present_pages[0] = inactive;
991 present_pages[1] = active;
992 }
993
994 return inactive_ratio;
995}
996
997int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
998{
999 unsigned long active;
1000 unsigned long inactive;
1001 unsigned long present_pages[2];
1002 unsigned long inactive_ratio;
1003
1004 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1005
1006 inactive = present_pages[0];
1007 active = present_pages[1];
1008
1009 if (inactive * inactive_ratio < active)
14797e23
KM
1010 return 1;
1011
1012 return 0;
1013}
1014
56e49d21
RR
1015int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1016{
1017 unsigned long active;
1018 unsigned long inactive;
1019
1020 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1021 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1022
1023 return (active > inactive);
1024}
1025
a3d8e054
KM
1026unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1027 struct zone *zone,
1028 enum lru_list lru)
1029{
13d7e3a2 1030 int nid = zone_to_nid(zone);
a3d8e054
KM
1031 int zid = zone_idx(zone);
1032 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1033
1034 return MEM_CGROUP_ZSTAT(mz, lru);
1035}
1036
3e2f41f1
KM
1037struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1038 struct zone *zone)
1039{
13d7e3a2 1040 int nid = zone_to_nid(zone);
3e2f41f1
KM
1041 int zid = zone_idx(zone);
1042 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1043
1044 return &mz->reclaim_stat;
1045}
1046
1047struct zone_reclaim_stat *
1048mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1049{
1050 struct page_cgroup *pc;
1051 struct mem_cgroup_per_zone *mz;
1052
1053 if (mem_cgroup_disabled())
1054 return NULL;
1055
1056 pc = lookup_page_cgroup(page);
bd112db8
DN
1057 if (!PageCgroupUsed(pc))
1058 return NULL;
713735b4
JW
1059 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1060 smp_rmb();
3e2f41f1
KM
1061 mz = page_cgroup_zoneinfo(pc);
1062 if (!mz)
1063 return NULL;
1064
1065 return &mz->reclaim_stat;
1066}
1067
66e1707b
BS
1068unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1069 struct list_head *dst,
1070 unsigned long *scanned, int order,
1071 int mode, struct zone *z,
1072 struct mem_cgroup *mem_cont,
4f98a2fe 1073 int active, int file)
66e1707b
BS
1074{
1075 unsigned long nr_taken = 0;
1076 struct page *page;
1077 unsigned long scan;
1078 LIST_HEAD(pc_list);
1079 struct list_head *src;
ff7283fa 1080 struct page_cgroup *pc, *tmp;
13d7e3a2 1081 int nid = zone_to_nid(z);
1ecaab2b
KH
1082 int zid = zone_idx(z);
1083 struct mem_cgroup_per_zone *mz;
b7c46d15 1084 int lru = LRU_FILE * file + active;
2ffebca6 1085 int ret;
66e1707b 1086
cf475ad2 1087 BUG_ON(!mem_cont);
1ecaab2b 1088 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1089 src = &mz->lists[lru];
66e1707b 1090
ff7283fa
KH
1091 scan = 0;
1092 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1093 if (scan >= nr_to_scan)
ff7283fa 1094 break;
08e552c6
KH
1095
1096 page = pc->page;
52d4b9ac
KH
1097 if (unlikely(!PageCgroupUsed(pc)))
1098 continue;
436c6541 1099 if (unlikely(!PageLRU(page)))
ff7283fa 1100 continue;
ff7283fa 1101
436c6541 1102 scan++;
2ffebca6
KH
1103 ret = __isolate_lru_page(page, mode, file);
1104 switch (ret) {
1105 case 0:
66e1707b 1106 list_move(&page->lru, dst);
2ffebca6 1107 mem_cgroup_del_lru(page);
2c888cfb 1108 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1109 break;
1110 case -EBUSY:
1111 /* we don't affect global LRU but rotate in our LRU */
1112 mem_cgroup_rotate_lru_list(page, page_lru(page));
1113 break;
1114 default:
1115 break;
66e1707b
BS
1116 }
1117 }
1118
66e1707b 1119 *scanned = scan;
cc8e970c
KM
1120
1121 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1122 0, 0, 0, mode);
1123
66e1707b
BS
1124 return nr_taken;
1125}
1126
6d61ef40
BS
1127#define mem_cgroup_from_res_counter(counter, member) \
1128 container_of(counter, struct mem_cgroup, member)
1129
b85a96c0
DN
1130static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1131{
1132 if (do_swap_account) {
1133 if (res_counter_check_under_limit(&mem->res) &&
1134 res_counter_check_under_limit(&mem->memsw))
1135 return true;
1136 } else
1137 if (res_counter_check_under_limit(&mem->res))
1138 return true;
1139 return false;
1140}
1141
19942822
JW
1142/**
1143 * mem_cgroup_check_margin - check if the memory cgroup allows charging
1144 * @mem: memory cgroup to check
1145 * @bytes: the number of bytes the caller intends to charge
1146 *
1147 * Returns a boolean value on whether @mem can be charged @bytes or
1148 * whether this would exceed the limit.
1149 */
1150static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes)
1151{
1152 if (!res_counter_check_margin(&mem->res, bytes))
1153 return false;
1154 if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes))
1155 return false;
1156 return true;
1157}
1158
a7885eb8
KM
1159static unsigned int get_swappiness(struct mem_cgroup *memcg)
1160{
1161 struct cgroup *cgrp = memcg->css.cgroup;
1162 unsigned int swappiness;
1163
1164 /* root ? */
1165 if (cgrp->parent == NULL)
1166 return vm_swappiness;
1167
1168 spin_lock(&memcg->reclaim_param_lock);
1169 swappiness = memcg->swappiness;
1170 spin_unlock(&memcg->reclaim_param_lock);
1171
1172 return swappiness;
1173}
1174
32047e2a
KH
1175static void mem_cgroup_start_move(struct mem_cgroup *mem)
1176{
1177 int cpu;
1489ebad
KH
1178
1179 get_online_cpus();
1180 spin_lock(&mem->pcp_counter_lock);
1181 for_each_online_cpu(cpu)
32047e2a 1182 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1183 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1184 spin_unlock(&mem->pcp_counter_lock);
1185 put_online_cpus();
32047e2a
KH
1186
1187 synchronize_rcu();
1188}
1189
1190static void mem_cgroup_end_move(struct mem_cgroup *mem)
1191{
1192 int cpu;
1193
1194 if (!mem)
1195 return;
1489ebad
KH
1196 get_online_cpus();
1197 spin_lock(&mem->pcp_counter_lock);
1198 for_each_online_cpu(cpu)
32047e2a 1199 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1200 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1201 spin_unlock(&mem->pcp_counter_lock);
1202 put_online_cpus();
32047e2a
KH
1203}
1204/*
1205 * 2 routines for checking "mem" is under move_account() or not.
1206 *
1207 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1208 * for avoiding race in accounting. If true,
1209 * pc->mem_cgroup may be overwritten.
1210 *
1211 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1212 * under hierarchy of moving cgroups. This is for
1213 * waiting at hith-memory prressure caused by "move".
1214 */
1215
1216static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1217{
1218 VM_BUG_ON(!rcu_read_lock_held());
1219 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1220}
4b534334
KH
1221
1222static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1223{
2bd9bb20
KH
1224 struct mem_cgroup *from;
1225 struct mem_cgroup *to;
4b534334 1226 bool ret = false;
2bd9bb20
KH
1227 /*
1228 * Unlike task_move routines, we access mc.to, mc.from not under
1229 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1230 */
1231 spin_lock(&mc.lock);
1232 from = mc.from;
1233 to = mc.to;
1234 if (!from)
1235 goto unlock;
1236 if (from == mem || to == mem
1237 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1238 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1239 ret = true;
1240unlock:
1241 spin_unlock(&mc.lock);
4b534334
KH
1242 return ret;
1243}
1244
1245static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1246{
1247 if (mc.moving_task && current != mc.moving_task) {
1248 if (mem_cgroup_under_move(mem)) {
1249 DEFINE_WAIT(wait);
1250 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1251 /* moving charge context might have finished. */
1252 if (mc.moving_task)
1253 schedule();
1254 finish_wait(&mc.waitq, &wait);
1255 return true;
1256 }
1257 }
1258 return false;
1259}
1260
e222432b 1261/**
6a6135b6 1262 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1263 * @memcg: The memory cgroup that went over limit
1264 * @p: Task that is going to be killed
1265 *
1266 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1267 * enabled
1268 */
1269void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1270{
1271 struct cgroup *task_cgrp;
1272 struct cgroup *mem_cgrp;
1273 /*
1274 * Need a buffer in BSS, can't rely on allocations. The code relies
1275 * on the assumption that OOM is serialized for memory controller.
1276 * If this assumption is broken, revisit this code.
1277 */
1278 static char memcg_name[PATH_MAX];
1279 int ret;
1280
d31f56db 1281 if (!memcg || !p)
e222432b
BS
1282 return;
1283
1284
1285 rcu_read_lock();
1286
1287 mem_cgrp = memcg->css.cgroup;
1288 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1289
1290 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1291 if (ret < 0) {
1292 /*
1293 * Unfortunately, we are unable to convert to a useful name
1294 * But we'll still print out the usage information
1295 */
1296 rcu_read_unlock();
1297 goto done;
1298 }
1299 rcu_read_unlock();
1300
1301 printk(KERN_INFO "Task in %s killed", memcg_name);
1302
1303 rcu_read_lock();
1304 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1305 if (ret < 0) {
1306 rcu_read_unlock();
1307 goto done;
1308 }
1309 rcu_read_unlock();
1310
1311 /*
1312 * Continues from above, so we don't need an KERN_ level
1313 */
1314 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1315done:
1316
1317 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1318 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1319 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1320 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1321 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1322 "failcnt %llu\n",
1323 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1324 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1325 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1326}
1327
81d39c20
KH
1328/*
1329 * This function returns the number of memcg under hierarchy tree. Returns
1330 * 1(self count) if no children.
1331 */
1332static int mem_cgroup_count_children(struct mem_cgroup *mem)
1333{
1334 int num = 0;
7d74b06f
KH
1335 struct mem_cgroup *iter;
1336
1337 for_each_mem_cgroup_tree(iter, mem)
1338 num++;
81d39c20
KH
1339 return num;
1340}
1341
a63d83f4
DR
1342/*
1343 * Return the memory (and swap, if configured) limit for a memcg.
1344 */
1345u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1346{
1347 u64 limit;
1348 u64 memsw;
1349
f3e8eb70
JW
1350 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1351 limit += total_swap_pages << PAGE_SHIFT;
1352
a63d83f4
DR
1353 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1354 /*
1355 * If memsw is finite and limits the amount of swap space available
1356 * to this memcg, return that limit.
1357 */
1358 return min(limit, memsw);
1359}
1360
6d61ef40 1361/*
04046e1a
KH
1362 * Visit the first child (need not be the first child as per the ordering
1363 * of the cgroup list, since we track last_scanned_child) of @mem and use
1364 * that to reclaim free pages from.
1365 */
1366static struct mem_cgroup *
1367mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1368{
1369 struct mem_cgroup *ret = NULL;
1370 struct cgroup_subsys_state *css;
1371 int nextid, found;
1372
1373 if (!root_mem->use_hierarchy) {
1374 css_get(&root_mem->css);
1375 ret = root_mem;
1376 }
1377
1378 while (!ret) {
1379 rcu_read_lock();
1380 nextid = root_mem->last_scanned_child + 1;
1381 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1382 &found);
1383 if (css && css_tryget(css))
1384 ret = container_of(css, struct mem_cgroup, css);
1385
1386 rcu_read_unlock();
1387 /* Updates scanning parameter */
1388 spin_lock(&root_mem->reclaim_param_lock);
1389 if (!css) {
1390 /* this means start scan from ID:1 */
1391 root_mem->last_scanned_child = 0;
1392 } else
1393 root_mem->last_scanned_child = found;
1394 spin_unlock(&root_mem->reclaim_param_lock);
1395 }
1396
1397 return ret;
1398}
1399
1400/*
1401 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1402 * we reclaimed from, so that we don't end up penalizing one child extensively
1403 * based on its position in the children list.
6d61ef40
BS
1404 *
1405 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1406 *
1407 * We give up and return to the caller when we visit root_mem twice.
1408 * (other groups can be removed while we're walking....)
81d39c20
KH
1409 *
1410 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1411 */
1412static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1413 struct zone *zone,
75822b44
BS
1414 gfp_t gfp_mask,
1415 unsigned long reclaim_options)
6d61ef40 1416{
04046e1a
KH
1417 struct mem_cgroup *victim;
1418 int ret, total = 0;
1419 int loop = 0;
75822b44
BS
1420 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1421 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1422 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1423 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1424
22a668d7
KH
1425 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1426 if (root_mem->memsw_is_minimum)
1427 noswap = true;
1428
4e416953 1429 while (1) {
04046e1a 1430 victim = mem_cgroup_select_victim(root_mem);
4e416953 1431 if (victim == root_mem) {
04046e1a 1432 loop++;
cdec2e42
KH
1433 if (loop >= 1)
1434 drain_all_stock_async();
4e416953
BS
1435 if (loop >= 2) {
1436 /*
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1440 */
1441 if (!check_soft || !total) {
1442 css_put(&victim->css);
1443 break;
1444 }
1445 /*
1446 * We want to do more targetted reclaim.
1447 * excess >> 2 is not to excessive so as to
1448 * reclaim too much, nor too less that we keep
1449 * coming back to reclaim from this cgroup
1450 */
1451 if (total >= (excess >> 2) ||
1452 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1453 css_put(&victim->css);
1454 break;
1455 }
1456 }
1457 }
c62b1a3b 1458 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1459 /* this cgroup's local usage == 0 */
1460 css_put(&victim->css);
6d61ef40
BS
1461 continue;
1462 }
04046e1a 1463 /* we use swappiness of local cgroup */
4e416953
BS
1464 if (check_soft)
1465 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1466 noswap, get_swappiness(victim), zone);
4e416953
BS
1467 else
1468 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1469 noswap, get_swappiness(victim));
04046e1a 1470 css_put(&victim->css);
81d39c20
KH
1471 /*
1472 * At shrinking usage, we can't check we should stop here or
1473 * reclaim more. It's depends on callers. last_scanned_child
1474 * will work enough for keeping fairness under tree.
1475 */
1476 if (shrink)
1477 return ret;
04046e1a 1478 total += ret;
4e416953 1479 if (check_soft) {
b7c61678 1480 if (res_counter_check_within_soft_limit(&root_mem->res))
4e416953
BS
1481 return total;
1482 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1483 return 1 + total;
6d61ef40 1484 }
04046e1a 1485 return total;
6d61ef40
BS
1486}
1487
867578cb
KH
1488/*
1489 * Check OOM-Killer is already running under our hierarchy.
1490 * If someone is running, return false.
1491 */
1492static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1493{
7d74b06f
KH
1494 int x, lock_count = 0;
1495 struct mem_cgroup *iter;
a636b327 1496
7d74b06f
KH
1497 for_each_mem_cgroup_tree(iter, mem) {
1498 x = atomic_inc_return(&iter->oom_lock);
1499 lock_count = max(x, lock_count);
1500 }
867578cb
KH
1501
1502 if (lock_count == 1)
1503 return true;
1504 return false;
a636b327 1505}
0b7f569e 1506
7d74b06f 1507static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1508{
7d74b06f
KH
1509 struct mem_cgroup *iter;
1510
867578cb
KH
1511 /*
1512 * When a new child is created while the hierarchy is under oom,
1513 * mem_cgroup_oom_lock() may not be called. We have to use
1514 * atomic_add_unless() here.
1515 */
7d74b06f
KH
1516 for_each_mem_cgroup_tree(iter, mem)
1517 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1518 return 0;
1519}
1520
867578cb
KH
1521
1522static DEFINE_MUTEX(memcg_oom_mutex);
1523static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1524
dc98df5a
KH
1525struct oom_wait_info {
1526 struct mem_cgroup *mem;
1527 wait_queue_t wait;
1528};
1529
1530static int memcg_oom_wake_function(wait_queue_t *wait,
1531 unsigned mode, int sync, void *arg)
1532{
1533 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1534 struct oom_wait_info *oom_wait_info;
1535
1536 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1537
1538 if (oom_wait_info->mem == wake_mem)
1539 goto wakeup;
1540 /* if no hierarchy, no match */
1541 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1542 return 0;
1543 /*
1544 * Both of oom_wait_info->mem and wake_mem are stable under us.
1545 * Then we can use css_is_ancestor without taking care of RCU.
