mm/damon/core-test: add a test for damon_set_attrs()
[linux-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
6a792697 66#include <linux/sched/isolation.h>
08e552c6 67#include "internal.h"
d1a4c0b3 68#include <net/sock.h>
4bd2c1ee 69#include <net/ip.h>
f35c3a8e 70#include "slab.h"
014bb1de 71#include "swap.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
37d5985c
RG
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 85
f7e1cb6e 86/* Socket memory accounting disabled? */
0f0cace3 87static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 88
04823c83 89/* Kernel memory accounting disabled? */
17c17367 90static bool cgroup_memory_nokmem __ro_after_init;
04823c83 91
b6c1a8af
YS
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
b25806dc 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
510fc4e1 210 _KMEM,
d55f90bf 211 _TCP,
86ae53e1
GC
212};
213
a0db00fc
KS
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
a4ebf1b6 233static inline bool task_is_dying(void)
7775face
TH
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
9647875b 247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 248{
9647875b 249 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
250}
251
84c07d11 252#ifdef CONFIG_MEMCG_KMEM
0764db9b 253static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 254
4d5c8aed
RG
255bool mem_cgroup_kmem_disabled(void)
256{
257 return cgroup_memory_nokmem;
258}
259
f1286fae
MS
260static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
c1a660de 262
bf4f0599
RG
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
bf4f0599 294 if (nr_pages)
f1286fae 295 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 296
0764db9b 297 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 298 list_del(&objcg->list);
0764db9b 299 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303}
304
305static struct obj_cgroup *obj_cgroup_alloc(void)
306{
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322}
323
324static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326{
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
0764db9b 331 spin_lock_irq(&objcg_lock);
bf4f0599 332
9838354e
MS
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
0764db9b 341 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
342
343 percpu_ref_kill(&objcg->refcnt);
344}
345
d7f25f8a
GC
346/*
347 * A lot of the calls to the cache allocation functions are expected to be
272911a4 348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
f7a449f7
RG
352DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353EXPORT_SYMBOL(memcg_kmem_online_key);
b6c1a8af
YS
354
355DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356EXPORT_SYMBOL(memcg_bpf_enabled_key);
0a432dcb 357#endif
17cc4dfe 358
ad7fa852 359/**
75376c6f
MWO
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
ad7fa852
TH
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
75376c6f 364 * with @folio is returned. The returned css remains associated with @folio
ad7fa852
TH
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
ad7fa852 369 */
75376c6f 370struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
ad7fa852 371{
75376c6f 372 struct mem_cgroup *memcg = folio_memcg(folio);
ad7fa852 373
9e10a130 374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
375 memcg = root_mem_cgroup;
376
ad7fa852
TH
377 return &memcg->css;
378}
379
2fc04524
VD
380/**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
393ino_t page_cgroup_ino(struct page *page)
394{
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
ec342603
YA
399 /* page_folio() is racy here, but the entire function is racy anyway */
400 memcg = folio_memcg_check(page_folio(page));
286e04b8 401
2fc04524
VD
402 while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 memcg = parent_mem_cgroup(memcg);
404 if (memcg)
405 ino = cgroup_ino(memcg->css.cgroup);
406 rcu_read_unlock();
407 return ino;
408}
409
ef8f2327
MG
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 412 unsigned long new_usage_in_excess)
bb4cc1a8
AM
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
ef8f2327 416 struct mem_cgroup_per_node *mz_node;
fa90b2fd 417 bool rightmost = true;
bb4cc1a8
AM
418
419 if (mz->on_tree)
420 return;
421
422 mz->usage_in_excess = new_usage_in_excess;
423 if (!mz->usage_in_excess)
424 return;
425 while (*p) {
426 parent = *p;
ef8f2327 427 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 428 tree_node);
fa90b2fd 429 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 430 p = &(*p)->rb_left;
fa90b2fd 431 rightmost = false;
378876b0 432 } else {
bb4cc1a8 433 p = &(*p)->rb_right;
378876b0 434 }
bb4cc1a8 435 }
fa90b2fd
DB
436
437 if (rightmost)
438 mctz->rb_rightmost = &mz->tree_node;
439
bb4cc1a8
AM
440 rb_link_node(&mz->tree_node, parent, p);
441 rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 mz->on_tree = true;
443}
444
ef8f2327
MG
445static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
447{
448 if (!mz->on_tree)
449 return;
fa90b2fd
DB
450
451 if (&mz->tree_node == mctz->rb_rightmost)
452 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
bb4cc1a8
AM
454 rb_erase(&mz->tree_node, &mctz->rb_root);
455 mz->on_tree = false;
456}
457
ef8f2327
MG
458static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 460{
0a31bc97
JW
461 unsigned long flags;
462
463 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 464 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 465 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
466}
467
3e32cb2e
JW
468static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469{
470 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
472 unsigned long excess = 0;
473
474 if (nr_pages > soft_limit)
475 excess = nr_pages - soft_limit;
476
477 return excess;
478}
bb4cc1a8 479
658b69c9 480static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 481{
3e32cb2e 482 unsigned long excess;
ef8f2327
MG
483 struct mem_cgroup_per_node *mz;
484 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 485
e4dde56c 486 if (lru_gen_enabled()) {
36c7b4db 487 if (soft_limit_excess(memcg))
5c7e7a0d 488 lru_gen_soft_reclaim(memcg, nid);
e4dde56c
YZ
489 return;
490 }
491
2ab082ba 492 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
493 if (!mctz)
494 return;
bb4cc1a8
AM
495 /*
496 * Necessary to update all ancestors when hierarchy is used.
497 * because their event counter is not touched.
498 */
499 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 500 mz = memcg->nodeinfo[nid];
3e32cb2e 501 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
502 /*
503 * We have to update the tree if mz is on RB-tree or
504 * mem is over its softlimit.
505 */
506 if (excess || mz->on_tree) {
0a31bc97
JW
507 unsigned long flags;
508
509 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
510 /* if on-tree, remove it */
511 if (mz->on_tree)
cf2c8127 512 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
513 /*
514 * Insert again. mz->usage_in_excess will be updated.
515 * If excess is 0, no tree ops.
516 */
cf2c8127 517 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 518 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
519 }
520 }
521}
522
523static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524{
ef8f2327
MG
525 struct mem_cgroup_tree_per_node *mctz;
526 struct mem_cgroup_per_node *mz;
527 int nid;
bb4cc1a8 528
e231875b 529 for_each_node(nid) {
a3747b53 530 mz = memcg->nodeinfo[nid];
2ab082ba 531 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
532 if (mctz)
533 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
534 }
535}
536
ef8f2327
MG
537static struct mem_cgroup_per_node *
538__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 539{
ef8f2327 540 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
541
542retry:
543 mz = NULL;
fa90b2fd 544 if (!mctz->rb_rightmost)
bb4cc1a8
AM
545 goto done; /* Nothing to reclaim from */
546
fa90b2fd
DB
547 mz = rb_entry(mctz->rb_rightmost,
548 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
549 /*
550 * Remove the node now but someone else can add it back,
551 * we will to add it back at the end of reclaim to its correct
552 * position in the tree.
553 */
cf2c8127 554 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 555 if (!soft_limit_excess(mz->memcg) ||
8965aa28 556 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
557 goto retry;
558done:
559 return mz;
560}
561
ef8f2327
MG
562static struct mem_cgroup_per_node *
563mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 564{
ef8f2327 565 struct mem_cgroup_per_node *mz;
bb4cc1a8 566
0a31bc97 567 spin_lock_irq(&mctz->lock);
bb4cc1a8 568 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 569 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
570 return mz;
571}
572
11192d9c
SB
573/*
574 * memcg and lruvec stats flushing
575 *
576 * Many codepaths leading to stats update or read are performance sensitive and
577 * adding stats flushing in such codepaths is not desirable. So, to optimize the
578 * flushing the kernel does:
579 *
580 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581 * rstat update tree grow unbounded.
582 *
583 * 2) Flush the stats synchronously on reader side only when there are more than
584 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586 * only for 2 seconds due to (1).
587 */
588static void flush_memcg_stats_dwork(struct work_struct *w);
589static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
11192d9c 590static DEFINE_PER_CPU(unsigned int, stats_updates);
3cd9992b 591static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
11192d9c 592static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
593static u64 flush_next_time;
594
595#define FLUSH_TIME (2UL*HZ)
11192d9c 596
be3e67b5
SAS
597/*
598 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599 * not rely on this as part of an acquired spinlock_t lock. These functions are
600 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601 * is sufficient.
602 */
603static void memcg_stats_lock(void)
604{
e575d401
TG
605 preempt_disable_nested();
606 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
607}
608
609static void __memcg_stats_lock(void)
610{
e575d401 611 preempt_disable_nested();
be3e67b5
SAS
612}
613
614static void memcg_stats_unlock(void)
615{
e575d401 616 preempt_enable_nested();
be3e67b5
SAS
617}
618
5b3be698 619static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 620{
5b3be698
SB
621 unsigned int x;
622
f9d911ca
YA
623 if (!val)
624 return;
625
11192d9c 626 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
627
628 x = __this_cpu_add_return(stats_updates, abs(val));
629 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
630 /*
631 * If stats_flush_threshold exceeds the threshold
632 * (>num_online_cpus()), cgroup stats update will be triggered
633 * in __mem_cgroup_flush_stats(). Increasing this var further
634 * is redundant and simply adds overhead in atomic update.
635 */
636 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
638 __this_cpu_write(stats_updates, 0);
639 }
11192d9c
SB
640}
641
35822fda 642static void do_flush_stats(void)
11192d9c 643{
3cd9992b
YA
644 /*
645 * We always flush the entire tree, so concurrent flushers can just
646 * skip. This avoids a thundering herd problem on the rstat global lock
647 * from memcg flushers (e.g. reclaim, refault, etc).
648 */
649 if (atomic_read(&stats_flush_ongoing) ||
650 atomic_xchg(&stats_flush_ongoing, 1))
11192d9c
SB
651 return;
652
3cd9992b 653 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
9fad9aee 654
35822fda 655 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
9fad9aee 656
11192d9c 657 atomic_set(&stats_flush_threshold, 0);
3cd9992b 658 atomic_set(&stats_flush_ongoing, 0);
11192d9c
SB
659}
660
661void mem_cgroup_flush_stats(void)
662{
35822fda
YA
663 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 do_flush_stats();
9fad9aee
YA
665}
666
4009b2f1 667void mem_cgroup_flush_stats_ratelimited(void)
9b301615 668{
3cd9992b 669 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
4009b2f1 670 mem_cgroup_flush_stats();
9b301615
SB
671}
672
11192d9c
SB
673static void flush_memcg_stats_dwork(struct work_struct *w)
674{
9fad9aee
YA
675 /*
676 * Always flush here so that flushing in latency-sensitive paths is
677 * as cheap as possible.
678 */
35822fda 679 do_flush_stats();
9b301615 680 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
681}
682
d396def5
SB
683/* Subset of vm_event_item to report for memcg event stats */
684static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
685 PGPGIN,
686 PGPGOUT,
d396def5
SB
687 PGSCAN_KSWAPD,
688 PGSCAN_DIRECT,
57e9cc50 689 PGSCAN_KHUGEPAGED,
d396def5
SB
690 PGSTEAL_KSWAPD,
691 PGSTEAL_DIRECT,
57e9cc50 692 PGSTEAL_KHUGEPAGED,
d396def5
SB
693 PGFAULT,
694 PGMAJFAULT,
695 PGREFILL,
696 PGACTIVATE,
697 PGDEACTIVATE,
698 PGLAZYFREE,
699 PGLAZYFREED,
700#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 ZSWPIN,
702 ZSWPOUT,
703#endif
704#ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 THP_FAULT_ALLOC,
706 THP_COLLAPSE_ALLOC,
707#endif
708};
709
8278f1c7
SB
710#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
713static void init_memcg_events(void)
714{
715 int i;
716
717 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719}
720
721static inline int memcg_events_index(enum vm_event_item idx)
722{
723 return mem_cgroup_events_index[idx] - 1;
724}
725
410f8e82
SB
726struct memcg_vmstats_percpu {
727 /* Local (CPU and cgroup) page state & events */
728 long state[MEMCG_NR_STAT];
8278f1c7 729 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
730
731 /* Delta calculation for lockless upward propagation */
732 long state_prev[MEMCG_NR_STAT];
8278f1c7 733 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
734
735 /* Cgroup1: threshold notifications & softlimit tree updates */
736 unsigned long nr_page_events;
737 unsigned long targets[MEM_CGROUP_NTARGETS];
738};
739
740struct memcg_vmstats {
741 /* Aggregated (CPU and subtree) page state & events */
742 long state[MEMCG_NR_STAT];
8278f1c7 743 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
744
745 /* Pending child counts during tree propagation */
746 long state_pending[MEMCG_NR_STAT];
8278f1c7 747 unsigned long events_pending[NR_MEMCG_EVENTS];
410f8e82
SB
748};
749
750unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
751{
752 long x = READ_ONCE(memcg->vmstats->state[idx]);
753#ifdef CONFIG_SMP
754 if (x < 0)
755 x = 0;
756#endif
757 return x;
758}
759
db9adbcb
JW
760/**
761 * __mod_memcg_state - update cgroup memory statistics
762 * @memcg: the memory cgroup
763 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764 * @val: delta to add to the counter, can be negative
765 */
766void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767{
db9adbcb
JW
768 if (mem_cgroup_disabled())
769 return;
770
2d146aa3 771 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
5b3be698 772 memcg_rstat_updated(memcg, val);
db9adbcb
JW
773}
774
2d146aa3 775/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
776static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
777{
778 long x = 0;
779 int cpu;
780
781 for_each_possible_cpu(cpu)
2d146aa3 782 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
783#ifdef CONFIG_SMP
784 if (x < 0)
785 x = 0;
786#endif
787 return x;
788}
789
eedc4e5a
RG
790void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
791 int val)
db9adbcb
JW
792{
793 struct mem_cgroup_per_node *pn;
42a30035 794 struct mem_cgroup *memcg;
db9adbcb 795
db9adbcb 796 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 797 memcg = pn->memcg;
db9adbcb 798
be3e67b5
SAS
799 /*
800 * The caller from rmap relay on disabled preemption becase they never
801 * update their counter from in-interrupt context. For these two
802 * counters we check that the update is never performed from an
803 * interrupt context while other caller need to have disabled interrupt.
804 */
805 __memcg_stats_lock();
e575d401 806 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
807 switch (idx) {
808 case NR_ANON_MAPPED:
809 case NR_FILE_MAPPED:
810 case NR_ANON_THPS:
811 case NR_SHMEM_PMDMAPPED:
812 case NR_FILE_PMDMAPPED:
813 WARN_ON_ONCE(!in_task());
814 break;
815 default:
e575d401 816 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
817 }
818 }
819
db9adbcb 820 /* Update memcg */
11192d9c 821 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 822
b4c46484 823 /* Update lruvec */
7e1c0d6f 824 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 825
5b3be698 826 memcg_rstat_updated(memcg, val);
be3e67b5 827 memcg_stats_unlock();
db9adbcb
JW
828}
829
eedc4e5a
RG
830/**
831 * __mod_lruvec_state - update lruvec memory statistics
832 * @lruvec: the lruvec
833 * @idx: the stat item
834 * @val: delta to add to the counter, can be negative
835 *
836 * The lruvec is the intersection of the NUMA node and a cgroup. This
837 * function updates the all three counters that are affected by a
838 * change of state at this level: per-node, per-cgroup, per-lruvec.
839 */
840void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
841 int val)
842{
843 /* Update node */
844 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
845
846 /* Update memcg and lruvec */
847 if (!mem_cgroup_disabled())
848 __mod_memcg_lruvec_state(lruvec, idx, val);
849}
850
c47d5032
SB
851void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
852 int val)
853{
854 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 855 struct mem_cgroup *memcg;
c47d5032
SB
856 pg_data_t *pgdat = page_pgdat(page);
857 struct lruvec *lruvec;
858
b4e0b68f
MS
859 rcu_read_lock();
860 memcg = page_memcg(head);
c47d5032 861 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 862 if (!memcg) {
b4e0b68f 863 rcu_read_unlock();
c47d5032
SB
864 __mod_node_page_state(pgdat, idx, val);
865 return;
866 }
867
d635a69d 868 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 869 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 870 rcu_read_unlock();
c47d5032 871}
f0c0c115 872EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 873
da3ceeff 874void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 875{
4f103c63 876 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
877 struct mem_cgroup *memcg;
878 struct lruvec *lruvec;
879
880 rcu_read_lock();
fc4db90f 881 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 882
8faeb1ff
MS
883 /*
884 * Untracked pages have no memcg, no lruvec. Update only the
885 * node. If we reparent the slab objects to the root memcg,
886 * when we free the slab object, we need to update the per-memcg
887 * vmstats to keep it correct for the root memcg.
888 */
889 if (!memcg) {
ec9f0238
RG
890 __mod_node_page_state(pgdat, idx, val);
891 } else {
867e5e1d 892 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
893 __mod_lruvec_state(lruvec, idx, val);
894 }
895 rcu_read_unlock();
896}
897
db9adbcb
JW
898/**
899 * __count_memcg_events - account VM events in a cgroup
900 * @memcg: the memory cgroup
901 * @idx: the event item
f0953a1b 902 * @count: the number of events that occurred
db9adbcb
JW
903 */
904void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905 unsigned long count)
906{
8278f1c7
SB
907 int index = memcg_events_index(idx);
908
909 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
910 return;
911
be3e67b5 912 memcg_stats_lock();
8278f1c7 913 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 914 memcg_rstat_updated(memcg, count);
be3e67b5 915 memcg_stats_unlock();
db9adbcb
JW
916}
917
42a30035 918static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 919{
8278f1c7
SB
920 int index = memcg_events_index(event);
921
922 if (index < 0)
923 return 0;
924 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
925}
926
42a30035
JW
927static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
928{
815744d7
JW
929 long x = 0;
930 int cpu;
8278f1c7
SB
931 int index = memcg_events_index(event);
932
933 if (index < 0)
934 return 0;
815744d7
JW
935
936 for_each_possible_cpu(cpu)
8278f1c7 937 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
815744d7 938 return x;
42a30035
JW
939}
940
c0ff4b85 941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 942 int nr_pages)
d52aa412 943{
e401f176
KH
944 /* pagein of a big page is an event. So, ignore page size */
945 if (nr_pages > 0)
c9019e9b 946 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 947 else {
c9019e9b 948 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
949 nr_pages = -nr_pages; /* for event */
950 }
e401f176 951
871789d4 952 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
953}
954
f53d7ce3
JW
955static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
956 enum mem_cgroup_events_target target)
7a159cc9
JW
957{
958 unsigned long val, next;
959
871789d4
CD
960 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
961 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 962 /* from time_after() in jiffies.h */
6a1a8b80 963 if ((long)(next - val) < 0) {
f53d7ce3
JW
964 switch (target) {
965 case MEM_CGROUP_TARGET_THRESH:
966 next = val + THRESHOLDS_EVENTS_TARGET;
967 break;
bb4cc1a8
AM
968 case MEM_CGROUP_TARGET_SOFTLIMIT:
969 next = val + SOFTLIMIT_EVENTS_TARGET;
970 break;
f53d7ce3
JW
971 default:
972 break;
973 }
871789d4 974 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
8e88bd2d 984static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 985{
2343e88d
SAS
986 if (IS_ENABLED(CONFIG_PREEMPT_RT))
987 return;
988
d2265e6f 989 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
990 if (unlikely(mem_cgroup_event_ratelimit(memcg,
991 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 992 bool do_softlimit;
f53d7ce3 993
bb4cc1a8
AM
994 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 996 mem_cgroup_threshold(memcg);
bb4cc1a8 997 if (unlikely(do_softlimit))
8e88bd2d 998 mem_cgroup_update_tree(memcg, nid);
0a31bc97 999 }
d2265e6f
KH
1000}
1001
cf475ad2 1002struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1003{
31a78f23
BS
1004 /*
1005 * mm_update_next_owner() may clear mm->owner to NULL
1006 * if it races with swapoff, page migration, etc.
1007 * So this can be called with p == NULL.
1008 */
1009 if (unlikely(!p))
1010 return NULL;
1011
073219e9 1012 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1013}
33398cf2 1014EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1015
04f94e3f
DS
1016static __always_inline struct mem_cgroup *active_memcg(void)
1017{
55a68c82 1018 if (!in_task())
04f94e3f
DS
1019 return this_cpu_read(int_active_memcg);
1020 else
1021 return current->active_memcg;
1022}
1023
d46eb14b
SB
1024/**
1025 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1026 * @mm: mm from which memcg should be extracted. It can be NULL.
1027 *
04f94e3f
DS
1028 * Obtain a reference on mm->memcg and returns it if successful. If mm
1029 * is NULL, then the memcg is chosen as follows:
1030 * 1) The active memcg, if set.
1031 * 2) current->mm->memcg, if available
1032 * 3) root memcg
1033 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1034 */
1035struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1036{
d46eb14b
SB
1037 struct mem_cgroup *memcg;
1038
1039 if (mem_cgroup_disabled())
1040 return NULL;
0b7f569e 1041
2884b6b7
MS
1042 /*
1043 * Page cache insertions can happen without an
1044 * actual mm context, e.g. during disk probing
1045 * on boot, loopback IO, acct() writes etc.
1046 *
1047 * No need to css_get on root memcg as the reference
1048 * counting is disabled on the root level in the
1049 * cgroup core. See CSS_NO_REF.
1050 */
04f94e3f
DS
1051 if (unlikely(!mm)) {
1052 memcg = active_memcg();
1053 if (unlikely(memcg)) {
1054 /* remote memcg must hold a ref */
1055 css_get(&memcg->css);
1056 return memcg;
1057 }
1058 mm = current->mm;
1059 if (unlikely(!mm))
1060 return root_mem_cgroup;
1061 }
2884b6b7 1062
54595fe2
KH
1063 rcu_read_lock();
1064 do {
2884b6b7
MS
1065 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1066 if (unlikely(!memcg))
df381975 1067 memcg = root_mem_cgroup;
00d484f3 1068 } while (!css_tryget(&memcg->css));
54595fe2 1069 rcu_read_unlock();
c0ff4b85 1070 return memcg;
54595fe2 1071}
d46eb14b
SB
1072EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1073
4127c650
RG
1074static __always_inline bool memcg_kmem_bypass(void)
1075{
1076 /* Allow remote memcg charging from any context. */
1077 if (unlikely(active_memcg()))
1078 return false;
1079
1080 /* Memcg to charge can't be determined. */
6126891c 1081 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
1082 return true;
1083
1084 return false;
1085}
1086
5660048c
JW
1087/**
1088 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1089 * @root: hierarchy root
1090 * @prev: previously returned memcg, NULL on first invocation
1091 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1092 *
1093 * Returns references to children of the hierarchy below @root, or
1094 * @root itself, or %NULL after a full round-trip.
1095 *
1096 * Caller must pass the return value in @prev on subsequent
1097 * invocations for reference counting, or use mem_cgroup_iter_break()
1098 * to cancel a hierarchy walk before the round-trip is complete.
1099 *
05bdc520
ML
1100 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1101 * in the hierarchy among all concurrent reclaimers operating on the
1102 * same node.
5660048c 1103 */
694fbc0f 1104struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1105 struct mem_cgroup *prev,
694fbc0f 1106 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1107{
3f649ab7 1108 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1109 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1110 struct mem_cgroup *memcg = NULL;
5ac8fb31 1111 struct mem_cgroup *pos = NULL;
711d3d2c 1112
694fbc0f
AM
1113 if (mem_cgroup_disabled())
1114 return NULL;
5660048c 1115
9f3a0d09
JW
1116 if (!root)
1117 root = root_mem_cgroup;
7d74b06f 1118
542f85f9 1119 rcu_read_lock();
5f578161 1120
5ac8fb31 1121 if (reclaim) {
ef8f2327 1122 struct mem_cgroup_per_node *mz;
5ac8fb31 1123
a3747b53 1124 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1125 iter = &mz->iter;
5ac8fb31 1126
a9320aae
WY
1127 /*
1128 * On start, join the current reclaim iteration cycle.
1129 * Exit when a concurrent walker completes it.
1130 */
1131 if (!prev)
1132 reclaim->generation = iter->generation;
1133 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1134 goto out_unlock;
1135
6df38689 1136 while (1) {
4db0c3c2 1137 pos = READ_ONCE(iter->position);
6df38689
VD
1138 if (!pos || css_tryget(&pos->css))
1139 break;
5ac8fb31 1140 /*
6df38689
VD
1141 * css reference reached zero, so iter->position will
1142 * be cleared by ->css_released. However, we should not
1143 * rely on this happening soon, because ->css_released
1144 * is called from a work queue, and by busy-waiting we
1145 * might block it. So we clear iter->position right
1146 * away.
5ac8fb31 1147 */
6df38689
VD
1148 (void)cmpxchg(&iter->position, pos, NULL);
1149 }
89d8330c
WY
1150 } else if (prev) {
1151 pos = prev;
5ac8fb31
JW
1152 }
1153
1154 if (pos)
1155 css = &pos->css;
1156
1157 for (;;) {
1158 css = css_next_descendant_pre(css, &root->css);
1159 if (!css) {
1160 /*
1161 * Reclaimers share the hierarchy walk, and a
1162 * new one might jump in right at the end of
1163 * the hierarchy - make sure they see at least
1164 * one group and restart from the beginning.
1165 */
1166 if (!prev)
1167 continue;
1168 break;
527a5ec9 1169 }
7d74b06f 1170
5ac8fb31
JW
1171 /*
1172 * Verify the css and acquire a reference. The root
1173 * is provided by the caller, so we know it's alive
1174 * and kicking, and don't take an extra reference.
1175 */
41555dad
WY
1176 if (css == &root->css || css_tryget(css)) {
1177 memcg = mem_cgroup_from_css(css);
0b8f73e1 1178 break;
41555dad 1179 }
9f3a0d09 1180 }
5ac8fb31
JW
1181
1182 if (reclaim) {
5ac8fb31 1183 /*
6df38689
VD
1184 * The position could have already been updated by a competing
1185 * thread, so check that the value hasn't changed since we read
1186 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1187 */
6df38689
VD
1188 (void)cmpxchg(&iter->position, pos, memcg);
1189
5ac8fb31
JW
1190 if (pos)
1191 css_put(&pos->css);
1192
1193 if (!memcg)
1194 iter->generation++;
9f3a0d09 1195 }
5ac8fb31 1196
542f85f9
MH
1197out_unlock:
1198 rcu_read_unlock();
c40046f3
MH
1199 if (prev && prev != root)
1200 css_put(&prev->css);
1201
9f3a0d09 1202 return memcg;
14067bb3 1203}
7d74b06f 1204
5660048c
JW
1205/**
1206 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1207 * @root: hierarchy root
1208 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1209 */
1210void mem_cgroup_iter_break(struct mem_cgroup *root,
1211 struct mem_cgroup *prev)
9f3a0d09
JW
1212{
1213 if (!root)
1214 root = root_mem_cgroup;
1215 if (prev && prev != root)
1216 css_put(&prev->css);
1217}
7d74b06f 1218
54a83d6b
MC
1219static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1220 struct mem_cgroup *dead_memcg)
6df38689 1221{
6df38689 1222 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1223 struct mem_cgroup_per_node *mz;
1224 int nid;
6df38689 1225
54a83d6b 1226 for_each_node(nid) {
a3747b53 1227 mz = from->nodeinfo[nid];
9da83f3f
YS
1228 iter = &mz->iter;
1229 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1230 }
1231}
1232
54a83d6b
MC
1233static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1234{
1235 struct mem_cgroup *memcg = dead_memcg;
1236 struct mem_cgroup *last;
1237
1238 do {
1239 __invalidate_reclaim_iterators(memcg, dead_memcg);
1240 last = memcg;
1241 } while ((memcg = parent_mem_cgroup(memcg)));
1242
1243 /*
b8dd3ee9 1244 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1245 * parent_mem_cgroup() does not walk all the way up to the
1246 * cgroup root (root_mem_cgroup). So we have to handle
1247 * dead_memcg from cgroup root separately.
1248 */
7848ed62 1249 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1250 __invalidate_reclaim_iterators(root_mem_cgroup,
1251 dead_memcg);
1252}
1253
7c5f64f8
VD
1254/**
1255 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1256 * @memcg: hierarchy root
1257 * @fn: function to call for each task
1258 * @arg: argument passed to @fn
1259 *
1260 * This function iterates over tasks attached to @memcg or to any of its
1261 * descendants and calls @fn for each task. If @fn returns a non-zero
1262 * value, the function breaks the iteration loop and returns the value.
1263 * Otherwise, it will iterate over all tasks and return 0.
1264 *
1265 * This function must not be called for the root memory cgroup.
1266 */
1267int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1268 int (*fn)(struct task_struct *, void *), void *arg)
1269{
1270 struct mem_cgroup *iter;
1271 int ret = 0;
1272
7848ed62 1273 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1274
1275 for_each_mem_cgroup_tree(iter, memcg) {
1276 struct css_task_iter it;
1277 struct task_struct *task;
1278
f168a9a5 1279 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1280 while (!ret && (task = css_task_iter_next(&it)))
1281 ret = fn(task, arg);
1282 css_task_iter_end(&it);
1283 if (ret) {
1284 mem_cgroup_iter_break(memcg, iter);
1285 break;
1286 }
1287 }
1288 return ret;
1289}
1290
6168d0da 1291#ifdef CONFIG_DEBUG_VM
e809c3fe 1292void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1293{
1294 struct mem_cgroup *memcg;
1295
1296 if (mem_cgroup_disabled())
1297 return;
1298
e809c3fe 1299 memcg = folio_memcg(folio);
6168d0da
AS
1300
1301 if (!memcg)
7848ed62 1302 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1303 else
e809c3fe 1304 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1305}
1306#endif
1307
6168d0da 1308/**
e809c3fe
MWO
1309 * folio_lruvec_lock - Lock the lruvec for a folio.
1310 * @folio: Pointer to the folio.
