memcg: swapout refcnt fix
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54
d52aa412
KH
55/*
56 * Statistics for memory cgroup.
57 */
58enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
66
67 MEM_CGROUP_STAT_NSTATS,
68};
69
70struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72} ____cacheline_aligned_in_smp;
73
74struct mem_cgroup_stat {
c8dad2bb 75 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
76};
77
78/*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
addb9efe 81static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
82 enum mem_cgroup_stat_index idx, int val)
83{
addb9efe 84 stat->count[idx] += val;
d52aa412
KH
85}
86
87static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89{
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95}
96
6d12e2d8
KH
97/*
98 * per-zone information in memory controller.
99 */
6d12e2d8 100struct mem_cgroup_per_zone {
072c56c1
KH
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
b69408e8
CL
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
6d12e2d8
KH
106};
107/* Macro for accessing counter */
108#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
109
110struct mem_cgroup_per_node {
111 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
112};
113
114struct mem_cgroup_lru_info {
115 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
116};
117
8cdea7c0
BS
118/*
119 * The memory controller data structure. The memory controller controls both
120 * page cache and RSS per cgroup. We would eventually like to provide
121 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
122 * to help the administrator determine what knobs to tune.
123 *
124 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
125 * we hit the water mark. May be even add a low water mark, such that
126 * no reclaim occurs from a cgroup at it's low water mark, this is
127 * a feature that will be implemented much later in the future.
8cdea7c0
BS
128 */
129struct mem_cgroup {
130 struct cgroup_subsys_state css;
131 /*
132 * the counter to account for memory usage
133 */
134 struct res_counter res;
8c7c6e34
KH
135 /*
136 * the counter to account for mem+swap usage.
137 */
138 struct res_counter memsw;
78fb7466
PE
139 /*
140 * Per cgroup active and inactive list, similar to the
141 * per zone LRU lists.
78fb7466 142 */
6d12e2d8 143 struct mem_cgroup_lru_info info;
072c56c1 144
6c48a1d0 145 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
146
147 /*
148 * While reclaiming in a hiearchy, we cache the last child we
149 * reclaimed from. Protected by cgroup_lock()
150 */
151 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
152 /*
153 * Should the accounting and control be hierarchical, per subtree?
154 */
155 bool use_hierarchy;
a636b327 156 unsigned long last_oom_jiffies;
8c7c6e34
KH
157 int obsolete;
158 atomic_t refcnt;
d52aa412 159 /*
c8dad2bb 160 * statistics. This must be placed at the end of memcg.
d52aa412
KH
161 */
162 struct mem_cgroup_stat stat;
8cdea7c0
BS
163};
164
217bc319
KH
165enum charge_type {
166 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
167 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 168 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 169 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 170 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
171 NR_CHARGE_TYPE,
172};
173
52d4b9ac
KH
174/* only for here (for easy reading.) */
175#define PCGF_CACHE (1UL << PCG_CACHE)
176#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 177#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
178static const unsigned long
179pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
180 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
181 PCGF_USED | PCGF_LOCK, /* Anon */
182 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 183 0, /* FORCE */
217bc319
KH
184};
185
8c7c6e34
KH
186
187/* for encoding cft->private value on file */
188#define _MEM (0)
189#define _MEMSWAP (1)
190#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
191#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
192#define MEMFILE_ATTR(val) ((val) & 0xffff)
193
194static void mem_cgroup_get(struct mem_cgroup *mem);
195static void mem_cgroup_put(struct mem_cgroup *mem);
196
c05555b5
KH
197static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
198 struct page_cgroup *pc,
199 bool charge)
d52aa412
KH
200{
201 int val = (charge)? 1 : -1;
202 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 203 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 204 int cpu = get_cpu();
d52aa412 205
08e552c6 206 cpustat = &stat->cpustat[cpu];
c05555b5 207 if (PageCgroupCache(pc))
addb9efe 208 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 209 else
addb9efe 210 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
211
212 if (charge)
addb9efe 213 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
214 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
215 else
addb9efe 216 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 217 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 218 put_cpu();
6d12e2d8
KH
219}
220
d5b69e38 221static struct mem_cgroup_per_zone *
6d12e2d8
KH
222mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
223{
6d12e2d8
KH
224 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
225}
226
d5b69e38 227static struct mem_cgroup_per_zone *
6d12e2d8
KH
228page_cgroup_zoneinfo(struct page_cgroup *pc)
229{
230 struct mem_cgroup *mem = pc->mem_cgroup;
231 int nid = page_cgroup_nid(pc);
232 int zid = page_cgroup_zid(pc);
d52aa412 233
6d12e2d8
KH
234 return mem_cgroup_zoneinfo(mem, nid, zid);
235}
236
237static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 238 enum lru_list idx)
6d12e2d8
KH
239{
240 int nid, zid;
241 struct mem_cgroup_per_zone *mz;
242 u64 total = 0;
243
244 for_each_online_node(nid)
245 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
246 mz = mem_cgroup_zoneinfo(mem, nid, zid);
247 total += MEM_CGROUP_ZSTAT(mz, idx);
248 }
249 return total;
d52aa412
KH
250}
251
d5b69e38 252static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
253{
254 return container_of(cgroup_subsys_state(cont,
255 mem_cgroup_subsys_id), struct mem_cgroup,
256 css);
257}
258
cf475ad2 259struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 260{
31a78f23
BS
261 /*
262 * mm_update_next_owner() may clear mm->owner to NULL
263 * if it races with swapoff, page migration, etc.
264 * So this can be called with p == NULL.
265 */
266 if (unlikely(!p))
267 return NULL;
268
78fb7466
PE
269 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
270 struct mem_cgroup, css);
271}
272
08e552c6
KH
273/*
274 * Following LRU functions are allowed to be used without PCG_LOCK.
275 * Operations are called by routine of global LRU independently from memcg.
276 * What we have to take care of here is validness of pc->mem_cgroup.
277 *
278 * Changes to pc->mem_cgroup happens when
279 * 1. charge
280 * 2. moving account
281 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
282 * It is added to LRU before charge.
283 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
284 * When moving account, the page is not on LRU. It's isolated.
285 */
4f98a2fe 286
08e552c6
KH
287void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
288{
289 struct page_cgroup *pc;
290 struct mem_cgroup *mem;
291 struct mem_cgroup_per_zone *mz;
6d12e2d8 292
f8d66542 293 if (mem_cgroup_disabled())
08e552c6
KH
294 return;
295 pc = lookup_page_cgroup(page);
296 /* can happen while we handle swapcache. */
297 if (list_empty(&pc->lru))
298 return;
299 mz = page_cgroup_zoneinfo(pc);
300 mem = pc->mem_cgroup;
b69408e8 301 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
302 list_del_init(&pc->lru);
303 return;
6d12e2d8
KH
304}
305
08e552c6 306void mem_cgroup_del_lru(struct page *page)
6d12e2d8 307{
08e552c6
KH
308 mem_cgroup_del_lru_list(page, page_lru(page));
309}
b69408e8 310
08e552c6
KH
311void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
312{
313 struct mem_cgroup_per_zone *mz;
314 struct page_cgroup *pc;
b69408e8 315
f8d66542 316 if (mem_cgroup_disabled())
08e552c6 317 return;
6d12e2d8 318
08e552c6
KH
319 pc = lookup_page_cgroup(page);
320 smp_rmb();
321 /* unused page is not rotated. */
322 if (!PageCgroupUsed(pc))
323 return;
324 mz = page_cgroup_zoneinfo(pc);
325 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
326}
327
08e552c6 328void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 329{
08e552c6
KH
330 struct page_cgroup *pc;
331 struct mem_cgroup_per_zone *mz;
6d12e2d8 332
f8d66542 333 if (mem_cgroup_disabled())
08e552c6
KH
334 return;
335 pc = lookup_page_cgroup(page);
336 /* barrier to sync with "charge" */
337 smp_rmb();
338 if (!PageCgroupUsed(pc))
894bc310 339 return;
b69408e8 340
08e552c6 341 mz = page_cgroup_zoneinfo(pc);
b69408e8 342 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
343 list_add(&pc->lru, &mz->lists[lru]);
344}
345/*
346 * To add swapcache into LRU. Be careful to all this function.