1546 */
1547 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1548 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1549 return 0;
1550
1551wakeup:
1552 return autoremove_wake_function(wait, mode, sync, arg);
1553}
1554
1555static void memcg_wakeup_oom(struct mem_cgroup *mem)
1556{
1557 /* for filtering, pass "mem" as argument. */
1558 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1559}
1560
3c11ecf4
KH
1561static void memcg_oom_recover(struct mem_cgroup *mem)
1562{
2bd9bb20 1563 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1564 memcg_wakeup_oom(mem);
1565}
1566
867578cb
KH
1567/*
1568 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1569 */
1570bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1571{
dc98df5a 1572 struct oom_wait_info owait;
3c11ecf4 1573 bool locked, need_to_kill;
867578cb 1574
dc98df5a
KH
1575 owait.mem = mem;
1576 owait.wait.flags = 0;
1577 owait.wait.func = memcg_oom_wake_function;
1578 owait.wait.private = current;
1579 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1580 need_to_kill = true;
867578cb
KH
1581 /* At first, try to OOM lock hierarchy under mem.*/
1582 mutex_lock(&memcg_oom_mutex);
1583 locked = mem_cgroup_oom_lock(mem);
1584 /*
1585 * Even if signal_pending(), we can't quit charge() loop without
1586 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1587 * under OOM is always welcomed, use TASK_KILLABLE here.
1588 */
3c11ecf4
KH
1589 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1590 if (!locked || mem->oom_kill_disable)
1591 need_to_kill = false;
1592 if (locked)
9490ff27 1593 mem_cgroup_oom_notify(mem);
867578cb
KH
1594 mutex_unlock(&memcg_oom_mutex);
1595
3c11ecf4
KH
1596 if (need_to_kill) {
1597 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1598 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1599 } else {
867578cb 1600 schedule();
dc98df5a 1601 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1602 }
1603 mutex_lock(&memcg_oom_mutex);
1604 mem_cgroup_oom_unlock(mem);
dc98df5a 1605 memcg_wakeup_oom(mem);
867578cb
KH
1606 mutex_unlock(&memcg_oom_mutex);
1607
1608 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1609 return false;
1610 /* Give chance to dying process */
1611 schedule_timeout(1);
1612 return true;
0b7f569e
KH
1613}
1614
d69b042f
BS
1615/*
1616 * Currently used to update mapped file statistics, but the routine can be
1617 * generalized to update other statistics as well.
32047e2a
KH
1618 *
1619 * Notes: Race condition
1620 *
1621 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1622 * it tends to be costly. But considering some conditions, we doesn't need
1623 * to do so _always_.
1624 *
1625 * Considering "charge", lock_page_cgroup() is not required because all
1626 * file-stat operations happen after a page is attached to radix-tree. There
1627 * are no race with "charge".
1628 *
1629 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1630 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1631 * if there are race with "uncharge". Statistics itself is properly handled
1632 * by flags.
1633 *
1634 * Considering "move", this is an only case we see a race. To make the race
1635 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1636 * possibility of race condition. If there is, we take a lock.
d69b042f 1637 */
26174efd 1638
2a7106f2
GT
1639void mem_cgroup_update_page_stat(struct page *page,
1640 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1641{
1642 struct mem_cgroup *mem;
32047e2a
KH
1643 struct page_cgroup *pc = lookup_page_cgroup(page);
1644 bool need_unlock = false;
dbd4ea78 1645 unsigned long uninitialized_var(flags);
d69b042f 1646
d69b042f
BS
1647 if (unlikely(!pc))
1648 return;
1649
32047e2a 1650 rcu_read_lock();
d69b042f 1651 mem = pc->mem_cgroup;
32047e2a
KH
1652 if (unlikely(!mem || !PageCgroupUsed(pc)))
1653 goto out;
1654 /* pc->mem_cgroup is unstable ? */
ca3e0214 1655 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1656 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1657 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1658 need_unlock = true;
1659 mem = pc->mem_cgroup;
1660 if (!mem || !PageCgroupUsed(pc))
1661 goto out;
1662 }
26174efd 1663
26174efd 1664 switch (idx) {
2a7106f2 1665 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1666 if (val > 0)
1667 SetPageCgroupFileMapped(pc);
1668 else if (!page_mapped(page))
0c270f8f 1669 ClearPageCgroupFileMapped(pc);
2a7106f2 1670 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1671 break;
1672 default:
1673 BUG();
8725d541 1674 }
d69b042f 1675
2a7106f2
GT
1676 this_cpu_add(mem->stat->count[idx], val);
1677
32047e2a
KH
1678out:
1679 if (unlikely(need_unlock))
dbd4ea78 1680 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1681 rcu_read_unlock();
1682 return;
d69b042f 1683}
2a7106f2 1684EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1685
cdec2e42
KH
1686/*
1687 * size of first charge trial. "32" comes from vmscan.c's magic value.
1688 * TODO: maybe necessary to use big numbers in big irons.
1689 */
1690#define CHARGE_SIZE (32 * PAGE_SIZE)
1691struct memcg_stock_pcp {
1692 struct mem_cgroup *cached; /* this never be root cgroup */
1693 int charge;
1694 struct work_struct work;
1695};
1696static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697static atomic_t memcg_drain_count;
1698
1699/*
1700 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1701 * from local stock and true is returned. If the stock is 0 or charges from a
1702 * cgroup which is not current target, returns false. This stock will be
1703 * refilled.
1704 */
1705static bool consume_stock(struct mem_cgroup *mem)
1706{
1707 struct memcg_stock_pcp *stock;
1708 bool ret = true;
1709
1710 stock = &get_cpu_var(memcg_stock);
1711 if (mem == stock->cached && stock->charge)
1712 stock->charge -= PAGE_SIZE;
1713 else /* need to call res_counter_charge */
1714 ret = false;
1715 put_cpu_var(memcg_stock);
1716 return ret;
1717}
1718
1719/*
1720 * Returns stocks cached in percpu to res_counter and reset cached information.
1721 */
1722static void drain_stock(struct memcg_stock_pcp *stock)
1723{
1724 struct mem_cgroup *old = stock->cached;
1725
1726 if (stock->charge) {
1727 res_counter_uncharge(&old->res, stock->charge);
1728 if (do_swap_account)
1729 res_counter_uncharge(&old->memsw, stock->charge);
1730 }
1731 stock->cached = NULL;
1732 stock->charge = 0;
1733}
1734
1735/*
1736 * This must be called under preempt disabled or must be called by
1737 * a thread which is pinned to local cpu.
1738 */
1739static void drain_local_stock(struct work_struct *dummy)
1740{
1741 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1742 drain_stock(stock);
1743}
1744
1745/*
1746 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1747 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1748 */
1749static void refill_stock(struct mem_cgroup *mem, int val)
1750{
1751 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1752
1753 if (stock->cached != mem) { /* reset if necessary */
1754 drain_stock(stock);
1755 stock->cached = mem;
1756 }
1757 stock->charge += val;
1758 put_cpu_var(memcg_stock);
1759}
1760
1761/*
1762 * Tries to drain stocked charges in other cpus. This function is asynchronous
1763 * and just put a work per cpu for draining localy on each cpu. Caller can
1764 * expects some charges will be back to res_counter later but cannot wait for
1765 * it.
1766 */
1767static void drain_all_stock_async(void)
1768{
1769 int cpu;
1770 /* This function is for scheduling "drain" in asynchronous way.
1771 * The result of "drain" is not directly handled by callers. Then,
1772 * if someone is calling drain, we don't have to call drain more.
1773 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1774 * there is a race. We just do loose check here.
1775 */
1776 if (atomic_read(&memcg_drain_count))
1777 return;
1778 /* Notify other cpus that system-wide "drain" is running */
1779 atomic_inc(&memcg_drain_count);
1780 get_online_cpus();
1781 for_each_online_cpu(cpu) {
1782 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1783 schedule_work_on(cpu, &stock->work);
1784 }
1785 put_online_cpus();
1786 atomic_dec(&memcg_drain_count);
1787 /* We don't wait for flush_work */
1788}
1789
1790/* This is a synchronous drain interface. */
1791static void drain_all_stock_sync(void)
1792{
1793 /* called when force_empty is called */
1794 atomic_inc(&memcg_drain_count);
1795 schedule_on_each_cpu(drain_local_stock);
1796 atomic_dec(&memcg_drain_count);
1797}
1798
711d3d2c
KH
1799/*
1800 * This function drains percpu counter value from DEAD cpu and
1801 * move it to local cpu. Note that this function can be preempted.
1802 */
1803static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1804{
1805 int i;
1806
1807 spin_lock(&mem->pcp_counter_lock);
1808 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1809 s64 x = per_cpu(mem->stat->count[i], cpu);
1810
1811 per_cpu(mem->stat->count[i], cpu) = 0;
1812 mem->nocpu_base.count[i] += x;
1813 }
1489ebad
KH
1814 /* need to clear ON_MOVE value, works as a kind of lock. */
1815 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1816 spin_unlock(&mem->pcp_counter_lock);
1817}
1818
1819static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1820{
1821 int idx = MEM_CGROUP_ON_MOVE;
1822
1823 spin_lock(&mem->pcp_counter_lock);
1824 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1825 spin_unlock(&mem->pcp_counter_lock);
1826}
1827
1828static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1829 unsigned long action,
1830 void *hcpu)
1831{
1832 int cpu = (unsigned long)hcpu;
1833 struct memcg_stock_pcp *stock;
711d3d2c 1834 struct mem_cgroup *iter;
cdec2e42 1835
1489ebad
KH
1836 if ((action == CPU_ONLINE)) {
1837 for_each_mem_cgroup_all(iter)
1838 synchronize_mem_cgroup_on_move(iter, cpu);
1839 return NOTIFY_OK;
1840 }
1841
711d3d2c 1842 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1843 return NOTIFY_OK;
711d3d2c
KH
1844
1845 for_each_mem_cgroup_all(iter)
1846 mem_cgroup_drain_pcp_counter(iter, cpu);
1847
cdec2e42
KH
1848 stock = &per_cpu(memcg_stock, cpu);
1849 drain_stock(stock);
1850 return NOTIFY_OK;
1851}
1852
4b534334
KH
1853
1854/* See __mem_cgroup_try_charge() for details */
1855enum {
1856 CHARGE_OK, /* success */
1857 CHARGE_RETRY, /* need to retry but retry is not bad */
1858 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1859 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1860 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1861};
1862
1863static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1864 int csize, bool oom_check)
1865{
1866 struct mem_cgroup *mem_over_limit;
1867 struct res_counter *fail_res;
1868 unsigned long flags = 0;
1869 int ret;
1870
1871 ret = res_counter_charge(&mem->res, csize, &fail_res);
1872
1873 if (likely(!ret)) {
1874 if (!do_swap_account)
1875 return CHARGE_OK;
1876 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1877 if (likely(!ret))
1878 return CHARGE_OK;
1879
01c88e2d 1880 res_counter_uncharge(&mem->res, csize);
4b534334
KH
1881 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1882 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1883 } else
1884 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7
JW
1885 /*
1886 * csize can be either a huge page (HPAGE_SIZE), a batch of
1887 * regular pages (CHARGE_SIZE), or a single regular page
1888 * (PAGE_SIZE).
1889 *
1890 * Never reclaim on behalf of optional batching, retry with a
1891 * single page instead.
1892 */
1893 if (csize == CHARGE_SIZE)
4b534334
KH
1894 return CHARGE_RETRY;
1895
1896 if (!(gfp_mask & __GFP_WAIT))
1897 return CHARGE_WOULDBLOCK;
1898
1899 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
19942822
JW
1900 gfp_mask, flags);
1901 if (mem_cgroup_check_margin(mem_over_limit, csize))
1902 return CHARGE_RETRY;
4b534334 1903 /*
19942822
JW
1904 * Even though the limit is exceeded at this point, reclaim
1905 * may have been able to free some pages. Retry the charge
1906 * before killing the task.
1907 *
1908 * Only for regular pages, though: huge pages are rather
1909 * unlikely to succeed so close to the limit, and we fall back
1910 * to regular pages anyway in case of failure.
4b534334 1911 */
19942822 1912 if (csize == PAGE_SIZE && ret)
4b534334
KH
1913 return CHARGE_RETRY;
1914
1915 /*
1916 * At task move, charge accounts can be doubly counted. So, it's
1917 * better to wait until the end of task_move if something is going on.
1918 */
1919 if (mem_cgroup_wait_acct_move(mem_over_limit))
1920 return CHARGE_RETRY;
1921
1922 /* If we don't need to call oom-killer at el, return immediately */
1923 if (!oom_check)
1924 return CHARGE_NOMEM;
1925 /* check OOM */
1926 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1927 return CHARGE_OOM_DIE;
1928
1929 return CHARGE_RETRY;
1930}
1931
f817ed48
KH
1932/*
1933 * Unlike exported interface, "oom" parameter is added. if oom==true,
1934 * oom-killer can be invoked.
8a9f3ccd 1935 */
f817ed48 1936static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510
AA
1937 gfp_t gfp_mask,
1938 struct mem_cgroup **memcg, bool oom,
1939 int page_size)
8a9f3ccd 1940{
4b534334
KH
1941 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1942 struct mem_cgroup *mem = NULL;
1943 int ret;
ec168510 1944 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
a636b327 1945
867578cb
KH
1946 /*
1947 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1948 * in system level. So, allow to go ahead dying process in addition to
1949 * MEMDIE process.
1950 */
1951 if (unlikely(test_thread_flag(TIF_MEMDIE)
1952 || fatal_signal_pending(current)))
1953 goto bypass;
a636b327 1954
8a9f3ccd 1955 /*
3be91277
HD
1956 * We always charge the cgroup the mm_struct belongs to.
1957 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1958 * thread group leader migrates. It's possible that mm is not
1959 * set, if so charge the init_mm (happens for pagecache usage).
1960 */
f75ca962
KH
1961 if (!*memcg && !mm)
1962 goto bypass;
1963again:
1964 if (*memcg) { /* css should be a valid one */
4b534334 1965 mem = *memcg;
f75ca962
KH
1966 VM_BUG_ON(css_is_removed(&mem->css));
1967 if (mem_cgroup_is_root(mem))
1968 goto done;
ec168510 1969 if (page_size == PAGE_SIZE && consume_stock(mem))
f75ca962 1970 goto done;
4b534334
KH
1971 css_get(&mem->css);
1972 } else {
f75ca962 1973 struct task_struct *p;
54595fe2 1974
f75ca962
KH
1975 rcu_read_lock();
1976 p = rcu_dereference(mm->owner);
f75ca962 1977 /*
ebb76ce1
KH
1978 * Because we don't have task_lock(), "p" can exit.
1979 * In that case, "mem" can point to root or p can be NULL with
1980 * race with swapoff. Then, we have small risk of mis-accouning.
1981 * But such kind of mis-account by race always happens because
1982 * we don't have cgroup_mutex(). It's overkill and we allo that
1983 * small race, here.
1984 * (*) swapoff at el will charge against mm-struct not against
1985 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
1986 */
1987 mem = mem_cgroup_from_task(p);
ebb76ce1 1988 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
1989 rcu_read_unlock();
1990 goto done;
1991 }
ec168510 1992 if (page_size == PAGE_SIZE && consume_stock(mem)) {
f75ca962
KH
1993 /*
1994 * It seems dagerous to access memcg without css_get().
1995 * But considering how consume_stok works, it's not
1996 * necessary. If consume_stock success, some charges
1997 * from this memcg are cached on this cpu. So, we
1998 * don't need to call css_get()/css_tryget() before
1999 * calling consume_stock().
2000 */
2001 rcu_read_unlock();
2002 goto done;
2003 }
2004 /* after here, we may be blocked. we need to get refcnt */
2005 if (!css_tryget(&mem->css)) {
2006 rcu_read_unlock();
2007 goto again;
2008 }
2009 rcu_read_unlock();
2010 }
8a9f3ccd 2011
4b534334
KH
2012 do {
2013 bool oom_check;
7a81b88c 2014
4b534334 2015 /* If killed, bypass charge */
f75ca962
KH
2016 if (fatal_signal_pending(current)) {
2017 css_put(&mem->css);
4b534334 2018 goto bypass;
f75ca962 2019 }
6d61ef40 2020
4b534334
KH
2021 oom_check = false;
2022 if (oom && !nr_oom_retries) {
2023 oom_check = true;
2024 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2025 }
66e1707b 2026
4b534334 2027 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 2028
4b534334
KH
2029 switch (ret) {
2030 case CHARGE_OK:
2031 break;
2032 case CHARGE_RETRY: /* not in OOM situation but retry */
ec168510 2033 csize = page_size;
f75ca962
KH
2034 css_put(&mem->css);
2035 mem = NULL;
2036 goto again;
4b534334 2037 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2038 css_put(&mem->css);
4b534334
KH
2039 goto nomem;
2040 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2041 if (!oom) {
2042 css_put(&mem->css);
867578cb 2043 goto nomem;
f75ca962 2044 }
4b534334
KH
2045 /* If oom, we never return -ENOMEM */
2046 nr_oom_retries--;
2047 break;
2048 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2049 css_put(&mem->css);
867578cb 2050 goto bypass;
66e1707b 2051 }
4b534334
KH
2052 } while (ret != CHARGE_OK);
2053
ec168510
AA
2054 if (csize > page_size)
2055 refill_stock(mem, csize - page_size);
f75ca962 2056 css_put(&mem->css);
0c3e73e8 2057done:
f75ca962 2058 *memcg = mem;
7a81b88c
KH
2059 return 0;
2060nomem:
f75ca962 2061 *memcg = NULL;
7a81b88c 2062 return -ENOMEM;
867578cb
KH
2063bypass:
2064 *memcg = NULL;
2065 return 0;
7a81b88c 2066}
8a9f3ccd 2067
a3032a2c
DN
2068/*
2069 * Somemtimes we have to undo a charge we got by try_charge().