6168d0da 1311 *
d7e3aba5 1312 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1313 * - folio locked
1314 * - folio_test_lru false
1315 * - folio_memcg_lock()
1316 * - folio frozen (refcount of 0)
1317 *
1318 * Return: The lruvec this folio is on with its lock held.
6168d0da 1319 */
e809c3fe 1320struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1321{
e809c3fe 1322 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1323
6168d0da 1324 spin_lock(&lruvec->lru_lock);
e809c3fe 1325 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1326
1327 return lruvec;
1328}
1329
e809c3fe
MWO
1330/**
1331 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1332 * @folio: Pointer to the folio.
1333 *
1334 * These functions are safe to use under any of the following conditions:
1335 * - folio locked
1336 * - folio_test_lru false
1337 * - folio_memcg_lock()
1338 * - folio frozen (refcount of 0)
1339 *
1340 * Return: The lruvec this folio is on with its lock held and interrupts
1341 * disabled.
1342 */
1343struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1344{
e809c3fe 1345 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1346
6168d0da 1347 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1348 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1349
1350 return lruvec;
1351}
1352
e809c3fe
MWO
1353/**
1354 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1355 * @folio: Pointer to the folio.
1356 * @flags: Pointer to irqsave flags.
1357 *
1358 * These functions are safe to use under any of the following conditions:
1359 * - folio locked
1360 * - folio_test_lru false
1361 * - folio_memcg_lock()
1362 * - folio frozen (refcount of 0)
1363 *
1364 * Return: The lruvec this folio is on with its lock held and interrupts
1365 * disabled.
1366 */
1367struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1368 unsigned long *flags)
6168d0da 1369{
e809c3fe 1370 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1371
6168d0da 1372 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1373 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1374
1375 return lruvec;
1376}
1377
925b7673 1378/**
fa9add64
HD
1379 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1380 * @lruvec: mem_cgroup per zone lru vector
1381 * @lru: index of lru list the page is sitting on
b4536f0c 1382 * @zid: zone id of the accounted pages
fa9add64 1383 * @nr_pages: positive when adding or negative when removing
925b7673 1384 *
ca707239 1385 * This function must be called under lru_lock, just before a page is added
07ca7606 1386 * to or just after a page is removed from an lru list.
3f58a829 1387 */
fa9add64 1388void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1389 int zid, int nr_pages)
3f58a829 1390{
ef8f2327 1391 struct mem_cgroup_per_node *mz;
fa9add64 1392 unsigned long *lru_size;
ca707239 1393 long size;
3f58a829
MK
1394
1395 if (mem_cgroup_disabled())
1396 return;
1397
ef8f2327 1398 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1399 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1400
1401 if (nr_pages < 0)
1402 *lru_size += nr_pages;
1403
1404 size = *lru_size;
b4536f0c
MH
1405 if (WARN_ONCE(size < 0,
1406 "%s(%p, %d, %d): lru_size %ld\n",
1407 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1408 VM_BUG_ON(1);
1409 *lru_size = 0;
1410 }
1411
1412 if (nr_pages > 0)
1413 *lru_size += nr_pages;
08e552c6 1414}
544122e5 1415
19942822 1416/**
9d11ea9f 1417 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1418 * @memcg: the memory cgroup
19942822 1419 *
9d11ea9f 1420 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1421 * pages.
19942822 1422 */
c0ff4b85 1423static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1424{
3e32cb2e
JW
1425 unsigned long margin = 0;
1426 unsigned long count;
1427 unsigned long limit;
9d11ea9f 1428
3e32cb2e 1429 count = page_counter_read(&memcg->memory);
bbec2e15 1430 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1431 if (count < limit)
1432 margin = limit - count;
1433
7941d214 1434 if (do_memsw_account()) {
3e32cb2e 1435 count = page_counter_read(&memcg->memsw);
bbec2e15 1436 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1437 if (count < limit)
3e32cb2e 1438 margin = min(margin, limit - count);
cbedbac3
LR
1439 else
1440 margin = 0;
3e32cb2e
JW
1441 }
1442
1443 return margin;
19942822
JW
1444}
1445
32047e2a 1446/*
bdcbb659 1447 * A routine for checking "mem" is under move_account() or not.
32047e2a 1448 *
bdcbb659
QH
1449 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1450 * moving cgroups. This is for waiting at high-memory pressure
1451 * caused by "move".
32047e2a 1452 */
c0ff4b85 1453static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1454{
2bd9bb20
KH
1455 struct mem_cgroup *from;
1456 struct mem_cgroup *to;
4b534334 1457 bool ret = false;
2bd9bb20
KH
1458 /*
1459 * Unlike task_move routines, we access mc.to, mc.from not under
1460 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1461 */
1462 spin_lock(&mc.lock);
1463 from = mc.from;
1464 to = mc.to;
1465 if (!from)
1466 goto unlock;
3e92041d 1467
2314b42d
JW
1468 ret = mem_cgroup_is_descendant(from, memcg) ||
1469 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1470unlock:
1471 spin_unlock(&mc.lock);
4b534334
KH
1472 return ret;
1473}
1474
c0ff4b85 1475static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1476{
1477 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1478 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1479 DEFINE_WAIT(wait);
1480 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1481 /* moving charge context might have finished. */
1482 if (mc.moving_task)
1483 schedule();
1484 finish_wait(&mc.waitq, &wait);
1485 return true;
1486 }
1487 }
1488 return false;
1489}
1490
5f9a4f4a
MS
1491struct memory_stat {
1492 const char *name;
5f9a4f4a
MS
1493 unsigned int idx;
1494};
1495
57b2847d 1496static const struct memory_stat memory_stats[] = {
fff66b79
MS
1497 { "anon", NR_ANON_MAPPED },
1498 { "file", NR_FILE_PAGES },
a8c49af3 1499 { "kernel", MEMCG_KMEM },
fff66b79
MS
1500 { "kernel_stack", NR_KERNEL_STACK_KB },
1501 { "pagetables", NR_PAGETABLE },
ebc97a52 1502 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1503 { "percpu", MEMCG_PERCPU_B },
1504 { "sock", MEMCG_SOCK },
4e5aa1f4 1505 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1506 { "shmem", NR_SHMEM },
f4840ccf
JW
1507#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1508 { "zswap", MEMCG_ZSWAP_B },
1509 { "zswapped", MEMCG_ZSWAPPED },
1510#endif
fff66b79
MS
1511 { "file_mapped", NR_FILE_MAPPED },
1512 { "file_dirty", NR_FILE_DIRTY },
1513 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1514#ifdef CONFIG_SWAP
1515 { "swapcached", NR_SWAPCACHE },
1516#endif
5f9a4f4a 1517#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1518 { "anon_thp", NR_ANON_THPS },
1519 { "file_thp", NR_FILE_THPS },
1520 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1521#endif
fff66b79
MS
1522 { "inactive_anon", NR_INACTIVE_ANON },
1523 { "active_anon", NR_ACTIVE_ANON },
1524 { "inactive_file", NR_INACTIVE_FILE },
1525 { "active_file", NR_ACTIVE_FILE },
1526 { "unevictable", NR_UNEVICTABLE },
1527 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1528 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1529
1530 /* The memory events */
fff66b79
MS
1531 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1532 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1533 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1534 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1535 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1536 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1537 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1538};
1539
fff66b79
MS
1540/* Translate stat items to the correct unit for memory.stat output */
1541static int memcg_page_state_unit(int item)
1542{
1543 switch (item) {
1544 case MEMCG_PERCPU_B:
f4840ccf 1545 case MEMCG_ZSWAP_B:
fff66b79
MS
1546 case NR_SLAB_RECLAIMABLE_B:
1547 case NR_SLAB_UNRECLAIMABLE_B:
1548 case WORKINGSET_REFAULT_ANON:
1549 case WORKINGSET_REFAULT_FILE:
1550 case WORKINGSET_ACTIVATE_ANON:
1551 case WORKINGSET_ACTIVATE_FILE:
1552 case WORKINGSET_RESTORE_ANON:
1553 case WORKINGSET_RESTORE_FILE:
1554 case WORKINGSET_NODERECLAIM:
1555 return 1;
1556 case NR_KERNEL_STACK_KB:
1557 return SZ_1K;
1558 default:
1559 return PAGE_SIZE;
1560 }
1561}
1562
1563static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1564 int item)
1565{
1566 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1567}
1568
dddb44ff 1569static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
c8713d0b 1570{
c8713d0b 1571 int i;
71cd3113 1572
c8713d0b
JW
1573 /*
1574 * Provide statistics on the state of the memory subsystem as
1575 * well as cumulative event counters that show past behavior.
1576 *
1577 * This list is ordered following a combination of these gradients:
1578 * 1) generic big picture -> specifics and details
1579 * 2) reflecting userspace activity -> reflecting kernel heuristics
1580 *
1581 * Current memory state:
1582 */
fd25a9e0 1583 mem_cgroup_flush_stats();
c8713d0b 1584
5f9a4f4a
MS
1585 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1586 u64 size;
c8713d0b 1587
fff66b79 1588 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5b42360c 1589 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1590
5f9a4f4a 1591 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1592 size += memcg_page_state_output(memcg,
1593 NR_SLAB_RECLAIMABLE_B);
5b42360c 1594 seq_buf_printf(s, "slab %llu\n", size);
5f9a4f4a
MS
1595 }
1596 }
c8713d0b
JW
1597
1598 /* Accumulated memory events */
5b42360c 1599 seq_buf_printf(s, "pgscan %lu\n",
c8713d0b 1600 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1601 memcg_events(memcg, PGSCAN_DIRECT) +
1602 memcg_events(memcg, PGSCAN_KHUGEPAGED));
5b42360c 1603 seq_buf_printf(s, "pgsteal %lu\n",
c8713d0b 1604 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1605 memcg_events(memcg, PGSTEAL_DIRECT) +
1606 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1607
8278f1c7
SB
1608 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1609 if (memcg_vm_event_stat[i] == PGPGIN ||
1610 memcg_vm_event_stat[i] == PGPGOUT)
1611 continue;
1612
5b42360c 1613 seq_buf_printf(s, "%s %lu\n",
673520f8
QZ
1614 vm_event_name(memcg_vm_event_stat[i]),
1615 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1616 }
c8713d0b
JW
1617
1618 /* The above should easily fit into one page */
5b42360c 1619 WARN_ON_ONCE(seq_buf_has_overflowed(s));
c8713d0b 1620}
71cd3113 1621
dddb44ff
YA
1622static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1623
1624static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1625{
1626 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1627 memcg_stat_format(memcg, s);
1628 else
1629 memcg1_stat_format(memcg, s);
1630 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1631}
1632
58cf188e 1633#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1634/**
f0c867d9 1635 * mem_cgroup_print_oom_context: Print OOM information relevant to
1636 * memory controller.
e222432b
BS
1637 * @memcg: The memory cgroup that went over limit
1638 * @p: Task that is going to be killed
1639 *
1640 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1641 * enabled
1642 */
f0c867d9 1643void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1644{
e222432b
BS
1645 rcu_read_lock();
1646
f0c867d9 1647 if (memcg) {
1648 pr_cont(",oom_memcg=");
1649 pr_cont_cgroup_path(memcg->css.cgroup);
1650 } else
1651 pr_cont(",global_oom");
2415b9f5 1652 if (p) {
f0c867d9 1653 pr_cont(",task_memcg=");
2415b9f5 1654 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1655 }
e222432b 1656 rcu_read_unlock();
f0c867d9 1657}
1658
1659/**
1660 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1661 * memory controller.
1662 * @memcg: The memory cgroup that went over limit
1663 */
1664void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1665{
68aaee14
TH
1666 /* Use static buffer, for the caller is holding oom_lock. */
1667 static char buf[PAGE_SIZE];
5b42360c 1668 struct seq_buf s;
68aaee14
TH
1669
1670 lockdep_assert_held(&oom_lock);
e222432b 1671
3e32cb2e
JW
1672 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1673 K((u64)page_counter_read(&memcg->memory)),
15b42562 1674 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1675 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1676 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1677 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1678 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1679 else {
1680 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1681 K((u64)page_counter_read(&memcg->memsw)),
1682 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1683 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1684 K((u64)page_counter_read(&memcg->kmem)),
1685 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1686 }
c8713d0b
JW
1687
1688 pr_info("Memory cgroup stats for ");
1689 pr_cont_cgroup_path(memcg->css.cgroup);
1690 pr_cont(":");
5b42360c
YA
1691 seq_buf_init(&s, buf, sizeof(buf));
1692 memory_stat_format(memcg, &s);
1693 seq_buf_do_printk(&s, KERN_INFO);
e222432b
BS
1694}
1695
a63d83f4
DR
1696/*
1697 * Return the memory (and swap, if configured) limit for a memcg.
1698 */
bbec2e15 1699unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1700{
8d387a5f
WL
1701 unsigned long max = READ_ONCE(memcg->memory.max);
1702
b94c4e94 1703 if (do_memsw_account()) {
8d387a5f
WL
1704 if (mem_cgroup_swappiness(memcg)) {
1705 /* Calculate swap excess capacity from memsw limit */
1706 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1707
1708 max += min(swap, (unsigned long)total_swap_pages);
1709 }
b94c4e94
JW
1710 } else {
1711 if (mem_cgroup_swappiness(memcg))
1712 max += min(READ_ONCE(memcg->swap.max),
1713 (unsigned long)total_swap_pages);
9a5a8f19 1714 }
bbec2e15 1715 return max;
a63d83f4
DR
1716}
1717
9783aa99
CD
1718unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1719{
1720 return page_counter_read(&memcg->memory);
1721}
1722
b6e6edcf 1723static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1724 int order)
9cbb78bb 1725{
6e0fc46d
DR
1726 struct oom_control oc = {
1727 .zonelist = NULL,
1728 .nodemask = NULL,
2a966b77 1729 .memcg = memcg,
6e0fc46d
DR
1730 .gfp_mask = gfp_mask,
1731 .order = order,
6e0fc46d 1732 };
1378b37d 1733 bool ret = true;
9cbb78bb 1734
7775face
TH
1735 if (mutex_lock_killable(&oom_lock))
1736 return true;
1378b37d
YS
1737
1738 if (mem_cgroup_margin(memcg) >= (1 << order))
1739 goto unlock;
1740
7775face
TH
1741 /*
1742 * A few threads which were not waiting at mutex_lock_killable() can
1743 * fail to bail out. Therefore, check again after holding oom_lock.
1744 */
a4ebf1b6 1745 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1746
1747unlock:
dc56401f 1748 mutex_unlock(&oom_lock);
7c5f64f8 1749 return ret;
9cbb78bb
DR
1750}
1751
0608f43d 1752static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1753 pg_data_t *pgdat,
0608f43d
AM
1754 gfp_t gfp_mask,
1755 unsigned long *total_scanned)
1756{
1757 struct mem_cgroup *victim = NULL;
1758 int total = 0;
1759 int loop = 0;
1760 unsigned long excess;
1761 unsigned long nr_scanned;
1762 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1763 .pgdat = pgdat,
0608f43d
AM
1764 };
1765
3e32cb2e 1766 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1767
1768 while (1) {
1769 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1770 if (!victim) {
1771 loop++;
1772 if (loop >= 2) {
1773 /*
1774 * If we have not been able to reclaim
1775 * anything, it might because there are
1776 * no reclaimable pages under this hierarchy
1777 */
1778 if (!total)
1779 break;
1780 /*
1781 * We want to do more targeted reclaim.
1782 * excess >> 2 is not to excessive so as to
1783 * reclaim too much, nor too less that we keep
1784 * coming back to reclaim from this cgroup
1785 */
1786 if (total >= (excess >> 2) ||
1787 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1788 break;
1789 }
1790 continue;
1791 }
a9dd0a83 1792 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1793 pgdat, &nr_scanned);
0608f43d 1794 *total_scanned += nr_scanned;
3e32cb2e 1795 if (!soft_limit_excess(root_memcg))
0608f43d 1796 break;
6d61ef40 1797 }
0608f43d
AM
1798 mem_cgroup_iter_break(root_memcg, victim);
1799 return total;
6d61ef40
BS
1800}
1801
0056f4e6
JW
1802#ifdef CONFIG_LOCKDEP
1803static struct lockdep_map memcg_oom_lock_dep_map = {
1804 .name = "memcg_oom_lock",
1805};
1806#endif
1807
fb2a6fc5
JW
1808static DEFINE_SPINLOCK(memcg_oom_lock);
1809
867578cb
KH
1810/*
1811 * Check OOM-Killer is already running under our hierarchy.
1812 * If someone is running, return false.
1813 */
fb2a6fc5 1814static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1815{
79dfdacc 1816 struct mem_cgroup *iter, *failed = NULL;
a636b327 1817
fb2a6fc5
JW
1818 spin_lock(&memcg_oom_lock);
1819
9f3a0d09 1820 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1821 if (iter->oom_lock) {
79dfdacc
MH
1822 /*
1823 * this subtree of our hierarchy is already locked
1824 * so we cannot give a lock.
1825 */
79dfdacc 1826 failed = iter;
9f3a0d09
JW
1827 mem_cgroup_iter_break(memcg, iter);
1828 break;
23751be0
JW
1829 } else
1830 iter->oom_lock = true;
7d74b06f 1831 }
867578cb 1832
fb2a6fc5
JW
1833 if (failed) {
1834 /*
1835 * OK, we failed to lock the whole subtree so we have
1836 * to clean up what we set up to the failing subtree
1837 */
1838 for_each_mem_cgroup_tree(iter, memcg) {
1839 if (iter == failed) {
1840 mem_cgroup_iter_break(memcg, iter);
1841 break;
1842 }
1843 iter->oom_lock = false;
79dfdacc 1844 }
0056f4e6
JW
1845 } else
1846 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1847
1848 spin_unlock(&memcg_oom_lock);
1849
1850 return !failed;
a636b327 1851}
0b7f569e 1852
fb2a6fc5 1853static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1854{
7d74b06f
KH
1855 struct mem_cgroup *iter;
1856
fb2a6fc5 1857 spin_lock(&memcg_oom_lock);
5facae4f 1858 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1859 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1860 iter->oom_lock = false;
fb2a6fc5 1861 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1862}
1863
c0ff4b85 1864static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1865{
1866 struct mem_cgroup *iter;
1867
c2b42d3c 1868 spin_lock(&memcg_oom_lock);
c0ff4b85 1869 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1870 iter->under_oom++;
1871 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1872}
1873
c0ff4b85 1874static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1875{
1876 struct mem_cgroup *iter;
1877
867578cb 1878 /*
f0953a1b 1879 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1880 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1881 */
c2b42d3c 1882 spin_lock(&memcg_oom_lock);
c0ff4b85 1883 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1884 if (iter->under_oom > 0)
1885 iter->under_oom--;
1886 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1887}
1888
867578cb
KH
1889static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1890
dc98df5a 1891struct oom_wait_info {
d79154bb 1892 struct mem_cgroup *memcg;
ac6424b9 1893 wait_queue_entry_t wait;
dc98df5a
KH
1894};
1895
ac6424b9 1896static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1897 unsigned mode, int sync, void *arg)
1898{
d79154bb
HD
1899 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1900 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1901 struct oom_wait_info *oom_wait_info;
1902
1903 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1904 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1905
2314b42d
JW
1906 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1907 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1908 return 0;
dc98df5a
KH
1909 return autoremove_wake_function(wait, mode, sync, arg);
1910}
1911
c0ff4b85 1912static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1913{
c2b42d3c
TH
1914 /*
1915 * For the following lockless ->under_oom test, the only required
1916 * guarantee is that it must see the state asserted by an OOM when
1917 * this function is called as a result of userland actions
1918 * triggered by the notification of the OOM. This is trivially
1919 * achieved by invoking mem_cgroup_mark_under_oom() before
1920 * triggering notification.
1921 */
1922 if (memcg && memcg->under_oom)
f4b90b70 1923 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1924}
1925
becdf89d
SB
1926/*
1927 * Returns true if successfully killed one or more processes. Though in some
1928 * corner cases it can return true even without killing any process.
1929 */
1930static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1931{
becdf89d 1932 bool locked, ret;
7056d3a3 1933
29ef680a 1934 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1935 return false;
29ef680a 1936
7a1adfdd
RG
1937 memcg_memory_event(memcg, MEMCG_OOM);
1938
867578cb 1939 /*
49426420
JW
1940 * We are in the middle of the charge context here, so we
1941 * don't want to block when potentially sitting on a callstack
1942 * that holds all kinds of filesystem and mm locks.
1943 *
29ef680a
MH
1944 * cgroup1 allows disabling the OOM killer and waiting for outside
1945 * handling until the charge can succeed; remember the context and put
1946 * the task to sleep at the end of the page fault when all locks are
1947 * released.
49426420 1948 *
29ef680a
MH
1949 * On the other hand, in-kernel OOM killer allows for an async victim
1950 * memory reclaim (oom_reaper) and that means that we are not solely
1951 * relying on the oom victim to make a forward progress and we can
1952 * invoke the oom killer here.
1953 *
1954 * Please note that mem_cgroup_out_of_memory might fail to find a
1955 * victim and then we have to bail out from the charge path.
867578cb 1956 */
17c56de6 1957 if (READ_ONCE(memcg->oom_kill_disable)) {
becdf89d
SB
1958 if (current->in_user_fault) {
1959 css_get(&memcg->css);
1960 current->memcg_in_oom = memcg;
1961 current->memcg_oom_gfp_mask = mask;
1962 current->memcg_oom_order = order;
1963 }
1964 return false;
29ef680a
MH
1965 }
1966
7056d3a3
MH
1967 mem_cgroup_mark_under_oom(memcg);
1968
1969 locked = mem_cgroup_oom_trylock(memcg);
1970
1971 if (locked)
1972 mem_cgroup_oom_notify(memcg);
1973
1974 mem_cgroup_unmark_under_oom(memcg);
becdf89d 1975 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
1976
1977 if (locked)
1978 mem_cgroup_oom_unlock(memcg);
29ef680a 1979
7056d3a3 1980 return ret;
3812c8c8
JW
1981}
1982
1983/**
1984 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1985 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1986 *
49426420
JW
1987 * This has to be called at the end of a page fault if the memcg OOM
1988 * handler was enabled.
3812c8c8 1989 *
49426420 1990 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1991 * sleep on a waitqueue until the userspace task resolves the
1992 * situation. Sleeping directly in the charge context with all kinds
1993 * of locks held is not a good idea, instead we remember an OOM state
1994 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1995 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1996 *
1997 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1998 * completed, %false otherwise.
3812c8c8 1999 */
49426420 2000bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2001{
626ebc41 2002 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2003 struct oom_wait_info owait;
49426420 2004 bool locked;
3812c8c8
JW
2005
2006 /* OOM is global, do not handle */
3812c8c8 2007 if (!memcg)
49426420 2008 return false;
3812c8c8 2009
7c5f64f8 2010 if (!handle)
49426420 2011 goto cleanup;
3812c8c8
JW
2012
2013 owait.memcg = memcg;
2014 owait.wait.flags = 0;
2015 owait.wait.func = memcg_oom_wake_function;
2016 owait.wait.private = current;
2055da97 2017 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2018
3812c8c8 2019 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2020 mem_cgroup_mark_under_oom(memcg);
2021
2022 locked = mem_cgroup_oom_trylock(memcg);
2023
2024 if (locked)
2025 mem_cgroup_oom_notify(memcg);
2026
857f2139
HX
2027 schedule();
2028 mem_cgroup_unmark_under_oom(memcg);
2029 finish_wait(&memcg_oom_waitq, &owait.wait);
49426420 2030
18b1d18b 2031 if (locked)
fb2a6fc5 2032 mem_cgroup_oom_unlock(memcg);
49426420 2033cleanup:
626ebc41 2034 current->memcg_in_oom = NULL;
3812c8c8 2035 css_put(&memcg->css);
867578cb 2036 return true;
0b7f569e
KH
2037}
2038
3d8b38eb
RG
2039/**
2040 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2041 * @victim: task to be killed by the OOM killer
2042 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2043 *
2044 * Returns a pointer to a memory cgroup, which has to be cleaned up
2045 * by killing all belonging OOM-killable tasks.
2046 *
2047 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2048 */
2049struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2050 struct mem_cgroup *oom_domain)
2051{
2052 struct mem_cgroup *oom_group = NULL;
2053 struct mem_cgroup *memcg;
2054
2055 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2056 return NULL;
2057
2058 if (!oom_domain)
2059 oom_domain = root_mem_cgroup;
2060
2061 rcu_read_lock();
2062
2063 memcg = mem_cgroup_from_task(victim);
7848ed62 2064 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2065 goto out;
2066
48fe267c
RG
2067 /*
2068 * If the victim task has been asynchronously moved to a different
2069 * memory cgroup, we might end up killing tasks outside oom_domain.
2070 * In this case it's better to ignore memory.group.oom.
2071 */
2072 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2073 goto out;
2074
3d8b38eb
RG
2075 /*
2076 * Traverse the memory cgroup hierarchy from the victim task's
2077 * cgroup up to the OOMing cgroup (or root) to find the
2078 * highest-level memory cgroup with oom.group set.
2079 */
2080 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
eaf7b66b 2081 if (READ_ONCE(memcg->oom_group))
3d8b38eb
RG
2082 oom_group = memcg;
2083
2084 if (memcg == oom_domain)
2085 break;
2086 }
2087
2088 if (oom_group)
2089 css_get(&oom_group->css);
2090out:
2091 rcu_read_unlock();
2092
2093 return oom_group;
2094}
2095
2096void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2097{
2098 pr_info("Tasks in ");
2099 pr_cont_cgroup_path(memcg->css.cgroup);
2100 pr_cont(" are going to be killed due to memory.oom.group set\n");
2101}
2102
d7365e78 2103/**
f70ad448
MWO
2104 * folio_memcg_lock - Bind a folio to its memcg.
2105 * @folio: The folio.
32047e2a 2106 *
f70ad448 2107 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2108 * another cgroup.
2109 *
f70ad448
MWO
2110 * It ensures lifetime of the bound memcg. The caller is responsible
2111 * for the lifetime of the folio.
d69b042f 2112 */
f70ad448 2113void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2114{
2115 struct mem_cgroup *memcg;
6de22619 2116 unsigned long flags;
89c06bd5 2117
6de22619
JW
2118 /*
2119 * The RCU lock is held throughout the transaction. The fast
2120 * path can get away without acquiring the memcg->move_lock
2121 * because page moving starts with an RCU grace period.
739f79fc 2122 */
d7365e78
JW
2123 rcu_read_lock();
2124
2125 if (mem_cgroup_disabled())
1c824a68 2126 return;
89c06bd5 2127again:
f70ad448 2128 memcg = folio_memcg(folio);
29833315 2129 if (unlikely(!memcg))
1c824a68 2130 return;
d7365e78 2131
20ad50d6
AS
2132#ifdef CONFIG_PROVE_LOCKING
2133 local_irq_save(flags);
2134 might_lock(&memcg->move_lock);
2135 local_irq_restore(flags);
2136#endif
2137
bdcbb659 2138 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2139 return;
89c06bd5 2140
6de22619 2141 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2142 if (memcg != folio_memcg(folio)) {
6de22619 2143 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2144 goto again;
2145 }
6de22619
JW
2146
2147 /*
1c824a68
JW
2148 * When charge migration first begins, we can have multiple
2149 * critical sections holding the fast-path RCU lock and one
2150 * holding the slowpath move_lock. Track the task who has the
6c77b607 2151 * move_lock for folio_memcg_unlock().
6de22619
JW
2152 */
2153 memcg->move_lock_task = current;
2154 memcg->move_lock_flags = flags;
89c06bd5 2155}
f70ad448 2156
f70ad448 2157static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2158{
6de22619
JW
2159 if (memcg && memcg->move_lock_task == current) {
2160 unsigned long flags = memcg->move_lock_flags;
2161
2162 memcg->move_lock_task = NULL;
2163 memcg->move_lock_flags = 0;
2164
2165 spin_unlock_irqrestore(&memcg->move_lock, flags);
2166 }
89c06bd5 2167
d7365e78 2168 rcu_read_unlock();
89c06bd5 2169}
739f79fc
JW
2170
2171/**
f70ad448
MWO
2172 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2173 * @folio: The folio.
2174 *
2175 * This releases the binding created by folio_memcg_lock(). This does
2176 * not change the accounting of this folio to its memcg, but it does
2177 * permit others to change it.
739f79fc 2178 */
f70ad448 2179void folio_memcg_unlock(struct folio *folio)
739f79fc 2180{
f70ad448
MWO
2181 __folio_memcg_unlock(folio_memcg(folio));
2182}
9da7b521 2183
fead2b86 2184struct memcg_stock_pcp {
56751146 2185 local_lock_t stock_lock;
fead2b86
MH
2186 struct mem_cgroup *cached; /* this never be root cgroup */
2187 unsigned int nr_pages;
2188
bf4f0599
RG
2189#ifdef CONFIG_MEMCG_KMEM
2190 struct obj_cgroup *cached_objcg;
68ac5b3c 2191 struct pglist_data *cached_pgdat;
bf4f0599 2192 unsigned int nr_bytes;
68ac5b3c
WL
2193 int nr_slab_reclaimable_b;
2194 int nr_slab_unreclaimable_b;
bf4f0599
RG
2195#endif
2196
cdec2e42 2197 struct work_struct work;
26fe6168 2198 unsigned long flags;
a0db00fc 2199#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2200};
56751146
SAS
2201static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2202 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2203};
9f50fad6 2204static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2205
bf4f0599 2206#ifdef CONFIG_MEMCG_KMEM
56751146 2207static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2208static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2209 struct mem_cgroup *root_memcg);
a8c49af3 2210static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2211
2212#else
56751146 2213static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2214{
56751146 2215 return NULL;
bf4f0599
RG
2216}
2217static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2218 struct mem_cgroup *root_memcg)
2219{
2220 return false;
2221}
a8c49af3
YA
2222static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2223{
2224}
bf4f0599
RG
2225#endif
2226
a0956d54
SS
2227/**
2228 * consume_stock: Try to consume stocked charge on this cpu.
2229 * @memcg: memcg to consume from.
2230 * @nr_pages: how many pages to charge.