347 * zone->lru_lock shouldn't be held and irq must not be disabled.
348 */
349static void mem_cgroup_lru_fixup(struct page *page)
350{
351 if (!isolate_lru_page(page))
352 putback_lru_page(page);
353}
354
355void mem_cgroup_move_lists(struct page *page,
356 enum lru_list from, enum lru_list to)
357{
f8d66542 358 if (mem_cgroup_disabled())
08e552c6
KH
359 return;
360 mem_cgroup_del_lru_list(page, from);
361 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
362}
363
4c4a2214
DR
364int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
365{
366 int ret;
367
368 task_lock(task);
bd845e38 369 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
370 task_unlock(task);
371 return ret;
372}
373
58ae83db
KH
374/*
375 * Calculate mapped_ratio under memory controller. This will be used in
376 * vmscan.c for deteremining we have to reclaim mapped pages.
377 */
378int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
379{
380 long total, rss;
381
382 /*
383 * usage is recorded in bytes. But, here, we assume the number of
384 * physical pages can be represented by "long" on any arch.
385 */
386 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
387 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
388 return (int)((rss * 100L) / total);
389}
8869b8f6 390
6c48a1d0
KH
391/*
392 * prev_priority control...this will be used in memory reclaim path.
393 */
394int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
395{
396 return mem->prev_priority;
397}
398
399void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
400{
401 if (priority < mem->prev_priority)
402 mem->prev_priority = priority;
403}
404
405void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
406{
407 mem->prev_priority = priority;
408}
409
cc38108e
KH
410/*
411 * Calculate # of pages to be scanned in this priority/zone.
412 * See also vmscan.c
413 *
414 * priority starts from "DEF_PRIORITY" and decremented in each loop.
415 * (see include/linux/mmzone.h)
416 */
417
b69408e8
CL
418long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
419 int priority, enum lru_list lru)
cc38108e 420{
b69408e8 421 long nr_pages;
cc38108e
KH
422 int nid = zone->zone_pgdat->node_id;
423 int zid = zone_idx(zone);
424 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
425
b69408e8 426 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 427
b69408e8 428 return (nr_pages >> priority);
cc38108e
KH
429}
430
66e1707b
BS
431unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
432 struct list_head *dst,
433 unsigned long *scanned, int order,
434 int mode, struct zone *z,
435 struct mem_cgroup *mem_cont,
4f98a2fe 436 int active, int file)
66e1707b
BS
437{
438 unsigned long nr_taken = 0;
439 struct page *page;
440 unsigned long scan;
441 LIST_HEAD(pc_list);
442 struct list_head *src;
ff7283fa 443 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
444 int nid = z->zone_pgdat->node_id;
445 int zid = zone_idx(z);
446 struct mem_cgroup_per_zone *mz;
4f98a2fe 447 int lru = LRU_FILE * !!file + !!active;
66e1707b 448
cf475ad2 449 BUG_ON(!mem_cont);
1ecaab2b 450 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 451 src = &mz->lists[lru];
66e1707b 452
ff7283fa
KH
453 scan = 0;
454 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 455 if (scan >= nr_to_scan)
ff7283fa 456 break;
08e552c6
KH
457
458 page = pc->page;
52d4b9ac
KH
459 if (unlikely(!PageCgroupUsed(pc)))
460 continue;
436c6541 461 if (unlikely(!PageLRU(page)))
ff7283fa 462 continue;
ff7283fa 463
436c6541 464 scan++;
4f98a2fe 465 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
466 list_move(&page->lru, dst);
467 nr_taken++;
468 }
469 }
470
66e1707b
BS
471 *scanned = scan;
472 return nr_taken;
473}
474
6d61ef40
BS
475#define mem_cgroup_from_res_counter(counter, member) \
476 container_of(counter, struct mem_cgroup, member)
477
478/*
479 * This routine finds the DFS walk successor. This routine should be
480 * called with cgroup_mutex held
481 */
482static struct mem_cgroup *
483mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
484{
485 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
486
487 curr_cgroup = curr->css.cgroup;
488 root_cgroup = root_mem->css.cgroup;
489
490 if (!list_empty(&curr_cgroup->children)) {
491 /*
492 * Walk down to children
493 */
494 mem_cgroup_put(curr);
495 cgroup = list_entry(curr_cgroup->children.next,
496 struct cgroup, sibling);
497 curr = mem_cgroup_from_cont(cgroup);
498 mem_cgroup_get(curr);
499 goto done;
500 }
501
502visit_parent:
503 if (curr_cgroup == root_cgroup) {
504 mem_cgroup_put(curr);
505 curr = root_mem;
506 mem_cgroup_get(curr);
507 goto done;
508 }
509
510 /*
511 * Goto next sibling
512 */
513 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
514 mem_cgroup_put(curr);
515 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
516 sibling);
517 curr = mem_cgroup_from_cont(cgroup);
518 mem_cgroup_get(curr);
519 goto done;
520 }
521
522 /*
523 * Go up to next parent and next parent's sibling if need be
524 */
525 curr_cgroup = curr_cgroup->parent;
526 goto visit_parent;
527
528done:
529 root_mem->last_scanned_child = curr;
530 return curr;
531}
532
533/*
534 * Visit the first child (need not be the first child as per the ordering
535 * of the cgroup list, since we track last_scanned_child) of @mem and use
536 * that to reclaim free pages from.
537 */
538static struct mem_cgroup *
539mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
540{
541 struct cgroup *cgroup;
542 struct mem_cgroup *ret;
543 bool obsolete = (root_mem->last_scanned_child &&
544 root_mem->last_scanned_child->obsolete);
545
546 /*
547 * Scan all children under the mem_cgroup mem
548 */
549 cgroup_lock();
550 if (list_empty(&root_mem->css.cgroup->children)) {
551 ret = root_mem;
552 goto done;
553 }
554
555 if (!root_mem->last_scanned_child || obsolete) {
556
557 if (obsolete)
558 mem_cgroup_put(root_mem->last_scanned_child);
559
560 cgroup = list_first_entry(&root_mem->css.cgroup->children,
561 struct cgroup, sibling);
562 ret = mem_cgroup_from_cont(cgroup);
563 mem_cgroup_get(ret);
564 } else
565 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
566 root_mem);
567
568done:
569 root_mem->last_scanned_child = ret;
570 cgroup_unlock();
571 return ret;
572}
573
b85a96c0
DN
574static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
575{
576 if (do_swap_account) {
577 if (res_counter_check_under_limit(&mem->res) &&
578 res_counter_check_under_limit(&mem->memsw))
579 return true;
580 } else
581 if (res_counter_check_under_limit(&mem->res))
582 return true;
583 return false;
584}
585
6d61ef40
BS
586/*
587 * Dance down the hierarchy if needed to reclaim memory. We remember the
588 * last child we reclaimed from, so that we don't end up penalizing
589 * one child extensively based on its position in the children list.
590 *
591 * root_mem is the original ancestor that we've been reclaim from.
592 */
593static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
594 gfp_t gfp_mask, bool noswap)
595{
596 struct mem_cgroup *next_mem;
597 int ret = 0;
598
599 /*
600 * Reclaim unconditionally and don't check for return value.