2070 * This function is for that and do uncharge, put css's refcnt.
2071 * gotten by try_charge().
2072 */
854ffa8d
DN
2073static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2074 unsigned long count)
a3032a2c
DN
2075{
2076 if (!mem_cgroup_is_root(mem)) {
854ffa8d 2077 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 2078 if (do_swap_account)
854ffa8d 2079 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 2080 }
854ffa8d
DN
2081}
2082
ec168510
AA
2083static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2084 int page_size)
854ffa8d 2085{
ec168510 2086 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
a3032a2c
DN
2087}
2088
a3b2d692
KH
2089/*
2090 * A helper function to get mem_cgroup from ID. must be called under
2091 * rcu_read_lock(). The caller must check css_is_removed() or some if
2092 * it's concern. (dropping refcnt from swap can be called against removed
2093 * memcg.)
2094 */
2095static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2096{
2097 struct cgroup_subsys_state *css;
2098
2099 /* ID 0 is unused ID */
2100 if (!id)
2101 return NULL;
2102 css = css_lookup(&mem_cgroup_subsys, id);
2103 if (!css)
2104 return NULL;
2105 return container_of(css, struct mem_cgroup, css);
2106}
2107
e42d9d5d 2108struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2109{
e42d9d5d 2110 struct mem_cgroup *mem = NULL;
3c776e64 2111 struct page_cgroup *pc;
a3b2d692 2112 unsigned short id;
b5a84319
KH
2113 swp_entry_t ent;
2114
3c776e64
DN
2115 VM_BUG_ON(!PageLocked(page));
2116
3c776e64 2117 pc = lookup_page_cgroup(page);
c0bd3f63 2118 lock_page_cgroup(pc);
a3b2d692 2119 if (PageCgroupUsed(pc)) {
3c776e64 2120 mem = pc->mem_cgroup;
a3b2d692
KH
2121 if (mem && !css_tryget(&mem->css))
2122 mem = NULL;
e42d9d5d 2123 } else if (PageSwapCache(page)) {
3c776e64 2124 ent.val = page_private(page);
a3b2d692
KH
2125 id = lookup_swap_cgroup(ent);
2126 rcu_read_lock();
2127 mem = mem_cgroup_lookup(id);
2128 if (mem && !css_tryget(&mem->css))
2129 mem = NULL;
2130 rcu_read_unlock();
3c776e64 2131 }
c0bd3f63 2132 unlock_page_cgroup(pc);
b5a84319
KH
2133 return mem;
2134}
2135
ca3e0214
KH
2136static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2137 struct page_cgroup *pc,
2138 enum charge_type ctype,
2139 int page_size)
7a81b88c 2140{
ca3e0214
KH
2141 int nr_pages = page_size >> PAGE_SHIFT;
2142
2143 /* try_charge() can return NULL to *memcg, taking care of it. */
2144 if (!mem)
2145 return;
2146
2147 lock_page_cgroup(pc);
2148 if (unlikely(PageCgroupUsed(pc))) {
2149 unlock_page_cgroup(pc);
2150 mem_cgroup_cancel_charge(mem, page_size);
2151 return;
2152 }
2153 /*
2154 * we don't need page_cgroup_lock about tail pages, becase they are not
2155 * accessed by any other context at this point.
2156 */
8a9f3ccd 2157 pc->mem_cgroup = mem;
261fb61a
KH
2158 /*
2159 * We access a page_cgroup asynchronously without lock_page_cgroup().
2160 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2161 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2162 * before USED bit, we need memory barrier here.
2163 * See mem_cgroup_add_lru_list(), etc.
2164 */
08e552c6 2165 smp_wmb();
4b3bde4c
BS
2166 switch (ctype) {
2167 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2168 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2169 SetPageCgroupCache(pc);
2170 SetPageCgroupUsed(pc);
2171 break;
2172 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2173 ClearPageCgroupCache(pc);
2174 SetPageCgroupUsed(pc);
2175 break;
2176 default:
2177 break;
2178 }
3be91277 2179
ca3e0214 2180 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2181 unlock_page_cgroup(pc);
430e4863
KH
2182 /*
2183 * "charge_statistics" updated event counter. Then, check it.
2184 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2185 * if they exceeds softlimit.
2186 */
d2265e6f 2187 memcg_check_events(mem, pc->page);
7a81b88c 2188}
66e1707b 2189
ca3e0214
KH
2190#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2191
2192#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2193 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2194/*
2195 * Because tail pages are not marked as "used", set it. We're under
2196 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2197 */
2198void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2199{
2200 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2201 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2202 unsigned long flags;
2203
3d37c4a9
KH
2204 if (mem_cgroup_disabled())
2205 return;
ca3e0214 2206 /*
ece35ca8 2207 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2208 * page state accounting.
2209 */
2210 move_lock_page_cgroup(head_pc, &flags);
2211
2212 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2213 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2214 if (PageCgroupAcctLRU(head_pc)) {
2215 enum lru_list lru;
2216 struct mem_cgroup_per_zone *mz;
2217
2218 /*
2219 * LRU flags cannot be copied because we need to add tail
2220 *.page to LRU by generic call and our hook will be called.
2221 * We hold lru_lock, then, reduce counter directly.
2222 */
2223 lru = page_lru(head);
2224 mz = page_cgroup_zoneinfo(head_pc);
2225 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2226 }
ca3e0214
KH
2227 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2228 move_unlock_page_cgroup(head_pc, &flags);
2229}
2230#endif
2231
f817ed48 2232/**
57f9fd7d 2233 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
2234 * @pc: page_cgroup of the page.
2235 * @from: mem_cgroup which the page is moved from.
2236 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2237 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2238 *
2239 * The caller must confirm following.
08e552c6 2240 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 2241 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 2242 *
854ffa8d
DN
2243 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2244 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2245 * true, this function does "uncharge" from old cgroup, but it doesn't if
2246 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
2247 */
2248
57f9fd7d 2249static void __mem_cgroup_move_account(struct page_cgroup *pc,
987eba66
KH
2250 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2251 int charge_size)
f817ed48 2252{
987eba66
KH
2253 int nr_pages = charge_size >> PAGE_SHIFT;
2254
f817ed48 2255 VM_BUG_ON(from == to);
08e552c6 2256 VM_BUG_ON(PageLRU(pc->page));
112bc2e1 2257 VM_BUG_ON(!page_is_cgroup_locked(pc));
57f9fd7d
DN
2258 VM_BUG_ON(!PageCgroupUsed(pc));
2259 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 2260
8725d541 2261 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2262 /* Update mapped_file data for mem_cgroup */
2263 preempt_disable();
2264 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2265 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2266 preempt_enable();
d69b042f 2267 }
987eba66 2268 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2269 if (uncharge)
2270 /* This is not "cancel", but cancel_charge does all we need. */
987eba66 2271 mem_cgroup_cancel_charge(from, charge_size);
d69b042f 2272
854ffa8d 2273 /* caller should have done css_get */
08e552c6 2274 pc->mem_cgroup = to;
987eba66 2275 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2276 /*
2277 * We charges against "to" which may not have any tasks. Then, "to"
2278 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2279 * this function is just force_empty() and move charge, so it's
2280 * garanteed that "to" is never removed. So, we don't check rmdir
2281 * status here.
88703267 2282 */
57f9fd7d
DN
2283}
2284
2285/*
2286 * check whether the @pc is valid for moving account and call
2287 * __mem_cgroup_move_account()
2288 */
2289static int mem_cgroup_move_account(struct page_cgroup *pc,
987eba66
KH
2290 struct mem_cgroup *from, struct mem_cgroup *to,
2291 bool uncharge, int charge_size)
57f9fd7d
DN
2292{
2293 int ret = -EINVAL;
dbd4ea78 2294 unsigned long flags;
52dbb905
KH
2295 /*
2296 * The page is isolated from LRU. So, collapse function
2297 * will not handle this page. But page splitting can happen.
2298 * Do this check under compound_page_lock(). The caller should
2299 * hold it.
2300 */
987eba66
KH
2301 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2302 return -EBUSY;
2303
57f9fd7d
DN
2304 lock_page_cgroup(pc);
2305 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
dbd4ea78 2306 move_lock_page_cgroup(pc, &flags);
987eba66 2307 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
dbd4ea78 2308 move_unlock_page_cgroup(pc, &flags);
57f9fd7d
DN
2309 ret = 0;
2310 }
2311 unlock_page_cgroup(pc);
d2265e6f
KH
2312 /*
2313 * check events
2314 */
2315 memcg_check_events(to, pc->page);
2316 memcg_check_events(from, pc->page);
f817ed48
KH
2317 return ret;
2318}
2319
2320/*
2321 * move charges to its parent.
2322 */
2323
2324static int mem_cgroup_move_parent(struct page_cgroup *pc,
2325 struct mem_cgroup *child,
2326 gfp_t gfp_mask)
2327{
08e552c6 2328 struct page *page = pc->page;
f817ed48
KH
2329 struct cgroup *cg = child->css.cgroup;
2330 struct cgroup *pcg = cg->parent;
2331 struct mem_cgroup *parent;
52dbb905 2332 int page_size = PAGE_SIZE;
987eba66 2333 unsigned long flags;
f817ed48
KH
2334 int ret;
2335
2336 /* Is ROOT ? */
2337 if (!pcg)
2338 return -EINVAL;
2339
57f9fd7d
DN
2340 ret = -EBUSY;
2341 if (!get_page_unless_zero(page))
2342 goto out;
2343 if (isolate_lru_page(page))
2344 goto put;
52dbb905
KH
2345
2346 if (PageTransHuge(page))
2347 page_size = HPAGE_SIZE;
08e552c6 2348
f817ed48 2349 parent = mem_cgroup_from_cont(pcg);
52dbb905
KH
2350 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2351 &parent, false, page_size);
a636b327 2352 if (ret || !parent)
57f9fd7d 2353 goto put_back;
f817ed48 2354
52dbb905 2355 if (page_size > PAGE_SIZE)
987eba66
KH
2356 flags = compound_lock_irqsave(page);
2357
52dbb905 2358 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
854ffa8d 2359 if (ret)
52dbb905 2360 mem_cgroup_cancel_charge(parent, page_size);
8dba474f 2361
52dbb905 2362 if (page_size > PAGE_SIZE)
987eba66 2363 compound_unlock_irqrestore(page, flags);
8dba474f 2364put_back:
08e552c6 2365 putback_lru_page(page);
57f9fd7d 2366put:
40d58138 2367 put_page(page);
57f9fd7d 2368out:
f817ed48
KH
2369 return ret;
2370}
2371
7a81b88c
KH
2372/*
2373 * Charge the memory controller for page usage.
2374 * Return
2375 * 0 if the charge was successful
2376 * < 0 if the cgroup is over its limit
2377 */
2378static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2379 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2380{
73045c47 2381 struct mem_cgroup *mem = NULL;
8493ae43 2382 int page_size = PAGE_SIZE;
7a81b88c 2383 struct page_cgroup *pc;
8493ae43 2384 bool oom = true;
7a81b88c 2385 int ret;
ec168510 2386
37c2ac78 2387 if (PageTransHuge(page)) {
ec168510 2388 page_size <<= compound_order(page);
37c2ac78 2389 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2390 /*
2391 * Never OOM-kill a process for a huge page. The
2392 * fault handler will fall back to regular pages.
2393 */
2394 oom = false;
37c2ac78 2395 }
7a81b88c
KH
2396
2397 pc = lookup_page_cgroup(page);
2398 /* can happen at boot */
2399 if (unlikely(!pc))
2400 return 0;
2401 prefetchw(pc);
2402
8493ae43 2403 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
a636b327 2404 if (ret || !mem)
7a81b88c
KH
2405 return ret;
2406
ec168510 2407 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
8a9f3ccd 2408 return 0;
8a9f3ccd
BS
2409}
2410
7a81b88c
KH
2411int mem_cgroup_newpage_charge(struct page *page,
2412 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2413{
f8d66542 2414 if (mem_cgroup_disabled())
cede86ac 2415 return 0;
69029cd5
KH
2416 /*
2417 * If already mapped, we don't have to account.
2418 * If page cache, page->mapping has address_space.
2419 * But page->mapping may have out-of-use anon_vma pointer,
2420 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2421 * is NULL.
2422 */
2423 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2424 return 0;
2425 if (unlikely(!mm))
2426 mm = &init_mm;
217bc319 2427 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2428 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2429}
2430
83aae4c7
DN
2431static void
2432__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2433 enum charge_type ctype);
2434
e1a1cd59
BS
2435int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2436 gfp_t gfp_mask)
8697d331 2437{
b5a84319
KH
2438 int ret;
2439
f8d66542 2440 if (mem_cgroup_disabled())
cede86ac 2441 return 0;
52d4b9ac
KH
2442 if (PageCompound(page))
2443 return 0;
accf163e
KH
2444 /*
2445 * Corner case handling. This is called from add_to_page_cache()
2446 * in usual. But some FS (shmem) precharges this page before calling it
2447 * and call add_to_page_cache() with GFP_NOWAIT.
2448 *
2449 * For GFP_NOWAIT case, the page may be pre-charged before calling
2450 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2451 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2452 * And when the page is SwapCache, it should take swap information
2453 * into account. This is under lock_page() now.
accf163e
KH
2454 */
2455 if (!(gfp_mask & __GFP_WAIT)) {
2456 struct page_cgroup *pc;
2457
52d4b9ac
KH
2458 pc = lookup_page_cgroup(page);
2459 if (!pc)
2460 return 0;
2461 lock_page_cgroup(pc);
2462 if (PageCgroupUsed(pc)) {
2463 unlock_page_cgroup(pc);
accf163e
KH
2464 return 0;
2465 }
52d4b9ac 2466 unlock_page_cgroup(pc);
accf163e
KH
2467 }
2468
73045c47 2469 if (unlikely(!mm))
8697d331 2470 mm = &init_mm;
accf163e 2471
c05555b5
KH
2472 if (page_is_file_cache(page))
2473 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2474 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2475
83aae4c7
DN
2476 /* shmem */
2477 if (PageSwapCache(page)) {
56039efa 2478 struct mem_cgroup *mem;
73045c47 2479
83aae4c7
DN
2480 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2481 if (!ret)
2482 __mem_cgroup_commit_charge_swapin(page, mem,
2483 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2484 } else
2485 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2486 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2487
b5a84319 2488 return ret;
e8589cc1
KH
2489}
2490
54595fe2
KH
2491/*
2492 * While swap-in, try_charge -> commit or cancel, the page is locked.
2493 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2494 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2495 * "commit()" or removed by "cancel()"
2496 */
8c7c6e34
KH
2497int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2498 struct page *page,
2499 gfp_t mask, struct mem_cgroup **ptr)
2500{
2501 struct mem_cgroup *mem;
54595fe2 2502 int ret;
8c7c6e34 2503
56039efa
KH
2504 *ptr = NULL;
2505
f8d66542 2506 if (mem_cgroup_disabled())
8c7c6e34
KH
2507 return 0;
2508
2509 if (!do_swap_account)
2510 goto charge_cur_mm;
8c7c6e34
KH
2511 /*
2512 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2513 * the pte, and even removed page from swap cache: in those cases
2514 * do_swap_page()'s pte_same() test will fail; but there's also a
2515 * KSM case which does need to charge the page.
8c7c6e34
KH
2516 */
2517 if (!PageSwapCache(page))
407f9c8b 2518 goto charge_cur_mm;
e42d9d5d 2519 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2520 if (!mem)
2521 goto charge_cur_mm;
8c7c6e34 2522 *ptr = mem;
ec168510 2523 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
54595fe2
KH
2524 css_put(&mem->css);
2525 return ret;
8c7c6e34
KH
2526charge_cur_mm:
2527 if (unlikely(!mm))
2528 mm = &init_mm;
ec168510 2529 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
8c7c6e34
KH
2530}
2531
83aae4c7
DN
2532static void
2533__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2534 enum charge_type ctype)
7a81b88c
KH
2535{
2536 struct page_cgroup *pc;
2537
f8d66542 2538 if (mem_cgroup_disabled())
7a81b88c
KH
2539 return;
2540 if (!ptr)
2541 return;
88703267 2542 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2543 pc = lookup_page_cgroup(page);
544122e5 2544 mem_cgroup_lru_del_before_commit_swapcache(page);
ec168510 2545 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
544122e5 2546 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2547 /*
2548 * Now swap is on-memory. This means this page may be
2549 * counted both as mem and swap....double count.
