mm: thp: make deferred split shrinker memcg aware
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
71cd3113 101static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
102 "inactive_anon",
103 "active_anon",
104 "inactive_file",
105 "active_file",
106 "unevictable",
107};
108
a0db00fc
KS
109#define THRESHOLDS_EVENTS_TARGET 128
110#define SOFTLIMIT_EVENTS_TARGET 1024
111#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 112
bb4cc1a8
AM
113/*
114 * Cgroups above their limits are maintained in a RB-Tree, independent of
115 * their hierarchy representation
116 */
117
ef8f2327 118struct mem_cgroup_tree_per_node {
bb4cc1a8 119 struct rb_root rb_root;
fa90b2fd 120 struct rb_node *rb_rightmost;
bb4cc1a8
AM
121 spinlock_t lock;
122};
123
bb4cc1a8
AM
124struct mem_cgroup_tree {
125 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126};
127
128static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129
9490ff27
KH
130/* for OOM */
131struct mem_cgroup_eventfd_list {
132 struct list_head list;
133 struct eventfd_ctx *eventfd;
134};
2e72b634 135
79bd9814
TH
136/*
137 * cgroup_event represents events which userspace want to receive.
138 */
3bc942f3 139struct mem_cgroup_event {
79bd9814 140 /*
59b6f873 141 * memcg which the event belongs to.
79bd9814 142 */
59b6f873 143 struct mem_cgroup *memcg;
79bd9814
TH
144 /*
145 * eventfd to signal userspace about the event.
146 */
147 struct eventfd_ctx *eventfd;
148 /*
149 * Each of these stored in a list by the cgroup.
150 */
151 struct list_head list;
fba94807
TH
152 /*
153 * register_event() callback will be used to add new userspace
154 * waiter for changes related to this event. Use eventfd_signal()
155 * on eventfd to send notification to userspace.
156 */
59b6f873 157 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 158 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
159 /*
160 * unregister_event() callback will be called when userspace closes
161 * the eventfd or on cgroup removing. This callback must be set,
162 * if you want provide notification functionality.
163 */
59b6f873 164 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 165 struct eventfd_ctx *eventfd);
79bd9814
TH
166 /*
167 * All fields below needed to unregister event when
168 * userspace closes eventfd.
169 */
170 poll_table pt;
171 wait_queue_head_t *wqh;
ac6424b9 172 wait_queue_entry_t wait;
79bd9814
TH
173 struct work_struct remove;
174};
175
c0ff4b85
R
176static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 178
7dc74be0
DN
179/* Stuffs for move charges at task migration. */
180/*
1dfab5ab 181 * Types of charges to be moved.
7dc74be0 182 */
1dfab5ab
JW
183#define MOVE_ANON 0x1U
184#define MOVE_FILE 0x2U
185#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 186
4ffef5fe
DN
187/* "mc" and its members are protected by cgroup_mutex */
188static struct move_charge_struct {
b1dd693e 189 spinlock_t lock; /* for from, to */
264a0ae1 190 struct mm_struct *mm;
4ffef5fe
DN
191 struct mem_cgroup *from;
192 struct mem_cgroup *to;
1dfab5ab 193 unsigned long flags;
4ffef5fe 194 unsigned long precharge;
854ffa8d 195 unsigned long moved_charge;
483c30b5 196 unsigned long moved_swap;
8033b97c
DN
197 struct task_struct *moving_task; /* a task moving charges */
198 wait_queue_head_t waitq; /* a waitq for other context */
199} mc = {
2bd9bb20 200 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
201 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202};
4ffef5fe 203
4e416953
BS
204/*
205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206 * limit reclaim to prevent infinite loops, if they ever occur.
207 */
a0db00fc 208#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 209#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 210
217bc319
KH
211enum charge_type {
212 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 213 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 214 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 215 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
216 NR_CHARGE_TYPE,
217};
218
8c7c6e34 219/* for encoding cft->private value on file */
86ae53e1
GC
220enum res_type {
221 _MEM,
222 _MEMSWAP,
223 _OOM_TYPE,
510fc4e1 224 _KMEM,
d55f90bf 225 _TCP,
86ae53e1
GC
226};
227
a0db00fc
KS
228#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
229#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 230#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
231/* Used for OOM nofiier */
232#define OOM_CONTROL (0)
8c7c6e34 233
b05706f1
KT
234/*
235 * Iteration constructs for visiting all cgroups (under a tree). If
236 * loops are exited prematurely (break), mem_cgroup_iter_break() must
237 * be used for reference counting.
238 */
239#define for_each_mem_cgroup_tree(iter, root) \
240 for (iter = mem_cgroup_iter(root, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(root, iter, NULL))
243
244#define for_each_mem_cgroup(iter) \
245 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
246 iter != NULL; \
247 iter = mem_cgroup_iter(NULL, iter, NULL))
248
7775face
TH
249static inline bool should_force_charge(void)
250{
251 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
252 (current->flags & PF_EXITING);
253}
254
70ddf637
AV
255/* Some nice accessors for the vmpressure. */
256struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257{
258 if (!memcg)
259 memcg = root_mem_cgroup;
260 return &memcg->vmpressure;
261}
262
263struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264{
265 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
266}
267
84c07d11 268#ifdef CONFIG_MEMCG_KMEM
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
17cc4dfe 320struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 321#endif
17cc4dfe 322
0a4465d3
KT
323static int memcg_shrinker_map_size;
324static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325
326static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327{
328 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329}
330
331static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 int size, int old_size)
333{
334 struct memcg_shrinker_map *new, *old;
335 int nid;
336
337 lockdep_assert_held(&memcg_shrinker_map_mutex);
338
339 for_each_node(nid) {
340 old = rcu_dereference_protected(
341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 /* Not yet online memcg */
343 if (!old)
344 return 0;
345
346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 if (!new)
348 return -ENOMEM;
349
350 /* Set all old bits, clear all new bits */
351 memset(new->map, (int)0xff, old_size);
352 memset((void *)new->map + old_size, 0, size - old_size);
353
354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 }
357
358 return 0;
359}
360
361static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362{
363 struct mem_cgroup_per_node *pn;
364 struct memcg_shrinker_map *map;
365 int nid;
366
367 if (mem_cgroup_is_root(memcg))
368 return;
369
370 for_each_node(nid) {
371 pn = mem_cgroup_nodeinfo(memcg, nid);
372 map = rcu_dereference_protected(pn->shrinker_map, true);
373 if (map)
374 kvfree(map);
375 rcu_assign_pointer(pn->shrinker_map, NULL);
376 }
377}
378
379static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380{
381 struct memcg_shrinker_map *map;
382 int nid, size, ret = 0;
383
384 if (mem_cgroup_is_root(memcg))
385 return 0;
386
387 mutex_lock(&memcg_shrinker_map_mutex);
388 size = memcg_shrinker_map_size;
389 for_each_node(nid) {
390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 if (!map) {
392 memcg_free_shrinker_maps(memcg);
393 ret = -ENOMEM;
394 break;
395 }
396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 }
398 mutex_unlock(&memcg_shrinker_map_mutex);
399
400 return ret;
401}
402
403int memcg_expand_shrinker_maps(int new_id)
404{
405 int size, old_size, ret = 0;
406 struct mem_cgroup *memcg;
407
408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 old_size = memcg_shrinker_map_size;
410 if (size <= old_size)
411 return 0;
412
413 mutex_lock(&memcg_shrinker_map_mutex);
414 if (!root_mem_cgroup)
415 goto unlock;
416
417 for_each_mem_cgroup(memcg) {
418 if (mem_cgroup_is_root(memcg))
419 continue;
420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 if (ret)
422 goto unlock;
423 }
424unlock:
425 if (!ret)
426 memcg_shrinker_map_size = size;
427 mutex_unlock(&memcg_shrinker_map_mutex);
428 return ret;
429}
fae91d6d
KT
430
431void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
432{
433 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
434 struct memcg_shrinker_map *map;
435
436 rcu_read_lock();
437 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
438 /* Pairs with smp mb in shrink_slab() */
439 smp_mb__before_atomic();
fae91d6d
KT
440 set_bit(shrinker_id, map->map);
441 rcu_read_unlock();
442 }
443}
444
ad7fa852
TH
445/**
446 * mem_cgroup_css_from_page - css of the memcg associated with a page
447 * @page: page of interest
448 *
449 * If memcg is bound to the default hierarchy, css of the memcg associated
450 * with @page is returned. The returned css remains associated with @page
451 * until it is released.
452 *
453 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
454 * is returned.
ad7fa852
TH
455 */
456struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
457{
458 struct mem_cgroup *memcg;
459
ad7fa852
TH
460 memcg = page->mem_cgroup;
461
9e10a130 462 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
463 memcg = root_mem_cgroup;
464
ad7fa852
TH
465 return &memcg->css;
466}
467
2fc04524
VD
468/**
469 * page_cgroup_ino - return inode number of the memcg a page is charged to
470 * @page: the page
471 *
472 * Look up the closest online ancestor of the memory cgroup @page is charged to
473 * and return its inode number or 0 if @page is not charged to any cgroup. It
474 * is safe to call this function without holding a reference to @page.
475 *
476 * Note, this function is inherently racy, because there is nothing to prevent
477 * the cgroup inode from getting torn down and potentially reallocated a moment
478 * after page_cgroup_ino() returns, so it only should be used by callers that
479 * do not care (such as procfs interfaces).
480 */
481ino_t page_cgroup_ino(struct page *page)
482{
483 struct mem_cgroup *memcg;
484 unsigned long ino = 0;
485
486 rcu_read_lock();
4d96ba35
RG
487 if (PageHead(page) && PageSlab(page))
488 memcg = memcg_from_slab_page(page);
489 else
490 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497}
498
ef8f2327
MG
499static struct mem_cgroup_per_node *
500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 501{
97a6c37b 502 int nid = page_to_nid(page);
f64c3f54 503
ef8f2327 504 return memcg->nodeinfo[nid];
f64c3f54
BS
505}
506
ef8f2327
MG
507static struct mem_cgroup_tree_per_node *
508soft_limit_tree_node(int nid)
bb4cc1a8 509{
ef8f2327 510 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
511}
512
ef8f2327 513static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
bb4cc1a8 517
ef8f2327 518 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
519}
520
ef8f2327
MG
521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 523 unsigned long new_usage_in_excess)
bb4cc1a8
AM
524{
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
ef8f2327 527 struct mem_cgroup_per_node *mz_node;
fa90b2fd 528 bool rightmost = true;
bb4cc1a8
AM
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
ef8f2327 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 539 tree_node);
fa90b2fd 540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 541 p = &(*p)->rb_left;
fa90b2fd
DB
542 rightmost = false;
543 }
544
bb4cc1a8
AM
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
fa90b2fd
DB
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
bb4cc1a8
AM
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559}
560
ef8f2327
MG
561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
563{
564 if (!mz->on_tree)
565 return;
fa90b2fd
DB
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
bb4cc1a8
AM
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572}
573
ef8f2327
MG
574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 576{
0a31bc97
JW
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 580 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 581 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
582}
583
3e32cb2e
JW
584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585{
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594}
bb4cc1a8
AM
595
596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597{
3e32cb2e 598 unsigned long excess;
ef8f2327
MG
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 601
e231875b 602 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
603 if (!mctz)
604 return;
bb4cc1a8
AM
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 610 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 611 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
0a31bc97
JW
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
620 /* if on-tree, remove it */
621 if (mz->on_tree)
cf2c8127 622 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
cf2c8127 627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 628 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
629 }
630 }
631}
632
633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634{
ef8f2327
MG
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
bb4cc1a8 638
e231875b 639 for_each_node(nid) {
ef8f2327
MG
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
644 }
645}
646
ef8f2327
MG
647static struct mem_cgroup_per_node *
648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 649{
ef8f2327 650 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
651
652retry:
653 mz = NULL;
fa90b2fd 654 if (!mctz->rb_rightmost)
bb4cc1a8
AM
655 goto done; /* Nothing to reclaim from */
656
fa90b2fd
DB
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
cf2c8127 664 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 665 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 666 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
667 goto retry;
668done:
669 return mz;
670}
671
ef8f2327
MG
672static struct mem_cgroup_per_node *
673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 674{
ef8f2327 675 struct mem_cgroup_per_node *mz;
bb4cc1a8 676
0a31bc97 677 spin_lock_irq(&mctz->lock);
bb4cc1a8 678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 679 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
680 return mz;
681}
682
db9adbcb
JW
683/**
684 * __mod_memcg_state - update cgroup memory statistics
685 * @memcg: the memory cgroup
686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
687 * @val: delta to add to the counter, can be negative
688 */
689void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
690{
691 long x;
692
693 if (mem_cgroup_disabled())
694 return;
695
696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
698 struct mem_cgroup *mi;
699
766a4c19
YS
700 /*
701 * Batch local counters to keep them in sync with
702 * the hierarchical ones.
703 */
704 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
705 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
706 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
707 x = 0;
708 }
709 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
710}
711
42a30035
JW
712static struct mem_cgroup_per_node *
713parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
714{
715 struct mem_cgroup *parent;
716
717 parent = parent_mem_cgroup(pn->memcg);
718 if (!parent)
719 return NULL;
720 return mem_cgroup_nodeinfo(parent, nid);
721}
722
db9adbcb
JW
723/**
724 * __mod_lruvec_state - update lruvec memory statistics
725 * @lruvec: the lruvec
726 * @idx: the stat item
727 * @val: delta to add to the counter, can be negative
728 *
729 * The lruvec is the intersection of the NUMA node and a cgroup. This
730 * function updates the all three counters that are affected by a
731 * change of state at this level: per-node, per-cgroup, per-lruvec.
732 */
733void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
734 int val)
735{
42a30035 736 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 737 struct mem_cgroup_per_node *pn;
42a30035 738 struct mem_cgroup *memcg;
db9adbcb
JW
739 long x;
740
741 /* Update node */
42a30035 742 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
743
744 if (mem_cgroup_disabled())
745 return;
746
747 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 748 memcg = pn->memcg;
db9adbcb
JW
749
750 /* Update memcg */
42a30035 751 __mod_memcg_state(memcg, idx, val);
db9adbcb 752
b4c46484
RG
753 /* Update lruvec */
754 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
755
db9adbcb
JW
756 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
757 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
758 struct mem_cgroup_per_node *pi;
759
42a30035
JW
760 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
761 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
762 x = 0;
763 }
764 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
765}
766
ec9f0238
RG
767void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
768{
769 struct page *page = virt_to_head_page(p);
770 pg_data_t *pgdat = page_pgdat(page);
771 struct mem_cgroup *memcg;
772 struct lruvec *lruvec;
773
774 rcu_read_lock();
775 memcg = memcg_from_slab_page(page);
776
777 /* Untracked pages have no memcg, no lruvec. Update only the node */
778 if (!memcg || memcg == root_mem_cgroup) {
779 __mod_node_page_state(pgdat, idx, val);
780 } else {
781 lruvec = mem_cgroup_lruvec(pgdat, memcg);
782 __mod_lruvec_state(lruvec, idx, val);
783 }
784 rcu_read_unlock();
785}
786
db9adbcb
JW
787/**
788 * __count_memcg_events - account VM events in a cgroup
789 * @memcg: the memory cgroup
790 * @idx: the event item
791 * @count: the number of events that occured
792 */
793void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
794 unsigned long count)
795{
796 unsigned long x;
797
798 if (mem_cgroup_disabled())
799 return;
800
801 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
802 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
803 struct mem_cgroup *mi;
804
766a4c19
YS
805 /*
806 * Batch local counters to keep them in sync with
807 * the hierarchical ones.