601 * We need to reclaim in the current group and down the tree.
602 * One might think about checking for children before reclaiming,
603 * but there might be left over accounting, even after children
604 * have left.
605 */
606 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
b85a96c0 607 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
608 return 0;
609
610 next_mem = mem_cgroup_get_first_node(root_mem);
611
612 while (next_mem != root_mem) {
613 if (next_mem->obsolete) {
614 mem_cgroup_put(next_mem);
615 cgroup_lock();
616 next_mem = mem_cgroup_get_first_node(root_mem);
617 cgroup_unlock();
618 continue;
619 }
620 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
b85a96c0 621 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
622 return 0;
623 cgroup_lock();
624 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
625 cgroup_unlock();
626 }
627 return ret;
628}
629
a636b327
KH
630bool mem_cgroup_oom_called(struct task_struct *task)
631{
632 bool ret = false;
633 struct mem_cgroup *mem;
634 struct mm_struct *mm;
635
636 rcu_read_lock();
637 mm = task->mm;
638 if (!mm)
639 mm = &init_mm;
640 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
641 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
642 ret = true;
643 rcu_read_unlock();
644 return ret;
645}
f817ed48
KH
646/*
647 * Unlike exported interface, "oom" parameter is added. if oom==true,
648 * oom-killer can be invoked.
8a9f3ccd 649 */
f817ed48 650static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
651 gfp_t gfp_mask, struct mem_cgroup **memcg,
652 bool oom)
8a9f3ccd 653{
6d61ef40 654 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 655 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 656 struct res_counter *fail_res;
a636b327
KH
657
658 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
659 /* Don't account this! */
660 *memcg = NULL;
661 return 0;
662 }
663
8a9f3ccd 664 /*
3be91277
HD
665 * We always charge the cgroup the mm_struct belongs to.
666 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
667 * thread group leader migrates. It's possible that mm is not
668 * set, if so charge the init_mm (happens for pagecache usage).
669 */
7a81b88c 670 if (likely(!*memcg)) {
e8589cc1
KH
671 rcu_read_lock();
672 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
673 if (unlikely(!mem)) {
674 rcu_read_unlock();
31a78f23
BS
675 return 0;
676 }
e8589cc1
KH
677 /*
678 * For every charge from the cgroup, increment reference count
679 */
680 css_get(&mem->css);
7a81b88c 681 *memcg = mem;
e8589cc1
KH
682 rcu_read_unlock();
683 } else {
7a81b88c
KH
684 mem = *memcg;
685 css_get(&mem->css);
e8589cc1 686 }
8a9f3ccd 687
8c7c6e34
KH
688 while (1) {
689 int ret;
690 bool noswap = false;
7a81b88c 691
28dbc4b6 692 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
693 if (likely(!ret)) {
694 if (!do_swap_account)
695 break;
28dbc4b6
BS
696 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
697 &fail_res);
8c7c6e34
KH
698 if (likely(!ret))
699 break;
700 /* mem+swap counter fails */
701 res_counter_uncharge(&mem->res, PAGE_SIZE);
702 noswap = true;
6d61ef40
BS
703 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
704 memsw);
705 } else
706 /* mem counter fails */
707 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
708 res);
709
3be91277 710 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 711 goto nomem;
e1a1cd59 712
6d61ef40
BS
713 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
714 noswap);
66e1707b
BS
715
716 /*
8869b8f6
HD
717 * try_to_free_mem_cgroup_pages() might not give us a full
718 * picture of reclaim. Some pages are reclaimed and might be
719 * moved to swap cache or just unmapped from the cgroup.
720 * Check the limit again to see if the reclaim reduced the
721 * current usage of the cgroup before giving up
8c7c6e34 722 *
8869b8f6 723 */
b85a96c0
DN
724 if (mem_cgroup_check_under_limit(mem_over_limit))
725 continue;
3be91277
HD
726
727 if (!nr_retries--) {
a636b327 728 if (oom) {
88700756
KH
729 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
730 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 731 }
7a81b88c 732 goto nomem;
66e1707b 733 }
8a9f3ccd 734 }
7a81b88c
KH
735 return 0;
736nomem:
737 css_put(&mem->css);
738 return -ENOMEM;
739}
8a9f3ccd 740
f817ed48
KH
741/**
742 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
743 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
744 * @gfp_mask: gfp_mask for reclaim.
745 * @memcg: a pointer to memory cgroup which is charged against.
746 *
747 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
748 * memory cgroup from @mm is got and stored in *memcg.
749 *
750 * Returns 0 if success. -ENOMEM at failure.
751 * This call can invoke OOM-Killer.
752 */
753
754int mem_cgroup_try_charge(struct mm_struct *mm,
755 gfp_t mask, struct mem_cgroup **memcg)
756{
757 return __mem_cgroup_try_charge(mm, mask, memcg, true);
758}
759
7a81b88c
KH
760/*
761 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
762 * USED state. If already USED, uncharge and return.
763 */
764
765static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
766 struct page_cgroup *pc,
767 enum charge_type ctype)
768{
7a81b88c
KH
769 /* try_charge() can return NULL to *memcg, taking care of it. */
770 if (!mem)
771 return;
52d4b9ac
KH
772
773 lock_page_cgroup(pc);
774 if (unlikely(PageCgroupUsed(pc))) {
775 unlock_page_cgroup(pc);
776 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
777 if (do_swap_account)
778 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 779 css_put(&mem->css);
7a81b88c 780 return;
52d4b9ac 781 }
8a9f3ccd 782 pc->mem_cgroup = mem;
08e552c6 783 smp_wmb();
c05555b5 784 pc->flags = pcg_default_flags[ctype];
3be91277 785
08e552c6 786 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 787
52d4b9ac 788 unlock_page_cgroup(pc);
7a81b88c 789}
66e1707b 790
f817ed48
KH
791/**
792 * mem_cgroup_move_account - move account of the page
793 * @pc: page_cgroup of the page.
794 * @from: mem_cgroup which the page is moved from.
795 * @to: mem_cgroup which the page is moved to. @from != @to.
796 *
797 * The caller must confirm following.
08e552c6 798 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
799 *
800 * returns 0 at success,
801 * returns -EBUSY when lock is busy or "pc" is unstable.
802 *
803 * This function does "uncharge" from old cgroup but doesn't do "charge" to
804 * new cgroup. It should be done by a caller.
805 */
806
807static int mem_cgroup_move_account(struct page_cgroup *pc,
808 struct mem_cgroup *from, struct mem_cgroup *to)
809{
810 struct mem_cgroup_per_zone *from_mz, *to_mz;
811 int nid, zid;
812 int ret = -EBUSY;
813
f817ed48 814 VM_BUG_ON(from == to);
08e552c6 815 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
816
817 nid = page_cgroup_nid(pc);
818 zid = page_cgroup_zid(pc);
819 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
820 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
821
f817ed48
KH
822 if (!trylock_page_cgroup(pc))
823 return ret;
824
825 if (!PageCgroupUsed(pc))
826 goto out;
827
828 if (pc->mem_cgroup != from)
829 goto out;
830
08e552c6
KH
831 css_put(&from->css);
832 res_counter_uncharge(&from->res, PAGE_SIZE);
833 mem_cgroup_charge_statistics(from, pc, false);
834 if (do_swap_account)
835 res_counter_uncharge(&from->memsw, PAGE_SIZE);
836 pc->mem_cgroup = to;
837 mem_cgroup_charge_statistics(to, pc, true);
838 css_get(&to->css);
839 ret = 0;
f817ed48
KH
840out:
841 unlock_page_cgroup(pc);
842 return ret;
843}
844
845/*
846 * move charges to its parent.