03f3c433
KH
2550 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2551 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2552 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2553 */
03f3c433 2554 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2555 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2556 unsigned short id;
8c7c6e34 2557 struct mem_cgroup *memcg;
a3b2d692
KH
2558
2559 id = swap_cgroup_record(ent, 0);
2560 rcu_read_lock();
2561 memcg = mem_cgroup_lookup(id);
8c7c6e34 2562 if (memcg) {
a3b2d692
KH
2563 /*
2564 * This recorded memcg can be obsolete one. So, avoid
2565 * calling css_tryget
2566 */
0c3e73e8 2567 if (!mem_cgroup_is_root(memcg))
4e649152 2568 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2569 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2570 mem_cgroup_put(memcg);
2571 }
a3b2d692 2572 rcu_read_unlock();
8c7c6e34 2573 }
88703267
KH
2574 /*
2575 * At swapin, we may charge account against cgroup which has no tasks.
2576 * So, rmdir()->pre_destroy() can be called while we do this charge.
2577 * In that case, we need to call pre_destroy() again. check it here.
2578 */
2579 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2580}
2581
83aae4c7
DN
2582void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2583{
2584 __mem_cgroup_commit_charge_swapin(page, ptr,
2585 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2586}
2587
7a81b88c
KH
2588void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2589{
f8d66542 2590 if (mem_cgroup_disabled())
7a81b88c
KH
2591 return;
2592 if (!mem)
2593 return;
ec168510 2594 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
7a81b88c
KH
2595}
2596
569b846d 2597static void
ec168510
AA
2598__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2599 int page_size)
569b846d
KH
2600{
2601 struct memcg_batch_info *batch = NULL;
2602 bool uncharge_memsw = true;
2603 /* If swapout, usage of swap doesn't decrease */
2604 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2605 uncharge_memsw = false;
569b846d
KH
2606
2607 batch = &current->memcg_batch;
2608 /*
2609 * In usual, we do css_get() when we remember memcg pointer.
2610 * But in this case, we keep res->usage until end of a series of
2611 * uncharges. Then, it's ok to ignore memcg's refcnt.
2612 */
2613 if (!batch->memcg)
2614 batch->memcg = mem;
3c11ecf4
KH
2615 /*
2616 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2617 * In those cases, all pages freed continously can be expected to be in
2618 * the same cgroup and we have chance to coalesce uncharges.
2619 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2620 * because we want to do uncharge as soon as possible.
2621 */
2622
2623 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2624 goto direct_uncharge;
2625
ec168510
AA
2626 if (page_size != PAGE_SIZE)
2627 goto direct_uncharge;
2628
569b846d
KH
2629 /*
2630 * In typical case, batch->memcg == mem. This means we can
2631 * merge a series of uncharges to an uncharge of res_counter.
2632 * If not, we uncharge res_counter ony by one.
2633 */
2634 if (batch->memcg != mem)
2635 goto direct_uncharge;
2636 /* remember freed charge and uncharge it later */
2637 batch->bytes += PAGE_SIZE;
2638 if (uncharge_memsw)
2639 batch->memsw_bytes += PAGE_SIZE;
2640 return;
2641direct_uncharge:
ec168510 2642 res_counter_uncharge(&mem->res, page_size);
569b846d 2643 if (uncharge_memsw)
ec168510 2644 res_counter_uncharge(&mem->memsw, page_size);
3c11ecf4
KH
2645 if (unlikely(batch->memcg != mem))
2646 memcg_oom_recover(mem);
569b846d
KH
2647 return;
2648}
7a81b88c 2649
8a9f3ccd 2650/*
69029cd5 2651 * uncharge if !page_mapped(page)
8a9f3ccd 2652 */
8c7c6e34 2653static struct mem_cgroup *
69029cd5 2654__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2655{
152c9ccb 2656 int count;
8289546e 2657 struct page_cgroup *pc;
8c7c6e34 2658 struct mem_cgroup *mem = NULL;
ec168510 2659 int page_size = PAGE_SIZE;
8a9f3ccd 2660
f8d66542 2661 if (mem_cgroup_disabled())
8c7c6e34 2662 return NULL;
4077960e 2663
d13d1443 2664 if (PageSwapCache(page))
8c7c6e34 2665 return NULL;
d13d1443 2666
37c2ac78 2667 if (PageTransHuge(page)) {
ec168510 2668 page_size <<= compound_order(page);
37c2ac78
AA
2669 VM_BUG_ON(!PageTransHuge(page));
2670 }
ec168510 2671
152c9ccb 2672 count = page_size >> PAGE_SHIFT;
8697d331 2673 /*
3c541e14 2674 * Check if our page_cgroup is valid
8697d331 2675 */
52d4b9ac
KH
2676 pc = lookup_page_cgroup(page);
2677 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2678 return NULL;
b9c565d5 2679
52d4b9ac 2680 lock_page_cgroup(pc);
d13d1443 2681
8c7c6e34
KH
2682 mem = pc->mem_cgroup;
2683
d13d1443
KH
2684 if (!PageCgroupUsed(pc))
2685 goto unlock_out;
2686
2687 switch (ctype) {
2688 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2689 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2690 /* See mem_cgroup_prepare_migration() */
2691 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2692 goto unlock_out;
2693 break;
2694 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2695 if (!PageAnon(page)) { /* Shared memory */
2696 if (page->mapping && !page_is_file_cache(page))
2697 goto unlock_out;
2698 } else if (page_mapped(page)) /* Anon */
2699 goto unlock_out;
2700 break;
2701 default:
2702 break;
52d4b9ac 2703 }
d13d1443 2704
ca3e0214 2705 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
04046e1a 2706
52d4b9ac 2707 ClearPageCgroupUsed(pc);
544122e5
KH
2708 /*
2709 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2710 * freed from LRU. This is safe because uncharged page is expected not
2711 * to be reused (freed soon). Exception is SwapCache, it's handled by
2712 * special functions.
2713 */
b9c565d5 2714
52d4b9ac 2715 unlock_page_cgroup(pc);
f75ca962
KH
2716 /*
2717 * even after unlock, we have mem->res.usage here and this memcg
2718 * will never be freed.
2719 */
d2265e6f 2720 memcg_check_events(mem, page);
f75ca962
KH
2721 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2722 mem_cgroup_swap_statistics(mem, true);
2723 mem_cgroup_get(mem);
2724 }
2725 if (!mem_cgroup_is_root(mem))
ec168510 2726 __do_uncharge(mem, ctype, page_size);
6d12e2d8 2727
8c7c6e34 2728 return mem;
d13d1443
KH
2729
2730unlock_out:
2731 unlock_page_cgroup(pc);
8c7c6e34 2732 return NULL;
3c541e14
BS
2733}
2734
69029cd5
KH
2735void mem_cgroup_uncharge_page(struct page *page)
2736{
52d4b9ac
KH
2737 /* early check. */
2738 if (page_mapped(page))
2739 return;
2740 if (page->mapping && !PageAnon(page))
2741 return;
69029cd5
KH
2742 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2743}
2744
2745void mem_cgroup_uncharge_cache_page(struct page *page)
2746{
2747 VM_BUG_ON(page_mapped(page));
b7abea96 2748 VM_BUG_ON(page->mapping);
69029cd5
KH
2749 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2750}
2751
569b846d
KH
2752/*
2753 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2754 * In that cases, pages are freed continuously and we can expect pages
2755 * are in the same memcg. All these calls itself limits the number of
2756 * pages freed at once, then uncharge_start/end() is called properly.
2757 * This may be called prural(2) times in a context,
2758 */
2759
2760void mem_cgroup_uncharge_start(void)
2761{
2762 current->memcg_batch.do_batch++;
2763 /* We can do nest. */
2764 if (current->memcg_batch.do_batch == 1) {
2765 current->memcg_batch.memcg = NULL;
2766 current->memcg_batch.bytes = 0;
2767 current->memcg_batch.memsw_bytes = 0;
2768 }
2769}
2770
2771void mem_cgroup_uncharge_end(void)
2772{
2773 struct memcg_batch_info *batch = &current->memcg_batch;
2774
2775 if (!batch->do_batch)
2776 return;
2777
2778 batch->do_batch--;
2779 if (batch->do_batch) /* If stacked, do nothing. */
2780 return;
2781
2782 if (!batch->memcg)
2783 return;
2784 /*
2785 * This "batch->memcg" is valid without any css_get/put etc...
2786 * bacause we hide charges behind us.
2787 */
2788 if (batch->bytes)
2789 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2790 if (batch->memsw_bytes)
2791 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2792 memcg_oom_recover(batch->memcg);
569b846d
KH
2793 /* forget this pointer (for sanity check) */
2794 batch->memcg = NULL;
2795}
2796
e767e056 2797#ifdef CONFIG_SWAP
8c7c6e34 2798/*
e767e056 2799 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2800 * memcg information is recorded to swap_cgroup of "ent"
2801 */
8a9478ca
KH
2802void
2803mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2804{
2805 struct mem_cgroup *memcg;
8a9478ca
KH
2806 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2807
2808 if (!swapout) /* this was a swap cache but the swap is unused ! */
2809 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2810
2811 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2812
f75ca962
KH
2813 /*
2814 * record memcg information, if swapout && memcg != NULL,
2815 * mem_cgroup_get() was called in uncharge().
2816 */
2817 if (do_swap_account && swapout && memcg)
a3b2d692 2818 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2819}
e767e056 2820#endif
8c7c6e34
KH
2821
2822#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2823/*
2824 * called from swap_entry_free(). remove record in swap_cgroup and
2825 * uncharge "memsw" account.
2826 */
2827void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2828{
8c7c6e34 2829 struct mem_cgroup *memcg;
a3b2d692 2830 unsigned short id;
8c7c6e34
KH
2831
2832 if (!do_swap_account)
2833 return;
2834
a3b2d692
KH
2835 id = swap_cgroup_record(ent, 0);
2836 rcu_read_lock();
2837 memcg = mem_cgroup_lookup(id);
8c7c6e34 2838 if (memcg) {
a3b2d692
KH
2839 /*
2840 * We uncharge this because swap is freed.
2841 * This memcg can be obsolete one. We avoid calling css_tryget
2842 */
0c3e73e8 2843 if (!mem_cgroup_is_root(memcg))
4e649152 2844 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2845 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2846 mem_cgroup_put(memcg);
2847 }
a3b2d692 2848 rcu_read_unlock();
d13d1443 2849}
02491447
DN
2850
2851/**
2852 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2853 * @entry: swap entry to be moved
2854 * @from: mem_cgroup which the entry is moved from
2855 * @to: mem_cgroup which the entry is moved to
483c30b5 2856 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2857 *
2858 * It succeeds only when the swap_cgroup's record for this entry is the same
2859 * as the mem_cgroup's id of @from.
2860 *
2861 * Returns 0 on success, -EINVAL on failure.
2862 *
2863 * The caller must have charged to @to, IOW, called res_counter_charge() about
2864 * both res and memsw, and called css_get().
2865 */
2866static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2867 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2868{
2869 unsigned short old_id, new_id;
2870
2871 old_id = css_id(&from->css);
2872 new_id = css_id(&to->css);
2873
2874 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2875 mem_cgroup_swap_statistics(from, false);
483c30b5 2876 mem_cgroup_swap_statistics(to, true);
02491447 2877 /*
483c30b5
DN
2878 * This function is only called from task migration context now.
2879 * It postpones res_counter and refcount handling till the end
2880 * of task migration(mem_cgroup_clear_mc()) for performance
2881 * improvement. But we cannot postpone mem_cgroup_get(to)
2882 * because if the process that has been moved to @to does
2883 * swap-in, the refcount of @to might be decreased to 0.
02491447 2884 */
02491447 2885 mem_cgroup_get(to);
483c30b5
DN
2886 if (need_fixup) {
2887 if (!mem_cgroup_is_root(from))
2888 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2889 mem_cgroup_put(from);
2890 /*
2891 * we charged both to->res and to->memsw, so we should
2892 * uncharge to->res.
2893 */
2894 if (!mem_cgroup_is_root(to))
2895 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2896 }
02491447
DN
2897 return 0;
2898 }
2899 return -EINVAL;
2900}
2901#else
2902static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2903 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2904{
2905 return -EINVAL;
2906}
8c7c6e34 2907#endif
d13d1443 2908
ae41be37 2909/*
01b1ae63
KH
2910 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2911 * page belongs to.
ae41be37 2912 */
ac39cf8c 2913int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 2914 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37
KH
2915{
2916 struct page_cgroup *pc;
e8589cc1 2917 struct mem_cgroup *mem = NULL;
ac39cf8c 2918 enum charge_type ctype;
e8589cc1 2919 int ret = 0;
8869b8f6 2920
56039efa
KH
2921 *ptr = NULL;
2922
ec168510 2923 VM_BUG_ON(PageTransHuge(page));
f8d66542 2924 if (mem_cgroup_disabled())
4077960e
BS
2925 return 0;
2926
52d4b9ac
KH
2927 pc = lookup_page_cgroup(page);
2928 lock_page_cgroup(pc);
2929 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2930 mem = pc->mem_cgroup;
2931 css_get(&mem->css);
ac39cf8c 2932 /*
2933 * At migrating an anonymous page, its mapcount goes down
2934 * to 0 and uncharge() will be called. But, even if it's fully
2935 * unmapped, migration may fail and this page has to be
2936 * charged again. We set MIGRATION flag here and delay uncharge
2937 * until end_migration() is called
2938 *
2939 * Corner Case Thinking
2940 * A)
2941 * When the old page was mapped as Anon and it's unmap-and-freed
2942 * while migration was ongoing.
2943 * If unmap finds the old page, uncharge() of it will be delayed
2944 * until end_migration(). If unmap finds a new page, it's
2945 * uncharged when it make mapcount to be 1->0. If unmap code
2946 * finds swap_migration_entry, the new page will not be mapped
2947 * and end_migration() will find it(mapcount==0).
2948 *
2949 * B)
2950 * When the old page was mapped but migraion fails, the kernel
2951 * remaps it. A charge for it is kept by MIGRATION flag even
2952 * if mapcount goes down to 0. We can do remap successfully
2953 * without charging it again.
2954 *
2955 * C)
2956 * The "old" page is under lock_page() until the end of
2957 * migration, so, the old page itself will not be swapped-out.
2958 * If the new page is swapped out before end_migraton, our
2959 * hook to usual swap-out path will catch the event.
2960 */
2961 if (PageAnon(page))
2962 SetPageCgroupMigration(pc);
e8589cc1 2963 }
52d4b9ac 2964 unlock_page_cgroup(pc);
ac39cf8c 2965 /*
2966 * If the page is not charged at this point,
2967 * we return here.
2968 */
2969 if (!mem)
2970 return 0;
01b1ae63 2971
93d5c9be 2972 *ptr = mem;
ef6a3c63 2973 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
ac39cf8c 2974 css_put(&mem->css);/* drop extra refcnt */
2975 if (ret || *ptr == NULL) {
2976 if (PageAnon(page)) {
2977 lock_page_cgroup(pc);
2978 ClearPageCgroupMigration(pc);
2979 unlock_page_cgroup(pc);
2980 /*
2981 * The old page may be fully unmapped while we kept it.
2982 */
2983 mem_cgroup_uncharge_page(page);
2984 }
2985 return -ENOMEM;
e8589cc1 2986 }
ac39cf8c 2987 /*
2988 * We charge new page before it's used/mapped. So, even if unlock_page()
2989 * is called before end_migration, we can catch all events on this new
2990 * page. In the case new page is migrated but not remapped, new page's
2991 * mapcount will be finally 0 and we call uncharge in end_migration().
2992 */
2993 pc = lookup_page_cgroup(newpage);
2994 if (PageAnon(page))
2995 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2996 else if (page_is_file_cache(page))
2997 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2998 else
2999 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ec168510 3000 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
e8589cc1 3001 return ret;
ae41be37 3002}
8869b8f6 3003
69029cd5 3004/* remove redundant charge if migration failed*/
01b1ae63 3005void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 3006 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3007{
ac39cf8c 3008 struct page *used, *unused;
01b1ae63 3009 struct page_cgroup *pc;
01b1ae63
KH
3010
3011 if (!mem)
3012 return;
ac39cf8c 3013 /* blocks rmdir() */
88703267 3014 cgroup_exclude_rmdir(&mem->css);
50de1dd9 3015 if (!migration_ok) {
ac39cf8c 3016 used = oldpage;
3017 unused = newpage;
01b1ae63 3018 } else {
ac39cf8c 3019 used = newpage;
01b1ae63
KH
3020 unused = oldpage;
3021 }
69029cd5 3022 /*
ac39cf8c 3023 * We disallowed uncharge of pages under migration because mapcount
3024 * of the page goes down to zero, temporarly.
