swap: remove unused mem_cgroup_uncharge_swapcache declaration
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
79dfdacc
MH
299
300 bool oom_lock;
301 atomic_t under_oom;
3812c8c8 302 atomic_t oom_wakeups;
79dfdacc 303
1f4c025b 304 int swappiness;
3c11ecf4
KH
305 /* OOM-Killer disable */
306 int oom_kill_disable;
a7885eb8 307
2e72b634
KS
308 /* protect arrays of thresholds */
309 struct mutex thresholds_lock;
310
311 /* thresholds for memory usage. RCU-protected */
2c488db2 312 struct mem_cgroup_thresholds thresholds;
907860ed 313
2e72b634 314 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 315 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 316
9490ff27
KH
317 /* For oom notifier event fd */
318 struct list_head oom_notify;
185efc0f 319
7dc74be0
DN
320 /*
321 * Should we move charges of a task when a task is moved into this
322 * mem_cgroup ? And what type of charges should we move ?
323 */
f894ffa8 324 unsigned long move_charge_at_immigrate;
619d094b
KH
325 /*
326 * set > 0 if pages under this cgroup are moving to other cgroup.
327 */
328 atomic_t moving_account;
312734c0
KH
329 /* taken only while moving_account > 0 */
330 spinlock_t move_lock;
d52aa412 331 /*
c62b1a3b 332 * percpu counter.
d52aa412 333 */
3a7951b4 334 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
335 /*
336 * used when a cpu is offlined or other synchronizations
337 * See mem_cgroup_read_stat().
338 */
339 struct mem_cgroup_stat_cpu nocpu_base;
340 spinlock_t pcp_counter_lock;
d1a4c0b3 341
4bd2c1ee 342#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 343 struct cg_proto tcp_mem;
d1a4c0b3 344#endif
2633d7a0 345#if defined(CONFIG_MEMCG_KMEM)
2633d7a0
GC
346 /* Index in the kmem_cache->memcg_params->memcg_caches array */
347 int kmemcg_id;
348#endif
45cf7ebd
GC
349
350 int last_scanned_node;
351#if MAX_NUMNODES > 1
352 nodemask_t scan_nodes;
353 atomic_t numainfo_events;
354 atomic_t numainfo_updating;
355#endif
70ddf637 356
fba94807
TH
357 /* List of events which userspace want to receive */
358 struct list_head event_list;
359 spinlock_t event_list_lock;
360
54f72fe0
JW
361 struct mem_cgroup_per_node *nodeinfo[0];
362 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
363};
364
510fc4e1 365#ifdef CONFIG_MEMCG_KMEM
7de37682
GC
366static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
367{
900a38f0 368 return memcg->kmemcg_id >= 0;
7de37682 369}
510fc4e1
GC
370#endif
371
7dc74be0
DN
372/* Stuffs for move charges at task migration. */
373/*
ee5e8472
GC
374 * Types of charges to be moved. "move_charge_at_immitgrate" and
375 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
376 */
377enum move_type {
4ffef5fe 378 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 379 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
380 NR_MOVE_TYPE,
381};
382
4ffef5fe
DN
383/* "mc" and its members are protected by cgroup_mutex */
384static struct move_charge_struct {
b1dd693e 385 spinlock_t lock; /* for from, to */
4ffef5fe
DN
386 struct mem_cgroup *from;
387 struct mem_cgroup *to;
ee5e8472 388 unsigned long immigrate_flags;
4ffef5fe 389 unsigned long precharge;
854ffa8d 390 unsigned long moved_charge;
483c30b5 391 unsigned long moved_swap;
8033b97c
DN
392 struct task_struct *moving_task; /* a task moving charges */
393 wait_queue_head_t waitq; /* a waitq for other context */
394} mc = {
2bd9bb20 395 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
396 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
397};
4ffef5fe 398
90254a65
DN
399static bool move_anon(void)
400{
ee5e8472 401 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
402}
403
87946a72
DN
404static bool move_file(void)
405{
ee5e8472 406 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
407}
408
4e416953
BS
409/*
410 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
411 * limit reclaim to prevent infinite loops, if they ever occur.
412 */
a0db00fc 413#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 414#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 415
217bc319
KH
416enum charge_type {
417 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 418 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 419 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 420 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
421 NR_CHARGE_TYPE,
422};
423
8c7c6e34 424/* for encoding cft->private value on file */
86ae53e1
GC
425enum res_type {
426 _MEM,
427 _MEMSWAP,
428 _OOM_TYPE,
510fc4e1 429 _KMEM,
86ae53e1
GC
430};
431
a0db00fc
KS
432#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
433#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 434#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
435/* Used for OOM nofiier */
436#define OOM_CONTROL (0)
8c7c6e34 437
0999821b
GC
438/*
439 * The memcg_create_mutex will be held whenever a new cgroup is created.
440 * As a consequence, any change that needs to protect against new child cgroups
441 * appearing has to hold it as well.
442 */
443static DEFINE_MUTEX(memcg_create_mutex);
444
b2145145
WL
445struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
446{
a7c6d554 447 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
448}
449
70ddf637
AV
450/* Some nice accessors for the vmpressure. */
451struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
452{
453 if (!memcg)
454 memcg = root_mem_cgroup;
455 return &memcg->vmpressure;
456}
457
458struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
459{
460 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
461}
462
7ffc0edc
MH
463static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
464{
465 return (memcg == root_mem_cgroup);
466}
467
4219b2da
LZ
468/*
469 * We restrict the id in the range of [1, 65535], so it can fit into
470 * an unsigned short.
471 */
472#define MEM_CGROUP_ID_MAX USHRT_MAX
473
34c00c31
LZ
474static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
475{
15a4c835 476 return memcg->css.id;
34c00c31
LZ
477}
478
479static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
480{
481 struct cgroup_subsys_state *css;
482
7d699ddb 483 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
484 return mem_cgroup_from_css(css);
485}
486
e1aab161 487/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 488#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 489
e1aab161
GC
490void sock_update_memcg(struct sock *sk)
491{
376be5ff 492 if (mem_cgroup_sockets_enabled) {
e1aab161 493 struct mem_cgroup *memcg;
3f134619 494 struct cg_proto *cg_proto;
e1aab161
GC
495
496 BUG_ON(!sk->sk_prot->proto_cgroup);
497
f3f511e1
GC
498 /* Socket cloning can throw us here with sk_cgrp already
499 * filled. It won't however, necessarily happen from
500 * process context. So the test for root memcg given
501 * the current task's memcg won't help us in this case.
502 *
503 * Respecting the original socket's memcg is a better
504 * decision in this case.
505 */
506 if (sk->sk_cgrp) {
507 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 508 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
509 return;
510 }
511
e1aab161
GC
512 rcu_read_lock();
513 memcg = mem_cgroup_from_task(current);
3f134619 514 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 515 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
516 memcg_proto_active(cg_proto) &&
517 css_tryget_online(&memcg->css)) {
3f134619 518 sk->sk_cgrp = cg_proto;
e1aab161
GC
519 }
520 rcu_read_unlock();
521 }
522}
523EXPORT_SYMBOL(sock_update_memcg);
524
525void sock_release_memcg(struct sock *sk)
526{
376be5ff 527 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
528 struct mem_cgroup *memcg;
529 WARN_ON(!sk->sk_cgrp->memcg);
530 memcg = sk->sk_cgrp->memcg;
5347e5ae 531 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
532 }
533}
d1a4c0b3
GC
534
535struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
536{
537 if (!memcg || mem_cgroup_is_root(memcg))
538 return NULL;
539
2e685cad 540 return &memcg->tcp_mem;
d1a4c0b3
GC
541}
542EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 543
3f134619
GC
544static void disarm_sock_keys(struct mem_cgroup *memcg)
545{
2e685cad 546 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
547 return;
548 static_key_slow_dec(&memcg_socket_limit_enabled);
549}
550#else
551static void disarm_sock_keys(struct mem_cgroup *memcg)
552{
553}
554#endif
555
a8964b9b 556#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
557/*
558 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
559 * The main reason for not using cgroup id for this:
560 * this works better in sparse environments, where we have a lot of memcgs,
561 * but only a few kmem-limited. Or also, if we have, for instance, 200
562 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
563 * 200 entry array for that.
55007d84
GC
564 *
565 * The current size of the caches array is stored in
566 * memcg_limited_groups_array_size. It will double each time we have to
567 * increase it.
568 */
569static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
570int memcg_limited_groups_array_size;
571
55007d84
GC
572/*
573 * MIN_SIZE is different than 1, because we would like to avoid going through
574 * the alloc/free process all the time. In a small machine, 4 kmem-limited
575 * cgroups is a reasonable guess. In the future, it could be a parameter or
576 * tunable, but that is strictly not necessary.
577 *
b8627835 578 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
579 * this constant directly from cgroup, but it is understandable that this is
580 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 581 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
582 * increase ours as well if it increases.
583 */
584#define MEMCG_CACHES_MIN_SIZE 4
b8627835 585#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 586
d7f25f8a
GC
587/*
588 * A lot of the calls to the cache allocation functions are expected to be
589 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
590 * conditional to this static branch, we'll have to allow modules that does
591 * kmem_cache_alloc and the such to see this symbol as well
592 */
a8964b9b 593struct static_key memcg_kmem_enabled_key;
d7f25f8a 594EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 595
f3bb3043
VD
596static void memcg_free_cache_id(int id);
597
a8964b9b
GC
598static void disarm_kmem_keys(struct mem_cgroup *memcg)
599{
55007d84 600 if (memcg_kmem_is_active(memcg)) {
a8964b9b 601 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 602 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 603 }
bea207c8
GC
604 /*
605 * This check can't live in kmem destruction function,
606 * since the charges will outlive the cgroup
607 */
3e32cb2e 608 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
609}
610#else
611static void disarm_kmem_keys(struct mem_cgroup *memcg)
612{
613}
614#endif /* CONFIG_MEMCG_KMEM */
615
616static void disarm_static_keys(struct mem_cgroup *memcg)
617{
618 disarm_sock_keys(memcg);
619 disarm_kmem_keys(memcg);
620}
621
f64c3f54 622static struct mem_cgroup_per_zone *
e231875b 623mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 624{
e231875b
JZ
625 int nid = zone_to_nid(zone);
626 int zid = zone_idx(zone);
627
54f72fe0 628 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
629}
630
c0ff4b85 631struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 632{
c0ff4b85 633 return &memcg->css;
d324236b
WF
634}
635
f64c3f54 636static struct mem_cgroup_per_zone *
e231875b 637mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 638{
97a6c37b
JW
639 int nid = page_to_nid(page);
640 int zid = page_zonenum(page);
f64c3f54 641
e231875b 642 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
643}
644
bb4cc1a8
AM
645static struct mem_cgroup_tree_per_zone *
646soft_limit_tree_node_zone(int nid, int zid)
647{
648 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
649}
650
651static struct mem_cgroup_tree_per_zone *
652soft_limit_tree_from_page(struct page *page)
653{
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
656
657 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
658}
659
cf2c8127
JW
660static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
661 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 662 unsigned long new_usage_in_excess)
bb4cc1a8
AM
663{
664 struct rb_node **p = &mctz->rb_root.rb_node;
665 struct rb_node *parent = NULL;
666 struct mem_cgroup_per_zone *mz_node;
667
668 if (mz->on_tree)
669 return;
670
671 mz->usage_in_excess = new_usage_in_excess;
672 if (!mz->usage_in_excess)
673 return;
674 while (*p) {
675 parent = *p;
676 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
677 tree_node);
678 if (mz->usage_in_excess < mz_node->usage_in_excess)
679 p = &(*p)->rb_left;
680 /*
681 * We can't avoid mem cgroups that are over their soft
682 * limit by the same amount
683 */
684 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
685 p = &(*p)->rb_right;
686 }
687 rb_link_node(&mz->tree_node, parent, p);
688 rb_insert_color(&mz->tree_node, &mctz->rb_root);
689 mz->on_tree = true;
690}
691
cf2c8127
JW
692static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
693 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
694{
695 if (!mz->on_tree)
696 return;
697 rb_erase(&mz->tree_node, &mctz->rb_root);
698 mz->on_tree = false;
699}
700
cf2c8127
JW
701static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
702 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 703{
0a31bc97
JW
704 unsigned long flags;
705
706 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 707 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 708 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
709}
710
3e32cb2e
JW
711static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
712{
713 unsigned long nr_pages = page_counter_read(&memcg->memory);
714 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
715 unsigned long excess = 0;
716
717 if (nr_pages > soft_limit)
718 excess = nr_pages - soft_limit;
719
720 return excess;
721}
bb4cc1a8
AM
722
723static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
724{
3e32cb2e 725 unsigned long excess;
bb4cc1a8
AM
726 struct mem_cgroup_per_zone *mz;
727 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 728
e231875b 729 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
730 /*
731 * Necessary to update all ancestors when hierarchy is used.
732 * because their event counter is not touched.
733 */
734 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 735 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 736 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
737 /*
738 * We have to update the tree if mz is on RB-tree or
739 * mem is over its softlimit.
740 */
741 if (excess || mz->on_tree) {
0a31bc97
JW
742 unsigned long flags;
743
744 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
745 /* if on-tree, remove it */
746 if (mz->on_tree)
cf2c8127 747 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
748 /*
749 * Insert again. mz->usage_in_excess will be updated.
750 * If excess is 0, no tree ops.
751 */
cf2c8127 752 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 753 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
754 }
755 }
756}
757
758static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
759{
bb4cc1a8 760 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
761 struct mem_cgroup_per_zone *mz;
762 int nid, zid;
bb4cc1a8 763
e231875b
JZ
764 for_each_node(nid) {
765 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
766 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
767 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 768 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
769 }
770 }
771}
772
773static struct mem_cgroup_per_zone *
774__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
775{
776 struct rb_node *rightmost = NULL;
777 struct mem_cgroup_per_zone *mz;
778
779retry:
780 mz = NULL;
781 rightmost = rb_last(&mctz->rb_root);
782 if (!rightmost)
783 goto done; /* Nothing to reclaim from */
784
785 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
786 /*
787 * Remove the node now but someone else can add it back,
788 * we will to add it back at the end of reclaim to its correct
789 * position in the tree.
790 */
cf2c8127 791 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 792 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 793 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
794 goto retry;
795done:
796 return mz;
797}
798
799static struct mem_cgroup_per_zone *
800mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
801{
802 struct mem_cgroup_per_zone *mz;
803
0a31bc97 804 spin_lock_irq(&mctz->lock);
bb4cc1a8 805 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 806 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
807 return mz;
808}
809
711d3d2c
KH
810/*
811 * Implementation Note: reading percpu statistics for memcg.
812 *
813 * Both of vmstat[] and percpu_counter has threshold and do periodic
814 * synchronization to implement "quick" read. There are trade-off between
815 * reading cost and precision of value. Then, we may have a chance to implement
816 * a periodic synchronizion of counter in memcg's counter.
817 *
818 * But this _read() function is used for user interface now. The user accounts
819 * memory usage by memory cgroup and he _always_ requires exact value because
820 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
821 * have to visit all online cpus and make sum. So, for now, unnecessary
822 * synchronization is not implemented. (just implemented for cpu hotplug)
823 *
824 * If there are kernel internal actions which can make use of some not-exact
825 * value, and reading all cpu value can be performance bottleneck in some
826 * common workload, threashold and synchonization as vmstat[] should be
827 * implemented.
828 */
c0ff4b85 829static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 830 enum mem_cgroup_stat_index idx)
c62b1a3b 831{
7a159cc9 832 long val = 0;
c62b1a3b 833 int cpu;
c62b1a3b 834
711d3d2c
KH
835 get_online_cpus();
836 for_each_online_cpu(cpu)
c0ff4b85 837 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 838#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
839 spin_lock(&memcg->pcp_counter_lock);
840 val += memcg->nocpu_base.count[idx];
841 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
842#endif
843 put_online_cpus();
c62b1a3b
KH
844 return val;
845}
846
c0ff4b85 847static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
848 enum mem_cgroup_events_index idx)
849{
850 unsigned long val = 0;
851 int cpu;
852
9c567512 853 get_online_cpus();
e9f8974f 854 for_each_online_cpu(cpu)
c0ff4b85 855 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 856#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
857 spin_lock(&memcg->pcp_counter_lock);
858 val += memcg->nocpu_base.events[idx];
859 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 860#endif
9c567512 861 put_online_cpus();
e9f8974f
JW
862 return val;
863}
864
c0ff4b85 865static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 866 struct page *page,
0a31bc97 867 int nr_pages)
d52aa412 868{
b2402857
KH
869 /*
870 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
871 * counted as CACHE even if it's on ANON LRU.
872 */
0a31bc97 873 if (PageAnon(page))
b2402857 874 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 875 nr_pages);
d52aa412 876 else
b2402857 877 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 878 nr_pages);
55e462b0 879
b070e65c
DR
880 if (PageTransHuge(page))
881 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
882 nr_pages);
883
e401f176
KH
884 /* pagein of a big page is an event. So, ignore page size */
885 if (nr_pages > 0)
c0ff4b85 886 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 887 else {
c0ff4b85 888 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
889 nr_pages = -nr_pages; /* for event */
890 }
e401f176 891
13114716 892 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
893}
894
e231875b 895unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
896{
897 struct mem_cgroup_per_zone *mz;
898
899 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
900 return mz->lru_size[lru];
901}
902
e231875b
JZ
903static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
904 int nid,
905 unsigned int lru_mask)
bb2a0de9 906{
e231875b 907 unsigned long nr = 0;
889976db
YH
908 int zid;
909
e231875b 910 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 911
e231875b
JZ
912 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
913 struct mem_cgroup_per_zone *mz;
914 enum lru_list lru;
915
916 for_each_lru(lru) {
917 if (!(BIT(lru) & lru_mask))
918 continue;
919 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
920 nr += mz->lru_size[lru];
921 }
922 }
923 return nr;
889976db 924}
bb2a0de9 925
c0ff4b85 926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 927 unsigned int lru_mask)
6d12e2d8 928{
e231875b 929 unsigned long nr = 0;
889976db 930 int nid;
6d12e2d8 931
31aaea4a 932 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
933 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
934 return nr;
d52aa412
KH
935}
936
f53d7ce3
JW
937static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
938 enum mem_cgroup_events_target target)
7a159cc9
JW
939{
940 unsigned long val, next;
941
13114716 942 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 943 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 944 /* from time_after() in jiffies.h */
f53d7ce3
JW
945 if ((long)next - (long)val < 0) {
946 switch (target) {
947 case MEM_CGROUP_TARGET_THRESH:
948 next = val + THRESHOLDS_EVENTS_TARGET;
949 break;
bb4cc1a8
AM
950 case MEM_CGROUP_TARGET_SOFTLIMIT:
951 next = val + SOFTLIMIT_EVENTS_TARGET;
952 break;
f53d7ce3
JW
953 case MEM_CGROUP_TARGET_NUMAINFO:
954 next = val + NUMAINFO_EVENTS_TARGET;
955 break;
956 default:
957 break;
958 }
959 __this_cpu_write(memcg->stat->targets[target], next);
960 return true;
7a159cc9 961 }
f53d7ce3 962 return false;
d2265e6f
KH
963}
964
965/*
966 * Check events in order.
967 *
968 */
c0ff4b85 969static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
970{
971 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
972 if (unlikely(mem_cgroup_event_ratelimit(memcg,
973 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 974 bool do_softlimit;
82b3f2a7 975 bool do_numainfo __maybe_unused;
f53d7ce3 976
bb4cc1a8
AM
977 do_softlimit = mem_cgroup_event_ratelimit(memcg,
978 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
979#if MAX_NUMNODES > 1
980 do_numainfo = mem_cgroup_event_ratelimit(memcg,
981 MEM_CGROUP_TARGET_NUMAINFO);
982#endif
c0ff4b85 983 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
984 if (unlikely(do_softlimit))
985 mem_cgroup_update_tree(memcg, page);
453a9bf3 986#if MAX_NUMNODES > 1
f53d7ce3 987 if (unlikely(do_numainfo))
c0ff4b85 988 atomic_inc(&memcg->numainfo_events);
453a9bf3 989#endif
0a31bc97 990 }
d2265e6f
KH
991}
992
cf475ad2 993struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 994{
31a78f23
BS
995 /*
996 * mm_update_next_owner() may clear mm->owner to NULL
997 * if it races with swapoff, page migration, etc.
998 * So this can be called with p == NULL.
999 */
1000 if (unlikely(!p))
1001 return NULL;
1002
073219e9 1003 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1004}
1005
df381975 1006static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1007{
c0ff4b85 1008 struct mem_cgroup *memcg = NULL;
0b7f569e 1009
54595fe2
KH
1010 rcu_read_lock();
1011 do {
6f6acb00
MH
1012 /*
1013 * Page cache insertions can happen withou an
1014 * actual mm context, e.g. during disk probing
1015 * on boot, loopback IO, acct() writes etc.
1016 */
1017 if (unlikely(!mm))
df381975 1018 memcg = root_mem_cgroup;
6f6acb00
MH
1019 else {
1020 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1021 if (unlikely(!memcg))
1022 memcg = root_mem_cgroup;
1023 }
ec903c0c 1024 } while (!css_tryget_online(&memcg->css));
54595fe2 1025 rcu_read_unlock();
c0ff4b85 1026 return memcg;
54595fe2
KH
1027}
1028
5660048c
JW
1029/**
1030 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1031 * @root: hierarchy root
1032 * @prev: previously returned memcg, NULL on first invocation
1033 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1034 *
1035 * Returns references to children of the hierarchy below @root, or
1036 * @root itself, or %NULL after a full round-trip.