2231 *
2232 * The charges will only happen if @memcg matches the current cpu's memcg
2233 * stock, and at least @nr_pages are available in that stock. Failure to
2234 * service an allocation will refill the stock.
2235 *
2236 * returns true if successful, false otherwise.
cdec2e42 2237 */
a0956d54 2238static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2239{
2240 struct memcg_stock_pcp *stock;
db2ba40c 2241 unsigned long flags;
3e32cb2e 2242 bool ret = false;
cdec2e42 2243
a983b5eb 2244 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2245 return ret;
a0956d54 2246
56751146 2247 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2248
2249 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2250 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
a0956d54 2251 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2252 ret = true;
2253 }
db2ba40c 2254
56751146 2255 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2256
cdec2e42
KH
2257 return ret;
2258}
2259
2260/*
3e32cb2e 2261 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2262 */
2263static void drain_stock(struct memcg_stock_pcp *stock)
2264{
f785a8f2 2265 struct mem_cgroup *old = READ_ONCE(stock->cached);
cdec2e42 2266
1a3e1f40
JW
2267 if (!old)
2268 return;
2269
11c9ea4e 2270 if (stock->nr_pages) {
3e32cb2e 2271 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2272 if (do_memsw_account())
3e32cb2e 2273 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2274 stock->nr_pages = 0;
cdec2e42 2275 }
1a3e1f40
JW
2276
2277 css_put(&old->css);
f785a8f2 2278 WRITE_ONCE(stock->cached, NULL);
cdec2e42
KH
2279}
2280
cdec2e42
KH
2281static void drain_local_stock(struct work_struct *dummy)
2282{
db2ba40c 2283 struct memcg_stock_pcp *stock;
56751146 2284 struct obj_cgroup *old = NULL;
db2ba40c
JW
2285 unsigned long flags;
2286
72f0184c 2287 /*
5c49cf9a
MH
2288 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2289 * drain_stock races is that we always operate on local CPU stock
2290 * here with IRQ disabled
72f0184c 2291 */
56751146 2292 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2293
2294 stock = this_cpu_ptr(&memcg_stock);
56751146 2295 old = drain_obj_stock(stock);
cdec2e42 2296 drain_stock(stock);
26fe6168 2297 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2298
56751146
SAS
2299 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2300 if (old)
2301 obj_cgroup_put(old);
cdec2e42
KH
2302}
2303
2304/*
3e32cb2e 2305 * Cache charges(val) to local per_cpu area.
320cc51d 2306 * This will be consumed by consume_stock() function, later.
cdec2e42 2307 */
af9a3b69 2308static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2309{
db2ba40c 2310 struct memcg_stock_pcp *stock;
cdec2e42 2311
db2ba40c 2312 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2313 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
cdec2e42 2314 drain_stock(stock);
1a3e1f40 2315 css_get(&memcg->css);
f785a8f2 2316 WRITE_ONCE(stock->cached, memcg);
cdec2e42 2317 }
11c9ea4e 2318 stock->nr_pages += nr_pages;
db2ba40c 2319
a983b5eb 2320 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2321 drain_stock(stock);
af9a3b69
JW
2322}
2323
2324static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2325{
2326 unsigned long flags;
475d0487 2327
56751146 2328 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2329 __refill_stock(memcg, nr_pages);
56751146 2330 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2331}
2332
2333/*
c0ff4b85 2334 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2335 * of the hierarchy under it.
cdec2e42 2336 */
6d3d6aa2 2337static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2338{
26fe6168 2339 int cpu, curcpu;
d38144b7 2340
6d3d6aa2
JW
2341 /* If someone's already draining, avoid adding running more workers. */
2342 if (!mutex_trylock(&percpu_charge_mutex))
2343 return;
72f0184c
MH
2344 /*
2345 * Notify other cpus that system-wide "drain" is running
2346 * We do not care about races with the cpu hotplug because cpu down
2347 * as well as workers from this path always operate on the local
2348 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2349 */
0790ed62
SAS
2350 migrate_disable();
2351 curcpu = smp_processor_id();
cdec2e42
KH
2352 for_each_online_cpu(cpu) {
2353 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2354 struct mem_cgroup *memcg;
e1a366be 2355 bool flush = false;
26fe6168 2356
e1a366be 2357 rcu_read_lock();
f785a8f2 2358 memcg = READ_ONCE(stock->cached);
e1a366be
RG
2359 if (memcg && stock->nr_pages &&
2360 mem_cgroup_is_descendant(memcg, root_memcg))
2361 flush = true;
27fb0956 2362 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2363 flush = true;
e1a366be
RG
2364 rcu_read_unlock();
2365
2366 if (flush &&
2367 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2368 if (cpu == curcpu)
2369 drain_local_stock(&stock->work);
6a792697 2370 else if (!cpu_is_isolated(cpu))
d1a05b69
MH
2371 schedule_work_on(cpu, &stock->work);
2372 }
cdec2e42 2373 }
0790ed62 2374 migrate_enable();
9f50fad6 2375 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2376}
2377
2cd21c89
JW
2378static int memcg_hotplug_cpu_dead(unsigned int cpu)
2379{
2380 struct memcg_stock_pcp *stock;
a3d4c05a 2381
2cd21c89
JW
2382 stock = &per_cpu(memcg_stock, cpu);
2383 drain_stock(stock);
a3d4c05a 2384
308167fc 2385 return 0;
cdec2e42
KH
2386}
2387
b3ff9291
CD
2388static unsigned long reclaim_high(struct mem_cgroup *memcg,
2389 unsigned int nr_pages,
2390 gfp_t gfp_mask)
f7e1cb6e 2391{
b3ff9291
CD
2392 unsigned long nr_reclaimed = 0;
2393
f7e1cb6e 2394 do {
e22c6ed9
JW
2395 unsigned long pflags;
2396
d1663a90
JK
2397 if (page_counter_read(&memcg->memory) <=
2398 READ_ONCE(memcg->memory.high))
f7e1cb6e 2399 continue;
e22c6ed9 2400
e27be240 2401 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2402
2403 psi_memstall_enter(&pflags);
b3ff9291 2404 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2405 gfp_mask,
55ab834a 2406 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2407 psi_memstall_leave(&pflags);
4bf17307
CD
2408 } while ((memcg = parent_mem_cgroup(memcg)) &&
2409 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2410
2411 return nr_reclaimed;
f7e1cb6e
JW
2412}
2413
2414static void high_work_func(struct work_struct *work)
2415{
2416 struct mem_cgroup *memcg;
2417
2418 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2419 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2420}
2421
0e4b01df
CD
2422/*
2423 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2424 * enough to still cause a significant slowdown in most cases, while still
2425 * allowing diagnostics and tracing to proceed without becoming stuck.
2426 */
2427#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2428
2429/*
2430 * When calculating the delay, we use these either side of the exponentiation to
2431 * maintain precision and scale to a reasonable number of jiffies (see the table
2432 * below.
2433 *
2434 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2435 * overage ratio to a delay.
ac5ddd0f 2436 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2437 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2438 * to produce a reasonable delay curve.
2439 *
2440 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2441 * reasonable delay curve compared to precision-adjusted overage, not
2442 * penalising heavily at first, but still making sure that growth beyond the
2443 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2444 * example, with a high of 100 megabytes:
2445 *
2446 * +-------+------------------------+
2447 * | usage | time to allocate in ms |
2448 * +-------+------------------------+
2449 * | 100M | 0 |
2450 * | 101M | 6 |
2451 * | 102M | 25 |
2452 * | 103M | 57 |
2453 * | 104M | 102 |
2454 * | 105M | 159 |
2455 * | 106M | 230 |
2456 * | 107M | 313 |
2457 * | 108M | 409 |
2458 * | 109M | 518 |
2459 * | 110M | 639 |
2460 * | 111M | 774 |
2461 * | 112M | 921 |
2462 * | 113M | 1081 |
2463 * | 114M | 1254 |
2464 * | 115M | 1439 |
2465 * | 116M | 1638 |
2466 * | 117M | 1849 |
2467 * | 118M | 2000 |
2468 * | 119M | 2000 |
2469 * | 120M | 2000 |
2470 * +-------+------------------------+
2471 */
2472 #define MEMCG_DELAY_PRECISION_SHIFT 20
2473 #define MEMCG_DELAY_SCALING_SHIFT 14
2474
8a5dbc65 2475static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2476{
8a5dbc65 2477 u64 overage;
b23afb93 2478
8a5dbc65
JK
2479 if (usage <= high)
2480 return 0;
e26733e0 2481
8a5dbc65
JK
2482 /*
2483 * Prevent division by 0 in overage calculation by acting as if
2484 * it was a threshold of 1 page
2485 */
2486 high = max(high, 1UL);
9b8b1754 2487
8a5dbc65
JK
2488 overage = usage - high;
2489 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2490 return div64_u64(overage, high);
2491}
e26733e0 2492
8a5dbc65
JK
2493static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2494{
2495 u64 overage, max_overage = 0;
e26733e0 2496
8a5dbc65
JK
2497 do {
2498 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2499 READ_ONCE(memcg->memory.high));
8a5dbc65 2500 max_overage = max(overage, max_overage);
e26733e0
CD
2501 } while ((memcg = parent_mem_cgroup(memcg)) &&
2502 !mem_cgroup_is_root(memcg));
2503
8a5dbc65
JK
2504 return max_overage;
2505}
2506
4b82ab4f
JK
2507static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2508{
2509 u64 overage, max_overage = 0;
2510
2511 do {
2512 overage = calculate_overage(page_counter_read(&memcg->swap),
2513 READ_ONCE(memcg->swap.high));
2514 if (overage)
2515 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2516 max_overage = max(overage, max_overage);
2517 } while ((memcg = parent_mem_cgroup(memcg)) &&
2518 !mem_cgroup_is_root(memcg));
2519
2520 return max_overage;
2521}
2522
8a5dbc65
JK
2523/*
2524 * Get the number of jiffies that we should penalise a mischievous cgroup which
2525 * is exceeding its memory.high by checking both it and its ancestors.
2526 */
2527static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2528 unsigned int nr_pages,
2529 u64 max_overage)
2530{
2531 unsigned long penalty_jiffies;
2532
e26733e0
CD
2533 if (!max_overage)
2534 return 0;
0e4b01df
CD
2535
2536 /*
0e4b01df
CD
2537 * We use overage compared to memory.high to calculate the number of
2538 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2539 * fairly lenient on small overages, and increasingly harsh when the
2540 * memcg in question makes it clear that it has no intention of stopping
2541 * its crazy behaviour, so we exponentially increase the delay based on
2542 * overage amount.
2543 */
e26733e0
CD
2544 penalty_jiffies = max_overage * max_overage * HZ;
2545 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2546 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2547
2548 /*
2549 * Factor in the task's own contribution to the overage, such that four
2550 * N-sized allocations are throttled approximately the same as one
2551 * 4N-sized allocation.
2552 *
2553 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2554 * larger the current charge patch is than that.
2555 */
ff144e69 2556 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2557}
2558
2559/*
2560 * Scheduled by try_charge() to be executed from the userland return path
2561 * and reclaims memory over the high limit.
2562 */
2563void mem_cgroup_handle_over_high(void)
2564{
2565 unsigned long penalty_jiffies;
2566 unsigned long pflags;
b3ff9291 2567 unsigned long nr_reclaimed;
e26733e0 2568 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2569 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2570 struct mem_cgroup *memcg;
b3ff9291 2571 bool in_retry = false;
e26733e0
CD
2572
2573 if (likely(!nr_pages))
2574 return;
2575
2576 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2577 current->memcg_nr_pages_over_high = 0;
2578
b3ff9291
CD
2579retry_reclaim:
2580 /*
2581 * The allocating task should reclaim at least the batch size, but for
2582 * subsequent retries we only want to do what's necessary to prevent oom
2583 * or breaching resource isolation.
2584 *
2585 * This is distinct from memory.max or page allocator behaviour because
2586 * memory.high is currently batched, whereas memory.max and the page
2587 * allocator run every time an allocation is made.
2588 */
2589 nr_reclaimed = reclaim_high(memcg,
2590 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2591 GFP_KERNEL);
2592
e26733e0
CD
2593 /*
2594 * memory.high is breached and reclaim is unable to keep up. Throttle
2595 * allocators proactively to slow down excessive growth.
2596 */
8a5dbc65
JK
2597 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2598 mem_find_max_overage(memcg));
0e4b01df 2599
4b82ab4f
JK
2600 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2601 swap_find_max_overage(memcg));
2602
ff144e69
JK
2603 /*
2604 * Clamp the max delay per usermode return so as to still keep the
2605 * application moving forwards and also permit diagnostics, albeit
2606 * extremely slowly.
2607 */
2608 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2609
0e4b01df
CD
2610 /*
2611 * Don't sleep if the amount of jiffies this memcg owes us is so low
2612 * that it's not even worth doing, in an attempt to be nice to those who
2613 * go only a small amount over their memory.high value and maybe haven't
2614 * been aggressively reclaimed enough yet.
2615 */
2616 if (penalty_jiffies <= HZ / 100)
2617 goto out;
2618
b3ff9291
CD
2619 /*
2620 * If reclaim is making forward progress but we're still over
2621 * memory.high, we want to encourage that rather than doing allocator
2622 * throttling.
2623 */
2624 if (nr_reclaimed || nr_retries--) {
2625 in_retry = true;
2626 goto retry_reclaim;
2627 }
2628
0e4b01df
CD
2629 /*
2630 * If we exit early, we're guaranteed to die (since
2631 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2632 * need to account for any ill-begotten jiffies to pay them off later.
2633 */
2634 psi_memstall_enter(&pflags);
2635 schedule_timeout_killable(penalty_jiffies);
2636 psi_memstall_leave(&pflags);
2637
2638out:
2639 css_put(&memcg->css);
b23afb93
TH
2640}
2641
c5c8b16b
MS
2642static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2643 unsigned int nr_pages)
8a9f3ccd 2644{
a983b5eb 2645 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2646 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2647 struct mem_cgroup *mem_over_limit;
3e32cb2e 2648 struct page_counter *counter;
6539cc05 2649 unsigned long nr_reclaimed;
a4ebf1b6 2650 bool passed_oom = false;
73b73bac 2651 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2652 bool drained = false;
d6e103a7 2653 bool raised_max_event = false;
e22c6ed9 2654 unsigned long pflags;
a636b327 2655
6539cc05 2656retry:
b6b6cc72 2657 if (consume_stock(memcg, nr_pages))
10d53c74 2658 return 0;
8a9f3ccd 2659
7941d214 2660 if (!do_memsw_account() ||
6071ca52
JW
2661 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2662 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2663 goto done_restock;
7941d214 2664 if (do_memsw_account())
3e32cb2e
JW
2665 page_counter_uncharge(&memcg->memsw, batch);
2666 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2667 } else {
3e32cb2e 2668 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2669 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2670 }
7a81b88c 2671
6539cc05
JW
2672 if (batch > nr_pages) {
2673 batch = nr_pages;
2674 goto retry;
2675 }
6d61ef40 2676
89a28483
JW
2677 /*
2678 * Prevent unbounded recursion when reclaim operations need to
2679 * allocate memory. This might exceed the limits temporarily,
2680 * but we prefer facilitating memory reclaim and getting back
2681 * under the limit over triggering OOM kills in these cases.
2682 */
2683 if (unlikely(current->flags & PF_MEMALLOC))
2684 goto force;
2685
06b078fc
JW
2686 if (unlikely(task_in_memcg_oom(current)))
2687 goto nomem;
2688
d0164adc 2689 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2690 goto nomem;
4b534334 2691
e27be240 2692 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2693 raised_max_event = true;
241994ed 2694
e22c6ed9 2695 psi_memstall_enter(&pflags);
b70a2a21 2696 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
55ab834a 2697 gfp_mask, reclaim_options);
e22c6ed9 2698 psi_memstall_leave(&pflags);
6539cc05 2699
61e02c74 2700 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2701 goto retry;
28c34c29 2702
b70a2a21 2703 if (!drained) {
6d3d6aa2 2704 drain_all_stock(mem_over_limit);
b70a2a21
JW
2705 drained = true;
2706 goto retry;
2707 }
2708
28c34c29
JW
2709 if (gfp_mask & __GFP_NORETRY)
2710 goto nomem;
6539cc05
JW
2711 /*
2712 * Even though the limit is exceeded at this point, reclaim
2713 * may have been able to free some pages. Retry the charge
2714 * before killing the task.
2715 *
2716 * Only for regular pages, though: huge pages are rather
2717 * unlikely to succeed so close to the limit, and we fall back
2718 * to regular pages anyway in case of failure.
2719 */
61e02c74 2720 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2721 goto retry;
2722 /*
2723 * At task move, charge accounts can be doubly counted. So, it's
2724 * better to wait until the end of task_move if something is going on.
2725 */
2726 if (mem_cgroup_wait_acct_move(mem_over_limit))
2727 goto retry;
2728
9b130619
JW
2729 if (nr_retries--)
2730 goto retry;
2731
38d38493 2732 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2733 goto nomem;
2734
a4ebf1b6
VA
2735 /* Avoid endless loop for tasks bypassed by the oom killer */
2736 if (passed_oom && task_is_dying())
2737 goto nomem;
6539cc05 2738
29ef680a
MH
2739 /*
2740 * keep retrying as long as the memcg oom killer is able to make
2741 * a forward progress or bypass the charge if the oom killer
2742 * couldn't make any progress.
2743 */
becdf89d
SB
2744 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2745 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2746 passed_oom = true;
d977aa93 2747 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2748 goto retry;
29ef680a 2749 }
7a81b88c 2750nomem:
1461e8c2
SB
2751 /*
2752 * Memcg doesn't have a dedicated reserve for atomic
2753 * allocations. But like the global atomic pool, we need to
2754 * put the burden of reclaim on regular allocation requests
2755 * and let these go through as privileged allocations.
2756 */
2757 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2758 return -ENOMEM;
10d53c74 2759force:
d6e103a7
RG
2760 /*
2761 * If the allocation has to be enforced, don't forget to raise
2762 * a MEMCG_MAX event.
2763 */
2764 if (!raised_max_event)
2765 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2766
10d53c74
TH
2767 /*
2768 * The allocation either can't fail or will lead to more memory
2769 * being freed very soon. Allow memory usage go over the limit
2770 * temporarily by force charging it.
2771 */
2772 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2773 if (do_memsw_account())
10d53c74 2774 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2775
2776 return 0;
6539cc05
JW
2777
2778done_restock:
2779 if (batch > nr_pages)
2780 refill_stock(memcg, batch - nr_pages);
b23afb93 2781
241994ed 2782 /*
b23afb93
TH
2783 * If the hierarchy is above the normal consumption range, schedule
2784 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2785 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2786 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2787 * not recorded as it most likely matches current's and won't
2788 * change in the meantime. As high limit is checked again before
2789 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2790 */
2791 do {
4b82ab4f
JK
2792 bool mem_high, swap_high;
2793
2794 mem_high = page_counter_read(&memcg->memory) >
2795 READ_ONCE(memcg->memory.high);
2796 swap_high = page_counter_read(&memcg->swap) >
2797 READ_ONCE(memcg->swap.high);
2798
2799 /* Don't bother a random interrupted task */
086f694a 2800 if (!in_task()) {
4b82ab4f 2801 if (mem_high) {
f7e1cb6e
JW
2802 schedule_work(&memcg->high_work);
2803 break;
2804 }
4b82ab4f
JK
2805 continue;
2806 }
2807
2808 if (mem_high || swap_high) {
2809 /*
2810 * The allocating tasks in this cgroup will need to do
2811 * reclaim or be throttled to prevent further growth
2812 * of the memory or swap footprints.
2813 *
2814 * Target some best-effort fairness between the tasks,
2815 * and distribute reclaim work and delay penalties
2816 * based on how much each task is actually allocating.
2817 */
9516a18a 2818 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2819 set_notify_resume(current);
2820 break;
2821 }
241994ed 2822 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2823
c9afe31e
SB
2824 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2825 !(current->flags & PF_MEMALLOC) &&
2826 gfpflags_allow_blocking(gfp_mask)) {
2827 mem_cgroup_handle_over_high();
2828 }
10d53c74 2829 return 0;
7a81b88c 2830}
8a9f3ccd 2831
c5c8b16b
MS
2832static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2833 unsigned int nr_pages)
2834{
2835 if (mem_cgroup_is_root(memcg))
2836 return 0;
2837
2838 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2839}
2840
58056f77 2841static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2842{
ce00a967
JW
2843 if (mem_cgroup_is_root(memcg))
2844 return;
2845
3e32cb2e 2846 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2847 if (do_memsw_account())
3e32cb2e 2848 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2849}
2850
118f2875 2851static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2852{
118f2875 2853 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2854 /*
a5eb011a 2855 * Any of the following ensures page's memcg stability:
0a31bc97 2856 *
a0b5b414
JW
2857 * - the page lock
2858 * - LRU isolation
6c77b607 2859 * - folio_memcg_lock()
a0b5b414 2860 * - exclusive reference
018ee47f 2861 * - mem_cgroup_trylock_pages()
0a31bc97 2862 */
118f2875 2863 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2864}
66e1707b 2865
84c07d11 2866#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2867/*
2868 * The allocated objcg pointers array is not accounted directly.
2869 * Moreover, it should not come from DMA buffer and is not readily
2870 * reclaimable. So those GFP bits should be masked off.
2871 */
2872#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2873
a7ebf564
WL
2874/*
2875 * mod_objcg_mlstate() may be called with irq enabled, so
2876 * mod_memcg_lruvec_state() should be used.
2877 */
2878static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2879 struct pglist_data *pgdat,
2880 enum node_stat_item idx, int nr)
2881{
2882 struct mem_cgroup *memcg;
2883 struct lruvec *lruvec;
2884
2885 rcu_read_lock();
2886 memcg = obj_cgroup_memcg(objcg);
2887 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2888 mod_memcg_lruvec_state(lruvec, idx, nr);
2889 rcu_read_unlock();
2890}
2891
4b5f8d9a
VB
2892int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2893 gfp_t gfp, bool new_slab)
10befea9 2894{
4b5f8d9a 2895 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2896 unsigned long memcg_data;
10befea9
RG
2897 void *vec;
2898
41eb5df1 2899 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2900 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2901 slab_nid(slab));
10befea9
RG
2902 if (!vec)
2903 return -ENOMEM;
2904
2e9bd483 2905 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2906 if (new_slab) {
2e9bd483 2907 /*
4b5f8d9a
VB
2908 * If the slab is brand new and nobody can yet access its
2909 * memcg_data, no synchronization is required and memcg_data can
2910 * be simply assigned.
2e9bd483 2911 */
4b5f8d9a
VB
2912 slab->memcg_data = memcg_data;
2913 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2914 /*
4b5f8d9a
VB
2915 * If the slab is already in use, somebody can allocate and
2916 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2917 * objcg vector should be reused.
2918 */
10befea9 2919 kfree(vec);
2e9bd483
RG
2920 return 0;
2921 }
10befea9 2922
2e9bd483 2923 kmemleak_not_leak(vec);
10befea9
RG
2924 return 0;
2925}
2926
fc4db90f
RG
2927static __always_inline
2928struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2929{
8380ce47 2930 /*
9855609b
RG
2931 * Slab objects are accounted individually, not per-page.
2932 * Memcg membership data for each individual object is saved in
4b5f8d9a 2933 * slab->memcg_data.
8380ce47 2934 */
4b5f8d9a
VB
2935 if (folio_test_slab(folio)) {
2936 struct obj_cgroup **objcgs;
2937 struct slab *slab;
9855609b
RG
2938 unsigned int off;
2939
4b5f8d9a
VB
2940 slab = folio_slab(folio);
2941 objcgs = slab_objcgs(slab);
2942 if (!objcgs)
2943 return NULL;
2944
2945 off = obj_to_index(slab->slab_cache, slab, p);
2946 if (objcgs[off])
2947 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
2948
2949 return NULL;
9855609b 2950 }
8380ce47 2951
bcfe06bf 2952 /*
becacb04 2953 * folio_memcg_check() is used here, because in theory we can encounter
4b5f8d9a
VB
2954 * a folio where the slab flag has been cleared already, but
2955 * slab->memcg_data has not been freed yet
becacb04 2956 * folio_memcg_check() will guarantee that a proper memory
bcfe06bf
RG
2957 * cgroup pointer or NULL will be returned.
2958 */
becacb04 2959 return folio_memcg_check(folio);
8380ce47
RG
2960}
2961
fc4db90f
RG
2962/*
2963 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2964 *
2965 * A passed kernel object can be a slab object, vmalloc object or a generic
2966 * kernel page, so different mechanisms for getting the memory cgroup pointer
2967 * should be used.
2968 *
2969 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2970 * can not know for sure how the kernel object is implemented.
2971 * mem_cgroup_from_obj() can be safely used in such cases.
2972 *
2973 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2974 * cgroup_mutex, etc.
2975 */
2976struct mem_cgroup *mem_cgroup_from_obj(void *p)
2977{
2978 struct folio *folio;
2979
2980 if (mem_cgroup_disabled())
2981 return NULL;
2982
2983 if (unlikely(is_vmalloc_addr(p)))
2984 folio = page_folio(vmalloc_to_page(p));
2985 else
2986 folio = virt_to_folio(p);
2987
2988 return mem_cgroup_from_obj_folio(folio, p);
2989}
2990
2991/*
2992 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2993 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2994 * allocated using vmalloc().
2995 *
2996 * A passed kernel object must be a slab object or a generic kernel page.
2997 *
2998 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2999 * cgroup_mutex, etc.
3000 */
3001struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3002{
3003 if (mem_cgroup_disabled())
3004 return NULL;
3005
3006 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3007}
3008
f4840ccf
JW
3009static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3010{
3011 struct obj_cgroup *objcg = NULL;
3012
7848ed62 3013 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf
JW
3014 objcg = rcu_dereference(memcg->objcg);
3015 if (objcg && obj_cgroup_tryget(objcg))
3016 break;
3017 objcg = NULL;
3018 }
3019 return objcg;
3020}
3021
bf4f0599
RG
3022__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3023{
3024 struct obj_cgroup *objcg = NULL;
3025 struct mem_cgroup *memcg;
3026
279c3393
RG
3027 if (memcg_kmem_bypass())
3028 return NULL;
3029
bf4f0599 3030 rcu_read_lock();
37d5985c
RG
3031 if (unlikely(active_memcg()))
3032 memcg = active_memcg();
bf4f0599
RG
3033 else
3034 memcg = mem_cgroup_from_task(current);
f4840ccf 3035 objcg = __get_obj_cgroup_from_memcg(memcg);
bf4f0599 3036 rcu_read_unlock();
f4840ccf
JW
3037 return objcg;
3038}
3039
3040struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3041{
3042 struct obj_cgroup *objcg;
3043
f7a449f7 3044 if (!memcg_kmem_online())
f4840ccf
JW
3045 return NULL;
3046
3047 if (PageMemcgKmem(page)) {
3048 objcg = __folio_objcg(page_folio(page));
3049 obj_cgroup_get(objcg);
3050 } else {
3051 struct mem_cgroup *memcg;
bf4f0599 3052
f4840ccf
JW
3053 rcu_read_lock();
3054 memcg = __folio_memcg(page_folio(page));
3055 if (memcg)
3056 objcg = __get_obj_cgroup_from_memcg(memcg);
3057 else
3058 objcg = NULL;
3059 rcu_read_unlock();
3060 }
bf4f0599
RG
3061 return objcg;
3062}
3063
a8c49af3
YA
3064static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3065{
3066 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3067 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3068 if (nr_pages > 0)
3069 page_counter_charge(&memcg->kmem, nr_pages);
3070 else
3071 page_counter_uncharge(&memcg->kmem, -nr_pages);
3072 }
3073}
3074
3075
f1286fae
MS
3076/*
3077 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3078 * @objcg: object cgroup to uncharge
3079 * @nr_pages: number of pages to uncharge
3080 */
e74d2259
MS
3081static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3082 unsigned int nr_pages)
3083{
3084 struct mem_cgroup *memcg;
3085
3086 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3087
a8c49af3 3088 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3089 refill_stock(memcg, nr_pages);
e74d2259 3090
e74d2259 3091 css_put(&memcg->css);
e74d2259
MS
3092}
3093
f1286fae
MS
3094/*
3095 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3096 * @objcg: object cgroup to charge
45264778 3097 * @gfp: reclaim mode
92d0510c 3098 * @nr_pages: number of pages to charge
45264778
VD
3099 *
3100 * Returns 0 on success, an error code on failure.
3101 */
f1286fae
MS
3102static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3103 unsigned int nr_pages)
7ae1e1d0 3104{
f1286fae 3105 struct mem_cgroup *memcg;
7ae1e1d0
GC
3106 int ret;
3107
f1286fae
MS
3108 memcg = get_mem_cgroup_from_objcg(objcg);
3109
c5c8b16b 3110 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3111 if (ret)
f1286fae 3112 goto out;
52c29b04 3113
a8c49af3 3114 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3115out:
3116 css_put(&memcg->css);
4b13f64d 3117
f1286fae 3118 return ret;
4b13f64d
RG
3119}
3120
45264778 3121/**
f4b00eab 3122 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3123 * @page: page to charge
3124 * @gfp: reclaim mode
3125 * @order: allocation order
3126 *
3127 * Returns 0 on success, an error code on failure.