3025 * Clear the flag and check the page should be charged.
01b1ae63 3026 */
ac39cf8c 3027 pc = lookup_page_cgroup(oldpage);
3028 lock_page_cgroup(pc);
3029 ClearPageCgroupMigration(pc);
3030 unlock_page_cgroup(pc);
01b1ae63 3031
ac39cf8c 3032 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3033
01b1ae63 3034 /*
ac39cf8c 3035 * If a page is a file cache, radix-tree replacement is very atomic
3036 * and we can skip this check. When it was an Anon page, its mapcount
3037 * goes down to 0. But because we added MIGRATION flage, it's not
3038 * uncharged yet. There are several case but page->mapcount check
3039 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3040 * check. (see prepare_charge() also)
69029cd5 3041 */
ac39cf8c 3042 if (PageAnon(used))
3043 mem_cgroup_uncharge_page(used);
88703267 3044 /*
ac39cf8c 3045 * At migration, we may charge account against cgroup which has no
3046 * tasks.
88703267
KH
3047 * So, rmdir()->pre_destroy() can be called while we do this charge.
3048 * In that case, we need to call pre_destroy() again. check it here.
3049 */
3050 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3051}
78fb7466 3052
c9b0ed51 3053/*
ae3abae6
DN
3054 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3055 * Calling hierarchical_reclaim is not enough because we should update
3056 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3057 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3058 * not from the memcg which this page would be charged to.
3059 * try_charge_swapin does all of these works properly.
c9b0ed51 3060 */
ae3abae6 3061int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
3062 struct mm_struct *mm,
3063 gfp_t gfp_mask)
c9b0ed51 3064{
56039efa 3065 struct mem_cgroup *mem;
ae3abae6 3066 int ret;
c9b0ed51 3067
f8d66542 3068 if (mem_cgroup_disabled())
cede86ac 3069 return 0;
c9b0ed51 3070
ae3abae6
DN
3071 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3072 if (!ret)
3073 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3074
ae3abae6 3075 return ret;
c9b0ed51
KH
3076}
3077
8c7c6e34
KH
3078static DEFINE_MUTEX(set_limit_mutex);
3079
d38d2a75 3080static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3081 unsigned long long val)
628f4235 3082{
81d39c20 3083 int retry_count;
3c11ecf4 3084 u64 memswlimit, memlimit;
628f4235 3085 int ret = 0;
81d39c20
KH
3086 int children = mem_cgroup_count_children(memcg);
3087 u64 curusage, oldusage;
3c11ecf4 3088 int enlarge;
81d39c20
KH
3089
3090 /*
3091 * For keeping hierarchical_reclaim simple, how long we should retry
3092 * is depends on callers. We set our retry-count to be function
3093 * of # of children which we should visit in this loop.
3094 */
3095 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3096
3097 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3098
3c11ecf4 3099 enlarge = 0;
8c7c6e34 3100 while (retry_count) {
628f4235
KH
3101 if (signal_pending(current)) {
3102 ret = -EINTR;
3103 break;
3104 }
8c7c6e34
KH
3105 /*
3106 * Rather than hide all in some function, I do this in
3107 * open coded manner. You see what this really does.
3108 * We have to guarantee mem->res.limit < mem->memsw.limit.
3109 */
3110 mutex_lock(&set_limit_mutex);
3111 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3112 if (memswlimit < val) {
3113 ret = -EINVAL;
3114 mutex_unlock(&set_limit_mutex);
628f4235
KH
3115 break;
3116 }
3c11ecf4
KH
3117
3118 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3119 if (memlimit < val)
3120 enlarge = 1;
3121
8c7c6e34 3122 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3123 if (!ret) {
3124 if (memswlimit == val)
3125 memcg->memsw_is_minimum = true;
3126 else
3127 memcg->memsw_is_minimum = false;
3128 }
8c7c6e34
KH
3129 mutex_unlock(&set_limit_mutex);
3130
3131 if (!ret)
3132 break;
3133
aa20d489 3134 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3135 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3136 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3137 /* Usage is reduced ? */
3138 if (curusage >= oldusage)
3139 retry_count--;
3140 else
3141 oldusage = curusage;
8c7c6e34 3142 }
3c11ecf4
KH
3143 if (!ret && enlarge)
3144 memcg_oom_recover(memcg);
14797e23 3145
8c7c6e34
KH
3146 return ret;
3147}
3148
338c8431
LZ
3149static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3150 unsigned long long val)
8c7c6e34 3151{
81d39c20 3152 int retry_count;
3c11ecf4 3153 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3154 int children = mem_cgroup_count_children(memcg);
3155 int ret = -EBUSY;
3c11ecf4 3156 int enlarge = 0;
8c7c6e34 3157
81d39c20
KH
3158 /* see mem_cgroup_resize_res_limit */
3159 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3160 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3161 while (retry_count) {
3162 if (signal_pending(current)) {
3163 ret = -EINTR;
3164 break;
3165 }
3166 /*
3167 * Rather than hide all in some function, I do this in
3168 * open coded manner. You see what this really does.
3169 * We have to guarantee mem->res.limit < mem->memsw.limit.
3170 */
3171 mutex_lock(&set_limit_mutex);
3172 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3173 if (memlimit > val) {
3174 ret = -EINVAL;
3175 mutex_unlock(&set_limit_mutex);
3176 break;
3177 }
3c11ecf4
KH
3178 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3179 if (memswlimit < val)
3180 enlarge = 1;
8c7c6e34 3181 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3182 if (!ret) {
3183 if (memlimit == val)
3184 memcg->memsw_is_minimum = true;
3185 else
3186 memcg->memsw_is_minimum = false;
3187 }
8c7c6e34
KH
3188 mutex_unlock(&set_limit_mutex);
3189
3190 if (!ret)
3191 break;
3192
4e416953 3193 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3194 MEM_CGROUP_RECLAIM_NOSWAP |
3195 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3196 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3197 /* Usage is reduced ? */
8c7c6e34 3198 if (curusage >= oldusage)
628f4235 3199 retry_count--;
81d39c20
KH
3200 else
3201 oldusage = curusage;
628f4235 3202 }
3c11ecf4
KH
3203 if (!ret && enlarge)
3204 memcg_oom_recover(memcg);
628f4235
KH
3205 return ret;
3206}
3207
4e416953 3208unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3209 gfp_t gfp_mask)
4e416953
BS
3210{
3211 unsigned long nr_reclaimed = 0;
3212 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3213 unsigned long reclaimed;
3214 int loop = 0;
3215 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3216 unsigned long long excess;
4e416953
BS
3217
3218 if (order > 0)
3219 return 0;
3220
00918b6a 3221 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3222 /*
3223 * This loop can run a while, specially if mem_cgroup's continuously
3224 * keep exceeding their soft limit and putting the system under
3225 * pressure
3226 */
3227 do {
3228 if (next_mz)
3229 mz = next_mz;
3230 else
3231 mz = mem_cgroup_largest_soft_limit_node(mctz);
3232 if (!mz)
3233 break;
3234
3235 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3236 gfp_mask,
3237 MEM_CGROUP_RECLAIM_SOFT);
3238 nr_reclaimed += reclaimed;
3239 spin_lock(&mctz->lock);
3240
3241 /*
3242 * If we failed to reclaim anything from this memory cgroup
3243 * it is time to move on to the next cgroup
3244 */
3245 next_mz = NULL;
3246 if (!reclaimed) {
3247 do {
3248 /*
3249 * Loop until we find yet another one.
3250 *
3251 * By the time we get the soft_limit lock
3252 * again, someone might have aded the
3253 * group back on the RB tree. Iterate to
3254 * make sure we get a different mem.
3255 * mem_cgroup_largest_soft_limit_node returns
3256 * NULL if no other cgroup is present on
3257 * the tree
3258 */
3259 next_mz =
3260 __mem_cgroup_largest_soft_limit_node(mctz);
3261 if (next_mz == mz) {
3262 css_put(&next_mz->mem->css);
3263 next_mz = NULL;
3264 } else /* next_mz == NULL or other memcg */
3265 break;
3266 } while (1);
3267 }
4e416953 3268 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3269 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3270 /*
3271 * One school of thought says that we should not add
3272 * back the node to the tree if reclaim returns 0.
3273 * But our reclaim could return 0, simply because due
3274 * to priority we are exposing a smaller subset of
3275 * memory to reclaim from. Consider this as a longer
3276 * term TODO.
3277 */
ef8745c1
KH
3278 /* If excess == 0, no tree ops */
3279 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3280 spin_unlock(&mctz->lock);
3281 css_put(&mz->mem->css);
3282 loop++;
3283 /*
3284 * Could not reclaim anything and there are no more
3285 * mem cgroups to try or we seem to be looping without
3286 * reclaiming anything.
3287 */
3288 if (!nr_reclaimed &&
3289 (next_mz == NULL ||
3290 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3291 break;
3292 } while (!nr_reclaimed);
3293 if (next_mz)
3294 css_put(&next_mz->mem->css);
3295 return nr_reclaimed;
3296}
3297
cc847582
KH
3298/*
3299 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3300 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3301 */
f817ed48 3302static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3303 int node, int zid, enum lru_list lru)
cc847582 3304{
08e552c6
KH
3305 struct zone *zone;
3306 struct mem_cgroup_per_zone *mz;
f817ed48 3307 struct page_cgroup *pc, *busy;
08e552c6 3308 unsigned long flags, loop;
072c56c1 3309 struct list_head *list;
f817ed48 3310 int ret = 0;
072c56c1 3311
08e552c6
KH
3312 zone = &NODE_DATA(node)->node_zones[zid];
3313 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3314 list = &mz->lists[lru];
cc847582 3315
f817ed48
KH
3316 loop = MEM_CGROUP_ZSTAT(mz, lru);
3317 /* give some margin against EBUSY etc...*/
3318 loop += 256;
3319 busy = NULL;
3320 while (loop--) {
3321 ret = 0;
08e552c6 3322 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3323 if (list_empty(list)) {
08e552c6 3324 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3325 break;
f817ed48
KH
3326 }
3327 pc = list_entry(list->prev, struct page_cgroup, lru);
3328 if (busy == pc) {
3329 list_move(&pc->lru, list);
648bcc77 3330 busy = NULL;
08e552c6 3331 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3332 continue;
3333 }
08e552c6 3334 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3335
2c26fdd7 3336 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 3337 if (ret == -ENOMEM)
52d4b9ac 3338 break;
f817ed48
KH
3339
3340 if (ret == -EBUSY || ret == -EINVAL) {
3341 /* found lock contention or "pc" is obsolete. */
3342 busy = pc;
3343 cond_resched();
3344 } else
3345 busy = NULL;
cc847582 3346 }
08e552c6 3347
f817ed48
KH
3348 if (!ret && !list_empty(list))
3349 return -EBUSY;
3350 return ret;
cc847582
KH
3351}
3352
3353/*
3354 * make mem_cgroup's charge to be 0 if there is no task.
3355 * This enables deleting this mem_cgroup.
3356 */
c1e862c1 3357static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3358{
f817ed48
KH
3359 int ret;
3360 int node, zid, shrink;
3361 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3362 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3363
cc847582 3364 css_get(&mem->css);
f817ed48
KH
3365
3366 shrink = 0;
c1e862c1
KH
3367 /* should free all ? */
3368 if (free_all)
3369 goto try_to_free;
f817ed48 3370move_account:
fce66477 3371 do {
f817ed48 3372 ret = -EBUSY;
c1e862c1
KH
3373 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3374 goto out;
3375 ret = -EINTR;
3376 if (signal_pending(current))
cc847582 3377 goto out;
52d4b9ac
KH
3378 /* This is for making all *used* pages to be on LRU. */
3379 lru_add_drain_all();
cdec2e42 3380 drain_all_stock_sync();
f817ed48 3381 ret = 0;
32047e2a 3382 mem_cgroup_start_move(mem);
299b4eaa 3383 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3384 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3385 enum lru_list l;
f817ed48
KH
3386 for_each_lru(l) {
3387 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3388 node, zid, l);
f817ed48
KH
3389 if (ret)
3390 break;
3391 }
1ecaab2b 3392 }
f817ed48
KH
3393 if (ret)
3394 break;
3395 }
32047e2a 3396 mem_cgroup_end_move(mem);
3c11ecf4 3397 memcg_oom_recover(mem);
f817ed48
KH
3398 /* it seems parent cgroup doesn't have enough mem */
3399 if (ret == -ENOMEM)
3400 goto try_to_free;
52d4b9ac 3401 cond_resched();
fce66477
DN
3402 /* "ret" should also be checked to ensure all lists are empty. */
3403 } while (mem->res.usage > 0 || ret);
cc847582
KH
3404out:
3405 css_put(&mem->css);
3406 return ret;
f817ed48
KH
3407
3408try_to_free:
c1e862c1
KH
3409 /* returns EBUSY if there is a task or if we come here twice. */
3410 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3411 ret = -EBUSY;
3412 goto out;
3413 }
c1e862c1
KH
3414 /* we call try-to-free pages for make this cgroup empty */
3415 lru_add_drain_all();
f817ed48
KH
3416 /* try to free all pages in this cgroup */
3417 shrink = 1;
3418 while (nr_retries && mem->res.usage > 0) {
3419 int progress;
c1e862c1
KH
3420
3421 if (signal_pending(current)) {
3422 ret = -EINTR;
3423 goto out;
3424 }
a7885eb8
KM
3425 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3426 false, get_swappiness(mem));
c1e862c1 3427 if (!progress) {
f817ed48 3428 nr_retries--;
c1e862c1 3429 /* maybe some writeback is necessary */
8aa7e847 3430 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3431 }
f817ed48
KH
3432
3433 }
08e552c6 3434 lru_add_drain();
f817ed48 3435 /* try move_account...there may be some *locked* pages. */
fce66477 3436 goto move_account;
cc847582
KH
3437}
3438
c1e862c1
KH
3439int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3440{
3441 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3442}
3443
3444
18f59ea7
BS
3445static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3446{
3447 return mem_cgroup_from_cont(cont)->use_hierarchy;
3448}
3449
3450static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3451 u64 val)
3452{
3453 int retval = 0;
3454 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3455 struct cgroup *parent = cont->parent;
3456 struct mem_cgroup *parent_mem = NULL;
3457
3458 if (parent)
3459 parent_mem = mem_cgroup_from_cont(parent);
3460
3461 cgroup_lock();
3462 /*
af901ca1 3463 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3464 * in the child subtrees. If it is unset, then the change can
3465 * occur, provided the current cgroup has no children.
3466 *
3467 * For the root cgroup, parent_mem is NULL, we allow value to be
3468 * set if there are no children.
3469 */
3470 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3471 (val == 1 || val == 0)) {
3472 if (list_empty(&cont->children))
3473 mem->use_hierarchy = val;
3474 else
3475 retval = -EBUSY;
3476 } else
3477 retval = -EINVAL;
3478 cgroup_unlock();
3479
3480 return retval;
3481}
3482
0c3e73e8 3483
7d74b06f
KH
3484static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3485 enum mem_cgroup_stat_index idx)
0c3e73e8 3486{
7d74b06f
KH
3487 struct mem_cgroup *iter;
3488 s64 val = 0;
0c3e73e8 3489
7d74b06f
KH
3490 /* each per cpu's value can be minus.Then, use s64 */
3491 for_each_mem_cgroup_tree(iter, mem)
3492 val += mem_cgroup_read_stat(iter, idx);
3493
3494 if (val < 0) /* race ? */
3495 val = 0;
3496 return val;
0c3e73e8
BS
3497}
3498
104f3928
KS
3499static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3500{
7d74b06f 3501 u64 val;
104f3928
KS
3502
3503 if (!mem_cgroup_is_root(mem)) {
3504 if (!swap)
3505 return res_counter_read_u64(&mem->res, RES_USAGE);
3506 else
3507 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3508 }
3509
7d74b06f
KH
3510 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3511 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3512
7d74b06f
KH
3513 if (swap)
3514 val += mem_cgroup_get_recursive_idx_stat(mem,
3515 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3516
3517 return val << PAGE_SHIFT;
3518}
3519
2c3daa72 3520static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3521{
8c7c6e34 3522 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3523 u64 val;
8c7c6e34
KH
3524 int type, name;
3525
3526 type = MEMFILE_TYPE(cft->private);
3527 name = MEMFILE_ATTR(cft->private);
3528 switch (type) {
3529 case _MEM:
104f3928
KS
3530 if (name == RES_USAGE)
3531 val = mem_cgroup_usage(mem, false);
3532 else
0c3e73e8 3533 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3534 break;
3535 case _MEMSWAP:
104f3928
KS
3536 if (name == RES_USAGE)
3537 val = mem_cgroup_usage(mem, true);
3538 else
0c3e73e8 3539 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3540 break;
3541 default:
3542 BUG();
3543 break;
3544 }
3545 return val;
8cdea7c0 3546}
628f4235
KH
3547/*
3548 * The user of this function is...
