memcg: simplify force_empty and move_lists
[linux-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
66e1707b
BS
29#include <linux/swap.h>
30#include <linux/spinlock.h>
31#include <linux/fs.h>
d2ceb9b7 32#include <linux/seq_file.h>
8cdea7c0 33
8697d331
BS
34#include <asm/uaccess.h>
35
8cdea7c0 36struct cgroup_subsys mem_cgroup_subsys;
66e1707b 37static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
8cdea7c0 38
d52aa412
KH
39/*
40 * Statistics for memory cgroup.
41 */
42enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50};
51
52struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54} ____cacheline_aligned_in_smp;
55
56struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58};
59
60/*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65{
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68}
69
70static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72{
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78}
79
6d12e2d8
KH
80/*
81 * per-zone information in memory controller.
82 */
83
84enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89};
90
91struct mem_cgroup_per_zone {
072c56c1
KH
92 /*
93 * spin_lock to protect the per cgroup LRU
94 */
95 spinlock_t lru_lock;
1ecaab2b
KH
96 struct list_head active_list;
97 struct list_head inactive_list;
6d12e2d8
KH
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
99};
100/* Macro for accessing counter */
101#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
102
103struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105};
106
107struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109};
110
8cdea7c0
BS
111/*
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
116 *
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
8cdea7c0
BS
121 */
122struct mem_cgroup {
123 struct cgroup_subsys_state css;
124 /*
125 * the counter to account for memory usage
126 */
127 struct res_counter res;
78fb7466
PE
128 /*
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
78fb7466 131 */
6d12e2d8 132 struct mem_cgroup_lru_info info;
072c56c1 133
6c48a1d0 134 int prev_priority; /* for recording reclaim priority */
d52aa412
KH
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
8cdea7c0 139};
8869b8f6 140static struct mem_cgroup init_mem_cgroup;
8cdea7c0 141
8a9f3ccd
BS
142/*
143 * We use the lower bit of the page->page_cgroup pointer as a bit spin
9442ec9d
HD
144 * lock. We need to ensure that page->page_cgroup is at least two
145 * byte aligned (based on comments from Nick Piggin). But since
146 * bit_spin_lock doesn't actually set that lock bit in a non-debug
147 * uniprocessor kernel, we should avoid setting it here too.
8a9f3ccd
BS
148 */
149#define PAGE_CGROUP_LOCK_BIT 0x0
9442ec9d
HD
150#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
151#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
152#else
153#define PAGE_CGROUP_LOCK 0x0
154#endif
8a9f3ccd 155
8cdea7c0
BS
156/*
157 * A page_cgroup page is associated with every page descriptor. The
158 * page_cgroup helps us identify information about the cgroup
159 */
160struct page_cgroup {
161 struct list_head lru; /* per cgroup LRU list */
162 struct page *page;
163 struct mem_cgroup *mem_cgroup;
b9c565d5 164 int ref_cnt; /* cached, mapped, migrating */
8869b8f6 165 int flags;
8cdea7c0 166};
217bc319 167#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
3564c7c4 168#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
8cdea7c0 169
d5b69e38 170static int page_cgroup_nid(struct page_cgroup *pc)
c0149530
KH
171{
172 return page_to_nid(pc->page);
173}
174
d5b69e38 175static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
c0149530
KH
176{
177 return page_zonenum(pc->page);
178}
179
217bc319
KH
180enum charge_type {
181 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
182 MEM_CGROUP_CHARGE_TYPE_MAPPED,
183};
184
d52aa412
KH
185/*
186 * Always modified under lru lock. Then, not necessary to preempt_disable()
187 */
188static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
189 bool charge)
190{
191 int val = (charge)? 1 : -1;
192 struct mem_cgroup_stat *stat = &mem->stat;
d52aa412 193
8869b8f6 194 VM_BUG_ON(!irqs_disabled());
d52aa412 195 if (flags & PAGE_CGROUP_FLAG_CACHE)
8869b8f6 196 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
d52aa412
KH
197 else
198 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
6d12e2d8
KH
199}
200
d5b69e38 201static struct mem_cgroup_per_zone *
6d12e2d8
KH
202mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
203{
6d12e2d8
KH
204 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
205}
206
d5b69e38 207static struct mem_cgroup_per_zone *
6d12e2d8
KH
208page_cgroup_zoneinfo(struct page_cgroup *pc)
209{
210 struct mem_cgroup *mem = pc->mem_cgroup;
211 int nid = page_cgroup_nid(pc);
212 int zid = page_cgroup_zid(pc);