847 */
848
849static int mem_cgroup_move_parent(struct page_cgroup *pc,
850 struct mem_cgroup *child,
851 gfp_t gfp_mask)
852{
08e552c6 853 struct page *page = pc->page;
f817ed48
KH
854 struct cgroup *cg = child->css.cgroup;
855 struct cgroup *pcg = cg->parent;
856 struct mem_cgroup *parent;
f817ed48
KH
857 int ret;
858
859 /* Is ROOT ? */
860 if (!pcg)
861 return -EINVAL;
862
08e552c6 863
f817ed48
KH
864 parent = mem_cgroup_from_cont(pcg);
865
08e552c6 866
f817ed48 867 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 868 if (ret || !parent)
f817ed48
KH
869 return ret;
870
08e552c6
KH
871 if (!get_page_unless_zero(page))
872 return -EBUSY;
873
874 ret = isolate_lru_page(page);
875
876 if (ret)
877 goto cancel;
f817ed48 878
f817ed48 879 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 880
08e552c6 881 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 882 css_put(&parent->css);
08e552c6
KH
883 putback_lru_page(page);
884 if (!ret) {
885 put_page(page);
886 return 0;
8c7c6e34 887 }
08e552c6
KH
888 /* uncharge if move fails */
889cancel:
890 res_counter_uncharge(&parent->res, PAGE_SIZE);
891 if (do_swap_account)
892 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
893 put_page(page);
f817ed48
KH
894 return ret;
895}
896
7a81b88c
KH
897/*
898 * Charge the memory controller for page usage.
899 * Return
900 * 0 if the charge was successful
901 * < 0 if the cgroup is over its limit
902 */
903static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
904 gfp_t gfp_mask, enum charge_type ctype,
905 struct mem_cgroup *memcg)
906{
907 struct mem_cgroup *mem;
908 struct page_cgroup *pc;
909 int ret;
910
911 pc = lookup_page_cgroup(page);
912 /* can happen at boot */
913 if (unlikely(!pc))
914 return 0;
915 prefetchw(pc);
916
917 mem = memcg;
f817ed48 918 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 919 if (ret || !mem)
7a81b88c
KH
920 return ret;
921
922 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 923 return 0;
8a9f3ccd
BS
924}
925
7a81b88c
KH
926int mem_cgroup_newpage_charge(struct page *page,
927 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 928{
f8d66542 929 if (mem_cgroup_disabled())
cede86ac 930 return 0;
52d4b9ac
KH
931 if (PageCompound(page))
932 return 0;
69029cd5
KH
933 /*
934 * If already mapped, we don't have to account.
935 * If page cache, page->mapping has address_space.
936 * But page->mapping may have out-of-use anon_vma pointer,
937 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
938 * is NULL.
939 */
940 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
941 return 0;
942 if (unlikely(!mm))
943 mm = &init_mm;
217bc319 944 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 945 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
946}
947
e1a1cd59
BS
948int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
949 gfp_t gfp_mask)
8697d331 950{
f8d66542 951 if (mem_cgroup_disabled())
cede86ac 952 return 0;
52d4b9ac
KH
953 if (PageCompound(page))
954 return 0;
accf163e
KH
955 /*
956 * Corner case handling. This is called from add_to_page_cache()
957 * in usual. But some FS (shmem) precharges this page before calling it
958 * and call add_to_page_cache() with GFP_NOWAIT.
959 *
960 * For GFP_NOWAIT case, the page may be pre-charged before calling
961 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
962 * charge twice. (It works but has to pay a bit larger cost.)
963 */
964 if (!(gfp_mask & __GFP_WAIT)) {
965 struct page_cgroup *pc;
966
52d4b9ac
KH
967
968 pc = lookup_page_cgroup(page);
969 if (!pc)
970 return 0;
971 lock_page_cgroup(pc);
972 if (PageCgroupUsed(pc)) {
973 unlock_page_cgroup(pc);
accf163e
KH
974 return 0;
975 }
52d4b9ac 976 unlock_page_cgroup(pc);
accf163e
KH
977 }
978
69029cd5 979 if (unlikely(!mm))
8697d331 980 mm = &init_mm;
accf163e 981
c05555b5
KH
982 if (page_is_file_cache(page))
983 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 984 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
985 else
986 return mem_cgroup_charge_common(page, mm, gfp_mask,
987 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
988}
989
8c7c6e34
KH
990int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
991 struct page *page,
992 gfp_t mask, struct mem_cgroup **ptr)
993{
994 struct mem_cgroup *mem;
995 swp_entry_t ent;
996
f8d66542 997 if (mem_cgroup_disabled())
8c7c6e34
KH
998 return 0;
999
1000 if (!do_swap_account)
1001 goto charge_cur_mm;
1002
1003 /*
1004 * A racing thread's fault, or swapoff, may have already updated
1005 * the pte, and even removed page from swap cache: return success
1006 * to go on to do_swap_page()'s pte_same() test, which should fail.
1007 */
1008 if (!PageSwapCache(page))
1009 return 0;
1010
1011 ent.val = page_private(page);
1012
1013 mem = lookup_swap_cgroup(ent);
1014 if (!mem || mem->obsolete)
1015 goto charge_cur_mm;
1016 *ptr = mem;
1017 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1018charge_cur_mm:
1019 if (unlikely(!mm))
1020 mm = &init_mm;
1021 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1022}
1023
d13d1443 1024#ifdef CONFIG_SWAP
8c7c6e34 1025
d13d1443
KH
1026int mem_cgroup_cache_charge_swapin(struct page *page,
1027 struct mm_struct *mm, gfp_t mask, bool locked)
1028{
1029 int ret = 0;
1030
f8d66542 1031 if (mem_cgroup_disabled())
d13d1443
KH
1032 return 0;
1033 if (unlikely(!mm))
1034 mm = &init_mm;
1035 if (!locked)
1036 lock_page(page);
1037 /*
1038 * If not locked, the page can be dropped from SwapCache until
1039 * we reach here.
1040 */
1041 if (PageSwapCache(page)) {
8c7c6e34
KH
1042 struct mem_cgroup *mem = NULL;
1043 swp_entry_t ent;
1044
1045 ent.val = page_private(page);
1046 if (do_swap_account) {
1047 mem = lookup_swap_cgroup(ent);
1048 if (mem && mem->obsolete)
1049 mem = NULL;
1050 if (mem)
1051 mm = NULL;
1052 }
d13d1443 1053 ret = mem_cgroup_charge_common(page, mm, mask,
8c7c6e34
KH
1054 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1055
1056 if (!ret && do_swap_account) {
1057 /* avoid double counting */
1058 mem = swap_cgroup_record(ent, NULL);
1059 if (mem) {
1060 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1061 mem_cgroup_put(mem);
1062 }
1063 }
d13d1443
KH
1064 }
1065 if (!locked)
1066 unlock_page(page);
08e552c6
KH
1067 /* add this page(page_cgroup) to the LRU we want. */
1068 mem_cgroup_lru_fixup(page);
d13d1443
KH
1069
1070 return ret;
1071}
1072#endif
1073
7a81b88c
KH
1074void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1075{
1076 struct page_cgroup *pc;
1077
f8d66542 1078 if (mem_cgroup_disabled())
7a81b88c
KH
1079 return;
1080 if (!ptr)
1081 return;
1082 pc = lookup_page_cgroup(page);
1083 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
8c7c6e34
KH
1084 /*
1085 * Now swap is on-memory. This means this page may be
1086 * counted both as mem and swap....double count.
1087 * Fix it by uncharging from memsw. This SwapCache is stable
1088 * because we're still under lock_page().