1037 *
1038 * Caller must pass the return value in @prev on subsequent
1039 * invocations for reference counting, or use mem_cgroup_iter_break()
1040 * to cancel a hierarchy walk before the round-trip is complete.
1041 *
1042 * Reclaimers can specify a zone and a priority level in @reclaim to
1043 * divide up the memcgs in the hierarchy among all concurrent
1044 * reclaimers operating on the same zone and priority.
1045 */
694fbc0f 1046struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1047 struct mem_cgroup *prev,
694fbc0f 1048 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1049{
5ac8fb31
JW
1050 struct reclaim_iter *uninitialized_var(iter);
1051 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1052 struct mem_cgroup *memcg = NULL;
5ac8fb31 1053 struct mem_cgroup *pos = NULL;
711d3d2c 1054
694fbc0f
AM
1055 if (mem_cgroup_disabled())
1056 return NULL;
5660048c 1057
9f3a0d09
JW
1058 if (!root)
1059 root = root_mem_cgroup;
7d74b06f 1060
9f3a0d09 1061 if (prev && !reclaim)
5ac8fb31 1062 pos = prev;
14067bb3 1063
9f3a0d09
JW
1064 if (!root->use_hierarchy && root != root_mem_cgroup) {
1065 if (prev)
5ac8fb31 1066 goto out;
694fbc0f 1067 return root;
9f3a0d09 1068 }
14067bb3 1069
542f85f9 1070 rcu_read_lock();
5f578161 1071
5ac8fb31
JW
1072 if (reclaim) {
1073 struct mem_cgroup_per_zone *mz;
1074
1075 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1076 iter = &mz->iter[reclaim->priority];
1077
1078 if (prev && reclaim->generation != iter->generation)
1079 goto out_unlock;
1080
1081 do {
1082 pos = ACCESS_ONCE(iter->position);
1083 /*
1084 * A racing update may change the position and
1085 * put the last reference, hence css_tryget(),
1086 * or retry to see the updated position.
1087 */
1088 } while (pos && !css_tryget(&pos->css));
1089 }
1090
1091 if (pos)
1092 css = &pos->css;
1093
1094 for (;;) {
1095 css = css_next_descendant_pre(css, &root->css);
1096 if (!css) {
1097 /*
1098 * Reclaimers share the hierarchy walk, and a
1099 * new one might jump in right at the end of
1100 * the hierarchy - make sure they see at least
1101 * one group and restart from the beginning.
1102 */
1103 if (!prev)
1104 continue;
1105 break;
527a5ec9 1106 }
7d74b06f 1107
5ac8fb31
JW
1108 /*
1109 * Verify the css and acquire a reference. The root
1110 * is provided by the caller, so we know it's alive
1111 * and kicking, and don't take an extra reference.
1112 */
1113 memcg = mem_cgroup_from_css(css);
14067bb3 1114
5ac8fb31
JW
1115 if (css == &root->css)
1116 break;
14067bb3 1117
b2052564 1118 if (css_tryget(css)) {
5ac8fb31
JW
1119 /*
1120 * Make sure the memcg is initialized:
1121 * mem_cgroup_css_online() orders the the
1122 * initialization against setting the flag.
1123 */
1124 if (smp_load_acquire(&memcg->initialized))
1125 break;
542f85f9 1126
5ac8fb31 1127 css_put(css);
527a5ec9 1128 }
9f3a0d09 1129
5ac8fb31 1130 memcg = NULL;
9f3a0d09 1131 }
5ac8fb31
JW
1132
1133 if (reclaim) {
1134 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1135 if (memcg)
1136 css_get(&memcg->css);
1137 if (pos)
1138 css_put(&pos->css);
1139 }
1140
1141 /*
1142 * pairs with css_tryget when dereferencing iter->position
1143 * above.
1144 */
1145 if (pos)
1146 css_put(&pos->css);
1147
1148 if (!memcg)
1149 iter->generation++;
1150 else if (!prev)
1151 reclaim->generation = iter->generation;
9f3a0d09 1152 }
5ac8fb31 1153
542f85f9
MH
1154out_unlock:
1155 rcu_read_unlock();
5ac8fb31 1156out:
c40046f3
MH
1157 if (prev && prev != root)
1158 css_put(&prev->css);
1159
9f3a0d09 1160 return memcg;
14067bb3 1161}
7d74b06f 1162
5660048c
JW
1163/**
1164 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1165 * @root: hierarchy root
1166 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1167 */
1168void mem_cgroup_iter_break(struct mem_cgroup *root,
1169 struct mem_cgroup *prev)
9f3a0d09
JW
1170{
1171 if (!root)
1172 root = root_mem_cgroup;
1173 if (prev && prev != root)
1174 css_put(&prev->css);
1175}
7d74b06f 1176
9f3a0d09
JW
1177/*
1178 * Iteration constructs for visiting all cgroups (under a tree). If
1179 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1180 * be used for reference counting.
1181 */
1182#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1183 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1184 iter != NULL; \
527a5ec9 1185 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1186
9f3a0d09 1187#define for_each_mem_cgroup(iter) \
527a5ec9 1188 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1189 iter != NULL; \
527a5ec9 1190 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1191
68ae564b 1192void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1193{
c0ff4b85 1194 struct mem_cgroup *memcg;
456f998e 1195
456f998e 1196 rcu_read_lock();
c0ff4b85
R
1197 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1198 if (unlikely(!memcg))
456f998e
YH
1199 goto out;
1200
1201 switch (idx) {
456f998e 1202 case PGFAULT:
0e574a93
JW
1203 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1204 break;
1205 case PGMAJFAULT:
1206 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1207 break;
1208 default:
1209 BUG();
1210 }
1211out:
1212 rcu_read_unlock();
1213}
68ae564b 1214EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1215
925b7673
JW
1216/**
1217 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1218 * @zone: zone of the wanted lruvec
fa9add64 1219 * @memcg: memcg of the wanted lruvec
925b7673
JW
1220 *
1221 * Returns the lru list vector holding pages for the given @zone and
1222 * @mem. This can be the global zone lruvec, if the memory controller
1223 * is disabled.
1224 */
1225struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1226 struct mem_cgroup *memcg)
1227{
1228 struct mem_cgroup_per_zone *mz;
bea8c150 1229 struct lruvec *lruvec;
925b7673 1230
bea8c150
HD
1231 if (mem_cgroup_disabled()) {
1232 lruvec = &zone->lruvec;
1233 goto out;
1234 }
925b7673 1235
e231875b 1236 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1237 lruvec = &mz->lruvec;
1238out:
1239 /*
1240 * Since a node can be onlined after the mem_cgroup was created,
1241 * we have to be prepared to initialize lruvec->zone here;
1242 * and if offlined then reonlined, we need to reinitialize it.
1243 */
1244 if (unlikely(lruvec->zone != zone))
1245 lruvec->zone = zone;
1246 return lruvec;
925b7673
JW
1247}
1248
925b7673 1249/**
dfe0e773 1250 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1251 * @page: the page
fa9add64 1252 * @zone: zone of the page
dfe0e773
JW
1253 *
1254 * This function is only safe when following the LRU page isolation
1255 * and putback protocol: the LRU lock must be held, and the page must
1256 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1257 */
fa9add64 1258struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1259{
08e552c6 1260 struct mem_cgroup_per_zone *mz;
925b7673 1261 struct mem_cgroup *memcg;
bea8c150 1262 struct lruvec *lruvec;
6d12e2d8 1263
bea8c150
HD
1264 if (mem_cgroup_disabled()) {
1265 lruvec = &zone->lruvec;
1266 goto out;
1267 }
925b7673 1268
1306a85a 1269 memcg = page->mem_cgroup;
7512102c 1270 /*
dfe0e773 1271 * Swapcache readahead pages are added to the LRU - and
29833315 1272 * possibly migrated - before they are charged.
7512102c 1273 */
29833315
JW
1274 if (!memcg)
1275 memcg = root_mem_cgroup;
7512102c 1276
e231875b 1277 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1278 lruvec = &mz->lruvec;
1279out:
1280 /*
1281 * Since a node can be onlined after the mem_cgroup was created,
1282 * we have to be prepared to initialize lruvec->zone here;
1283 * and if offlined then reonlined, we need to reinitialize it.
1284 */
1285 if (unlikely(lruvec->zone != zone))
1286 lruvec->zone = zone;
1287 return lruvec;
08e552c6 1288}
b69408e8 1289
925b7673 1290/**
fa9add64
HD
1291 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1292 * @lruvec: mem_cgroup per zone lru vector
1293 * @lru: index of lru list the page is sitting on
1294 * @nr_pages: positive when adding or negative when removing
925b7673 1295 *
fa9add64
HD
1296 * This function must be called when a page is added to or removed from an
1297 * lru list.
3f58a829 1298 */
fa9add64
HD
1299void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1300 int nr_pages)
3f58a829
MK
1301{
1302 struct mem_cgroup_per_zone *mz;
fa9add64 1303 unsigned long *lru_size;
3f58a829
MK
1304
1305 if (mem_cgroup_disabled())
1306 return;
1307
fa9add64
HD
1308 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1309 lru_size = mz->lru_size + lru;
1310 *lru_size += nr_pages;
1311 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1312}
544122e5 1313
2314b42d 1314bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1315{
2314b42d 1316 if (root == memcg)
91c63734 1317 return true;
2314b42d 1318 if (!root->use_hierarchy)
91c63734 1319 return false;
2314b42d 1320 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1321}
1322
2314b42d 1323bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1324{
2314b42d 1325 struct mem_cgroup *task_memcg;
158e0a2d 1326 struct task_struct *p;
ffbdccf5 1327 bool ret;
4c4a2214 1328
158e0a2d 1329 p = find_lock_task_mm(task);
de077d22 1330 if (p) {
2314b42d 1331 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1332 task_unlock(p);
1333 } else {
1334 /*
1335 * All threads may have already detached their mm's, but the oom
1336 * killer still needs to detect if they have already been oom
1337 * killed to prevent needlessly killing additional tasks.
1338 */
ffbdccf5 1339 rcu_read_lock();
2314b42d
JW
1340 task_memcg = mem_cgroup_from_task(task);
1341 css_get(&task_memcg->css);
ffbdccf5 1342 rcu_read_unlock();
de077d22 1343 }
2314b42d
JW
1344 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1345 css_put(&task_memcg->css);
4c4a2214
DR
1346 return ret;
1347}
1348
c56d5c7d 1349int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1350{
9b272977 1351 unsigned long inactive_ratio;
14797e23 1352 unsigned long inactive;
9b272977 1353 unsigned long active;
c772be93 1354 unsigned long gb;
14797e23 1355
4d7dcca2
HD
1356 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1357 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1358
c772be93
KM
1359 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1360 if (gb)
1361 inactive_ratio = int_sqrt(10 * gb);
1362 else
1363 inactive_ratio = 1;
1364
9b272977 1365 return inactive * inactive_ratio < active;
14797e23
KM
1366}
1367
3e32cb2e 1368#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1369 container_of(counter, struct mem_cgroup, member)
1370
19942822 1371/**
9d11ea9f 1372 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1373 * @memcg: the memory cgroup
19942822 1374 *
9d11ea9f 1375 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1376 * pages.
19942822 1377 */
c0ff4b85 1378static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1379{
3e32cb2e
JW
1380 unsigned long margin = 0;
1381 unsigned long count;
1382 unsigned long limit;
9d11ea9f 1383
3e32cb2e
JW
1384 count = page_counter_read(&memcg->memory);
1385 limit = ACCESS_ONCE(memcg->memory.limit);
1386 if (count < limit)
1387 margin = limit - count;
1388
1389 if (do_swap_account) {
1390 count = page_counter_read(&memcg->memsw);
1391 limit = ACCESS_ONCE(memcg->memsw.limit);
1392 if (count <= limit)
1393 margin = min(margin, limit - count);
1394 }
1395
1396 return margin;
19942822
JW
1397}
1398
1f4c025b 1399int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1400{
a7885eb8 1401 /* root ? */
14208b0e 1402 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1403 return vm_swappiness;
1404
bf1ff263 1405 return memcg->swappiness;
a7885eb8
KM
1406}
1407
32047e2a 1408/*
bdcbb659 1409 * A routine for checking "mem" is under move_account() or not.
32047e2a 1410 *
bdcbb659
QH
1411 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1412 * moving cgroups. This is for waiting at high-memory pressure
1413 * caused by "move".
32047e2a 1414 */
c0ff4b85 1415static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1416{
2bd9bb20
KH
1417 struct mem_cgroup *from;
1418 struct mem_cgroup *to;
4b534334 1419 bool ret = false;
2bd9bb20
KH
1420 /*
1421 * Unlike task_move routines, we access mc.to, mc.from not under
1422 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1423 */
1424 spin_lock(&mc.lock);
1425 from = mc.from;
1426 to = mc.to;
1427 if (!from)
1428 goto unlock;
3e92041d 1429
2314b42d
JW
1430 ret = mem_cgroup_is_descendant(from, memcg) ||
1431 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1432unlock:
1433 spin_unlock(&mc.lock);
4b534334
KH
1434 return ret;
1435}
1436
c0ff4b85 1437static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1438{
1439 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1440 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1441 DEFINE_WAIT(wait);
1442 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1443 /* moving charge context might have finished. */
1444 if (mc.moving_task)
1445 schedule();
1446 finish_wait(&mc.waitq, &wait);
1447 return true;
1448 }
1449 }
1450 return false;
1451}
1452
58cf188e 1453#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1454/**
58cf188e 1455 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1456 * @memcg: The memory cgroup that went over limit
1457 * @p: Task that is going to be killed
1458 *
1459 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1460 * enabled
1461 */
1462void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1463{
e61734c5 1464 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1465 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1466 struct mem_cgroup *iter;
1467 unsigned int i;
e222432b 1468
58cf188e 1469 if (!p)
e222432b
BS
1470 return;
1471
08088cb9 1472 mutex_lock(&oom_info_lock);
e222432b
BS
1473 rcu_read_lock();
1474
e61734c5
TH
1475 pr_info("Task in ");
1476 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
0346dadb 1477 pr_cont(" killed as a result of limit of ");
e61734c5 1478 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1479 pr_cont("\n");
e222432b 1480
e222432b
BS
1481 rcu_read_unlock();
1482
3e32cb2e
JW
1483 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1484 K((u64)page_counter_read(&memcg->memory)),
1485 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1486 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memsw)),
1488 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1489 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->kmem)),
1491 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1492
1493 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1494 pr_info("Memory cgroup stats for ");
1495 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1496 pr_cont(":");
1497
1498 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1499 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1500 continue;
1501 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1502 K(mem_cgroup_read_stat(iter, i)));
1503 }
1504
1505 for (i = 0; i < NR_LRU_LISTS; i++)
1506 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1507 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1508
1509 pr_cont("\n");
1510 }
08088cb9 1511 mutex_unlock(&oom_info_lock);
e222432b
BS
1512}
1513
81d39c20
KH
1514/*
1515 * This function returns the number of memcg under hierarchy tree. Returns
1516 * 1(self count) if no children.
1517 */
c0ff4b85 1518static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1519{
1520 int num = 0;
7d74b06f
KH
1521 struct mem_cgroup *iter;
1522
c0ff4b85 1523 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1524 num++;
81d39c20
KH
1525 return num;
1526}
1527
a63d83f4
DR
1528/*
1529 * Return the memory (and swap, if configured) limit for a memcg.
1530 */
3e32cb2e 1531static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1532{
3e32cb2e 1533 unsigned long limit;
f3e8eb70 1534
3e32cb2e 1535 limit = memcg->memory.limit;
9a5a8f19 1536 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1537 unsigned long memsw_limit;
9a5a8f19 1538
3e32cb2e
JW
1539 memsw_limit = memcg->memsw.limit;
1540 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1541 }
9a5a8f19 1542 return limit;
a63d83f4
DR
1543}
1544
19965460
DR
1545static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1546 int order)
9cbb78bb
DR
1547{
1548 struct mem_cgroup *iter;
1549 unsigned long chosen_points = 0;
1550 unsigned long totalpages;
1551 unsigned int points = 0;
1552 struct task_struct *chosen = NULL;
1553
876aafbf 1554 /*
465adcf1
DR
1555 * If current has a pending SIGKILL or is exiting, then automatically
1556 * select it. The goal is to allow it to allocate so that it may
1557 * quickly exit and free its memory.
876aafbf 1558 */
d003f371 1559 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
876aafbf
DR
1560 set_thread_flag(TIF_MEMDIE);
1561 return;
1562 }
1563
1564 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1565 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1566 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1567 struct css_task_iter it;
9cbb78bb
DR
1568 struct task_struct *task;
1569
72ec7029
TH
1570 css_task_iter_start(&iter->css, &it);
1571 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1572 switch (oom_scan_process_thread(task, totalpages, NULL,
1573 false)) {
1574 case OOM_SCAN_SELECT:
1575 if (chosen)
1576 put_task_struct(chosen);
1577 chosen = task;
1578 chosen_points = ULONG_MAX;
1579 get_task_struct(chosen);
1580 /* fall through */
1581 case OOM_SCAN_CONTINUE:
1582 continue;
1583 case OOM_SCAN_ABORT:
72ec7029 1584 css_task_iter_end(&it);
9cbb78bb
DR
1585 mem_cgroup_iter_break(memcg, iter);
1586 if (chosen)
1587 put_task_struct(chosen);
1588 return;
1589 case OOM_SCAN_OK:
1590 break;
1591 };
1592 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1593 if (!points || points < chosen_points)
1594 continue;
1595 /* Prefer thread group leaders for display purposes */
1596 if (points == chosen_points &&
1597 thread_group_leader(chosen))
1598 continue;
1599
1600 if (chosen)
1601 put_task_struct(chosen);
1602 chosen = task;
1603 chosen_points = points;
1604 get_task_struct(chosen);
9cbb78bb 1605 }
72ec7029 1606 css_task_iter_end(&it);
9cbb78bb
DR
1607 }
1608
1609 if (!chosen)
1610 return;
1611 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1612 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1613 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1614}
1615
ae6e71d3
MC
1616#if MAX_NUMNODES > 1
1617
4d0c066d
KH
1618/**
1619 * test_mem_cgroup_node_reclaimable
dad7557e 1620 * @memcg: the target memcg
4d0c066d
KH
1621 * @nid: the node ID to be checked.
1622 * @noswap : specify true here if the user wants flle only information.
1623 *
1624 * This function returns whether the specified memcg contains any
1625 * reclaimable pages on a node. Returns true if there are any reclaimable
1626 * pages in the node.
1627 */
c0ff4b85 1628static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1629 int nid, bool noswap)
1630{
c0ff4b85 1631 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1632 return true;
1633 if (noswap || !total_swap_pages)
1634 return false;
c0ff4b85 1635 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1636 return true;
1637 return false;
1638
1639}
889976db
YH
1640
1641/*
1642 * Always updating the nodemask is not very good - even if we have an empty
1643 * list or the wrong list here, we can start from some node and traverse all
1644 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1645 *
1646 */
c0ff4b85 1647static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1648{
1649 int nid;
453a9bf3
KH
1650 /*
1651 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1652 * pagein/pageout changes since the last update.
1653 */
c0ff4b85 1654 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1655 return;
c0ff4b85 1656 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1657 return;
1658
889976db 1659 /* make a nodemask where this memcg uses memory from */
31aaea4a 1660 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1661
31aaea4a 1662 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1663
c0ff4b85
R
1664 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1665 node_clear(nid, memcg->scan_nodes);
889976db 1666 }
453a9bf3 1667
c0ff4b85
R
1668 atomic_set(&memcg->numainfo_events, 0);
1669 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1670}
1671
1672/*
1673 * Selecting a node where we start reclaim from. Because what we need is just
1674 * reducing usage counter, start from anywhere is O,K. Considering
1675 * memory reclaim from current node, there are pros. and cons.
1676 *
1677 * Freeing memory from current node means freeing memory from a node which
1678 * we'll use or we've used. So, it may make LRU bad. And if several threads
1679 * hit limits, it will see a contention on a node. But freeing from remote
1680 * node means more costs for memory reclaim because of memory latency.
1681 *
1682 * Now, we use round-robin. Better algorithm is welcomed.
1683 */
c0ff4b85 1684int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1685{
1686 int node;
1687
c0ff4b85
R
1688 mem_cgroup_may_update_nodemask(memcg);
1689 node = memcg->last_scanned_node;
889976db 1690
c0ff4b85 1691 node = next_node(node, memcg->scan_nodes);
889976db 1692 if (node == MAX_NUMNODES)
c0ff4b85 1693 node = first_node(memcg->scan_nodes);
889976db
YH
1694 /*
1695 * We call this when we hit limit, not when pages are added to LRU.
1696 * No LRU may hold pages because all pages are UNEVICTABLE or
1697 * memcg is too small and all pages are not on LRU. In that case,
1698 * we use curret node.