3128 */
f4b00eab 3129int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3130{
b4e0b68f 3131 struct obj_cgroup *objcg;
fcff7d7e 3132 int ret = 0;
7ae1e1d0 3133
b4e0b68f
MS
3134 objcg = get_obj_cgroup_from_current();
3135 if (objcg) {
3136 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3137 if (!ret) {
b4e0b68f 3138 page->memcg_data = (unsigned long)objcg |
18b2db3b 3139 MEMCG_DATA_KMEM;
1a3e1f40 3140 return 0;
4d96ba35 3141 }
b4e0b68f 3142 obj_cgroup_put(objcg);
c4159a75 3143 }
d05e83a6 3144 return ret;
7ae1e1d0 3145}
49a18eae 3146
45264778 3147/**
f4b00eab 3148 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3149 * @page: page to uncharge
3150 * @order: allocation order
3151 */
f4b00eab 3152void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3153{
1b7e4464 3154 struct folio *folio = page_folio(page);
b4e0b68f 3155 struct obj_cgroup *objcg;
f3ccb2c4 3156 unsigned int nr_pages = 1 << order;
7ae1e1d0 3157
1b7e4464 3158 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3159 return;
3160
1b7e4464 3161 objcg = __folio_objcg(folio);
b4e0b68f 3162 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3163 folio->memcg_data = 0;
b4e0b68f 3164 obj_cgroup_put(objcg);
60d3fd32 3165}
bf4f0599 3166
68ac5b3c
WL
3167void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3168 enum node_stat_item idx, int nr)
3169{
fead2b86 3170 struct memcg_stock_pcp *stock;
56751146 3171 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3172 unsigned long flags;
3173 int *bytes;
3174
56751146 3175 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3176 stock = this_cpu_ptr(&memcg_stock);
3177
68ac5b3c
WL
3178 /*
3179 * Save vmstat data in stock and skip vmstat array update unless
3180 * accumulating over a page of vmstat data or when pgdat or idx
3181 * changes.
3182 */
3b8abb32 3183 if (READ_ONCE(stock->cached_objcg) != objcg) {
56751146 3184 old = drain_obj_stock(stock);
68ac5b3c
WL
3185 obj_cgroup_get(objcg);
3186 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3187 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3b8abb32 3188 WRITE_ONCE(stock->cached_objcg, objcg);
68ac5b3c
WL
3189 stock->cached_pgdat = pgdat;
3190 } else if (stock->cached_pgdat != pgdat) {
3191 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3192 struct pglist_data *oldpg = stock->cached_pgdat;
3193
68ac5b3c 3194 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3195 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3196 stock->nr_slab_reclaimable_b);
3197 stock->nr_slab_reclaimable_b = 0;
3198 }
3199 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3200 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3201 stock->nr_slab_unreclaimable_b);
3202 stock->nr_slab_unreclaimable_b = 0;
3203 }
3204 stock->cached_pgdat = pgdat;
3205 }
3206
3207 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3208 : &stock->nr_slab_unreclaimable_b;
3209 /*
3210 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3211 * cached locally at least once before pushing it out.
3212 */
3213 if (!*bytes) {
3214 *bytes = nr;
3215 nr = 0;
3216 } else {
3217 *bytes += nr;
3218 if (abs(*bytes) > PAGE_SIZE) {
3219 nr = *bytes;
3220 *bytes = 0;
3221 } else {
3222 nr = 0;
3223 }
3224 }
3225 if (nr)
3226 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3227
56751146
SAS
3228 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3229 if (old)
3230 obj_cgroup_put(old);
68ac5b3c
WL
3231}
3232
bf4f0599
RG
3233static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3234{
fead2b86 3235 struct memcg_stock_pcp *stock;
bf4f0599
RG
3236 unsigned long flags;
3237 bool ret = false;
3238
56751146 3239 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3240
3241 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3242 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
bf4f0599
RG
3243 stock->nr_bytes -= nr_bytes;
3244 ret = true;
3245 }
3246
56751146 3247 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3248
3249 return ret;
3250}
3251
56751146 3252static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 3253{
3b8abb32 3254 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3255
3256 if (!old)
56751146 3257 return NULL;
bf4f0599
RG
3258
3259 if (stock->nr_bytes) {
3260 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3261 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3262
af9a3b69
JW
3263 if (nr_pages) {
3264 struct mem_cgroup *memcg;
3265
3266 memcg = get_mem_cgroup_from_objcg(old);
3267
3268 memcg_account_kmem(memcg, -nr_pages);
3269 __refill_stock(memcg, nr_pages);
3270
3271 css_put(&memcg->css);
3272 }
bf4f0599
RG
3273
3274 /*
3275 * The leftover is flushed to the centralized per-memcg value.
3276 * On the next attempt to refill obj stock it will be moved
3277 * to a per-cpu stock (probably, on an other CPU), see
3278 * refill_obj_stock().
3279 *
3280 * How often it's flushed is a trade-off between the memory
3281 * limit enforcement accuracy and potential CPU contention,
3282 * so it might be changed in the future.
3283 */
3284 atomic_add(nr_bytes, &old->nr_charged_bytes);
3285 stock->nr_bytes = 0;
3286 }
3287
68ac5b3c
WL
3288 /*
3289 * Flush the vmstat data in current stock
3290 */
3291 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3292 if (stock->nr_slab_reclaimable_b) {
3293 mod_objcg_mlstate(old, stock->cached_pgdat,
3294 NR_SLAB_RECLAIMABLE_B,
3295 stock->nr_slab_reclaimable_b);
3296 stock->nr_slab_reclaimable_b = 0;
3297 }
3298 if (stock->nr_slab_unreclaimable_b) {
3299 mod_objcg_mlstate(old, stock->cached_pgdat,
3300 NR_SLAB_UNRECLAIMABLE_B,
3301 stock->nr_slab_unreclaimable_b);
3302 stock->nr_slab_unreclaimable_b = 0;
3303 }
3304 stock->cached_pgdat = NULL;
3305 }
3306
3b8abb32 3307 WRITE_ONCE(stock->cached_objcg, NULL);
56751146
SAS
3308 /*
3309 * The `old' objects needs to be released by the caller via
3310 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3311 */
3312 return old;
bf4f0599
RG
3313}
3314
3315static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3316 struct mem_cgroup *root_memcg)
3317{
3b8abb32 3318 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3319 struct mem_cgroup *memcg;
3320
3b8abb32
RG
3321 if (objcg) {
3322 memcg = obj_cgroup_memcg(objcg);
bf4f0599
RG
3323 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3324 return true;
3325 }
3326
3327 return false;
3328}
3329
5387c904
WL
3330static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3331 bool allow_uncharge)
bf4f0599 3332{
fead2b86 3333 struct memcg_stock_pcp *stock;
56751146 3334 struct obj_cgroup *old = NULL;
bf4f0599 3335 unsigned long flags;
5387c904 3336 unsigned int nr_pages = 0;
bf4f0599 3337
56751146 3338 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3339
3340 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3341 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
56751146 3342 old = drain_obj_stock(stock);
bf4f0599 3343 obj_cgroup_get(objcg);
3b8abb32 3344 WRITE_ONCE(stock->cached_objcg, objcg);
5387c904
WL
3345 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3346 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3347 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3348 }
3349 stock->nr_bytes += nr_bytes;
3350
5387c904
WL
3351 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3352 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3353 stock->nr_bytes &= (PAGE_SIZE - 1);
3354 }
bf4f0599 3355
56751146
SAS
3356 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3357 if (old)
3358 obj_cgroup_put(old);
5387c904
WL
3359
3360 if (nr_pages)
3361 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3362}
3363
3364int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3365{
bf4f0599
RG
3366 unsigned int nr_pages, nr_bytes;
3367 int ret;
3368
3369 if (consume_obj_stock(objcg, size))
3370 return 0;
3371
3372 /*
5387c904 3373 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3374 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3375 * flushing objcg->nr_charged_bytes requires two atomic
3376 * operations, and objcg->nr_charged_bytes can't be big.
3377 * The shared objcg->nr_charged_bytes can also become a
3378 * performance bottleneck if all tasks of the same memcg are
3379 * trying to update it. So it's better to ignore it and try
3380 * grab some new pages. The stock's nr_bytes will be flushed to
3381 * objcg->nr_charged_bytes later on when objcg changes.
3382 *
3383 * The stock's nr_bytes may contain enough pre-charged bytes
3384 * to allow one less page from being charged, but we can't rely
3385 * on the pre-charged bytes not being changed outside of
3386 * consume_obj_stock() or refill_obj_stock(). So ignore those
3387 * pre-charged bytes as well when charging pages. To avoid a
3388 * page uncharge right after a page charge, we set the
3389 * allow_uncharge flag to false when calling refill_obj_stock()
3390 * to temporarily allow the pre-charged bytes to exceed the page
3391 * size limit. The maximum reachable value of the pre-charged
3392 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3393 * race.
bf4f0599 3394 */
bf4f0599
RG
3395 nr_pages = size >> PAGE_SHIFT;
3396 nr_bytes = size & (PAGE_SIZE - 1);
3397
3398 if (nr_bytes)
3399 nr_pages += 1;
3400
e74d2259 3401 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3402 if (!ret && nr_bytes)
5387c904 3403 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3404
bf4f0599
RG
3405 return ret;
3406}
3407
3408void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3409{
5387c904 3410 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3411}
3412
84c07d11 3413#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3414
ca3e0214 3415/*
be6c8982 3416 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3417 */
be6c8982 3418void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3419{
1b7e4464
MWO
3420 struct folio *folio = page_folio(head);
3421 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3422 int i;
ca3e0214 3423
be6c8982 3424 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3425 return;
b070e65c 3426
be6c8982 3427 for (i = 1; i < nr; i++)
1b7e4464 3428 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3429
1b7e4464
MWO
3430 if (folio_memcg_kmem(folio))
3431 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3432 else
3433 css_get_many(&memcg->css, nr - 1);
ca3e0214 3434}
ca3e0214 3435
e55b9f96 3436#ifdef CONFIG_SWAP
02491447
DN
3437/**
3438 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3439 * @entry: swap entry to be moved
3440 * @from: mem_cgroup which the entry is moved from
3441 * @to: mem_cgroup which the entry is moved to
3442 *
3443 * It succeeds only when the swap_cgroup's record for this entry is the same
3444 * as the mem_cgroup's id of @from.
3445 *
3446 * Returns 0 on success, -EINVAL on failure.
3447 *
3e32cb2e 3448 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3449 * both res and memsw, and called css_get().
3450 */
3451static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3452 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3453{
3454 unsigned short old_id, new_id;
3455
34c00c31
LZ
3456 old_id = mem_cgroup_id(from);
3457 new_id = mem_cgroup_id(to);
02491447
DN
3458
3459 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3460 mod_memcg_state(from, MEMCG_SWAP, -1);
3461 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3462 return 0;
3463 }
3464 return -EINVAL;
3465}
3466#else
3467static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3468 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3469{
3470 return -EINVAL;
3471}
8c7c6e34 3472#endif
d13d1443 3473
bbec2e15 3474static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3475
bbec2e15
RG
3476static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3477 unsigned long max, bool memsw)
628f4235 3478{
3e32cb2e 3479 bool enlarge = false;
bb4a7ea2 3480 bool drained = false;
3e32cb2e 3481 int ret;
c054a78c
YZ
3482 bool limits_invariant;
3483 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3484
3e32cb2e 3485 do {
628f4235
KH
3486 if (signal_pending(current)) {
3487 ret = -EINTR;
3488 break;
3489 }
3e32cb2e 3490
bbec2e15 3491 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3492 /*
3493 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3494 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3495 */
15b42562 3496 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3497 max <= memcg->memsw.max;
c054a78c 3498 if (!limits_invariant) {
bbec2e15 3499 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3500 ret = -EINVAL;
8c7c6e34
KH
3501 break;
3502 }
bbec2e15 3503 if (max > counter->max)
3e32cb2e 3504 enlarge = true;
bbec2e15
RG
3505 ret = page_counter_set_max(counter, max);
3506 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3507
3508 if (!ret)
3509 break;
3510
bb4a7ea2
SB
3511 if (!drained) {
3512 drain_all_stock(memcg);
3513 drained = true;
3514 continue;
3515 }
3516
73b73bac 3517 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3518 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3519 ret = -EBUSY;
3520 break;
3521 }
3522 } while (true);
3e32cb2e 3523
3c11ecf4
KH
3524 if (!ret && enlarge)
3525 memcg_oom_recover(memcg);
3e32cb2e 3526
628f4235
KH
3527 return ret;
3528}
3529
ef8f2327 3530unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3531 gfp_t gfp_mask,
3532 unsigned long *total_scanned)
3533{
3534 unsigned long nr_reclaimed = 0;
ef8f2327 3535 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3536 unsigned long reclaimed;
3537 int loop = 0;
ef8f2327 3538 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3539 unsigned long excess;
0608f43d 3540
e4dde56c
YZ
3541 if (lru_gen_enabled())
3542 return 0;
3543
0608f43d
AM
3544 if (order > 0)
3545 return 0;
3546
2ab082ba 3547 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3548
3549 /*
3550 * Do not even bother to check the largest node if the root
3551 * is empty. Do it lockless to prevent lock bouncing. Races
3552 * are acceptable as soft limit is best effort anyway.
3553 */
bfc7228b 3554 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3555 return 0;
3556
0608f43d
AM
3557 /*
3558 * This loop can run a while, specially if mem_cgroup's continuously
3559 * keep exceeding their soft limit and putting the system under
3560 * pressure
3561 */
3562 do {
3563 if (next_mz)
3564 mz = next_mz;
3565 else
3566 mz = mem_cgroup_largest_soft_limit_node(mctz);
3567 if (!mz)
3568 break;
3569
ef8f2327 3570 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3571 gfp_mask, total_scanned);
0608f43d 3572 nr_reclaimed += reclaimed;
0a31bc97 3573 spin_lock_irq(&mctz->lock);
0608f43d
AM
3574
3575 /*
3576 * If we failed to reclaim anything from this memory cgroup
3577 * it is time to move on to the next cgroup
3578 */
3579 next_mz = NULL;
bc2f2e7f
VD
3580 if (!reclaimed)
3581 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3582
3e32cb2e 3583 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3584 /*
3585 * One school of thought says that we should not add
3586 * back the node to the tree if reclaim returns 0.
3587 * But our reclaim could return 0, simply because due
3588 * to priority we are exposing a smaller subset of
3589 * memory to reclaim from. Consider this as a longer
3590 * term TODO.
3591 */
3592 /* If excess == 0, no tree ops */
cf2c8127 3593 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3594 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3595 css_put(&mz->memcg->css);
3596 loop++;
3597 /*
3598 * Could not reclaim anything and there are no more
3599 * mem cgroups to try or we seem to be looping without
3600 * reclaiming anything.
3601 */
3602 if (!nr_reclaimed &&
3603 (next_mz == NULL ||
3604 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3605 break;
3606 } while (!nr_reclaimed);
3607 if (next_mz)
3608 css_put(&next_mz->memcg->css);
3609 return nr_reclaimed;
3610}
3611
c26251f9 3612/*
51038171 3613 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3614 *
3615 * Caller is responsible for holding css reference for memcg.
3616 */
3617static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3618{
d977aa93 3619 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3620
c1e862c1
KH
3621 /* we call try-to-free pages for make this cgroup empty */
3622 lru_add_drain_all();
d12c60f6
JS
3623
3624 drain_all_stock(memcg);
3625
f817ed48 3626 /* try to free all pages in this cgroup */
3e32cb2e 3627 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3628 if (signal_pending(current))
3629 return -EINTR;
3630
73b73bac 3631 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3632 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3633 nr_retries--;
f817ed48 3634 }
ab5196c2
MH
3635
3636 return 0;
cc847582
KH
3637}
3638
6770c64e
TH
3639static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3640 char *buf, size_t nbytes,
3641 loff_t off)
c1e862c1 3642{
6770c64e 3643 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3644
d8423011
MH
3645 if (mem_cgroup_is_root(memcg))
3646 return -EINVAL;
6770c64e 3647 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3648}
3649
182446d0
TH
3650static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3651 struct cftype *cft)
18f59ea7 3652{
bef8620c 3653 return 1;
18f59ea7
BS
3654}
3655
182446d0
TH
3656static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3657 struct cftype *cft, u64 val)
18f59ea7 3658{
bef8620c 3659 if (val == 1)
0b8f73e1 3660 return 0;
567fb435 3661
bef8620c
RG
3662 pr_warn_once("Non-hierarchical mode is deprecated. "
3663 "Please report your usecase to linux-mm@kvack.org if you "
3664 "depend on this functionality.\n");
567fb435 3665
bef8620c 3666 return -EINVAL;
18f59ea7
BS
3667}
3668
6f646156 3669static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3670{
42a30035 3671 unsigned long val;
ce00a967 3672
3e32cb2e 3673 if (mem_cgroup_is_root(memcg)) {
a2174e95 3674 /*
f82a7a86
YA
3675 * Approximate root's usage from global state. This isn't
3676 * perfect, but the root usage was always an approximation.
a2174e95 3677 */
f82a7a86
YA
3678 val = global_node_page_state(NR_FILE_PAGES) +
3679 global_node_page_state(NR_ANON_MAPPED);
42a30035 3680 if (swap)
f82a7a86 3681 val += total_swap_pages - get_nr_swap_pages();
3e32cb2e 3682 } else {
ce00a967 3683 if (!swap)
3e32cb2e 3684 val = page_counter_read(&memcg->memory);
ce00a967 3685 else
3e32cb2e 3686 val = page_counter_read(&memcg->memsw);
ce00a967 3687 }
c12176d3 3688 return val;
ce00a967
JW
3689}
3690
3e32cb2e
JW
3691enum {
3692 RES_USAGE,
3693 RES_LIMIT,
3694 RES_MAX_USAGE,
3695 RES_FAILCNT,
3696 RES_SOFT_LIMIT,
3697};
ce00a967 3698
791badbd 3699static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3700 struct cftype *cft)
8cdea7c0 3701{
182446d0 3702 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3703 struct page_counter *counter;
af36f906 3704
3e32cb2e 3705 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3706 case _MEM:
3e32cb2e
JW
3707 counter = &memcg->memory;
3708 break;
8c7c6e34 3709 case _MEMSWAP:
3e32cb2e
JW
3710 counter = &memcg->memsw;
3711 break;
510fc4e1 3712 case _KMEM:
3e32cb2e 3713 counter = &memcg->kmem;
510fc4e1 3714 break;
d55f90bf 3715 case _TCP:
0db15298 3716 counter = &memcg->tcpmem;
d55f90bf 3717 break;
8c7c6e34
KH
3718 default:
3719 BUG();
8c7c6e34 3720 }
3e32cb2e
JW
3721
3722 switch (MEMFILE_ATTR(cft->private)) {
3723 case RES_USAGE:
3724 if (counter == &memcg->memory)
c12176d3 3725 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3726 if (counter == &memcg->memsw)
c12176d3 3727 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3728 return (u64)page_counter_read(counter) * PAGE_SIZE;
3729 case RES_LIMIT:
bbec2e15 3730 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3731 case RES_MAX_USAGE:
3732 return (u64)counter->watermark * PAGE_SIZE;
3733 case RES_FAILCNT:
3734 return counter->failcnt;
3735 case RES_SOFT_LIMIT:
2178e20c 3736 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3e32cb2e
JW
3737 default:
3738 BUG();
3739 }
8cdea7c0 3740}
510fc4e1 3741
6b0ba2ab
FS
3742/*
3743 * This function doesn't do anything useful. Its only job is to provide a read
3744 * handler for a file so that cgroup_file_mode() will add read permissions.
3745 */
3746static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3747 __always_unused void *v)
3748{
3749 return -EINVAL;
3750}
3751
84c07d11 3752#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3753static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3754{
bf4f0599 3755 struct obj_cgroup *objcg;
d6441637 3756
9c94bef9 3757 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3758 return 0;
3759
da0efe30
MS
3760 if (unlikely(mem_cgroup_is_root(memcg)))
3761 return 0;
d6441637 3762
bf4f0599 3763 objcg = obj_cgroup_alloc();
f9c69d63 3764 if (!objcg)
bf4f0599 3765 return -ENOMEM;
f9c69d63 3766
bf4f0599
RG
3767 objcg->memcg = memcg;
3768 rcu_assign_pointer(memcg->objcg, objcg);
3769
f7a449f7 3770 static_branch_enable(&memcg_kmem_online_key);
d648bcc7 3771
f9c69d63 3772 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3773
3774 return 0;
d6441637
VD
3775}
3776
8e0a8912
JW
3777static void memcg_offline_kmem(struct mem_cgroup *memcg)
3778{
64268868 3779 struct mem_cgroup *parent;
8e0a8912 3780
9c94bef9 3781 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3782 return;
3783
3784 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3785 return;
9855609b 3786
8e0a8912
JW
3787 parent = parent_mem_cgroup(memcg);
3788 if (!parent)
3789 parent = root_mem_cgroup;
3790
bf4f0599 3791 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3792
8e0a8912 3793 /*
64268868
MS
3794 * After we have finished memcg_reparent_objcgs(), all list_lrus
3795 * corresponding to this cgroup are guaranteed to remain empty.
3796 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3797 * memcg_reparent_list_lrus().
8e0a8912 3798 */
1f391eb2 3799 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3800}
d6441637 3801#else
0b8f73e1 3802static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3803{
3804 return 0;
3805}
3806static void memcg_offline_kmem(struct mem_cgroup *memcg)
3807{
3808}
84c07d11 3809#endif /* CONFIG_MEMCG_KMEM */
127424c8 3810
bbec2e15 3811static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3812{
3813 int ret;
3814
bbec2e15 3815 mutex_lock(&memcg_max_mutex);
d55f90bf 3816
bbec2e15 3817 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3818 if (ret)
3819 goto out;
3820
0db15298 3821 if (!memcg->tcpmem_active) {
d55f90bf
VD
3822 /*
3823 * The active flag needs to be written after the static_key
3824 * update. This is what guarantees that the socket activation
2d758073
JW
3825 * function is the last one to run. See mem_cgroup_sk_alloc()
3826 * for details, and note that we don't mark any socket as
3827 * belonging to this memcg until that flag is up.
d55f90bf
VD
3828 *
3829 * We need to do this, because static_keys will span multiple
3830 * sites, but we can't control their order. If we mark a socket
3831 * as accounted, but the accounting functions are not patched in
3832 * yet, we'll lose accounting.
3833 *
2d758073 3834 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3835 * because when this value change, the code to process it is not
3836 * patched in yet.
3837 */
3838 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3839 memcg->tcpmem_active = true;
d55f90bf
VD
3840 }
3841out:
bbec2e15 3842 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3843 return ret;
3844}
d55f90bf 3845
628f4235
KH
3846/*
3847 * The user of this function is...
3848 * RES_LIMIT.
3849 */
451af504
TH
3850static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3851 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3852{
451af504 3853 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3854 unsigned long nr_pages;
628f4235
KH
3855 int ret;
3856
451af504 3857 buf = strstrip(buf);
650c5e56 3858 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3859 if (ret)
3860 return ret;
af36f906 3861
3e32cb2e 3862 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3863 case RES_LIMIT:
4b3bde4c
BS
3864 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3865 ret = -EINVAL;
3866 break;
3867 }
3e32cb2e
JW
3868 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3869 case _MEM:
bbec2e15 3870 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3871 break;
3e32cb2e 3872 case _MEMSWAP:
bbec2e15 3873 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3874 break;
3e32cb2e 3875 case _KMEM:
58056f77
SB
3876 /* kmem.limit_in_bytes is deprecated. */
3877 ret = -EOPNOTSUPP;
3e32cb2e 3878 break;
d55f90bf 3879 case _TCP:
bbec2e15 3880 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3881 break;
3e32cb2e 3882 }
296c81d8 3883 break;
3e32cb2e 3884 case RES_SOFT_LIMIT:
2343e88d
SAS
3885 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3886 ret = -EOPNOTSUPP;
3887 } else {
2178e20c 3888 WRITE_ONCE(memcg->soft_limit, nr_pages);
2343e88d
SAS
3889 ret = 0;
3890 }
628f4235
KH
3891 break;
3892 }
451af504 3893 return ret ?: nbytes;
8cdea7c0
BS
3894}
3895
6770c64e
TH
3896static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3897 size_t nbytes, loff_t off)
c84872e1 3898{
6770c64e 3899 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3900 struct page_counter *counter;
c84872e1 3901
3e32cb2e
JW
3902 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3903 case _MEM:
3904 counter = &memcg->memory;
3905 break;
3906 case _MEMSWAP:
3907 counter = &memcg->memsw;
3908 break;
3909 case _KMEM:
3910 counter = &memcg->kmem;
3911 break;
d55f90bf 3912 case _TCP:
0db15298 3913 counter = &memcg->tcpmem;
d55f90bf 3914 break;
3e32cb2e
JW
3915 default:
3916 BUG();
3917 }
af36f906 3918
3e32cb2e 3919 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3920 case RES_MAX_USAGE:
3e32cb2e 3921 page_counter_reset_watermark(counter);
29f2a4da
PE
3922 break;
3923 case RES_FAILCNT:
3e32cb2e 3924 counter->failcnt = 0;
29f2a4da 3925 break;
3e32cb2e
JW
3926 default:
3927 BUG();
29f2a4da 3928 }
f64c3f54 3929
6770c64e 3930 return nbytes;
c84872e1
PE
3931}
3932
182446d0 3933static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3934 struct cftype *cft)
3935{
182446d0 3936 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3937}
3938
02491447 3939#ifdef CONFIG_MMU
182446d0 3940static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3941 struct cftype *cft, u64 val)
3942{
182446d0 3943 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3944
da34a848
JW
3945 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3946 "Please report your usecase to linux-mm@kvack.org if you "
3947 "depend on this functionality.\n");
3948
1dfab5ab 3949 if (val & ~MOVE_MASK)
7dc74be0 3950 return -EINVAL;
ee5e8472 3951
7dc74be0 3952 /*
ee5e8472
GC
3953 * No kind of locking is needed in here, because ->can_attach() will
3954 * check this value once in the beginning of the process, and then carry
3955 * on with stale data. This means that changes to this value will only
3956 * affect task migrations starting after the change.
7dc74be0 3957 */
c0ff4b85 3958 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3959 return 0;
3960}
02491447 3961#else
182446d0 3962static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3963 struct cftype *cft, u64 val)
3964{
3965 return -ENOSYS;
3966}
3967#endif
7dc74be0 3968
406eb0c9 3969#ifdef CONFIG_NUMA
113b7dfd
JW
3970
3971#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3972#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3973#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3974
3975static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3976 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3977{
867e5e1d 3978 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3979 unsigned long nr = 0;
3980 enum lru_list lru;
3981
3982 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3983
3984 for_each_lru(lru) {
3985 if (!(BIT(lru) & lru_mask))
3986 continue;
dd8657b6
SB
3987 if (tree)
3988 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3989 else
3990 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3991 }
3992 return nr;
3993}
3994
3995static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3996 unsigned int lru_mask,
3997 bool tree)
113b7dfd
JW
3998{
3999 unsigned long nr = 0;
4000 enum lru_list lru;
4001
4002 for_each_lru(lru) {
4003 if (!(BIT(lru) & lru_mask))
4004 continue;
dd8657b6
SB
4005 if (tree)
4006 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4007 else
4008 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
4009 }
4010 return nr;
4011}
4012
2da8ca82 4013static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4014{
25485de6
GT
4015 struct numa_stat {
4016 const char *name;
4017 unsigned int lru_mask;
4018 };
4019
4020 static const struct numa_stat stats[] = {
4021 { "total", LRU_ALL },
4022 { "file", LRU_ALL_FILE },
4023 { "anon", LRU_ALL_ANON },
4024 { "unevictable", BIT(LRU_UNEVICTABLE) },
4025 };
4026 const struct numa_stat *stat;
406eb0c9 4027 int nid;
aa9694bb 4028 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4029
fd25a9e0 4030 mem_cgroup_flush_stats();
2d146aa3 4031
25485de6 4032 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4033 seq_printf(m, "%s=%lu", stat->name,
4034 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4035 false));
4036 for_each_node_state(nid, N_MEMORY)
4037 seq_printf(m, " N%d=%lu", nid,
4038 mem_cgroup_node_nr_lru_pages(memcg, nid,
4039 stat->lru_mask, false));
25485de6 4040 seq_putc(m, '\n');
406eb0c9 4041 }
406eb0c9 4042
071aee13 4043 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4044
4045 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4046 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4047 true));
4048 for_each_node_state(nid, N_MEMORY)
4049 seq_printf(m, " N%d=%lu", nid,
4050 mem_cgroup_node_nr_lru_pages(memcg, nid,
4051 stat->lru_mask, true));
071aee13 4052 seq_putc(m, '\n');
406eb0c9 4053 }
406eb0c9 4054
406eb0c9
YH
4055 return 0;
4056}
4057#endif /* CONFIG_NUMA */
4058
c8713d0b 4059static const unsigned int memcg1_stats[] = {
0d1c2072 4060 NR_FILE_PAGES,
be5d0a74 4061 NR_ANON_MAPPED,
468c3982
JW
4062#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4063 NR_ANON_THPS,
4064#endif
c8713d0b
JW
4065 NR_SHMEM,
4066 NR_FILE_MAPPED,
4067 NR_FILE_DIRTY,
4068 NR_WRITEBACK,
e09b0b61
YS
4069 WORKINGSET_REFAULT_ANON,
4070 WORKINGSET_REFAULT_FILE,
c8713d0b
JW
4071 MEMCG_SWAP,
4072};
4073
4074static const char *const memcg1_stat_names[] = {
4075 "cache",
4076 "rss",
468c3982 4077#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4078 "rss_huge",
468c3982 4079#endif
c8713d0b
JW
4080 "shmem",
4081 "mapped_file",
4082 "dirty",
4083 "writeback",
e09b0b61
YS
4084 "workingset_refault_anon",
4085 "workingset_refault_file",
c8713d0b
JW
4086 "swap",
4087};
4088
df0e53d0 4089/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4090static const unsigned int memcg1_events[] = {
df0e53d0
JW
4091 PGPGIN,
4092 PGPGOUT,
4093 PGFAULT,
4094 PGMAJFAULT,
4095};
4096
dddb44ff 4097static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
d2ceb9b7 4098{
3e32cb2e 4099 unsigned long memory, memsw;
af7c4b0e
JW
4100 struct mem_cgroup *mi;
4101 unsigned int i;
406eb0c9 4102
71cd3113 4103 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4104
fd25a9e0 4105 mem_cgroup_flush_stats();
2d146aa3 4106
71cd3113 4107 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4108 unsigned long nr;
4109
71cd3113 4110 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4111 continue;
468c3982 4112 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
dddb44ff 4113 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
e09b0b61 4114 nr * memcg_page_state_unit(memcg1_stats[i]));
1dd3a273 4115 }
7b854121 4116
df0e53d0 4117 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4118 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4119 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4120
4121 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4122 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4123 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4124 PAGE_SIZE);
af7c4b0e 4125
14067bb3 4126 /* Hierarchical information */
3e32cb2e
JW
4127 memory = memsw = PAGE_COUNTER_MAX;
4128 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4129 memory = min(memory, READ_ONCE(mi->memory.max));
4130 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4131 }
dddb44ff
YA
4132 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4133 (u64)memory * PAGE_SIZE);
7941d214 4134 if (do_memsw_account())
dddb44ff
YA
4135 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4136 (u64)memsw * PAGE_SIZE);
7f016ee8 4137
8de7ecc6 4138 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4139 unsigned long nr;
4140
71cd3113 4141 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4142 continue;
7de2e9f1 4143 nr = memcg_page_state(memcg, memcg1_stats[i]);
dddb44ff 4144 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
e09b0b61 4145 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
af7c4b0e
JW
4146 }
4147
8de7ecc6 4148 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4149 seq_buf_printf(s, "total_%s %llu\n",
4150 vm_event_name(memcg1_events[i]),
4151 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4152
8de7ecc6 4153 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4154 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4155 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4156 PAGE_SIZE);
14067bb3 4157
7f016ee8 4158#ifdef CONFIG_DEBUG_VM
7f016ee8 4159 {
ef8f2327
MG
4160 pg_data_t *pgdat;
4161 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4162 unsigned long anon_cost = 0;
4163 unsigned long file_cost = 0;
7f016ee8 4164
ef8f2327 4165 for_each_online_pgdat(pgdat) {
a3747b53 4166 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4167
1431d4d1
JW
4168 anon_cost += mz->lruvec.anon_cost;
4169 file_cost += mz->lruvec.file_cost;
ef8f2327 4170 }
dddb44ff
YA
4171 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4172 seq_buf_printf(s, "file_cost %lu\n", file_cost);
7f016ee8
KM
4173 }
4174#endif
d2ceb9b7
KH
4175}
4176
182446d0
TH
4177static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4178 struct cftype *cft)
a7885eb8 4179{
182446d0 4180 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4181
1f4c025b 4182 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4183}
4184
182446d0
TH
4185static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4186 struct cftype *cft, u64 val)
a7885eb8 4187{
182446d0 4188 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4189
37bc3cb9 4190 if (val > 200)
a7885eb8
KM
4191 return -EINVAL;
4192
a4792030 4193 if (!mem_cgroup_is_root(memcg))
82b3aa26 4194 WRITE_ONCE(memcg->swappiness, val);
3dae7fec 4195 else
82b3aa26 4196 WRITE_ONCE(vm_swappiness, val);
068b38c1 4197
a7885eb8
KM
4198 return 0;
4199}
4200
2e72b634
KS
4201static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4202{
4203 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4204 unsigned long usage;
2e72b634
KS
4205 int i;
4206
4207 rcu_read_lock();
4208 if (!swap)
2c488db2 4209 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4210 else
2c488db2 4211 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4212
4213 if (!t)
4214 goto unlock;
4215
ce00a967 4216 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4217
4218 /*
748dad36 4219 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4220 * If it's not true, a threshold was crossed after last
4221 * call of __mem_cgroup_threshold().