808 */
809 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
810 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
811 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
812 x = 0;
813 }
814 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
815}
816
42a30035 817static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 818{
871789d4 819 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
820}
821
42a30035
JW
822static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
823{
815744d7
JW
824 long x = 0;
825 int cpu;
826
827 for_each_possible_cpu(cpu)
828 x += per_cpu(memcg->vmstats_local->events[event], cpu);
829 return x;
42a30035
JW
830}
831
c0ff4b85 832static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 833 struct page *page,
f627c2f5 834 bool compound, int nr_pages)
d52aa412 835{
b2402857
KH
836 /*
837 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
838 * counted as CACHE even if it's on ANON LRU.
839 */
0a31bc97 840 if (PageAnon(page))
c9019e9b 841 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 842 else {
c9019e9b 843 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 844 if (PageSwapBacked(page))
c9019e9b 845 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 846 }
55e462b0 847
f627c2f5
KS
848 if (compound) {
849 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 850 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 851 }
b070e65c 852
e401f176
KH
853 /* pagein of a big page is an event. So, ignore page size */
854 if (nr_pages > 0)
c9019e9b 855 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 856 else {
c9019e9b 857 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
858 nr_pages = -nr_pages; /* for event */
859 }
e401f176 860
871789d4 861 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
862}
863
f53d7ce3
JW
864static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
865 enum mem_cgroup_events_target target)
7a159cc9
JW
866{
867 unsigned long val, next;
868
871789d4
CD
869 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
870 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 871 /* from time_after() in jiffies.h */
6a1a8b80 872 if ((long)(next - val) < 0) {
f53d7ce3
JW
873 switch (target) {
874 case MEM_CGROUP_TARGET_THRESH:
875 next = val + THRESHOLDS_EVENTS_TARGET;
876 break;
bb4cc1a8
AM
877 case MEM_CGROUP_TARGET_SOFTLIMIT:
878 next = val + SOFTLIMIT_EVENTS_TARGET;
879 break;
f53d7ce3
JW
880 case MEM_CGROUP_TARGET_NUMAINFO:
881 next = val + NUMAINFO_EVENTS_TARGET;
882 break;
883 default:
884 break;
885 }
871789d4 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 887 return true;
7a159cc9 888 }
f53d7ce3 889 return false;
d2265e6f
KH
890}
891
892/*
893 * Check events in order.
894 *
895 */
c0ff4b85 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
897{
898 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 901 bool do_softlimit;
82b3f2a7 902 bool do_numainfo __maybe_unused;
f53d7ce3 903
bb4cc1a8
AM
904 do_softlimit = mem_cgroup_event_ratelimit(memcg,
905 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
906#if MAX_NUMNODES > 1
907 do_numainfo = mem_cgroup_event_ratelimit(memcg,
908 MEM_CGROUP_TARGET_NUMAINFO);
909#endif
c0ff4b85 910 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
911 if (unlikely(do_softlimit))
912 mem_cgroup_update_tree(memcg, page);
453a9bf3 913#if MAX_NUMNODES > 1
f53d7ce3 914 if (unlikely(do_numainfo))
c0ff4b85 915 atomic_inc(&memcg->numainfo_events);
453a9bf3 916#endif
0a31bc97 917 }
d2265e6f
KH
918}
919
cf475ad2 920struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 921{
31a78f23
BS
922 /*
923 * mm_update_next_owner() may clear mm->owner to NULL
924 * if it races with swapoff, page migration, etc.
925 * So this can be called with p == NULL.
926 */
927 if (unlikely(!p))
928 return NULL;
929
073219e9 930 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 931}
33398cf2 932EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 933
d46eb14b
SB
934/**
935 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
936 * @mm: mm from which memcg should be extracted. It can be NULL.
937 *
938 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
939 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
940 * returned.
941 */
942struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 943{
d46eb14b
SB
944 struct mem_cgroup *memcg;
945
946 if (mem_cgroup_disabled())
947 return NULL;
0b7f569e 948
54595fe2
KH
949 rcu_read_lock();
950 do {
6f6acb00
MH
951 /*
952 * Page cache insertions can happen withou an
953 * actual mm context, e.g. during disk probing
954 * on boot, loopback IO, acct() writes etc.
955 */
956 if (unlikely(!mm))
df381975 957 memcg = root_mem_cgroup;
6f6acb00
MH
958 else {
959 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
960 if (unlikely(!memcg))
961 memcg = root_mem_cgroup;
962 }
ec903c0c 963 } while (!css_tryget_online(&memcg->css));
54595fe2 964 rcu_read_unlock();
c0ff4b85 965 return memcg;
54595fe2 966}
d46eb14b
SB
967EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968
f745c6f5
SB
969/**
970 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
971 * @page: page from which memcg should be extracted.
972 *
973 * Obtain a reference on page->memcg and returns it if successful. Otherwise
974 * root_mem_cgroup is returned.
975 */
976struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
977{
978 struct mem_cgroup *memcg = page->mem_cgroup;
979
980 if (mem_cgroup_disabled())
981 return NULL;
982
983 rcu_read_lock();
984 if (!memcg || !css_tryget_online(&memcg->css))
985 memcg = root_mem_cgroup;
986 rcu_read_unlock();
987 return memcg;
988}
989EXPORT_SYMBOL(get_mem_cgroup_from_page);
990
d46eb14b
SB
991/**
992 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
993 */
994static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
995{
996 if (unlikely(current->active_memcg)) {
997 struct mem_cgroup *memcg = root_mem_cgroup;
998
999 rcu_read_lock();
1000 if (css_tryget_online(&current->active_memcg->css))
1001 memcg = current->active_memcg;
1002 rcu_read_unlock();
1003 return memcg;
1004 }
1005 return get_mem_cgroup_from_mm(current->mm);
1006}
54595fe2 1007
5660048c
JW
1008/**
1009 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1010 * @root: hierarchy root
1011 * @prev: previously returned memcg, NULL on first invocation
1012 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1013 *
1014 * Returns references to children of the hierarchy below @root, or
1015 * @root itself, or %NULL after a full round-trip.
1016 *
1017 * Caller must pass the return value in @prev on subsequent
1018 * invocations for reference counting, or use mem_cgroup_iter_break()
1019 * to cancel a hierarchy walk before the round-trip is complete.
1020 *
b213b54f 1021 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1022 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1023 * reclaimers operating on the same node and priority.
5660048c 1024 */
694fbc0f 1025struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1026 struct mem_cgroup *prev,
694fbc0f 1027 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1028{
33398cf2 1029 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1030 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1031 struct mem_cgroup *memcg = NULL;
5ac8fb31 1032 struct mem_cgroup *pos = NULL;
711d3d2c 1033
694fbc0f
AM
1034 if (mem_cgroup_disabled())
1035 return NULL;
5660048c 1036
9f3a0d09
JW
1037 if (!root)
1038 root = root_mem_cgroup;
7d74b06f 1039
9f3a0d09 1040 if (prev && !reclaim)
5ac8fb31 1041 pos = prev;
14067bb3 1042
9f3a0d09
JW
1043 if (!root->use_hierarchy && root != root_mem_cgroup) {
1044 if (prev)
5ac8fb31 1045 goto out;
694fbc0f 1046 return root;
9f3a0d09 1047 }
14067bb3 1048
542f85f9 1049 rcu_read_lock();
5f578161 1050
5ac8fb31 1051 if (reclaim) {
ef8f2327 1052 struct mem_cgroup_per_node *mz;
5ac8fb31 1053
ef8f2327 1054 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
1055 iter = &mz->iter[reclaim->priority];
1056
1057 if (prev && reclaim->generation != iter->generation)
1058 goto out_unlock;
1059
6df38689 1060 while (1) {
4db0c3c2 1061 pos = READ_ONCE(iter->position);
6df38689
VD
1062 if (!pos || css_tryget(&pos->css))
1063 break;
5ac8fb31 1064 /*
6df38689
VD
1065 * css reference reached zero, so iter->position will
1066 * be cleared by ->css_released. However, we should not
1067 * rely on this happening soon, because ->css_released
1068 * is called from a work queue, and by busy-waiting we
1069 * might block it. So we clear iter->position right
1070 * away.
5ac8fb31 1071 */
6df38689
VD
1072 (void)cmpxchg(&iter->position, pos, NULL);
1073 }
5ac8fb31
JW
1074 }
1075
1076 if (pos)
1077 css = &pos->css;
1078
1079 for (;;) {
1080 css = css_next_descendant_pre(css, &root->css);
1081 if (!css) {
1082 /*
1083 * Reclaimers share the hierarchy walk, and a
1084 * new one might jump in right at the end of
1085 * the hierarchy - make sure they see at least
1086 * one group and restart from the beginning.
1087 */
1088 if (!prev)
1089 continue;
1090 break;
527a5ec9 1091 }
7d74b06f 1092
5ac8fb31
JW
1093 /*
1094 * Verify the css and acquire a reference. The root
1095 * is provided by the caller, so we know it's alive
1096 * and kicking, and don't take an extra reference.
1097 */
1098 memcg = mem_cgroup_from_css(css);
14067bb3 1099
5ac8fb31
JW
1100 if (css == &root->css)
1101 break;
14067bb3 1102
0b8f73e1
JW
1103 if (css_tryget(css))
1104 break;
9f3a0d09 1105
5ac8fb31 1106 memcg = NULL;
9f3a0d09 1107 }
5ac8fb31
JW
1108
1109 if (reclaim) {
5ac8fb31 1110 /*
6df38689
VD
1111 * The position could have already been updated by a competing
1112 * thread, so check that the value hasn't changed since we read
1113 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1114 */
6df38689
VD
1115 (void)cmpxchg(&iter->position, pos, memcg);
1116
5ac8fb31
JW
1117 if (pos)
1118 css_put(&pos->css);
1119
1120 if (!memcg)
1121 iter->generation++;
1122 else if (!prev)
1123 reclaim->generation = iter->generation;
9f3a0d09 1124 }
5ac8fb31 1125
542f85f9
MH
1126out_unlock:
1127 rcu_read_unlock();
5ac8fb31 1128out:
c40046f3
MH
1129 if (prev && prev != root)
1130 css_put(&prev->css);
1131
9f3a0d09 1132 return memcg;
14067bb3 1133}
7d74b06f 1134
5660048c
JW
1135/**
1136 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1137 * @root: hierarchy root
1138 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139 */
1140void mem_cgroup_iter_break(struct mem_cgroup *root,
1141 struct mem_cgroup *prev)
9f3a0d09
JW
1142{
1143 if (!root)
1144 root = root_mem_cgroup;
1145 if (prev && prev != root)
1146 css_put(&prev->css);
1147}
7d74b06f 1148
54a83d6b
MC
1149static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1150 struct mem_cgroup *dead_memcg)
6df38689 1151{
6df38689 1152 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1153 struct mem_cgroup_per_node *mz;
1154 int nid;
6df38689
VD
1155 int i;
1156
54a83d6b
MC
1157 for_each_node(nid) {
1158 mz = mem_cgroup_nodeinfo(from, nid);
1159 for (i = 0; i <= DEF_PRIORITY; i++) {
1160 iter = &mz->iter[i];
1161 cmpxchg(&iter->position,
1162 dead_memcg, NULL);
6df38689
VD
1163 }
1164 }
1165}
1166
54a83d6b
MC
1167static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1168{
1169 struct mem_cgroup *memcg = dead_memcg;
1170 struct mem_cgroup *last;
1171
1172 do {
1173 __invalidate_reclaim_iterators(memcg, dead_memcg);
1174 last = memcg;
1175 } while ((memcg = parent_mem_cgroup(memcg)));
1176
1177 /*
1178 * When cgruop1 non-hierarchy mode is used,
1179 * parent_mem_cgroup() does not walk all the way up to the
1180 * cgroup root (root_mem_cgroup). So we have to handle
1181 * dead_memcg from cgroup root separately.
1182 */
1183 if (last != root_mem_cgroup)
1184 __invalidate_reclaim_iterators(root_mem_cgroup,
1185 dead_memcg);
1186}
1187
7c5f64f8
VD
1188/**
1189 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1190 * @memcg: hierarchy root
1191 * @fn: function to call for each task
1192 * @arg: argument passed to @fn
1193 *
1194 * This function iterates over tasks attached to @memcg or to any of its
1195 * descendants and calls @fn for each task. If @fn returns a non-zero
1196 * value, the function breaks the iteration loop and returns the value.
1197 * Otherwise, it will iterate over all tasks and return 0.
1198 *
1199 * This function must not be called for the root memory cgroup.
1200 */
1201int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1202 int (*fn)(struct task_struct *, void *), void *arg)
1203{
1204 struct mem_cgroup *iter;
1205 int ret = 0;
1206
1207 BUG_ON(memcg == root_mem_cgroup);
1208
1209 for_each_mem_cgroup_tree(iter, memcg) {
1210 struct css_task_iter it;
1211 struct task_struct *task;
1212
f168a9a5 1213 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1214 while (!ret && (task = css_task_iter_next(&it)))
1215 ret = fn(task, arg);
1216 css_task_iter_end(&it);
1217 if (ret) {
1218 mem_cgroup_iter_break(memcg, iter);
1219 break;
1220 }
1221 }
1222 return ret;
1223}
1224
925b7673 1225/**
dfe0e773 1226 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1227 * @page: the page
f144c390 1228 * @pgdat: pgdat of the page
dfe0e773
JW
1229 *
1230 * This function is only safe when following the LRU page isolation
1231 * and putback protocol: the LRU lock must be held, and the page must
1232 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1233 */
599d0c95 1234struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1235{
ef8f2327 1236 struct mem_cgroup_per_node *mz;
925b7673 1237 struct mem_cgroup *memcg;
bea8c150 1238 struct lruvec *lruvec;
6d12e2d8 1239
bea8c150 1240 if (mem_cgroup_disabled()) {
599d0c95 1241 lruvec = &pgdat->lruvec;
bea8c150
HD
1242 goto out;
1243 }
925b7673 1244
1306a85a 1245 memcg = page->mem_cgroup;
7512102c 1246 /*
dfe0e773 1247 * Swapcache readahead pages are added to the LRU - and
29833315 1248 * possibly migrated - before they are charged.
7512102c 1249 */
29833315
JW
1250 if (!memcg)
1251 memcg = root_mem_cgroup;
7512102c 1252
ef8f2327 1253 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1254 lruvec = &mz->lruvec;
1255out:
1256 /*
1257 * Since a node can be onlined after the mem_cgroup was created,
1258 * we have to be prepared to initialize lruvec->zone here;
1259 * and if offlined then reonlined, we need to reinitialize it.
1260 */
599d0c95
MG
1261 if (unlikely(lruvec->pgdat != pgdat))
1262 lruvec->pgdat = pgdat;
bea8c150 1263 return lruvec;
08e552c6 1264}
b69408e8 1265
925b7673 1266/**
fa9add64
HD
1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268 * @lruvec: mem_cgroup per zone lru vector
1269 * @lru: index of lru list the page is sitting on
b4536f0c 1270 * @zid: zone id of the accounted pages
fa9add64 1271 * @nr_pages: positive when adding or negative when removing
925b7673 1272 *
ca707239
HD
1273 * This function must be called under lru_lock, just before a page is added
1274 * to or just after a page is removed from an lru list (that ordering being
1275 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1276 */
fa9add64 1277void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1278 int zid, int nr_pages)
3f58a829 1279{
ef8f2327 1280 struct mem_cgroup_per_node *mz;
fa9add64 1281 unsigned long *lru_size;
ca707239 1282 long size;
3f58a829
MK
1283
1284 if (mem_cgroup_disabled())
1285 return;
1286
ef8f2327 1287 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1288 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1289
1290 if (nr_pages < 0)
1291 *lru_size += nr_pages;
1292
1293 size = *lru_size;
b4536f0c
MH
1294 if (WARN_ONCE(size < 0,
1295 "%s(%p, %d, %d): lru_size %ld\n",
1296 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1297 VM_BUG_ON(1);
1298 *lru_size = 0;
1299 }
1300
1301 if (nr_pages > 0)
1302 *lru_size += nr_pages;
08e552c6 1303}
544122e5 1304
19942822 1305/**
9d11ea9f 1306 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1307 * @memcg: the memory cgroup
19942822 1308 *
9d11ea9f 1309 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1310 * pages.