1699 */
1700 if (unlikely(node == MAX_NUMNODES))
1701 node = numa_node_id();
1702
c0ff4b85 1703 memcg->last_scanned_node = node;
889976db
YH
1704 return node;
1705}
889976db 1706#else
c0ff4b85 1707int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1708{
1709 return 0;
1710}
1711#endif
1712
0608f43d
AM
1713static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1714 struct zone *zone,
1715 gfp_t gfp_mask,
1716 unsigned long *total_scanned)
1717{
1718 struct mem_cgroup *victim = NULL;
1719 int total = 0;
1720 int loop = 0;
1721 unsigned long excess;
1722 unsigned long nr_scanned;
1723 struct mem_cgroup_reclaim_cookie reclaim = {
1724 .zone = zone,
1725 .priority = 0,
1726 };
1727
3e32cb2e 1728 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1729
1730 while (1) {
1731 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1732 if (!victim) {
1733 loop++;
1734 if (loop >= 2) {
1735 /*
1736 * If we have not been able to reclaim
1737 * anything, it might because there are
1738 * no reclaimable pages under this hierarchy
1739 */
1740 if (!total)
1741 break;
1742 /*
1743 * We want to do more targeted reclaim.
1744 * excess >> 2 is not to excessive so as to
1745 * reclaim too much, nor too less that we keep
1746 * coming back to reclaim from this cgroup
1747 */
1748 if (total >= (excess >> 2) ||
1749 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1750 break;
1751 }
1752 continue;
1753 }
0608f43d
AM
1754 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1755 zone, &nr_scanned);
1756 *total_scanned += nr_scanned;
3e32cb2e 1757 if (!soft_limit_excess(root_memcg))
0608f43d 1758 break;
6d61ef40 1759 }
0608f43d
AM
1760 mem_cgroup_iter_break(root_memcg, victim);
1761 return total;
6d61ef40
BS
1762}
1763
0056f4e6
JW
1764#ifdef CONFIG_LOCKDEP
1765static struct lockdep_map memcg_oom_lock_dep_map = {
1766 .name = "memcg_oom_lock",
1767};
1768#endif
1769
fb2a6fc5
JW
1770static DEFINE_SPINLOCK(memcg_oom_lock);
1771
867578cb
KH
1772/*
1773 * Check OOM-Killer is already running under our hierarchy.
1774 * If someone is running, return false.
1775 */
fb2a6fc5 1776static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1777{
79dfdacc 1778 struct mem_cgroup *iter, *failed = NULL;
a636b327 1779
fb2a6fc5
JW
1780 spin_lock(&memcg_oom_lock);
1781
9f3a0d09 1782 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1783 if (iter->oom_lock) {
79dfdacc
MH
1784 /*
1785 * this subtree of our hierarchy is already locked
1786 * so we cannot give a lock.
1787 */
79dfdacc 1788 failed = iter;
9f3a0d09
JW
1789 mem_cgroup_iter_break(memcg, iter);
1790 break;
23751be0
JW
1791 } else
1792 iter->oom_lock = true;
7d74b06f 1793 }
867578cb 1794
fb2a6fc5
JW
1795 if (failed) {
1796 /*
1797 * OK, we failed to lock the whole subtree so we have
1798 * to clean up what we set up to the failing subtree
1799 */
1800 for_each_mem_cgroup_tree(iter, memcg) {
1801 if (iter == failed) {
1802 mem_cgroup_iter_break(memcg, iter);
1803 break;
1804 }
1805 iter->oom_lock = false;
79dfdacc 1806 }
0056f4e6
JW
1807 } else
1808 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1809
1810 spin_unlock(&memcg_oom_lock);
1811
1812 return !failed;
a636b327 1813}
0b7f569e 1814
fb2a6fc5 1815static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1816{
7d74b06f
KH
1817 struct mem_cgroup *iter;
1818
fb2a6fc5 1819 spin_lock(&memcg_oom_lock);
0056f4e6 1820 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1821 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1822 iter->oom_lock = false;
fb2a6fc5 1823 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1824}
1825
c0ff4b85 1826static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1827{
1828 struct mem_cgroup *iter;
1829
c0ff4b85 1830 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1831 atomic_inc(&iter->under_oom);
1832}
1833
c0ff4b85 1834static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1835{
1836 struct mem_cgroup *iter;
1837
867578cb
KH
1838 /*
1839 * When a new child is created while the hierarchy is under oom,
1840 * mem_cgroup_oom_lock() may not be called. We have to use
1841 * atomic_add_unless() here.
1842 */
c0ff4b85 1843 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1844 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1845}
1846
867578cb
KH
1847static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1848
dc98df5a 1849struct oom_wait_info {
d79154bb 1850 struct mem_cgroup *memcg;
dc98df5a
KH
1851 wait_queue_t wait;
1852};
1853
1854static int memcg_oom_wake_function(wait_queue_t *wait,
1855 unsigned mode, int sync, void *arg)
1856{
d79154bb
HD
1857 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1858 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1859 struct oom_wait_info *oom_wait_info;
1860
1861 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1862 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1863
2314b42d
JW
1864 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1865 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1866 return 0;
dc98df5a
KH
1867 return autoremove_wake_function(wait, mode, sync, arg);
1868}
1869
c0ff4b85 1870static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1871{
3812c8c8 1872 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1873 /* for filtering, pass "memcg" as argument. */
1874 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1875}
1876
c0ff4b85 1877static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1878{
c0ff4b85
R
1879 if (memcg && atomic_read(&memcg->under_oom))
1880 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1881}
1882
3812c8c8 1883static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1884{
3812c8c8
JW
1885 if (!current->memcg_oom.may_oom)
1886 return;
867578cb 1887 /*
49426420
JW
1888 * We are in the middle of the charge context here, so we
1889 * don't want to block when potentially sitting on a callstack
1890 * that holds all kinds of filesystem and mm locks.
1891 *
1892 * Also, the caller may handle a failed allocation gracefully
1893 * (like optional page cache readahead) and so an OOM killer
1894 * invocation might not even be necessary.
1895 *
1896 * That's why we don't do anything here except remember the
1897 * OOM context and then deal with it at the end of the page
1898 * fault when the stack is unwound, the locks are released,
1899 * and when we know whether the fault was overall successful.
867578cb 1900 */
49426420
JW
1901 css_get(&memcg->css);
1902 current->memcg_oom.memcg = memcg;
1903 current->memcg_oom.gfp_mask = mask;
1904 current->memcg_oom.order = order;
3812c8c8
JW
1905}
1906
1907/**
1908 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1909 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1910 *
49426420
JW
1911 * This has to be called at the end of a page fault if the memcg OOM
1912 * handler was enabled.
3812c8c8 1913 *
49426420 1914 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1915 * sleep on a waitqueue until the userspace task resolves the
1916 * situation. Sleeping directly in the charge context with all kinds
1917 * of locks held is not a good idea, instead we remember an OOM state
1918 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1919 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1920 *
1921 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1922 * completed, %false otherwise.
3812c8c8 1923 */
49426420 1924bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1925{
49426420 1926 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1927 struct oom_wait_info owait;
49426420 1928 bool locked;
3812c8c8
JW
1929
1930 /* OOM is global, do not handle */
3812c8c8 1931 if (!memcg)
49426420 1932 return false;
3812c8c8 1933
49426420
JW
1934 if (!handle)
1935 goto cleanup;
3812c8c8
JW
1936
1937 owait.memcg = memcg;
1938 owait.wait.flags = 0;
1939 owait.wait.func = memcg_oom_wake_function;
1940 owait.wait.private = current;
1941 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1942
3812c8c8 1943 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1944 mem_cgroup_mark_under_oom(memcg);
1945
1946 locked = mem_cgroup_oom_trylock(memcg);
1947
1948 if (locked)
1949 mem_cgroup_oom_notify(memcg);
1950
1951 if (locked && !memcg->oom_kill_disable) {
1952 mem_cgroup_unmark_under_oom(memcg);
1953 finish_wait(&memcg_oom_waitq, &owait.wait);
1954 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1955 current->memcg_oom.order);
1956 } else {
3812c8c8 1957 schedule();
49426420
JW
1958 mem_cgroup_unmark_under_oom(memcg);
1959 finish_wait(&memcg_oom_waitq, &owait.wait);
1960 }
1961
1962 if (locked) {
fb2a6fc5
JW
1963 mem_cgroup_oom_unlock(memcg);
1964 /*
1965 * There is no guarantee that an OOM-lock contender
1966 * sees the wakeups triggered by the OOM kill
1967 * uncharges. Wake any sleepers explicitely.
1968 */
1969 memcg_oom_recover(memcg);
1970 }
49426420
JW
1971cleanup:
1972 current->memcg_oom.memcg = NULL;
3812c8c8 1973 css_put(&memcg->css);
867578cb 1974 return true;
0b7f569e
KH
1975}
1976
d7365e78
JW
1977/**
1978 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1979 * @page: page that is going to change accounted state
1980 * @locked: &memcg->move_lock slowpath was taken
1981 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 1982 *
d7365e78
JW
1983 * This function must mark the beginning of an accounted page state
1984 * change to prevent double accounting when the page is concurrently
1985 * being moved to another memcg:
32047e2a 1986 *
d7365e78
JW
1987 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1988 * if (TestClearPageState(page))
1989 * mem_cgroup_update_page_stat(memcg, state, -1);
1990 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 1991 *
d7365e78
JW
1992 * The RCU lock is held throughout the transaction. The fast path can
1993 * get away without acquiring the memcg->move_lock (@locked is false)
1994 * because page moving starts with an RCU grace period.
32047e2a 1995 *
d7365e78
JW
1996 * The RCU lock also protects the memcg from being freed when the page
1997 * state that is going to change is the only thing preventing the page
1998 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
1999 * which allows migration to go ahead and uncharge the page before the
2000 * account transaction might be complete.
d69b042f 2001 */
d7365e78
JW
2002struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2003 bool *locked,
2004 unsigned long *flags)
89c06bd5
KH
2005{
2006 struct mem_cgroup *memcg;
89c06bd5 2007
d7365e78
JW
2008 rcu_read_lock();
2009
2010 if (mem_cgroup_disabled())
2011 return NULL;
89c06bd5 2012again:
1306a85a 2013 memcg = page->mem_cgroup;
29833315 2014 if (unlikely(!memcg))
d7365e78
JW
2015 return NULL;
2016
2017 *locked = false;
bdcbb659 2018 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2019 return memcg;
89c06bd5 2020
354a4783 2021 spin_lock_irqsave(&memcg->move_lock, *flags);
1306a85a 2022 if (memcg != page->mem_cgroup) {
354a4783 2023 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5
KH
2024 goto again;
2025 }
2026 *locked = true;
d7365e78
JW
2027
2028 return memcg;
89c06bd5
KH
2029}
2030
d7365e78
JW
2031/**
2032 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2033 * @memcg: the memcg that was accounted against
2034 * @locked: value received from mem_cgroup_begin_page_stat()
2035 * @flags: value received from mem_cgroup_begin_page_stat()
2036 */
e4bd6a02
MH
2037void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
2038 unsigned long *flags)
89c06bd5 2039{
e4bd6a02
MH
2040 if (memcg && *locked)
2041 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5 2042
d7365e78 2043 rcu_read_unlock();
89c06bd5
KH
2044}
2045
d7365e78
JW
2046/**
2047 * mem_cgroup_update_page_stat - update page state statistics
2048 * @memcg: memcg to account against
2049 * @idx: page state item to account
2050 * @val: number of pages (positive or negative)
2051 *
2052 * See mem_cgroup_begin_page_stat() for locking requirements.
2053 */
2054void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2055 enum mem_cgroup_stat_index idx, int val)
d69b042f 2056{
658b72c5 2057 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2058
d7365e78
JW
2059 if (memcg)
2060 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2061}
26174efd 2062
cdec2e42
KH
2063/*
2064 * size of first charge trial. "32" comes from vmscan.c's magic value.
2065 * TODO: maybe necessary to use big numbers in big irons.
2066 */
7ec99d62 2067#define CHARGE_BATCH 32U
cdec2e42
KH
2068struct memcg_stock_pcp {
2069 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2070 unsigned int nr_pages;
cdec2e42 2071 struct work_struct work;
26fe6168 2072 unsigned long flags;
a0db00fc 2073#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2074};
2075static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2076static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2077
a0956d54
SS
2078/**
2079 * consume_stock: Try to consume stocked charge on this cpu.
2080 * @memcg: memcg to consume from.
2081 * @nr_pages: how many pages to charge.
2082 *
2083 * The charges will only happen if @memcg matches the current cpu's memcg
2084 * stock, and at least @nr_pages are available in that stock. Failure to
2085 * service an allocation will refill the stock.
2086 *
2087 * returns true if successful, false otherwise.
cdec2e42 2088 */
a0956d54 2089static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2090{
2091 struct memcg_stock_pcp *stock;
3e32cb2e 2092 bool ret = false;
cdec2e42 2093
a0956d54 2094 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2095 return ret;
a0956d54 2096
cdec2e42 2097 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2098 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2099 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2100 ret = true;
2101 }
cdec2e42
KH
2102 put_cpu_var(memcg_stock);
2103 return ret;
2104}
2105
2106/*
3e32cb2e 2107 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2108 */
2109static void drain_stock(struct memcg_stock_pcp *stock)
2110{
2111 struct mem_cgroup *old = stock->cached;
2112
11c9ea4e 2113 if (stock->nr_pages) {
3e32cb2e 2114 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2115 if (do_swap_account)
3e32cb2e 2116 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2117 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2118 stock->nr_pages = 0;
cdec2e42
KH
2119 }
2120 stock->cached = NULL;
cdec2e42
KH
2121}
2122
2123/*
2124 * This must be called under preempt disabled or must be called by
2125 * a thread which is pinned to local cpu.
2126 */
2127static void drain_local_stock(struct work_struct *dummy)
2128{
7c8e0181 2129 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2130 drain_stock(stock);
26fe6168 2131 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2132}
2133
e4777496
MH
2134static void __init memcg_stock_init(void)
2135{
2136 int cpu;
2137
2138 for_each_possible_cpu(cpu) {
2139 struct memcg_stock_pcp *stock =
2140 &per_cpu(memcg_stock, cpu);
2141 INIT_WORK(&stock->work, drain_local_stock);
2142 }
2143}
2144
cdec2e42 2145/*
3e32cb2e 2146 * Cache charges(val) to local per_cpu area.
320cc51d 2147 * This will be consumed by consume_stock() function, later.
cdec2e42 2148 */
c0ff4b85 2149static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2150{
2151 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2152
c0ff4b85 2153 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2154 drain_stock(stock);
c0ff4b85 2155 stock->cached = memcg;
cdec2e42 2156 }
11c9ea4e 2157 stock->nr_pages += nr_pages;
cdec2e42
KH
2158 put_cpu_var(memcg_stock);
2159}
2160
2161/*
c0ff4b85 2162 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2163 * of the hierarchy under it.
cdec2e42 2164 */
6d3d6aa2 2165static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2166{
26fe6168 2167 int cpu, curcpu;
d38144b7 2168
6d3d6aa2
JW
2169 /* If someone's already draining, avoid adding running more workers. */
2170 if (!mutex_trylock(&percpu_charge_mutex))
2171 return;
cdec2e42 2172 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2173 get_online_cpus();
5af12d0e 2174 curcpu = get_cpu();
cdec2e42
KH
2175 for_each_online_cpu(cpu) {
2176 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2177 struct mem_cgroup *memcg;
26fe6168 2178
c0ff4b85
R
2179 memcg = stock->cached;
2180 if (!memcg || !stock->nr_pages)
26fe6168 2181 continue;
2314b42d 2182 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2183 continue;
d1a05b69
MH
2184 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2185 if (cpu == curcpu)
2186 drain_local_stock(&stock->work);
2187 else
2188 schedule_work_on(cpu, &stock->work);
2189 }
cdec2e42 2190 }
5af12d0e 2191 put_cpu();
f894ffa8 2192 put_online_cpus();
9f50fad6 2193 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2194}
2195
711d3d2c
KH
2196/*
2197 * This function drains percpu counter value from DEAD cpu and
2198 * move it to local cpu. Note that this function can be preempted.
2199 */
c0ff4b85 2200static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2201{
2202 int i;
2203
c0ff4b85 2204 spin_lock(&memcg->pcp_counter_lock);
6104621d 2205 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2206 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2207
c0ff4b85
R
2208 per_cpu(memcg->stat->count[i], cpu) = 0;
2209 memcg->nocpu_base.count[i] += x;
711d3d2c 2210 }
e9f8974f 2211 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2212 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2213
c0ff4b85
R
2214 per_cpu(memcg->stat->events[i], cpu) = 0;
2215 memcg->nocpu_base.events[i] += x;
e9f8974f 2216 }
c0ff4b85 2217 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2218}
2219
0db0628d 2220static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2221 unsigned long action,
2222 void *hcpu)
2223{
2224 int cpu = (unsigned long)hcpu;
2225 struct memcg_stock_pcp *stock;
711d3d2c 2226 struct mem_cgroup *iter;
cdec2e42 2227
619d094b 2228 if (action == CPU_ONLINE)
1489ebad 2229 return NOTIFY_OK;
1489ebad 2230
d833049b 2231 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2232 return NOTIFY_OK;
711d3d2c 2233
9f3a0d09 2234 for_each_mem_cgroup(iter)
711d3d2c
KH
2235 mem_cgroup_drain_pcp_counter(iter, cpu);
2236
cdec2e42
KH
2237 stock = &per_cpu(memcg_stock, cpu);
2238 drain_stock(stock);
2239 return NOTIFY_OK;
2240}
2241
00501b53
JW
2242static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2243 unsigned int nr_pages)
8a9f3ccd 2244{
7ec99d62 2245 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2246 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2247 struct mem_cgroup *mem_over_limit;
3e32cb2e 2248 struct page_counter *counter;
6539cc05 2249 unsigned long nr_reclaimed;
b70a2a21
JW
2250 bool may_swap = true;
2251 bool drained = false;
05b84301 2252 int ret = 0;
a636b327 2253
ce00a967
JW
2254 if (mem_cgroup_is_root(memcg))
2255 goto done;
6539cc05 2256retry:
b6b6cc72
MH
2257 if (consume_stock(memcg, nr_pages))
2258 goto done;
8a9f3ccd 2259
3fbe7244 2260 if (!do_swap_account ||
3e32cb2e
JW
2261 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2262 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2263 goto done_restock;
3fbe7244 2264 if (do_swap_account)
3e32cb2e
JW
2265 page_counter_uncharge(&memcg->memsw, batch);
2266 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2267 } else {
3e32cb2e 2268 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2269 may_swap = false;
3fbe7244 2270 }
7a81b88c 2271
6539cc05
JW
2272 if (batch > nr_pages) {
2273 batch = nr_pages;
2274 goto retry;
2275 }
6d61ef40 2276
06b078fc
JW
2277 /*
2278 * Unlike in global OOM situations, memcg is not in a physical
2279 * memory shortage. Allow dying and OOM-killed tasks to
2280 * bypass the last charges so that they can exit quickly and
2281 * free their memory.
2282 */
2283 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2284 fatal_signal_pending(current) ||
2285 current->flags & PF_EXITING))
2286 goto bypass;
2287
2288 if (unlikely(task_in_memcg_oom(current)))
2289 goto nomem;
2290
6539cc05
JW
2291 if (!(gfp_mask & __GFP_WAIT))
2292 goto nomem;
4b534334 2293
b70a2a21
JW
2294 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2295 gfp_mask, may_swap);
6539cc05 2296
61e02c74 2297 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2298 goto retry;
28c34c29 2299
b70a2a21 2300 if (!drained) {
6d3d6aa2 2301 drain_all_stock(mem_over_limit);
b70a2a21
JW
2302 drained = true;
2303 goto retry;
2304 }
2305
28c34c29
JW
2306 if (gfp_mask & __GFP_NORETRY)
2307 goto nomem;
6539cc05
JW
2308 /*
2309 * Even though the limit is exceeded at this point, reclaim
2310 * may have been able to free some pages. Retry the charge
2311 * before killing the task.
2312 *
2313 * Only for regular pages, though: huge pages are rather
2314 * unlikely to succeed so close to the limit, and we fall back
2315 * to regular pages anyway in case of failure.
2316 */
61e02c74 2317 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2318 goto retry;
2319 /*
2320 * At task move, charge accounts can be doubly counted. So, it's
2321 * better to wait until the end of task_move if something is going on.
2322 */
2323 if (mem_cgroup_wait_acct_move(mem_over_limit))
2324 goto retry;
2325
9b130619
JW
2326 if (nr_retries--)
2327 goto retry;
2328
06b078fc
JW
2329 if (gfp_mask & __GFP_NOFAIL)
2330 goto bypass;
2331
6539cc05
JW
2332 if (fatal_signal_pending(current))
2333 goto bypass;
2334
61e02c74 2335 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2336nomem:
6d1fdc48 2337 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2338 return -ENOMEM;
867578cb 2339bypass:
ce00a967 2340 return -EINTR;
6539cc05
JW
2341
2342done_restock:
e8ea14cc 2343 css_get_many(&memcg->css, batch);
6539cc05
JW
2344 if (batch > nr_pages)
2345 refill_stock(memcg, batch - nr_pages);
2346done:
05b84301 2347 return ret;
7a81b88c 2348}
8a9f3ccd 2349
00501b53 2350static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2351{
ce00a967
JW
2352 if (mem_cgroup_is_root(memcg))
2353 return;
2354
3e32cb2e 2355 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2356 if (do_swap_account)
3e32cb2e 2357 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2358
e8ea14cc 2359 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2360}
2361
a3b2d692
KH
2362/*
2363 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2364 * rcu_read_lock(). The caller is responsible for calling
2365 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2366 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2367 */
2368static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2369{
a3b2d692
KH
2370 /* ID 0 is unused ID */
2371 if (!id)
2372 return NULL;
34c00c31 2373 return mem_cgroup_from_id(id);
a3b2d692
KH
2374}
2375
0a31bc97
JW
2376/*
2377 * try_get_mem_cgroup_from_page - look up page's memcg association
2378 * @page: the page
2379 *
2380 * Look up, get a css reference, and return the memcg that owns @page.