4222 */
5407a562 4223 i = t->current_threshold;
2e72b634
KS
4224
4225 /*
4226 * Iterate backward over array of thresholds starting from
4227 * current_threshold and check if a threshold is crossed.
4228 * If none of thresholds below usage is crossed, we read
4229 * only one element of the array here.
4230 */
4231 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4232 eventfd_signal(t->entries[i].eventfd, 1);
4233
4234 /* i = current_threshold + 1 */
4235 i++;
4236
4237 /*
4238 * Iterate forward over array of thresholds starting from
4239 * current_threshold+1 and check if a threshold is crossed.
4240 * If none of thresholds above usage is crossed, we read
4241 * only one element of the array here.
4242 */
4243 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4244 eventfd_signal(t->entries[i].eventfd, 1);
4245
4246 /* Update current_threshold */
5407a562 4247 t->current_threshold = i - 1;
2e72b634
KS
4248unlock:
4249 rcu_read_unlock();
4250}
4251
4252static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4253{
ad4ca5f4
KS
4254 while (memcg) {
4255 __mem_cgroup_threshold(memcg, false);
7941d214 4256 if (do_memsw_account())
ad4ca5f4
KS
4257 __mem_cgroup_threshold(memcg, true);
4258
4259 memcg = parent_mem_cgroup(memcg);
4260 }
2e72b634
KS
4261}
4262
4263static int compare_thresholds(const void *a, const void *b)
4264{
4265 const struct mem_cgroup_threshold *_a = a;
4266 const struct mem_cgroup_threshold *_b = b;
4267
2bff24a3
GT
4268 if (_a->threshold > _b->threshold)
4269 return 1;
4270
4271 if (_a->threshold < _b->threshold)
4272 return -1;
4273
4274 return 0;
2e72b634
KS
4275}
4276
c0ff4b85 4277static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4278{
4279 struct mem_cgroup_eventfd_list *ev;
4280
2bcf2e92
MH
4281 spin_lock(&memcg_oom_lock);
4282
c0ff4b85 4283 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4284 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4285
4286 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4287 return 0;
4288}
4289
c0ff4b85 4290static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4291{
7d74b06f
KH
4292 struct mem_cgroup *iter;
4293
c0ff4b85 4294 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4295 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4296}
4297
59b6f873 4298static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4299 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4300{
2c488db2
KS
4301 struct mem_cgroup_thresholds *thresholds;
4302 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4303 unsigned long threshold;
4304 unsigned long usage;
2c488db2 4305 int i, size, ret;
2e72b634 4306
650c5e56 4307 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4308 if (ret)
4309 return ret;
4310
4311 mutex_lock(&memcg->thresholds_lock);
2c488db2 4312
05b84301 4313 if (type == _MEM) {
2c488db2 4314 thresholds = &memcg->thresholds;
ce00a967 4315 usage = mem_cgroup_usage(memcg, false);
05b84301 4316 } else if (type == _MEMSWAP) {
2c488db2 4317 thresholds = &memcg->memsw_thresholds;
ce00a967 4318 usage = mem_cgroup_usage(memcg, true);
05b84301 4319 } else
2e72b634
KS
4320 BUG();
4321
2e72b634 4322 /* Check if a threshold crossed before adding a new one */
2c488db2 4323 if (thresholds->primary)
2e72b634
KS
4324 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4325
2c488db2 4326 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4327
4328 /* Allocate memory for new array of thresholds */
67b8046f 4329 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4330 if (!new) {
2e72b634
KS
4331 ret = -ENOMEM;
4332 goto unlock;
4333 }
2c488db2 4334 new->size = size;
2e72b634
KS
4335
4336 /* Copy thresholds (if any) to new array */
e90342e6
GS
4337 if (thresholds->primary)
4338 memcpy(new->entries, thresholds->primary->entries,
4339 flex_array_size(new, entries, size - 1));
2c488db2 4340
2e72b634 4341 /* Add new threshold */
2c488db2
KS
4342 new->entries[size - 1].eventfd = eventfd;
4343 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4344
4345 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4346 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4347 compare_thresholds, NULL);
4348
4349 /* Find current threshold */
2c488db2 4350 new->current_threshold = -1;
2e72b634 4351 for (i = 0; i < size; i++) {
748dad36 4352 if (new->entries[i].threshold <= usage) {
2e72b634 4353 /*
2c488db2
KS
4354 * new->current_threshold will not be used until
4355 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4356 * it here.
4357 */
2c488db2 4358 ++new->current_threshold;
748dad36
SZ
4359 } else
4360 break;
2e72b634
KS
4361 }
4362
2c488db2
KS
4363 /* Free old spare buffer and save old primary buffer as spare */
4364 kfree(thresholds->spare);
4365 thresholds->spare = thresholds->primary;
4366
4367 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4368
907860ed 4369 /* To be sure that nobody uses thresholds */
2e72b634
KS
4370 synchronize_rcu();
4371
2e72b634
KS
4372unlock:
4373 mutex_unlock(&memcg->thresholds_lock);
4374
4375 return ret;
4376}
4377
59b6f873 4378static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4379 struct eventfd_ctx *eventfd, const char *args)
4380{
59b6f873 4381 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4382}
4383
59b6f873 4384static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4385 struct eventfd_ctx *eventfd, const char *args)
4386{
59b6f873 4387 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4388}
4389
59b6f873 4390static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4391 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4392{
2c488db2
KS
4393 struct mem_cgroup_thresholds *thresholds;
4394 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4395 unsigned long usage;
7d36665a 4396 int i, j, size, entries;
2e72b634
KS
4397
4398 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4399
4400 if (type == _MEM) {
2c488db2 4401 thresholds = &memcg->thresholds;
ce00a967 4402 usage = mem_cgroup_usage(memcg, false);
05b84301 4403 } else if (type == _MEMSWAP) {
2c488db2 4404 thresholds = &memcg->memsw_thresholds;
ce00a967 4405 usage = mem_cgroup_usage(memcg, true);
05b84301 4406 } else
2e72b634
KS
4407 BUG();
4408
371528ca
AV
4409 if (!thresholds->primary)
4410 goto unlock;
4411
2e72b634
KS
4412 /* Check if a threshold crossed before removing */
4413 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4414
4415 /* Calculate new number of threshold */
7d36665a 4416 size = entries = 0;
2c488db2
KS
4417 for (i = 0; i < thresholds->primary->size; i++) {
4418 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4419 size++;
7d36665a
CX
4420 else
4421 entries++;
2e72b634
KS
4422 }
4423
2c488db2 4424 new = thresholds->spare;
907860ed 4425
7d36665a
CX
4426 /* If no items related to eventfd have been cleared, nothing to do */
4427 if (!entries)
4428 goto unlock;
4429
2e72b634
KS
4430 /* Set thresholds array to NULL if we don't have thresholds */
4431 if (!size) {
2c488db2
KS
4432 kfree(new);
4433 new = NULL;
907860ed 4434 goto swap_buffers;
2e72b634
KS
4435 }
4436
2c488db2 4437 new->size = size;
2e72b634
KS
4438
4439 /* Copy thresholds and find current threshold */
2c488db2
KS
4440 new->current_threshold = -1;
4441 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4442 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4443 continue;
4444
2c488db2 4445 new->entries[j] = thresholds->primary->entries[i];
748dad36 4446 if (new->entries[j].threshold <= usage) {
2e72b634 4447 /*
2c488db2 4448 * new->current_threshold will not be used
2e72b634
KS
4449 * until rcu_assign_pointer(), so it's safe to increment
4450 * it here.
4451 */
2c488db2 4452 ++new->current_threshold;
2e72b634
KS
4453 }
4454 j++;
4455 }
4456
907860ed 4457swap_buffers:
2c488db2
KS
4458 /* Swap primary and spare array */
4459 thresholds->spare = thresholds->primary;
8c757763 4460
2c488db2 4461 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4462
907860ed 4463 /* To be sure that nobody uses thresholds */
2e72b634 4464 synchronize_rcu();
6611d8d7
MC
4465
4466 /* If all events are unregistered, free the spare array */
4467 if (!new) {
4468 kfree(thresholds->spare);
4469 thresholds->spare = NULL;
4470 }
371528ca 4471unlock:
2e72b634 4472 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4473}
c1e862c1 4474
59b6f873 4475static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4476 struct eventfd_ctx *eventfd)
4477{
59b6f873 4478 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4479}
4480
59b6f873 4481static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4482 struct eventfd_ctx *eventfd)
4483{
59b6f873 4484 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4485}
4486
59b6f873 4487static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4488 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4489{
9490ff27 4490 struct mem_cgroup_eventfd_list *event;
9490ff27 4491
9490ff27
KH
4492 event = kmalloc(sizeof(*event), GFP_KERNEL);
4493 if (!event)
4494 return -ENOMEM;
4495
1af8efe9 4496 spin_lock(&memcg_oom_lock);
9490ff27
KH
4497
4498 event->eventfd = eventfd;
4499 list_add(&event->list, &memcg->oom_notify);
4500
4501 /* already in OOM ? */
c2b42d3c 4502 if (memcg->under_oom)
9490ff27 4503 eventfd_signal(eventfd, 1);
1af8efe9 4504 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4505
4506 return 0;
4507}
4508
59b6f873 4509static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4510 struct eventfd_ctx *eventfd)
9490ff27 4511{
9490ff27 4512 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4513
1af8efe9 4514 spin_lock(&memcg_oom_lock);
9490ff27 4515
c0ff4b85 4516 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4517 if (ev->eventfd == eventfd) {
4518 list_del(&ev->list);
4519 kfree(ev);
4520 }
4521 }
4522
1af8efe9 4523 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4524}
4525
2da8ca82 4526static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4527{
aa9694bb 4528 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4529
17c56de6 4530 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
c2b42d3c 4531 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4532 seq_printf(sf, "oom_kill %lu\n",
4533 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4534 return 0;
4535}
4536
182446d0 4537static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4538 struct cftype *cft, u64 val)
4539{
182446d0 4540 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4541
4542 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4543 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4544 return -EINVAL;
4545
17c56de6 4546 WRITE_ONCE(memcg->oom_kill_disable, val);
4d845ebf 4547 if (!val)
c0ff4b85 4548 memcg_oom_recover(memcg);
3dae7fec 4549
3c11ecf4
KH
4550 return 0;
4551}
4552
52ebea74
TH
4553#ifdef CONFIG_CGROUP_WRITEBACK
4554
3a8e9ac8
TH
4555#include <trace/events/writeback.h>
4556
841710aa
TH
4557static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4558{
4559 return wb_domain_init(&memcg->cgwb_domain, gfp);
4560}
4561
4562static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4563{
4564 wb_domain_exit(&memcg->cgwb_domain);
4565}
4566
2529bb3a
TH
4567static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4568{
4569 wb_domain_size_changed(&memcg->cgwb_domain);
4570}
4571
841710aa
TH
4572struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4573{
4574 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4575
4576 if (!memcg->css.parent)
4577 return NULL;
4578
4579 return &memcg->cgwb_domain;
4580}
4581
c2aa723a
TH
4582/**
4583 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4584 * @wb: bdi_writeback in question
c5edf9cd
TH
4585 * @pfilepages: out parameter for number of file pages
4586 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4587 * @pdirty: out parameter for number of dirty pages
4588 * @pwriteback: out parameter for number of pages under writeback
4589 *
c5edf9cd
TH
4590 * Determine the numbers of file, headroom, dirty, and writeback pages in
4591 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4592 * is a bit more involved.
c2aa723a 4593 *
c5edf9cd
TH
4594 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4595 * headroom is calculated as the lowest headroom of itself and the
4596 * ancestors. Note that this doesn't consider the actual amount of
4597 * available memory in the system. The caller should further cap
4598 * *@pheadroom accordingly.
c2aa723a 4599 */
c5edf9cd
TH
4600void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4601 unsigned long *pheadroom, unsigned long *pdirty,
4602 unsigned long *pwriteback)
c2aa723a
TH
4603{
4604 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4605 struct mem_cgroup *parent;
c2aa723a 4606
190409ca 4607 mem_cgroup_flush_stats();
c2aa723a 4608
2d146aa3
JW
4609 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4610 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4611 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4612 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4613
2d146aa3 4614 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4615 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4616 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4617 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4618 unsigned long used = page_counter_read(&memcg->memory);
4619
c5edf9cd 4620 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4621 memcg = parent;
4622 }
c2aa723a
TH
4623}
4624
97b27821
TH
4625/*
4626 * Foreign dirty flushing
4627 *
4628 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4629 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4630 * deliberate design decision because honoring per-page ownership in the
4631 * writeback path is complicated, may lead to higher CPU and IO overheads
4632 * and deemed unnecessary given that write-sharing an inode across
4633 * different cgroups isn't a common use-case.
4634 *
4635 * Combined with inode majority-writer ownership switching, this works well
4636 * enough in most cases but there are some pathological cases. For
4637 * example, let's say there are two cgroups A and B which keep writing to
4638 * different but confined parts of the same inode. B owns the inode and
4639 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4640 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4641 * triggering background writeback. A will be slowed down without a way to
4642 * make writeback of the dirty pages happen.
4643 *
f0953a1b 4644 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4645 * severely throttled after making some progress after each
f0953a1b 4646 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4647 * completely idle.
4648 *
4649 * Solving this problem completely requires matching the ownership tracking
4650 * granularities between memcg and writeback in either direction. However,
4651 * the more egregious behaviors can be avoided by simply remembering the
4652 * most recent foreign dirtying events and initiating remote flushes on
4653 * them when local writeback isn't enough to keep the memory clean enough.
4654 *
4655 * The following two functions implement such mechanism. When a foreign
4656 * page - a page whose memcg and writeback ownerships don't match - is
4657 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4658 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4659 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4660 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4661 * foreign bdi_writebacks which haven't expired. Both the numbers of
4662 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4663 * limited to MEMCG_CGWB_FRN_CNT.
4664 *
4665 * The mechanism only remembers IDs and doesn't hold any object references.
4666 * As being wrong occasionally doesn't matter, updates and accesses to the
4667 * records are lockless and racy.
4668 */
9d8053fc 4669void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4670 struct bdi_writeback *wb)
4671{
9d8053fc 4672 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4673 struct memcg_cgwb_frn *frn;
4674 u64 now = get_jiffies_64();
4675 u64 oldest_at = now;
4676 int oldest = -1;
4677 int i;
4678
9d8053fc 4679 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4680
97b27821
TH
4681 /*
4682 * Pick the slot to use. If there is already a slot for @wb, keep
4683 * using it. If not replace the oldest one which isn't being
4684 * written out.
4685 */
4686 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4687 frn = &memcg->cgwb_frn[i];
4688 if (frn->bdi_id == wb->bdi->id &&
4689 frn->memcg_id == wb->memcg_css->id)
4690 break;
4691 if (time_before64(frn->at, oldest_at) &&
4692 atomic_read(&frn->done.cnt) == 1) {
4693 oldest = i;
4694 oldest_at = frn->at;
4695 }
4696 }
4697
4698 if (i < MEMCG_CGWB_FRN_CNT) {
4699 /*
4700 * Re-using an existing one. Update timestamp lazily to
4701 * avoid making the cacheline hot. We want them to be
4702 * reasonably up-to-date and significantly shorter than
4703 * dirty_expire_interval as that's what expires the record.
4704 * Use the shorter of 1s and dirty_expire_interval / 8.
4705 */
4706 unsigned long update_intv =
4707 min_t(unsigned long, HZ,
4708 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4709
4710 if (time_before64(frn->at, now - update_intv))
4711 frn->at = now;
4712 } else if (oldest >= 0) {
4713 /* replace the oldest free one */
4714 frn = &memcg->cgwb_frn[oldest];
4715 frn->bdi_id = wb->bdi->id;
4716 frn->memcg_id = wb->memcg_css->id;
4717 frn->at = now;
4718 }
4719}
4720
4721/* issue foreign writeback flushes for recorded foreign dirtying events */
4722void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4723{
4724 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4725 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4726 u64 now = jiffies_64;
4727 int i;
4728
4729 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4730 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4731
4732 /*
4733 * If the record is older than dirty_expire_interval,
4734 * writeback on it has already started. No need to kick it
4735 * off again. Also, don't start a new one if there's
4736 * already one in flight.
4737 */
4738 if (time_after64(frn->at, now - intv) &&
4739 atomic_read(&frn->done.cnt) == 1) {
4740 frn->at = 0;
3a8e9ac8 4741 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4742 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4743 WB_REASON_FOREIGN_FLUSH,
4744 &frn->done);
4745 }
4746 }
4747}
4748
841710aa
TH
4749#else /* CONFIG_CGROUP_WRITEBACK */
4750
4751static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4752{
4753 return 0;
4754}
4755
4756static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4757{
4758}
4759
2529bb3a
TH
4760static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4761{
4762}
4763
52ebea74
TH
4764#endif /* CONFIG_CGROUP_WRITEBACK */
4765
3bc942f3
TH
4766/*
4767 * DO NOT USE IN NEW FILES.
4768 *
4769 * "cgroup.event_control" implementation.
4770 *
4771 * This is way over-engineered. It tries to support fully configurable
4772 * events for each user. Such level of flexibility is completely
4773 * unnecessary especially in the light of the planned unified hierarchy.
4774 *
4775 * Please deprecate this and replace with something simpler if at all
4776 * possible.
4777 */
4778
79bd9814
TH
4779/*
4780 * Unregister event and free resources.
4781 *
4782 * Gets called from workqueue.
4783 */
3bc942f3 4784static void memcg_event_remove(struct work_struct *work)
79bd9814 4785{
3bc942f3
TH
4786 struct mem_cgroup_event *event =
4787 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4788 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4789
4790 remove_wait_queue(event->wqh, &event->wait);
4791
59b6f873 4792 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4793
4794 /* Notify userspace the event is going away. */
4795 eventfd_signal(event->eventfd, 1);
4796
4797 eventfd_ctx_put(event->eventfd);
4798 kfree(event);
59b6f873 4799 css_put(&memcg->css);
79bd9814
TH
4800}
4801
4802/*
a9a08845 4803 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4804 *
4805 * Called with wqh->lock held and interrupts disabled.
4806 */
ac6424b9 4807static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4808 int sync, void *key)
79bd9814 4809{
3bc942f3
TH
4810 struct mem_cgroup_event *event =
4811 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4812 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4813 __poll_t flags = key_to_poll(key);
79bd9814 4814
a9a08845 4815 if (flags & EPOLLHUP) {
79bd9814
TH
4816 /*
4817 * If the event has been detached at cgroup removal, we
4818 * can simply return knowing the other side will cleanup
4819 * for us.
4820 *
4821 * We can't race against event freeing since the other
4822 * side will require wqh->lock via remove_wait_queue(),
4823 * which we hold.
4824 */
fba94807 4825 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4826 if (!list_empty(&event->list)) {
4827 list_del_init(&event->list);
4828 /*
4829 * We are in atomic context, but cgroup_event_remove()
4830 * may sleep, so we have to call it in workqueue.
4831 */
4832 schedule_work(&event->remove);
4833 }
fba94807 4834 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4835 }
4836
4837 return 0;
4838}
4839
3bc942f3 4840static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4841 wait_queue_head_t *wqh, poll_table *pt)
4842{
3bc942f3
TH
4843 struct mem_cgroup_event *event =
4844 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4845
4846 event->wqh = wqh;
4847 add_wait_queue(wqh, &event->wait);
4848}
4849
4850/*
3bc942f3
TH
4851 * DO NOT USE IN NEW FILES.
4852 *
79bd9814
TH
4853 * Parse input and register new cgroup event handler.
4854 *
4855 * Input must be in format '<event_fd> <control_fd> <args>'.
4856 * Interpretation of args is defined by control file implementation.
4857 */
451af504
TH
4858static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4859 char *buf, size_t nbytes, loff_t off)
79bd9814 4860{
451af504 4861 struct cgroup_subsys_state *css = of_css(of);
fba94807 4862 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4863 struct mem_cgroup_event *event;
79bd9814
TH
4864 struct cgroup_subsys_state *cfile_css;
4865 unsigned int efd, cfd;
4866 struct fd efile;
4867 struct fd cfile;
4a7ba45b 4868 struct dentry *cdentry;
fba94807 4869 const char *name;
79bd9814
TH
4870 char *endp;
4871 int ret;
4872
2343e88d
SAS
4873 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4874 return -EOPNOTSUPP;
4875
451af504
TH
4876 buf = strstrip(buf);
4877
4878 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4879 if (*endp != ' ')
4880 return -EINVAL;
451af504 4881 buf = endp + 1;
79bd9814 4882
451af504 4883 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4884 if ((*endp != ' ') && (*endp != '\0'))
4885 return -EINVAL;
451af504 4886 buf = endp + 1;
79bd9814
TH
4887
4888 event = kzalloc(sizeof(*event), GFP_KERNEL);
4889 if (!event)
4890 return -ENOMEM;
4891
59b6f873 4892 event->memcg = memcg;
79bd9814 4893 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4894 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4895 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4896 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4897
4898 efile = fdget(efd);
4899 if (!efile.file) {
4900 ret = -EBADF;
4901 goto out_kfree;
4902 }
4903
4904 event->eventfd = eventfd_ctx_fileget(efile.file);
4905 if (IS_ERR(event->eventfd)) {
4906 ret = PTR_ERR(event->eventfd);
4907 goto out_put_efile;
4908 }
4909
4910 cfile = fdget(cfd);
4911 if (!cfile.file) {
4912 ret = -EBADF;
4913 goto out_put_eventfd;
4914 }
4915
4916 /* the process need read permission on control file */
4917 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4918 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4919 if (ret < 0)
4920 goto out_put_cfile;
4921
4a7ba45b
TH
4922 /*
4923 * The control file must be a regular cgroup1 file. As a regular cgroup
4924 * file can't be renamed, it's safe to access its name afterwards.
4925 */
4926 cdentry = cfile.file->f_path.dentry;
4927 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4928 ret = -EINVAL;
4929 goto out_put_cfile;
4930 }
4931
fba94807
TH
4932 /*
4933 * Determine the event callbacks and set them in @event. This used
4934 * to be done via struct cftype but cgroup core no longer knows
4935 * about these events. The following is crude but the whole thing
4936 * is for compatibility anyway.
3bc942f3
TH
4937 *
4938 * DO NOT ADD NEW FILES.
fba94807 4939 */
4a7ba45b 4940 name = cdentry->d_name.name;
fba94807
TH
4941
4942 if (!strcmp(name, "memory.usage_in_bytes")) {
4943 event->register_event = mem_cgroup_usage_register_event;
4944 event->unregister_event = mem_cgroup_usage_unregister_event;
4945 } else if (!strcmp(name, "memory.oom_control")) {
4946 event->register_event = mem_cgroup_oom_register_event;
4947 event->unregister_event = mem_cgroup_oom_unregister_event;
4948 } else if (!strcmp(name, "memory.pressure_level")) {
4949 event->register_event = vmpressure_register_event;
4950 event->unregister_event = vmpressure_unregister_event;
4951 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4952 event->register_event = memsw_cgroup_usage_register_event;
4953 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4954 } else {
4955 ret = -EINVAL;
4956 goto out_put_cfile;
4957 }
4958
79bd9814 4959 /*
b5557c4c
TH
4960 * Verify @cfile should belong to @css. Also, remaining events are
4961 * automatically removed on cgroup destruction but the removal is
4962 * asynchronous, so take an extra ref on @css.
79bd9814 4963 */
4a7ba45b 4964 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 4965 &memory_cgrp_subsys);
79bd9814 4966 ret = -EINVAL;
5a17f543 4967 if (IS_ERR(cfile_css))
79bd9814 4968 goto out_put_cfile;
5a17f543
TH
4969 if (cfile_css != css) {
4970 css_put(cfile_css);
79bd9814 4971 goto out_put_cfile;
5a17f543 4972 }
79bd9814 4973
451af504 4974 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4975 if (ret)
4976 goto out_put_css;
4977
9965ed17 4978 vfs_poll(efile.file, &event->pt);
79bd9814 4979
4ba9515d 4980 spin_lock_irq(&memcg->event_list_lock);
fba94807 4981 list_add(&event->list, &memcg->event_list);
4ba9515d 4982 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4983
4984 fdput(cfile);
4985 fdput(efile);
4986
451af504 4987 return nbytes;
79bd9814
TH
4988
4989out_put_css:
b5557c4c 4990 css_put(css);
79bd9814
TH
4991out_put_cfile:
4992 fdput(cfile);
4993out_put_eventfd:
4994 eventfd_ctx_put(event->eventfd);
4995out_put_efile:
4996 fdput(efile);
4997out_kfree:
4998 kfree(event);
4999
5000 return ret;
5001}
5002
c29b5b3d
MS
5003#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5004static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5005{
5006 /*
5007 * Deprecated.
df4ae285 5008 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
5009 */
5010 return 0;
5011}
5012#endif
5013
dddb44ff
YA
5014static int memory_stat_show(struct seq_file *m, void *v);
5015
241994ed 5016static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 5017 {
0eea1030 5018 .name = "usage_in_bytes",
8c7c6e34 5019 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5020 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5021 },
c84872e1
PE
5022 {
5023 .name = "max_usage_in_bytes",
8c7c6e34 5024 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5025 .write = mem_cgroup_reset,
791badbd 5026 .read_u64 = mem_cgroup_read_u64,
c84872e1 5027 },
8cdea7c0 5028 {
0eea1030 5029 .name = "limit_in_bytes",
8c7c6e34 5030 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5031 .write = mem_cgroup_write,
791badbd 5032 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5033 },
296c81d8
BS
5034 {
5035 .name = "soft_limit_in_bytes",
5036 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5037 .write = mem_cgroup_write,
791badbd 5038 .read_u64 = mem_cgroup_read_u64,
296c81d8 5039 },
8cdea7c0
BS
5040 {
5041 .name = "failcnt",
8c7c6e34 5042 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5043 .write = mem_cgroup_reset,
791badbd 5044 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5045 },
d2ceb9b7
KH
5046 {
5047 .name = "stat",
dddb44ff 5048 .seq_show = memory_stat_show,
d2ceb9b7 5049 },
c1e862c1
KH
5050 {
5051 .name = "force_empty",
6770c64e 5052 .write = mem_cgroup_force_empty_write,
c1e862c1 5053 },
18f59ea7
BS
5054 {
5055 .name = "use_hierarchy",
5056 .write_u64 = mem_cgroup_hierarchy_write,
5057 .read_u64 = mem_cgroup_hierarchy_read,
5058 },
79bd9814 5059 {
3bc942f3 5060 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5061 .write = memcg_write_event_control,
7dbdb199 5062 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5063 },
a7885eb8
KM
5064 {
5065 .name = "swappiness",
5066 .read_u64 = mem_cgroup_swappiness_read,
5067 .write_u64 = mem_cgroup_swappiness_write,
5068 },
7dc74be0
DN
5069 {
5070 .name = "move_charge_at_immigrate",
5071 .read_u64 = mem_cgroup_move_charge_read,
5072 .write_u64 = mem_cgroup_move_charge_write,
5073 },
9490ff27
KH
5074 {
5075 .name = "oom_control",
2da8ca82 5076 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5077 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5078 },
70ddf637
AV
5079 {
5080 .name = "pressure_level",
6b0ba2ab 5081 .seq_show = mem_cgroup_dummy_seq_show,
70ddf637 5082 },
406eb0c9
YH
5083#ifdef CONFIG_NUMA
5084 {
5085 .name = "numa_stat",
2da8ca82 5086 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5087 },
5088#endif
510fc4e1
GC
5089 {
5090 .name = "kmem.limit_in_bytes",
5091 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5092 .write = mem_cgroup_write,
791badbd 5093 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5094 },
5095 {
5096 .name = "kmem.usage_in_bytes",
5097 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5098 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5099 },
5100 {
5101 .name = "kmem.failcnt",
5102 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5103 .write = mem_cgroup_reset,
791badbd 5104 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5105 },
5106 {
5107 .name = "kmem.max_usage_in_bytes",
5108 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5109 .write = mem_cgroup_reset,
791badbd 5110 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5111 },
a87425a3
YS
5112#if defined(CONFIG_MEMCG_KMEM) && \
5113 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5114 {
5115 .name = "kmem.slabinfo",
c29b5b3d 5116 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5117 },
5118#endif
d55f90bf
VD
5119 {
5120 .name = "kmem.tcp.limit_in_bytes",
5121 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5122 .write = mem_cgroup_write,
5123 .read_u64 = mem_cgroup_read_u64,
5124 },
5125 {
5126 .name = "kmem.tcp.usage_in_bytes",
5127 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5128 .read_u64 = mem_cgroup_read_u64,
5129 },
5130 {
5131 .name = "kmem.tcp.failcnt",
5132 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5133 .write = mem_cgroup_reset,
5134 .read_u64 = mem_cgroup_read_u64,
5135 },
5136 {
5137 .name = "kmem.tcp.max_usage_in_bytes",
5138 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5139 .write = mem_cgroup_reset,
5140 .read_u64 = mem_cgroup_read_u64,
5141 },
6bc10349 5142 { }, /* terminate */
af36f906 5143};
8c7c6e34 5144
73f576c0
JW
5145/*
5146 * Private memory cgroup IDR
5147 *
5148 * Swap-out records and page cache shadow entries need to store memcg
5149 * references in constrained space, so we maintain an ID space that is
5150 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5151 * memory-controlled cgroups to 64k.