d52aa412 213
6d12e2d8
KH
214 return mem_cgroup_zoneinfo(mem, nid, zid);
215}
216
217static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
218 enum mem_cgroup_zstat_index idx)
219{
220 int nid, zid;
221 struct mem_cgroup_per_zone *mz;
222 u64 total = 0;
223
224 for_each_online_node(nid)
225 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
226 mz = mem_cgroup_zoneinfo(mem, nid, zid);
227 total += MEM_CGROUP_ZSTAT(mz, idx);
228 }
229 return total;
d52aa412
KH
230}
231
d5b69e38 232static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
233{
234 return container_of(cgroup_subsys_state(cont,
235 mem_cgroup_subsys_id), struct mem_cgroup,
236 css);
237}
238
d5b69e38 239static struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466
PE
240{
241 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
242 struct mem_cgroup, css);
243}
244
245void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
246{
247 struct mem_cgroup *mem;
248
249 mem = mem_cgroup_from_task(p);
250 css_get(&mem->css);
251 mm->mem_cgroup = mem;
252}
253
254void mm_free_cgroup(struct mm_struct *mm)
255{
256 css_put(&mm->mem_cgroup->css);
257}
258
8a9f3ccd
BS
259static inline int page_cgroup_locked(struct page *page)
260{
8869b8f6 261 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
8a9f3ccd
BS
262}
263
9442ec9d 264static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
78fb7466 265{
9442ec9d
HD
266 VM_BUG_ON(!page_cgroup_locked(page));
267 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
78fb7466
PE
268}
269
270struct page_cgroup *page_get_page_cgroup(struct page *page)
271{
8869b8f6 272 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
8a9f3ccd
BS
273}
274
d5b69e38 275static void lock_page_cgroup(struct page *page)
8a9f3ccd
BS
276{
277 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
8a9f3ccd
BS
278}
279
2680eed7
HD
280static int try_lock_page_cgroup(struct page *page)
281{
282 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
283}
284
d5b69e38 285static void unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
286{
287 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
288}
289
6d12e2d8
KH
290static void __mem_cgroup_remove_list(struct page_cgroup *pc)
291{
292 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
293 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
294
295 if (from)
296 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
297 else
298 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
299
300 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
301 list_del_init(&pc->lru);
302}
303
304static void __mem_cgroup_add_list(struct page_cgroup *pc)
305{
306 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
307 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
308
309 if (!to) {
310 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
1ecaab2b 311 list_add(&pc->lru, &mz->inactive_list);
6d12e2d8
KH
312 } else {
313 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
1ecaab2b 314 list_add(&pc->lru, &mz->active_list);
6d12e2d8
KH
315 }
316 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
317}
318
8697d331 319static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b 320{
6d12e2d8
KH
321 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
322 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
323
324 if (from)
325 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
326 else
327 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
328
3564c7c4 329 if (active) {
6d12e2d8 330 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
3564c7c4 331 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 332 list_move(&pc->lru, &mz->active_list);
3564c7c4 333 } else {
6d12e2d8 334 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
3564c7c4 335 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 336 list_move(&pc->lru, &mz->inactive_list);
3564c7c4 337 }
66e1707b
BS
338}
339
4c4a2214
DR
340int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
341{
342 int ret;
343
344 task_lock(task);
bd845e38 345 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
346 task_unlock(task);
347 return ret;
348}
349
66e1707b
BS
350/*
351 * This routine assumes that the appropriate zone's lru lock is already held
352 */
427d5416 353void mem_cgroup_move_lists(struct page *page, bool active)
66e1707b 354{
427d5416 355 struct page_cgroup *pc;
072c56c1
KH
356 struct mem_cgroup_per_zone *mz;
357 unsigned long flags;
358
2680eed7
HD
359 /*
360 * We cannot lock_page_cgroup while holding zone's lru_lock,
361 * because other holders of lock_page_cgroup can be interrupted
362 * with an attempt to rotate_reclaimable_page. But we cannot
363 * safely get to page_cgroup without it, so just try_lock it:
364 * mem_cgroup_isolate_pages allows for page left on wrong list.