3549 * RES_LIMIT.
3550 */
856c13aa
PM
3551static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3552 const char *buffer)
8cdea7c0 3553{
628f4235 3554 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3555 int type, name;
628f4235
KH
3556 unsigned long long val;
3557 int ret;
3558
8c7c6e34
KH
3559 type = MEMFILE_TYPE(cft->private);
3560 name = MEMFILE_ATTR(cft->private);
3561 switch (name) {
628f4235 3562 case RES_LIMIT:
4b3bde4c
BS
3563 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3564 ret = -EINVAL;
3565 break;
3566 }
628f4235
KH
3567 /* This function does all necessary parse...reuse it */
3568 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3569 if (ret)
3570 break;
3571 if (type == _MEM)
628f4235 3572 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3573 else
3574 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3575 break;
296c81d8
BS
3576 case RES_SOFT_LIMIT:
3577 ret = res_counter_memparse_write_strategy(buffer, &val);
3578 if (ret)
3579 break;
3580 /*
3581 * For memsw, soft limits are hard to implement in terms
3582 * of semantics, for now, we support soft limits for
3583 * control without swap
3584 */
3585 if (type == _MEM)
3586 ret = res_counter_set_soft_limit(&memcg->res, val);
3587 else
3588 ret = -EINVAL;
3589 break;
628f4235
KH
3590 default:
3591 ret = -EINVAL; /* should be BUG() ? */
3592 break;
3593 }
3594 return ret;
8cdea7c0
BS
3595}
3596
fee7b548
KH
3597static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3598 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3599{
3600 struct cgroup *cgroup;
3601 unsigned long long min_limit, min_memsw_limit, tmp;
3602
3603 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3604 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3605 cgroup = memcg->css.cgroup;
3606 if (!memcg->use_hierarchy)
3607 goto out;
3608
3609 while (cgroup->parent) {
3610 cgroup = cgroup->parent;
3611 memcg = mem_cgroup_from_cont(cgroup);
3612 if (!memcg->use_hierarchy)
3613 break;
3614 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3615 min_limit = min(min_limit, tmp);
3616 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3617 min_memsw_limit = min(min_memsw_limit, tmp);
3618 }
3619out:
3620 *mem_limit = min_limit;
3621 *memsw_limit = min_memsw_limit;
3622 return;
3623}
3624
29f2a4da 3625static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3626{
3627 struct mem_cgroup *mem;
8c7c6e34 3628 int type, name;
c84872e1
PE
3629
3630 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3631 type = MEMFILE_TYPE(event);
3632 name = MEMFILE_ATTR(event);
3633 switch (name) {
29f2a4da 3634 case RES_MAX_USAGE:
8c7c6e34
KH
3635 if (type == _MEM)
3636 res_counter_reset_max(&mem->res);
3637 else
3638 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3639 break;
3640 case RES_FAILCNT:
8c7c6e34
KH
3641 if (type == _MEM)
3642 res_counter_reset_failcnt(&mem->res);
3643 else
3644 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3645 break;
3646 }
f64c3f54 3647
85cc59db 3648 return 0;
c84872e1
PE
3649}
3650
7dc74be0
DN
3651static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3652 struct cftype *cft)
3653{
3654 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3655}
3656
02491447 3657#ifdef CONFIG_MMU
7dc74be0
DN
3658static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3659 struct cftype *cft, u64 val)
3660{
3661 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3662
3663 if (val >= (1 << NR_MOVE_TYPE))
3664 return -EINVAL;
3665 /*
3666 * We check this value several times in both in can_attach() and
3667 * attach(), so we need cgroup lock to prevent this value from being
3668 * inconsistent.
3669 */
3670 cgroup_lock();
3671 mem->move_charge_at_immigrate = val;
3672 cgroup_unlock();
3673
3674 return 0;
3675}
02491447
DN
3676#else
3677static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3678 struct cftype *cft, u64 val)
3679{
3680 return -ENOSYS;
3681}
3682#endif
7dc74be0 3683
14067bb3
KH
3684
3685/* For read statistics */
3686enum {
3687 MCS_CACHE,
3688 MCS_RSS,
d8046582 3689 MCS_FILE_MAPPED,
14067bb3
KH
3690 MCS_PGPGIN,
3691 MCS_PGPGOUT,
1dd3a273 3692 MCS_SWAP,
14067bb3
KH
3693 MCS_INACTIVE_ANON,
3694 MCS_ACTIVE_ANON,
3695 MCS_INACTIVE_FILE,
3696 MCS_ACTIVE_FILE,
3697 MCS_UNEVICTABLE,
3698 NR_MCS_STAT,
3699};
3700
3701struct mcs_total_stat {
3702 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3703};
3704
14067bb3
KH
3705struct {
3706 char *local_name;
3707 char *total_name;
3708} memcg_stat_strings[NR_MCS_STAT] = {
3709 {"cache", "total_cache"},
3710 {"rss", "total_rss"},
d69b042f 3711 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3712 {"pgpgin", "total_pgpgin"},
3713 {"pgpgout", "total_pgpgout"},
1dd3a273 3714 {"swap", "total_swap"},
14067bb3
KH
3715 {"inactive_anon", "total_inactive_anon"},
3716 {"active_anon", "total_active_anon"},
3717 {"inactive_file", "total_inactive_file"},
3718 {"active_file", "total_active_file"},
3719 {"unevictable", "total_unevictable"}
3720};
3721
3722
7d74b06f
KH
3723static void
3724mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3725{
14067bb3
KH
3726 s64 val;
3727
3728 /* per cpu stat */
c62b1a3b 3729 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3730 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3731 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3732 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3733 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3734 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3735 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3736 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3737 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3738 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3739 if (do_swap_account) {
c62b1a3b 3740 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3741 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3742 }
14067bb3
KH
3743
3744 /* per zone stat */
3745 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3746 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3747 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3748 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3749 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3750 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3751 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3752 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3753 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3754 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3755}
3756
3757static void
3758mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3759{
7d74b06f
KH
3760 struct mem_cgroup *iter;
3761
3762 for_each_mem_cgroup_tree(iter, mem)
3763 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3764}
3765
c64745cf
PM
3766static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3767 struct cgroup_map_cb *cb)
d2ceb9b7 3768{
d2ceb9b7 3769 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3770 struct mcs_total_stat mystat;
d2ceb9b7
KH
3771 int i;
3772
14067bb3
KH
3773 memset(&mystat, 0, sizeof(mystat));
3774 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3775
1dd3a273
DN
3776 for (i = 0; i < NR_MCS_STAT; i++) {
3777 if (i == MCS_SWAP && !do_swap_account)
3778 continue;
14067bb3 3779 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3780 }
7b854121 3781
14067bb3 3782 /* Hierarchical information */
fee7b548
KH
3783 {
3784 unsigned long long limit, memsw_limit;
3785 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3786 cb->fill(cb, "hierarchical_memory_limit", limit);
3787 if (do_swap_account)
3788 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3789 }
7f016ee8 3790
14067bb3
KH
3791 memset(&mystat, 0, sizeof(mystat));
3792 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3793 for (i = 0; i < NR_MCS_STAT; i++) {
3794 if (i == MCS_SWAP && !do_swap_account)
3795 continue;
14067bb3 3796 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3797 }
14067bb3 3798
7f016ee8 3799#ifdef CONFIG_DEBUG_VM
c772be93 3800 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3801
3802 {
3803 int nid, zid;
3804 struct mem_cgroup_per_zone *mz;
3805 unsigned long recent_rotated[2] = {0, 0};
3806 unsigned long recent_scanned[2] = {0, 0};
3807
3808 for_each_online_node(nid)
3809 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3810 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3811
3812 recent_rotated[0] +=
3813 mz->reclaim_stat.recent_rotated[0];
3814 recent_rotated[1] +=
3815 mz->reclaim_stat.recent_rotated[1];
3816 recent_scanned[0] +=
3817 mz->reclaim_stat.recent_scanned[0];
3818 recent_scanned[1] +=
3819 mz->reclaim_stat.recent_scanned[1];
3820 }
3821 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3822 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3823 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3824 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3825 }
3826#endif
3827
d2ceb9b7
KH
3828 return 0;
3829}
3830
a7885eb8
KM
3831static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3832{
3833 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3834
3835 return get_swappiness(memcg);
3836}
3837
3838static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3839 u64 val)
3840{
3841 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3842 struct mem_cgroup *parent;
068b38c1 3843
a7885eb8
KM
3844 if (val > 100)
3845 return -EINVAL;
3846
3847 if (cgrp->parent == NULL)
3848 return -EINVAL;
3849
3850 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3851
3852 cgroup_lock();
3853
a7885eb8
KM
3854 /* If under hierarchy, only empty-root can set this value */
3855 if ((parent->use_hierarchy) ||
068b38c1
LZ
3856 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3857 cgroup_unlock();
a7885eb8 3858 return -EINVAL;
068b38c1 3859 }
a7885eb8
KM
3860
3861 spin_lock(&memcg->reclaim_param_lock);
3862 memcg->swappiness = val;
3863 spin_unlock(&memcg->reclaim_param_lock);
3864
068b38c1
LZ
3865 cgroup_unlock();
3866
a7885eb8
KM
3867 return 0;
3868}
3869
2e72b634
KS
3870static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3871{
3872 struct mem_cgroup_threshold_ary *t;
3873 u64 usage;
3874 int i;
3875
3876 rcu_read_lock();
3877 if (!swap)
2c488db2 3878 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3879 else
2c488db2 3880 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3881
3882 if (!t)
3883 goto unlock;
3884
3885 usage = mem_cgroup_usage(memcg, swap);
3886
3887 /*
3888 * current_threshold points to threshold just below usage.
3889 * If it's not true, a threshold was crossed after last
3890 * call of __mem_cgroup_threshold().
3891 */
5407a562 3892 i = t->current_threshold;
2e72b634
KS
3893
3894 /*
3895 * Iterate backward over array of thresholds starting from
3896 * current_threshold and check if a threshold is crossed.
3897 * If none of thresholds below usage is crossed, we read
3898 * only one element of the array here.
3899 */
3900 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3901 eventfd_signal(t->entries[i].eventfd, 1);
3902
3903 /* i = current_threshold + 1 */
3904 i++;
3905
3906 /*
3907 * Iterate forward over array of thresholds starting from
3908 * current_threshold+1 and check if a threshold is crossed.
3909 * If none of thresholds above usage is crossed, we read
3910 * only one element of the array here.
3911 */
3912 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3913 eventfd_signal(t->entries[i].eventfd, 1);
3914
3915 /* Update current_threshold */
5407a562 3916 t->current_threshold = i - 1;
2e72b634
KS
3917unlock:
3918 rcu_read_unlock();
3919}
3920
3921static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3922{
ad4ca5f4
KS
3923 while (memcg) {
3924 __mem_cgroup_threshold(memcg, false);
3925 if (do_swap_account)
3926 __mem_cgroup_threshold(memcg, true);
3927
3928 memcg = parent_mem_cgroup(memcg);
3929 }
2e72b634
KS
3930}
3931
3932static int compare_thresholds(const void *a, const void *b)
3933{
3934 const struct mem_cgroup_threshold *_a = a;
3935 const struct mem_cgroup_threshold *_b = b;
3936
3937 return _a->threshold - _b->threshold;
3938}
3939
7d74b06f 3940static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3941{
3942 struct mem_cgroup_eventfd_list *ev;
3943
3944 list_for_each_entry(ev, &mem->oom_notify, list)
3945 eventfd_signal(ev->eventfd, 1);
3946 return 0;
3947}
3948
3949static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3950{
7d74b06f
KH
3951 struct mem_cgroup *iter;
3952
3953 for_each_mem_cgroup_tree(iter, mem)
3954 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3955}
3956
3957static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3958 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3959{
3960 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3961 struct mem_cgroup_thresholds *thresholds;
3962 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3963 int type = MEMFILE_TYPE(cft->private);
3964 u64 threshold, usage;
2c488db2 3965 int i, size, ret;
2e72b634
KS
3966
3967 ret = res_counter_memparse_write_strategy(args, &threshold);
3968 if (ret)
3969 return ret;
3970
3971 mutex_lock(&memcg->thresholds_lock);
2c488db2 3972
2e72b634 3973 if (type == _MEM)
2c488db2 3974 thresholds = &memcg->thresholds;
2e72b634 3975 else if (type == _MEMSWAP)
2c488db2 3976 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3977 else
3978 BUG();
3979
3980 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3981
3982 /* Check if a threshold crossed before adding a new one */
2c488db2 3983 if (thresholds->primary)
2e72b634
KS
3984 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3985
2c488db2 3986 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3987
3988 /* Allocate memory for new array of thresholds */
2c488db2 3989 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3990 GFP_KERNEL);
2c488db2 3991 if (!new) {
2e72b634
KS
3992 ret = -ENOMEM;
3993 goto unlock;
3994 }
2c488db2 3995 new->size = size;
2e72b634
KS
3996
3997 /* Copy thresholds (if any) to new array */
2c488db2
KS
3998 if (thresholds->primary) {
3999 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4000 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4001 }
4002
2e72b634 4003 /* Add new threshold */
2c488db2
KS
4004 new->entries[size - 1].eventfd = eventfd;
4005 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4006
4007 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4008 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4009 compare_thresholds, NULL);
4010
4011 /* Find current threshold */
2c488db2 4012 new->current_threshold = -1;
2e72b634 4013 for (i = 0; i < size; i++) {
2c488db2 4014 if (new->entries[i].threshold < usage) {
2e72b634 4015 /*
2c488db2
KS
4016 * new->current_threshold will not be used until
4017 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4018 * it here.
4019 */
2c488db2 4020 ++new->current_threshold;
2e72b634
KS
4021 }
4022 }
4023
2c488db2
KS
4024 /* Free old spare buffer and save old primary buffer as spare */
4025 kfree(thresholds->spare);
4026 thresholds->spare = thresholds->primary;
4027
4028 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4029
907860ed 4030 /* To be sure that nobody uses thresholds */
2e72b634
KS
4031 synchronize_rcu();
4032
2e72b634
KS
4033unlock:
4034 mutex_unlock(&memcg->thresholds_lock);
4035
4036 return ret;
4037}
4038
907860ed 4039static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4040 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4041{
4042 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4043 struct mem_cgroup_thresholds *thresholds;
4044 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4045 int type = MEMFILE_TYPE(cft->private);
4046 u64 usage;
2c488db2 4047 int i, j, size;
2e72b634
KS
4048
4049 mutex_lock(&memcg->thresholds_lock);
4050 if (type == _MEM)
2c488db2 4051 thresholds = &memcg->thresholds;
2e72b634 4052 else if (type == _MEMSWAP)
2c488db2 4053 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4054 else
4055 BUG();
4056
4057 /*
4058 * Something went wrong if we trying to unregister a threshold
4059 * if we don't have thresholds
4060 */
4061 BUG_ON(!thresholds);
4062
4063 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4064
4065 /* Check if a threshold crossed before removing */
4066 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4067
4068 /* Calculate new number of threshold */
2c488db2
KS
4069 size = 0;
4070 for (i = 0; i < thresholds->primary->size; i++) {
4071 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4072 size++;
4073 }
4074
2c488db2 4075 new = thresholds->spare;
907860ed 4076
2e72b634
KS
4077 /* Set thresholds array to NULL if we don't have thresholds */
4078 if (!size) {
2c488db2
KS
4079 kfree(new);
4080 new = NULL;
907860ed 4081 goto swap_buffers;
2e72b634
KS
4082 }
4083
2c488db2 4084 new->size = size;
2e72b634
KS
4085
4086 /* Copy thresholds and find current threshold */
2c488db2
KS
4087 new->current_threshold = -1;
4088 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4089 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4090 continue;
4091
2c488db2
KS
4092 new->entries[j] = thresholds->primary->entries[i];
4093 if (new->entries[j].threshold < usage) {
2e72b634 4094 /*
2c488db2 4095 * new->current_threshold will not be used
2e72b634
KS
4096 * until rcu_assign_pointer(), so it's safe to increment
4097 * it here.