2381 *
2382 * The page must be locked to prevent racing with swap-in and page
2383 * cache charges. If coming from an unlocked page table, the caller
2384 * must ensure the page is on the LRU or this can race with charging.
2385 */
e42d9d5d 2386struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2387{
29833315 2388 struct mem_cgroup *memcg;
a3b2d692 2389 unsigned short id;
b5a84319
KH
2390 swp_entry_t ent;
2391
309381fe 2392 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2393
1306a85a 2394 memcg = page->mem_cgroup;
29833315
JW
2395 if (memcg) {
2396 if (!css_tryget_online(&memcg->css))
c0ff4b85 2397 memcg = NULL;
e42d9d5d 2398 } else if (PageSwapCache(page)) {
3c776e64 2399 ent.val = page_private(page);
9fb4b7cc 2400 id = lookup_swap_cgroup_id(ent);
a3b2d692 2401 rcu_read_lock();
c0ff4b85 2402 memcg = mem_cgroup_lookup(id);
ec903c0c 2403 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2404 memcg = NULL;
a3b2d692 2405 rcu_read_unlock();
3c776e64 2406 }
c0ff4b85 2407 return memcg;
b5a84319
KH
2408}
2409
0a31bc97
JW
2410static void lock_page_lru(struct page *page, int *isolated)
2411{
2412 struct zone *zone = page_zone(page);
2413
2414 spin_lock_irq(&zone->lru_lock);
2415 if (PageLRU(page)) {
2416 struct lruvec *lruvec;
2417
2418 lruvec = mem_cgroup_page_lruvec(page, zone);
2419 ClearPageLRU(page);
2420 del_page_from_lru_list(page, lruvec, page_lru(page));
2421 *isolated = 1;
2422 } else
2423 *isolated = 0;
2424}
2425
2426static void unlock_page_lru(struct page *page, int isolated)
2427{
2428 struct zone *zone = page_zone(page);
2429
2430 if (isolated) {
2431 struct lruvec *lruvec;
2432
2433 lruvec = mem_cgroup_page_lruvec(page, zone);
2434 VM_BUG_ON_PAGE(PageLRU(page), page);
2435 SetPageLRU(page);
2436 add_page_to_lru_list(page, lruvec, page_lru(page));
2437 }
2438 spin_unlock_irq(&zone->lru_lock);
2439}
2440
00501b53 2441static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2442 bool lrucare)
7a81b88c 2443{
0a31bc97 2444 int isolated;
9ce70c02 2445
1306a85a 2446 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2447
2448 /*
2449 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2450 * may already be on some other mem_cgroup's LRU. Take care of it.
2451 */
0a31bc97
JW
2452 if (lrucare)
2453 lock_page_lru(page, &isolated);
9ce70c02 2454
0a31bc97
JW
2455 /*
2456 * Nobody should be changing or seriously looking at
1306a85a 2457 * page->mem_cgroup at this point:
0a31bc97
JW
2458 *
2459 * - the page is uncharged
2460 *
2461 * - the page is off-LRU
2462 *
2463 * - an anonymous fault has exclusive page access, except for
2464 * a locked page table
2465 *
2466 * - a page cache insertion, a swapin fault, or a migration
2467 * have the page locked
2468 */
1306a85a 2469 page->mem_cgroup = memcg;
9ce70c02 2470
0a31bc97
JW
2471 if (lrucare)
2472 unlock_page_lru(page, isolated);
7a81b88c 2473}
66e1707b 2474
7ae1e1d0 2475#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2476int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2477 unsigned long nr_pages)
7ae1e1d0 2478{
3e32cb2e 2479 struct page_counter *counter;
7ae1e1d0 2480 int ret = 0;
7ae1e1d0 2481
3e32cb2e
JW
2482 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2483 if (ret < 0)
7ae1e1d0
GC
2484 return ret;
2485
3e32cb2e 2486 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2487 if (ret == -EINTR) {
2488 /*
00501b53
JW
2489 * try_charge() chose to bypass to root due to OOM kill or
2490 * fatal signal. Since our only options are to either fail
2491 * the allocation or charge it to this cgroup, do it as a
2492 * temporary condition. But we can't fail. From a kmem/slab
2493 * perspective, the cache has already been selected, by
2494 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2495 * our minds.
2496 *
2497 * This condition will only trigger if the task entered
00501b53
JW
2498 * memcg_charge_kmem in a sane state, but was OOM-killed
2499 * during try_charge() above. Tasks that were already dying
2500 * when the allocation triggers should have been already
7ae1e1d0
GC
2501 * directed to the root cgroup in memcontrol.h
2502 */
3e32cb2e 2503 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2504 if (do_swap_account)
3e32cb2e 2505 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2506 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2507 ret = 0;
2508 } else if (ret)
3e32cb2e 2509 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2510
2511 return ret;
2512}
2513
dbf22eb6 2514void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2515{
3e32cb2e 2516 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2517 if (do_swap_account)
3e32cb2e 2518 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2519
64f21993 2520 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2521
e8ea14cc 2522 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2523}
2524
2633d7a0
GC
2525/*
2526 * helper for acessing a memcg's index. It will be used as an index in the
2527 * child cache array in kmem_cache, and also to derive its name. This function
2528 * will return -1 when this is not a kmem-limited memcg.
2529 */
2530int memcg_cache_id(struct mem_cgroup *memcg)
2531{
2532 return memcg ? memcg->kmemcg_id : -1;
2533}
2534
f3bb3043 2535static int memcg_alloc_cache_id(void)
55007d84 2536{
f3bb3043
VD
2537 int id, size;
2538 int err;
2539
2540 id = ida_simple_get(&kmem_limited_groups,
2541 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2542 if (id < 0)
2543 return id;
55007d84 2544
f3bb3043
VD
2545 if (id < memcg_limited_groups_array_size)
2546 return id;
2547
2548 /*
2549 * There's no space for the new id in memcg_caches arrays,
2550 * so we have to grow them.
2551 */
2552
2553 size = 2 * (id + 1);
55007d84
GC
2554 if (size < MEMCG_CACHES_MIN_SIZE)
2555 size = MEMCG_CACHES_MIN_SIZE;
2556 else if (size > MEMCG_CACHES_MAX_SIZE)
2557 size = MEMCG_CACHES_MAX_SIZE;
2558
f3bb3043 2559 err = memcg_update_all_caches(size);
f3bb3043
VD
2560 if (err) {
2561 ida_simple_remove(&kmem_limited_groups, id);
2562 return err;
2563 }
2564 return id;
2565}
2566
2567static void memcg_free_cache_id(int id)
2568{
2569 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2570}
2571
2572/*
2573 * We should update the current array size iff all caches updates succeed. This
2574 * can only be done from the slab side. The slab mutex needs to be held when
2575 * calling this.
2576 */
2577void memcg_update_array_size(int num)
2578{
f3bb3043 2579 memcg_limited_groups_array_size = num;
55007d84
GC
2580}
2581
d5b3cf71 2582struct memcg_kmem_cache_create_work {
5722d094
VD
2583 struct mem_cgroup *memcg;
2584 struct kmem_cache *cachep;
2585 struct work_struct work;
2586};
2587
d5b3cf71 2588static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2589{
d5b3cf71
VD
2590 struct memcg_kmem_cache_create_work *cw =
2591 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2592 struct mem_cgroup *memcg = cw->memcg;
2593 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2594
d5b3cf71 2595 memcg_create_kmem_cache(memcg, cachep);
bd673145 2596
5722d094 2597 css_put(&memcg->css);
d7f25f8a
GC
2598 kfree(cw);
2599}
2600
2601/*
2602 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2603 */
d5b3cf71
VD
2604static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2605 struct kmem_cache *cachep)
d7f25f8a 2606{
d5b3cf71 2607 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2608
776ed0f0 2609 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2610 if (!cw)
d7f25f8a 2611 return;
8135be5a
VD
2612
2613 css_get(&memcg->css);
d7f25f8a
GC
2614
2615 cw->memcg = memcg;
2616 cw->cachep = cachep;
d5b3cf71 2617 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2618
d7f25f8a
GC
2619 schedule_work(&cw->work);
2620}
2621
d5b3cf71
VD
2622static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2623 struct kmem_cache *cachep)
0e9d92f2
GC
2624{
2625 /*
2626 * We need to stop accounting when we kmalloc, because if the
2627 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2628 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2629 *
2630 * However, it is better to enclose the whole function. Depending on
2631 * the debugging options enabled, INIT_WORK(), for instance, can
2632 * trigger an allocation. This too, will make us recurse. Because at
2633 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2634 * the safest choice is to do it like this, wrapping the whole function.
2635 */
6f185c29 2636 current->memcg_kmem_skip_account = 1;
d5b3cf71 2637 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2638 current->memcg_kmem_skip_account = 0;
0e9d92f2 2639}
c67a8a68 2640
d7f25f8a
GC
2641/*
2642 * Return the kmem_cache we're supposed to use for a slab allocation.
2643 * We try to use the current memcg's version of the cache.
2644 *
2645 * If the cache does not exist yet, if we are the first user of it,
2646 * we either create it immediately, if possible, or create it asynchronously
2647 * in a workqueue.
2648 * In the latter case, we will let the current allocation go through with
2649 * the original cache.
2650 *
2651 * Can't be called in interrupt context or from kernel threads.
2652 * This function needs to be called with rcu_read_lock() held.
2653 */
056b7cce 2654struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2655{
2656 struct mem_cgroup *memcg;
959c8963 2657 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2658
2659 VM_BUG_ON(!cachep->memcg_params);
2660 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2661
9d100c5e 2662 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2663 return cachep;
2664
8135be5a 2665 memcg = get_mem_cgroup_from_mm(current->mm);
cf2b8fbf 2666 if (!memcg_kmem_is_active(memcg))
ca0dde97 2667 goto out;
d7f25f8a 2668
959c8963 2669 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
8135be5a
VD
2670 if (likely(memcg_cachep))
2671 return memcg_cachep;
ca0dde97
LZ
2672
2673 /*
2674 * If we are in a safe context (can wait, and not in interrupt
2675 * context), we could be be predictable and return right away.
2676 * This would guarantee that the allocation being performed
2677 * already belongs in the new cache.
2678 *
2679 * However, there are some clashes that can arrive from locking.
2680 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2681 * memcg_create_kmem_cache, this means no further allocation
2682 * could happen with the slab_mutex held. So it's better to
2683 * defer everything.
ca0dde97 2684 */
d5b3cf71 2685 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2686out:
8135be5a 2687 css_put(&memcg->css);
ca0dde97 2688 return cachep;
d7f25f8a 2689}
d7f25f8a 2690
8135be5a
VD
2691void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2692{
2693 if (!is_root_cache(cachep))
2694 css_put(&cachep->memcg_params->memcg->css);
2695}
2696
7ae1e1d0
GC
2697/*
2698 * We need to verify if the allocation against current->mm->owner's memcg is
2699 * possible for the given order. But the page is not allocated yet, so we'll
2700 * need a further commit step to do the final arrangements.
2701 *
2702 * It is possible for the task to switch cgroups in this mean time, so at
2703 * commit time, we can't rely on task conversion any longer. We'll then use
2704 * the handle argument to return to the caller which cgroup we should commit
2705 * against. We could also return the memcg directly and avoid the pointer
2706 * passing, but a boolean return value gives better semantics considering
2707 * the compiled-out case as well.
2708 *
2709 * Returning true means the allocation is possible.
2710 */
2711bool
2712__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2713{
2714 struct mem_cgroup *memcg;
2715 int ret;
2716
2717 *_memcg = NULL;
6d42c232 2718
df381975 2719 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2720
cf2b8fbf 2721 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2722 css_put(&memcg->css);
2723 return true;
2724 }
2725
3e32cb2e 2726 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2727 if (!ret)
2728 *_memcg = memcg;
7ae1e1d0
GC
2729
2730 css_put(&memcg->css);
2731 return (ret == 0);
2732}
2733
2734void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2735 int order)
2736{
7ae1e1d0
GC
2737 VM_BUG_ON(mem_cgroup_is_root(memcg));
2738
2739 /* The page allocation failed. Revert */
2740 if (!page) {
3e32cb2e 2741 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2742 return;
2743 }
1306a85a 2744 page->mem_cgroup = memcg;
7ae1e1d0
GC
2745}
2746
2747void __memcg_kmem_uncharge_pages(struct page *page, int order)
2748{
1306a85a 2749 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2750
7ae1e1d0
GC
2751 if (!memcg)
2752 return;
2753
309381fe 2754 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2755
3e32cb2e 2756 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2757 page->mem_cgroup = NULL;
7ae1e1d0
GC
2758}
2759#endif /* CONFIG_MEMCG_KMEM */
2760
ca3e0214
KH
2761#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2762
ca3e0214
KH
2763/*
2764 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2765 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2766 * charge/uncharge will be never happen and move_account() is done under
2767 * compound_lock(), so we don't have to take care of races.
ca3e0214 2768 */
e94c8a9c 2769void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2770{
e94c8a9c 2771 int i;
ca3e0214 2772
3d37c4a9
KH
2773 if (mem_cgroup_disabled())
2774 return;
b070e65c 2775
29833315 2776 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2777 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2778
1306a85a 2779 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2780 HPAGE_PMD_NR);
ca3e0214 2781}
12d27107 2782#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2783
f817ed48 2784/**
de3638d9 2785 * mem_cgroup_move_account - move account of the page
5564e88b 2786 * @page: the page
7ec99d62 2787 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2788 * @from: mem_cgroup which the page is moved from.
2789 * @to: mem_cgroup which the page is moved to. @from != @to.
2790 *
2791 * The caller must confirm following.
08e552c6 2792 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2793 * - compound_lock is held when nr_pages > 1
f817ed48 2794 *
2f3479b1
KH
2795 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2796 * from old cgroup.
f817ed48 2797 */
7ec99d62
JW
2798static int mem_cgroup_move_account(struct page *page,
2799 unsigned int nr_pages,
7ec99d62 2800 struct mem_cgroup *from,
2f3479b1 2801 struct mem_cgroup *to)
f817ed48 2802{
de3638d9
JW
2803 unsigned long flags;
2804 int ret;
987eba66 2805
f817ed48 2806 VM_BUG_ON(from == to);
309381fe 2807 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
2808 /*
2809 * The page is isolated from LRU. So, collapse function
2810 * will not handle this page. But page splitting can happen.
2811 * Do this check under compound_page_lock(). The caller should
2812 * hold it.
2813 */
2814 ret = -EBUSY;
7ec99d62 2815 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2816 goto out;
2817
0a31bc97 2818 /*
1306a85a 2819 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
0a31bc97
JW
2820 * of its source page while we change it: page migration takes
2821 * both pages off the LRU, but page cache replacement doesn't.
2822 */
2823 if (!trylock_page(page))
2824 goto out;
de3638d9
JW
2825
2826 ret = -EINVAL;
1306a85a 2827 if (page->mem_cgroup != from)
0a31bc97 2828 goto out_unlock;
de3638d9 2829
354a4783 2830 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 2831
0a31bc97 2832 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
2833 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2834 nr_pages);
2835 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2836 nr_pages);
2837 }
3ea67d06 2838
59d1d256
JW
2839 if (PageWriteback(page)) {
2840 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2841 nr_pages);
2842 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2843 nr_pages);
2844 }
3ea67d06 2845
0a31bc97 2846 /*
1306a85a 2847 * It is safe to change page->mem_cgroup here because the page
0a31bc97
JW
2848 * is referenced, charged, and isolated - we can't race with
2849 * uncharging, charging, migration, or LRU putback.
2850 */
d69b042f 2851
854ffa8d 2852 /* caller should have done css_get */
1306a85a 2853 page->mem_cgroup = to;
354a4783
JW
2854 spin_unlock_irqrestore(&from->move_lock, flags);
2855
de3638d9 2856 ret = 0;
0a31bc97
JW
2857
2858 local_irq_disable();
2859 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 2860 memcg_check_events(to, page);
0a31bc97 2861 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 2862 memcg_check_events(from, page);
0a31bc97
JW
2863 local_irq_enable();
2864out_unlock:
2865 unlock_page(page);
de3638d9 2866out:
f817ed48
KH
2867 return ret;
2868}
2869
c255a458 2870#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2871static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2872 bool charge)
d13d1443 2873{
0a31bc97
JW
2874 int val = (charge) ? 1 : -1;
2875 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2876}
02491447
DN
2877
2878/**
2879 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2880 * @entry: swap entry to be moved
2881 * @from: mem_cgroup which the entry is moved from
2882 * @to: mem_cgroup which the entry is moved to
2883 *
2884 * It succeeds only when the swap_cgroup's record for this entry is the same
2885 * as the mem_cgroup's id of @from.
2886 *
2887 * Returns 0 on success, -EINVAL on failure.
2888 *
3e32cb2e 2889 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2890 * both res and memsw, and called css_get().
2891 */
2892static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2893 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2894{
2895 unsigned short old_id, new_id;
2896
34c00c31
LZ
2897 old_id = mem_cgroup_id(from);
2898 new_id = mem_cgroup_id(to);
02491447
DN
2899
2900 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2901 mem_cgroup_swap_statistics(from, false);
483c30b5 2902 mem_cgroup_swap_statistics(to, true);
02491447
DN
2903 return 0;
2904 }
2905 return -EINVAL;
2906}
2907#else
2908static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2909 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2910{
2911 return -EINVAL;
2912}
8c7c6e34 2913#endif
d13d1443 2914
3e32cb2e 2915static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2916
d38d2a75 2917static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2918 unsigned long limit)
628f4235 2919{
3e32cb2e
JW
2920 unsigned long curusage;
2921 unsigned long oldusage;
2922 bool enlarge = false;
81d39c20 2923 int retry_count;
3e32cb2e 2924 int ret;
81d39c20
KH
2925
2926 /*
2927 * For keeping hierarchical_reclaim simple, how long we should retry
2928 * is depends on callers. We set our retry-count to be function
2929 * of # of children which we should visit in this loop.
2930 */
3e32cb2e
JW
2931 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2932 mem_cgroup_count_children(memcg);
81d39c20 2933
3e32cb2e 2934 oldusage = page_counter_read(&memcg->memory);
628f4235 2935
3e32cb2e 2936 do {
628f4235
KH
2937 if (signal_pending(current)) {
2938 ret = -EINTR;
2939 break;
2940 }
3e32cb2e
JW
2941
2942 mutex_lock(&memcg_limit_mutex);
2943 if (limit > memcg->memsw.limit) {
2944 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2945 ret = -EINVAL;
628f4235
KH
2946 break;
2947 }
3e32cb2e
JW
2948 if (limit > memcg->memory.limit)
2949 enlarge = true;
2950 ret = page_counter_limit(&memcg->memory, limit);
2951 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2952
2953 if (!ret)
2954 break;
2955
b70a2a21
JW
2956 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2957
3e32cb2e 2958 curusage = page_counter_read(&memcg->memory);
81d39c20 2959 /* Usage is reduced ? */
f894ffa8 2960 if (curusage >= oldusage)
81d39c20
KH
2961 retry_count--;
2962 else
2963 oldusage = curusage;
3e32cb2e
JW
2964 } while (retry_count);
2965
3c11ecf4
KH
2966 if (!ret && enlarge)
2967 memcg_oom_recover(memcg);
14797e23 2968
8c7c6e34
KH
2969 return ret;
2970}
2971
338c8431 2972static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2973 unsigned long limit)
8c7c6e34 2974{
3e32cb2e
JW
2975 unsigned long curusage;
2976 unsigned long oldusage;
2977 bool enlarge = false;
81d39c20 2978 int retry_count;
3e32cb2e 2979 int ret;
8c7c6e34 2980
81d39c20 2981 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2982 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2983 mem_cgroup_count_children(memcg);
2984
2985 oldusage = page_counter_read(&memcg->memsw);
2986
2987 do {
8c7c6e34
KH
2988 if (signal_pending(current)) {
2989 ret = -EINTR;
2990 break;
2991 }
3e32cb2e
JW
2992
2993 mutex_lock(&memcg_limit_mutex);
2994 if (limit < memcg->memory.limit) {
2995 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2996 ret = -EINVAL;
8c7c6e34
KH
2997 break;
2998 }
3e32cb2e
JW
2999 if (limit > memcg->memsw.limit)
3000 enlarge = true;
3001 ret = page_counter_limit(&memcg->memsw, limit);
3002 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3003
3004 if (!ret)
3005 break;
3006
b70a2a21
JW
3007 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3008
3e32cb2e 3009 curusage = page_counter_read(&memcg->memsw);
81d39c20 3010 /* Usage is reduced ? */
8c7c6e34 3011 if (curusage >= oldusage)
628f4235 3012 retry_count--;
81d39c20
KH
3013 else
3014 oldusage = curusage;
3e32cb2e
JW
3015 } while (retry_count);
3016
3c11ecf4
KH
3017 if (!ret && enlarge)
3018 memcg_oom_recover(memcg);
3e32cb2e 3019
628f4235
KH
3020 return ret;
3021}
3022
0608f43d
AM
3023unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3024 gfp_t gfp_mask,
3025 unsigned long *total_scanned)
3026{
3027 unsigned long nr_reclaimed = 0;
3028 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3029 unsigned long reclaimed;
3030 int loop = 0;
3031 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3032 unsigned long excess;
0608f43d
AM
3033 unsigned long nr_scanned;
3034
3035 if (order > 0)
3036 return 0;
3037
3038 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3039 /*
3040 * This loop can run a while, specially if mem_cgroup's continuously
3041 * keep exceeding their soft limit and putting the system under
3042 * pressure
3043 */
3044 do {
3045 if (next_mz)
3046 mz = next_mz;
3047 else
3048 mz = mem_cgroup_largest_soft_limit_node(mctz);
3049 if (!mz)
3050 break;
3051
3052 nr_scanned = 0;
3053 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3054 gfp_mask, &nr_scanned);
3055 nr_reclaimed += reclaimed;
3056 *total_scanned += nr_scanned;
0a31bc97 3057 spin_lock_irq(&mctz->lock);
bc2f2e7f 3058 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3059
3060 /*
3061 * If we failed to reclaim anything from this memory cgroup
3062 * it is time to move on to the next cgroup
3063 */
3064 next_mz = NULL;
bc2f2e7f
VD
3065 if (!reclaimed)
3066 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3067
3e32cb2e 3068 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3069 /*
3070 * One school of thought says that we should not add
3071 * back the node to the tree if reclaim returns 0.