365 */
366 if (!try_lock_page_cgroup(page))
66e1707b
BS
367 return;
368
2680eed7
HD
369 pc = page_get_page_cgroup(page);
370 if (pc) {
2680eed7 371 mz = page_cgroup_zoneinfo(pc);
2680eed7 372 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 373 __mem_cgroup_move_lists(pc, active);
2680eed7 374 spin_unlock_irqrestore(&mz->lru_lock, flags);
9b3c0a07
HT
375 }
376 unlock_page_cgroup(page);
66e1707b
BS
377}
378
58ae83db
KH
379/*
380 * Calculate mapped_ratio under memory controller. This will be used in
381 * vmscan.c for deteremining we have to reclaim mapped pages.
382 */
383int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
384{
385 long total, rss;
386
387 /*
388 * usage is recorded in bytes. But, here, we assume the number of
389 * physical pages can be represented by "long" on any arch.
390 */
391 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
392 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
393 return (int)((rss * 100L) / total);
394}
8869b8f6 395
5932f367
KH
396/*
397 * This function is called from vmscan.c. In page reclaiming loop. balance
398 * between active and inactive list is calculated. For memory controller
399 * page reclaiming, we should use using mem_cgroup's imbalance rather than
400 * zone's global lru imbalance.
401 */
402long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
403{
404 unsigned long active, inactive;
405 /* active and inactive are the number of pages. 'long' is ok.*/
406 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
407 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
408 return (long) (active / (inactive + 1));
409}
58ae83db 410
6c48a1d0
KH
411/*
412 * prev_priority control...this will be used in memory reclaim path.
413 */
414int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
415{
416 return mem->prev_priority;
417}
418
419void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
420{
421 if (priority < mem->prev_priority)
422 mem->prev_priority = priority;
423}
424
425void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
426{
427 mem->prev_priority = priority;
428}
429
cc38108e
KH
430/*
431 * Calculate # of pages to be scanned in this priority/zone.
432 * See also vmscan.c
433 *
434 * priority starts from "DEF_PRIORITY" and decremented in each loop.
435 * (see include/linux/mmzone.h)
436 */
437
438long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
439 struct zone *zone, int priority)
440{
441 long nr_active;
442 int nid = zone->zone_pgdat->node_id;
443 int zid = zone_idx(zone);
444 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
445
446 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
447 return (nr_active >> priority);
448}
449
450long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
451 struct zone *zone, int priority)
452{
453 long nr_inactive;
454 int nid = zone->zone_pgdat->node_id;
455 int zid = zone_idx(zone);
456 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
457
458 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
cc38108e
KH
459 return (nr_inactive >> priority);
460}
461
66e1707b
BS
462unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
463 struct list_head *dst,
464 unsigned long *scanned, int order,
465 int mode, struct zone *z,
466 struct mem_cgroup *mem_cont,
467 int active)
468{
469 unsigned long nr_taken = 0;
470 struct page *page;
471 unsigned long scan;
472 LIST_HEAD(pc_list);
473 struct list_head *src;
ff7283fa 474 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
475 int nid = z->zone_pgdat->node_id;
476 int zid = zone_idx(z);
477 struct mem_cgroup_per_zone *mz;
66e1707b 478
1ecaab2b 479 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
66e1707b 480 if (active)
1ecaab2b 481 src = &mz->active_list;
66e1707b 482 else
1ecaab2b
KH
483 src = &mz->inactive_list;
484
66e1707b 485
072c56c1 486 spin_lock(&mz->lru_lock);
ff7283fa
KH
487 scan = 0;
488 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 489 if (scan >= nr_to_scan)
ff7283fa 490 break;
66e1707b 491 page = pc->page;
66e1707b 492
436c6541 493 if (unlikely(!PageLRU(page)))
ff7283fa 494 continue;
ff7283fa 495
66e1707b
BS
496 if (PageActive(page) && !active) {
497 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
498 continue;
499 }
500 if (!PageActive(page) && active) {
501 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
502 continue;
503 }
504
436c6541
HD
505 scan++;
506 list_move(&pc->lru, &pc_list);
66e1707b
BS
507
508 if (__isolate_lru_page(page, mode) == 0) {
509 list_move(&page->lru, dst);
510 nr_taken++;
511 }
512 }
513
514 list_splice(&pc_list, src);
072c56c1 515 spin_unlock(&mz->lru_lock);
66e1707b
BS
516
517 *scanned = scan;
518 return nr_taken;
519}
520
8a9f3ccd
BS
521/*
522 * Charge the memory controller for page usage.