1089 */
1090 if (do_swap_account) {
1091 swp_entry_t ent = {.val = page_private(page)};
1092 struct mem_cgroup *memcg;
1093 memcg = swap_cgroup_record(ent, NULL);
1094 if (memcg) {
1095 /* If memcg is obsolete, memcg can be != ptr */
1096 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1097 mem_cgroup_put(memcg);
1098 }
1099
1100 }
08e552c6
KH
1101 /* add this page(page_cgroup) to the LRU we want. */
1102 mem_cgroup_lru_fixup(page);
7a81b88c
KH
1103}
1104
1105void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1106{
f8d66542 1107 if (mem_cgroup_disabled())
7a81b88c
KH
1108 return;
1109 if (!mem)
1110 return;
1111 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1112 if (do_swap_account)
1113 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1114 css_put(&mem->css);
1115}
1116
1117
8a9f3ccd 1118/*
69029cd5 1119 * uncharge if !page_mapped(page)
8a9f3ccd 1120 */
8c7c6e34 1121static struct mem_cgroup *
69029cd5 1122__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1123{
8289546e 1124 struct page_cgroup *pc;
8c7c6e34 1125 struct mem_cgroup *mem = NULL;
072c56c1 1126 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1127
f8d66542 1128 if (mem_cgroup_disabled())
8c7c6e34 1129 return NULL;
4077960e 1130
d13d1443 1131 if (PageSwapCache(page))
8c7c6e34 1132 return NULL;
d13d1443 1133
8697d331 1134 /*
3c541e14 1135 * Check if our page_cgroup is valid
8697d331 1136 */
52d4b9ac
KH
1137 pc = lookup_page_cgroup(page);
1138 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1139 return NULL;
b9c565d5 1140
52d4b9ac 1141 lock_page_cgroup(pc);
d13d1443 1142
8c7c6e34
KH
1143 mem = pc->mem_cgroup;
1144
d13d1443
KH
1145 if (!PageCgroupUsed(pc))
1146 goto unlock_out;
1147
1148 switch (ctype) {
1149 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1150 if (page_mapped(page))
1151 goto unlock_out;
1152 break;
1153 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1154 if (!PageAnon(page)) { /* Shared memory */
1155 if (page->mapping && !page_is_file_cache(page))
1156 goto unlock_out;
1157 } else if (page_mapped(page)) /* Anon */
1158 goto unlock_out;
1159 break;
1160 default:
1161 break;
52d4b9ac 1162 }
d13d1443 1163
8c7c6e34
KH
1164 res_counter_uncharge(&mem->res, PAGE_SIZE);
1165 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1166 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1167
08e552c6 1168 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1169 ClearPageCgroupUsed(pc);
b9c565d5 1170
69029cd5 1171 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1172 unlock_page_cgroup(pc);
fb59e9f1 1173
a7fe942e
KH
1174 /* at swapout, this memcg will be accessed to record to swap */
1175 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1176 css_put(&mem->css);
6d12e2d8 1177
8c7c6e34 1178 return mem;
d13d1443
KH
1179
1180unlock_out:
1181 unlock_page_cgroup(pc);
8c7c6e34 1182 return NULL;
3c541e14
BS
1183}
1184
69029cd5
KH
1185void mem_cgroup_uncharge_page(struct page *page)
1186{
52d4b9ac
KH
1187 /* early check. */
1188 if (page_mapped(page))
1189 return;
1190 if (page->mapping && !PageAnon(page))
1191 return;
69029cd5
KH
1192 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1193}
1194
1195void mem_cgroup_uncharge_cache_page(struct page *page)
1196{
1197 VM_BUG_ON(page_mapped(page));
b7abea96 1198 VM_BUG_ON(page->mapping);
69029cd5
KH
1199 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1200}
1201
8c7c6e34
KH
1202/*
1203 * called from __delete_from_swap_cache() and drop "page" account.
1204 * memcg information is recorded to swap_cgroup of "ent"
1205 */
1206void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1207{
1208 struct mem_cgroup *memcg;
1209
1210 memcg = __mem_cgroup_uncharge_common(page,
1211 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1212 /* record memcg information */
1213 if (do_swap_account && memcg) {
1214 swap_cgroup_record(ent, memcg);
1215 mem_cgroup_get(memcg);
1216 }
a7fe942e
KH
1217 if (memcg)
1218 css_put(&memcg->css);
8c7c6e34
KH
1219}
1220
1221#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1222/*
1223 * called from swap_entry_free(). remove record in swap_cgroup and
1224 * uncharge "memsw" account.
1225 */
1226void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1227{
8c7c6e34
KH
1228 struct mem_cgroup *memcg;
1229
1230 if (!do_swap_account)
1231 return;
1232
1233 memcg = swap_cgroup_record(ent, NULL);
1234 if (memcg) {
1235 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1236 mem_cgroup_put(memcg);
1237 }
d13d1443 1238}
8c7c6e34 1239#endif
d13d1443 1240
ae41be37 1241/*
01b1ae63
KH
1242 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1243 * page belongs to.
ae41be37 1244 */
01b1ae63 1245int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1246{
1247 struct page_cgroup *pc;
e8589cc1 1248 struct mem_cgroup *mem = NULL;
e8589cc1 1249 int ret = 0;
8869b8f6 1250
f8d66542 1251 if (mem_cgroup_disabled())
4077960e
BS
1252 return 0;
1253
52d4b9ac
KH
1254 pc = lookup_page_cgroup(page);
1255 lock_page_cgroup(pc);
1256 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1257 mem = pc->mem_cgroup;
1258 css_get(&mem->css);
e8589cc1 1259 }
52d4b9ac 1260 unlock_page_cgroup(pc);
01b1ae63 1261
e8589cc1 1262 if (mem) {
2c26fdd7 1263 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
e8589cc1
KH
1264 css_put(&mem->css);
1265 }
01b1ae63 1266 *ptr = mem;
e8589cc1 1267 return ret;
ae41be37 1268}
8869b8f6 1269
69029cd5 1270/* remove redundant charge if migration failed*/
01b1ae63
KH
1271void mem_cgroup_end_migration(struct mem_cgroup *mem,
1272 struct page *oldpage, struct page *newpage)
ae41be37 1273{
01b1ae63
KH
1274 struct page *target, *unused;
1275 struct page_cgroup *pc;
1276 enum charge_type ctype;
1277
1278 if (!mem)
1279 return;
1280
1281 /* at migration success, oldpage->mapping is NULL. */
1282 if (oldpage->mapping) {
1283 target = oldpage;
1284 unused = NULL;
1285 } else {
1286 target = newpage;
1287 unused = oldpage;
1288 }
1289
1290 if (PageAnon(target))
1291 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1292 else if (page_is_file_cache(target))
1293 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1294 else
1295 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1296
1297 /* unused page is not on radix-tree now. */
d13d1443 1298 if (unused)
01b1ae63
KH
1299 __mem_cgroup_uncharge_common(unused, ctype);
1300
1301 pc = lookup_page_cgroup(target);
69029cd5 1302 /*
01b1ae63
KH
1303 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1304 * So, double-counting is effectively avoided.
1305 */
1306 __mem_cgroup_commit_charge(mem, pc, ctype);
1307
1308 /*
1309 * Both of oldpage and newpage are still under lock_page().
1310 * Then, we don't have to care about race in radix-tree.
1311 * But we have to be careful that this page is unmapped or not.
1312 *
1313 * There is a case for !page_mapped(). At the start of
1314 * migration, oldpage was mapped. But now, it's zapped.
1315 * But we know *target* page is not freed/reused under us.
1316 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1317 */
01b1ae63
KH
1318 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1319 mem_cgroup_uncharge_page(target);
ae41be37 1320}
78fb7466 1321
c9b0ed51
KH
1322/*
1323 * A call to try to shrink memory usage under specified resource controller.