3072 * But our reclaim could return 0, simply because due
3073 * to priority we are exposing a smaller subset of
3074 * memory to reclaim from. Consider this as a longer
3075 * term TODO.
3076 */
3077 /* If excess == 0, no tree ops */
cf2c8127 3078 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3079 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3080 css_put(&mz->memcg->css);
3081 loop++;
3082 /*
3083 * Could not reclaim anything and there are no more
3084 * mem cgroups to try or we seem to be looping without
3085 * reclaiming anything.
3086 */
3087 if (!nr_reclaimed &&
3088 (next_mz == NULL ||
3089 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3090 break;
3091 } while (!nr_reclaimed);
3092 if (next_mz)
3093 css_put(&next_mz->memcg->css);
3094 return nr_reclaimed;
3095}
3096
ea280e7b
TH
3097/*
3098 * Test whether @memcg has children, dead or alive. Note that this
3099 * function doesn't care whether @memcg has use_hierarchy enabled and
3100 * returns %true if there are child csses according to the cgroup
3101 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3102 */
b5f99b53
GC
3103static inline bool memcg_has_children(struct mem_cgroup *memcg)
3104{
ea280e7b
TH
3105 bool ret;
3106
696ac172 3107 /*
ea280e7b
TH
3108 * The lock does not prevent addition or deletion of children, but
3109 * it prevents a new child from being initialized based on this
3110 * parent in css_online(), so it's enough to decide whether
3111 * hierarchically inherited attributes can still be changed or not.
696ac172 3112 */
ea280e7b
TH
3113 lockdep_assert_held(&memcg_create_mutex);
3114
3115 rcu_read_lock();
3116 ret = css_next_child(NULL, &memcg->css);
3117 rcu_read_unlock();
3118 return ret;
b5f99b53
GC
3119}
3120
c26251f9
MH
3121/*
3122 * Reclaims as many pages from the given memcg as possible and moves
3123 * the rest to the parent.
3124 *
3125 * Caller is responsible for holding css reference for memcg.
3126 */
3127static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3128{
3129 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3130
c1e862c1
KH
3131 /* we call try-to-free pages for make this cgroup empty */
3132 lru_add_drain_all();
f817ed48 3133 /* try to free all pages in this cgroup */
3e32cb2e 3134 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3135 int progress;
c1e862c1 3136
c26251f9
MH
3137 if (signal_pending(current))
3138 return -EINTR;
3139
b70a2a21
JW
3140 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3141 GFP_KERNEL, true);
c1e862c1 3142 if (!progress) {
f817ed48 3143 nr_retries--;
c1e862c1 3144 /* maybe some writeback is necessary */
8aa7e847 3145 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3146 }
f817ed48
KH
3147
3148 }
ab5196c2
MH
3149
3150 return 0;
cc847582
KH
3151}
3152
6770c64e
TH
3153static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3154 char *buf, size_t nbytes,
3155 loff_t off)
c1e862c1 3156{
6770c64e 3157 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3158
d8423011
MH
3159 if (mem_cgroup_is_root(memcg))
3160 return -EINVAL;
6770c64e 3161 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3162}
3163
182446d0
TH
3164static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3165 struct cftype *cft)
18f59ea7 3166{
182446d0 3167 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3168}
3169
182446d0
TH
3170static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3171 struct cftype *cft, u64 val)
18f59ea7
BS
3172{
3173 int retval = 0;
182446d0 3174 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3175 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3176
0999821b 3177 mutex_lock(&memcg_create_mutex);
567fb435
GC
3178
3179 if (memcg->use_hierarchy == val)
3180 goto out;
3181
18f59ea7 3182 /*
af901ca1 3183 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3184 * in the child subtrees. If it is unset, then the change can
3185 * occur, provided the current cgroup has no children.
3186 *
3187 * For the root cgroup, parent_mem is NULL, we allow value to be
3188 * set if there are no children.
3189 */
c0ff4b85 3190 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3191 (val == 1 || val == 0)) {
ea280e7b 3192 if (!memcg_has_children(memcg))
c0ff4b85 3193 memcg->use_hierarchy = val;
18f59ea7
BS
3194 else
3195 retval = -EBUSY;
3196 } else
3197 retval = -EINVAL;
567fb435
GC
3198
3199out:
0999821b 3200 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3201
3202 return retval;
3203}
3204
3e32cb2e
JW
3205static unsigned long tree_stat(struct mem_cgroup *memcg,
3206 enum mem_cgroup_stat_index idx)
ce00a967
JW
3207{
3208 struct mem_cgroup *iter;
3209 long val = 0;
3210
3211 /* Per-cpu values can be negative, use a signed accumulator */
3212 for_each_mem_cgroup_tree(iter, memcg)
3213 val += mem_cgroup_read_stat(iter, idx);
3214
3215 if (val < 0) /* race ? */
3216 val = 0;
3217 return val;
3218}
3219
3220static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3221{
3222 u64 val;
3223
3e32cb2e
JW
3224 if (mem_cgroup_is_root(memcg)) {
3225 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3226 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3227 if (swap)
3228 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3229 } else {
ce00a967 3230 if (!swap)
3e32cb2e 3231 val = page_counter_read(&memcg->memory);
ce00a967 3232 else
3e32cb2e 3233 val = page_counter_read(&memcg->memsw);
ce00a967 3234 }
ce00a967
JW
3235 return val << PAGE_SHIFT;
3236}
3237
3e32cb2e
JW
3238enum {
3239 RES_USAGE,
3240 RES_LIMIT,
3241 RES_MAX_USAGE,
3242 RES_FAILCNT,
3243 RES_SOFT_LIMIT,
3244};
ce00a967 3245
791badbd 3246static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3247 struct cftype *cft)
8cdea7c0 3248{
182446d0 3249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3250 struct page_counter *counter;
af36f906 3251
3e32cb2e 3252 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3253 case _MEM:
3e32cb2e
JW
3254 counter = &memcg->memory;
3255 break;
8c7c6e34 3256 case _MEMSWAP:
3e32cb2e
JW
3257 counter = &memcg->memsw;
3258 break;
510fc4e1 3259 case _KMEM:
3e32cb2e 3260 counter = &memcg->kmem;
510fc4e1 3261 break;
8c7c6e34
KH
3262 default:
3263 BUG();
8c7c6e34 3264 }
3e32cb2e
JW
3265
3266 switch (MEMFILE_ATTR(cft->private)) {
3267 case RES_USAGE:
3268 if (counter == &memcg->memory)
3269 return mem_cgroup_usage(memcg, false);
3270 if (counter == &memcg->memsw)
3271 return mem_cgroup_usage(memcg, true);
3272 return (u64)page_counter_read(counter) * PAGE_SIZE;
3273 case RES_LIMIT:
3274 return (u64)counter->limit * PAGE_SIZE;
3275 case RES_MAX_USAGE:
3276 return (u64)counter->watermark * PAGE_SIZE;
3277 case RES_FAILCNT:
3278 return counter->failcnt;
3279 case RES_SOFT_LIMIT:
3280 return (u64)memcg->soft_limit * PAGE_SIZE;
3281 default:
3282 BUG();
3283 }
8cdea7c0 3284}
510fc4e1 3285
510fc4e1 3286#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3287static int memcg_activate_kmem(struct mem_cgroup *memcg,
3288 unsigned long nr_pages)
d6441637
VD
3289{
3290 int err = 0;
3291 int memcg_id;
3292
3293 if (memcg_kmem_is_active(memcg))
3294 return 0;
3295
510fc4e1
GC
3296 /*
3297 * For simplicity, we won't allow this to be disabled. It also can't
3298 * be changed if the cgroup has children already, or if tasks had
3299 * already joined.
3300 *
3301 * If tasks join before we set the limit, a person looking at
3302 * kmem.usage_in_bytes will have no way to determine when it took
3303 * place, which makes the value quite meaningless.
3304 *
3305 * After it first became limited, changes in the value of the limit are
3306 * of course permitted.
510fc4e1 3307 */
0999821b 3308 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3309 if (cgroup_has_tasks(memcg->css.cgroup) ||
3310 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3311 err = -EBUSY;
3312 mutex_unlock(&memcg_create_mutex);
3313 if (err)
3314 goto out;
510fc4e1 3315
f3bb3043 3316 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3317 if (memcg_id < 0) {
3318 err = memcg_id;
3319 goto out;
3320 }
3321
d6441637 3322 /*
900a38f0
VD
3323 * We couldn't have accounted to this cgroup, because it hasn't got
3324 * activated yet, so this should succeed.
d6441637 3325 */
3e32cb2e 3326 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3327 VM_BUG_ON(err);
3328
3329 static_key_slow_inc(&memcg_kmem_enabled_key);
3330 /*
900a38f0
VD
3331 * A memory cgroup is considered kmem-active as soon as it gets
3332 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3333 * guarantee no one starts accounting before all call sites are
3334 * patched.
3335 */
900a38f0 3336 memcg->kmemcg_id = memcg_id;
510fc4e1 3337out:
d6441637 3338 return err;
d6441637
VD
3339}
3340
d6441637 3341static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3342 unsigned long limit)
d6441637
VD
3343{
3344 int ret;
3345
3e32cb2e 3346 mutex_lock(&memcg_limit_mutex);
d6441637 3347 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3348 ret = memcg_activate_kmem(memcg, limit);
d6441637 3349 else
3e32cb2e
JW
3350 ret = page_counter_limit(&memcg->kmem, limit);
3351 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3352 return ret;
3353}
3354
55007d84 3355static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3356{
55007d84 3357 int ret = 0;
510fc4e1 3358 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3359
d6441637
VD
3360 if (!parent)
3361 return 0;
55007d84 3362
8c0145b6 3363 mutex_lock(&memcg_limit_mutex);
55007d84 3364 /*
d6441637
VD
3365 * If the parent cgroup is not kmem-active now, it cannot be activated
3366 * after this point, because it has at least one child already.
55007d84 3367 */
d6441637 3368 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3369 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3370 mutex_unlock(&memcg_limit_mutex);
55007d84 3371 return ret;
510fc4e1 3372}
d6441637
VD
3373#else
3374static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3375 unsigned long limit)
d6441637
VD
3376{
3377 return -EINVAL;
3378}
6d043990 3379#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3380
628f4235
KH
3381/*
3382 * The user of this function is...
3383 * RES_LIMIT.
3384 */
451af504
TH
3385static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3386 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3387{
451af504 3388 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3389 unsigned long nr_pages;
628f4235
KH
3390 int ret;
3391
451af504 3392 buf = strstrip(buf);
3e32cb2e
JW
3393 ret = page_counter_memparse(buf, &nr_pages);
3394 if (ret)
3395 return ret;
af36f906 3396
3e32cb2e 3397 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3398 case RES_LIMIT:
4b3bde4c
BS
3399 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3400 ret = -EINVAL;
3401 break;
3402 }
3e32cb2e
JW
3403 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3404 case _MEM:
3405 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3406 break;
3e32cb2e
JW
3407 case _MEMSWAP:
3408 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3409 break;
3e32cb2e
JW
3410 case _KMEM:
3411 ret = memcg_update_kmem_limit(memcg, nr_pages);
3412 break;
3413 }
296c81d8 3414 break;
3e32cb2e
JW
3415 case RES_SOFT_LIMIT:
3416 memcg->soft_limit = nr_pages;
3417 ret = 0;
628f4235
KH
3418 break;
3419 }
451af504 3420 return ret ?: nbytes;
8cdea7c0
BS
3421}
3422
6770c64e
TH
3423static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3424 size_t nbytes, loff_t off)
c84872e1 3425{
6770c64e 3426 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3427 struct page_counter *counter;
c84872e1 3428
3e32cb2e
JW
3429 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3430 case _MEM:
3431 counter = &memcg->memory;
3432 break;
3433 case _MEMSWAP:
3434 counter = &memcg->memsw;
3435 break;
3436 case _KMEM:
3437 counter = &memcg->kmem;
3438 break;
3439 default:
3440 BUG();
3441 }
af36f906 3442
3e32cb2e 3443 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3444 case RES_MAX_USAGE:
3e32cb2e 3445 page_counter_reset_watermark(counter);
29f2a4da
PE
3446 break;
3447 case RES_FAILCNT:
3e32cb2e 3448 counter->failcnt = 0;
29f2a4da 3449 break;
3e32cb2e
JW
3450 default:
3451 BUG();
29f2a4da 3452 }
f64c3f54 3453
6770c64e 3454 return nbytes;
c84872e1
PE
3455}
3456
182446d0 3457static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3458 struct cftype *cft)
3459{
182446d0 3460 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3461}
3462
02491447 3463#ifdef CONFIG_MMU
182446d0 3464static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3465 struct cftype *cft, u64 val)
3466{
182446d0 3467 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3468
3469 if (val >= (1 << NR_MOVE_TYPE))
3470 return -EINVAL;
ee5e8472 3471
7dc74be0 3472 /*
ee5e8472
GC
3473 * No kind of locking is needed in here, because ->can_attach() will
3474 * check this value once in the beginning of the process, and then carry
3475 * on with stale data. This means that changes to this value will only
3476 * affect task migrations starting after the change.
7dc74be0 3477 */
c0ff4b85 3478 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3479 return 0;
3480}
02491447 3481#else
182446d0 3482static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3483 struct cftype *cft, u64 val)
3484{
3485 return -ENOSYS;
3486}
3487#endif
7dc74be0 3488
406eb0c9 3489#ifdef CONFIG_NUMA
2da8ca82 3490static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3491{
25485de6
GT
3492 struct numa_stat {
3493 const char *name;
3494 unsigned int lru_mask;
3495 };
3496
3497 static const struct numa_stat stats[] = {
3498 { "total", LRU_ALL },
3499 { "file", LRU_ALL_FILE },
3500 { "anon", LRU_ALL_ANON },
3501 { "unevictable", BIT(LRU_UNEVICTABLE) },
3502 };
3503 const struct numa_stat *stat;
406eb0c9 3504 int nid;
25485de6 3505 unsigned long nr;
2da8ca82 3506 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3507
25485de6
GT
3508 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3509 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3510 seq_printf(m, "%s=%lu", stat->name, nr);
3511 for_each_node_state(nid, N_MEMORY) {
3512 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3513 stat->lru_mask);
3514 seq_printf(m, " N%d=%lu", nid, nr);
3515 }
3516 seq_putc(m, '\n');
406eb0c9 3517 }
406eb0c9 3518
071aee13
YH
3519 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3520 struct mem_cgroup *iter;
3521
3522 nr = 0;
3523 for_each_mem_cgroup_tree(iter, memcg)
3524 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3525 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3526 for_each_node_state(nid, N_MEMORY) {
3527 nr = 0;
3528 for_each_mem_cgroup_tree(iter, memcg)
3529 nr += mem_cgroup_node_nr_lru_pages(
3530 iter, nid, stat->lru_mask);
3531 seq_printf(m, " N%d=%lu", nid, nr);
3532 }
3533 seq_putc(m, '\n');
406eb0c9 3534 }
406eb0c9 3535
406eb0c9
YH
3536 return 0;
3537}
3538#endif /* CONFIG_NUMA */
3539
2da8ca82 3540static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3541{
2da8ca82 3542 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3543 unsigned long memory, memsw;
af7c4b0e
JW
3544 struct mem_cgroup *mi;
3545 unsigned int i;
406eb0c9 3546
70bc068c
RS
3547 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3548
af7c4b0e 3549 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3550 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3551 continue;
af7c4b0e
JW
3552 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3553 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3554 }
7b854121 3555
af7c4b0e
JW
3556 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3557 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3558 mem_cgroup_read_events(memcg, i));
3559
3560 for (i = 0; i < NR_LRU_LISTS; i++)
3561 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3562 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3563
14067bb3 3564 /* Hierarchical information */
3e32cb2e
JW
3565 memory = memsw = PAGE_COUNTER_MAX;
3566 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3567 memory = min(memory, mi->memory.limit);
3568 memsw = min(memsw, mi->memsw.limit);
fee7b548 3569 }
3e32cb2e
JW
3570 seq_printf(m, "hierarchical_memory_limit %llu\n",
3571 (u64)memory * PAGE_SIZE);
3572 if (do_swap_account)
3573 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3574 (u64)memsw * PAGE_SIZE);
7f016ee8 3575
af7c4b0e
JW
3576 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3577 long long val = 0;
3578
bff6bb83 3579 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3580 continue;
af7c4b0e
JW
3581 for_each_mem_cgroup_tree(mi, memcg)
3582 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3583 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3584 }
3585
3586 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3587 unsigned long long val = 0;
3588
3589 for_each_mem_cgroup_tree(mi, memcg)
3590 val += mem_cgroup_read_events(mi, i);
3591 seq_printf(m, "total_%s %llu\n",
3592 mem_cgroup_events_names[i], val);
3593 }
3594
3595 for (i = 0; i < NR_LRU_LISTS; i++) {
3596 unsigned long long val = 0;
3597
3598 for_each_mem_cgroup_tree(mi, memcg)
3599 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3600 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3601 }
14067bb3 3602
7f016ee8 3603#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3604 {
3605 int nid, zid;
3606 struct mem_cgroup_per_zone *mz;
89abfab1 3607 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3608 unsigned long recent_rotated[2] = {0, 0};
3609 unsigned long recent_scanned[2] = {0, 0};
3610
3611 for_each_online_node(nid)
3612 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3613 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3614 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3615
89abfab1
HD
3616 recent_rotated[0] += rstat->recent_rotated[0];
3617 recent_rotated[1] += rstat->recent_rotated[1];
3618 recent_scanned[0] += rstat->recent_scanned[0];
3619 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3620 }
78ccf5b5
JW
3621 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3622 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3623 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3624 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3625 }
3626#endif
3627
d2ceb9b7
KH
3628 return 0;
3629}
3630
182446d0
TH
3631static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3632 struct cftype *cft)
a7885eb8 3633{
182446d0 3634 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3635
1f4c025b 3636 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3637}
3638
182446d0
TH
3639static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3640 struct cftype *cft, u64 val)
a7885eb8 3641{
182446d0 3642 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3643
3dae7fec 3644 if (val > 100)
a7885eb8
KM
3645 return -EINVAL;
3646
14208b0e 3647 if (css->parent)
3dae7fec
JW
3648 memcg->swappiness = val;
3649 else
3650 vm_swappiness = val;
068b38c1 3651
a7885eb8
KM
3652 return 0;
3653}
3654
2e72b634
KS
3655static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3656{
3657 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3658 unsigned long usage;
2e72b634
KS
3659 int i;
3660
3661 rcu_read_lock();
3662 if (!swap)
2c488db2 3663 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3664 else
2c488db2 3665 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3666
3667 if (!t)
3668 goto unlock;
3669
ce00a967 3670 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3671
3672 /*
748dad36 3673 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3674 * If it's not true, a threshold was crossed after last
3675 * call of __mem_cgroup_threshold().
3676 */
5407a562 3677 i = t->current_threshold;
2e72b634
KS
3678
3679 /*
3680 * Iterate backward over array of thresholds starting from
3681 * current_threshold and check if a threshold is crossed.
3682 * If none of thresholds below usage is crossed, we read
3683 * only one element of the array here.
3684 */
3685 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3686 eventfd_signal(t->entries[i].eventfd, 1);
3687
3688 /* i = current_threshold + 1 */
3689 i++;
3690
3691 /*
3692 * Iterate forward over array of thresholds starting from
3693 * current_threshold+1 and check if a threshold is crossed.