523 * Return
524 * 0 if the charge was successful
525 * < 0 if the cgroup is over its limit
526 */
217bc319
KH
527static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
528 gfp_t gfp_mask, enum charge_type ctype)
8a9f3ccd
BS
529{
530 struct mem_cgroup *mem;
9175e031 531 struct page_cgroup *pc;
66e1707b
BS
532 unsigned long flags;
533 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
072c56c1 534 struct mem_cgroup_per_zone *mz;
8a9f3ccd
BS
535
536 /*
537 * Should page_cgroup's go to their own slab?
538 * One could optimize the performance of the charging routine
539 * by saving a bit in the page_flags and using it as a lock
540 * to see if the cgroup page already has a page_cgroup associated
541 * with it
542 */
66e1707b 543retry:
7e924aaf
HD
544 lock_page_cgroup(page);
545 pc = page_get_page_cgroup(page);
546 /*
547 * The page_cgroup exists and
548 * the page has already been accounted.
549 */
550 if (pc) {
b9c565d5
HD
551 VM_BUG_ON(pc->page != page);
552 VM_BUG_ON(pc->ref_cnt <= 0);
553
554 pc->ref_cnt++;
555 unlock_page_cgroup(page);
556 goto done;
8a9f3ccd 557 }
7e924aaf 558 unlock_page_cgroup(page);
8a9f3ccd 559
e1a1cd59 560 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
8a9f3ccd
BS
561 if (pc == NULL)
562 goto err;
563
8a9f3ccd 564 /*
3be91277
HD
565 * We always charge the cgroup the mm_struct belongs to.
566 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
567 * thread group leader migrates. It's possible that mm is not
568 * set, if so charge the init_mm (happens for pagecache usage).
569 */
570 if (!mm)
571 mm = &init_mm;
572
3be91277 573 rcu_read_lock();
8a9f3ccd
BS
574 mem = rcu_dereference(mm->mem_cgroup);
575 /*
8869b8f6 576 * For every charge from the cgroup, increment reference count
8a9f3ccd
BS
577 */
578 css_get(&mem->css);
579 rcu_read_unlock();
580
0eea1030 581 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
582 if (!(gfp_mask & __GFP_WAIT))
583 goto out;
e1a1cd59
BS
584
585 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
586 continue;
587
588 /*
8869b8f6
HD
589 * try_to_free_mem_cgroup_pages() might not give us a full
590 * picture of reclaim. Some pages are reclaimed and might be
591 * moved to swap cache or just unmapped from the cgroup.
592 * Check the limit again to see if the reclaim reduced the
593 * current usage of the cgroup before giving up
594 */
66e1707b
BS
595 if (res_counter_check_under_limit(&mem->res))
596 continue;
3be91277
HD
597
598 if (!nr_retries--) {
599 mem_cgroup_out_of_memory(mem, gfp_mask);
600 goto out;
66e1707b 601 }
3be91277 602 congestion_wait(WRITE, HZ/10);
8a9f3ccd
BS
603 }
604
b9c565d5 605 pc->ref_cnt = 1;
8a9f3ccd
BS
606 pc->mem_cgroup = mem;
607 pc->page = page;
3564c7c4 608 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
217bc319
KH
609 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
610 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
3be91277 611
7e924aaf
HD
612 lock_page_cgroup(page);
613 if (page_get_page_cgroup(page)) {
614 unlock_page_cgroup(page);
9175e031 615 /*
3be91277
HD
616 * Another charge has been added to this page already.
617 * We take lock_page_cgroup(page) again and read
9175e031
KH
618 * page->cgroup, increment refcnt.... just retry is OK.