19942822 1311 */
c0ff4b85 1312static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1313{
3e32cb2e
JW
1314 unsigned long margin = 0;
1315 unsigned long count;
1316 unsigned long limit;
9d11ea9f 1317
3e32cb2e 1318 count = page_counter_read(&memcg->memory);
bbec2e15 1319 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1320 if (count < limit)
1321 margin = limit - count;
1322
7941d214 1323 if (do_memsw_account()) {
3e32cb2e 1324 count = page_counter_read(&memcg->memsw);
bbec2e15 1325 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1326 if (count <= limit)
1327 margin = min(margin, limit - count);
cbedbac3
LR
1328 else
1329 margin = 0;
3e32cb2e
JW
1330 }
1331
1332 return margin;
19942822
JW
1333}
1334
32047e2a 1335/*
bdcbb659 1336 * A routine for checking "mem" is under move_account() or not.
32047e2a 1337 *
bdcbb659
QH
1338 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1339 * moving cgroups. This is for waiting at high-memory pressure
1340 * caused by "move".
32047e2a 1341 */
c0ff4b85 1342static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1343{
2bd9bb20
KH
1344 struct mem_cgroup *from;
1345 struct mem_cgroup *to;
4b534334 1346 bool ret = false;
2bd9bb20
KH
1347 /*
1348 * Unlike task_move routines, we access mc.to, mc.from not under
1349 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1350 */
1351 spin_lock(&mc.lock);
1352 from = mc.from;
1353 to = mc.to;
1354 if (!from)
1355 goto unlock;
3e92041d 1356
2314b42d
JW
1357 ret = mem_cgroup_is_descendant(from, memcg) ||
1358 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1359unlock:
1360 spin_unlock(&mc.lock);
4b534334
KH
1361 return ret;
1362}
1363
c0ff4b85 1364static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1365{
1366 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1367 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1368 DEFINE_WAIT(wait);
1369 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1370 /* moving charge context might have finished. */
1371 if (mc.moving_task)
1372 schedule();
1373 finish_wait(&mc.waitq, &wait);
1374 return true;
1375 }
1376 }
1377 return false;
1378}
1379
c8713d0b
JW
1380static char *memory_stat_format(struct mem_cgroup *memcg)
1381{
1382 struct seq_buf s;
1383 int i;
71cd3113 1384
c8713d0b
JW
1385 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1386 if (!s.buffer)
1387 return NULL;
1388
1389 /*
1390 * Provide statistics on the state of the memory subsystem as
1391 * well as cumulative event counters that show past behavior.
1392 *
1393 * This list is ordered following a combination of these gradients:
1394 * 1) generic big picture -> specifics and details
1395 * 2) reflecting userspace activity -> reflecting kernel heuristics
1396 *
1397 * Current memory state:
1398 */
1399
1400 seq_buf_printf(&s, "anon %llu\n",
1401 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1402 PAGE_SIZE);
1403 seq_buf_printf(&s, "file %llu\n",
1404 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1405 PAGE_SIZE);
1406 seq_buf_printf(&s, "kernel_stack %llu\n",
1407 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1408 1024);
1409 seq_buf_printf(&s, "slab %llu\n",
1410 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1411 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1412 PAGE_SIZE);
1413 seq_buf_printf(&s, "sock %llu\n",
1414 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1415 PAGE_SIZE);
1416
1417 seq_buf_printf(&s, "shmem %llu\n",
1418 (u64)memcg_page_state(memcg, NR_SHMEM) *
1419 PAGE_SIZE);
1420 seq_buf_printf(&s, "file_mapped %llu\n",
1421 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1422 PAGE_SIZE);
1423 seq_buf_printf(&s, "file_dirty %llu\n",
1424 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1425 PAGE_SIZE);
1426 seq_buf_printf(&s, "file_writeback %llu\n",
1427 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1428 PAGE_SIZE);
1429
1430 /*
1431 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1432 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1433 * arse because it requires migrating the work out of rmap to a place
1434 * where the page->mem_cgroup is set up and stable.
1435 */
1436 seq_buf_printf(&s, "anon_thp %llu\n",
1437 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1438 PAGE_SIZE);
1439
1440 for (i = 0; i < NR_LRU_LISTS; i++)
1441 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1442 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1443 PAGE_SIZE);
1444
1445 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1446 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1447 PAGE_SIZE);
1448 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1449 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1450 PAGE_SIZE);
1451
1452 /* Accumulated memory events */
1453
1454 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1455 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1456
1457 seq_buf_printf(&s, "workingset_refault %lu\n",
1458 memcg_page_state(memcg, WORKINGSET_REFAULT));
1459 seq_buf_printf(&s, "workingset_activate %lu\n",
1460 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1461 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1462 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1463
1464 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1465 seq_buf_printf(&s, "pgscan %lu\n",
1466 memcg_events(memcg, PGSCAN_KSWAPD) +
1467 memcg_events(memcg, PGSCAN_DIRECT));
1468 seq_buf_printf(&s, "pgsteal %lu\n",
1469 memcg_events(memcg, PGSTEAL_KSWAPD) +
1470 memcg_events(memcg, PGSTEAL_DIRECT));
1471 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1472 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1473 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1474 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1475
1476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1478 memcg_events(memcg, THP_FAULT_ALLOC));
1479 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1480 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1482
1483 /* The above should easily fit into one page */
1484 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1485
1486 return s.buffer;
1487}
71cd3113 1488
58cf188e 1489#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1490/**
f0c867d9 1491 * mem_cgroup_print_oom_context: Print OOM information relevant to
1492 * memory controller.
e222432b
BS
1493 * @memcg: The memory cgroup that went over limit
1494 * @p: Task that is going to be killed
1495 *
1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497 * enabled
1498 */
f0c867d9 1499void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1500{
e222432b
BS
1501 rcu_read_lock();
1502
f0c867d9 1503 if (memcg) {
1504 pr_cont(",oom_memcg=");
1505 pr_cont_cgroup_path(memcg->css.cgroup);
1506 } else
1507 pr_cont(",global_oom");
2415b9f5 1508 if (p) {
f0c867d9 1509 pr_cont(",task_memcg=");
2415b9f5 1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1511 }
e222432b 1512 rcu_read_unlock();
f0c867d9 1513}
1514
1515/**
1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517 * memory controller.
1518 * @memcg: The memory cgroup that went over limit
1519 */
1520void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521{
c8713d0b 1522 char *buf;
e222432b 1523
3e32cb2e
JW
1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1526 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->swap)),
1530 K((u64)memcg->swap.max), memcg->swap.failcnt);
1531 else {
1532 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64)page_counter_read(&memcg->memsw)),
1534 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->kmem)),
1537 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1538 }
c8713d0b
JW
1539
1540 pr_info("Memory cgroup stats for ");
1541 pr_cont_cgroup_path(memcg->css.cgroup);
1542 pr_cont(":");
1543 buf = memory_stat_format(memcg);
1544 if (!buf)
1545 return;
1546 pr_info("%s", buf);
1547 kfree(buf);
e222432b
BS
1548}
1549
a63d83f4
DR
1550/*
1551 * Return the memory (and swap, if configured) limit for a memcg.
1552 */
bbec2e15 1553unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1554{
bbec2e15 1555 unsigned long max;
f3e8eb70 1556
bbec2e15 1557 max = memcg->memory.max;
9a5a8f19 1558 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1559 unsigned long memsw_max;
1560 unsigned long swap_max;
9a5a8f19 1561
bbec2e15
RG
1562 memsw_max = memcg->memsw.max;
1563 swap_max = memcg->swap.max;
1564 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1565 max = min(max + swap_max, memsw_max);
9a5a8f19 1566 }
bbec2e15 1567 return max;
a63d83f4
DR
1568}
1569
b6e6edcf 1570static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1571 int order)
9cbb78bb 1572{
6e0fc46d
DR
1573 struct oom_control oc = {
1574 .zonelist = NULL,
1575 .nodemask = NULL,
2a966b77 1576 .memcg = memcg,
6e0fc46d
DR
1577 .gfp_mask = gfp_mask,
1578 .order = order,
6e0fc46d 1579 };
7c5f64f8 1580 bool ret;
9cbb78bb 1581
7775face
TH
1582 if (mutex_lock_killable(&oom_lock))
1583 return true;
1584 /*
1585 * A few threads which were not waiting at mutex_lock_killable() can
1586 * fail to bail out. Therefore, check again after holding oom_lock.
1587 */
1588 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1589 mutex_unlock(&oom_lock);
7c5f64f8 1590 return ret;
9cbb78bb
DR
1591}
1592
ae6e71d3
MC
1593#if MAX_NUMNODES > 1
1594
4d0c066d
KH
1595/**
1596 * test_mem_cgroup_node_reclaimable
dad7557e 1597 * @memcg: the target memcg
4d0c066d
KH
1598 * @nid: the node ID to be checked.
1599 * @noswap : specify true here if the user wants flle only information.
1600 *
1601 * This function returns whether the specified memcg contains any
1602 * reclaimable pages on a node. Returns true if there are any reclaimable
1603 * pages in the node.
1604 */
c0ff4b85 1605static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1606 int nid, bool noswap)
1607{
2b487e59
JW
1608 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1609
def0fdae
JW
1610 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1611 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1612 return true;
1613 if (noswap || !total_swap_pages)
1614 return false;
def0fdae
JW
1615 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1616 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1617 return true;
1618 return false;
1619
1620}
889976db
YH
1621
1622/*
1623 * Always updating the nodemask is not very good - even if we have an empty
1624 * list or the wrong list here, we can start from some node and traverse all
1625 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1626 *
1627 */
c0ff4b85 1628static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1629{
1630 int nid;
453a9bf3
KH
1631 /*
1632 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1633 * pagein/pageout changes since the last update.
1634 */
c0ff4b85 1635 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1636 return;
c0ff4b85 1637 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1638 return;
1639
889976db 1640 /* make a nodemask where this memcg uses memory from */
31aaea4a 1641 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1642
31aaea4a 1643 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1644
c0ff4b85
R
1645 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1646 node_clear(nid, memcg->scan_nodes);
889976db 1647 }
453a9bf3 1648
c0ff4b85
R
1649 atomic_set(&memcg->numainfo_events, 0);
1650 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1651}
1652
1653/*
1654 * Selecting a node where we start reclaim from. Because what we need is just
1655 * reducing usage counter, start from anywhere is O,K. Considering
1656 * memory reclaim from current node, there are pros. and cons.
1657 *
1658 * Freeing memory from current node means freeing memory from a node which
1659 * we'll use or we've used. So, it may make LRU bad. And if several threads
1660 * hit limits, it will see a contention on a node. But freeing from remote
1661 * node means more costs for memory reclaim because of memory latency.
1662 *
1663 * Now, we use round-robin. Better algorithm is welcomed.
1664 */
c0ff4b85 1665int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1666{
1667 int node;
1668
c0ff4b85
R
1669 mem_cgroup_may_update_nodemask(memcg);
1670 node = memcg->last_scanned_node;
889976db 1671
0edaf86c 1672 node = next_node_in(node, memcg->scan_nodes);
889976db 1673 /*
fda3d69b
MH
1674 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1675 * last time it really checked all the LRUs due to rate limiting.
1676 * Fallback to the current node in that case for simplicity.
889976db
YH
1677 */
1678 if (unlikely(node == MAX_NUMNODES))
1679 node = numa_node_id();
1680
c0ff4b85 1681 memcg->last_scanned_node = node;
889976db
YH
1682 return node;
1683}
889976db 1684#else
c0ff4b85 1685int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1686{
1687 return 0;
1688}
1689#endif
1690
0608f43d 1691static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1692 pg_data_t *pgdat,
0608f43d
AM
1693 gfp_t gfp_mask,
1694 unsigned long *total_scanned)
1695{
1696 struct mem_cgroup *victim = NULL;
1697 int total = 0;
1698 int loop = 0;
1699 unsigned long excess;
1700 unsigned long nr_scanned;
1701 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1702 .pgdat = pgdat,
0608f43d
AM
1703 .priority = 0,
1704 };
1705
3e32cb2e 1706 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1707
1708 while (1) {
1709 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1710 if (!victim) {
1711 loop++;
1712 if (loop >= 2) {
1713 /*
1714 * If we have not been able to reclaim
1715 * anything, it might because there are
1716 * no reclaimable pages under this hierarchy
1717 */
1718 if (!total)
1719 break;
1720 /*
1721 * We want to do more targeted reclaim.
1722 * excess >> 2 is not to excessive so as to
1723 * reclaim too much, nor too less that we keep
1724 * coming back to reclaim from this cgroup
1725 */
1726 if (total >= (excess >> 2) ||
1727 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1728 break;
1729 }
1730 continue;
1731 }
a9dd0a83 1732 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1733 pgdat, &nr_scanned);
0608f43d 1734 *total_scanned += nr_scanned;
3e32cb2e 1735 if (!soft_limit_excess(root_memcg))
0608f43d 1736 break;
6d61ef40 1737 }
0608f43d
AM
1738 mem_cgroup_iter_break(root_memcg, victim);
1739 return total;
6d61ef40
BS
1740}
1741
0056f4e6
JW
1742#ifdef CONFIG_LOCKDEP
1743static struct lockdep_map memcg_oom_lock_dep_map = {
1744 .name = "memcg_oom_lock",
1745};
1746#endif
1747
fb2a6fc5
JW
1748static DEFINE_SPINLOCK(memcg_oom_lock);
1749
867578cb
KH
1750/*
1751 * Check OOM-Killer is already running under our hierarchy.
1752 * If someone is running, return false.
1753 */
fb2a6fc5 1754static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1755{
79dfdacc 1756 struct mem_cgroup *iter, *failed = NULL;
a636b327 1757
fb2a6fc5
JW
1758 spin_lock(&memcg_oom_lock);
1759
9f3a0d09 1760 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1761 if (iter->oom_lock) {
79dfdacc
MH
1762 /*
1763 * this subtree of our hierarchy is already locked
1764 * so we cannot give a lock.
1765 */
79dfdacc 1766 failed = iter;
9f3a0d09
JW
1767 mem_cgroup_iter_break(memcg, iter);
1768 break;
23751be0
JW
1769 } else
1770 iter->oom_lock = true;
7d74b06f 1771 }
867578cb 1772
fb2a6fc5
JW
1773 if (failed) {
1774 /*
1775 * OK, we failed to lock the whole subtree so we have
1776 * to clean up what we set up to the failing subtree
1777 */
1778 for_each_mem_cgroup_tree(iter, memcg) {
1779 if (iter == failed) {
1780 mem_cgroup_iter_break(memcg, iter);
1781 break;
1782 }
1783 iter->oom_lock = false;
79dfdacc 1784 }
0056f4e6
JW
1785 } else
1786 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1787
1788 spin_unlock(&memcg_oom_lock);
1789
1790 return !failed;
a636b327 1791}
0b7f569e 1792
fb2a6fc5 1793static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1794{
7d74b06f
KH
1795 struct mem_cgroup *iter;
1796
fb2a6fc5 1797 spin_lock(&memcg_oom_lock);
0056f4e6 1798 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1799 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1800 iter->oom_lock = false;
fb2a6fc5 1801 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1802}
1803
c0ff4b85 1804static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1805{
1806 struct mem_cgroup *iter;
1807
c2b42d3c 1808 spin_lock(&memcg_oom_lock);
c0ff4b85 1809 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1810 iter->under_oom++;
1811 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1812}
1813
c0ff4b85 1814static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1815{
1816 struct mem_cgroup *iter;
1817
867578cb
KH
1818 /*
1819 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1820 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1821 */
c2b42d3c 1822 spin_lock(&memcg_oom_lock);
c0ff4b85 1823 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1824 if (iter->under_oom > 0)
1825 iter->under_oom--;
1826 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1827}
1828
867578cb
KH
1829static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1830
dc98df5a 1831struct oom_wait_info {
d79154bb 1832 struct mem_cgroup *memcg;
ac6424b9 1833 wait_queue_entry_t wait;
dc98df5a
KH
1834};
1835
ac6424b9 1836static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1837 unsigned mode, int sync, void *arg)
1838{
d79154bb
HD
1839 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1840 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1841 struct oom_wait_info *oom_wait_info;
1842
1843 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1844 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1845
2314b42d
JW
1846 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1847 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1848 return 0;
dc98df5a
KH
1849 return autoremove_wake_function(wait, mode, sync, arg);
1850}
1851
c0ff4b85 1852static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1853{
c2b42d3c
TH
1854 /*
1855 * For the following lockless ->under_oom test, the only required
1856 * guarantee is that it must see the state asserted by an OOM when
1857 * this function is called as a result of userland actions
1858 * triggered by the notification of the OOM. This is trivially
1859 * achieved by invoking mem_cgroup_mark_under_oom() before
1860 * triggering notification.