3694 * If none of thresholds above usage is crossed, we read
3695 * only one element of the array here.
3696 */
3697 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3698 eventfd_signal(t->entries[i].eventfd, 1);
3699
3700 /* Update current_threshold */
5407a562 3701 t->current_threshold = i - 1;
2e72b634
KS
3702unlock:
3703 rcu_read_unlock();
3704}
3705
3706static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3707{
ad4ca5f4
KS
3708 while (memcg) {
3709 __mem_cgroup_threshold(memcg, false);
3710 if (do_swap_account)
3711 __mem_cgroup_threshold(memcg, true);
3712
3713 memcg = parent_mem_cgroup(memcg);
3714 }
2e72b634
KS
3715}
3716
3717static int compare_thresholds(const void *a, const void *b)
3718{
3719 const struct mem_cgroup_threshold *_a = a;
3720 const struct mem_cgroup_threshold *_b = b;
3721
2bff24a3
GT
3722 if (_a->threshold > _b->threshold)
3723 return 1;
3724
3725 if (_a->threshold < _b->threshold)
3726 return -1;
3727
3728 return 0;
2e72b634
KS
3729}
3730
c0ff4b85 3731static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3732{
3733 struct mem_cgroup_eventfd_list *ev;
3734
2bcf2e92
MH
3735 spin_lock(&memcg_oom_lock);
3736
c0ff4b85 3737 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3738 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3739
3740 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3741 return 0;
3742}
3743
c0ff4b85 3744static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3745{
7d74b06f
KH
3746 struct mem_cgroup *iter;
3747
c0ff4b85 3748 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3749 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3750}
3751
59b6f873 3752static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3753 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3754{
2c488db2
KS
3755 struct mem_cgroup_thresholds *thresholds;
3756 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3757 unsigned long threshold;
3758 unsigned long usage;
2c488db2 3759 int i, size, ret;
2e72b634 3760
3e32cb2e 3761 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
3762 if (ret)
3763 return ret;
3764
3765 mutex_lock(&memcg->thresholds_lock);
2c488db2 3766
05b84301 3767 if (type == _MEM) {
2c488db2 3768 thresholds = &memcg->thresholds;
ce00a967 3769 usage = mem_cgroup_usage(memcg, false);
05b84301 3770 } else if (type == _MEMSWAP) {
2c488db2 3771 thresholds = &memcg->memsw_thresholds;
ce00a967 3772 usage = mem_cgroup_usage(memcg, true);
05b84301 3773 } else
2e72b634
KS
3774 BUG();
3775
2e72b634 3776 /* Check if a threshold crossed before adding a new one */
2c488db2 3777 if (thresholds->primary)
2e72b634
KS
3778 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3779
2c488db2 3780 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3781
3782 /* Allocate memory for new array of thresholds */
2c488db2 3783 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3784 GFP_KERNEL);
2c488db2 3785 if (!new) {
2e72b634
KS
3786 ret = -ENOMEM;
3787 goto unlock;
3788 }
2c488db2 3789 new->size = size;
2e72b634
KS
3790
3791 /* Copy thresholds (if any) to new array */
2c488db2
KS
3792 if (thresholds->primary) {
3793 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3794 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3795 }
3796
2e72b634 3797 /* Add new threshold */
2c488db2
KS
3798 new->entries[size - 1].eventfd = eventfd;
3799 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3800
3801 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3802 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3803 compare_thresholds, NULL);
3804
3805 /* Find current threshold */
2c488db2 3806 new->current_threshold = -1;
2e72b634 3807 for (i = 0; i < size; i++) {
748dad36 3808 if (new->entries[i].threshold <= usage) {
2e72b634 3809 /*
2c488db2
KS
3810 * new->current_threshold will not be used until
3811 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3812 * it here.
3813 */
2c488db2 3814 ++new->current_threshold;
748dad36
SZ
3815 } else
3816 break;
2e72b634
KS
3817 }
3818
2c488db2
KS
3819 /* Free old spare buffer and save old primary buffer as spare */
3820 kfree(thresholds->spare);
3821 thresholds->spare = thresholds->primary;
3822
3823 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3824
907860ed 3825 /* To be sure that nobody uses thresholds */
2e72b634
KS
3826 synchronize_rcu();
3827
2e72b634
KS
3828unlock:
3829 mutex_unlock(&memcg->thresholds_lock);
3830
3831 return ret;
3832}
3833
59b6f873 3834static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3835 struct eventfd_ctx *eventfd, const char *args)
3836{
59b6f873 3837 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3838}
3839
59b6f873 3840static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3841 struct eventfd_ctx *eventfd, const char *args)
3842{
59b6f873 3843 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3844}
3845
59b6f873 3846static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3847 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3848{
2c488db2
KS
3849 struct mem_cgroup_thresholds *thresholds;
3850 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3851 unsigned long usage;
2c488db2 3852 int i, j, size;
2e72b634
KS
3853
3854 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3855
3856 if (type == _MEM) {
2c488db2 3857 thresholds = &memcg->thresholds;
ce00a967 3858 usage = mem_cgroup_usage(memcg, false);
05b84301 3859 } else if (type == _MEMSWAP) {
2c488db2 3860 thresholds = &memcg->memsw_thresholds;
ce00a967 3861 usage = mem_cgroup_usage(memcg, true);
05b84301 3862 } else
2e72b634
KS
3863 BUG();
3864
371528ca
AV
3865 if (!thresholds->primary)
3866 goto unlock;
3867
2e72b634
KS
3868 /* Check if a threshold crossed before removing */
3869 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3870
3871 /* Calculate new number of threshold */
2c488db2
KS
3872 size = 0;
3873 for (i = 0; i < thresholds->primary->size; i++) {
3874 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3875 size++;
3876 }
3877
2c488db2 3878 new = thresholds->spare;
907860ed 3879
2e72b634
KS
3880 /* Set thresholds array to NULL if we don't have thresholds */
3881 if (!size) {
2c488db2
KS
3882 kfree(new);
3883 new = NULL;
907860ed 3884 goto swap_buffers;
2e72b634
KS
3885 }
3886
2c488db2 3887 new->size = size;
2e72b634
KS
3888
3889 /* Copy thresholds and find current threshold */
2c488db2
KS
3890 new->current_threshold = -1;
3891 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3892 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3893 continue;
3894
2c488db2 3895 new->entries[j] = thresholds->primary->entries[i];
748dad36 3896 if (new->entries[j].threshold <= usage) {
2e72b634 3897 /*
2c488db2 3898 * new->current_threshold will not be used
2e72b634
KS
3899 * until rcu_assign_pointer(), so it's safe to increment
3900 * it here.
3901 */
2c488db2 3902 ++new->current_threshold;
2e72b634
KS
3903 }
3904 j++;
3905 }
3906
907860ed 3907swap_buffers:
2c488db2
KS
3908 /* Swap primary and spare array */
3909 thresholds->spare = thresholds->primary;
8c757763
SZ
3910 /* If all events are unregistered, free the spare array */
3911 if (!new) {
3912 kfree(thresholds->spare);
3913 thresholds->spare = NULL;
3914 }
3915
2c488db2 3916 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3917
907860ed 3918 /* To be sure that nobody uses thresholds */
2e72b634 3919 synchronize_rcu();
371528ca 3920unlock:
2e72b634 3921 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3922}
c1e862c1 3923
59b6f873 3924static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3925 struct eventfd_ctx *eventfd)
3926{
59b6f873 3927 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3928}
3929
59b6f873 3930static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3931 struct eventfd_ctx *eventfd)
3932{
59b6f873 3933 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3934}
3935
59b6f873 3936static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3937 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3938{
9490ff27 3939 struct mem_cgroup_eventfd_list *event;
9490ff27 3940
9490ff27
KH
3941 event = kmalloc(sizeof(*event), GFP_KERNEL);
3942 if (!event)
3943 return -ENOMEM;
3944
1af8efe9 3945 spin_lock(&memcg_oom_lock);
9490ff27
KH
3946
3947 event->eventfd = eventfd;
3948 list_add(&event->list, &memcg->oom_notify);
3949
3950 /* already in OOM ? */
79dfdacc 3951 if (atomic_read(&memcg->under_oom))
9490ff27 3952 eventfd_signal(eventfd, 1);
1af8efe9 3953 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3954
3955 return 0;
3956}
3957
59b6f873 3958static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3959 struct eventfd_ctx *eventfd)
9490ff27 3960{
9490ff27 3961 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3962
1af8efe9 3963 spin_lock(&memcg_oom_lock);
9490ff27 3964
c0ff4b85 3965 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3966 if (ev->eventfd == eventfd) {
3967 list_del(&ev->list);
3968 kfree(ev);
3969 }
3970 }
3971
1af8efe9 3972 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3973}
3974
2da8ca82 3975static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3976{
2da8ca82 3977 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3978
791badbd
TH
3979 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3980 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3981 return 0;
3982}
3983
182446d0 3984static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3985 struct cftype *cft, u64 val)
3986{
182446d0 3987 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3988
3989 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3990 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3991 return -EINVAL;
3992
c0ff4b85 3993 memcg->oom_kill_disable = val;
4d845ebf 3994 if (!val)
c0ff4b85 3995 memcg_oom_recover(memcg);
3dae7fec 3996
3c11ecf4
KH
3997 return 0;
3998}
3999
c255a458 4000#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4001static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4002{
55007d84
GC
4003 int ret;
4004
55007d84
GC
4005 ret = memcg_propagate_kmem(memcg);
4006 if (ret)
4007 return ret;
2633d7a0 4008
1d62e436 4009 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4010}
e5671dfa 4011
10d5ebf4 4012static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4013{
d5b3cf71 4014 memcg_destroy_kmem_caches(memcg);
1d62e436 4015 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4016}
e5671dfa 4017#else
cbe128e3 4018static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4019{
4020 return 0;
4021}
d1a4c0b3 4022
10d5ebf4
LZ
4023static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4024{
4025}
e5671dfa
GC
4026#endif
4027
3bc942f3
TH
4028/*
4029 * DO NOT USE IN NEW FILES.
4030 *
4031 * "cgroup.event_control" implementation.
4032 *
4033 * This is way over-engineered. It tries to support fully configurable
4034 * events for each user. Such level of flexibility is completely
4035 * unnecessary especially in the light of the planned unified hierarchy.
4036 *
4037 * Please deprecate this and replace with something simpler if at all
4038 * possible.
4039 */
4040
79bd9814
TH
4041/*
4042 * Unregister event and free resources.
4043 *
4044 * Gets called from workqueue.
4045 */
3bc942f3 4046static void memcg_event_remove(struct work_struct *work)
79bd9814 4047{
3bc942f3
TH
4048 struct mem_cgroup_event *event =
4049 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4050 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4051
4052 remove_wait_queue(event->wqh, &event->wait);
4053
59b6f873 4054 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4055
4056 /* Notify userspace the event is going away. */
4057 eventfd_signal(event->eventfd, 1);
4058
4059 eventfd_ctx_put(event->eventfd);
4060 kfree(event);
59b6f873 4061 css_put(&memcg->css);
79bd9814
TH
4062}
4063
4064/*
4065 * Gets called on POLLHUP on eventfd when user closes it.
4066 *
4067 * Called with wqh->lock held and interrupts disabled.
4068 */
3bc942f3
TH
4069static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4070 int sync, void *key)
79bd9814 4071{
3bc942f3
TH
4072 struct mem_cgroup_event *event =
4073 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4074 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4075 unsigned long flags = (unsigned long)key;
4076
4077 if (flags & POLLHUP) {
4078 /*
4079 * If the event has been detached at cgroup removal, we
4080 * can simply return knowing the other side will cleanup
4081 * for us.
4082 *
4083 * We can't race against event freeing since the other
4084 * side will require wqh->lock via remove_wait_queue(),
4085 * which we hold.
4086 */
fba94807 4087 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4088 if (!list_empty(&event->list)) {
4089 list_del_init(&event->list);
4090 /*
4091 * We are in atomic context, but cgroup_event_remove()
4092 * may sleep, so we have to call it in workqueue.
4093 */
4094 schedule_work(&event->remove);
4095 }
fba94807 4096 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4097 }
4098
4099 return 0;
4100}
4101
3bc942f3 4102static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4103 wait_queue_head_t *wqh, poll_table *pt)
4104{
3bc942f3
TH
4105 struct mem_cgroup_event *event =
4106 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4107
4108 event->wqh = wqh;
4109 add_wait_queue(wqh, &event->wait);
4110}
4111
4112/*
3bc942f3
TH
4113 * DO NOT USE IN NEW FILES.
4114 *
79bd9814
TH
4115 * Parse input and register new cgroup event handler.
4116 *
4117 * Input must be in format '<event_fd> <control_fd> <args>'.
4118 * Interpretation of args is defined by control file implementation.
4119 */
451af504
TH
4120static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4121 char *buf, size_t nbytes, loff_t off)
79bd9814 4122{
451af504 4123 struct cgroup_subsys_state *css = of_css(of);
fba94807 4124 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4125 struct mem_cgroup_event *event;
79bd9814
TH
4126 struct cgroup_subsys_state *cfile_css;
4127 unsigned int efd, cfd;
4128 struct fd efile;
4129 struct fd cfile;
fba94807 4130 const char *name;
79bd9814
TH
4131 char *endp;
4132 int ret;
4133
451af504
TH
4134 buf = strstrip(buf);
4135
4136 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4137 if (*endp != ' ')
4138 return -EINVAL;
451af504 4139 buf = endp + 1;
79bd9814 4140
451af504 4141 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4142 if ((*endp != ' ') && (*endp != '\0'))
4143 return -EINVAL;
451af504 4144 buf = endp + 1;
79bd9814
TH
4145
4146 event = kzalloc(sizeof(*event), GFP_KERNEL);
4147 if (!event)
4148 return -ENOMEM;
4149
59b6f873 4150 event->memcg = memcg;
79bd9814 4151 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4152 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4153 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4154 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4155
4156 efile = fdget(efd);
4157 if (!efile.file) {
4158 ret = -EBADF;
4159 goto out_kfree;
4160 }
4161
4162 event->eventfd = eventfd_ctx_fileget(efile.file);
4163 if (IS_ERR(event->eventfd)) {
4164 ret = PTR_ERR(event->eventfd);
4165 goto out_put_efile;
4166 }
4167
4168 cfile = fdget(cfd);
4169 if (!cfile.file) {
4170 ret = -EBADF;
4171 goto out_put_eventfd;
4172 }
4173
4174 /* the process need read permission on control file */
4175 /* AV: shouldn't we check that it's been opened for read instead? */
4176 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4177 if (ret < 0)
4178 goto out_put_cfile;
4179
fba94807
TH
4180 /*
4181 * Determine the event callbacks and set them in @event. This used
4182 * to be done via struct cftype but cgroup core no longer knows
4183 * about these events. The following is crude but the whole thing
4184 * is for compatibility anyway.
3bc942f3
TH
4185 *
4186 * DO NOT ADD NEW FILES.
fba94807 4187 */
b583043e 4188 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4189
4190 if (!strcmp(name, "memory.usage_in_bytes")) {
4191 event->register_event = mem_cgroup_usage_register_event;
4192 event->unregister_event = mem_cgroup_usage_unregister_event;
4193 } else if (!strcmp(name, "memory.oom_control")) {
4194 event->register_event = mem_cgroup_oom_register_event;
4195 event->unregister_event = mem_cgroup_oom_unregister_event;
4196 } else if (!strcmp(name, "memory.pressure_level")) {
4197 event->register_event = vmpressure_register_event;
4198 event->unregister_event = vmpressure_unregister_event;
4199 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4200 event->register_event = memsw_cgroup_usage_register_event;
4201 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4202 } else {
4203 ret = -EINVAL;
4204 goto out_put_cfile;
4205 }
4206
79bd9814 4207 /*
b5557c4c
TH
4208 * Verify @cfile should belong to @css. Also, remaining events are
4209 * automatically removed on cgroup destruction but the removal is
4210 * asynchronous, so take an extra ref on @css.
79bd9814 4211 */
b583043e 4212 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4213 &memory_cgrp_subsys);
79bd9814 4214 ret = -EINVAL;
5a17f543 4215 if (IS_ERR(cfile_css))
79bd9814 4216 goto out_put_cfile;
5a17f543
TH
4217 if (cfile_css != css) {
4218 css_put(cfile_css);
79bd9814 4219 goto out_put_cfile;
5a17f543 4220 }
79bd9814 4221
451af504 4222 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4223 if (ret)
4224 goto out_put_css;
4225
4226 efile.file->f_op->poll(efile.file, &event->pt);
4227
fba94807
TH
4228 spin_lock(&memcg->event_list_lock);
4229 list_add(&event->list, &memcg->event_list);
4230 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4231
4232 fdput(cfile);
4233 fdput(efile);
4234
451af504 4235 return nbytes;
79bd9814
TH
4236
4237out_put_css:
b5557c4c 4238 css_put(css);
79bd9814
TH
4239out_put_cfile:
4240 fdput(cfile);
4241out_put_eventfd:
4242 eventfd_ctx_put(event->eventfd);
4243out_put_efile:
4244 fdput(efile);
4245out_kfree:
4246 kfree(event);
4247
4248 return ret;
4249}
4250
8cdea7c0
BS
4251static struct cftype mem_cgroup_files[] = {
4252 {
0eea1030 4253 .name = "usage_in_bytes",
8c7c6e34 4254 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4255 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4256 },
c84872e1
PE
4257 {
4258 .name = "max_usage_in_bytes",
8c7c6e34 4259 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4260 .write = mem_cgroup_reset,
791badbd 4261 .read_u64 = mem_cgroup_read_u64,
c84872e1 4262 },
8cdea7c0 4263 {
0eea1030 4264 .name = "limit_in_bytes",
8c7c6e34 4265 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4266 .write = mem_cgroup_write,
791badbd 4267 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4268 },
296c81d8
BS
4269 {
4270 .name = "soft_limit_in_bytes",
4271 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4272 .write = mem_cgroup_write,
791badbd 4273 .read_u64 = mem_cgroup_read_u64,
296c81d8 4274 },
8cdea7c0
BS
4275 {
4276 .name = "failcnt",
8c7c6e34 4277 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4278 .write = mem_cgroup_reset,
791badbd 4279 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4280 },
d2ceb9b7
KH
4281 {
4282 .name = "stat",
2da8ca82 4283 .seq_show = memcg_stat_show,
d2ceb9b7 4284 },
c1e862c1
KH
4285 {
4286 .name = "force_empty",
6770c64e 4287 .write = mem_cgroup_force_empty_write,
c1e862c1 4288 },
18f59ea7
BS
4289 {
4290 .name = "use_hierarchy",
4291 .write_u64 = mem_cgroup_hierarchy_write,
4292 .read_u64 = mem_cgroup_hierarchy_read,
4293 },
79bd9814 4294 {
3bc942f3 4295 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4296 .write = memcg_write_event_control,
79bd9814
TH
4297 .flags = CFTYPE_NO_PREFIX,
4298 .mode = S_IWUGO,
4299 },
a7885eb8
KM
4300 {
4301 .name = "swappiness",
4302 .read_u64 = mem_cgroup_swappiness_read,
4303 .write_u64 = mem_cgroup_swappiness_write,
4304 },
7dc74be0
DN
4305 {
4306 .name = "move_charge_at_immigrate",
4307 .read_u64 = mem_cgroup_move_charge_read,
4308 .write_u64 = mem_cgroup_move_charge_write,
4309 },
9490ff27
KH
4310 {
4311 .name = "oom_control",
2da8ca82 4312 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4313 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4314 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4315 },
70ddf637
AV
4316 {
4317 .name = "pressure_level",
70ddf637 4318 },
406eb0c9
YH
4319#ifdef CONFIG_NUMA
4320 {
4321 .name = "numa_stat",
2da8ca82 4322 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4323 },
4324#endif
510fc4e1
GC
4325#ifdef CONFIG_MEMCG_KMEM
4326 {
4327 .name = "kmem.limit_in_bytes",
4328 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4329 .write = mem_cgroup_write,
791badbd 4330 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4331 },
4332 {
4333 .name = "kmem.usage_in_bytes",
4334 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4335 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4336 },
4337 {
4338 .name = "kmem.failcnt",
4339 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4340 .write = mem_cgroup_reset,
791badbd 4341 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4342 },
4343 {
4344 .name = "kmem.max_usage_in_bytes",
4345 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4346 .write = mem_cgroup_reset,
791badbd 4347 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4348 },
749c5415
GC
4349#ifdef CONFIG_SLABINFO
4350 {
4351 .name = "kmem.slabinfo",
b047501c
VD
4352 .seq_start = slab_start,
4353 .seq_next = slab_next,
4354 .seq_stop = slab_stop,
4355 .seq_show = memcg_slab_show,
749c5415
GC
4356 },
4357#endif
8c7c6e34 4358#endif
6bc10349 4359 { }, /* terminate */
af36f906 4360};
8c7c6e34 4361
2d11085e
MH
4362#ifdef CONFIG_MEMCG_SWAP
4363static struct cftype memsw_cgroup_files[] = {
4364 {
4365 .name = "memsw.usage_in_bytes",
4366 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4367 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4368 },
4369 {
4370 .name = "memsw.max_usage_in_bytes",
4371 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4372 .write = mem_cgroup_reset,
791badbd 4373 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4374 },
4375 {
4376 .name = "memsw.limit_in_bytes",
4377 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4378 .write = mem_cgroup_write,
791badbd 4379 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4380 },
4381 {
4382 .name = "memsw.failcnt",
4383 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4384 .write = mem_cgroup_reset,
791badbd 4385 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4386 },
4387 { }, /* terminate */
4388};
4389#endif
c0ff4b85 4390static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4391{
4392 struct mem_cgroup_per_node *pn;
1ecaab2b 4393 struct mem_cgroup_per_zone *mz;
41e3355d 4394 int zone, tmp = node;
1ecaab2b
KH
4395 /*
4396 * This routine is called against possible nodes.