1324 * This is typically used for page reclaiming for shmem for reducing side
1325 * effect of page allocation from shmem, which is used by some mem_cgroup.
1326 */
1327int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1328{
1329 struct mem_cgroup *mem;
1330 int progress = 0;
1331 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1332
f8d66542 1333 if (mem_cgroup_disabled())
cede86ac 1334 return 0;
9623e078
HD
1335 if (!mm)
1336 return 0;
cede86ac 1337
c9b0ed51
KH
1338 rcu_read_lock();
1339 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
1340 if (unlikely(!mem)) {
1341 rcu_read_unlock();
1342 return 0;
1343 }
c9b0ed51
KH
1344 css_get(&mem->css);
1345 rcu_read_unlock();
1346
1347 do {
8c7c6e34 1348 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
b85a96c0 1349 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1350 } while (!progress && --retry);
1351
1352 css_put(&mem->css);
1353 if (!retry)
1354 return -ENOMEM;
1355 return 0;
1356}
1357
8c7c6e34
KH
1358static DEFINE_MUTEX(set_limit_mutex);
1359
d38d2a75 1360static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1361 unsigned long long val)
628f4235
KH
1362{
1363
1364 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1365 int progress;
8c7c6e34 1366 u64 memswlimit;
628f4235
KH
1367 int ret = 0;
1368
8c7c6e34 1369 while (retry_count) {
628f4235
KH
1370 if (signal_pending(current)) {
1371 ret = -EINTR;
1372 break;
1373 }
8c7c6e34
KH
1374 /*
1375 * Rather than hide all in some function, I do this in
1376 * open coded manner. You see what this really does.
1377 * We have to guarantee mem->res.limit < mem->memsw.limit.
1378 */
1379 mutex_lock(&set_limit_mutex);
1380 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1381 if (memswlimit < val) {
1382 ret = -EINVAL;
1383 mutex_unlock(&set_limit_mutex);
628f4235
KH
1384 break;
1385 }
8c7c6e34
KH
1386 ret = res_counter_set_limit(&memcg->res, val);
1387 mutex_unlock(&set_limit_mutex);
1388
1389 if (!ret)
1390 break;
1391
bced0520 1392 progress = try_to_free_mem_cgroup_pages(memcg,
2c26fdd7 1393 GFP_KERNEL, false);
8c7c6e34
KH
1394 if (!progress) retry_count--;
1395 }
1396 return ret;
1397}
1398
1399int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1400 unsigned long long val)
1401{
1402 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1403 u64 memlimit, oldusage, curusage;
1404 int ret;
1405
1406 if (!do_swap_account)
1407 return -EINVAL;
1408
1409 while (retry_count) {
1410 if (signal_pending(current)) {
1411 ret = -EINTR;
1412 break;
1413 }
1414 /*
1415 * Rather than hide all in some function, I do this in
1416 * open coded manner. You see what this really does.
1417 * We have to guarantee mem->res.limit < mem->memsw.limit.
1418 */
1419 mutex_lock(&set_limit_mutex);
1420 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1421 if (memlimit > val) {
1422 ret = -EINVAL;
1423 mutex_unlock(&set_limit_mutex);
1424 break;
1425 }
1426 ret = res_counter_set_limit(&memcg->memsw, val);
1427 mutex_unlock(&set_limit_mutex);
1428
1429 if (!ret)
1430 break;
1431
1432 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2c26fdd7 1433 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1434 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1435 if (curusage >= oldusage)
628f4235
KH
1436 retry_count--;
1437 }
1438 return ret;
1439}
1440
cc847582
KH
1441/*
1442 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1443 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1444 */
f817ed48 1445static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1446 int node, int zid, enum lru_list lru)
cc847582 1447{
08e552c6
KH
1448 struct zone *zone;
1449 struct mem_cgroup_per_zone *mz;
f817ed48 1450 struct page_cgroup *pc, *busy;
08e552c6 1451 unsigned long flags, loop;
072c56c1 1452 struct list_head *list;
f817ed48 1453 int ret = 0;
072c56c1 1454
08e552c6
KH
1455 zone = &NODE_DATA(node)->node_zones[zid];
1456 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1457 list = &mz->lists[lru];
cc847582 1458
f817ed48
KH
1459 loop = MEM_CGROUP_ZSTAT(mz, lru);
1460 /* give some margin against EBUSY etc...*/
1461 loop += 256;
1462 busy = NULL;
1463 while (loop--) {
1464 ret = 0;
08e552c6 1465 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1466 if (list_empty(list)) {
08e552c6 1467 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1468 break;
f817ed48
KH
1469 }
1470 pc = list_entry(list->prev, struct page_cgroup, lru);
1471 if (busy == pc) {
1472 list_move(&pc->lru, list);
1473 busy = 0;
08e552c6 1474 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1475 continue;
1476 }
08e552c6 1477 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1478
2c26fdd7 1479 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1480 if (ret == -ENOMEM)
52d4b9ac 1481 break;
f817ed48
KH
1482
1483 if (ret == -EBUSY || ret == -EINVAL) {
1484 /* found lock contention or "pc" is obsolete. */
1485 busy = pc;
1486 cond_resched();
1487 } else
1488 busy = NULL;
cc847582 1489 }
08e552c6 1490
f817ed48
KH
1491 if (!ret && !list_empty(list))
1492 return -EBUSY;
1493 return ret;
cc847582
KH
1494}
1495
1496/*
1497 * make mem_cgroup's charge to be 0 if there is no task.
1498 * This enables deleting this mem_cgroup.
1499 */
c1e862c1 1500static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1501{
f817ed48
KH
1502 int ret;
1503 int node, zid, shrink;
1504 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1505 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1506
cc847582 1507 css_get(&mem->css);
f817ed48
KH
1508
1509 shrink = 0;
c1e862c1
KH
1510 /* should free all ? */
1511 if (free_all)
1512 goto try_to_free;
f817ed48 1513move_account:
1ecaab2b 1514 while (mem->res.usage > 0) {
f817ed48 1515 ret = -EBUSY;
c1e862c1
KH
1516 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1517 goto out;
1518 ret = -EINTR;
1519 if (signal_pending(current))
cc847582 1520 goto out;
52d4b9ac
KH
1521 /* This is for making all *used* pages to be on LRU. */
1522 lru_add_drain_all();
f817ed48
KH
1523 ret = 0;
1524 for_each_node_state(node, N_POSSIBLE) {
1525 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1526 enum lru_list l;
f817ed48
KH
1527 for_each_lru(l) {
1528 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1529 node, zid, l);
f817ed48
KH
1530 if (ret)
1531 break;
1532 }
1ecaab2b 1533 }
f817ed48
KH
1534 if (ret)
1535 break;
1536 }
1537 /* it seems parent cgroup doesn't have enough mem */
1538 if (ret == -ENOMEM)
1539 goto try_to_free;
52d4b9ac 1540 cond_resched();
cc847582
KH
1541 }
1542 ret = 0;
1543out:
1544 css_put(&mem->css);
1545 return ret;
f817ed48
KH
1546
1547try_to_free:
c1e862c1
KH
1548 /* returns EBUSY if there is a task or if we come here twice. */
1549 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1550 ret = -EBUSY;
1551 goto out;
1552 }
c1e862c1
KH
1553 /* we call try-to-free pages for make this cgroup empty */
1554 lru_add_drain_all();
f817ed48
KH
1555 /* try to free all pages in this cgroup */
1556 shrink = 1;
1557 while (nr_retries && mem->res.usage > 0) {
1558 int progress;
c1e862c1
KH
1559
1560 if (signal_pending(current)) {
1561 ret = -EINTR;
1562 goto out;
1563 }
f817ed48 1564 progress = try_to_free_mem_cgroup_pages(mem,
2c26fdd7 1565 GFP_KERNEL, false);
c1e862c1 1566 if (!progress) {
f817ed48 1567 nr_retries--;
c1e862c1
KH
1568 /* maybe some writeback is necessary */
1569 congestion_wait(WRITE, HZ/10);
1570 }
f817ed48
KH
1571
1572 }
08e552c6 1573 lru_add_drain();
f817ed48
KH
1574 /* try move_account...there may be some *locked* pages. */
1575 if (mem->res.usage)
1576 goto move_account;
1577 ret = 0;
1578 goto out;
cc847582
KH
1579}
1580
c1e862c1
KH
1581int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1582{
1583 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1584}
1585
1586
18f59ea7
BS
1587static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1588{
1589 return mem_cgroup_from_cont(cont)->use_hierarchy;
1590}
1591
1592static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1593 u64 val)
1594{
1595 int retval = 0;
1596 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1597 struct cgroup *parent = cont->parent;
1598 struct mem_cgroup *parent_mem = NULL;
1599
1600 if (parent)
1601 parent_mem = mem_cgroup_from_cont(parent);
1602
1603 cgroup_lock();
1604 /*
1605 * If parent's use_hiearchy is set, we can't make any modifications
1606 * in the child subtrees. If it is unset, then the change can
1607 * occur, provided the current cgroup has no children.