1861 */
1862 if (memcg && memcg->under_oom)
f4b90b70 1863 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1864}
1865
29ef680a
MH
1866enum oom_status {
1867 OOM_SUCCESS,
1868 OOM_FAILED,
1869 OOM_ASYNC,
1870 OOM_SKIPPED
1871};
1872
1873static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1874{
7056d3a3
MH
1875 enum oom_status ret;
1876 bool locked;
1877
29ef680a
MH
1878 if (order > PAGE_ALLOC_COSTLY_ORDER)
1879 return OOM_SKIPPED;
1880
7a1adfdd
RG
1881 memcg_memory_event(memcg, MEMCG_OOM);
1882
867578cb 1883 /*
49426420
JW
1884 * We are in the middle of the charge context here, so we
1885 * don't want to block when potentially sitting on a callstack
1886 * that holds all kinds of filesystem and mm locks.
1887 *
29ef680a
MH
1888 * cgroup1 allows disabling the OOM killer and waiting for outside
1889 * handling until the charge can succeed; remember the context and put
1890 * the task to sleep at the end of the page fault when all locks are
1891 * released.
49426420 1892 *
29ef680a
MH
1893 * On the other hand, in-kernel OOM killer allows for an async victim
1894 * memory reclaim (oom_reaper) and that means that we are not solely
1895 * relying on the oom victim to make a forward progress and we can
1896 * invoke the oom killer here.
1897 *
1898 * Please note that mem_cgroup_out_of_memory might fail to find a
1899 * victim and then we have to bail out from the charge path.
867578cb 1900 */
29ef680a
MH
1901 if (memcg->oom_kill_disable) {
1902 if (!current->in_user_fault)
1903 return OOM_SKIPPED;
1904 css_get(&memcg->css);
1905 current->memcg_in_oom = memcg;
1906 current->memcg_oom_gfp_mask = mask;
1907 current->memcg_oom_order = order;
1908
1909 return OOM_ASYNC;
1910 }
1911
7056d3a3
MH
1912 mem_cgroup_mark_under_oom(memcg);
1913
1914 locked = mem_cgroup_oom_trylock(memcg);
1915
1916 if (locked)
1917 mem_cgroup_oom_notify(memcg);
1918
1919 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1920 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1921 ret = OOM_SUCCESS;
1922 else
1923 ret = OOM_FAILED;
1924
1925 if (locked)
1926 mem_cgroup_oom_unlock(memcg);
29ef680a 1927
7056d3a3 1928 return ret;
3812c8c8
JW
1929}
1930
1931/**
1932 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1933 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1934 *
49426420
JW
1935 * This has to be called at the end of a page fault if the memcg OOM
1936 * handler was enabled.
3812c8c8 1937 *
49426420 1938 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1939 * sleep on a waitqueue until the userspace task resolves the
1940 * situation. Sleeping directly in the charge context with all kinds
1941 * of locks held is not a good idea, instead we remember an OOM state
1942 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1943 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1944 *
1945 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1946 * completed, %false otherwise.
3812c8c8 1947 */
49426420 1948bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1949{
626ebc41 1950 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1951 struct oom_wait_info owait;
49426420 1952 bool locked;
3812c8c8
JW
1953
1954 /* OOM is global, do not handle */
3812c8c8 1955 if (!memcg)
49426420 1956 return false;
3812c8c8 1957
7c5f64f8 1958 if (!handle)
49426420 1959 goto cleanup;
3812c8c8
JW
1960
1961 owait.memcg = memcg;
1962 owait.wait.flags = 0;
1963 owait.wait.func = memcg_oom_wake_function;
1964 owait.wait.private = current;
2055da97 1965 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1966
3812c8c8 1967 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1968 mem_cgroup_mark_under_oom(memcg);
1969
1970 locked = mem_cgroup_oom_trylock(memcg);
1971
1972 if (locked)
1973 mem_cgroup_oom_notify(memcg);
1974
1975 if (locked && !memcg->oom_kill_disable) {
1976 mem_cgroup_unmark_under_oom(memcg);
1977 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1978 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1979 current->memcg_oom_order);
49426420 1980 } else {
3812c8c8 1981 schedule();
49426420
JW
1982 mem_cgroup_unmark_under_oom(memcg);
1983 finish_wait(&memcg_oom_waitq, &owait.wait);
1984 }
1985
1986 if (locked) {
fb2a6fc5
JW
1987 mem_cgroup_oom_unlock(memcg);
1988 /*
1989 * There is no guarantee that an OOM-lock contender
1990 * sees the wakeups triggered by the OOM kill
1991 * uncharges. Wake any sleepers explicitely.
1992 */
1993 memcg_oom_recover(memcg);
1994 }
49426420 1995cleanup:
626ebc41 1996 current->memcg_in_oom = NULL;
3812c8c8 1997 css_put(&memcg->css);
867578cb 1998 return true;
0b7f569e
KH
1999}
2000
3d8b38eb
RG
2001/**
2002 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2003 * @victim: task to be killed by the OOM killer
2004 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2005 *
2006 * Returns a pointer to a memory cgroup, which has to be cleaned up
2007 * by killing all belonging OOM-killable tasks.
2008 *
2009 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2010 */
2011struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2012 struct mem_cgroup *oom_domain)
2013{
2014 struct mem_cgroup *oom_group = NULL;
2015 struct mem_cgroup *memcg;
2016
2017 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2018 return NULL;
2019
2020 if (!oom_domain)
2021 oom_domain = root_mem_cgroup;
2022
2023 rcu_read_lock();
2024
2025 memcg = mem_cgroup_from_task(victim);
2026 if (memcg == root_mem_cgroup)
2027 goto out;
2028
2029 /*
2030 * Traverse the memory cgroup hierarchy from the victim task's
2031 * cgroup up to the OOMing cgroup (or root) to find the
2032 * highest-level memory cgroup with oom.group set.
2033 */
2034 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2035 if (memcg->oom_group)
2036 oom_group = memcg;
2037
2038 if (memcg == oom_domain)
2039 break;
2040 }
2041
2042 if (oom_group)
2043 css_get(&oom_group->css);
2044out:
2045 rcu_read_unlock();
2046
2047 return oom_group;
2048}
2049
2050void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2051{
2052 pr_info("Tasks in ");
2053 pr_cont_cgroup_path(memcg->css.cgroup);
2054 pr_cont(" are going to be killed due to memory.oom.group set\n");
2055}
2056
d7365e78 2057/**
81f8c3a4
JW
2058 * lock_page_memcg - lock a page->mem_cgroup binding
2059 * @page: the page
32047e2a 2060 *
81f8c3a4 2061 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2062 * another cgroup.
2063 *
2064 * It ensures lifetime of the returned memcg. Caller is responsible
2065 * for the lifetime of the page; __unlock_page_memcg() is available
2066 * when @page might get freed inside the locked section.
d69b042f 2067 */
739f79fc 2068struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
2069{
2070 struct mem_cgroup *memcg;
6de22619 2071 unsigned long flags;
89c06bd5 2072
6de22619
JW
2073 /*
2074 * The RCU lock is held throughout the transaction. The fast
2075 * path can get away without acquiring the memcg->move_lock
2076 * because page moving starts with an RCU grace period.
739f79fc
JW
2077 *
2078 * The RCU lock also protects the memcg from being freed when
2079 * the page state that is going to change is the only thing
2080 * preventing the page itself from being freed. E.g. writeback
2081 * doesn't hold a page reference and relies on PG_writeback to
2082 * keep off truncation, migration and so forth.
2083 */
d7365e78
JW
2084 rcu_read_lock();
2085
2086 if (mem_cgroup_disabled())
739f79fc 2087 return NULL;
89c06bd5 2088again:
1306a85a 2089 memcg = page->mem_cgroup;
29833315 2090 if (unlikely(!memcg))
739f79fc 2091 return NULL;
d7365e78 2092
bdcbb659 2093 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2094 return memcg;
89c06bd5 2095
6de22619 2096 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2097 if (memcg != page->mem_cgroup) {
6de22619 2098 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2099 goto again;
2100 }
6de22619
JW
2101
2102 /*
2103 * When charge migration first begins, we can have locked and
2104 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2105 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2106 */
2107 memcg->move_lock_task = current;
2108 memcg->move_lock_flags = flags;
d7365e78 2109
739f79fc 2110 return memcg;
89c06bd5 2111}
81f8c3a4 2112EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2113
d7365e78 2114/**
739f79fc
JW
2115 * __unlock_page_memcg - unlock and unpin a memcg
2116 * @memcg: the memcg
2117 *
2118 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2119 */
739f79fc 2120void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2121{
6de22619
JW
2122 if (memcg && memcg->move_lock_task == current) {
2123 unsigned long flags = memcg->move_lock_flags;
2124
2125 memcg->move_lock_task = NULL;
2126 memcg->move_lock_flags = 0;
2127
2128 spin_unlock_irqrestore(&memcg->move_lock, flags);
2129 }
89c06bd5 2130
d7365e78 2131 rcu_read_unlock();
89c06bd5 2132}
739f79fc
JW
2133
2134/**
2135 * unlock_page_memcg - unlock a page->mem_cgroup binding
2136 * @page: the page
2137 */
2138void unlock_page_memcg(struct page *page)
2139{
2140 __unlock_page_memcg(page->mem_cgroup);
2141}
81f8c3a4 2142EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2143
cdec2e42
KH
2144struct memcg_stock_pcp {
2145 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2146 unsigned int nr_pages;
cdec2e42 2147 struct work_struct work;
26fe6168 2148 unsigned long flags;
a0db00fc 2149#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2150};
2151static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2152static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2153
a0956d54
SS
2154/**
2155 * consume_stock: Try to consume stocked charge on this cpu.
2156 * @memcg: memcg to consume from.
2157 * @nr_pages: how many pages to charge.
2158 *
2159 * The charges will only happen if @memcg matches the current cpu's memcg
2160 * stock, and at least @nr_pages are available in that stock. Failure to
2161 * service an allocation will refill the stock.
2162 *
2163 * returns true if successful, false otherwise.
cdec2e42 2164 */
a0956d54 2165static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2166{
2167 struct memcg_stock_pcp *stock;
db2ba40c 2168 unsigned long flags;
3e32cb2e 2169 bool ret = false;
cdec2e42 2170
a983b5eb 2171 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2172 return ret;
a0956d54 2173
db2ba40c
JW
2174 local_irq_save(flags);
2175
2176 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2177 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2178 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2179 ret = true;
2180 }
db2ba40c
JW
2181
2182 local_irq_restore(flags);
2183
cdec2e42
KH
2184 return ret;
2185}
2186
2187/*
3e32cb2e 2188 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2189 */
2190static void drain_stock(struct memcg_stock_pcp *stock)
2191{
2192 struct mem_cgroup *old = stock->cached;
2193
11c9ea4e 2194 if (stock->nr_pages) {
3e32cb2e 2195 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2196 if (do_memsw_account())
3e32cb2e 2197 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2198 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2199 stock->nr_pages = 0;
cdec2e42
KH
2200 }
2201 stock->cached = NULL;
cdec2e42
KH
2202}
2203
cdec2e42
KH
2204static void drain_local_stock(struct work_struct *dummy)
2205{
db2ba40c
JW
2206 struct memcg_stock_pcp *stock;
2207 unsigned long flags;
2208
72f0184c
MH
2209 /*
2210 * The only protection from memory hotplug vs. drain_stock races is
2211 * that we always operate on local CPU stock here with IRQ disabled
2212 */
db2ba40c
JW
2213 local_irq_save(flags);
2214
2215 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2216 drain_stock(stock);
26fe6168 2217 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2218
2219 local_irq_restore(flags);
cdec2e42
KH
2220}
2221
2222/*
3e32cb2e 2223 * Cache charges(val) to local per_cpu area.
320cc51d 2224 * This will be consumed by consume_stock() function, later.
cdec2e42 2225 */
c0ff4b85 2226static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2227{
db2ba40c
JW
2228 struct memcg_stock_pcp *stock;
2229 unsigned long flags;
2230
2231 local_irq_save(flags);
cdec2e42 2232
db2ba40c 2233 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2234 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2235 drain_stock(stock);
c0ff4b85 2236 stock->cached = memcg;
cdec2e42 2237 }
11c9ea4e 2238 stock->nr_pages += nr_pages;
db2ba40c 2239
a983b5eb 2240 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2241 drain_stock(stock);
2242
db2ba40c 2243 local_irq_restore(flags);
cdec2e42
KH
2244}
2245
2246/*
c0ff4b85 2247 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2248 * of the hierarchy under it.
cdec2e42 2249 */
6d3d6aa2 2250static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2251{
26fe6168 2252 int cpu, curcpu;
d38144b7 2253
6d3d6aa2
JW
2254 /* If someone's already draining, avoid adding running more workers. */
2255 if (!mutex_trylock(&percpu_charge_mutex))
2256 return;
72f0184c
MH
2257 /*
2258 * Notify other cpus that system-wide "drain" is running
2259 * We do not care about races with the cpu hotplug because cpu down
2260 * as well as workers from this path always operate on the local
2261 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2262 */
5af12d0e 2263 curcpu = get_cpu();
cdec2e42
KH
2264 for_each_online_cpu(cpu) {
2265 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2266 struct mem_cgroup *memcg;
e1a366be 2267 bool flush = false;
26fe6168 2268
e1a366be 2269 rcu_read_lock();
c0ff4b85 2270 memcg = stock->cached;
e1a366be
RG
2271 if (memcg && stock->nr_pages &&
2272 mem_cgroup_is_descendant(memcg, root_memcg))
2273 flush = true;
2274 rcu_read_unlock();
2275
2276 if (flush &&
2277 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2278 if (cpu == curcpu)
2279 drain_local_stock(&stock->work);
2280 else
2281 schedule_work_on(cpu, &stock->work);
2282 }
cdec2e42 2283 }
5af12d0e 2284 put_cpu();
9f50fad6 2285 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2286}
2287
308167fc 2288static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2289{
cdec2e42 2290 struct memcg_stock_pcp *stock;
42a30035 2291 struct mem_cgroup *memcg, *mi;
cdec2e42 2292
cdec2e42
KH
2293 stock = &per_cpu(memcg_stock, cpu);
2294 drain_stock(stock);
a983b5eb
JW
2295
2296 for_each_mem_cgroup(memcg) {
2297 int i;
2298
2299 for (i = 0; i < MEMCG_NR_STAT; i++) {
2300 int nid;
2301 long x;
2302
871789d4 2303 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2304 if (x)
42a30035
JW
2305 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2306 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2307
2308 if (i >= NR_VM_NODE_STAT_ITEMS)
2309 continue;
2310
2311 for_each_node(nid) {
2312 struct mem_cgroup_per_node *pn;
2313
2314 pn = mem_cgroup_nodeinfo(memcg, nid);
2315 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2316 if (x)
42a30035
JW
2317 do {
2318 atomic_long_add(x, &pn->lruvec_stat[i]);
2319 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2320 }
2321 }
2322
e27be240 2323 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2324 long x;
2325
871789d4 2326 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2327 if (x)
42a30035
JW
2328 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2329 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2330 }
2331 }
2332
308167fc 2333 return 0;
cdec2e42
KH
2334}
2335
f7e1cb6e
JW
2336static void reclaim_high(struct mem_cgroup *memcg,
2337 unsigned int nr_pages,
2338 gfp_t gfp_mask)
2339{
2340 do {
2341 if (page_counter_read(&memcg->memory) <= memcg->high)
2342 continue;
e27be240 2343 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2344 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2345 } while ((memcg = parent_mem_cgroup(memcg)));
2346}
2347
2348static void high_work_func(struct work_struct *work)
2349{
2350 struct mem_cgroup *memcg;
2351
2352 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2353 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2354}
2355
0e4b01df
CD
2356/*
2357 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2358 * enough to still cause a significant slowdown in most cases, while still
2359 * allowing diagnostics and tracing to proceed without becoming stuck.