4397 * But it's BUG to call kmalloc() against offline node.
4398 *
4399 * TODO: this routine can waste much memory for nodes which will
4400 * never be onlined. It's better to use memory hotplug callback
4401 * function.
4402 */
41e3355d
KH
4403 if (!node_state(node, N_NORMAL_MEMORY))
4404 tmp = -1;
17295c88 4405 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4406 if (!pn)
4407 return 1;
1ecaab2b 4408
1ecaab2b
KH
4409 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4410 mz = &pn->zoneinfo[zone];
bea8c150 4411 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4412 mz->usage_in_excess = 0;
4413 mz->on_tree = false;
d79154bb 4414 mz->memcg = memcg;
1ecaab2b 4415 }
54f72fe0 4416 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4417 return 0;
4418}
4419
c0ff4b85 4420static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4421{
54f72fe0 4422 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4423}
4424
33327948
KH
4425static struct mem_cgroup *mem_cgroup_alloc(void)
4426{
d79154bb 4427 struct mem_cgroup *memcg;
8ff69e2c 4428 size_t size;
33327948 4429
8ff69e2c
VD
4430 size = sizeof(struct mem_cgroup);
4431 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4432
8ff69e2c 4433 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4434 if (!memcg)
e7bbcdf3
DC
4435 return NULL;
4436
d79154bb
HD
4437 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4438 if (!memcg->stat)
d2e61b8d 4439 goto out_free;
d79154bb
HD
4440 spin_lock_init(&memcg->pcp_counter_lock);
4441 return memcg;
d2e61b8d
DC
4442
4443out_free:
8ff69e2c 4444 kfree(memcg);
d2e61b8d 4445 return NULL;
33327948
KH
4446}
4447
59927fb9 4448/*
c8b2a36f
GC
4449 * At destroying mem_cgroup, references from swap_cgroup can remain.
4450 * (scanning all at force_empty is too costly...)
4451 *
4452 * Instead of clearing all references at force_empty, we remember
4453 * the number of reference from swap_cgroup and free mem_cgroup when
4454 * it goes down to 0.
4455 *
4456 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4457 */
c8b2a36f
GC
4458
4459static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4460{
c8b2a36f 4461 int node;
59927fb9 4462
bb4cc1a8 4463 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4464
4465 for_each_node(node)
4466 free_mem_cgroup_per_zone_info(memcg, node);
4467
4468 free_percpu(memcg->stat);
4469
a8964b9b 4470 disarm_static_keys(memcg);
8ff69e2c 4471 kfree(memcg);
59927fb9 4472}
3afe36b1 4473
7bcc1bb1
DN
4474/*
4475 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4476 */
e1aab161 4477struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4478{
3e32cb2e 4479 if (!memcg->memory.parent)
7bcc1bb1 4480 return NULL;
3e32cb2e 4481 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4482}
e1aab161 4483EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4484
bb4cc1a8
AM
4485static void __init mem_cgroup_soft_limit_tree_init(void)
4486{
4487 struct mem_cgroup_tree_per_node *rtpn;
4488 struct mem_cgroup_tree_per_zone *rtpz;
4489 int tmp, node, zone;
4490
4491 for_each_node(node) {
4492 tmp = node;
4493 if (!node_state(node, N_NORMAL_MEMORY))
4494 tmp = -1;
4495 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4496 BUG_ON(!rtpn);
4497
4498 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4499
4500 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4501 rtpz = &rtpn->rb_tree_per_zone[zone];
4502 rtpz->rb_root = RB_ROOT;
4503 spin_lock_init(&rtpz->lock);
4504 }
4505 }
4506}
4507
0eb253e2 4508static struct cgroup_subsys_state * __ref
eb95419b 4509mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4510{
d142e3e6 4511 struct mem_cgroup *memcg;
04046e1a 4512 long error = -ENOMEM;
6d12e2d8 4513 int node;
8cdea7c0 4514
c0ff4b85
R
4515 memcg = mem_cgroup_alloc();
4516 if (!memcg)
04046e1a 4517 return ERR_PTR(error);
78fb7466 4518
3ed28fa1 4519 for_each_node(node)
c0ff4b85 4520 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4521 goto free_out;
f64c3f54 4522
c077719b 4523 /* root ? */
eb95419b 4524 if (parent_css == NULL) {
a41c58a6 4525 root_mem_cgroup = memcg;
3e32cb2e 4526 page_counter_init(&memcg->memory, NULL);
24d404dc 4527 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4528 page_counter_init(&memcg->memsw, NULL);
4529 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4530 }
28dbc4b6 4531
d142e3e6
GC
4532 memcg->last_scanned_node = MAX_NUMNODES;
4533 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4534 memcg->move_charge_at_immigrate = 0;
4535 mutex_init(&memcg->thresholds_lock);
4536 spin_lock_init(&memcg->move_lock);
70ddf637 4537 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4538 INIT_LIST_HEAD(&memcg->event_list);
4539 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4540#ifdef CONFIG_MEMCG_KMEM
4541 memcg->kmemcg_id = -1;
900a38f0 4542#endif
d142e3e6
GC
4543
4544 return &memcg->css;
4545
4546free_out:
4547 __mem_cgroup_free(memcg);
4548 return ERR_PTR(error);
4549}
4550
4551static int
eb95419b 4552mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4553{
eb95419b 4554 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4555 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4556 int ret;
d142e3e6 4557
15a4c835 4558 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4559 return -ENOSPC;
4560
63876986 4561 if (!parent)
d142e3e6
GC
4562 return 0;
4563
0999821b 4564 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4565
4566 memcg->use_hierarchy = parent->use_hierarchy;
4567 memcg->oom_kill_disable = parent->oom_kill_disable;
4568 memcg->swappiness = mem_cgroup_swappiness(parent);
4569
4570 if (parent->use_hierarchy) {
3e32cb2e 4571 page_counter_init(&memcg->memory, &parent->memory);
24d404dc 4572 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4573 page_counter_init(&memcg->memsw, &parent->memsw);
4574 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4575
7bcc1bb1 4576 /*
8d76a979
LZ
4577 * No need to take a reference to the parent because cgroup
4578 * core guarantees its existence.
7bcc1bb1 4579 */
18f59ea7 4580 } else {
3e32cb2e 4581 page_counter_init(&memcg->memory, NULL);
24d404dc 4582 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4583 page_counter_init(&memcg->memsw, NULL);
4584 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4585 /*
4586 * Deeper hierachy with use_hierarchy == false doesn't make
4587 * much sense so let cgroup subsystem know about this
4588 * unfortunate state in our controller.
4589 */
d142e3e6 4590 if (parent != root_mem_cgroup)
073219e9 4591 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4592 }
0999821b 4593 mutex_unlock(&memcg_create_mutex);
d6441637 4594
2f7dd7a4
JW
4595 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4596 if (ret)
4597 return ret;
4598
4599 /*
4600 * Make sure the memcg is initialized: mem_cgroup_iter()
4601 * orders reading memcg->initialized against its callers
4602 * reading the memcg members.
4603 */
4604 smp_store_release(&memcg->initialized, 1);
4605
4606 return 0;
8cdea7c0
BS
4607}
4608
eb95419b 4609static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4610{
eb95419b 4611 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4612 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4613
4614 /*
4615 * Unregister events and notify userspace.
4616 * Notify userspace about cgroup removing only after rmdir of cgroup
4617 * directory to avoid race between userspace and kernelspace.
4618 */
fba94807
TH
4619 spin_lock(&memcg->event_list_lock);
4620 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4621 list_del_init(&event->list);
4622 schedule_work(&event->remove);
4623 }
fba94807 4624 spin_unlock(&memcg->event_list_lock);
ec64f515 4625
33cb876e 4626 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4627}
4628
eb95419b 4629static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4630{
eb95419b 4631 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4632
10d5ebf4 4633 memcg_destroy_kmem(memcg);
465939a1 4634 __mem_cgroup_free(memcg);
8cdea7c0
BS
4635}
4636
1ced953b
TH
4637/**
4638 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4639 * @css: the target css
4640 *
4641 * Reset the states of the mem_cgroup associated with @css. This is
4642 * invoked when the userland requests disabling on the default hierarchy
4643 * but the memcg is pinned through dependency. The memcg should stop
4644 * applying policies and should revert to the vanilla state as it may be
4645 * made visible again.
4646 *
4647 * The current implementation only resets the essential configurations.
4648 * This needs to be expanded to cover all the visible parts.
4649 */
4650static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4651{
4652 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4653
3e32cb2e
JW
4654 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4655 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4656 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
24d404dc 4657 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4658}
4659
02491447 4660#ifdef CONFIG_MMU
7dc74be0 4661/* Handlers for move charge at task migration. */
854ffa8d 4662static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4663{
05b84301 4664 int ret;
9476db97
JW
4665
4666 /* Try a single bulk charge without reclaim first */
00501b53 4667 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4668 if (!ret) {
854ffa8d 4669 mc.precharge += count;
854ffa8d
DN
4670 return ret;
4671 }
692e7c45 4672 if (ret == -EINTR) {
00501b53 4673 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4674 return ret;
4675 }
9476db97
JW
4676
4677 /* Try charges one by one with reclaim */
854ffa8d 4678 while (count--) {
00501b53 4679 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4680 /*
4681 * In case of failure, any residual charges against
4682 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4683 * later on. However, cancel any charges that are
4684 * bypassed to root right away or they'll be lost.
9476db97 4685 */
692e7c45 4686 if (ret == -EINTR)
00501b53 4687 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4688 if (ret)
38c5d72f 4689 return ret;
854ffa8d 4690 mc.precharge++;
9476db97 4691 cond_resched();
854ffa8d 4692 }
9476db97 4693 return 0;
4ffef5fe
DN
4694}
4695
4696/**
8d32ff84 4697 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4698 * @vma: the vma the pte to be checked belongs
4699 * @addr: the address corresponding to the pte to be checked
4700 * @ptent: the pte to be checked
02491447 4701 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4702 *
4703 * Returns
4704 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4705 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4706 * move charge. if @target is not NULL, the page is stored in target->page
4707 * with extra refcnt got(Callers should handle it).
02491447
DN
4708 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4709 * target for charge migration. if @target is not NULL, the entry is stored
4710 * in target->ent.
4ffef5fe
DN
4711 *
4712 * Called with pte lock held.
4713 */
4ffef5fe
DN
4714union mc_target {
4715 struct page *page;
02491447 4716 swp_entry_t ent;
4ffef5fe
DN
4717};
4718
4ffef5fe 4719enum mc_target_type {
8d32ff84 4720 MC_TARGET_NONE = 0,
4ffef5fe 4721 MC_TARGET_PAGE,
02491447 4722 MC_TARGET_SWAP,
4ffef5fe
DN
4723};
4724
90254a65
DN
4725static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4726 unsigned long addr, pte_t ptent)
4ffef5fe 4727{
90254a65 4728 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4729
90254a65
DN
4730 if (!page || !page_mapped(page))
4731 return NULL;
4732 if (PageAnon(page)) {
4733 /* we don't move shared anon */
4b91355e 4734 if (!move_anon())
90254a65 4735 return NULL;
87946a72
DN
4736 } else if (!move_file())
4737 /* we ignore mapcount for file pages */
90254a65
DN
4738 return NULL;
4739 if (!get_page_unless_zero(page))
4740 return NULL;
4741
4742 return page;
4743}
4744
4b91355e 4745#ifdef CONFIG_SWAP
90254a65
DN
4746static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4747 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4748{
90254a65
DN
4749 struct page *page = NULL;
4750 swp_entry_t ent = pte_to_swp_entry(ptent);
4751
4752 if (!move_anon() || non_swap_entry(ent))
4753 return NULL;
4b91355e
KH
4754 /*
4755 * Because lookup_swap_cache() updates some statistics counter,
4756 * we call find_get_page() with swapper_space directly.
4757 */
33806f06 4758 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4759 if (do_swap_account)
4760 entry->val = ent.val;
4761
4762 return page;
4763}
4b91355e
KH
4764#else
4765static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4766 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4767{
4768 return NULL;
4769}
4770#endif
90254a65 4771
87946a72
DN
4772static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4773 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4774{
4775 struct page *page = NULL;
87946a72
DN
4776 struct address_space *mapping;
4777 pgoff_t pgoff;
4778
4779 if (!vma->vm_file) /* anonymous vma */
4780 return NULL;
4781 if (!move_file())
4782 return NULL;
4783
87946a72 4784 mapping = vma->vm_file->f_mapping;
0661a336 4785 pgoff = linear_page_index(vma, addr);
87946a72
DN
4786
4787 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4788#ifdef CONFIG_SWAP
4789 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4790 if (shmem_mapping(mapping)) {
4791 page = find_get_entry(mapping, pgoff);
4792 if (radix_tree_exceptional_entry(page)) {
4793 swp_entry_t swp = radix_to_swp_entry(page);
4794 if (do_swap_account)
4795 *entry = swp;
4796 page = find_get_page(swap_address_space(swp), swp.val);
4797 }
4798 } else
4799 page = find_get_page(mapping, pgoff);
4800#else
4801 page = find_get_page(mapping, pgoff);
aa3b1895 4802#endif
87946a72
DN
4803 return page;
4804}
4805
8d32ff84 4806static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4807 unsigned long addr, pte_t ptent, union mc_target *target)
4808{
4809 struct page *page = NULL;
8d32ff84 4810 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4811 swp_entry_t ent = { .val = 0 };
4812
4813 if (pte_present(ptent))
4814 page = mc_handle_present_pte(vma, addr, ptent);
4815 else if (is_swap_pte(ptent))
4816 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4817 else if (pte_none(ptent))
87946a72 4818 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4819
4820 if (!page && !ent.val)
8d32ff84 4821 return ret;
02491447 4822 if (page) {
02491447 4823 /*
0a31bc97 4824 * Do only loose check w/o serialization.
1306a85a 4825 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4826 * not under LRU exclusion.
02491447 4827 */
1306a85a 4828 if (page->mem_cgroup == mc.from) {
02491447
DN
4829 ret = MC_TARGET_PAGE;
4830 if (target)
4831 target->page = page;
4832 }
4833 if (!ret || !target)
4834 put_page(page);
4835 }
90254a65
DN
4836 /* There is a swap entry and a page doesn't exist or isn't charged */
4837 if (ent.val && !ret &&
34c00c31 4838 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4839 ret = MC_TARGET_SWAP;
4840 if (target)
4841 target->ent = ent;
4ffef5fe 4842 }
4ffef5fe
DN
4843 return ret;
4844}
4845
12724850
NH
4846#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4847/*
4848 * We don't consider swapping or file mapped pages because THP does not
4849 * support them for now.
4850 * Caller should make sure that pmd_trans_huge(pmd) is true.
4851 */
4852static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4853 unsigned long addr, pmd_t pmd, union mc_target *target)
4854{
4855 struct page *page = NULL;
12724850
NH
4856 enum mc_target_type ret = MC_TARGET_NONE;
4857
4858 page = pmd_page(pmd);
309381fe 4859 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
4860 if (!move_anon())
4861 return ret;
1306a85a 4862 if (page->mem_cgroup == mc.from) {
12724850
NH
4863 ret = MC_TARGET_PAGE;
4864 if (target) {
4865 get_page(page);
4866 target->page = page;
4867 }
4868 }
4869 return ret;
4870}
4871#else
4872static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4873 unsigned long addr, pmd_t pmd, union mc_target *target)
4874{
4875 return MC_TARGET_NONE;
4876}
4877#endif
4878
4ffef5fe
DN
4879static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4880 unsigned long addr, unsigned long end,
4881 struct mm_walk *walk)
4882{
4883 struct vm_area_struct *vma = walk->private;
4884 pte_t *pte;
4885 spinlock_t *ptl;
4886
bf929152 4887 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4888 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4889 mc.precharge += HPAGE_PMD_NR;
bf929152 4890 spin_unlock(ptl);
1a5a9906 4891 return 0;
12724850 4892 }
03319327 4893
45f83cef
AA
4894 if (pmd_trans_unstable(pmd))
4895 return 0;
4ffef5fe
DN
4896 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4897 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4898 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4899 mc.precharge++; /* increment precharge temporarily */
4900 pte_unmap_unlock(pte - 1, ptl);
4901 cond_resched();
4902
7dc74be0
DN
4903 return 0;
4904}
4905
4ffef5fe
DN
4906static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4907{
4908 unsigned long precharge;
4909 struct vm_area_struct *vma;
4910
dfe076b0 4911 down_read(&mm->mmap_sem);
4ffef5fe
DN
4912 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4913 struct mm_walk mem_cgroup_count_precharge_walk = {
4914 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4915 .mm = mm,
4916 .private = vma,
4917 };
4918 if (is_vm_hugetlb_page(vma))
4919 continue;
4ffef5fe
DN
4920 walk_page_range(vma->vm_start, vma->vm_end,
4921 &mem_cgroup_count_precharge_walk);
4922 }
dfe076b0 4923 up_read(&mm->mmap_sem);
4ffef5fe
DN
4924
4925 precharge = mc.precharge;
4926 mc.precharge = 0;
4927
4928 return precharge;
4929}
4930
4ffef5fe
DN
4931static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4932{
dfe076b0
DN
4933 unsigned long precharge = mem_cgroup_count_precharge(mm);
4934
4935 VM_BUG_ON(mc.moving_task);
4936 mc.moving_task = current;
4937 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4938}
4939
dfe076b0
DN
4940/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4941static void __mem_cgroup_clear_mc(void)
4ffef5fe 4942{
2bd9bb20
KH
4943 struct mem_cgroup *from = mc.from;
4944 struct mem_cgroup *to = mc.to;
4945
4ffef5fe 4946 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4947 if (mc.precharge) {
00501b53 4948 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4949 mc.precharge = 0;
4950 }
4951 /*
4952 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4953 * we must uncharge here.
4954 */
4955 if (mc.moved_charge) {
00501b53 4956 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4957 mc.moved_charge = 0;
4ffef5fe 4958 }
483c30b5
DN
4959 /* we must fixup refcnts and charges */
4960 if (mc.moved_swap) {
483c30b5 4961 /* uncharge swap account from the old cgroup */
ce00a967 4962 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4963 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4964
05b84301 4965 /*
3e32cb2e
JW
4966 * we charged both to->memory and to->memsw, so we
4967 * should uncharge to->memory.
05b84301 4968 */
ce00a967 4969 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4970 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4971
e8ea14cc 4972 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4973
4050377b 4974 /* we've already done css_get(mc.to) */
483c30b5
DN
4975 mc.moved_swap = 0;
4976 }
dfe076b0
DN
4977 memcg_oom_recover(from);
4978 memcg_oom_recover(to);
4979 wake_up_all(&mc.waitq);
4980}
4981
4982static void mem_cgroup_clear_mc(void)
4983{
dfe076b0
DN
4984 /*
4985 * we must clear moving_task before waking up waiters at the end of
4986 * task migration.
4987 */
4988 mc.moving_task = NULL;
4989 __mem_cgroup_clear_mc();
2bd9bb20 4990 spin_lock(&mc.lock);
4ffef5fe
DN
4991 mc.from = NULL;
4992 mc.to = NULL;
2bd9bb20 4993 spin_unlock(&mc.lock);
4ffef5fe
DN
4994}
4995
eb95419b 4996static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 4997 struct cgroup_taskset *tset)
7dc74be0 4998{
2f7ee569 4999 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5000 int ret = 0;
eb95419b 5001 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5002 unsigned long move_charge_at_immigrate;
7dc74be0 5003
ee5e8472
GC
5004 /*
5005 * We are now commited to this value whatever it is. Changes in this
5006 * tunable will only affect upcoming migrations, not the current one.
5007 * So we need to save it, and keep it going.