619 */
620 res_counter_uncharge(&mem->res, PAGE_SIZE);
621 css_put(&mem->css);
622 kfree(pc);
623 goto retry;
624 }
7e924aaf
HD
625 page_assign_page_cgroup(page, pc);
626 unlock_page_cgroup(page);
8a9f3ccd 627
072c56c1
KH
628 mz = page_cgroup_zoneinfo(pc);
629 spin_lock_irqsave(&mz->lru_lock, flags);
6d12e2d8 630 __mem_cgroup_add_list(pc);
072c56c1 631 spin_unlock_irqrestore(&mz->lru_lock, flags);
66e1707b 632
8a9f3ccd 633done:
8a9f3ccd 634 return 0;
3be91277
HD
635out:
636 css_put(&mem->css);
8a9f3ccd 637 kfree(pc);
8a9f3ccd 638err:
8a9f3ccd
BS
639 return -ENOMEM;
640}
641
8869b8f6 642int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
217bc319
KH
643{
644 return mem_cgroup_charge_common(page, mm, gfp_mask,
8869b8f6 645 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
646}
647
e1a1cd59
BS
648int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
649 gfp_t gfp_mask)
8697d331 650{
8697d331
BS
651 if (!mm)
652 mm = &init_mm;
8869b8f6 653 return mem_cgroup_charge_common(page, mm, gfp_mask,
217bc319 654 MEM_CGROUP_CHARGE_TYPE_CACHE);
8697d331
BS
655}
656
8a9f3ccd
BS
657/*
658 * Uncharging is always a welcome operation, we never complain, simply
8289546e 659 * uncharge.
8a9f3ccd 660 */
8289546e 661void mem_cgroup_uncharge_page(struct page *page)
8a9f3ccd 662{
8289546e 663 struct page_cgroup *pc;
8a9f3ccd 664 struct mem_cgroup *mem;
072c56c1 665 struct mem_cgroup_per_zone *mz;
66e1707b 666 unsigned long flags;
8a9f3ccd 667
8697d331 668 /*
3c541e14 669 * Check if our page_cgroup is valid
8697d331 670 */
8289546e
HD
671 lock_page_cgroup(page);
672 pc = page_get_page_cgroup(page);
8a9f3ccd 673 if (!pc)
8289546e 674 goto unlock;
8a9f3ccd 675
b9c565d5
HD
676 VM_BUG_ON(pc->page != page);
677 VM_BUG_ON(pc->ref_cnt <= 0);
678
679 if (--(pc->ref_cnt) == 0) {
680 page_assign_page_cgroup(page, NULL);
3c541e14 681 unlock_page_cgroup(page);
b9c565d5 682
b9c565d5
HD
683 mz = page_cgroup_zoneinfo(pc);
684 spin_lock_irqsave(&mz->lru_lock, flags);
685 __mem_cgroup_remove_list(pc);
686 spin_unlock_irqrestore(&mz->lru_lock, flags);
687
6d48ff8b
HD
688 mem = pc->mem_cgroup;
689 res_counter_uncharge(&mem->res, PAGE_SIZE);
690 css_put(&mem->css);
691
b9c565d5
HD
692 kfree(pc);
693 return;
8a9f3ccd 694 }
6d12e2d8 695
8289546e 696unlock:
3c541e14
BS
697 unlock_page_cgroup(page);
698}
699
ae41be37
KH
700/*
701 * Returns non-zero if a page (under migration) has valid page_cgroup member.
702 * Refcnt of page_cgroup is incremented.
703 */
ae41be37
KH
704int mem_cgroup_prepare_migration(struct page *page)
705{
706 struct page_cgroup *pc;
8869b8f6 707
ae41be37
KH
708 lock_page_cgroup(page);
709 pc = page_get_page_cgroup(page);
b9c565d5
HD
710 if (pc)
711 pc->ref_cnt++;
ae41be37 712 unlock_page_cgroup(page);
b9c565d5 713 return pc != NULL;
ae41be37
KH
714}
715
716void mem_cgroup_end_migration(struct page *page)
717{
8289546e 718 mem_cgroup_uncharge_page(page);
ae41be37 719}
8869b8f6 720
ae41be37 721/*
8869b8f6 722 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
ae41be37
KH
723 * And no race with uncharge() routines because page_cgroup for *page*
724 * has extra one reference by mem_cgroup_prepare_migration.