2360 */
2361#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2362
2363/*
2364 * When calculating the delay, we use these either side of the exponentiation to
2365 * maintain precision and scale to a reasonable number of jiffies (see the table
2366 * below.
2367 *
2368 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2369 * overage ratio to a delay.
2370 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2371 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2372 * to produce a reasonable delay curve.
2373 *
2374 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2375 * reasonable delay curve compared to precision-adjusted overage, not
2376 * penalising heavily at first, but still making sure that growth beyond the
2377 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2378 * example, with a high of 100 megabytes:
2379 *
2380 * +-------+------------------------+
2381 * | usage | time to allocate in ms |
2382 * +-------+------------------------+
2383 * | 100M | 0 |
2384 * | 101M | 6 |
2385 * | 102M | 25 |
2386 * | 103M | 57 |
2387 * | 104M | 102 |
2388 * | 105M | 159 |
2389 * | 106M | 230 |
2390 * | 107M | 313 |
2391 * | 108M | 409 |
2392 * | 109M | 518 |
2393 * | 110M | 639 |
2394 * | 111M | 774 |
2395 * | 112M | 921 |
2396 * | 113M | 1081 |
2397 * | 114M | 1254 |
2398 * | 115M | 1439 |
2399 * | 116M | 1638 |
2400 * | 117M | 1849 |
2401 * | 118M | 2000 |
2402 * | 119M | 2000 |
2403 * | 120M | 2000 |
2404 * +-------+------------------------+
2405 */
2406 #define MEMCG_DELAY_PRECISION_SHIFT 20
2407 #define MEMCG_DELAY_SCALING_SHIFT 14
2408
b23afb93
TH
2409/*
2410 * Scheduled by try_charge() to be executed from the userland return path
2411 * and reclaims memory over the high limit.
2412 */
2413void mem_cgroup_handle_over_high(void)
2414{
0e4b01df
CD
2415 unsigned long usage, high, clamped_high;
2416 unsigned long pflags;
2417 unsigned long penalty_jiffies, overage;
b23afb93 2418 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2419 struct mem_cgroup *memcg;
b23afb93
TH
2420
2421 if (likely(!nr_pages))
2422 return;
2423
f7e1cb6e
JW
2424 memcg = get_mem_cgroup_from_mm(current->mm);
2425 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93 2426 current->memcg_nr_pages_over_high = 0;
0e4b01df
CD
2427
2428 /*
2429 * memory.high is breached and reclaim is unable to keep up. Throttle
2430 * allocators proactively to slow down excessive growth.
2431 *
2432 * We use overage compared to memory.high to calculate the number of
2433 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2434 * fairly lenient on small overages, and increasingly harsh when the
2435 * memcg in question makes it clear that it has no intention of stopping
2436 * its crazy behaviour, so we exponentially increase the delay based on
2437 * overage amount.
2438 */
2439
2440 usage = page_counter_read(&memcg->memory);
2441 high = READ_ONCE(memcg->high);
2442
2443 if (usage <= high)
2444 goto out;
2445
2446 /*
2447 * Prevent division by 0 in overage calculation by acting as if it was a
2448 * threshold of 1 page
2449 */
2450 clamped_high = max(high, 1UL);
2451
2452 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2453 clamped_high);
2454
2455 penalty_jiffies = ((u64)overage * overage * HZ)
2456 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2457
2458 /*
2459 * Factor in the task's own contribution to the overage, such that four
2460 * N-sized allocations are throttled approximately the same as one
2461 * 4N-sized allocation.
2462 *
2463 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2464 * larger the current charge patch is than that.
2465 */
2466 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2467
2468 /*
2469 * Clamp the max delay per usermode return so as to still keep the
2470 * application moving forwards and also permit diagnostics, albeit
2471 * extremely slowly.
2472 */
2473 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2474
2475 /*
2476 * Don't sleep if the amount of jiffies this memcg owes us is so low
2477 * that it's not even worth doing, in an attempt to be nice to those who
2478 * go only a small amount over their memory.high value and maybe haven't
2479 * been aggressively reclaimed enough yet.
2480 */
2481 if (penalty_jiffies <= HZ / 100)
2482 goto out;
2483
2484 /*
2485 * If we exit early, we're guaranteed to die (since
2486 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2487 * need to account for any ill-begotten jiffies to pay them off later.
2488 */
2489 psi_memstall_enter(&pflags);
2490 schedule_timeout_killable(penalty_jiffies);
2491 psi_memstall_leave(&pflags);
2492
2493out:
2494 css_put(&memcg->css);
b23afb93
TH
2495}
2496
00501b53
JW
2497static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2498 unsigned int nr_pages)
8a9f3ccd 2499{
a983b5eb 2500 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2501 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2502 struct mem_cgroup *mem_over_limit;
3e32cb2e 2503 struct page_counter *counter;
6539cc05 2504 unsigned long nr_reclaimed;
b70a2a21
JW
2505 bool may_swap = true;
2506 bool drained = false;
29ef680a 2507 enum oom_status oom_status;
a636b327 2508
ce00a967 2509 if (mem_cgroup_is_root(memcg))
10d53c74 2510 return 0;
6539cc05 2511retry:
b6b6cc72 2512 if (consume_stock(memcg, nr_pages))
10d53c74 2513 return 0;
8a9f3ccd 2514
7941d214 2515 if (!do_memsw_account() ||
6071ca52
JW
2516 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2517 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2518 goto done_restock;
7941d214 2519 if (do_memsw_account())
3e32cb2e
JW
2520 page_counter_uncharge(&memcg->memsw, batch);
2521 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2522 } else {
3e32cb2e 2523 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2524 may_swap = false;
3fbe7244 2525 }
7a81b88c 2526
6539cc05
JW
2527 if (batch > nr_pages) {
2528 batch = nr_pages;
2529 goto retry;
2530 }
6d61ef40 2531
06b078fc
JW
2532 /*
2533 * Unlike in global OOM situations, memcg is not in a physical
2534 * memory shortage. Allow dying and OOM-killed tasks to
2535 * bypass the last charges so that they can exit quickly and
2536 * free their memory.
2537 */
7775face 2538 if (unlikely(should_force_charge()))
10d53c74 2539 goto force;
06b078fc 2540
89a28483
JW
2541 /*
2542 * Prevent unbounded recursion when reclaim operations need to
2543 * allocate memory. This might exceed the limits temporarily,
2544 * but we prefer facilitating memory reclaim and getting back
2545 * under the limit over triggering OOM kills in these cases.
2546 */
2547 if (unlikely(current->flags & PF_MEMALLOC))
2548 goto force;
2549
06b078fc
JW
2550 if (unlikely(task_in_memcg_oom(current)))
2551 goto nomem;
2552
d0164adc 2553 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2554 goto nomem;
4b534334 2555
e27be240 2556 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2557
b70a2a21
JW
2558 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2559 gfp_mask, may_swap);
6539cc05 2560
61e02c74 2561 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2562 goto retry;
28c34c29 2563
b70a2a21 2564 if (!drained) {
6d3d6aa2 2565 drain_all_stock(mem_over_limit);
b70a2a21
JW
2566 drained = true;
2567 goto retry;
2568 }
2569
28c34c29
JW
2570 if (gfp_mask & __GFP_NORETRY)
2571 goto nomem;
6539cc05
JW
2572 /*
2573 * Even though the limit is exceeded at this point, reclaim
2574 * may have been able to free some pages. Retry the charge
2575 * before killing the task.
2576 *
2577 * Only for regular pages, though: huge pages are rather
2578 * unlikely to succeed so close to the limit, and we fall back
2579 * to regular pages anyway in case of failure.
2580 */
61e02c74 2581 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2582 goto retry;
2583 /*
2584 * At task move, charge accounts can be doubly counted. So, it's
2585 * better to wait until the end of task_move if something is going on.
2586 */
2587 if (mem_cgroup_wait_acct_move(mem_over_limit))
2588 goto retry;
2589
9b130619
JW
2590 if (nr_retries--)
2591 goto retry;
2592
38d38493 2593 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2594 goto nomem;
2595
06b078fc 2596 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2597 goto force;
06b078fc 2598
6539cc05 2599 if (fatal_signal_pending(current))
10d53c74 2600 goto force;
6539cc05 2601
29ef680a
MH
2602 /*
2603 * keep retrying as long as the memcg oom killer is able to make
2604 * a forward progress or bypass the charge if the oom killer
2605 * couldn't make any progress.
2606 */
2607 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2608 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2609 switch (oom_status) {
2610 case OOM_SUCCESS:
2611 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2612 goto retry;
2613 case OOM_FAILED:
2614 goto force;
2615 default:
2616 goto nomem;
2617 }
7a81b88c 2618nomem:
6d1fdc48 2619 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2620 return -ENOMEM;
10d53c74
TH
2621force:
2622 /*
2623 * The allocation either can't fail or will lead to more memory
2624 * being freed very soon. Allow memory usage go over the limit
2625 * temporarily by force charging it.
2626 */
2627 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2628 if (do_memsw_account())
10d53c74
TH
2629 page_counter_charge(&memcg->memsw, nr_pages);
2630 css_get_many(&memcg->css, nr_pages);
2631
2632 return 0;
6539cc05
JW
2633
2634done_restock:
e8ea14cc 2635 css_get_many(&memcg->css, batch);
6539cc05
JW
2636 if (batch > nr_pages)
2637 refill_stock(memcg, batch - nr_pages);
b23afb93 2638
241994ed 2639 /*
b23afb93
TH
2640 * If the hierarchy is above the normal consumption range, schedule
2641 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2642 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2643 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2644 * not recorded as it most likely matches current's and won't
2645 * change in the meantime. As high limit is checked again before
2646 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2647 */
2648 do {
b23afb93 2649 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2650 /* Don't bother a random interrupted task */
2651 if (in_interrupt()) {
2652 schedule_work(&memcg->high_work);
2653 break;
2654 }
9516a18a 2655 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2656 set_notify_resume(current);
2657 break;
2658 }
241994ed 2659 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2660
2661 return 0;
7a81b88c 2662}
8a9f3ccd 2663
00501b53 2664static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2665{
ce00a967
JW
2666 if (mem_cgroup_is_root(memcg))
2667 return;
2668
3e32cb2e 2669 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2670 if (do_memsw_account())
3e32cb2e 2671 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2672
e8ea14cc 2673 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2674}
2675
0a31bc97
JW
2676static void lock_page_lru(struct page *page, int *isolated)
2677{
f4b7e272 2678 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2679
f4b7e272 2680 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2681 if (PageLRU(page)) {
2682 struct lruvec *lruvec;
2683
f4b7e272 2684 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2685 ClearPageLRU(page);
2686 del_page_from_lru_list(page, lruvec, page_lru(page));
2687 *isolated = 1;
2688 } else
2689 *isolated = 0;
2690}
2691
2692static void unlock_page_lru(struct page *page, int isolated)
2693{
f4b7e272 2694 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2695
2696 if (isolated) {
2697 struct lruvec *lruvec;
2698
f4b7e272 2699 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2700 VM_BUG_ON_PAGE(PageLRU(page), page);
2701 SetPageLRU(page);
2702 add_page_to_lru_list(page, lruvec, page_lru(page));
2703 }
f4b7e272 2704 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2705}
2706
00501b53 2707static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2708 bool lrucare)
7a81b88c 2709{
0a31bc97 2710 int isolated;
9ce70c02 2711
1306a85a 2712 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2713
2714 /*
2715 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2716 * may already be on some other mem_cgroup's LRU. Take care of it.
2717 */
0a31bc97
JW
2718 if (lrucare)
2719 lock_page_lru(page, &isolated);
9ce70c02 2720
0a31bc97
JW
2721 /*
2722 * Nobody should be changing or seriously looking at
1306a85a 2723 * page->mem_cgroup at this point:
0a31bc97
JW
2724 *
2725 * - the page is uncharged
2726 *
2727 * - the page is off-LRU
2728 *
2729 * - an anonymous fault has exclusive page access, except for
2730 * a locked page table
2731 *
2732 * - a page cache insertion, a swapin fault, or a migration
2733 * have the page locked
2734 */
1306a85a 2735 page->mem_cgroup = memcg;
9ce70c02 2736
0a31bc97
JW
2737 if (lrucare)
2738 unlock_page_lru(page, isolated);
7a81b88c 2739}
66e1707b 2740
84c07d11 2741#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2742static int memcg_alloc_cache_id(void)
55007d84 2743{
f3bb3043
VD
2744 int id, size;
2745 int err;
2746
dbcf73e2 2747 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2748 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2749 if (id < 0)
2750 return id;
55007d84 2751
dbcf73e2 2752 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2753 return id;
2754
2755 /*
2756 * There's no space for the new id in memcg_caches arrays,
2757 * so we have to grow them.
2758 */
05257a1a 2759 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2760
2761 size = 2 * (id + 1);
55007d84
GC
2762 if (size < MEMCG_CACHES_MIN_SIZE)
2763 size = MEMCG_CACHES_MIN_SIZE;
2764 else if (size > MEMCG_CACHES_MAX_SIZE)
2765 size = MEMCG_CACHES_MAX_SIZE;
2766
f3bb3043 2767 err = memcg_update_all_caches(size);
60d3fd32
VD
2768 if (!err)
2769 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2770 if (!err)
2771 memcg_nr_cache_ids = size;
2772
2773 up_write(&memcg_cache_ids_sem);
2774
f3bb3043 2775 if (err) {
dbcf73e2 2776 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2777 return err;
2778 }
2779 return id;
2780}
2781
2782static void memcg_free_cache_id(int id)
2783{
dbcf73e2 2784 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2785}
2786
d5b3cf71 2787struct memcg_kmem_cache_create_work {
5722d094
VD
2788 struct mem_cgroup *memcg;
2789 struct kmem_cache *cachep;
2790 struct work_struct work;
2791};
2792
d5b3cf71 2793static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2794{
d5b3cf71
VD
2795 struct memcg_kmem_cache_create_work *cw =
2796 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2797 struct mem_cgroup *memcg = cw->memcg;
2798 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2799
d5b3cf71 2800 memcg_create_kmem_cache(memcg, cachep);
bd673145 2801
5722d094 2802 css_put(&memcg->css);
d7f25f8a
GC
2803 kfree(cw);
2804}
2805
2806/*
2807 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2808 */
85cfb245 2809static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2810 struct kmem_cache *cachep)
d7f25f8a 2811{
d5b3cf71 2812 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2813
f0a3a24b
RG
2814 if (!css_tryget_online(&memcg->css))
2815 return;
2816
c892fd82 2817 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2818 if (!cw)
d7f25f8a 2819 return;
8135be5a 2820
d7f25f8a
GC
2821 cw->memcg = memcg;
2822 cw->cachep = cachep;
d5b3cf71 2823 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2824
17cc4dfe 2825 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2826}
2827
45264778
VD
2828static inline bool memcg_kmem_bypass(void)
2829{
2830 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2831 return true;
2832 return false;
2833}
2834
2835/**
2836 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2837 * @cachep: the original global kmem cache
2838 *
d7f25f8a
GC
2839 * Return the kmem_cache we're supposed to use for a slab allocation.