4098 */
2c488db2 4099 ++new->current_threshold;
2e72b634
KS
4100 }
4101 j++;
4102 }
4103
907860ed 4104swap_buffers:
2c488db2
KS
4105 /* Swap primary and spare array */
4106 thresholds->spare = thresholds->primary;
4107 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4108
907860ed 4109 /* To be sure that nobody uses thresholds */
2e72b634
KS
4110 synchronize_rcu();
4111
2e72b634 4112 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4113}
c1e862c1 4114
9490ff27
KH
4115static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4116 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4117{
4118 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4119 struct mem_cgroup_eventfd_list *event;
4120 int type = MEMFILE_TYPE(cft->private);
4121
4122 BUG_ON(type != _OOM_TYPE);
4123 event = kmalloc(sizeof(*event), GFP_KERNEL);
4124 if (!event)
4125 return -ENOMEM;
4126
4127 mutex_lock(&memcg_oom_mutex);
4128
4129 event->eventfd = eventfd;
4130 list_add(&event->list, &memcg->oom_notify);
4131
4132 /* already in OOM ? */
4133 if (atomic_read(&memcg->oom_lock))
4134 eventfd_signal(eventfd, 1);
4135 mutex_unlock(&memcg_oom_mutex);
4136
4137 return 0;
4138}
4139
907860ed 4140static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4141 struct cftype *cft, struct eventfd_ctx *eventfd)
4142{
4143 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4144 struct mem_cgroup_eventfd_list *ev, *tmp;
4145 int type = MEMFILE_TYPE(cft->private);
4146
4147 BUG_ON(type != _OOM_TYPE);
4148
4149 mutex_lock(&memcg_oom_mutex);
4150
4151 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4152 if (ev->eventfd == eventfd) {
4153 list_del(&ev->list);
4154 kfree(ev);
4155 }
4156 }
4157
4158 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4159}
4160
3c11ecf4
KH
4161static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4162 struct cftype *cft, struct cgroup_map_cb *cb)
4163{
4164 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4165
4166 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4167
4168 if (atomic_read(&mem->oom_lock))
4169 cb->fill(cb, "under_oom", 1);
4170 else
4171 cb->fill(cb, "under_oom", 0);
4172 return 0;
4173}
4174
3c11ecf4
KH
4175static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4176 struct cftype *cft, u64 val)
4177{
4178 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4179 struct mem_cgroup *parent;
4180
4181 /* cannot set to root cgroup and only 0 and 1 are allowed */
4182 if (!cgrp->parent || !((val == 0) || (val == 1)))
4183 return -EINVAL;
4184
4185 parent = mem_cgroup_from_cont(cgrp->parent);
4186
4187 cgroup_lock();
4188 /* oom-kill-disable is a flag for subhierarchy. */
4189 if ((parent->use_hierarchy) ||
4190 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4191 cgroup_unlock();
4192 return -EINVAL;
4193 }
4194 mem->oom_kill_disable = val;
4d845ebf
KH
4195 if (!val)
4196 memcg_oom_recover(mem);
3c11ecf4
KH
4197 cgroup_unlock();
4198 return 0;
4199}
4200
8cdea7c0
BS
4201static struct cftype mem_cgroup_files[] = {
4202 {
0eea1030 4203 .name = "usage_in_bytes",
8c7c6e34 4204 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4205 .read_u64 = mem_cgroup_read,
9490ff27
KH
4206 .register_event = mem_cgroup_usage_register_event,
4207 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4208 },
c84872e1
PE
4209 {
4210 .name = "max_usage_in_bytes",
8c7c6e34 4211 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4212 .trigger = mem_cgroup_reset,
c84872e1
PE
4213 .read_u64 = mem_cgroup_read,
4214 },
8cdea7c0 4215 {
0eea1030 4216 .name = "limit_in_bytes",
8c7c6e34 4217 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4218 .write_string = mem_cgroup_write,
2c3daa72 4219 .read_u64 = mem_cgroup_read,
8cdea7c0 4220 },
296c81d8
BS
4221 {
4222 .name = "soft_limit_in_bytes",
4223 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4224 .write_string = mem_cgroup_write,
4225 .read_u64 = mem_cgroup_read,
4226 },
8cdea7c0
BS
4227 {
4228 .name = "failcnt",
8c7c6e34 4229 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4230 .trigger = mem_cgroup_reset,
2c3daa72 4231 .read_u64 = mem_cgroup_read,
8cdea7c0 4232 },
d2ceb9b7
KH
4233 {
4234 .name = "stat",
c64745cf 4235 .read_map = mem_control_stat_show,
d2ceb9b7 4236 },
c1e862c1
KH
4237 {
4238 .name = "force_empty",
4239 .trigger = mem_cgroup_force_empty_write,
4240 },
18f59ea7
BS
4241 {
4242 .name = "use_hierarchy",
4243 .write_u64 = mem_cgroup_hierarchy_write,
4244 .read_u64 = mem_cgroup_hierarchy_read,
4245 },
a7885eb8
KM
4246 {
4247 .name = "swappiness",
4248 .read_u64 = mem_cgroup_swappiness_read,
4249 .write_u64 = mem_cgroup_swappiness_write,
4250 },
7dc74be0
DN
4251 {
4252 .name = "move_charge_at_immigrate",
4253 .read_u64 = mem_cgroup_move_charge_read,
4254 .write_u64 = mem_cgroup_move_charge_write,
4255 },
9490ff27
KH
4256 {
4257 .name = "oom_control",
3c11ecf4
KH
4258 .read_map = mem_cgroup_oom_control_read,
4259 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4260 .register_event = mem_cgroup_oom_register_event,
4261 .unregister_event = mem_cgroup_oom_unregister_event,
4262 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4263 },
8cdea7c0
BS
4264};
4265
8c7c6e34
KH
4266#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4267static struct cftype memsw_cgroup_files[] = {
4268 {
4269 .name = "memsw.usage_in_bytes",
4270 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4271 .read_u64 = mem_cgroup_read,
9490ff27
KH
4272 .register_event = mem_cgroup_usage_register_event,
4273 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4274 },
4275 {
4276 .name = "memsw.max_usage_in_bytes",
4277 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4278 .trigger = mem_cgroup_reset,
4279 .read_u64 = mem_cgroup_read,
4280 },
4281 {
4282 .name = "memsw.limit_in_bytes",
4283 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4284 .write_string = mem_cgroup_write,
4285 .read_u64 = mem_cgroup_read,
4286 },
4287 {
4288 .name = "memsw.failcnt",
4289 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4290 .trigger = mem_cgroup_reset,
4291 .read_u64 = mem_cgroup_read,
4292 },
4293};
4294
4295static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4296{
4297 if (!do_swap_account)
4298 return 0;
4299 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4300 ARRAY_SIZE(memsw_cgroup_files));
4301};
4302#else
4303static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4304{
4305 return 0;
4306}
4307#endif
4308
6d12e2d8
KH
4309static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4310{
4311 struct mem_cgroup_per_node *pn;
1ecaab2b 4312 struct mem_cgroup_per_zone *mz;
b69408e8 4313 enum lru_list l;
41e3355d 4314 int zone, tmp = node;
1ecaab2b
KH
4315 /*
4316 * This routine is called against possible nodes.
4317 * But it's BUG to call kmalloc() against offline node.
4318 *
4319 * TODO: this routine can waste much memory for nodes which will
4320 * never be onlined. It's better to use memory hotplug callback
4321 * function.
4322 */
41e3355d
KH
4323 if (!node_state(node, N_NORMAL_MEMORY))
4324 tmp = -1;
17295c88 4325 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4326 if (!pn)
4327 return 1;
1ecaab2b 4328
6d12e2d8 4329 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4330 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4331 mz = &pn->zoneinfo[zone];
b69408e8
CL
4332 for_each_lru(l)
4333 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4334 mz->usage_in_excess = 0;
4e416953
BS
4335 mz->on_tree = false;
4336 mz->mem = mem;
1ecaab2b 4337 }
6d12e2d8
KH
4338 return 0;
4339}
4340
1ecaab2b
KH
4341static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4342{
4343 kfree(mem->info.nodeinfo[node]);
4344}
4345
33327948
KH
4346static struct mem_cgroup *mem_cgroup_alloc(void)
4347{
4348 struct mem_cgroup *mem;
c62b1a3b 4349 int size = sizeof(struct mem_cgroup);
33327948 4350
c62b1a3b 4351 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4352 if (size < PAGE_SIZE)
17295c88 4353 mem = kzalloc(size, GFP_KERNEL);
33327948 4354 else
17295c88 4355 mem = vzalloc(size);
33327948 4356
e7bbcdf3
DC
4357 if (!mem)
4358 return NULL;
4359
c62b1a3b 4360 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4361 if (!mem->stat)
4362 goto out_free;
711d3d2c 4363 spin_lock_init(&mem->pcp_counter_lock);
33327948 4364 return mem;
d2e61b8d
DC
4365
4366out_free:
4367 if (size < PAGE_SIZE)
4368 kfree(mem);
4369 else
4370 vfree(mem);
4371 return NULL;
33327948
KH
4372}
4373
8c7c6e34
KH
4374/*
4375 * At destroying mem_cgroup, references from swap_cgroup can remain.
4376 * (scanning all at force_empty is too costly...)
4377 *
4378 * Instead of clearing all references at force_empty, we remember
4379 * the number of reference from swap_cgroup and free mem_cgroup when
4380 * it goes down to 0.
4381 *
8c7c6e34
KH
4382 * Removal of cgroup itself succeeds regardless of refs from swap.
4383 */
4384
a7ba0eef 4385static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4386{
08e552c6
KH
4387 int node;
4388
f64c3f54 4389 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4390 free_css_id(&mem_cgroup_subsys, &mem->css);
4391
08e552c6
KH
4392 for_each_node_state(node, N_POSSIBLE)
4393 free_mem_cgroup_per_zone_info(mem, node);
4394
c62b1a3b
KH
4395 free_percpu(mem->stat);
4396 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4397 kfree(mem);
4398 else
4399 vfree(mem);
4400}
4401
8c7c6e34
KH
4402static void mem_cgroup_get(struct mem_cgroup *mem)
4403{
4404 atomic_inc(&mem->refcnt);
4405}
4406
483c30b5 4407static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4408{
483c30b5 4409 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4410 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4411 __mem_cgroup_free(mem);
7bcc1bb1
DN
4412 if (parent)
4413 mem_cgroup_put(parent);
4414 }
8c7c6e34
KH
4415}
4416
483c30b5
DN
4417static void mem_cgroup_put(struct mem_cgroup *mem)
4418{
4419 __mem_cgroup_put(mem, 1);
4420}
4421
7bcc1bb1
DN
4422/*
4423 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4424 */
4425static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4426{
4427 if (!mem->res.parent)
4428 return NULL;
4429 return mem_cgroup_from_res_counter(mem->res.parent, res);
4430}
33327948 4431
c077719b
KH
4432#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4433static void __init enable_swap_cgroup(void)
4434{
f8d66542 4435 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4436 do_swap_account = 1;
4437}
4438#else
4439static void __init enable_swap_cgroup(void)
4440{
4441}
4442#endif
4443
f64c3f54
BS
4444static int mem_cgroup_soft_limit_tree_init(void)
4445{
4446 struct mem_cgroup_tree_per_node *rtpn;
4447 struct mem_cgroup_tree_per_zone *rtpz;
4448 int tmp, node, zone;
4449
4450 for_each_node_state(node, N_POSSIBLE) {
4451 tmp = node;
4452 if (!node_state(node, N_NORMAL_MEMORY))
4453 tmp = -1;
4454 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4455 if (!rtpn)
4456 return 1;
4457
4458 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4459
4460 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4461 rtpz = &rtpn->rb_tree_per_zone[zone];
4462 rtpz->rb_root = RB_ROOT;
4463 spin_lock_init(&rtpz->lock);
4464 }
4465 }
4466 return 0;
4467}
4468
0eb253e2 4469static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4470mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4471{
28dbc4b6 4472 struct mem_cgroup *mem, *parent;
04046e1a 4473 long error = -ENOMEM;
6d12e2d8 4474 int node;
8cdea7c0 4475
c8dad2bb
JB
4476 mem = mem_cgroup_alloc();
4477 if (!mem)
04046e1a 4478 return ERR_PTR(error);
78fb7466 4479
6d12e2d8
KH
4480 for_each_node_state(node, N_POSSIBLE)
4481 if (alloc_mem_cgroup_per_zone_info(mem, node))
4482 goto free_out;
f64c3f54 4483
c077719b 4484 /* root ? */
28dbc4b6 4485 if (cont->parent == NULL) {
cdec2e42 4486 int cpu;
c077719b 4487 enable_swap_cgroup();
28dbc4b6 4488 parent = NULL;
4b3bde4c 4489 root_mem_cgroup = mem;
f64c3f54
BS
4490 if (mem_cgroup_soft_limit_tree_init())
4491 goto free_out;
cdec2e42
KH
4492 for_each_possible_cpu(cpu) {
4493 struct memcg_stock_pcp *stock =
4494 &per_cpu(memcg_stock, cpu);
4495 INIT_WORK(&stock->work, drain_local_stock);
4496 }
711d3d2c 4497 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4498 } else {
28dbc4b6 4499 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4500 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4501 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4502 }
28dbc4b6 4503
18f59ea7
BS
4504 if (parent && parent->use_hierarchy) {
4505 res_counter_init(&mem->res, &parent->res);
4506 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4507 /*
4508 * We increment refcnt of the parent to ensure that we can
4509 * safely access it on res_counter_charge/uncharge.
4510 * This refcnt will be decremented when freeing this
4511 * mem_cgroup(see mem_cgroup_put).
4512 */
4513 mem_cgroup_get(parent);
18f59ea7
BS
4514 } else {
4515 res_counter_init(&mem->res, NULL);
4516 res_counter_init(&mem->memsw, NULL);
4517 }
04046e1a 4518 mem->last_scanned_child = 0;
2733c06a 4519 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4520 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4521
a7885eb8
KM
4522 if (parent)
4523 mem->swappiness = get_swappiness(parent);
a7ba0eef 4524 atomic_set(&mem->refcnt, 1);
7dc74be0 4525 mem->move_charge_at_immigrate = 0;
2e72b634 4526 mutex_init(&mem->thresholds_lock);
8cdea7c0 4527 return &mem->css;
6d12e2d8 4528free_out:
a7ba0eef 4529 __mem_cgroup_free(mem);
4b3bde4c 4530 root_mem_cgroup = NULL;
04046e1a 4531 return ERR_PTR(error);
8cdea7c0
BS
4532}
4533
ec64f515 4534static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4535 struct cgroup *cont)
4536{
4537 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4538
4539 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4540}
4541
8cdea7c0
BS
4542static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4543 struct cgroup *cont)
4544{
c268e994 4545 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4546
c268e994 4547 mem_cgroup_put(mem);
8cdea7c0
BS
4548}
4549
4550static int mem_cgroup_populate(struct cgroup_subsys *ss,
4551 struct cgroup *cont)
4552{
8c7c6e34
KH
4553 int ret;
4554
4555 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4556 ARRAY_SIZE(mem_cgroup_files));
4557
4558 if (!ret)
4559 ret = register_memsw_files(cont, ss);
4560 return ret;
8cdea7c0
BS
4561}
4562
02491447 4563#ifdef CONFIG_MMU
7dc74be0 4564/* Handlers for move charge at task migration. */
854ffa8d
DN
4565#define PRECHARGE_COUNT_AT_ONCE 256
4566static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4567{
854ffa8d
DN
4568 int ret = 0;
4569 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4570 struct mem_cgroup *mem = mc.to;
4571
854ffa8d
DN
4572 if (mem_cgroup_is_root(mem)) {
4573 mc.precharge += count;
4574 /* we don't need css_get for root */
4575 return ret;
4576 }
4577 /* try to charge at once */
4578 if (count > 1) {
4579 struct res_counter *dummy;
4580 /*
4581 * "mem" cannot be under rmdir() because we've already checked
4582 * by cgroup_lock_live_cgroup() that it is not removed and we
4583 * are still under the same cgroup_mutex. So we can postpone
4584 * css_get().
4585 */
4586 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4587 goto one_by_one;
4588 if (do_swap_account && res_counter_charge(&mem->memsw,
4589 PAGE_SIZE * count, &dummy)) {
4590 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4591 goto one_by_one;
4592 }
4593 mc.precharge += count;
854ffa8d
DN
4594 return ret;
4595 }
4596one_by_one:
4597 /* fall back to one by one charge */
4598 while (count--) {
4599 if (signal_pending(current)) {
4600 ret = -EINTR;
4601 break;
4602 }
4603 if (!batch_count--) {
4604 batch_count = PRECHARGE_COUNT_AT_ONCE;
4605 cond_resched();
4606 }
ec168510
AA
4607 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4608 PAGE_SIZE);
854ffa8d
DN
4609 if (ret || !mem)
4610 /* mem_cgroup_clear_mc() will do uncharge later */
4611 return -ENOMEM;
4612 mc.precharge++;
4613 }
4ffef5fe
DN
4614 return ret;
4615}
4616
4617/**
4618 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4619 * @vma: the vma the pte to be checked belongs
4620 * @addr: the address corresponding to the pte to be checked
4621 * @ptent: the pte to be checked
02491447 4622 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4623 *
4624 * Returns
4625 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4626 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4627 * move charge. if @target is not NULL, the page is stored in target->page
4628 * with extra refcnt got(Callers should handle it).