725 */
ae41be37
KH
726void mem_cgroup_page_migration(struct page *page, struct page *newpage)
727{
728 struct page_cgroup *pc;
072c56c1 729 struct mem_cgroup_per_zone *mz;
d5b69e38 730 unsigned long flags;
8869b8f6 731
b9c565d5 732 lock_page_cgroup(page);
ae41be37 733 pc = page_get_page_cgroup(page);
b9c565d5
HD
734 if (!pc) {
735 unlock_page_cgroup(page);
ae41be37 736 return;
b9c565d5 737 }
8869b8f6 738
b9c565d5
HD
739 page_assign_page_cgroup(page, NULL);
740 unlock_page_cgroup(page);
6d12e2d8 741
b9c565d5 742 mz = page_cgroup_zoneinfo(pc);
8869b8f6 743 spin_lock_irqsave(&mz->lru_lock, flags);
6d12e2d8 744 __mem_cgroup_remove_list(pc);
072c56c1
KH
745 spin_unlock_irqrestore(&mz->lru_lock, flags);
746
ae41be37
KH
747 pc->page = newpage;
748 lock_page_cgroup(newpage);
749 page_assign_page_cgroup(newpage, pc);
750 unlock_page_cgroup(newpage);
6d12e2d8 751
072c56c1
KH
752 mz = page_cgroup_zoneinfo(pc);
753 spin_lock_irqsave(&mz->lru_lock, flags);
754 __mem_cgroup_add_list(pc);
755 spin_unlock_irqrestore(&mz->lru_lock, flags);
ae41be37 756}
78fb7466 757
cc847582
KH
758/*
759 * This routine traverse page_cgroup in given list and drop them all.
760 * This routine ignores page_cgroup->ref_cnt.
761 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
762 */
763#define FORCE_UNCHARGE_BATCH (128)
8869b8f6 764static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
072c56c1
KH
765 struct mem_cgroup_per_zone *mz,
766 int active)
cc847582
KH
767{
768 struct page_cgroup *pc;
769 struct page *page;
9b3c0a07 770 int count = FORCE_UNCHARGE_BATCH;
cc847582 771 unsigned long flags;
072c56c1
KH
772 struct list_head *list;
773
774 if (active)
775 list = &mz->active_list;
776 else
777 list = &mz->inactive_list;
cc847582 778
072c56c1 779 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 780 while (!list_empty(list)) {
cc847582
KH
781 pc = list_entry(list->prev, struct page_cgroup, lru);
782 page = pc->page;
9b3c0a07
HT
783 get_page(page);
784 spin_unlock_irqrestore(&mz->lru_lock, flags);
785 mem_cgroup_uncharge_page(page);
786 put_page(page);
787 if (--count <= 0) {
788 count = FORCE_UNCHARGE_BATCH;
789 cond_resched();
b9c565d5 790 }
9b3c0a07 791 spin_lock_irqsave(&mz->lru_lock, flags);
cc847582 792 }
072c56c1 793 spin_unlock_irqrestore(&mz->lru_lock, flags);
cc847582
KH
794}
795
796/*
797 * make mem_cgroup's charge to be 0 if there is no task.
798 * This enables deleting this mem_cgroup.
799 */
d5b69e38 800static int mem_cgroup_force_empty(struct mem_cgroup *mem)
cc847582
KH
801{
802 int ret = -EBUSY;
1ecaab2b 803 int node, zid;
8869b8f6 804
cc847582
KH
805 css_get(&mem->css);
806 /*
807 * page reclaim code (kswapd etc..) will move pages between
8869b8f6 808 * active_list <-> inactive_list while we don't take a lock.
cc847582
KH
809 * So, we have to do loop here until all lists are empty.