2840 * We try to use the current memcg's version of the cache.
2841 *
45264778
VD
2842 * If the cache does not exist yet, if we are the first user of it, we
2843 * create it asynchronously in a workqueue and let the current allocation
2844 * go through with the original cache.
d7f25f8a 2845 *
45264778
VD
2846 * This function takes a reference to the cache it returns to assure it
2847 * won't get destroyed while we are working with it. Once the caller is
2848 * done with it, memcg_kmem_put_cache() must be called to release the
2849 * reference.
d7f25f8a 2850 */
45264778 2851struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2852{
2853 struct mem_cgroup *memcg;
959c8963 2854 struct kmem_cache *memcg_cachep;
f0a3a24b 2855 struct memcg_cache_array *arr;
2a4db7eb 2856 int kmemcg_id;
d7f25f8a 2857
f7ce3190 2858 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2859
45264778 2860 if (memcg_kmem_bypass())
230e9fc2
VD
2861 return cachep;
2862
f0a3a24b
RG
2863 rcu_read_lock();
2864
2865 if (unlikely(current->active_memcg))
2866 memcg = current->active_memcg;
2867 else
2868 memcg = mem_cgroup_from_task(current);
2869
2870 if (!memcg || memcg == root_mem_cgroup)
2871 goto out_unlock;
2872
4db0c3c2 2873 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2874 if (kmemcg_id < 0)
f0a3a24b 2875 goto out_unlock;
d7f25f8a 2876
f0a3a24b
RG
2877 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2878
2879 /*
2880 * Make sure we will access the up-to-date value. The code updating
2881 * memcg_caches issues a write barrier to match the data dependency
2882 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2883 */
2884 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2885
2886 /*
2887 * If we are in a safe context (can wait, and not in interrupt
2888 * context), we could be be predictable and return right away.
2889 * This would guarantee that the allocation being performed
2890 * already belongs in the new cache.
2891 *
2892 * However, there are some clashes that can arrive from locking.
2893 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2894 * memcg_create_kmem_cache, this means no further allocation
2895 * could happen with the slab_mutex held. So it's better to
2896 * defer everything.
f0a3a24b
RG
2897 *
2898 * If the memcg is dying or memcg_cache is about to be released,
2899 * don't bother creating new kmem_caches. Because memcg_cachep
2900 * is ZEROed as the fist step of kmem offlining, we don't need
2901 * percpu_ref_tryget_live() here. css_tryget_online() check in
2902 * memcg_schedule_kmem_cache_create() will prevent us from
2903 * creation of a new kmem_cache.
ca0dde97 2904 */
f0a3a24b
RG
2905 if (unlikely(!memcg_cachep))
2906 memcg_schedule_kmem_cache_create(memcg, cachep);
2907 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2908 cachep = memcg_cachep;
2909out_unlock:
2910 rcu_read_unlock();
ca0dde97 2911 return cachep;
d7f25f8a 2912}
d7f25f8a 2913
45264778
VD
2914/**
2915 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2916 * @cachep: the cache returned by memcg_kmem_get_cache
2917 */
2918void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2919{
2920 if (!is_root_cache(cachep))
f0a3a24b 2921 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2922}
2923
45264778 2924/**
60cd4bcd 2925 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2926 * @page: page to charge
2927 * @gfp: reclaim mode
2928 * @order: allocation order
2929 * @memcg: memory cgroup to charge
2930 *
2931 * Returns 0 on success, an error code on failure.
2932 */
60cd4bcd 2933int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2934 struct mem_cgroup *memcg)
7ae1e1d0 2935{
f3ccb2c4
VD
2936 unsigned int nr_pages = 1 << order;
2937 struct page_counter *counter;
7ae1e1d0
GC
2938 int ret;
2939
f3ccb2c4 2940 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2941 if (ret)
f3ccb2c4 2942 return ret;
52c29b04
JW
2943
2944 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2945 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2946 cancel_charge(memcg, nr_pages);
2947 return -ENOMEM;
7ae1e1d0 2948 }
f3ccb2c4 2949 return 0;
7ae1e1d0
GC
2950}
2951
45264778 2952/**
60cd4bcd 2953 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2954 * @page: page to charge
2955 * @gfp: reclaim mode
2956 * @order: allocation order
2957 *
2958 * Returns 0 on success, an error code on failure.
2959 */
60cd4bcd 2960int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2961{
f3ccb2c4 2962 struct mem_cgroup *memcg;
fcff7d7e 2963 int ret = 0;
7ae1e1d0 2964
60cd4bcd 2965 if (memcg_kmem_bypass())
45264778
VD
2966 return 0;
2967
d46eb14b 2968 memcg = get_mem_cgroup_from_current();
c4159a75 2969 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2970 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2971 if (!ret) {
2972 page->mem_cgroup = memcg;
c4159a75 2973 __SetPageKmemcg(page);
4d96ba35 2974 }
c4159a75 2975 }
7ae1e1d0 2976 css_put(&memcg->css);
d05e83a6 2977 return ret;
7ae1e1d0 2978}
49a18eae
RG
2979
2980/**
2981 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2982 * @memcg: memcg to uncharge
2983 * @nr_pages: number of pages to uncharge
2984 */
2985void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2986 unsigned int nr_pages)
2987{
2988 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2989 page_counter_uncharge(&memcg->kmem, nr_pages);
2990
2991 page_counter_uncharge(&memcg->memory, nr_pages);
2992 if (do_memsw_account())
2993 page_counter_uncharge(&memcg->memsw, nr_pages);
2994}
45264778 2995/**
60cd4bcd 2996 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2997 * @page: page to uncharge
2998 * @order: allocation order
2999 */
60cd4bcd 3000void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 3001{
1306a85a 3002 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3003 unsigned int nr_pages = 1 << order;
7ae1e1d0 3004
7ae1e1d0
GC
3005 if (!memcg)
3006 return;
3007
309381fe 3008 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 3009 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 3010 page->mem_cgroup = NULL;
c4159a75
VD
3011
3012 /* slab pages do not have PageKmemcg flag set */
3013 if (PageKmemcg(page))
3014 __ClearPageKmemcg(page);
3015
f3ccb2c4 3016 css_put_many(&memcg->css, nr_pages);
60d3fd32 3017}
84c07d11 3018#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3019
ca3e0214
KH
3020#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3021
ca3e0214
KH
3022/*
3023 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3024 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3025 */
e94c8a9c 3026void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3027{
e94c8a9c 3028 int i;
ca3e0214 3029
3d37c4a9
KH
3030 if (mem_cgroup_disabled())
3031 return;
b070e65c 3032
29833315 3033 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3034 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3035
c9019e9b 3036 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 3037}
12d27107 3038#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3039
c255a458 3040#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3041/**
3042 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3043 * @entry: swap entry to be moved
3044 * @from: mem_cgroup which the entry is moved from
3045 * @to: mem_cgroup which the entry is moved to
3046 *
3047 * It succeeds only when the swap_cgroup's record for this entry is the same
3048 * as the mem_cgroup's id of @from.
3049 *
3050 * Returns 0 on success, -EINVAL on failure.
3051 *
3e32cb2e 3052 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3053 * both res and memsw, and called css_get().
3054 */
3055static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3056 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3057{
3058 unsigned short old_id, new_id;
3059
34c00c31
LZ
3060 old_id = mem_cgroup_id(from);
3061 new_id = mem_cgroup_id(to);
02491447
DN
3062
3063 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3064 mod_memcg_state(from, MEMCG_SWAP, -1);
3065 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3066 return 0;
3067 }
3068 return -EINVAL;
3069}
3070#else
3071static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3072 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3073{
3074 return -EINVAL;
3075}
8c7c6e34 3076#endif
d13d1443 3077
bbec2e15 3078static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3079
bbec2e15
RG
3080static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3081 unsigned long max, bool memsw)
628f4235 3082{
3e32cb2e 3083 bool enlarge = false;
bb4a7ea2 3084 bool drained = false;
3e32cb2e 3085 int ret;
c054a78c
YZ
3086 bool limits_invariant;
3087 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3088
3e32cb2e 3089 do {
628f4235
KH
3090 if (signal_pending(current)) {
3091 ret = -EINTR;
3092 break;
3093 }
3e32cb2e 3094
bbec2e15 3095 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3096 /*
3097 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3098 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3099 */
bbec2e15
RG
3100 limits_invariant = memsw ? max >= memcg->memory.max :
3101 max <= memcg->memsw.max;
c054a78c 3102 if (!limits_invariant) {
bbec2e15 3103 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3104 ret = -EINVAL;
8c7c6e34
KH
3105 break;
3106 }
bbec2e15 3107 if (max > counter->max)
3e32cb2e 3108 enlarge = true;
bbec2e15
RG
3109 ret = page_counter_set_max(counter, max);
3110 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3111
3112 if (!ret)
3113 break;
3114
bb4a7ea2
SB
3115 if (!drained) {
3116 drain_all_stock(memcg);
3117 drained = true;
3118 continue;
3119 }
3120
1ab5c056
AR
3121 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3122 GFP_KERNEL, !memsw)) {
3123 ret = -EBUSY;
3124 break;
3125 }
3126 } while (true);
3e32cb2e 3127
3c11ecf4
KH
3128 if (!ret && enlarge)
3129 memcg_oom_recover(memcg);
3e32cb2e 3130
628f4235
KH
3131 return ret;
3132}
3133
ef8f2327 3134unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3135 gfp_t gfp_mask,
3136 unsigned long *total_scanned)
3137{
3138 unsigned long nr_reclaimed = 0;
ef8f2327 3139 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3140 unsigned long reclaimed;
3141 int loop = 0;
ef8f2327 3142 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3143 unsigned long excess;
0608f43d
AM
3144 unsigned long nr_scanned;
3145
3146 if (order > 0)
3147 return 0;
3148
ef8f2327 3149 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3150
3151 /*
3152 * Do not even bother to check the largest node if the root
3153 * is empty. Do it lockless to prevent lock bouncing. Races
3154 * are acceptable as soft limit is best effort anyway.
3155 */
bfc7228b 3156 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3157 return 0;
3158
0608f43d
AM
3159 /*
3160 * This loop can run a while, specially if mem_cgroup's continuously
3161 * keep exceeding their soft limit and putting the system under
3162 * pressure
3163 */
3164 do {
3165 if (next_mz)
3166 mz = next_mz;
3167 else
3168 mz = mem_cgroup_largest_soft_limit_node(mctz);
3169 if (!mz)
3170 break;
3171
3172 nr_scanned = 0;
ef8f2327 3173 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3174 gfp_mask, &nr_scanned);
3175 nr_reclaimed += reclaimed;
3176 *total_scanned += nr_scanned;
0a31bc97 3177 spin_lock_irq(&mctz->lock);
bc2f2e7f 3178 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3179
3180 /*
3181 * If we failed to reclaim anything from this memory cgroup
3182 * it is time to move on to the next cgroup
3183 */
3184 next_mz = NULL;
bc2f2e7f
VD
3185 if (!reclaimed)
3186 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3187
3e32cb2e 3188 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3189 /*
3190 * One school of thought says that we should not add
3191 * back the node to the tree if reclaim returns 0.
3192 * But our reclaim could return 0, simply because due
3193 * to priority we are exposing a smaller subset of
3194 * memory to reclaim from. Consider this as a longer
3195 * term TODO.
3196 */
3197 /* If excess == 0, no tree ops */
cf2c8127 3198 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3199 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3200 css_put(&mz->memcg->css);
3201 loop++;
3202 /*
3203 * Could not reclaim anything and there are no more
3204 * mem cgroups to try or we seem to be looping without
3205 * reclaiming anything.
3206 */
3207 if (!nr_reclaimed &&
3208 (next_mz == NULL ||
3209 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3210 break;
3211 } while (!nr_reclaimed);
3212 if (next_mz)
3213 css_put(&next_mz->memcg->css);
3214 return nr_reclaimed;
3215}
3216
ea280e7b
TH
3217/*
3218 * Test whether @memcg has children, dead or alive. Note that this
3219 * function doesn't care whether @memcg has use_hierarchy enabled and
3220 * returns %true if there are child csses according to the cgroup
3221 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3222 */
b5f99b53
GC
3223static inline bool memcg_has_children(struct mem_cgroup *memcg)
3224{
ea280e7b
TH
3225 bool ret;
3226
ea280e7b
TH
3227 rcu_read_lock();
3228 ret = css_next_child(NULL, &memcg->css);
3229 rcu_read_unlock();
3230 return ret;
b5f99b53
GC
3231}
3232
c26251f9 3233/*
51038171 3234 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3235 *
3236 * Caller is responsible for holding css reference for memcg.
3237 */
3238static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3239{
3240 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3241
c1e862c1
KH
3242 /* we call try-to-free pages for make this cgroup empty */
3243 lru_add_drain_all();
d12c60f6
JS
3244
3245 drain_all_stock(memcg);
3246
f817ed48 3247 /* try to free all pages in this cgroup */
3e32cb2e 3248 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3249 int progress;
c1e862c1 3250
c26251f9
MH
3251 if (signal_pending(current))
3252 return -EINTR;
3253
b70a2a21
JW
3254 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3255 GFP_KERNEL, true);
c1e862c1 3256 if (!progress) {
f817ed48 3257 nr_retries--;
c1e862c1 3258 /* maybe some writeback is necessary */
8aa7e847 3259 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3260 }
f817ed48
KH
3261
3262 }
ab5196c2
MH
3263
3264 return 0;
cc847582
KH
3265}
3266
6770c64e
TH
3267static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3268 char *buf, size_t nbytes,
3269 loff_t off)
c1e862c1 3270{
6770c64e 3271 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3272
d8423011
MH
3273 if (mem_cgroup_is_root(memcg))
3274 return -EINVAL;
6770c64e 3275 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3276}
3277
182446d0
TH
3278static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3279 struct cftype *cft)
18f59ea7 3280{
182446d0 3281 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3282}
3283
182446d0
TH
3284static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3285 struct cftype *cft, u64 val)
18f59ea7
BS
3286{
3287 int retval = 0;
182446d0 3288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3289 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3290
567fb435 3291 if (memcg->use_hierarchy == val)
0b8f73e1 3292 return 0;
567fb435 3293
18f59ea7 3294 /*
af901ca1 3295 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3296 * in the child subtrees. If it is unset, then the change can
3297 * occur, provided the current cgroup has no children.
3298 *
3299 * For the root cgroup, parent_mem is NULL, we allow value to be
3300 * set if there are no children.