1608 *
1609 * For the root cgroup, parent_mem is NULL, we allow value to be
1610 * set if there are no children.
1611 */
1612 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1613 (val == 1 || val == 0)) {
1614 if (list_empty(&cont->children))
1615 mem->use_hierarchy = val;
1616 else
1617 retval = -EBUSY;
1618 } else
1619 retval = -EINVAL;
1620 cgroup_unlock();
1621
1622 return retval;
1623}
1624
2c3daa72 1625static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1626{
8c7c6e34
KH
1627 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1628 u64 val = 0;
1629 int type, name;
1630
1631 type = MEMFILE_TYPE(cft->private);
1632 name = MEMFILE_ATTR(cft->private);
1633 switch (type) {
1634 case _MEM:
1635 val = res_counter_read_u64(&mem->res, name);
1636 break;
1637 case _MEMSWAP:
1638 if (do_swap_account)
1639 val = res_counter_read_u64(&mem->memsw, name);
1640 break;
1641 default:
1642 BUG();
1643 break;
1644 }
1645 return val;
8cdea7c0 1646}
628f4235
KH
1647/*
1648 * The user of this function is...
1649 * RES_LIMIT.
1650 */
856c13aa
PM
1651static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1652 const char *buffer)
8cdea7c0 1653{
628f4235 1654 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1655 int type, name;
628f4235
KH
1656 unsigned long long val;
1657 int ret;
1658
8c7c6e34
KH
1659 type = MEMFILE_TYPE(cft->private);
1660 name = MEMFILE_ATTR(cft->private);
1661 switch (name) {
628f4235
KH
1662 case RES_LIMIT:
1663 /* This function does all necessary parse...reuse it */
1664 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1665 if (ret)
1666 break;
1667 if (type == _MEM)
628f4235 1668 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1669 else
1670 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1671 break;
1672 default:
1673 ret = -EINVAL; /* should be BUG() ? */
1674 break;
1675 }
1676 return ret;
8cdea7c0
BS
1677}
1678
29f2a4da 1679static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1680{
1681 struct mem_cgroup *mem;
8c7c6e34 1682 int type, name;
c84872e1
PE
1683
1684 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1685 type = MEMFILE_TYPE(event);
1686 name = MEMFILE_ATTR(event);
1687 switch (name) {
29f2a4da 1688 case RES_MAX_USAGE:
8c7c6e34
KH
1689 if (type == _MEM)
1690 res_counter_reset_max(&mem->res);
1691 else
1692 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1693 break;
1694 case RES_FAILCNT:
8c7c6e34
KH
1695 if (type == _MEM)
1696 res_counter_reset_failcnt(&mem->res);
1697 else
1698 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1699 break;
1700 }
85cc59db 1701 return 0;
c84872e1
PE
1702}
1703
d2ceb9b7
KH
1704static const struct mem_cgroup_stat_desc {
1705 const char *msg;
1706 u64 unit;
1707} mem_cgroup_stat_desc[] = {
1708 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1709 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1710 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1711 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1712};
1713
c64745cf
PM
1714static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1715 struct cgroup_map_cb *cb)
d2ceb9b7 1716{
d2ceb9b7
KH
1717 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1718 struct mem_cgroup_stat *stat = &mem_cont->stat;
1719 int i;
1720
1721 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1722 s64 val;
1723
1724 val = mem_cgroup_read_stat(stat, i);
1725 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1726 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1727 }
6d12e2d8
KH
1728 /* showing # of active pages */
1729 {
4f98a2fe
RR
1730 unsigned long active_anon, inactive_anon;
1731 unsigned long active_file, inactive_file;
7b854121 1732 unsigned long unevictable;
4f98a2fe
RR
1733
1734 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1735 LRU_INACTIVE_ANON);
1736 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1737 LRU_ACTIVE_ANON);
1738 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1739 LRU_INACTIVE_FILE);
1740 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1741 LRU_ACTIVE_FILE);
7b854121
LS
1742 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1743 LRU_UNEVICTABLE);
1744
4f98a2fe
RR
1745 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1746 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1747 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1748 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1749 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1750
6d12e2d8 1751 }
d2ceb9b7
KH
1752 return 0;
1753}
1754
c1e862c1 1755
8cdea7c0
BS
1756static struct cftype mem_cgroup_files[] = {
1757 {
0eea1030 1758 .name = "usage_in_bytes",
8c7c6e34 1759 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1760 .read_u64 = mem_cgroup_read,
8cdea7c0 1761 },
c84872e1
PE
1762 {
1763 .name = "max_usage_in_bytes",
8c7c6e34 1764 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 1765 .trigger = mem_cgroup_reset,
c84872e1
PE
1766 .read_u64 = mem_cgroup_read,
1767 },
8cdea7c0 1768 {
0eea1030 1769 .name = "limit_in_bytes",
8c7c6e34 1770 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 1771 .write_string = mem_cgroup_write,
2c3daa72 1772 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1773 },
1774 {
1775 .name = "failcnt",
8c7c6e34 1776 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 1777 .trigger = mem_cgroup_reset,
2c3daa72 1778 .read_u64 = mem_cgroup_read,
8cdea7c0 1779 },
d2ceb9b7
KH
1780 {
1781 .name = "stat",
c64745cf 1782 .read_map = mem_control_stat_show,
d2ceb9b7 1783 },
c1e862c1
KH
1784 {
1785 .name = "force_empty",
1786 .trigger = mem_cgroup_force_empty_write,
1787 },
18f59ea7
BS
1788 {
1789 .name = "use_hierarchy",
1790 .write_u64 = mem_cgroup_hierarchy_write,
1791 .read_u64 = mem_cgroup_hierarchy_read,
1792 },
8cdea7c0
BS
1793};
1794
8c7c6e34
KH
1795#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1796static struct cftype memsw_cgroup_files[] = {
1797 {
1798 .name = "memsw.usage_in_bytes",
1799 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1800 .read_u64 = mem_cgroup_read,
1801 },
1802 {
1803 .name = "memsw.max_usage_in_bytes",
1804 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1805 .trigger = mem_cgroup_reset,
1806 .read_u64 = mem_cgroup_read,
1807 },
1808 {
1809 .name = "memsw.limit_in_bytes",
1810 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1811 .write_string = mem_cgroup_write,
1812 .read_u64 = mem_cgroup_read,
1813 },
1814 {
1815 .name = "memsw.failcnt",
1816 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1817 .trigger = mem_cgroup_reset,
1818 .read_u64 = mem_cgroup_read,
1819 },
1820};
1821
1822static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1823{
1824 if (!do_swap_account)
1825 return 0;
1826 return cgroup_add_files(cont, ss, memsw_cgroup_files,
1827 ARRAY_SIZE(memsw_cgroup_files));
1828};
1829#else
1830static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1831{
1832 return 0;
1833}
1834#endif
1835
6d12e2d8
KH
1836static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1837{
1838 struct mem_cgroup_per_node *pn;
1ecaab2b 1839 struct mem_cgroup_per_zone *mz;
b69408e8 1840 enum lru_list l;
41e3355d 1841 int zone, tmp = node;
1ecaab2b
KH
1842 /*
1843 * This routine is called against possible nodes.