5008 */
5009 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5010 if (move_charge_at_immigrate) {
7dc74be0
DN
5011 struct mm_struct *mm;
5012 struct mem_cgroup *from = mem_cgroup_from_task(p);
5013
c0ff4b85 5014 VM_BUG_ON(from == memcg);
7dc74be0
DN
5015
5016 mm = get_task_mm(p);
5017 if (!mm)
5018 return 0;
7dc74be0 5019 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5020 if (mm->owner == p) {
5021 VM_BUG_ON(mc.from);
5022 VM_BUG_ON(mc.to);
5023 VM_BUG_ON(mc.precharge);
854ffa8d 5024 VM_BUG_ON(mc.moved_charge);
483c30b5 5025 VM_BUG_ON(mc.moved_swap);
247b1447 5026
2bd9bb20 5027 spin_lock(&mc.lock);
4ffef5fe 5028 mc.from = from;
c0ff4b85 5029 mc.to = memcg;
ee5e8472 5030 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5031 spin_unlock(&mc.lock);
dfe076b0 5032 /* We set mc.moving_task later */
4ffef5fe
DN
5033
5034 ret = mem_cgroup_precharge_mc(mm);
5035 if (ret)
5036 mem_cgroup_clear_mc();
dfe076b0
DN
5037 }
5038 mmput(mm);
7dc74be0
DN
5039 }
5040 return ret;
5041}
5042
eb95419b 5043static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5044 struct cgroup_taskset *tset)
7dc74be0 5045{
4e2f245d
JW
5046 if (mc.to)
5047 mem_cgroup_clear_mc();
7dc74be0
DN
5048}
5049
4ffef5fe
DN
5050static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5051 unsigned long addr, unsigned long end,
5052 struct mm_walk *walk)
7dc74be0 5053{
4ffef5fe
DN
5054 int ret = 0;
5055 struct vm_area_struct *vma = walk->private;
5056 pte_t *pte;
5057 spinlock_t *ptl;
12724850
NH
5058 enum mc_target_type target_type;
5059 union mc_target target;
5060 struct page *page;
4ffef5fe 5061
12724850
NH
5062 /*
5063 * We don't take compound_lock() here but no race with splitting thp
5064 * happens because:
5065 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5066 * under splitting, which means there's no concurrent thp split,
5067 * - if another thread runs into split_huge_page() just after we
5068 * entered this if-block, the thread must wait for page table lock
5069 * to be unlocked in __split_huge_page_splitting(), where the main
5070 * part of thp split is not executed yet.
5071 */
bf929152 5072 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5073 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5074 spin_unlock(ptl);
12724850
NH
5075 return 0;
5076 }
5077 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5078 if (target_type == MC_TARGET_PAGE) {
5079 page = target.page;
5080 if (!isolate_lru_page(page)) {
12724850 5081 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5082 mc.from, mc.to)) {
12724850
NH
5083 mc.precharge -= HPAGE_PMD_NR;
5084 mc.moved_charge += HPAGE_PMD_NR;
5085 }
5086 putback_lru_page(page);
5087 }
5088 put_page(page);
5089 }
bf929152 5090 spin_unlock(ptl);
1a5a9906 5091 return 0;
12724850
NH
5092 }
5093
45f83cef
AA
5094 if (pmd_trans_unstable(pmd))
5095 return 0;
4ffef5fe
DN
5096retry:
5097 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5098 for (; addr != end; addr += PAGE_SIZE) {
5099 pte_t ptent = *(pte++);
02491447 5100 swp_entry_t ent;
4ffef5fe
DN
5101
5102 if (!mc.precharge)
5103 break;
5104
8d32ff84 5105 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5106 case MC_TARGET_PAGE:
5107 page = target.page;
5108 if (isolate_lru_page(page))
5109 goto put;
1306a85a 5110 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5111 mc.precharge--;
854ffa8d
DN
5112 /* we uncharge from mc.from later. */
5113 mc.moved_charge++;
4ffef5fe
DN
5114 }
5115 putback_lru_page(page);
8d32ff84 5116put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5117 put_page(page);
5118 break;
02491447
DN
5119 case MC_TARGET_SWAP:
5120 ent = target.ent;
e91cbb42 5121 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5122 mc.precharge--;
483c30b5
DN
5123 /* we fixup refcnts and charges later. */
5124 mc.moved_swap++;
5125 }
02491447 5126 break;
4ffef5fe
DN
5127 default:
5128 break;
5129 }
5130 }
5131 pte_unmap_unlock(pte - 1, ptl);
5132 cond_resched();
5133
5134 if (addr != end) {
5135 /*
5136 * We have consumed all precharges we got in can_attach().
5137 * We try charge one by one, but don't do any additional
5138 * charges to mc.to if we have failed in charge once in attach()
5139 * phase.
5140 */
854ffa8d 5141 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5142 if (!ret)
5143 goto retry;
5144 }
5145
5146 return ret;
5147}
5148
5149static void mem_cgroup_move_charge(struct mm_struct *mm)
5150{
5151 struct vm_area_struct *vma;
5152
5153 lru_add_drain_all();
312722cb
JW
5154 /*
5155 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5156 * move_lock while we're moving its pages to another memcg.
5157 * Then wait for already started RCU-only updates to finish.
5158 */
5159 atomic_inc(&mc.from->moving_account);
5160 synchronize_rcu();
dfe076b0
DN
5161retry:
5162 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5163 /*
5164 * Someone who are holding the mmap_sem might be waiting in
5165 * waitq. So we cancel all extra charges, wake up all waiters,
5166 * and retry. Because we cancel precharges, we might not be able
5167 * to move enough charges, but moving charge is a best-effort
5168 * feature anyway, so it wouldn't be a big problem.
5169 */
5170 __mem_cgroup_clear_mc();
5171 cond_resched();
5172 goto retry;
5173 }
4ffef5fe
DN
5174 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5175 int ret;
5176 struct mm_walk mem_cgroup_move_charge_walk = {
5177 .pmd_entry = mem_cgroup_move_charge_pte_range,
5178 .mm = mm,
5179 .private = vma,
5180 };
5181 if (is_vm_hugetlb_page(vma))
5182 continue;
4ffef5fe
DN
5183 ret = walk_page_range(vma->vm_start, vma->vm_end,
5184 &mem_cgroup_move_charge_walk);
5185 if (ret)
5186 /*
5187 * means we have consumed all precharges and failed in
5188 * doing additional charge. Just abandon here.
5189 */
5190 break;
5191 }
dfe076b0 5192 up_read(&mm->mmap_sem);
312722cb 5193 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5194}
5195
eb95419b 5196static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5197 struct cgroup_taskset *tset)
67e465a7 5198{
2f7ee569 5199 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5200 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5201
dfe076b0 5202 if (mm) {
a433658c
KM
5203 if (mc.to)
5204 mem_cgroup_move_charge(mm);
dfe076b0
DN
5205 mmput(mm);
5206 }
a433658c
KM
5207 if (mc.to)
5208 mem_cgroup_clear_mc();
67e465a7 5209}
5cfb80a7 5210#else /* !CONFIG_MMU */
eb95419b 5211static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5212 struct cgroup_taskset *tset)
5cfb80a7
DN
5213{
5214 return 0;
5215}
eb95419b 5216static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5217 struct cgroup_taskset *tset)
5cfb80a7
DN
5218{
5219}
eb95419b 5220static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5221 struct cgroup_taskset *tset)
5cfb80a7
DN
5222{
5223}
5224#endif
67e465a7 5225
f00baae7
TH
5226/*
5227 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5228 * to verify whether we're attached to the default hierarchy on each mount
5229 * attempt.
f00baae7 5230 */
eb95419b 5231static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5232{
5233 /*
aa6ec29b 5234 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5235 * guarantees that @root doesn't have any children, so turning it
5236 * on for the root memcg is enough.
5237 */
aa6ec29b 5238 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5239 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5240}
5241
073219e9 5242struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5243 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5244 .css_online = mem_cgroup_css_online,
92fb9748
TH
5245 .css_offline = mem_cgroup_css_offline,
5246 .css_free = mem_cgroup_css_free,
1ced953b 5247 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5248 .can_attach = mem_cgroup_can_attach,
5249 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5250 .attach = mem_cgroup_move_task,
f00baae7 5251 .bind = mem_cgroup_bind,
5577964e 5252 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5253 .early_init = 0,
8cdea7c0 5254};
c077719b 5255
c255a458 5256#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5257static int __init enable_swap_account(char *s)
5258{
a2c8990a 5259 if (!strcmp(s, "1"))
a42c390c 5260 really_do_swap_account = 1;
a2c8990a 5261 else if (!strcmp(s, "0"))
a42c390c
MH
5262 really_do_swap_account = 0;
5263 return 1;
5264}
a2c8990a 5265__setup("swapaccount=", enable_swap_account);
c077719b 5266
2d11085e
MH
5267static void __init memsw_file_init(void)
5268{
2cf669a5
TH
5269 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5270 memsw_cgroup_files));
6acc8b02
MH
5271}
5272
5273static void __init enable_swap_cgroup(void)
5274{
5275 if (!mem_cgroup_disabled() && really_do_swap_account) {
5276 do_swap_account = 1;
5277 memsw_file_init();
5278 }
2d11085e 5279}
6acc8b02 5280
2d11085e 5281#else
6acc8b02 5282static void __init enable_swap_cgroup(void)
2d11085e
MH
5283{
5284}
c077719b 5285#endif
2d11085e 5286
0a31bc97
JW
5287#ifdef CONFIG_MEMCG_SWAP
5288/**
5289 * mem_cgroup_swapout - transfer a memsw charge to swap
5290 * @page: page whose memsw charge to transfer
5291 * @entry: swap entry to move the charge to
5292 *
5293 * Transfer the memsw charge of @page to @entry.
5294 */
5295void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5296{
7bdd143c 5297 struct mem_cgroup *memcg;
0a31bc97
JW
5298 unsigned short oldid;
5299
5300 VM_BUG_ON_PAGE(PageLRU(page), page);
5301 VM_BUG_ON_PAGE(page_count(page), page);
5302
5303 if (!do_swap_account)
5304 return;
5305
1306a85a 5306 memcg = page->mem_cgroup;
0a31bc97
JW
5307
5308 /* Readahead page, never charged */
29833315 5309 if (!memcg)
0a31bc97
JW
5310 return;
5311
7bdd143c 5312 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5313 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5314 mem_cgroup_swap_statistics(memcg, true);
5315
1306a85a 5316 page->mem_cgroup = NULL;
0a31bc97 5317
7bdd143c
JW
5318 if (!mem_cgroup_is_root(memcg))
5319 page_counter_uncharge(&memcg->memory, 1);
5320
5321 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5322 VM_BUG_ON(!irqs_disabled());
0a31bc97 5323
7bdd143c
JW
5324 mem_cgroup_charge_statistics(memcg, page, -1);
5325 memcg_check_events(memcg, page);
0a31bc97
JW
5326}
5327
5328/**
5329 * mem_cgroup_uncharge_swap - uncharge a swap entry
5330 * @entry: swap entry to uncharge
5331 *
5332 * Drop the memsw charge associated with @entry.
5333 */
5334void mem_cgroup_uncharge_swap(swp_entry_t entry)
5335{
5336 struct mem_cgroup *memcg;
5337 unsigned short id;
5338
5339 if (!do_swap_account)
5340 return;
5341
5342 id = swap_cgroup_record(entry, 0);
5343 rcu_read_lock();
5344 memcg = mem_cgroup_lookup(id);
5345 if (memcg) {
ce00a967 5346 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5347 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5348 mem_cgroup_swap_statistics(memcg, false);
5349 css_put(&memcg->css);
5350 }
5351 rcu_read_unlock();
5352}
5353#endif
5354
00501b53
JW
5355/**
5356 * mem_cgroup_try_charge - try charging a page
5357 * @page: page to charge
5358 * @mm: mm context of the victim
5359 * @gfp_mask: reclaim mode
5360 * @memcgp: charged memcg return
5361 *
5362 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5363 * pages according to @gfp_mask if necessary.
5364 *
5365 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5366 * Otherwise, an error code is returned.
5367 *
5368 * After page->mapping has been set up, the caller must finalize the
5369 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5370 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5371 */
5372int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5373 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5374{
5375 struct mem_cgroup *memcg = NULL;
5376 unsigned int nr_pages = 1;
5377 int ret = 0;
5378
5379 if (mem_cgroup_disabled())
5380 goto out;
5381
5382 if (PageSwapCache(page)) {
00501b53
JW
5383 /*
5384 * Every swap fault against a single page tries to charge the
5385 * page, bail as early as possible. shmem_unuse() encounters
5386 * already charged pages, too. The USED bit is protected by
5387 * the page lock, which serializes swap cache removal, which
5388 * in turn serializes uncharging.
5389 */
1306a85a 5390 if (page->mem_cgroup)
00501b53
JW
5391 goto out;
5392 }
5393
5394 if (PageTransHuge(page)) {
5395 nr_pages <<= compound_order(page);
5396 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5397 }
5398
5399 if (do_swap_account && PageSwapCache(page))
5400 memcg = try_get_mem_cgroup_from_page(page);
5401 if (!memcg)
5402 memcg = get_mem_cgroup_from_mm(mm);
5403
5404 ret = try_charge(memcg, gfp_mask, nr_pages);
5405
5406 css_put(&memcg->css);
5407
5408 if (ret == -EINTR) {
5409 memcg = root_mem_cgroup;
5410 ret = 0;
5411 }
5412out:
5413 *memcgp = memcg;
5414 return ret;
5415}
5416
5417/**
5418 * mem_cgroup_commit_charge - commit a page charge
5419 * @page: page to charge
5420 * @memcg: memcg to charge the page to
5421 * @lrucare: page might be on LRU already
5422 *
5423 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5424 * after page->mapping has been set up. This must happen atomically
5425 * as part of the page instantiation, i.e. under the page table lock
5426 * for anonymous pages, under the page lock for page and swap cache.
5427 *
5428 * In addition, the page must not be on the LRU during the commit, to
5429 * prevent racing with task migration. If it might be, use @lrucare.
5430 *
5431 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5432 */
5433void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5434 bool lrucare)
5435{
5436 unsigned int nr_pages = 1;
5437
5438 VM_BUG_ON_PAGE(!page->mapping, page);
5439 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5440
5441 if (mem_cgroup_disabled())
5442 return;
5443 /*
5444 * Swap faults will attempt to charge the same page multiple
5445 * times. But reuse_swap_page() might have removed the page
5446 * from swapcache already, so we can't check PageSwapCache().
5447 */
5448 if (!memcg)
5449 return;
5450
6abb5a86
JW
5451 commit_charge(page, memcg, lrucare);
5452
00501b53
JW
5453 if (PageTransHuge(page)) {
5454 nr_pages <<= compound_order(page);
5455 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5456 }
5457
6abb5a86
JW
5458 local_irq_disable();
5459 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5460 memcg_check_events(memcg, page);
5461 local_irq_enable();
00501b53
JW
5462
5463 if (do_swap_account && PageSwapCache(page)) {
5464 swp_entry_t entry = { .val = page_private(page) };
5465 /*
5466 * The swap entry might not get freed for a long time,
5467 * let's not wait for it. The page already received a
5468 * memory+swap charge, drop the swap entry duplicate.
5469 */
5470 mem_cgroup_uncharge_swap(entry);
5471 }
5472}
5473
5474/**
5475 * mem_cgroup_cancel_charge - cancel a page charge
5476 * @page: page to charge
5477 * @memcg: memcg to charge the page to
5478 *
5479 * Cancel a charge transaction started by mem_cgroup_try_charge().
5480 */
5481void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5482{
5483 unsigned int nr_pages = 1;
5484
5485 if (mem_cgroup_disabled())
5486 return;
5487 /*
5488 * Swap faults will attempt to charge the same page multiple
5489 * times. But reuse_swap_page() might have removed the page
5490 * from swapcache already, so we can't check PageSwapCache().
5491 */
5492 if (!memcg)
5493 return;
5494
5495 if (PageTransHuge(page)) {
5496 nr_pages <<= compound_order(page);
5497 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5498 }
5499
5500 cancel_charge(memcg, nr_pages);
5501}
5502
747db954 5503static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5504 unsigned long nr_anon, unsigned long nr_file,
5505 unsigned long nr_huge, struct page *dummy_page)
5506{
18eca2e6 5507 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5508 unsigned long flags;
5509
ce00a967 5510 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5511 page_counter_uncharge(&memcg->memory, nr_pages);
5512 if (do_swap_account)
5513 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5514 memcg_oom_recover(memcg);
5515 }
747db954
JW
5516
5517 local_irq_save(flags);
5518 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5519 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5520 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5521 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5522 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5523 memcg_check_events(memcg, dummy_page);
5524 local_irq_restore(flags);
e8ea14cc
JW
5525
5526 if (!mem_cgroup_is_root(memcg))
18eca2e6 5527 css_put_many(&memcg->css, nr_pages);
747db954
JW
5528}
5529
5530static void uncharge_list(struct list_head *page_list)
5531{
5532 struct mem_cgroup *memcg = NULL;
747db954
JW
5533 unsigned long nr_anon = 0;
5534 unsigned long nr_file = 0;
5535 unsigned long nr_huge = 0;
5536 unsigned long pgpgout = 0;
747db954
JW
5537 struct list_head *next;
5538 struct page *page;
5539
5540 next = page_list->next;
5541 do {
5542 unsigned int nr_pages = 1;
747db954
JW
5543
5544 page = list_entry(next, struct page, lru);
5545 next = page->lru.next;
5546
5547 VM_BUG_ON_PAGE(PageLRU(page), page);
5548 VM_BUG_ON_PAGE(page_count(page), page);
5549
1306a85a 5550 if (!page->mem_cgroup)
747db954
JW
5551 continue;
5552
5553 /*
5554 * Nobody should be changing or seriously looking at
1306a85a 5555 * page->mem_cgroup at this point, we have fully
29833315 5556 * exclusive access to the page.
747db954
JW
5557 */
5558
1306a85a 5559 if (memcg != page->mem_cgroup) {
747db954 5560 if (memcg) {
18eca2e6
JW
5561 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5562 nr_huge, page);
5563 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5564 }
1306a85a 5565 memcg = page->mem_cgroup;
747db954
JW
5566 }
5567
5568 if (PageTransHuge(page)) {
5569 nr_pages <<= compound_order(page);
5570 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5571 nr_huge += nr_pages;
5572 }
5573
5574 if (PageAnon(page))
5575 nr_anon += nr_pages;
5576 else
5577 nr_file += nr_pages;
5578
1306a85a 5579 page->mem_cgroup = NULL;
747db954
JW
5580
5581 pgpgout++;
5582 } while (next != page_list);
5583
5584 if (memcg)
18eca2e6
JW
5585 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5586 nr_huge, page);
747db954
JW
5587}
5588
0a31bc97
JW
5589/**
5590 * mem_cgroup_uncharge - uncharge a page
5591 * @page: page to uncharge
5592 *
5593 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5594 * mem_cgroup_commit_charge().
5595 */
5596void mem_cgroup_uncharge(struct page *page)
5597{
0a31bc97
JW
5598 if (mem_cgroup_disabled())
5599 return;
5600
747db954 5601 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5602 if (!page->mem_cgroup)
0a31bc97
JW
5603 return;
5604
747db954
JW
5605 INIT_LIST_HEAD(&page->lru);
5606 uncharge_list(&page->lru);
5607}
0a31bc97 5608
747db954
JW
5609/**
5610 * mem_cgroup_uncharge_list - uncharge a list of page
5611 * @page_list: list of pages to uncharge
5612 *
5613 * Uncharge a list of pages previously charged with
5614 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5615 */
5616void mem_cgroup_uncharge_list(struct list_head *page_list)
5617{
5618 if (mem_cgroup_disabled())
5619 return;
0a31bc97 5620
747db954
JW
5621 if (!list_empty(page_list))
5622 uncharge_list(page_list);
0a31bc97
JW
5623}
5624
5625/**
5626 * mem_cgroup_migrate - migrate a charge to another page
5627 * @oldpage: currently charged page
5628 * @newpage: page to transfer the charge to
f5e03a49 5629 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5630 *
5631 * Migrate the charge from @oldpage to @newpage.
5632 *
5633 * Both pages must be locked, @newpage->mapping must be set up.
5634 */
5635void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5636 bool lrucare)
5637{
29833315 5638 struct mem_cgroup *memcg;
0a31bc97
JW
5639 int isolated;
5640
5641 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5642 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5643 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5644 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5645 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5646 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5647 newpage);
0a31bc97
JW
5648
5649 if (mem_cgroup_disabled())
5650 return;
5651
5652 /* Page cache replacement: new page already charged? */
1306a85a 5653 if (newpage->mem_cgroup)
0a31bc97
JW
5654 return;
5655
7d5e3245
JW
5656 /*
5657 * Swapcache readahead pages can get migrated before being
5658 * charged, and migration from compaction can happen to an
5659 * uncharged page when the PFN walker finds a page that
5660 * reclaim just put back on the LRU but has not released yet.
5661 */
1306a85a 5662 memcg = oldpage->mem_cgroup;
29833315 5663 if (!memcg)
0a31bc97
JW
5664 return;
5665
0a31bc97
JW
5666 if (lrucare)
5667 lock_page_lru(oldpage, &isolated);
5668
1306a85a 5669 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5670
5671 if (lrucare)
5672 unlock_page_lru(oldpage, isolated);
5673
29833315 5674 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5675}
5676
2d11085e 5677/*
1081312f
MH
5678 * subsys_initcall() for memory controller.
5679 *
5680 * Some parts like hotcpu_notifier() have to be initialized from this context
5681 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5682 * everything that doesn't depend on a specific mem_cgroup structure should
5683 * be initialized from here.
2d11085e
MH
5684 */
5685static int __init mem_cgroup_init(void)
5686{
5687 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 5688 enable_swap_cgroup();
bb4cc1a8 5689 mem_cgroup_soft_limit_tree_init();
e4777496 5690 memcg_stock_init();
2d11085e
MH
5691 return 0;
5692}
5693subsys_initcall(mem_cgroup_init);