3301 */
c0ff4b85 3302 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3303 (val == 1 || val == 0)) {
ea280e7b 3304 if (!memcg_has_children(memcg))
c0ff4b85 3305 memcg->use_hierarchy = val;
18f59ea7
BS
3306 else
3307 retval = -EBUSY;
3308 } else
3309 retval = -EINVAL;
567fb435 3310
18f59ea7
BS
3311 return retval;
3312}
3313
6f646156 3314static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3315{
42a30035 3316 unsigned long val;
ce00a967 3317
3e32cb2e 3318 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3319 val = memcg_page_state(memcg, MEMCG_CACHE) +
3320 memcg_page_state(memcg, MEMCG_RSS);
3321 if (swap)
3322 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3323 } else {
ce00a967 3324 if (!swap)
3e32cb2e 3325 val = page_counter_read(&memcg->memory);
ce00a967 3326 else
3e32cb2e 3327 val = page_counter_read(&memcg->memsw);
ce00a967 3328 }
c12176d3 3329 return val;
ce00a967
JW
3330}
3331
3e32cb2e
JW
3332enum {
3333 RES_USAGE,
3334 RES_LIMIT,
3335 RES_MAX_USAGE,
3336 RES_FAILCNT,
3337 RES_SOFT_LIMIT,
3338};
ce00a967 3339
791badbd 3340static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3341 struct cftype *cft)
8cdea7c0 3342{
182446d0 3343 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3344 struct page_counter *counter;
af36f906 3345
3e32cb2e 3346 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3347 case _MEM:
3e32cb2e
JW
3348 counter = &memcg->memory;
3349 break;
8c7c6e34 3350 case _MEMSWAP:
3e32cb2e
JW
3351 counter = &memcg->memsw;
3352 break;
510fc4e1 3353 case _KMEM:
3e32cb2e 3354 counter = &memcg->kmem;
510fc4e1 3355 break;
d55f90bf 3356 case _TCP:
0db15298 3357 counter = &memcg->tcpmem;
d55f90bf 3358 break;
8c7c6e34
KH
3359 default:
3360 BUG();
8c7c6e34 3361 }
3e32cb2e
JW
3362
3363 switch (MEMFILE_ATTR(cft->private)) {
3364 case RES_USAGE:
3365 if (counter == &memcg->memory)
c12176d3 3366 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3367 if (counter == &memcg->memsw)
c12176d3 3368 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3369 return (u64)page_counter_read(counter) * PAGE_SIZE;
3370 case RES_LIMIT:
bbec2e15 3371 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3372 case RES_MAX_USAGE:
3373 return (u64)counter->watermark * PAGE_SIZE;
3374 case RES_FAILCNT:
3375 return counter->failcnt;
3376 case RES_SOFT_LIMIT:
3377 return (u64)memcg->soft_limit * PAGE_SIZE;
3378 default:
3379 BUG();
3380 }
8cdea7c0 3381}
510fc4e1 3382
bee07b33 3383static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
c350a99e
RG
3384{
3385 unsigned long stat[MEMCG_NR_STAT];
3386 struct mem_cgroup *mi;
3387 int node, cpu, i;
bee07b33 3388 int min_idx, max_idx;
c350a99e 3389
bee07b33
RG
3390 if (slab_only) {
3391 min_idx = NR_SLAB_RECLAIMABLE;
3392 max_idx = NR_SLAB_UNRECLAIMABLE;
3393 } else {
3394 min_idx = 0;
3395 max_idx = MEMCG_NR_STAT;
3396 }
3397
3398 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3399 stat[i] = 0;
3400
3401 for_each_online_cpu(cpu)
bee07b33 3402 for (i = min_idx; i < max_idx; i++)
6c1c2808 3403 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3404
3405 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
bee07b33 3406 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3407 atomic_long_add(stat[i], &mi->vmstats[i]);
3408
bee07b33
RG
3409 if (!slab_only)
3410 max_idx = NR_VM_NODE_STAT_ITEMS;
3411
c350a99e
RG
3412 for_each_node(node) {
3413 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3414 struct mem_cgroup_per_node *pi;
3415
bee07b33 3416 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3417 stat[i] = 0;
3418
3419 for_each_online_cpu(cpu)
bee07b33 3420 for (i = min_idx; i < max_idx; i++)
6c1c2808
SB
3421 stat[i] += per_cpu(
3422 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3423
3424 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
bee07b33 3425 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3426 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3427 }
3428}
3429
bb65f89b
RG
3430static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3431{
3432 unsigned long events[NR_VM_EVENT_ITEMS];
3433 struct mem_cgroup *mi;
3434 int cpu, i;
3435
3436 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3437 events[i] = 0;
3438
3439 for_each_online_cpu(cpu)
3440 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3441 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3442 cpu);
bb65f89b
RG
3443
3444 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3445 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3446 atomic_long_add(events[i], &mi->vmevents[i]);
3447}
3448
84c07d11 3449#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3450static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3451{
d6441637
VD
3452 int memcg_id;
3453
b313aeee
VD
3454 if (cgroup_memory_nokmem)
3455 return 0;
3456
2a4db7eb 3457 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3458 BUG_ON(memcg->kmem_state);
d6441637 3459
f3bb3043 3460 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3461 if (memcg_id < 0)
3462 return memcg_id;
d6441637 3463
ef12947c 3464 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3465 /*
567e9ab2 3466 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3467 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3468 * guarantee no one starts accounting before all call sites are
3469 * patched.
3470 */
900a38f0 3471 memcg->kmemcg_id = memcg_id;
567e9ab2 3472 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3473 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3474
3475 return 0;
d6441637
VD
3476}
3477
8e0a8912
JW
3478static void memcg_offline_kmem(struct mem_cgroup *memcg)
3479{
3480 struct cgroup_subsys_state *css;
3481 struct mem_cgroup *parent, *child;
3482 int kmemcg_id;
3483
3484 if (memcg->kmem_state != KMEM_ONLINE)
3485 return;
3486 /*
3487 * Clear the online state before clearing memcg_caches array
3488 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3489 * guarantees that no cache will be created for this cgroup
3490 * after we are done (see memcg_create_kmem_cache()).
3491 */
3492 memcg->kmem_state = KMEM_ALLOCATED;
3493
8e0a8912
JW
3494 parent = parent_mem_cgroup(memcg);
3495 if (!parent)
3496 parent = root_mem_cgroup;
3497
bee07b33
RG
3498 /*
3499 * Deactivate and reparent kmem_caches. Then flush percpu
3500 * slab statistics to have precise values at the parent and
3501 * all ancestor levels. It's required to keep slab stats
3502 * accurate after the reparenting of kmem_caches.
3503 */
fb2f2b0a 3504 memcg_deactivate_kmem_caches(memcg, parent);
bee07b33 3505 memcg_flush_percpu_vmstats(memcg, true);
fb2f2b0a
RG
3506
3507 kmemcg_id = memcg->kmemcg_id;
3508 BUG_ON(kmemcg_id < 0);
3509
8e0a8912
JW
3510 /*
3511 * Change kmemcg_id of this cgroup and all its descendants to the
3512 * parent's id, and then move all entries from this cgroup's list_lrus
3513 * to ones of the parent. After we have finished, all list_lrus
3514 * corresponding to this cgroup are guaranteed to remain empty. The
3515 * ordering is imposed by list_lru_node->lock taken by
3516 * memcg_drain_all_list_lrus().
3517 */
3a06bb78 3518 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3519 css_for_each_descendant_pre(css, &memcg->css) {
3520 child = mem_cgroup_from_css(css);
3521 BUG_ON(child->kmemcg_id != kmemcg_id);
3522 child->kmemcg_id = parent->kmemcg_id;
3523 if (!memcg->use_hierarchy)
3524 break;
3525 }
3a06bb78
TH
3526 rcu_read_unlock();
3527
9bec5c35 3528 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3529
3530 memcg_free_cache_id(kmemcg_id);
3531}
3532
3533static void memcg_free_kmem(struct mem_cgroup *memcg)
3534{
0b8f73e1
JW
3535 /* css_alloc() failed, offlining didn't happen */
3536 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3537 memcg_offline_kmem(memcg);
3538
8e0a8912 3539 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3540 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3541 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3542 }
8e0a8912 3543}
d6441637 3544#else
0b8f73e1 3545static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3546{
3547 return 0;
3548}
3549static void memcg_offline_kmem(struct mem_cgroup *memcg)
3550{
3551}
3552static void memcg_free_kmem(struct mem_cgroup *memcg)
3553{
3554}
84c07d11 3555#endif /* CONFIG_MEMCG_KMEM */
127424c8 3556
bbec2e15
RG
3557static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3558 unsigned long max)
d6441637 3559{
b313aeee 3560 int ret;
127424c8 3561
bbec2e15
RG
3562 mutex_lock(&memcg_max_mutex);
3563 ret = page_counter_set_max(&memcg->kmem, max);
3564 mutex_unlock(&memcg_max_mutex);
127424c8 3565 return ret;
d6441637 3566}
510fc4e1 3567
bbec2e15 3568static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3569{
3570 int ret;
3571
bbec2e15 3572 mutex_lock(&memcg_max_mutex);
d55f90bf 3573
bbec2e15 3574 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3575 if (ret)
3576 goto out;
3577
0db15298 3578 if (!memcg->tcpmem_active) {
d55f90bf
VD
3579 /*
3580 * The active flag needs to be written after the static_key
3581 * update. This is what guarantees that the socket activation
2d758073
JW
3582 * function is the last one to run. See mem_cgroup_sk_alloc()
3583 * for details, and note that we don't mark any socket as
3584 * belonging to this memcg until that flag is up.
d55f90bf
VD
3585 *
3586 * We need to do this, because static_keys will span multiple
3587 * sites, but we can't control their order. If we mark a socket
3588 * as accounted, but the accounting functions are not patched in
3589 * yet, we'll lose accounting.
3590 *
2d758073 3591 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3592 * because when this value change, the code to process it is not
3593 * patched in yet.
3594 */
3595 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3596 memcg->tcpmem_active = true;
d55f90bf
VD
3597 }
3598out:
bbec2e15 3599 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3600 return ret;
3601}
d55f90bf 3602
628f4235
KH
3603/*
3604 * The user of this function is...
3605 * RES_LIMIT.
3606 */
451af504
TH
3607static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3608 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3609{
451af504 3610 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3611 unsigned long nr_pages;
628f4235
KH
3612 int ret;
3613
451af504 3614 buf = strstrip(buf);
650c5e56 3615 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3616 if (ret)
3617 return ret;
af36f906 3618
3e32cb2e 3619 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3620 case RES_LIMIT:
4b3bde4c
BS
3621 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3622 ret = -EINVAL;
3623 break;
3624 }
3e32cb2e
JW
3625 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3626 case _MEM:
bbec2e15 3627 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3628 break;
3e32cb2e 3629 case _MEMSWAP:
bbec2e15 3630 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3631 break;
3e32cb2e 3632 case _KMEM:
0158115f
MH
3633 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3634 "Please report your usecase to linux-mm@kvack.org if you "
3635 "depend on this functionality.\n");
bbec2e15 3636 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3637 break;
d55f90bf 3638 case _TCP:
bbec2e15 3639 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3640 break;
3e32cb2e 3641 }
296c81d8 3642 break;
3e32cb2e
JW
3643 case RES_SOFT_LIMIT:
3644 memcg->soft_limit = nr_pages;
3645 ret = 0;
628f4235
KH
3646 break;
3647 }
451af504 3648 return ret ?: nbytes;
8cdea7c0
BS
3649}
3650
6770c64e
TH
3651static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3652 size_t nbytes, loff_t off)
c84872e1 3653{
6770c64e 3654 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3655 struct page_counter *counter;
c84872e1 3656
3e32cb2e
JW
3657 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3658 case _MEM:
3659 counter = &memcg->memory;
3660 break;
3661 case _MEMSWAP:
3662 counter = &memcg->memsw;
3663 break;
3664 case _KMEM:
3665 counter = &memcg->kmem;
3666 break;
d55f90bf 3667 case _TCP:
0db15298 3668 counter = &memcg->tcpmem;
d55f90bf 3669 break;
3e32cb2e
JW
3670 default:
3671 BUG();
3672 }
af36f906 3673
3e32cb2e 3674 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3675 case RES_MAX_USAGE:
3e32cb2e 3676 page_counter_reset_watermark(counter);
29f2a4da
PE
3677 break;
3678 case RES_FAILCNT:
3e32cb2e 3679 counter->failcnt = 0;
29f2a4da 3680 break;
3e32cb2e
JW
3681 default:
3682 BUG();
29f2a4da 3683 }
f64c3f54 3684
6770c64e 3685 return nbytes;
c84872e1
PE
3686}
3687
182446d0 3688static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3689 struct cftype *cft)
3690{
182446d0 3691 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3692}
3693
02491447 3694#ifdef CONFIG_MMU
182446d0 3695static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3696 struct cftype *cft, u64 val)
3697{
182446d0 3698 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3699
1dfab5ab 3700 if (val & ~MOVE_MASK)
7dc74be0 3701 return -EINVAL;
ee5e8472 3702
7dc74be0 3703 /*
ee5e8472
GC
3704 * No kind of locking is needed in here, because ->can_attach() will
3705 * check this value once in the beginning of the process, and then carry
3706 * on with stale data. This means that changes to this value will only
3707 * affect task migrations starting after the change.
7dc74be0 3708 */
c0ff4b85 3709 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3710 return 0;
3711}
02491447 3712#else
182446d0 3713static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3714 struct cftype *cft, u64 val)
3715{
3716 return -ENOSYS;
3717}
3718#endif
7dc74be0 3719
406eb0c9 3720#ifdef CONFIG_NUMA
113b7dfd
JW
3721
3722#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3723#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3724#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3725
3726static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3727 int nid, unsigned int lru_mask)
3728{
3729 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3730 unsigned long nr = 0;
3731 enum lru_list lru;
3732
3733 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3734
3735 for_each_lru(lru) {
3736 if (!(BIT(lru) & lru_mask))
3737 continue;
205b20cc 3738 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3739 }
3740 return nr;
3741}
3742
3743static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3744 unsigned int lru_mask)
3745{
3746 unsigned long nr = 0;
3747 enum lru_list lru;
3748
3749 for_each_lru(lru) {
3750 if (!(BIT(lru) & lru_mask))
3751 continue;
205b20cc 3752 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3753 }
3754 return nr;
3755}
3756
2da8ca82 3757static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3758{
25485de6
GT
3759 struct numa_stat {
3760 const char *name;
3761 unsigned int lru_mask;
3762 };
3763
3764 static const struct numa_stat stats[] = {
3765 { "total", LRU_ALL },
3766 { "file", LRU_ALL_FILE },
3767 { "anon", LRU_ALL_ANON },
3768 { "unevictable", BIT(LRU_UNEVICTABLE) },
3769 };
3770 const struct numa_stat *stat;
406eb0c9 3771 int nid;
25485de6 3772 unsigned long nr;
aa9694bb 3773 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3774
25485de6
GT
3775 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3776 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3777 seq_printf(m, "%s=%lu", stat->name, nr);
3778 for_each_node_state(nid, N_MEMORY) {
3779 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3780 stat->lru_mask);
3781 seq_printf(m, " N%d=%lu", nid, nr);
3782 }
3783 seq_putc(m, '\n');
406eb0c9 3784 }
406eb0c9 3785
071aee13
YH
3786 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3787 struct mem_cgroup *iter;
3788
3789 nr = 0;
3790 for_each_mem_cgroup_tree(iter, memcg)
3791 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3792 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3793 for_each_node_state(nid, N_MEMORY) {
3794 nr = 0;
3795 for_each_mem_cgroup_tree(iter, memcg)
3796 nr += mem_cgroup_node_nr_lru_pages(
3797 iter, nid, stat->lru_mask);
3798 seq_printf(m, " N%d=%lu", nid, nr);
3799 }
3800 seq_putc(m, '\n');
406eb0c9 3801 }
406eb0c9 3802
406eb0c9
YH
3803 return 0;
3804}
3805#endif /* CONFIG_NUMA */
3806
c8713d0b
JW
3807static const unsigned int memcg1_stats[] = {
3808 MEMCG_CACHE,
3809 MEMCG_RSS,
3810 MEMCG_RSS_HUGE,
3811 NR_SHMEM,
3812 NR_FILE_MAPPED,
3813 NR_FILE_DIRTY,
3814 NR_WRITEBACK,
3815 MEMCG_SWAP,
3816};
3817
3818static const char *const memcg1_stat_names[] = {
3819 "cache",
3820 "rss",
3821 "rss_huge",
3822 "shmem",
3823 "mapped_file",
3824 "dirty",
3825 "writeback",
3826 "swap",
3827};
3828
df0e53d0 3829/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3830static const unsigned int memcg1_events[] = {
df0e53d0
JW
3831 PGPGIN,
3832 PGPGOUT,
3833 PGFAULT,
3834 PGMAJFAULT,
3835};
3836
3837static const char *const memcg1_event_names[] = {
3838 "pgpgin",
3839 "pgpgout",
3840 "pgfault",
3841 "pgmajfault",
3842};
3843
2da8ca82 3844static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3845{
aa9694bb 3846 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3847 unsigned long memory, memsw;
af7c4b0e
JW
3848 struct mem_cgroup *mi;
3849 unsigned int i;
406eb0c9 3850
71cd3113 3851 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3852 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3853
71cd3113
JW
3854 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3855 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3856 continue;
71cd3113 3857 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3858 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3859 PAGE_SIZE);
1dd3a273 3860 }
7b854121 3861
df0e53d0
JW
3862 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3863 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3864 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3865
3866 for (i = 0; i < NR_LRU_LISTS; i++)
3867 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3868 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3869 PAGE_SIZE);
af7c4b0e 3870
14067bb3 3871 /* Hierarchical information */
3e32cb2e
JW
3872 memory = memsw = PAGE_COUNTER_MAX;
3873 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3874 memory = min(memory, mi->memory.max);
3875 memsw = min(memsw, mi->memsw.max);
fee7b548 3876 }
3e32cb2e
JW
3877 seq_printf(m, "hierarchical_memory_limit %llu\n",
3878 (u64)memory * PAGE_SIZE);
7941d214 3879 if (do_memsw_account())
3e32cb2e
JW
3880 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3881 (u64)memsw * PAGE_SIZE);
7f016ee8 3882
8de7ecc6 3883 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3884 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3885 continue;
8de7ecc6 3886 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3887 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3888 PAGE_SIZE);
af7c4b0e
JW
3889 }
3890
8de7ecc6
SB
3891 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3892 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
dd923990 3893 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3894
8de7ecc6
SB
3895 for (i = 0; i < NR_LRU_LISTS; i++)
3896 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
3897 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3898 PAGE_SIZE);
14067bb3 3899
7f016ee8 3900#ifdef CONFIG_DEBUG_VM
7f016ee8 3901 {
ef8f2327
MG
3902 pg_data_t *pgdat;
3903 struct mem_cgroup_per_node *mz;
89abfab1 3904 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3905 unsigned long recent_rotated[2] = {0, 0};
3906 unsigned long recent_scanned[2] = {0, 0};
3907
ef8f2327
MG
3908 for_each_online_pgdat(pgdat) {
3909 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3910 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3911
ef8f2327
MG
3912 recent_rotated[0] += rstat->recent_rotated[0];
3913 recent_rotated[1] += rstat->recent_rotated[1];
3914 recent_scanned[0] += rstat->recent_scanned[0];
3915 recent_scanned[1] += rstat->recent_scanned[1];
3916 }
78ccf5b5
JW
3917 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3918 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3919 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3920 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3921 }
3922#endif
3923
d2ceb9b7
KH
3924 return 0;
3925}
3926
182446d0
TH
3927static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3928 struct cftype *cft)
a7885eb8 3929{
182446d0 3930 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3931
1f4c025b 3932 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3933}
3934
182446d0
TH
3935static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3936 struct cftype *cft, u64 val)
a7885eb8 3937{
182446d0 3938 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3939
3dae7fec 3940 if (val > 100)
a7885eb8
KM
3941 return -EINVAL;
3942
14208b0e 3943 if (css->parent)
3dae7fec
JW
3944 memcg->swappiness = val;
3945 else
3946 vm_swappiness = val;
068b38c1 3947
a7885eb8
KM
3948 return 0;
3949}
3950
2e72b634
KS
3951static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3952{
3953 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3954 unsigned long usage;
2e72b634
KS
3955 int i;
3956
3957 rcu_read_lock();
3958 if (!swap)
2c488db2 3959 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3960 else
2c488db2 3961 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3962
3963 if (!t)
3964 goto unlock;
3965
ce00a967 3966 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3967
3968 /*
748dad36 3969 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3970 * If it's not true, a threshold was crossed after last
3971 * call of __mem_cgroup_threshold().