810 */
1ecaab2b 811 while (mem->res.usage > 0) {
cc847582
KH
812 if (atomic_read(&mem->css.cgroup->count) > 0)
813 goto out;
1ecaab2b
KH
814 for_each_node_state(node, N_POSSIBLE)
815 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
816 struct mem_cgroup_per_zone *mz;
817 mz = mem_cgroup_zoneinfo(mem, node, zid);
818 /* drop all page_cgroup in active_list */
072c56c1 819 mem_cgroup_force_empty_list(mem, mz, 1);
1ecaab2b 820 /* drop all page_cgroup in inactive_list */
072c56c1 821 mem_cgroup_force_empty_list(mem, mz, 0);
1ecaab2b 822 }
cc847582
KH
823 }
824 ret = 0;
825out:
826 css_put(&mem->css);
827 return ret;
828}
829
d5b69e38 830static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
0eea1030
BS
831{
832 *tmp = memparse(buf, &buf);
833 if (*buf != '\0')
834 return -EINVAL;
835
836 /*
837 * Round up the value to the closest page size
838 */
839 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
840 return 0;
841}
842
843static ssize_t mem_cgroup_read(struct cgroup *cont,
844 struct cftype *cft, struct file *file,
845 char __user *userbuf, size_t nbytes, loff_t *ppos)
8cdea7c0
BS
846{
847 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
848 cft->private, userbuf, nbytes, ppos,
849 NULL);
8cdea7c0
BS
850}
851
852static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
853 struct file *file, const char __user *userbuf,
854 size_t nbytes, loff_t *ppos)
855{
856 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
857 cft->private, userbuf, nbytes, ppos,
858 mem_cgroup_write_strategy);
8cdea7c0
BS
859}
860
cc847582
KH
861static ssize_t mem_force_empty_write(struct cgroup *cont,
862 struct cftype *cft, struct file *file,
863 const char __user *userbuf,
864 size_t nbytes, loff_t *ppos)
865{
866 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8869b8f6 867 int ret = mem_cgroup_force_empty(mem);
cc847582
KH
868 if (!ret)
869 ret = nbytes;
870 return ret;
871}
872
873/*
874 * Note: This should be removed if cgroup supports write-only file.
875 */
cc847582
KH
876static ssize_t mem_force_empty_read(struct cgroup *cont,
877 struct cftype *cft,
878 struct file *file, char __user *userbuf,
879 size_t nbytes, loff_t *ppos)
880{
881 return -EINVAL;
882}
883
d2ceb9b7
KH
884static const struct mem_cgroup_stat_desc {
885 const char *msg;
886 u64 unit;
887} mem_cgroup_stat_desc[] = {
888 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
889 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
890};
891
892static int mem_control_stat_show(struct seq_file *m, void *arg)
893{
894 struct cgroup *cont = m->private;
895 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
896 struct mem_cgroup_stat *stat = &mem_cont->stat;
897 int i;
898
899 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
900 s64 val;
901
902 val = mem_cgroup_read_stat(stat, i);
903 val *= mem_cgroup_stat_desc[i].unit;
904 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
905 (long long)val);
906 }
6d12e2d8
KH
907 /* showing # of active pages */
908 {
909 unsigned long active, inactive;
910
911 inactive = mem_cgroup_get_all_zonestat(mem_cont,
912 MEM_CGROUP_ZSTAT_INACTIVE);
913 active = mem_cgroup_get_all_zonestat(mem_cont,
914 MEM_CGROUP_ZSTAT_ACTIVE);
915 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
916 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
917 }
d2ceb9b7
KH
918 return 0;
919}
920
921static const struct file_operations mem_control_stat_file_operations = {
922 .read = seq_read,
923 .llseek = seq_lseek,
924 .release = single_release,
925};
926
927static int mem_control_stat_open(struct inode *unused, struct file *file)
928{
929 /* XXX __d_cont */
930 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
931
932 file->f_op = &mem_control_stat_file_operations;
933 return single_open(file, mem_control_stat_show, cont);
934}
935
8cdea7c0
BS
936static struct cftype mem_cgroup_files[] = {
937 {
0eea1030 938 .name = "usage_in_bytes",
8cdea7c0
BS
939 .private = RES_USAGE,
940 .read = mem_cgroup_read,
941 },
942 {
0eea1030 943 .name = "limit_in_bytes",
8cdea7c0
BS
944 .private = RES_LIMIT,
945 .write = mem_cgroup_write,
946 .read = mem_cgroup_read,
947 },
948 {
949 .name = "failcnt",
950 .private = RES_FAILCNT,
951 .read = mem_cgroup_read,
952 },
cc847582
KH
953 {
954 .name = "force_empty",
955 .write = mem_force_empty_write,
956 .read = mem_force_empty_read,
957 },
d2ceb9b7
KH
958 {
959 .name = "stat",
960 .open = mem_control_stat_open,
961 },
8cdea7c0
BS
962};
963
6d12e2d8
KH
964static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
965{
966 struct mem_cgroup_per_node *pn;
1ecaab2b
KH
967 struct mem_cgroup_per_zone *mz;
968 int zone;
969 /*
970 * This routine is called against possible nodes.