1844 * But it's BUG to call kmalloc() against offline node.
1845 *
1846 * TODO: this routine can waste much memory for nodes which will
1847 * never be onlined. It's better to use memory hotplug callback
1848 * function.
1849 */
41e3355d
KH
1850 if (!node_state(node, N_NORMAL_MEMORY))
1851 tmp = -1;
1852 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1853 if (!pn)
1854 return 1;
1ecaab2b 1855
6d12e2d8
KH
1856 mem->info.nodeinfo[node] = pn;
1857 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1858
1859 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1860 mz = &pn->zoneinfo[zone];
b69408e8
CL
1861 for_each_lru(l)
1862 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1863 }
6d12e2d8
KH
1864 return 0;
1865}
1866
1ecaab2b
KH
1867static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1868{
1869 kfree(mem->info.nodeinfo[node]);
1870}
1871
c8dad2bb
JB
1872static int mem_cgroup_size(void)
1873{
1874 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1875 return sizeof(struct mem_cgroup) + cpustat_size;
1876}
1877
33327948
KH
1878static struct mem_cgroup *mem_cgroup_alloc(void)
1879{
1880 struct mem_cgroup *mem;
c8dad2bb 1881 int size = mem_cgroup_size();
33327948 1882
c8dad2bb
JB
1883 if (size < PAGE_SIZE)
1884 mem = kmalloc(size, GFP_KERNEL);
33327948 1885 else
c8dad2bb 1886 mem = vmalloc(size);
33327948
KH
1887
1888 if (mem)
c8dad2bb 1889 memset(mem, 0, size);
33327948
KH
1890 return mem;
1891}
1892
8c7c6e34
KH
1893/*
1894 * At destroying mem_cgroup, references from swap_cgroup can remain.
1895 * (scanning all at force_empty is too costly...)
1896 *
1897 * Instead of clearing all references at force_empty, we remember
1898 * the number of reference from swap_cgroup and free mem_cgroup when
1899 * it goes down to 0.
1900 *
1901 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
1902 * entry which points to this memcg will be ignore at swapin.
1903 *
1904 * Removal of cgroup itself succeeds regardless of refs from swap.
1905 */
1906
33327948
KH
1907static void mem_cgroup_free(struct mem_cgroup *mem)
1908{
08e552c6
KH
1909 int node;
1910
8c7c6e34
KH
1911 if (atomic_read(&mem->refcnt) > 0)
1912 return;
08e552c6
KH
1913
1914
1915 for_each_node_state(node, N_POSSIBLE)
1916 free_mem_cgroup_per_zone_info(mem, node);
1917
c8dad2bb 1918 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
1919 kfree(mem);
1920 else
1921 vfree(mem);
1922}
1923
8c7c6e34
KH
1924static void mem_cgroup_get(struct mem_cgroup *mem)
1925{
1926 atomic_inc(&mem->refcnt);
1927}
1928
1929static void mem_cgroup_put(struct mem_cgroup *mem)
1930{
1931 if (atomic_dec_and_test(&mem->refcnt)) {
1932 if (!mem->obsolete)
1933 return;
1934 mem_cgroup_free(mem);
1935 }
1936}
1937
33327948 1938
c077719b
KH
1939#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1940static void __init enable_swap_cgroup(void)
1941{
f8d66542 1942 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
1943 do_swap_account = 1;
1944}
1945#else
1946static void __init enable_swap_cgroup(void)
1947{
1948}
1949#endif
1950
8cdea7c0
BS
1951static struct cgroup_subsys_state *
1952mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1953{
28dbc4b6 1954 struct mem_cgroup *mem, *parent;
6d12e2d8 1955 int node;
8cdea7c0 1956
c8dad2bb
JB
1957 mem = mem_cgroup_alloc();
1958 if (!mem)
1959 return ERR_PTR(-ENOMEM);
78fb7466 1960
6d12e2d8
KH
1961 for_each_node_state(node, N_POSSIBLE)
1962 if (alloc_mem_cgroup_per_zone_info(mem, node))
1963 goto free_out;
c077719b 1964 /* root ? */
28dbc4b6 1965 if (cont->parent == NULL) {
c077719b 1966 enable_swap_cgroup();
28dbc4b6 1967 parent = NULL;
18f59ea7 1968 } else {
28dbc4b6 1969 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
1970 mem->use_hierarchy = parent->use_hierarchy;
1971 }
28dbc4b6 1972
18f59ea7
BS
1973 if (parent && parent->use_hierarchy) {
1974 res_counter_init(&mem->res, &parent->res);
1975 res_counter_init(&mem->memsw, &parent->memsw);
1976 } else {
1977 res_counter_init(&mem->res, NULL);
1978 res_counter_init(&mem->memsw, NULL);
1979 }
6d12e2d8 1980
6d61ef40
BS
1981 mem->last_scanned_child = NULL;
1982
8cdea7c0 1983 return &mem->css;
6d12e2d8
KH
1984free_out:
1985 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1986 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 1987 mem_cgroup_free(mem);
2dda81ca 1988 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1989}
1990
df878fb0
KH
1991static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1992 struct cgroup *cont)
1993{
1994 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8c7c6e34 1995 mem->obsolete = 1;
c1e862c1 1996 mem_cgroup_force_empty(mem, false);
df878fb0
KH
1997}
1998
8cdea7c0
BS
1999static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2000 struct cgroup *cont)
2001{
33327948 2002 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
2003}
2004
2005static int mem_cgroup_populate(struct cgroup_subsys *ss,
2006 struct cgroup *cont)
2007{
8c7c6e34
KH
2008 int ret;
2009
2010 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2011 ARRAY_SIZE(mem_cgroup_files));
2012
2013 if (!ret)
2014 ret = register_memsw_files(cont, ss);
2015 return ret;
8cdea7c0
BS
2016}
2017
67e465a7
BS
2018static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2019 struct cgroup *cont,
2020 struct cgroup *old_cont,
2021 struct task_struct *p)
2022{
67e465a7 2023 /*
f9717d28
NK
2024 * FIXME: It's better to move charges of this process from old
2025 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2026 */
67e465a7
BS
2027}
2028
8cdea7c0
BS
2029struct cgroup_subsys mem_cgroup_subsys = {
2030 .name = "memory",
2031 .subsys_id = mem_cgroup_subsys_id,
2032 .create = mem_cgroup_create,
df878fb0 2033 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2034 .destroy = mem_cgroup_destroy,
2035 .populate = mem_cgroup_populate,
67e465a7 2036 .attach = mem_cgroup_move_task,
6d12e2d8 2037 .early_init = 0,
8cdea7c0 2038};
c077719b
KH
2039
2040#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2041
2042static int __init disable_swap_account(char *s)
2043{
2044 really_do_swap_account = 0;
2045 return 1;
2046}
2047__setup("noswapaccount", disable_swap_account);
2048#endif