5152 *
b8f2935f 5153 * However, there usually are many references to the offline CSS after
73f576c0
JW
5154 * the cgroup has been destroyed, such as page cache or reclaimable
5155 * slab objects, that don't need to hang on to the ID. We want to keep
5156 * those dead CSS from occupying IDs, or we might quickly exhaust the
5157 * relatively small ID space and prevent the creation of new cgroups
5158 * even when there are much fewer than 64k cgroups - possibly none.
5159 *
5160 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5161 * be freed and recycled when it's no longer needed, which is usually
5162 * when the CSS is offlined.
5163 *
5164 * The only exception to that are records of swapped out tmpfs/shmem
5165 * pages that need to be attributed to live ancestors on swapin. But
5166 * those references are manageable from userspace.
5167 */
5168
5169static DEFINE_IDR(mem_cgroup_idr);
5170
7e97de0b
KT
5171static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5172{
5173 if (memcg->id.id > 0) {
5174 idr_remove(&mem_cgroup_idr, memcg->id.id);
5175 memcg->id.id = 0;
5176 }
5177}
5178
c1514c0a
VF
5179static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5180 unsigned int n)
73f576c0 5181{
1c2d479a 5182 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5183}
5184
615d66c3 5185static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5186{
1c2d479a 5187 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5188 mem_cgroup_id_remove(memcg);
73f576c0
JW
5189
5190 /* Memcg ID pins CSS */
5191 css_put(&memcg->css);
5192 }
5193}
5194
615d66c3
VD
5195static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5196{
5197 mem_cgroup_id_put_many(memcg, 1);
5198}
5199
73f576c0
JW
5200/**
5201 * mem_cgroup_from_id - look up a memcg from a memcg id
5202 * @id: the memcg id to look up
5203 *
5204 * Caller must hold rcu_read_lock().
5205 */
5206struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5207{
5208 WARN_ON_ONCE(!rcu_read_lock_held());
5209 return idr_find(&mem_cgroup_idr, id);
5210}
5211
c15187a4
RG
5212#ifdef CONFIG_SHRINKER_DEBUG
5213struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5214{
5215 struct cgroup *cgrp;
5216 struct cgroup_subsys_state *css;
5217 struct mem_cgroup *memcg;
5218
5219 cgrp = cgroup_get_from_id(ino);
fa7e439c 5220 if (IS_ERR(cgrp))
c0f2df49 5221 return ERR_CAST(cgrp);
c15187a4
RG
5222
5223 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5224 if (css)
5225 memcg = container_of(css, struct mem_cgroup, css);
5226 else
5227 memcg = ERR_PTR(-ENOENT);
5228
5229 cgroup_put(cgrp);
5230
5231 return memcg;
5232}
5233#endif
5234
ef8f2327 5235static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5236{
5237 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5238
5239 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5240 if (!pn)
5241 return 1;
1ecaab2b 5242
7e1c0d6f
SB
5243 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5244 GFP_KERNEL_ACCOUNT);
5245 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5246 kfree(pn);
5247 return 1;
5248 }
5249
ef8f2327 5250 lruvec_init(&pn->lruvec);
ef8f2327
MG
5251 pn->memcg = memcg;
5252
54f72fe0 5253 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5254 return 0;
5255}
5256
ef8f2327 5257static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5258{
00f3ca2c
JW
5259 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5260
4eaf431f
MH
5261 if (!pn)
5262 return;
5263
7e1c0d6f 5264 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5265 kfree(pn);
1ecaab2b
KH
5266}
5267
40e952f9 5268static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5269{
c8b2a36f 5270 int node;
59927fb9 5271
c8b2a36f 5272 for_each_node(node)
ef8f2327 5273 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5274 kfree(memcg->vmstats);
871789d4 5275 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5276 kfree(memcg);
59927fb9 5277}
3afe36b1 5278
40e952f9
TE
5279static void mem_cgroup_free(struct mem_cgroup *memcg)
5280{
ec1c86b2 5281 lru_gen_exit_memcg(memcg);
40e952f9
TE
5282 memcg_wb_domain_exit(memcg);
5283 __mem_cgroup_free(memcg);
5284}
5285
0b8f73e1 5286static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5287{
d142e3e6 5288 struct mem_cgroup *memcg;
6d12e2d8 5289 int node;
97b27821 5290 int __maybe_unused i;
11d67612 5291 long error = -ENOMEM;
8cdea7c0 5292
06b2c3b0 5293 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5294 if (!memcg)
11d67612 5295 return ERR_PTR(error);
0b8f73e1 5296
73f576c0 5297 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5298 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5299 if (memcg->id.id < 0) {
5300 error = memcg->id.id;
73f576c0 5301 goto fail;
11d67612 5302 }
73f576c0 5303
410f8e82
SB
5304 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5305 if (!memcg->vmstats)
5306 goto fail;
5307
3e38e0aa
RG
5308 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5309 GFP_KERNEL_ACCOUNT);
871789d4 5310 if (!memcg->vmstats_percpu)
0b8f73e1 5311 goto fail;
78fb7466 5312
3ed28fa1 5313 for_each_node(node)
ef8f2327 5314 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5315 goto fail;
f64c3f54 5316
0b8f73e1
JW
5317 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5318 goto fail;
28dbc4b6 5319
f7e1cb6e 5320 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5321 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5322 mutex_init(&memcg->thresholds_lock);
5323 spin_lock_init(&memcg->move_lock);
70ddf637 5324 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5325 INIT_LIST_HEAD(&memcg->event_list);
5326 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5327 memcg->socket_pressure = jiffies;
84c07d11 5328#ifdef CONFIG_MEMCG_KMEM
900a38f0 5329 memcg->kmemcg_id = -1;
bf4f0599 5330 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5331#endif
52ebea74
TH
5332#ifdef CONFIG_CGROUP_WRITEBACK
5333 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5334 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5335 memcg->cgwb_frn[i].done =
5336 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5337#endif
5338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5339 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5340 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5341 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5342#endif
73f576c0 5343 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
ec1c86b2 5344 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5345 return memcg;
5346fail:
7e97de0b 5347 mem_cgroup_id_remove(memcg);
40e952f9 5348 __mem_cgroup_free(memcg);
11d67612 5349 return ERR_PTR(error);
d142e3e6
GC
5350}
5351
0b8f73e1
JW
5352static struct cgroup_subsys_state * __ref
5353mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5354{
0b8f73e1 5355 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5356 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5357
b87d8cef 5358 old_memcg = set_active_memcg(parent);
0b8f73e1 5359 memcg = mem_cgroup_alloc();
b87d8cef 5360 set_active_memcg(old_memcg);
11d67612
YS
5361 if (IS_ERR(memcg))
5362 return ERR_CAST(memcg);
d142e3e6 5363
d1663a90 5364 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5365 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
f4840ccf
JW
5366#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5367 memcg->zswap_max = PAGE_COUNTER_MAX;
5368#endif
4b82ab4f 5369 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1 5370 if (parent) {
82b3aa26 5371 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
17c56de6 5372 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
bef8620c 5373
3e32cb2e 5374 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5375 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5376 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5377 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5378 } else {
8278f1c7 5379 init_memcg_events();
bef8620c
RG
5380 page_counter_init(&memcg->memory, NULL);
5381 page_counter_init(&memcg->swap, NULL);
5382 page_counter_init(&memcg->kmem, NULL);
5383 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5384
0b8f73e1
JW
5385 root_mem_cgroup = memcg;
5386 return &memcg->css;
5387 }
5388
f7e1cb6e 5389 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5390 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5391
b6c1a8af
YS
5392#if defined(CONFIG_MEMCG_KMEM)
5393 if (!cgroup_memory_nobpf)
5394 static_branch_inc(&memcg_bpf_enabled_key);
5395#endif
5396
0b8f73e1 5397 return &memcg->css;
0b8f73e1
JW
5398}
5399
73f576c0 5400static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5401{
58fa2a55
VD
5402 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5403
da0efe30
MS
5404 if (memcg_online_kmem(memcg))
5405 goto remove_id;
5406
0a4465d3 5407 /*
e4262c4f 5408 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5409 * by the time the maps are allocated. So, we allocate maps
5410 * here, when for_each_mem_cgroup() can't skip it.
5411 */
da0efe30
MS
5412 if (alloc_shrinker_info(memcg))
5413 goto offline_kmem;
0a4465d3 5414
73f576c0 5415 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5416 refcount_set(&memcg->id.ref, 1);
73f576c0 5417 css_get(css);
aa48e47e
SB
5418
5419 if (unlikely(mem_cgroup_is_root(memcg)))
5420 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
396faf88 5421 FLUSH_TIME);
e4dde56c 5422 lru_gen_online_memcg(memcg);
2f7dd7a4 5423 return 0;
da0efe30
MS
5424offline_kmem:
5425 memcg_offline_kmem(memcg);
5426remove_id:
5427 mem_cgroup_id_remove(memcg);
5428 return -ENOMEM;
8cdea7c0
BS
5429}
5430
eb95419b 5431static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5432{
eb95419b 5433 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5434 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5435
5436 /*
5437 * Unregister events and notify userspace.
5438 * Notify userspace about cgroup removing only after rmdir of cgroup
5439 * directory to avoid race between userspace and kernelspace.
5440 */
4ba9515d 5441 spin_lock_irq(&memcg->event_list_lock);
fba94807 5442 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5443 list_del_init(&event->list);
5444 schedule_work(&event->remove);
5445 }
4ba9515d 5446 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5447
bf8d5d52 5448 page_counter_set_min(&memcg->memory, 0);
23067153 5449 page_counter_set_low(&memcg->memory, 0);
63677c74 5450
567e9ab2 5451 memcg_offline_kmem(memcg);
a178015c 5452 reparent_shrinker_deferred(memcg);
52ebea74 5453 wb_memcg_offline(memcg);
e4dde56c 5454 lru_gen_offline_memcg(memcg);
73f576c0 5455
591edfb1
RG
5456 drain_all_stock(memcg);
5457
73f576c0 5458 mem_cgroup_id_put(memcg);
df878fb0
KH
5459}
5460
6df38689
VD
5461static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5462{
5463 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5464
5465 invalidate_reclaim_iterators(memcg);
e4dde56c 5466 lru_gen_release_memcg(memcg);
6df38689
VD
5467}
5468
eb95419b 5469static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5470{
eb95419b 5471 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5472 int __maybe_unused i;
c268e994 5473
97b27821
TH
5474#ifdef CONFIG_CGROUP_WRITEBACK
5475 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5476 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5477#endif
f7e1cb6e 5478 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5479 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5480
0db15298 5481 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5482 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5483
b6c1a8af
YS
5484#if defined(CONFIG_MEMCG_KMEM)
5485 if (!cgroup_memory_nobpf)
5486 static_branch_dec(&memcg_bpf_enabled_key);
5487#endif
5488
0b8f73e1
JW
5489 vmpressure_cleanup(&memcg->vmpressure);
5490 cancel_work_sync(&memcg->high_work);
5491 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5492 free_shrinker_info(memcg);
0b8f73e1 5493 mem_cgroup_free(memcg);
8cdea7c0
BS
5494}
5495
1ced953b
TH
5496/**
5497 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5498 * @css: the target css
5499 *
5500 * Reset the states of the mem_cgroup associated with @css. This is
5501 * invoked when the userland requests disabling on the default hierarchy
5502 * but the memcg is pinned through dependency. The memcg should stop
5503 * applying policies and should revert to the vanilla state as it may be
5504 * made visible again.
5505 *
5506 * The current implementation only resets the essential configurations.
5507 * This needs to be expanded to cover all the visible parts.
5508 */
5509static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5510{
5511 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5512
bbec2e15
RG
5513 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5514 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5515 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5516 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5517 page_counter_set_min(&memcg->memory, 0);
23067153 5518 page_counter_set_low(&memcg->memory, 0);
d1663a90 5519 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5520 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
4b82ab4f 5521 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5522 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5523}
5524
2d146aa3
JW
5525static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5526{
5527 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5528 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5529 struct memcg_vmstats_percpu *statc;
5530 long delta, v;
7e1c0d6f 5531 int i, nid;
2d146aa3
JW
5532
5533 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5534
5535 for (i = 0; i < MEMCG_NR_STAT; i++) {
5536 /*
5537 * Collect the aggregated propagation counts of groups
5538 * below us. We're in a per-cpu loop here and this is
5539 * a global counter, so the first cycle will get them.
5540 */
410f8e82 5541 delta = memcg->vmstats->state_pending[i];
2d146aa3 5542 if (delta)
410f8e82 5543 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5544
5545 /* Add CPU changes on this level since the last flush */
5546 v = READ_ONCE(statc->state[i]);
5547 if (v != statc->state_prev[i]) {
5548 delta += v - statc->state_prev[i];
5549 statc->state_prev[i] = v;
5550 }
5551
5552 if (!delta)
5553 continue;
5554
5555 /* Aggregate counts on this level and propagate upwards */
410f8e82 5556 memcg->vmstats->state[i] += delta;
2d146aa3 5557 if (parent)
410f8e82 5558 parent->vmstats->state_pending[i] += delta;
2d146aa3
JW
5559 }
5560
8278f1c7 5561 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5562 delta = memcg->vmstats->events_pending[i];
2d146aa3 5563 if (delta)
410f8e82 5564 memcg->vmstats->events_pending[i] = 0;
2d146aa3
JW
5565
5566 v = READ_ONCE(statc->events[i]);
5567 if (v != statc->events_prev[i]) {
5568 delta += v - statc->events_prev[i];
5569 statc->events_prev[i] = v;
5570 }
5571
5572 if (!delta)
5573 continue;
5574
410f8e82 5575 memcg->vmstats->events[i] += delta;
2d146aa3 5576 if (parent)
410f8e82 5577 parent->vmstats->events_pending[i] += delta;
2d146aa3 5578 }
7e1c0d6f
SB
5579
5580 for_each_node_state(nid, N_MEMORY) {
5581 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5582 struct mem_cgroup_per_node *ppn = NULL;
5583 struct lruvec_stats_percpu *lstatc;
5584
5585 if (parent)
5586 ppn = parent->nodeinfo[nid];
5587
5588 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5589
5590 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5591 delta = pn->lruvec_stats.state_pending[i];
5592 if (delta)
5593 pn->lruvec_stats.state_pending[i] = 0;
5594
5595 v = READ_ONCE(lstatc->state[i]);
5596 if (v != lstatc->state_prev[i]) {
5597 delta += v - lstatc->state_prev[i];
5598 lstatc->state_prev[i] = v;
5599 }
5600
5601 if (!delta)
5602 continue;
5603
5604 pn->lruvec_stats.state[i] += delta;
5605 if (ppn)
5606 ppn->lruvec_stats.state_pending[i] += delta;
5607 }
5608 }
2d146aa3
JW
5609}
5610
02491447 5611#ifdef CONFIG_MMU
7dc74be0 5612/* Handlers for move charge at task migration. */
854ffa8d 5613static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5614{
05b84301 5615 int ret;
9476db97 5616
d0164adc
MG
5617 /* Try a single bulk charge without reclaim first, kswapd may wake */
5618 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5619 if (!ret) {
854ffa8d 5620 mc.precharge += count;
854ffa8d
DN
5621 return ret;
5622 }
9476db97 5623
3674534b 5624 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5625 while (count--) {
3674534b 5626 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5627 if (ret)
38c5d72f 5628 return ret;
854ffa8d 5629 mc.precharge++;
9476db97 5630 cond_resched();
854ffa8d 5631 }
9476db97 5632 return 0;
4ffef5fe
DN
5633}
5634
4ffef5fe
DN
5635union mc_target {
5636 struct page *page;
02491447 5637 swp_entry_t ent;
4ffef5fe
DN
5638};
5639
4ffef5fe 5640enum mc_target_type {
8d32ff84 5641 MC_TARGET_NONE = 0,
4ffef5fe 5642 MC_TARGET_PAGE,
02491447 5643 MC_TARGET_SWAP,
c733a828 5644 MC_TARGET_DEVICE,
4ffef5fe
DN
5645};
5646
90254a65
DN
5647static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5648 unsigned long addr, pte_t ptent)
4ffef5fe 5649{
25b2995a 5650 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5651
90254a65
DN
5652 if (!page || !page_mapped(page))
5653 return NULL;
5654 if (PageAnon(page)) {
1dfab5ab 5655 if (!(mc.flags & MOVE_ANON))
90254a65 5656 return NULL;
1dfab5ab
JW
5657 } else {
5658 if (!(mc.flags & MOVE_FILE))
5659 return NULL;
5660 }
90254a65
DN
5661 if (!get_page_unless_zero(page))
5662 return NULL;
5663
5664 return page;
5665}
5666
c733a828 5667#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5668static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5669 pte_t ptent, swp_entry_t *entry)
90254a65 5670{
90254a65
DN
5671 struct page *page = NULL;
5672 swp_entry_t ent = pte_to_swp_entry(ptent);
5673
9a137153 5674 if (!(mc.flags & MOVE_ANON))
90254a65 5675 return NULL;
c733a828
JG
5676
5677 /*
27674ef6
CH
5678 * Handle device private pages that are not accessible by the CPU, but
5679 * stored as special swap entries in the page table.
c733a828
JG
5680 */
5681 if (is_device_private_entry(ent)) {
af5cdaf8 5682 page = pfn_swap_entry_to_page(ent);
27674ef6 5683 if (!get_page_unless_zero(page))
c733a828
JG
5684 return NULL;
5685 return page;
5686 }
5687
9a137153
RC
5688 if (non_swap_entry(ent))
5689 return NULL;
5690
4b91355e 5691 /*
cb691e2f 5692 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5693 * we call find_get_page() with swapper_space directly.
5694 */
f6ab1f7f 5695 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5696 entry->val = ent.val;
90254a65
DN
5697
5698 return page;
5699}
4b91355e
KH
5700#else
5701static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5702 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5703{
5704 return NULL;
5705}
5706#endif
90254a65 5707
87946a72 5708static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5709 unsigned long addr, pte_t ptent)
87946a72 5710{
524984ff
MWO
5711 unsigned long index;
5712 struct folio *folio;
5713
87946a72
DN
5714 if (!vma->vm_file) /* anonymous vma */
5715 return NULL;
1dfab5ab 5716 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5717 return NULL;
5718
524984ff 5719 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5720 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
5721 index = linear_page_index(vma, addr);
5722 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
66dabbb6 5723 if (IS_ERR(folio))
524984ff
MWO
5724 return NULL;
5725 return folio_file_page(folio, index);
87946a72
DN
5726}
5727
b1b0deab
CG
5728/**
5729 * mem_cgroup_move_account - move account of the page
5730 * @page: the page
25843c2b 5731 * @compound: charge the page as compound or small page
b1b0deab
CG
5732 * @from: mem_cgroup which the page is moved from.
5733 * @to: mem_cgroup which the page is moved to. @from != @to.
5734 *
4e0cf05f 5735 * The page must be locked and not on the LRU.
b1b0deab
CG
5736 *
5737 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5738 * from old cgroup.
5739 */
5740static int mem_cgroup_move_account(struct page *page,
f627c2f5 5741 bool compound,
b1b0deab
CG
5742 struct mem_cgroup *from,
5743 struct mem_cgroup *to)
5744{
fcce4672 5745 struct folio *folio = page_folio(page);
ae8af438
KK
5746 struct lruvec *from_vec, *to_vec;
5747 struct pglist_data *pgdat;
fcce4672 5748 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5749 int nid, ret;
b1b0deab
CG
5750
5751 VM_BUG_ON(from == to);
4e0cf05f 5752 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fcce4672 5753 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5754 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab 5755
b1b0deab 5756 ret = -EINVAL;
fcce4672 5757 if (folio_memcg(folio) != from)
4e0cf05f 5758 goto out;
b1b0deab 5759
fcce4672 5760 pgdat = folio_pgdat(folio);
867e5e1d
JW
5761 from_vec = mem_cgroup_lruvec(from, pgdat);
5762 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5763
fcce4672 5764 folio_memcg_lock(folio);
b1b0deab 5765
fcce4672
MWO
5766 if (folio_test_anon(folio)) {
5767 if (folio_mapped(folio)) {
be5d0a74
JW
5768 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5769 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5770 if (folio_test_transhuge(folio)) {
69473e5d
MS
5771 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5772 -nr_pages);
5773 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5774 nr_pages);
468c3982 5775 }
be5d0a74
JW
5776 }
5777 } else {
0d1c2072
JW
5778 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5779 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5780
fcce4672 5781 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5782 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5783 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5784 }
5785
fcce4672 5786 if (folio_mapped(folio)) {
49e50d27
JW
5787 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5788 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5789 }
b1b0deab 5790
fcce4672
MWO
5791 if (folio_test_dirty(folio)) {
5792 struct address_space *mapping = folio_mapping(folio);
c4843a75 5793
f56753ac 5794 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5795 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5796 -nr_pages);
5797 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5798 nr_pages);
5799 }
c4843a75
GT
5800 }
5801 }
5802
c449deb2
HD
5803#ifdef CONFIG_SWAP
5804 if (folio_test_swapcache(folio)) {
5805 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5806 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5807 }
5808#endif
fcce4672 5809 if (folio_test_writeback(folio)) {
ae8af438
KK
5810 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5811 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5812 }
5813
5814 /*
abb242f5
JW
5815 * All state has been migrated, let's switch to the new memcg.
5816 *
bcfe06bf 5817 * It is safe to change page's memcg here because the page
abb242f5
JW
5818 * is referenced, charged, isolated, and locked: we can't race
5819 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5820 * that would rely on a stable page's memory cgroup.
abb242f5 5821 *
6c77b607 5822 * Note that folio_memcg_lock is a memcg lock, not a page lock,
bcfe06bf 5823 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5824 * new memcg that isn't locked, the above state can change
5825 * concurrently again. Make sure we're truly done with it.
b1b0deab 5826 */
abb242f5 5827 smp_mb();
b1b0deab 5828
1a3e1f40
JW
5829 css_get(&to->css);
5830 css_put(&from->css);
5831
fcce4672 5832 folio->memcg_data = (unsigned long)to;
87eaceb3 5833
f70ad448 5834 __folio_memcg_unlock(from);
b1b0deab
CG
5835
5836 ret = 0;
fcce4672 5837 nid = folio_nid(folio);
b1b0deab
CG
5838
5839 local_irq_disable();
6e0110c2 5840 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5841 memcg_check_events(to, nid);
6e0110c2 5842 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5843 memcg_check_events(from, nid);
b1b0deab 5844 local_irq_enable();
b1b0deab
CG
5845out:
5846 return ret;
5847}
5848
7cf7806c
LR
5849/**
5850 * get_mctgt_type - get target type of moving charge
5851 * @vma: the vma the pte to be checked belongs
5852 * @addr: the address corresponding to the pte to be checked
5853 * @ptent: the pte to be checked
5854 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5855 *
5856 * Returns
5857 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5858 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5859 * move charge. if @target is not NULL, the page is stored in target->page
5860 * with extra refcnt got(Callers should handle it).
5861 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5862 * target for charge migration. if @target is not NULL, the entry is stored
5863 * in target->ent.
f25cbb7a
AS
5864 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5865 * thus not on the lru.
df6ad698
JG
5866 * For now we such page is charge like a regular page would be as for all
5867 * intent and purposes it is just special memory taking the place of a
5868 * regular page.
c733a828
JG
5869 *
5870 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5871 *
5872 * Called with pte lock held.
5873 */
5874
8d32ff84 5875static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5876 unsigned long addr, pte_t ptent, union mc_target *target)
5877{
5878 struct page *page = NULL;
8d32ff84 5879 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5880 swp_entry_t ent = { .val = 0 };
5881
5882 if (pte_present(ptent))
5883 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
5884 else if (pte_none_mostly(ptent))
5885 /*
5886 * PTE markers should be treated as a none pte here, separated
5887 * from other swap handling below.
5888 */
5889 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 5890 else if (is_swap_pte(ptent))
48406ef8 5891 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65 5892
4e0cf05f
JW
5893 if (target && page) {
5894 if (!trylock_page(page)) {
5895 put_page(page);
5896 return ret;
5897 }
5898 /*
5899 * page_mapped() must be stable during the move. This
5900 * pte is locked, so if it's present, the page cannot
5901 * become unmapped. If it isn't, we have only partial
5902 * control over the mapped state: the page lock will
5903 * prevent new faults against pagecache and swapcache,
5904 * so an unmapped page cannot become mapped. However,
5905 * if the page is already mapped elsewhere, it can
5906 * unmap, and there is nothing we can do about it.
5907 * Alas, skip moving the page in this case.
5908 */
5909 if (!pte_present(ptent) && page_mapped(page)) {
5910 unlock_page(page);
5911 put_page(page);
5912 return ret;
5913 }
5914 }
5915
90254a65 5916 if (!page && !ent.val)
8d32ff84 5917 return ret;
02491447 5918 if (page) {
02491447 5919 /*
0a31bc97 5920 * Do only loose check w/o serialization.
1306a85a 5921 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5922 * not under LRU exclusion.
02491447 5923 */
bcfe06bf 5924 if (page_memcg(page) == mc.from) {
02491447 5925 ret = MC_TARGET_PAGE;
f25cbb7a
AS
5926 if (is_device_private_page(page) ||
5927 is_device_coherent_page(page))
c733a828 5928 ret = MC_TARGET_DEVICE;
02491447
DN
5929 if (target)
5930 target->page = page;
5931 }
4e0cf05f
JW
5932 if (!ret || !target) {
5933 if (target)
5934 unlock_page(page);
02491447 5935 put_page(page);
4e0cf05f 5936 }
02491447 5937 }
3e14a57b
HY
5938 /*
5939 * There is a swap entry and a page doesn't exist or isn't charged.
5940 * But we cannot move a tail-page in a THP.
5941 */
5942 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5943 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5944 ret = MC_TARGET_SWAP;
5945 if (target)
5946 target->ent = ent;
4ffef5fe 5947 }
4ffef5fe
DN
5948 return ret;
5949}
5950
12724850
NH
5951#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5952/*
d6810d73
HY
5953 * We don't consider PMD mapped swapping or file mapped pages because THP does
5954 * not support them for now.
12724850
NH
5955 * Caller should make sure that pmd_trans_huge(pmd) is true.