02491447
DN
4629 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4630 * target for charge migration. if @target is not NULL, the entry is stored
4631 * in target->ent.
4ffef5fe
DN
4632 *
4633 * Called with pte lock held.
4634 */
4ffef5fe
DN
4635union mc_target {
4636 struct page *page;
02491447 4637 swp_entry_t ent;
4ffef5fe
DN
4638};
4639
4ffef5fe
DN
4640enum mc_target_type {
4641 MC_TARGET_NONE, /* not used */
4642 MC_TARGET_PAGE,
02491447 4643 MC_TARGET_SWAP,
4ffef5fe
DN
4644};
4645
90254a65
DN
4646static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4647 unsigned long addr, pte_t ptent)
4ffef5fe 4648{
90254a65 4649 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4650
90254a65
DN
4651 if (!page || !page_mapped(page))
4652 return NULL;
4653 if (PageAnon(page)) {
4654 /* we don't move shared anon */
4655 if (!move_anon() || page_mapcount(page) > 2)
4656 return NULL;
87946a72
DN
4657 } else if (!move_file())
4658 /* we ignore mapcount for file pages */
90254a65
DN
4659 return NULL;
4660 if (!get_page_unless_zero(page))
4661 return NULL;
4662
4663 return page;
4664}
4665
4666static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4667 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4668{
4669 int usage_count;
4670 struct page *page = NULL;
4671 swp_entry_t ent = pte_to_swp_entry(ptent);
4672
4673 if (!move_anon() || non_swap_entry(ent))
4674 return NULL;
4675 usage_count = mem_cgroup_count_swap_user(ent, &page);
4676 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4677 if (page)
4678 put_page(page);
90254a65 4679 return NULL;
02491447 4680 }
90254a65
DN
4681 if (do_swap_account)
4682 entry->val = ent.val;
4683
4684 return page;
4685}
4686
87946a72
DN
4687static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4688 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4689{
4690 struct page *page = NULL;
4691 struct inode *inode;
4692 struct address_space *mapping;
4693 pgoff_t pgoff;
4694
4695 if (!vma->vm_file) /* anonymous vma */
4696 return NULL;
4697 if (!move_file())
4698 return NULL;
4699
4700 inode = vma->vm_file->f_path.dentry->d_inode;
4701 mapping = vma->vm_file->f_mapping;
4702 if (pte_none(ptent))
4703 pgoff = linear_page_index(vma, addr);
4704 else /* pte_file(ptent) is true */
4705 pgoff = pte_to_pgoff(ptent);
4706
4707 /* page is moved even if it's not RSS of this task(page-faulted). */
4708 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4709 page = find_get_page(mapping, pgoff);
4710 } else { /* shmem/tmpfs file. we should take account of swap too. */
4711 swp_entry_t ent;
4712 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4713 if (do_swap_account)
4714 entry->val = ent.val;
4715 }
4716
4717 return page;
4718}
4719
90254a65
DN
4720static int is_target_pte_for_mc(struct vm_area_struct *vma,
4721 unsigned long addr, pte_t ptent, union mc_target *target)
4722{
4723 struct page *page = NULL;
4724 struct page_cgroup *pc;
4725 int ret = 0;
4726 swp_entry_t ent = { .val = 0 };
4727
4728 if (pte_present(ptent))
4729 page = mc_handle_present_pte(vma, addr, ptent);
4730 else if (is_swap_pte(ptent))
4731 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4732 else if (pte_none(ptent) || pte_file(ptent))
4733 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4734
4735 if (!page && !ent.val)
4736 return 0;
02491447
DN
4737 if (page) {
4738 pc = lookup_page_cgroup(page);
4739 /*
4740 * Do only loose check w/o page_cgroup lock.
4741 * mem_cgroup_move_account() checks the pc is valid or not under
4742 * the lock.
4743 */
4744 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4745 ret = MC_TARGET_PAGE;
4746 if (target)
4747 target->page = page;
4748 }
4749 if (!ret || !target)
4750 put_page(page);
4751 }
90254a65
DN
4752 /* There is a swap entry and a page doesn't exist or isn't charged */
4753 if (ent.val && !ret &&
7f0f1546
KH
4754 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4755 ret = MC_TARGET_SWAP;
4756 if (target)
4757 target->ent = ent;
4ffef5fe 4758 }
4ffef5fe
DN
4759 return ret;
4760}
4761
4762static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4763 unsigned long addr, unsigned long end,
4764 struct mm_walk *walk)
4765{
4766 struct vm_area_struct *vma = walk->private;
4767 pte_t *pte;
4768 spinlock_t *ptl;
4769
03319327
DH
4770 split_huge_page_pmd(walk->mm, pmd);
4771
4ffef5fe
DN
4772 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4773 for (; addr != end; pte++, addr += PAGE_SIZE)
4774 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4775 mc.precharge++; /* increment precharge temporarily */
4776 pte_unmap_unlock(pte - 1, ptl);
4777 cond_resched();
4778
7dc74be0
DN
4779 return 0;
4780}
4781
4ffef5fe
DN
4782static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4783{
4784 unsigned long precharge;
4785 struct vm_area_struct *vma;
4786
dfe076b0 4787 down_read(&mm->mmap_sem);
4ffef5fe
DN
4788 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4789 struct mm_walk mem_cgroup_count_precharge_walk = {
4790 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4791 .mm = mm,
4792 .private = vma,
4793 };
4794 if (is_vm_hugetlb_page(vma))
4795 continue;
4ffef5fe
DN
4796 walk_page_range(vma->vm_start, vma->vm_end,
4797 &mem_cgroup_count_precharge_walk);
4798 }
dfe076b0 4799 up_read(&mm->mmap_sem);
4ffef5fe
DN
4800
4801 precharge = mc.precharge;
4802 mc.precharge = 0;
4803
4804 return precharge;
4805}
4806
4ffef5fe
DN
4807static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4808{
dfe076b0
DN
4809 unsigned long precharge = mem_cgroup_count_precharge(mm);
4810
4811 VM_BUG_ON(mc.moving_task);
4812 mc.moving_task = current;
4813 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4814}
4815
dfe076b0
DN
4816/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4817static void __mem_cgroup_clear_mc(void)
4ffef5fe 4818{
2bd9bb20
KH
4819 struct mem_cgroup *from = mc.from;
4820 struct mem_cgroup *to = mc.to;
4821
4ffef5fe 4822 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4823 if (mc.precharge) {
4824 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4825 mc.precharge = 0;
4826 }
4827 /*
4828 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4829 * we must uncharge here.
4830 */
4831 if (mc.moved_charge) {
4832 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4833 mc.moved_charge = 0;
4ffef5fe 4834 }
483c30b5
DN
4835 /* we must fixup refcnts and charges */
4836 if (mc.moved_swap) {
483c30b5
DN
4837 /* uncharge swap account from the old cgroup */
4838 if (!mem_cgroup_is_root(mc.from))
4839 res_counter_uncharge(&mc.from->memsw,
4840 PAGE_SIZE * mc.moved_swap);
4841 __mem_cgroup_put(mc.from, mc.moved_swap);
4842
4843 if (!mem_cgroup_is_root(mc.to)) {
4844 /*
4845 * we charged both to->res and to->memsw, so we should
4846 * uncharge to->res.
4847 */
4848 res_counter_uncharge(&mc.to->res,
4849 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4850 }
4851 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
4852 mc.moved_swap = 0;
4853 }
dfe076b0
DN
4854 memcg_oom_recover(from);
4855 memcg_oom_recover(to);
4856 wake_up_all(&mc.waitq);
4857}
4858
4859static void mem_cgroup_clear_mc(void)
4860{
4861 struct mem_cgroup *from = mc.from;
4862
4863 /*
4864 * we must clear moving_task before waking up waiters at the end of
4865 * task migration.
4866 */
4867 mc.moving_task = NULL;
4868 __mem_cgroup_clear_mc();
2bd9bb20 4869 spin_lock(&mc.lock);
4ffef5fe
DN
4870 mc.from = NULL;
4871 mc.to = NULL;
2bd9bb20 4872 spin_unlock(&mc.lock);
32047e2a 4873 mem_cgroup_end_move(from);
4ffef5fe
DN
4874}
4875
7dc74be0
DN
4876static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4877 struct cgroup *cgroup,
4878 struct task_struct *p,
4879 bool threadgroup)
4880{
4881 int ret = 0;
4882 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4883
4884 if (mem->move_charge_at_immigrate) {
4885 struct mm_struct *mm;
4886 struct mem_cgroup *from = mem_cgroup_from_task(p);
4887
4888 VM_BUG_ON(from == mem);
4889
4890 mm = get_task_mm(p);
4891 if (!mm)
4892 return 0;
7dc74be0 4893 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4894 if (mm->owner == p) {
4895 VM_BUG_ON(mc.from);
4896 VM_BUG_ON(mc.to);
4897 VM_BUG_ON(mc.precharge);
854ffa8d 4898 VM_BUG_ON(mc.moved_charge);
483c30b5 4899 VM_BUG_ON(mc.moved_swap);
32047e2a 4900 mem_cgroup_start_move(from);
2bd9bb20 4901 spin_lock(&mc.lock);
4ffef5fe
DN
4902 mc.from = from;
4903 mc.to = mem;
2bd9bb20 4904 spin_unlock(&mc.lock);
dfe076b0 4905 /* We set mc.moving_task later */
4ffef5fe
DN
4906
4907 ret = mem_cgroup_precharge_mc(mm);
4908 if (ret)
4909 mem_cgroup_clear_mc();
dfe076b0
DN
4910 }
4911 mmput(mm);
7dc74be0
DN
4912 }
4913 return ret;
4914}
4915
4916static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4917 struct cgroup *cgroup,
4918 struct task_struct *p,
4919 bool threadgroup)
4920{
4ffef5fe 4921 mem_cgroup_clear_mc();
7dc74be0
DN
4922}
4923
4ffef5fe
DN
4924static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4925 unsigned long addr, unsigned long end,
4926 struct mm_walk *walk)
7dc74be0 4927{
4ffef5fe
DN
4928 int ret = 0;
4929 struct vm_area_struct *vma = walk->private;
4930 pte_t *pte;
4931 spinlock_t *ptl;
4932
03319327 4933 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
4934retry:
4935 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4936 for (; addr != end; addr += PAGE_SIZE) {
4937 pte_t ptent = *(pte++);
4938 union mc_target target;
4939 int type;
4940 struct page *page;
4941 struct page_cgroup *pc;
02491447 4942 swp_entry_t ent;
4ffef5fe
DN
4943
4944 if (!mc.precharge)
4945 break;
4946
4947 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4948 switch (type) {
4949 case MC_TARGET_PAGE:
4950 page = target.page;
4951 if (isolate_lru_page(page))
4952 goto put;
4953 pc = lookup_page_cgroup(page);
854ffa8d 4954 if (!mem_cgroup_move_account(pc,
987eba66 4955 mc.from, mc.to, false, PAGE_SIZE)) {
4ffef5fe 4956 mc.precharge--;
854ffa8d
DN
4957 /* we uncharge from mc.from later. */
4958 mc.moved_charge++;
4ffef5fe
DN
4959 }
4960 putback_lru_page(page);
4961put: /* is_target_pte_for_mc() gets the page */
4962 put_page(page);
4963 break;
02491447
DN
4964 case MC_TARGET_SWAP:
4965 ent = target.ent;
483c30b5
DN
4966 if (!mem_cgroup_move_swap_account(ent,
4967 mc.from, mc.to, false)) {
02491447 4968 mc.precharge--;
483c30b5
DN
4969 /* we fixup refcnts and charges later. */
4970 mc.moved_swap++;
4971 }
02491447 4972 break;
4ffef5fe
DN
4973 default:
4974 break;
4975 }
4976 }
4977 pte_unmap_unlock(pte - 1, ptl);
4978 cond_resched();
4979
4980 if (addr != end) {
4981 /*
4982 * We have consumed all precharges we got in can_attach().
4983 * We try charge one by one, but don't do any additional
4984 * charges to mc.to if we have failed in charge once in attach()
4985 * phase.
4986 */
854ffa8d 4987 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4988 if (!ret)
4989 goto retry;
4990 }
4991
4992 return ret;
4993}
4994
4995static void mem_cgroup_move_charge(struct mm_struct *mm)
4996{
4997 struct vm_area_struct *vma;
4998
4999 lru_add_drain_all();
dfe076b0
DN
5000retry:
5001 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5002 /*
5003 * Someone who are holding the mmap_sem might be waiting in
5004 * waitq. So we cancel all extra charges, wake up all waiters,
5005 * and retry. Because we cancel precharges, we might not be able
5006 * to move enough charges, but moving charge is a best-effort
5007 * feature anyway, so it wouldn't be a big problem.
5008 */
5009 __mem_cgroup_clear_mc();
5010 cond_resched();
5011 goto retry;
5012 }
4ffef5fe
DN
5013 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5014 int ret;
5015 struct mm_walk mem_cgroup_move_charge_walk = {
5016 .pmd_entry = mem_cgroup_move_charge_pte_range,
5017 .mm = mm,
5018 .private = vma,
5019 };
5020 if (is_vm_hugetlb_page(vma))
5021 continue;
4ffef5fe
DN
5022 ret = walk_page_range(vma->vm_start, vma->vm_end,
5023 &mem_cgroup_move_charge_walk);
5024 if (ret)
5025 /*
5026 * means we have consumed all precharges and failed in
5027 * doing additional charge. Just abandon here.
5028 */
5029 break;
5030 }
dfe076b0 5031 up_read(&mm->mmap_sem);
7dc74be0
DN
5032}
5033
67e465a7
BS
5034static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5035 struct cgroup *cont,
5036 struct cgroup *old_cont,
be367d09
BB
5037 struct task_struct *p,
5038 bool threadgroup)
67e465a7 5039{
dfe076b0
DN
5040 struct mm_struct *mm;
5041
5042 if (!mc.to)
4ffef5fe
DN
5043 /* no need to move charge */
5044 return;
5045
dfe076b0
DN
5046 mm = get_task_mm(p);
5047 if (mm) {
5048 mem_cgroup_move_charge(mm);
5049 mmput(mm);
5050 }
4ffef5fe 5051 mem_cgroup_clear_mc();
67e465a7 5052}
5cfb80a7
DN
5053#else /* !CONFIG_MMU */
5054static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5055 struct cgroup *cgroup,
5056 struct task_struct *p,
5057 bool threadgroup)
5058{
5059 return 0;
5060}
5061static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5062 struct cgroup *cgroup,
5063 struct task_struct *p,
5064 bool threadgroup)
5065{
5066}
5067static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5068 struct cgroup *cont,
5069 struct cgroup *old_cont,
5070 struct task_struct *p,
5071 bool threadgroup)
5072{
5073}
5074#endif
67e465a7 5075
8cdea7c0
BS
5076struct cgroup_subsys mem_cgroup_subsys = {
5077 .name = "memory",
5078 .subsys_id = mem_cgroup_subsys_id,
5079 .create = mem_cgroup_create,
df878fb0 5080 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5081 .destroy = mem_cgroup_destroy,
5082 .populate = mem_cgroup_populate,
7dc74be0
DN
5083 .can_attach = mem_cgroup_can_attach,
5084 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5085 .attach = mem_cgroup_move_task,
6d12e2d8 5086 .early_init = 0,
04046e1a 5087 .use_id = 1,
8cdea7c0 5088};
c077719b
KH
5089
5090#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5091static int __init enable_swap_account(char *s)
5092{
5093 /* consider enabled if no parameter or 1 is given */
fceda1bf 5094 if (!(*s) || !strcmp(s, "=1"))
a42c390c 5095 really_do_swap_account = 1;
fceda1bf 5096 else if (!strcmp(s, "=0"))
a42c390c
MH
5097 really_do_swap_account = 0;
5098 return 1;
5099}
5100__setup("swapaccount", enable_swap_account);
c077719b
KH
5101
5102static int __init disable_swap_account(char *s)
5103{
552b372b 5104 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
fceda1bf 5105 enable_swap_account("=0");
c077719b
KH
5106 return 1;
5107}
5108__setup("noswapaccount", disable_swap_account);
5109#endif