971 * But it's BUG to call kmalloc() against offline node.
972 *
973 * TODO: this routine can waste much memory for nodes which will
974 * never be onlined. It's better to use memory hotplug callback
975 * function.
976 */
977 if (node_state(node, N_HIGH_MEMORY))
978 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
979 else
980 pn = kmalloc(sizeof(*pn), GFP_KERNEL);
6d12e2d8
KH
981 if (!pn)
982 return 1;
1ecaab2b 983
6d12e2d8
KH
984 mem->info.nodeinfo[node] = pn;
985 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
986
987 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
988 mz = &pn->zoneinfo[zone];
989 INIT_LIST_HEAD(&mz->active_list);
990 INIT_LIST_HEAD(&mz->inactive_list);
072c56c1 991 spin_lock_init(&mz->lru_lock);
1ecaab2b 992 }
6d12e2d8
KH
993 return 0;
994}
995
1ecaab2b
KH
996static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
997{
998 kfree(mem->info.nodeinfo[node]);
999}
1000
8cdea7c0
BS
1001static struct cgroup_subsys_state *
1002mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1003{
1004 struct mem_cgroup *mem;
6d12e2d8 1005 int node;
8cdea7c0 1006
78fb7466
PE
1007 if (unlikely((cont->parent) == NULL)) {
1008 mem = &init_mem_cgroup;
1009 init_mm.mem_cgroup = mem;
1010 } else
1011 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1012
1013 if (mem == NULL)
2dda81ca 1014 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1015
1016 res_counter_init(&mem->res);
1ecaab2b 1017
6d12e2d8
KH
1018 memset(&mem->info, 0, sizeof(mem->info));
1019
1020 for_each_node_state(node, N_POSSIBLE)
1021 if (alloc_mem_cgroup_per_zone_info(mem, node))
1022 goto free_out;
1023
8cdea7c0 1024 return &mem->css;
6d12e2d8
KH
1025free_out:
1026 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1027 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8
KH
1028 if (cont->parent != NULL)
1029 kfree(mem);
2dda81ca 1030 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1031}
1032
df878fb0
KH
1033static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1034 struct cgroup *cont)
1035{
1036 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1037 mem_cgroup_force_empty(mem);
1038}
1039
8cdea7c0
BS
1040static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1041 struct cgroup *cont)
1042{
6d12e2d8
KH
1043 int node;
1044 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1045
1046 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1047 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1048
8cdea7c0
BS
1049 kfree(mem_cgroup_from_cont(cont));
1050}
1051
1052static int mem_cgroup_populate(struct cgroup_subsys *ss,
1053 struct cgroup *cont)
1054{
1055 return cgroup_add_files(cont, ss, mem_cgroup_files,
1056 ARRAY_SIZE(mem_cgroup_files));
1057}
1058
67e465a7
BS
1059static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1060 struct cgroup *cont,
1061 struct cgroup *old_cont,
1062 struct task_struct *p)
1063{
1064 struct mm_struct *mm;
1065 struct mem_cgroup *mem, *old_mem;
1066
1067 mm = get_task_mm(p);
1068 if (mm == NULL)
1069 return;
1070
1071 mem = mem_cgroup_from_cont(cont);
1072 old_mem = mem_cgroup_from_cont(old_cont);
1073
1074 if (mem == old_mem)
1075 goto out;
1076
1077 /*
1078 * Only thread group leaders are allowed to migrate, the mm_struct is
1079 * in effect owned by the leader
1080 */
1081 if (p->tgid != p->pid)
1082 goto out;
1083
1084 css_get(&mem->css);
1085 rcu_assign_pointer(mm->mem_cgroup, mem);
1086 css_put(&old_mem->css);
1087
1088out:
1089 mmput(mm);
67e465a7
BS
1090}
1091
8cdea7c0
BS
1092struct cgroup_subsys mem_cgroup_subsys = {
1093 .name = "memory",
1094 .subsys_id = mem_cgroup_subsys_id,
1095 .create = mem_cgroup_create,
df878fb0 1096 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1097 .destroy = mem_cgroup_destroy,
1098 .populate = mem_cgroup_populate,
67e465a7 1099 .attach = mem_cgroup_move_task,
6d12e2d8 1100 .early_init = 0,
8cdea7c0 1101};