5956 */
5957static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5958 unsigned long addr, pmd_t pmd, union mc_target *target)
5959{
5960 struct page *page = NULL;
12724850
NH
5961 enum mc_target_type ret = MC_TARGET_NONE;
5962
84c3fc4e
ZY
5963 if (unlikely(is_swap_pmd(pmd))) {
5964 VM_BUG_ON(thp_migration_supported() &&
5965 !is_pmd_migration_entry(pmd));
5966 return ret;
5967 }
12724850 5968 page = pmd_page(pmd);
309381fe 5969 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5970 if (!(mc.flags & MOVE_ANON))
12724850 5971 return ret;
bcfe06bf 5972 if (page_memcg(page) == mc.from) {
12724850
NH
5973 ret = MC_TARGET_PAGE;
5974 if (target) {
5975 get_page(page);
4e0cf05f
JW
5976 if (!trylock_page(page)) {
5977 put_page(page);
5978 return MC_TARGET_NONE;
5979 }
12724850
NH
5980 target->page = page;
5981 }
5982 }
5983 return ret;
5984}
5985#else
5986static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5987 unsigned long addr, pmd_t pmd, union mc_target *target)
5988{
5989 return MC_TARGET_NONE;
5990}
5991#endif
5992
4ffef5fe
DN
5993static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5994 unsigned long addr, unsigned long end,
5995 struct mm_walk *walk)
5996{
26bcd64a 5997 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5998 pte_t *pte;
5999 spinlock_t *ptl;
6000
b6ec57f4
KS
6001 ptl = pmd_trans_huge_lock(pmd, vma);
6002 if (ptl) {
c733a828
JG
6003 /*
6004 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
6005 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6006 * this might change.
c733a828 6007 */
12724850
NH
6008 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6009 mc.precharge += HPAGE_PMD_NR;
bf929152 6010 spin_unlock(ptl);
1a5a9906 6011 return 0;
12724850 6012 }
03319327 6013
4ffef5fe 6014 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
04dee9e8
HD
6015 if (!pte)
6016 return 0;
4ffef5fe 6017 for (; addr != end; pte++, addr += PAGE_SIZE)
c33c7948 6018 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
4ffef5fe
DN
6019 mc.precharge++; /* increment precharge temporarily */
6020 pte_unmap_unlock(pte - 1, ptl);
6021 cond_resched();
6022
7dc74be0
DN
6023 return 0;
6024}
6025
7b86ac33
CH
6026static const struct mm_walk_ops precharge_walk_ops = {
6027 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6028};
6029
4ffef5fe
DN
6030static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6031{
6032 unsigned long precharge;
4ffef5fe 6033
d8ed45c5 6034 mmap_read_lock(mm);
ba0aff8e 6035 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 6036 mmap_read_unlock(mm);
4ffef5fe
DN
6037
6038 precharge = mc.precharge;
6039 mc.precharge = 0;
6040
6041 return precharge;
6042}
6043
4ffef5fe
DN
6044static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6045{
dfe076b0
DN
6046 unsigned long precharge = mem_cgroup_count_precharge(mm);
6047
6048 VM_BUG_ON(mc.moving_task);
6049 mc.moving_task = current;
6050 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6051}
6052
dfe076b0
DN
6053/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6054static void __mem_cgroup_clear_mc(void)
4ffef5fe 6055{
2bd9bb20
KH
6056 struct mem_cgroup *from = mc.from;
6057 struct mem_cgroup *to = mc.to;
6058
4ffef5fe 6059 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6060 if (mc.precharge) {
00501b53 6061 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6062 mc.precharge = 0;
6063 }
6064 /*
6065 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6066 * we must uncharge here.
6067 */
6068 if (mc.moved_charge) {
00501b53 6069 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6070 mc.moved_charge = 0;
4ffef5fe 6071 }
483c30b5
DN
6072 /* we must fixup refcnts and charges */
6073 if (mc.moved_swap) {
483c30b5 6074 /* uncharge swap account from the old cgroup */
ce00a967 6075 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6076 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6077
615d66c3
VD
6078 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6079
05b84301 6080 /*
3e32cb2e
JW
6081 * we charged both to->memory and to->memsw, so we
6082 * should uncharge to->memory.
05b84301 6083 */
ce00a967 6084 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6085 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6086
483c30b5
DN
6087 mc.moved_swap = 0;
6088 }
dfe076b0
DN
6089 memcg_oom_recover(from);
6090 memcg_oom_recover(to);
6091 wake_up_all(&mc.waitq);
6092}
6093
6094static void mem_cgroup_clear_mc(void)
6095{
264a0ae1
TH
6096 struct mm_struct *mm = mc.mm;
6097
dfe076b0
DN
6098 /*
6099 * we must clear moving_task before waking up waiters at the end of
6100 * task migration.
6101 */
6102 mc.moving_task = NULL;
6103 __mem_cgroup_clear_mc();
2bd9bb20 6104 spin_lock(&mc.lock);
4ffef5fe
DN
6105 mc.from = NULL;
6106 mc.to = NULL;
264a0ae1 6107 mc.mm = NULL;
2bd9bb20 6108 spin_unlock(&mc.lock);
264a0ae1
TH
6109
6110 mmput(mm);
4ffef5fe
DN
6111}
6112
1f7dd3e5 6113static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6114{
1f7dd3e5 6115 struct cgroup_subsys_state *css;
eed67d75 6116 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6117 struct mem_cgroup *from;
4530eddb 6118 struct task_struct *leader, *p;
9f2115f9 6119 struct mm_struct *mm;
1dfab5ab 6120 unsigned long move_flags;
9f2115f9 6121 int ret = 0;
7dc74be0 6122
1f7dd3e5
TH
6123 /* charge immigration isn't supported on the default hierarchy */
6124 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6125 return 0;
6126
4530eddb
TH
6127 /*
6128 * Multi-process migrations only happen on the default hierarchy
6129 * where charge immigration is not used. Perform charge
6130 * immigration if @tset contains a leader and whine if there are
6131 * multiple.
6132 */
6133 p = NULL;
1f7dd3e5 6134 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6135 WARN_ON_ONCE(p);
6136 p = leader;
1f7dd3e5 6137 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6138 }
6139 if (!p)
6140 return 0;
6141
1f7dd3e5 6142 /*
f0953a1b 6143 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6144 * tunable will only affect upcoming migrations, not the current one.
6145 * So we need to save it, and keep it going.
6146 */
6147 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6148 if (!move_flags)
6149 return 0;
6150
9f2115f9
TH
6151 from = mem_cgroup_from_task(p);
6152
6153 VM_BUG_ON(from == memcg);
6154
6155 mm = get_task_mm(p);
6156 if (!mm)
6157 return 0;
6158 /* We move charges only when we move a owner of the mm */
6159 if (mm->owner == p) {
6160 VM_BUG_ON(mc.from);
6161 VM_BUG_ON(mc.to);
6162 VM_BUG_ON(mc.precharge);
6163 VM_BUG_ON(mc.moved_charge);
6164 VM_BUG_ON(mc.moved_swap);
6165
6166 spin_lock(&mc.lock);
264a0ae1 6167 mc.mm = mm;
9f2115f9
TH
6168 mc.from = from;
6169 mc.to = memcg;
6170 mc.flags = move_flags;
6171 spin_unlock(&mc.lock);
6172 /* We set mc.moving_task later */
6173
6174 ret = mem_cgroup_precharge_mc(mm);
6175 if (ret)
6176 mem_cgroup_clear_mc();
264a0ae1
TH
6177 } else {
6178 mmput(mm);
7dc74be0
DN
6179 }
6180 return ret;
6181}
6182
1f7dd3e5 6183static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6184{
4e2f245d
JW
6185 if (mc.to)
6186 mem_cgroup_clear_mc();
7dc74be0
DN
6187}
6188
4ffef5fe
DN
6189static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6190 unsigned long addr, unsigned long end,
6191 struct mm_walk *walk)
7dc74be0 6192{
4ffef5fe 6193 int ret = 0;
26bcd64a 6194 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6195 pte_t *pte;
6196 spinlock_t *ptl;
12724850
NH
6197 enum mc_target_type target_type;
6198 union mc_target target;
6199 struct page *page;
4ffef5fe 6200
b6ec57f4
KS
6201 ptl = pmd_trans_huge_lock(pmd, vma);
6202 if (ptl) {
62ade86a 6203 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6204 spin_unlock(ptl);
12724850
NH
6205 return 0;
6206 }
6207 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6208 if (target_type == MC_TARGET_PAGE) {
6209 page = target.page;
f7f9c00d 6210 if (isolate_lru_page(page)) {
f627c2f5 6211 if (!mem_cgroup_move_account(page, true,
1306a85a 6212 mc.from, mc.to)) {
12724850
NH
6213 mc.precharge -= HPAGE_PMD_NR;
6214 mc.moved_charge += HPAGE_PMD_NR;
6215 }
6216 putback_lru_page(page);
6217 }
4e0cf05f 6218 unlock_page(page);
12724850 6219 put_page(page);
c733a828
JG
6220 } else if (target_type == MC_TARGET_DEVICE) {
6221 page = target.page;
6222 if (!mem_cgroup_move_account(page, true,
6223 mc.from, mc.to)) {
6224 mc.precharge -= HPAGE_PMD_NR;
6225 mc.moved_charge += HPAGE_PMD_NR;
6226 }
4e0cf05f 6227 unlock_page(page);
c733a828 6228 put_page(page);
12724850 6229 }
bf929152 6230 spin_unlock(ptl);
1a5a9906 6231 return 0;
12724850
NH
6232 }
6233
4ffef5fe
DN
6234retry:
6235 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
04dee9e8
HD
6236 if (!pte)
6237 return 0;
4ffef5fe 6238 for (; addr != end; addr += PAGE_SIZE) {
c33c7948 6239 pte_t ptent = ptep_get(pte++);
c733a828 6240 bool device = false;
02491447 6241 swp_entry_t ent;
4ffef5fe
DN
6242
6243 if (!mc.precharge)
6244 break;
6245
8d32ff84 6246 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6247 case MC_TARGET_DEVICE:
6248 device = true;
e4a9bc58 6249 fallthrough;
4ffef5fe
DN
6250 case MC_TARGET_PAGE:
6251 page = target.page;
53f9263b
KS
6252 /*
6253 * We can have a part of the split pmd here. Moving it
6254 * can be done but it would be too convoluted so simply
6255 * ignore such a partial THP and keep it in original
6256 * memcg. There should be somebody mapping the head.
6257 */
6258 if (PageTransCompound(page))
6259 goto put;
f7f9c00d 6260 if (!device && !isolate_lru_page(page))
4ffef5fe 6261 goto put;
f627c2f5
KS
6262 if (!mem_cgroup_move_account(page, false,
6263 mc.from, mc.to)) {
4ffef5fe 6264 mc.precharge--;
854ffa8d
DN
6265 /* we uncharge from mc.from later. */
6266 mc.moved_charge++;
4ffef5fe 6267 }
c733a828
JG
6268 if (!device)
6269 putback_lru_page(page);
4e0cf05f
JW
6270put: /* get_mctgt_type() gets & locks the page */
6271 unlock_page(page);
4ffef5fe
DN
6272 put_page(page);
6273 break;
02491447
DN
6274 case MC_TARGET_SWAP:
6275 ent = target.ent;
e91cbb42 6276 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6277 mc.precharge--;
8d22a935
HD
6278 mem_cgroup_id_get_many(mc.to, 1);
6279 /* we fixup other refcnts and charges later. */
483c30b5
DN
6280 mc.moved_swap++;
6281 }
02491447 6282 break;
4ffef5fe
DN
6283 default:
6284 break;
6285 }
6286 }
6287 pte_unmap_unlock(pte - 1, ptl);
6288 cond_resched();
6289
6290 if (addr != end) {
6291 /*
6292 * We have consumed all precharges we got in can_attach().
6293 * We try charge one by one, but don't do any additional
6294 * charges to mc.to if we have failed in charge once in attach()
6295 * phase.
6296 */
854ffa8d 6297 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6298 if (!ret)
6299 goto retry;
6300 }
6301
6302 return ret;
6303}
6304
7b86ac33
CH
6305static const struct mm_walk_ops charge_walk_ops = {
6306 .pmd_entry = mem_cgroup_move_charge_pte_range,
6307};
6308
264a0ae1 6309static void mem_cgroup_move_charge(void)
4ffef5fe 6310{
4ffef5fe 6311 lru_add_drain_all();
312722cb 6312 /*
6c77b607 6313 * Signal folio_memcg_lock() to take the memcg's move_lock
81f8c3a4
JW
6314 * while we're moving its pages to another memcg. Then wait
6315 * for already started RCU-only updates to finish.
312722cb
JW
6316 */
6317 atomic_inc(&mc.from->moving_account);
6318 synchronize_rcu();
dfe076b0 6319retry:
d8ed45c5 6320 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6321 /*
c1e8d7c6 6322 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6323 * waitq. So we cancel all extra charges, wake up all waiters,
6324 * and retry. Because we cancel precharges, we might not be able
6325 * to move enough charges, but moving charge is a best-effort
6326 * feature anyway, so it wouldn't be a big problem.
6327 */
6328 __mem_cgroup_clear_mc();
6329 cond_resched();
6330 goto retry;
6331 }
26bcd64a
NH
6332 /*
6333 * When we have consumed all precharges and failed in doing
6334 * additional charge, the page walk just aborts.
6335 */
ba0aff8e 6336 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6337 mmap_read_unlock(mc.mm);
312722cb 6338 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6339}
6340
264a0ae1 6341static void mem_cgroup_move_task(void)
67e465a7 6342{
264a0ae1
TH
6343 if (mc.to) {
6344 mem_cgroup_move_charge();
a433658c 6345 mem_cgroup_clear_mc();
264a0ae1 6346 }
67e465a7 6347}
5cfb80a7 6348#else /* !CONFIG_MMU */
1f7dd3e5 6349static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6350{
6351 return 0;
6352}
1f7dd3e5 6353static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6354{
6355}
264a0ae1 6356static void mem_cgroup_move_task(void)
5cfb80a7
DN
6357{
6358}
6359#endif
67e465a7 6360
bd74fdae
YZ
6361#ifdef CONFIG_LRU_GEN
6362static void mem_cgroup_attach(struct cgroup_taskset *tset)
6363{
6364 struct task_struct *task;
6365 struct cgroup_subsys_state *css;
6366
6367 /* find the first leader if there is any */
6368 cgroup_taskset_for_each_leader(task, css, tset)
6369 break;
6370
6371 if (!task)
6372 return;
6373
6374 task_lock(task);
6375 if (task->mm && READ_ONCE(task->mm->owner) == task)
6376 lru_gen_migrate_mm(task->mm);
6377 task_unlock(task);
6378}
6379#else
6380static void mem_cgroup_attach(struct cgroup_taskset *tset)
6381{
6382}
6383#endif /* CONFIG_LRU_GEN */
6384
677dc973
CD
6385static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6386{
6387 if (value == PAGE_COUNTER_MAX)
6388 seq_puts(m, "max\n");
6389 else
6390 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6391
6392 return 0;
6393}
6394
241994ed
JW
6395static u64 memory_current_read(struct cgroup_subsys_state *css,
6396 struct cftype *cft)
6397{
f5fc3c5d
JW
6398 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6399
6400 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6401}
6402
8e20d4b3
GR
6403static u64 memory_peak_read(struct cgroup_subsys_state *css,
6404 struct cftype *cft)
6405{
6406 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6407
6408 return (u64)memcg->memory.watermark * PAGE_SIZE;
6409}
6410
bf8d5d52
RG
6411static int memory_min_show(struct seq_file *m, void *v)
6412{
677dc973
CD
6413 return seq_puts_memcg_tunable(m,
6414 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6415}
6416
6417static ssize_t memory_min_write(struct kernfs_open_file *of,
6418 char *buf, size_t nbytes, loff_t off)
6419{
6420 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6421 unsigned long min;
6422 int err;
6423
6424 buf = strstrip(buf);
6425 err = page_counter_memparse(buf, "max", &min);
6426 if (err)
6427 return err;
6428
6429 page_counter_set_min(&memcg->memory, min);
6430
6431 return nbytes;
6432}
6433
241994ed
JW
6434static int memory_low_show(struct seq_file *m, void *v)
6435{
677dc973
CD
6436 return seq_puts_memcg_tunable(m,
6437 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6438}
6439
6440static ssize_t memory_low_write(struct kernfs_open_file *of,
6441 char *buf, size_t nbytes, loff_t off)
6442{
6443 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6444 unsigned long low;
6445 int err;
6446
6447 buf = strstrip(buf);
d2973697 6448 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6449 if (err)
6450 return err;
6451
23067153 6452 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6453
6454 return nbytes;
6455}
6456
6457static int memory_high_show(struct seq_file *m, void *v)
6458{
d1663a90
JK
6459 return seq_puts_memcg_tunable(m,
6460 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6461}
6462
6463static ssize_t memory_high_write(struct kernfs_open_file *of,
6464 char *buf, size_t nbytes, loff_t off)
6465{
6466 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6467 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6468 bool drained = false;
241994ed
JW
6469 unsigned long high;
6470 int err;
6471
6472 buf = strstrip(buf);
d2973697 6473 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6474 if (err)
6475 return err;
6476
e82553c1
JW
6477 page_counter_set_high(&memcg->memory, high);
6478
8c8c383c
JW
6479 for (;;) {
6480 unsigned long nr_pages = page_counter_read(&memcg->memory);
6481 unsigned long reclaimed;
6482
6483 if (nr_pages <= high)
6484 break;
6485
6486 if (signal_pending(current))
6487 break;
6488
6489 if (!drained) {
6490 drain_all_stock(memcg);
6491 drained = true;
6492 continue;
6493 }
6494
6495 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
55ab834a 6496 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6497
6498 if (!reclaimed && !nr_retries--)
6499 break;
6500 }
588083bb 6501
19ce33ac 6502 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6503 return nbytes;
6504}
6505
6506static int memory_max_show(struct seq_file *m, void *v)
6507{
677dc973
CD
6508 return seq_puts_memcg_tunable(m,
6509 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6510}
6511
6512static ssize_t memory_max_write(struct kernfs_open_file *of,
6513 char *buf, size_t nbytes, loff_t off)
6514{
6515 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6516 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6517 bool drained = false;
241994ed
JW
6518 unsigned long max;
6519 int err;
6520
6521 buf = strstrip(buf);
d2973697 6522 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6523 if (err)
6524 return err;
6525
bbec2e15 6526 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6527
6528 for (;;) {
6529 unsigned long nr_pages = page_counter_read(&memcg->memory);
6530
6531 if (nr_pages <= max)
6532 break;
6533
7249c9f0 6534 if (signal_pending(current))
b6e6edcf 6535 break;
b6e6edcf
JW
6536
6537 if (!drained) {
6538 drain_all_stock(memcg);
6539 drained = true;
6540 continue;
6541 }
6542
6543 if (nr_reclaims) {
6544 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
55ab834a 6545 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6546 nr_reclaims--;
6547 continue;
6548 }
6549
e27be240 6550 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6551 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6552 break;
6553 }
241994ed 6554
2529bb3a 6555 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6556 return nbytes;
6557}
6558
1e577f97
SB
6559static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6560{
6561 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6562 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6563 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6564 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6565 seq_printf(m, "oom_kill %lu\n",
6566 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6567 seq_printf(m, "oom_group_kill %lu\n",
6568 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6569}
6570
241994ed
JW
6571static int memory_events_show(struct seq_file *m, void *v)
6572{
aa9694bb 6573 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6574
1e577f97
SB
6575 __memory_events_show(m, memcg->memory_events);
6576 return 0;
6577}
6578
6579static int memory_events_local_show(struct seq_file *m, void *v)
6580{
6581 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6582
1e577f97 6583 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6584 return 0;
6585}
6586
587d9f72
JW
6587static int memory_stat_show(struct seq_file *m, void *v)
6588{
aa9694bb 6589 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6590 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5b42360c 6591 struct seq_buf s;
1ff9e6e1 6592
c8713d0b
JW
6593 if (!buf)
6594 return -ENOMEM;
5b42360c
YA
6595 seq_buf_init(&s, buf, PAGE_SIZE);
6596 memory_stat_format(memcg, &s);
c8713d0b
JW
6597 seq_puts(m, buf);
6598 kfree(buf);
587d9f72
JW
6599 return 0;
6600}
6601
5f9a4f4a 6602#ifdef CONFIG_NUMA
fff66b79
MS
6603static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6604 int item)
6605{
6606 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6607}
6608
5f9a4f4a
MS
6609static int memory_numa_stat_show(struct seq_file *m, void *v)
6610{
6611 int i;
6612 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6613
fd25a9e0 6614 mem_cgroup_flush_stats();
7e1c0d6f 6615
5f9a4f4a
MS
6616 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6617 int nid;
6618
6619 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6620 continue;
6621
6622 seq_printf(m, "%s", memory_stats[i].name);
6623 for_each_node_state(nid, N_MEMORY) {
6624 u64 size;
6625 struct lruvec *lruvec;
6626
6627 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6628 size = lruvec_page_state_output(lruvec,
6629 memory_stats[i].idx);
5f9a4f4a
MS
6630 seq_printf(m, " N%d=%llu", nid, size);
6631 }
6632 seq_putc(m, '\n');
6633 }
6634
6635 return 0;
6636}
6637#endif
6638
3d8b38eb
RG
6639static int memory_oom_group_show(struct seq_file *m, void *v)
6640{
aa9694bb 6641 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb 6642
eaf7b66b 6643 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
3d8b38eb
RG
6644
6645 return 0;
6646}
6647
6648static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6649 char *buf, size_t nbytes, loff_t off)
6650{
6651 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6652 int ret, oom_group;
6653
6654 buf = strstrip(buf);
6655 if (!buf)
6656 return -EINVAL;
6657
6658 ret = kstrtoint(buf, 0, &oom_group);
6659 if (ret)
6660 return ret;
6661
6662 if (oom_group != 0 && oom_group != 1)
6663 return -EINVAL;
6664
eaf7b66b 6665 WRITE_ONCE(memcg->oom_group, oom_group);
3d8b38eb
RG
6666
6667 return nbytes;
6668}
6669
94968384
SB
6670static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6671 size_t nbytes, loff_t off)
6672{
6673 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6674 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6675 unsigned long nr_to_reclaim, nr_reclaimed = 0;
55ab834a
MH
6676 unsigned int reclaim_options;
6677 int err;
12a5d395
MA
6678
6679 buf = strstrip(buf);
55ab834a
MH
6680 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6681 if (err)
6682 return err;
12a5d395 6683
55ab834a 6684 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6685 while (nr_reclaimed < nr_to_reclaim) {
6686 unsigned long reclaimed;
6687
6688 if (signal_pending(current))
6689 return -EINTR;
6690
6691 /*
6692 * This is the final attempt, drain percpu lru caches in the
6693 * hope of introducing more evictable pages for
6694 * try_to_free_mem_cgroup_pages().
6695 */
6696 if (!nr_retries)
6697 lru_add_drain_all();
6698
6699 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6700 nr_to_reclaim - nr_reclaimed,
55ab834a 6701 GFP_KERNEL, reclaim_options);
94968384
SB
6702
6703 if (!reclaimed && !nr_retries--)
6704 return -EAGAIN;
6705
6706 nr_reclaimed += reclaimed;
6707 }
6708
6709 return nbytes;
6710}
6711
241994ed
JW
6712static struct cftype memory_files[] = {
6713 {
6714 .name = "current",
f5fc3c5d 6715 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6716 .read_u64 = memory_current_read,
6717 },
8e20d4b3
GR
6718 {
6719 .name = "peak",
6720 .flags = CFTYPE_NOT_ON_ROOT,
6721 .read_u64 = memory_peak_read,
6722 },
bf8d5d52
RG
6723 {
6724 .name = "min",
6725 .flags = CFTYPE_NOT_ON_ROOT,
6726 .seq_show = memory_min_show,
6727 .write = memory_min_write,
6728 },
241994ed
JW
6729 {
6730 .name = "low",
6731 .flags = CFTYPE_NOT_ON_ROOT,
6732 .seq_show = memory_low_show,
6733 .write = memory_low_write,
6734 },
6735 {
6736 .name = "high",
6737 .flags = CFTYPE_NOT_ON_ROOT,
6738 .seq_show = memory_high_show,
6739 .write = memory_high_write,
6740 },
6741 {
6742 .name = "max",
6743 .flags = CFTYPE_NOT_ON_ROOT,
6744 .seq_show = memory_max_show,
6745 .write = memory_max_write,
6746 },
6747 {
6748 .name = "events",
6749 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6750 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6751 .seq_show = memory_events_show,
6752 },
1e577f97
SB
6753 {
6754 .name = "events.local",
6755 .flags = CFTYPE_NOT_ON_ROOT,
6756 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6757 .seq_show = memory_events_local_show,
6758 },
587d9f72
JW
6759 {
6760 .name = "stat",
587d9f72
JW
6761 .seq_show = memory_stat_show,
6762 },
5f9a4f4a
MS
6763#ifdef CONFIG_NUMA
6764 {
6765 .name = "numa_stat",
6766 .seq_show = memory_numa_stat_show,
6767 },
6768#endif
3d8b38eb
RG
6769 {
6770 .name = "oom.group",
6771 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6772 .seq_show = memory_oom_group_show,
6773 .write = memory_oom_group_write,
6774 },
94968384
SB
6775 {
6776 .name = "reclaim",
6777 .flags = CFTYPE_NS_DELEGATABLE,
6778 .write = memory_reclaim,
6779 },
241994ed
JW
6780 { } /* terminate */
6781};
6782
073219e9 6783struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6784 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6785 .css_online = mem_cgroup_css_online,
92fb9748 6786 .css_offline = mem_cgroup_css_offline,
6df38689 6787 .css_released = mem_cgroup_css_released,
92fb9748 6788 .css_free = mem_cgroup_css_free,
1ced953b 6789 .css_reset = mem_cgroup_css_reset,
2d146aa3 6790 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 6791 .can_attach = mem_cgroup_can_attach,
bd74fdae 6792 .attach = mem_cgroup_attach,
7dc74be0 6793 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6794 .post_attach = mem_cgroup_move_task,
241994ed
JW
6795 .dfl_cftypes = memory_files,
6796 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6797 .early_init = 0,
8cdea7c0 6798};
c077719b 6799
bc50bcc6
JW
6800/*
6801 * This function calculates an individual cgroup's effective
6802 * protection which is derived from its own memory.min/low, its
6803 * parent's and siblings' settings, as well as the actual memory
6804 * distribution in the tree.
6805 *
6806 * The following rules apply to the effective protection values:
6807 *
6808 * 1. At the first level of reclaim, effective protection is equal to
6809 * the declared protection in memory.min and memory.low.
6810 *
6811 * 2. To enable safe delegation of the protection configuration, at
6812 * subsequent levels the effective protection is capped to the
6813 * parent's effective protection.
6814 *
6815 * 3. To make complex and dynamic subtrees easier to configure, the
6816 * user is allowed to overcommit the declared protection at a given
6817 * level. If that is the case, the parent's effective protection is
6818 * distributed to the children in proportion to how much protection
6819 * they have declared and how much of it they are utilizing.
6820 *
6821 * This makes distribution proportional, but also work-conserving:
6822 * if one cgroup claims much more protection than it uses memory,
6823 * the unused remainder is available to its siblings.
6824 *
6825 * 4. Conversely, when the declared protection is undercommitted at a
6826 * given level, the distribution of the larger parental protection
6827 * budget is NOT proportional. A cgroup's protection from a sibling
6828 * is capped to its own memory.min/low setting.
6829 *
8a931f80
JW
6830 * 5. However, to allow protecting recursive subtrees from each other
6831 * without having to declare each individual cgroup's fixed share
6832 * of the ancestor's claim to protection, any unutilized -
6833 * "floating" - protection from up the tree is distributed in
6834 * proportion to each cgroup's *usage*. This makes the protection
6835 * neutral wrt sibling cgroups and lets them compete freely over
6836 * the shared parental protection budget, but it protects the
6837 * subtree as a whole from neighboring subtrees.
6838 *
6839 * Note that 4. and 5. are not in conflict: 4. is about protecting
6840 * against immediate siblings whereas 5. is about protecting against
6841 * neighboring subtrees.
bc50bcc6
JW
6842 */
6843static unsigned long effective_protection(unsigned long usage,
8a931f80 6844 unsigned long parent_usage,
bc50bcc6
JW
6845 unsigned long setting,
6846 unsigned long parent_effective,
6847 unsigned long siblings_protected)
6848{
6849 unsigned long protected;
8a931f80 6850 unsigned long ep;
bc50bcc6
JW
6851
6852 protected = min(usage, setting);
6853 /*
6854 * If all cgroups at this level combined claim and use more
08e0f49e 6855 * protection than what the parent affords them, distribute
bc50bcc6
JW
6856 * shares in proportion to utilization.
6857 *
6858 * We are using actual utilization rather than the statically
6859 * claimed protection in order to be work-conserving: claimed
6860 * but unused protection is available to siblings that would
6861 * otherwise get a smaller chunk than what they claimed.
6862 */
6863 if (siblings_protected > parent_effective)
6864 return protected * parent_effective / siblings_protected;
6865
6866 /*
6867 * Ok, utilized protection of all children is within what the
6868 * parent affords them, so we know whatever this child claims
6869 * and utilizes is effectively protected.
6870 *
6871 * If there is unprotected usage beyond this value, reclaim
6872 * will apply pressure in proportion to that amount.
6873 *
6874 * If there is unutilized protection, the cgroup will be fully
6875 * shielded from reclaim, but we do return a smaller value for
6876 * protection than what the group could enjoy in theory. This
6877 * is okay. With the overcommit distribution above, effective
6878 * protection is always dependent on how memory is actually
6879 * consumed among the siblings anyway.
6880 */
8a931f80
JW
6881 ep = protected;
6882
6883 /*
6884 * If the children aren't claiming (all of) the protection
6885 * afforded to them by the parent, distribute the remainder in
6886 * proportion to the (unprotected) memory of each cgroup. That
6887 * way, cgroups that aren't explicitly prioritized wrt each
6888 * other compete freely over the allowance, but they are
6889 * collectively protected from neighboring trees.
6890 *
6891 * We're using unprotected memory for the weight so that if
6892 * some cgroups DO claim explicit protection, we don't protect
6893 * the same bytes twice.
cd324edc
JW
6894 *
6895 * Check both usage and parent_usage against the respective
6896 * protected values. One should imply the other, but they
6897 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6898 */
6899 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6900 return ep;
cd324edc
JW
6901 if (parent_effective > siblings_protected &&
6902 parent_usage > siblings_protected &&
6903 usage > protected) {
8a931f80
JW
6904 unsigned long unclaimed;
6905
6906 unclaimed = parent_effective - siblings_protected;
6907 unclaimed *= usage - protected;
6908 unclaimed /= parent_usage - siblings_protected;
6909
6910 ep += unclaimed;
6911 }
6912
6913 return ep;
bc50bcc6
JW
6914}
6915
241994ed 6916/**
05395718 6917 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6918 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6919 * @memcg: the memory cgroup to check
6920 *
23067153
RG
6921 * WARNING: This function is not stateless! It can only be used as part
6922 * of a top-down tree iteration, not for isolated queries.
241994ed 6923 */
45c7f7e1
CD
6924void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6925 struct mem_cgroup *memcg)
241994ed 6926{
8a931f80 6927 unsigned long usage, parent_usage;
23067153
RG
6928 struct mem_cgroup *parent;
6929
241994ed 6930 if (mem_cgroup_disabled())
45c7f7e1 6931 return;
241994ed 6932
34c81057
SC
6933 if (!root)
6934 root = root_mem_cgroup;
22f7496f
YS
6935
6936 /*
6937 * Effective values of the reclaim targets are ignored so they
6938 * can be stale. Have a look at mem_cgroup_protection for more
6939 * details.
6940 * TODO: calculation should be more robust so that we do not need
6941 * that special casing.
6942 */
34c81057 6943 if (memcg == root)
45c7f7e1 6944 return;
241994ed 6945
23067153 6946 usage = page_counter_read(&memcg->memory);
bf8d5d52 6947 if (!usage)
45c7f7e1 6948 return;
bf8d5d52 6949
bf8d5d52 6950 parent = parent_mem_cgroup(memcg);
df2a4196 6951
bc50bcc6 6952 if (parent == root) {
c3d53200 6953 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6954 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6955 return;
bf8d5d52
RG
6956 }
6957
8a931f80
JW
6958 parent_usage = page_counter_read(&parent->memory);
6959
b3a7822e 6960 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6961 READ_ONCE(memcg->memory.min),
6962 READ_ONCE(parent->memory.emin),
b3a7822e 6963 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6964
b3a7822e 6965 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6966 READ_ONCE(memcg->memory.low),
6967 READ_ONCE(parent->memory.elow),
b3a7822e 6968 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6969}
6970
8f425e4e
MWO
6971static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6972 gfp_t gfp)
0add0c77 6973{
118f2875 6974 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
6975 int ret;
6976
6977 ret = try_charge(memcg, gfp, nr_pages);
6978 if (ret)
6979 goto out;
6980
6981 css_get(&memcg->css);
118f2875 6982 commit_charge(folio, memcg);
0add0c77
SB
6983
6984 local_irq_disable();
6e0110c2 6985 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 6986 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
6987 local_irq_enable();
6988out:
6989 return ret;
6990}
6991
8f425e4e 6992int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 6993{
0add0c77
SB
6994 struct mem_cgroup *memcg;
6995 int ret;
00501b53 6996
0add0c77 6997 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 6998 ret = charge_memcg(folio, memcg, gfp);
0add0c77 6999 css_put(&memcg->css);
2d1c4980 7000
0add0c77
SB
7001 return ret;
7002}
e993d905 7003
0add0c77 7004/**
65995918
MWO
7005 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7006 * @folio: folio to charge.
0add0c77
SB
7007 * @mm: mm context of the victim
7008 * @gfp: reclaim mode
65995918 7009 * @entry: swap entry for which the folio is allocated
0add0c77 7010 *
65995918
MWO
7011 * This function charges a folio allocated for swapin. Please call this before
7012 * adding the folio to the swapcache.
0add0c77
SB
7013 *
7014 * Returns 0 on success. Otherwise, an error code is returned.
7015 */
65995918 7016int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
7017 gfp_t gfp, swp_entry_t entry)
7018{
7019 struct mem_cgroup *memcg;
7020 unsigned short id;
7021 int ret;
00501b53 7022
0add0c77
SB
7023 if (mem_cgroup_disabled())
7024 return 0;
00501b53 7025
0add0c77
SB
7026 id = lookup_swap_cgroup_id(entry);
7027 rcu_read_lock();
7028 memcg = mem_cgroup_from_id(id);
7029 if (!memcg || !css_tryget_online(&memcg->css))
7030 memcg = get_mem_cgroup_from_mm(mm);
7031 rcu_read_unlock();
00501b53 7032
8f425e4e 7033 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 7034
0add0c77
SB
7035 css_put(&memcg->css);
7036 return ret;
7037}
00501b53 7038
0add0c77
SB
7039/*
7040 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7041 * @entry: swap entry for which the page is charged
7042 *
7043 * Call this function after successfully adding the charged page to swapcache.
7044 *
7045 * Note: This function assumes the page for which swap slot is being uncharged
7046 * is order 0 page.
7047 */
7048void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7049{
cae3af62
MS
7050 /*
7051 * Cgroup1's unified memory+swap counter has been charged with the
7052 * new swapcache page, finish the transfer by uncharging the swap
7053 * slot. The swap slot would also get uncharged when it dies, but
7054 * it can stick around indefinitely and we'd count the page twice
7055 * the entire time.
7056 *
7057 * Cgroup2 has separate resource counters for memory and swap,
7058 * so this is a non-issue here. Memory and swap charge lifetimes
7059 * correspond 1:1 to page and swap slot lifetimes: we charge the
7060 * page to memory here, and uncharge swap when the slot is freed.
7061 */
0add0c77 7062 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
7063 /*
7064 * The swap entry might not get freed for a long time,
7065 * let's not wait for it. The page already received a
7066 * memory+swap charge, drop the swap entry duplicate.
7067 */
0add0c77 7068 mem_cgroup_uncharge_swap(entry, 1);
00501b53 7069 }
3fea5a49
JW
7070}
7071
a9d5adee
JG
7072struct uncharge_gather {
7073 struct mem_cgroup *memcg;
b4e0b68f 7074 unsigned long nr_memory;
a9d5adee 7075 unsigned long pgpgout;
a9d5adee 7076 unsigned long nr_kmem;
8e88bd2d 7077 int nid;
a9d5adee
JG
7078};
7079
7080static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7081{
a9d5adee
JG
7082 memset(ug, 0, sizeof(*ug));
7083}
7084
7085static void uncharge_batch(const struct uncharge_gather *ug)
7086{
747db954
JW
7087 unsigned long flags;
7088
b4e0b68f
MS
7089 if (ug->nr_memory) {
7090 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7091 if (do_memsw_account())
b4e0b68f 7092 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7093 if (ug->nr_kmem)
7094 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7095 memcg_oom_recover(ug->memcg);
ce00a967 7096 }
747db954
JW
7097
7098 local_irq_save(flags);
c9019e9b 7099 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7100 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7101 memcg_check_events(ug->memcg, ug->nid);
747db954 7102 local_irq_restore(flags);
f1796544 7103
c4ed6ebf 7104 /* drop reference from uncharge_folio */
f1796544 7105 css_put(&ug->memcg->css);
a9d5adee
JG
7106}
7107
c4ed6ebf 7108static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7109{
c4ed6ebf 7110 long nr_pages;
b4e0b68f
MS
7111 struct mem_cgroup *memcg;
7112 struct obj_cgroup *objcg;
9f762dbe 7113
c4ed6ebf 7114 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7115
a9d5adee
JG
7116 /*
7117 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7118 * folio memcg or objcg at this point, we have fully
7119 * exclusive access to the folio.
a9d5adee 7120 */
fead2b86 7121 if (folio_memcg_kmem(folio)) {
1b7e4464 7122 objcg = __folio_objcg(folio);
b4e0b68f
MS
7123 /*
7124 * This get matches the put at the end of the function and
7125 * kmem pages do not hold memcg references anymore.
7126 */
7127 memcg = get_mem_cgroup_from_objcg(objcg);
7128 } else {
1b7e4464 7129 memcg = __folio_memcg(folio);
b4e0b68f 7130 }
a9d5adee 7131
b4e0b68f
MS
7132 if (!memcg)
7133 return;
7134
7135 if (ug->memcg != memcg) {
a9d5adee
JG
7136 if (ug->memcg) {
7137 uncharge_batch(ug);
7138 uncharge_gather_clear(ug);
7139 }
b4e0b68f 7140 ug->memcg = memcg;
c4ed6ebf 7141 ug->nid = folio_nid(folio);
f1796544
MH
7142
7143 /* pairs with css_put in uncharge_batch */
b4e0b68f 7144 css_get(&memcg->css);
a9d5adee
JG
7145 }
7146
c4ed6ebf 7147 nr_pages = folio_nr_pages(folio);
a9d5adee 7148
fead2b86 7149 if (folio_memcg_kmem(folio)) {
b4e0b68f 7150 ug->nr_memory += nr_pages;
9f762dbe 7151 ug->nr_kmem += nr_pages;
b4e0b68f 7152
c4ed6ebf 7153 folio->memcg_data = 0;
b4e0b68f
MS
7154 obj_cgroup_put(objcg);
7155 } else {
7156 /* LRU pages aren't accounted at the root level */
7157 if (!mem_cgroup_is_root(memcg))
7158 ug->nr_memory += nr_pages;
18b2db3b 7159 ug->pgpgout++;
a9d5adee 7160
c4ed6ebf 7161 folio->memcg_data = 0;
b4e0b68f
MS
7162 }
7163
7164 css_put(&memcg->css);
747db954
JW
7165}
7166
bbc6b703 7167void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7168{
a9d5adee
JG
7169 struct uncharge_gather ug;
7170
bbc6b703
MWO
7171 /* Don't touch folio->lru of any random page, pre-check: */
7172 if (!folio_memcg(folio))
0a31bc97
JW
7173 return;
7174
a9d5adee 7175 uncharge_gather_clear(&ug);
bbc6b703 7176 uncharge_folio(folio, &ug);
a9d5adee 7177 uncharge_batch(&ug);
747db954 7178}
0a31bc97 7179
747db954 7180/**
2c8d8f97 7181 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7182 * @page_list: list of pages to uncharge
7183 *
7184 * Uncharge a list of pages previously charged with
2c8d8f97 7185 * __mem_cgroup_charge().
747db954 7186 */
2c8d8f97 7187void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7188{
c41a40b6 7189 struct uncharge_gather ug;
c4ed6ebf 7190 struct folio *folio;
c41a40b6 7191
c41a40b6 7192 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7193 list_for_each_entry(folio, page_list, lru)
7194 uncharge_folio(folio, &ug);
c41a40b6
MS
7195 if (ug.memcg)
7196 uncharge_batch(&ug);
0a31bc97
JW
7197}
7198
7199/**
d21bba2b
MWO
7200 * mem_cgroup_migrate - Charge a folio's replacement.
7201 * @old: Currently circulating folio.
7202 * @new: Replacement folio.
0a31bc97 7203 *
d21bba2b 7204 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 7205 * be uncharged upon free.
0a31bc97 7206 *
d21bba2b 7207 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7208 */
d21bba2b 7209void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 7210{
29833315 7211 struct mem_cgroup *memcg;
d21bba2b 7212 long nr_pages = folio_nr_pages(new);
d93c4130 7213 unsigned long flags;
0a31bc97 7214
d21bba2b
MWO
7215 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7216 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7217 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7218 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7219
7220 if (mem_cgroup_disabled())
7221 return;
7222
d21bba2b
MWO
7223 /* Page cache replacement: new folio already charged? */
7224 if (folio_memcg(new))
0a31bc97
JW
7225 return;
7226
d21bba2b
MWO
7227 memcg = folio_memcg(old);
7228 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7229 if (!memcg)
0a31bc97
JW
7230 return;
7231
44b7a8d3 7232 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7233 if (!mem_cgroup_is_root(memcg)) {
7234 page_counter_charge(&memcg->memory, nr_pages);
7235 if (do_memsw_account())
7236 page_counter_charge(&memcg->memsw, nr_pages);
7237 }
0a31bc97 7238
1a3e1f40 7239 css_get(&memcg->css);
d21bba2b 7240 commit_charge(new, memcg);
44b7a8d3 7241
d93c4130 7242 local_irq_save(flags);
6e0110c2 7243 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7244 memcg_check_events(memcg, folio_nid(new));
d93c4130 7245 local_irq_restore(flags);
0a31bc97
JW
7246}
7247
ef12947c 7248DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7249EXPORT_SYMBOL(memcg_sockets_enabled_key);
7250
2d758073 7251void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7252{
7253 struct mem_cgroup *memcg;
7254
2d758073
JW
7255 if (!mem_cgroup_sockets_enabled)
7256 return;
7257
e876ecc6 7258 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7259 if (!in_task())
e876ecc6
SB
7260 return;
7261
11092087
JW
7262 rcu_read_lock();
7263 memcg = mem_cgroup_from_task(current);
7848ed62 7264 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7265 goto out;
0db15298 7266 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7267 goto out;
8965aa28 7268 if (css_tryget(&memcg->css))
11092087 7269 sk->sk_memcg = memcg;
f7e1cb6e 7270out:
11092087
JW
7271 rcu_read_unlock();
7272}
11092087 7273
2d758073 7274void mem_cgroup_sk_free(struct sock *sk)
11092087 7275{
2d758073
JW
7276 if (sk->sk_memcg)
7277 css_put(&sk->sk_memcg->css);
11092087
JW
7278}
7279
7280/**
7281 * mem_cgroup_charge_skmem - charge socket memory
7282 * @memcg: memcg to charge
7283 * @nr_pages: number of pages to charge
4b1327be 7284 * @gfp_mask: reclaim mode
11092087
JW
7285 *
7286 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7287 * @memcg's configured limit, %false if it doesn't.
11092087 7288 */
4b1327be
WW
7289bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7290 gfp_t gfp_mask)
11092087 7291{
f7e1cb6e 7292 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7293 struct page_counter *fail;
f7e1cb6e 7294
0db15298
JW
7295 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7296 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7297 return true;
7298 }
0db15298 7299 memcg->tcpmem_pressure = 1;
4b1327be
WW
7300 if (gfp_mask & __GFP_NOFAIL) {
7301 page_counter_charge(&memcg->tcpmem, nr_pages);
7302 return true;
7303 }
f7e1cb6e 7304 return false;
11092087 7305 }
d886f4e4 7306
4b1327be
WW
7307 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7308 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7309 return true;
4b1327be 7310 }
f7e1cb6e 7311
11092087
JW
7312 return false;
7313}
7314
7315/**
7316 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7317 * @memcg: memcg to uncharge
7318 * @nr_pages: number of pages to uncharge
11092087
JW
7319 */
7320void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7321{
f7e1cb6e 7322 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7323 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7324 return;
7325 }
d886f4e4 7326
c9019e9b 7327 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7328
475d0487 7329 refill_stock(memcg, nr_pages);
11092087
JW
7330}
7331
f7e1cb6e
JW
7332static int __init cgroup_memory(char *s)
7333{
7334 char *token;
7335
7336 while ((token = strsep(&s, ",")) != NULL) {
7337 if (!*token)
7338 continue;
7339 if (!strcmp(token, "nosocket"))
7340 cgroup_memory_nosocket = true;
04823c83
VD
7341 if (!strcmp(token, "nokmem"))
7342 cgroup_memory_nokmem = true;
b6c1a8af
YS
7343 if (!strcmp(token, "nobpf"))
7344 cgroup_memory_nobpf = true;
f7e1cb6e 7345 }
460a79e1 7346 return 1;
f7e1cb6e
JW
7347}
7348__setup("cgroup.memory=", cgroup_memory);
11092087 7349
2d11085e 7350/*
1081312f
MH
7351 * subsys_initcall() for memory controller.
7352 *
308167fc
SAS
7353 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7354 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7355 * basically everything that doesn't depend on a specific mem_cgroup structure
7356 * should be initialized from here.
2d11085e
MH
7357 */
7358static int __init mem_cgroup_init(void)
7359{
95a045f6
JW
7360 int cpu, node;
7361
f3344adf
MS
7362 /*
7363 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7364 * used for per-memcg-per-cpu caching of per-node statistics. In order
7365 * to work fine, we should make sure that the overfill threshold can't
7366 * exceed S32_MAX / PAGE_SIZE.
7367 */
7368 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7369
308167fc
SAS
7370 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7371 memcg_hotplug_cpu_dead);
95a045f6
JW
7372
7373 for_each_possible_cpu(cpu)
7374 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7375 drain_local_stock);
7376
7377 for_each_node(node) {
7378 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7379
7380 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7381 node_online(node) ? node : NUMA_NO_NODE);
7382
ef8f2327 7383 rtpn->rb_root = RB_ROOT;
fa90b2fd 7384 rtpn->rb_rightmost = NULL;
ef8f2327 7385 spin_lock_init(&rtpn->lock);
95a045f6
JW
7386 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7387 }
7388
2d11085e
MH
7389 return 0;
7390}
7391subsys_initcall(mem_cgroup_init);
21afa38e 7392
e55b9f96 7393#ifdef CONFIG_SWAP
358c07fc
AB
7394static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7395{
1c2d479a 7396 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7397 /*
7398 * The root cgroup cannot be destroyed, so it's refcount must
7399 * always be >= 1.
7400 */
7848ed62 7401 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7402 VM_BUG_ON(1);
7403 break;
7404 }
7405 memcg = parent_mem_cgroup(memcg);
7406 if (!memcg)
7407 memcg = root_mem_cgroup;
7408 }
7409 return memcg;
7410}
7411
21afa38e
JW
7412/**
7413 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7414 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7415 * @entry: swap entry to move the charge to
7416 *
3ecb0087 7417 * Transfer the memsw charge of @folio to @entry.
21afa38e 7418 */
3ecb0087 7419void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7420{
1f47b61f 7421 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7422 unsigned int nr_entries;
21afa38e
JW
7423 unsigned short oldid;
7424
3ecb0087
MWO
7425 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7426 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7427
76358ab5
AS
7428 if (mem_cgroup_disabled())
7429 return;
7430
b94c4e94 7431 if (!do_memsw_account())
21afa38e
JW
7432 return;
7433
3ecb0087 7434 memcg = folio_memcg(folio);
21afa38e 7435
3ecb0087 7436 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7437 if (!memcg)
7438 return;
7439
1f47b61f
VD
7440 /*
7441 * In case the memcg owning these pages has been offlined and doesn't
7442 * have an ID allocated to it anymore, charge the closest online
7443 * ancestor for the swap instead and transfer the memory+swap charge.
7444 */
7445 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7446 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7447 /* Get references for the tail pages, too */
7448 if (nr_entries > 1)
7449 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7450 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7451 nr_entries);
3ecb0087 7452 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7453 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7454
3ecb0087 7455 folio->memcg_data = 0;
21afa38e
JW
7456
7457 if (!mem_cgroup_is_root(memcg))
d6810d73 7458 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7459
b25806dc 7460 if (memcg != swap_memcg) {
1f47b61f 7461 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7462 page_counter_charge(&swap_memcg->memsw, nr_entries);
7463 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7464 }
7465
ce9ce665
SAS
7466 /*
7467 * Interrupts should be disabled here because the caller holds the
b93b0163 7468 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7469 * important here to have the interrupts disabled because it is the
b93b0163 7470 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7471 */
be3e67b5 7472 memcg_stats_lock();
6e0110c2 7473 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7474 memcg_stats_unlock();
3ecb0087 7475 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7476
1a3e1f40 7477 css_put(&memcg->css);
21afa38e
JW
7478}
7479
38d8b4e6 7480/**
e2e3fdc7
MWO
7481 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7482 * @folio: folio being added to swap
37e84351
VD
7483 * @entry: swap entry to charge
7484 *
e2e3fdc7 7485 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7486 *
7487 * Returns 0 on success, -ENOMEM on failure.
7488 */
e2e3fdc7 7489int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7490{
e2e3fdc7 7491 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7492 struct page_counter *counter;
38d8b4e6 7493 struct mem_cgroup *memcg;
37e84351
VD
7494 unsigned short oldid;
7495
b94c4e94 7496 if (do_memsw_account())
37e84351
VD
7497 return 0;
7498
e2e3fdc7 7499 memcg = folio_memcg(folio);
37e84351 7500
e2e3fdc7 7501 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7502 if (!memcg)
7503 return 0;
7504
f3a53a3a
TH
7505 if (!entry.val) {
7506 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7507 return 0;
f3a53a3a 7508 }
bb98f2c5 7509
1f47b61f
VD
7510 memcg = mem_cgroup_id_get_online(memcg);
7511
b25806dc 7512 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7513 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7514 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7515 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7516 mem_cgroup_id_put(memcg);
37e84351 7517 return -ENOMEM;
1f47b61f 7518 }
37e84351 7519
38d8b4e6
HY
7520 /* Get references for the tail pages, too */
7521 if (nr_pages > 1)
7522 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7523 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7524 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7525 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7526
37e84351
VD
7527 return 0;
7528}
7529
21afa38e 7530/**
01c4b28c 7531 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7532 * @entry: swap entry to uncharge
38d8b4e6 7533 * @nr_pages: the amount of swap space to uncharge
21afa38e 7534 */
01c4b28c 7535void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7536{
7537 struct mem_cgroup *memcg;
7538 unsigned short id;
7539
c91bdc93
JW
7540 if (mem_cgroup_disabled())
7541 return;
7542
38d8b4e6 7543 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7544 rcu_read_lock();
adbe427b 7545 memcg = mem_cgroup_from_id(id);
21afa38e 7546 if (memcg) {
b25806dc 7547 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7548 if (do_memsw_account())
38d8b4e6 7549 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7550 else
7551 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7552 }
c9019e9b 7553 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7554 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7555 }
7556 rcu_read_unlock();
7557}
7558
d8b38438
VD
7559long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7560{
7561 long nr_swap_pages = get_nr_swap_pages();
7562
b25806dc 7563 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 7564 return nr_swap_pages;
7848ed62 7565 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 7566 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7567 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7568 page_counter_read(&memcg->swap));
7569 return nr_swap_pages;
7570}
7571
9202d527 7572bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7573{
7574 struct mem_cgroup *memcg;
7575
9202d527 7576 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7577
7578 if (vm_swap_full())
7579 return true;
b25806dc 7580 if (do_memsw_account())
5ccc5aba
VD
7581 return false;
7582
9202d527 7583 memcg = folio_memcg(folio);
5ccc5aba
VD
7584 if (!memcg)
7585 return false;
7586
7848ed62 7587 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
7588 unsigned long usage = page_counter_read(&memcg->swap);
7589
7590 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7591 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7592 return true;
4b82ab4f 7593 }
5ccc5aba
VD
7594
7595 return false;
7596}
7597
eccb52e7 7598static int __init setup_swap_account(char *s)
21afa38e 7599{
b25806dc
JW
7600 pr_warn_once("The swapaccount= commandline option is deprecated. "
7601 "Please report your usecase to linux-mm@kvack.org if you "
7602 "depend on this functionality.\n");
21afa38e
JW
7603 return 1;
7604}
eccb52e7 7605__setup("swapaccount=", setup_swap_account);
21afa38e 7606
37e84351
VD
7607static u64 swap_current_read(struct cgroup_subsys_state *css,
7608 struct cftype *cft)
7609{
7610 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7611
7612 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7613}
7614
e0e0b412
LD
7615static u64 swap_peak_read(struct cgroup_subsys_state *css,
7616 struct cftype *cft)
7617{
7618 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7619
7620 return (u64)memcg->swap.watermark * PAGE_SIZE;
7621}
7622
4b82ab4f
JK
7623static int swap_high_show(struct seq_file *m, void *v)
7624{
7625 return seq_puts_memcg_tunable(m,
7626 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7627}
7628
7629static ssize_t swap_high_write(struct kernfs_open_file *of,
7630 char *buf, size_t nbytes, loff_t off)
7631{
7632 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7633 unsigned long high;
7634 int err;
7635
7636 buf = strstrip(buf);
7637 err = page_counter_memparse(buf, "max", &high);
7638 if (err)
7639 return err;
7640
7641 page_counter_set_high(&memcg->swap, high);
7642
7643 return nbytes;
7644}
7645
37e84351
VD
7646static int swap_max_show(struct seq_file *m, void *v)
7647{
677dc973
CD
7648 return seq_puts_memcg_tunable(m,
7649 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7650}
7651
7652static ssize_t swap_max_write(struct kernfs_open_file *of,
7653 char *buf, size_t nbytes, loff_t off)
7654{
7655 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7656 unsigned long max;
7657 int err;
7658
7659 buf = strstrip(buf);
7660 err = page_counter_memparse(buf, "max", &max);
7661 if (err)
7662 return err;
7663
be09102b 7664 xchg(&memcg->swap.max, max);
37e84351
VD
7665
7666 return nbytes;
7667}
7668
f3a53a3a
TH
7669static int swap_events_show(struct seq_file *m, void *v)
7670{
aa9694bb 7671 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7672
4b82ab4f
JK
7673 seq_printf(m, "high %lu\n",
7674 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7675 seq_printf(m, "max %lu\n",
7676 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7677 seq_printf(m, "fail %lu\n",
7678 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7679
7680 return 0;
7681}
7682
37e84351
VD
7683static struct cftype swap_files[] = {
7684 {
7685 .name = "swap.current",
7686 .flags = CFTYPE_NOT_ON_ROOT,
7687 .read_u64 = swap_current_read,
7688 },
4b82ab4f
JK
7689 {
7690 .name = "swap.high",
7691 .flags = CFTYPE_NOT_ON_ROOT,
7692 .seq_show = swap_high_show,
7693 .write = swap_high_write,
7694 },
37e84351
VD
7695 {
7696 .name = "swap.max",
7697 .flags = CFTYPE_NOT_ON_ROOT,
7698 .seq_show = swap_max_show,
7699 .write = swap_max_write,
7700 },
e0e0b412
LD
7701 {
7702 .name = "swap.peak",
7703 .flags = CFTYPE_NOT_ON_ROOT,
7704 .read_u64 = swap_peak_read,
7705 },
f3a53a3a
TH
7706 {
7707 .name = "swap.events",
7708 .flags = CFTYPE_NOT_ON_ROOT,
7709 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7710 .seq_show = swap_events_show,
7711 },
37e84351
VD
7712 { } /* terminate */
7713};
7714
eccb52e7 7715static struct cftype memsw_files[] = {
21afa38e
JW
7716 {
7717 .name = "memsw.usage_in_bytes",
7718 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7719 .read_u64 = mem_cgroup_read_u64,
7720 },
7721 {
7722 .name = "memsw.max_usage_in_bytes",
7723 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7724 .write = mem_cgroup_reset,
7725 .read_u64 = mem_cgroup_read_u64,
7726 },
7727 {
7728 .name = "memsw.limit_in_bytes",
7729 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7730 .write = mem_cgroup_write,
7731 .read_u64 = mem_cgroup_read_u64,
7732 },
7733 {
7734 .name = "memsw.failcnt",
7735 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7736 .write = mem_cgroup_reset,
7737 .read_u64 = mem_cgroup_read_u64,
7738 },
7739 { }, /* terminate */
7740};
7741
f4840ccf
JW
7742#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7743/**
7744 * obj_cgroup_may_zswap - check if this cgroup can zswap
7745 * @objcg: the object cgroup
7746 *
7747 * Check if the hierarchical zswap limit has been reached.
7748 *
7749 * This doesn't check for specific headroom, and it is not atomic
7750 * either. But with zswap, the size of the allocation is only known
7751 * once compression has occured, and this optimistic pre-check avoids
7752 * spending cycles on compression when there is already no room left
7753 * or zswap is disabled altogether somewhere in the hierarchy.
7754 */
7755bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7756{
7757 struct mem_cgroup *memcg, *original_memcg;
7758 bool ret = true;
7759
7760 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7761 return true;
7762
7763 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 7764 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
7765 memcg = parent_mem_cgroup(memcg)) {
7766 unsigned long max = READ_ONCE(memcg->zswap_max);
7767 unsigned long pages;
7768
7769 if (max == PAGE_COUNTER_MAX)
7770 continue;
7771 if (max == 0) {
7772 ret = false;
7773 break;
7774 }
7775
7776 cgroup_rstat_flush(memcg->css.cgroup);
7777 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7778 if (pages < max)
7779 continue;
7780 ret = false;
7781 break;
7782 }
7783 mem_cgroup_put(original_memcg);
7784 return ret;
7785}
7786
7787/**
7788 * obj_cgroup_charge_zswap - charge compression backend memory
7789 * @objcg: the object cgroup
7790 * @size: size of compressed object
7791 *
7792 * This forces the charge after obj_cgroup_may_swap() allowed
7793 * compression and storage in zwap for this cgroup to go ahead.
7794 */
7795void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7796{
7797 struct mem_cgroup *memcg;
7798
7799 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7800 return;
7801
7802 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7803
7804 /* PF_MEMALLOC context, charging must succeed */
7805 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7806 VM_WARN_ON_ONCE(1);
7807
7808 rcu_read_lock();
7809 memcg = obj_cgroup_memcg(objcg);
7810 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7811 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7812 rcu_read_unlock();
7813}
7814
7815/**
7816 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7817 * @objcg: the object cgroup
7818 * @size: size of compressed object
7819 *
7820 * Uncharges zswap memory on page in.
7821 */
7822void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7823{
7824 struct mem_cgroup *memcg;
7825
7826 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7827 return;
7828
7829 obj_cgroup_uncharge(objcg, size);
7830
7831 rcu_read_lock();
7832 memcg = obj_cgroup_memcg(objcg);
7833 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7834 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7835 rcu_read_unlock();
7836}
7837
7838static u64 zswap_current_read(struct cgroup_subsys_state *css,
7839 struct cftype *cft)
7840{
7841 cgroup_rstat_flush(css->cgroup);
7842 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7843}
7844
7845static int zswap_max_show(struct seq_file *m, void *v)
7846{
7847 return seq_puts_memcg_tunable(m,
7848 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7849}
7850
7851static ssize_t zswap_max_write(struct kernfs_open_file *of,
7852 char *buf, size_t nbytes, loff_t off)
7853{
7854 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7855 unsigned long max;
7856 int err;
7857
7858 buf = strstrip(buf);
7859 err = page_counter_memparse(buf, "max", &max);
7860 if (err)
7861 return err;
7862
7863 xchg(&memcg->zswap_max, max);
7864
7865 return nbytes;
7866}
7867
7868static struct cftype zswap_files[] = {
7869 {
7870 .name = "zswap.current",
7871 .flags = CFTYPE_NOT_ON_ROOT,
7872 .read_u64 = zswap_current_read,
7873 },
7874 {
7875 .name = "zswap.max",
7876 .flags = CFTYPE_NOT_ON_ROOT,
7877 .seq_show = zswap_max_show,
7878 .write = zswap_max_write,
7879 },
7880 { } /* terminate */
7881};
7882#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7883
21afa38e
JW
7884static int __init mem_cgroup_swap_init(void)
7885{
2d1c4980 7886 if (mem_cgroup_disabled())
eccb52e7
JW
7887 return 0;
7888
7889 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7890 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
7891#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7892 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7893#endif
21afa38e
JW
7894 return 0;
7895}
b25806dc 7896subsys_initcall(mem_cgroup_swap_init);
21afa38e 7897
e55b9f96 7898#endif /* CONFIG_SWAP */