3972 */
5407a562 3973 i = t->current_threshold;
2e72b634
KS
3974
3975 /*
3976 * Iterate backward over array of thresholds starting from
3977 * current_threshold and check if a threshold is crossed.
3978 * If none of thresholds below usage is crossed, we read
3979 * only one element of the array here.
3980 */
3981 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3982 eventfd_signal(t->entries[i].eventfd, 1);
3983
3984 /* i = current_threshold + 1 */
3985 i++;
3986
3987 /*
3988 * Iterate forward over array of thresholds starting from
3989 * current_threshold+1 and check if a threshold is crossed.
3990 * If none of thresholds above usage is crossed, we read
3991 * only one element of the array here.
3992 */
3993 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3994 eventfd_signal(t->entries[i].eventfd, 1);
3995
3996 /* Update current_threshold */
5407a562 3997 t->current_threshold = i - 1;
2e72b634
KS
3998unlock:
3999 rcu_read_unlock();
4000}
4001
4002static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4003{
ad4ca5f4
KS
4004 while (memcg) {
4005 __mem_cgroup_threshold(memcg, false);
7941d214 4006 if (do_memsw_account())
ad4ca5f4
KS
4007 __mem_cgroup_threshold(memcg, true);
4008
4009 memcg = parent_mem_cgroup(memcg);
4010 }
2e72b634
KS
4011}
4012
4013static int compare_thresholds(const void *a, const void *b)
4014{
4015 const struct mem_cgroup_threshold *_a = a;
4016 const struct mem_cgroup_threshold *_b = b;
4017
2bff24a3
GT
4018 if (_a->threshold > _b->threshold)
4019 return 1;
4020
4021 if (_a->threshold < _b->threshold)
4022 return -1;
4023
4024 return 0;
2e72b634
KS
4025}
4026
c0ff4b85 4027static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4028{
4029 struct mem_cgroup_eventfd_list *ev;
4030
2bcf2e92
MH
4031 spin_lock(&memcg_oom_lock);
4032
c0ff4b85 4033 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4034 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4035
4036 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4037 return 0;
4038}
4039
c0ff4b85 4040static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4041{
7d74b06f
KH
4042 struct mem_cgroup *iter;
4043
c0ff4b85 4044 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4045 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4046}
4047
59b6f873 4048static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4049 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4050{
2c488db2
KS
4051 struct mem_cgroup_thresholds *thresholds;
4052 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4053 unsigned long threshold;
4054 unsigned long usage;
2c488db2 4055 int i, size, ret;
2e72b634 4056
650c5e56 4057 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4058 if (ret)
4059 return ret;
4060
4061 mutex_lock(&memcg->thresholds_lock);
2c488db2 4062
05b84301 4063 if (type == _MEM) {
2c488db2 4064 thresholds = &memcg->thresholds;
ce00a967 4065 usage = mem_cgroup_usage(memcg, false);
05b84301 4066 } else if (type == _MEMSWAP) {
2c488db2 4067 thresholds = &memcg->memsw_thresholds;
ce00a967 4068 usage = mem_cgroup_usage(memcg, true);
05b84301 4069 } else
2e72b634
KS
4070 BUG();
4071
2e72b634 4072 /* Check if a threshold crossed before adding a new one */
2c488db2 4073 if (thresholds->primary)
2e72b634
KS
4074 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4075
2c488db2 4076 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4077
4078 /* Allocate memory for new array of thresholds */
67b8046f 4079 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4080 if (!new) {
2e72b634
KS
4081 ret = -ENOMEM;
4082 goto unlock;
4083 }
2c488db2 4084 new->size = size;
2e72b634
KS
4085
4086 /* Copy thresholds (if any) to new array */
2c488db2
KS
4087 if (thresholds->primary) {
4088 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4089 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4090 }
4091
2e72b634 4092 /* Add new threshold */
2c488db2
KS
4093 new->entries[size - 1].eventfd = eventfd;
4094 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4095
4096 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4097 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4098 compare_thresholds, NULL);
4099
4100 /* Find current threshold */
2c488db2 4101 new->current_threshold = -1;
2e72b634 4102 for (i = 0; i < size; i++) {
748dad36 4103 if (new->entries[i].threshold <= usage) {
2e72b634 4104 /*
2c488db2
KS
4105 * new->current_threshold will not be used until
4106 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4107 * it here.
4108 */
2c488db2 4109 ++new->current_threshold;
748dad36
SZ
4110 } else
4111 break;
2e72b634
KS
4112 }
4113
2c488db2
KS
4114 /* Free old spare buffer and save old primary buffer as spare */
4115 kfree(thresholds->spare);
4116 thresholds->spare = thresholds->primary;
4117
4118 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4119
907860ed 4120 /* To be sure that nobody uses thresholds */
2e72b634
KS
4121 synchronize_rcu();
4122
2e72b634
KS
4123unlock:
4124 mutex_unlock(&memcg->thresholds_lock);
4125
4126 return ret;
4127}
4128
59b6f873 4129static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4130 struct eventfd_ctx *eventfd, const char *args)
4131{
59b6f873 4132 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4133}
4134
59b6f873 4135static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4136 struct eventfd_ctx *eventfd, const char *args)
4137{
59b6f873 4138 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4139}
4140
59b6f873 4141static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4142 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4143{
2c488db2
KS
4144 struct mem_cgroup_thresholds *thresholds;
4145 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4146 unsigned long usage;
2c488db2 4147 int i, j, size;
2e72b634
KS
4148
4149 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4150
4151 if (type == _MEM) {
2c488db2 4152 thresholds = &memcg->thresholds;
ce00a967 4153 usage = mem_cgroup_usage(memcg, false);
05b84301 4154 } else if (type == _MEMSWAP) {
2c488db2 4155 thresholds = &memcg->memsw_thresholds;
ce00a967 4156 usage = mem_cgroup_usage(memcg, true);
05b84301 4157 } else
2e72b634
KS
4158 BUG();
4159
371528ca
AV
4160 if (!thresholds->primary)
4161 goto unlock;
4162
2e72b634
KS
4163 /* Check if a threshold crossed before removing */
4164 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4165
4166 /* Calculate new number of threshold */
2c488db2
KS
4167 size = 0;
4168 for (i = 0; i < thresholds->primary->size; i++) {
4169 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4170 size++;
4171 }
4172
2c488db2 4173 new = thresholds->spare;
907860ed 4174
2e72b634
KS
4175 /* Set thresholds array to NULL if we don't have thresholds */
4176 if (!size) {
2c488db2
KS
4177 kfree(new);
4178 new = NULL;
907860ed 4179 goto swap_buffers;
2e72b634
KS
4180 }
4181
2c488db2 4182 new->size = size;
2e72b634
KS
4183
4184 /* Copy thresholds and find current threshold */
2c488db2
KS
4185 new->current_threshold = -1;
4186 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4187 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4188 continue;
4189
2c488db2 4190 new->entries[j] = thresholds->primary->entries[i];
748dad36 4191 if (new->entries[j].threshold <= usage) {
2e72b634 4192 /*
2c488db2 4193 * new->current_threshold will not be used
2e72b634
KS
4194 * until rcu_assign_pointer(), so it's safe to increment
4195 * it here.
4196 */
2c488db2 4197 ++new->current_threshold;
2e72b634
KS
4198 }
4199 j++;
4200 }
4201
907860ed 4202swap_buffers:
2c488db2
KS
4203 /* Swap primary and spare array */
4204 thresholds->spare = thresholds->primary;
8c757763 4205
2c488db2 4206 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4207
907860ed 4208 /* To be sure that nobody uses thresholds */
2e72b634 4209 synchronize_rcu();
6611d8d7
MC
4210
4211 /* If all events are unregistered, free the spare array */
4212 if (!new) {
4213 kfree(thresholds->spare);
4214 thresholds->spare = NULL;
4215 }
371528ca 4216unlock:
2e72b634 4217 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4218}
c1e862c1 4219
59b6f873 4220static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4221 struct eventfd_ctx *eventfd)
4222{
59b6f873 4223 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4224}
4225
59b6f873 4226static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4227 struct eventfd_ctx *eventfd)
4228{
59b6f873 4229 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4230}
4231
59b6f873 4232static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4233 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4234{
9490ff27 4235 struct mem_cgroup_eventfd_list *event;
9490ff27 4236
9490ff27
KH
4237 event = kmalloc(sizeof(*event), GFP_KERNEL);
4238 if (!event)
4239 return -ENOMEM;
4240
1af8efe9 4241 spin_lock(&memcg_oom_lock);
9490ff27
KH
4242
4243 event->eventfd = eventfd;
4244 list_add(&event->list, &memcg->oom_notify);
4245
4246 /* already in OOM ? */
c2b42d3c 4247 if (memcg->under_oom)
9490ff27 4248 eventfd_signal(eventfd, 1);
1af8efe9 4249 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4250
4251 return 0;
4252}
4253
59b6f873 4254static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4255 struct eventfd_ctx *eventfd)
9490ff27 4256{
9490ff27 4257 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4258
1af8efe9 4259 spin_lock(&memcg_oom_lock);
9490ff27 4260
c0ff4b85 4261 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4262 if (ev->eventfd == eventfd) {
4263 list_del(&ev->list);
4264 kfree(ev);
4265 }
4266 }
4267
1af8efe9 4268 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4269}
4270
2da8ca82 4271static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4272{
aa9694bb 4273 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4274
791badbd 4275 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4276 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4277 seq_printf(sf, "oom_kill %lu\n",
4278 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4279 return 0;
4280}
4281
182446d0 4282static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4283 struct cftype *cft, u64 val)
4284{
182446d0 4285 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4286
4287 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4288 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4289 return -EINVAL;
4290
c0ff4b85 4291 memcg->oom_kill_disable = val;
4d845ebf 4292 if (!val)
c0ff4b85 4293 memcg_oom_recover(memcg);
3dae7fec 4294
3c11ecf4
KH
4295 return 0;
4296}
4297
52ebea74
TH
4298#ifdef CONFIG_CGROUP_WRITEBACK
4299
3a8e9ac8
TH
4300#include <trace/events/writeback.h>
4301
841710aa
TH
4302static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4303{
4304 return wb_domain_init(&memcg->cgwb_domain, gfp);
4305}
4306
4307static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4308{
4309 wb_domain_exit(&memcg->cgwb_domain);
4310}
4311
2529bb3a
TH
4312static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4313{
4314 wb_domain_size_changed(&memcg->cgwb_domain);
4315}
4316
841710aa
TH
4317struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4318{
4319 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4320
4321 if (!memcg->css.parent)
4322 return NULL;
4323
4324 return &memcg->cgwb_domain;
4325}
4326
0b3d6e6f
GT
4327/*
4328 * idx can be of type enum memcg_stat_item or node_stat_item.
4329 * Keep in sync with memcg_exact_page().
4330 */
4331static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4332{
871789d4 4333 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4334 int cpu;
4335
4336 for_each_online_cpu(cpu)
871789d4 4337 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4338 if (x < 0)
4339 x = 0;
4340 return x;
4341}
4342
c2aa723a
TH
4343/**
4344 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4345 * @wb: bdi_writeback in question
c5edf9cd
TH
4346 * @pfilepages: out parameter for number of file pages
4347 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4348 * @pdirty: out parameter for number of dirty pages
4349 * @pwriteback: out parameter for number of pages under writeback
4350 *
c5edf9cd
TH
4351 * Determine the numbers of file, headroom, dirty, and writeback pages in
4352 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4353 * is a bit more involved.
c2aa723a 4354 *
c5edf9cd
TH
4355 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4356 * headroom is calculated as the lowest headroom of itself and the
4357 * ancestors. Note that this doesn't consider the actual amount of
4358 * available memory in the system. The caller should further cap
4359 * *@pheadroom accordingly.
c2aa723a 4360 */
c5edf9cd
TH
4361void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4362 unsigned long *pheadroom, unsigned long *pdirty,
4363 unsigned long *pwriteback)
c2aa723a
TH
4364{
4365 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4366 struct mem_cgroup *parent;
c2aa723a 4367
0b3d6e6f 4368 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4369
4370 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4371 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4372 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4373 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4374 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4375
c2aa723a 4376 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4377 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4378 unsigned long used = page_counter_read(&memcg->memory);
4379
c5edf9cd 4380 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4381 memcg = parent;
4382 }
c2aa723a
TH
4383}
4384
97b27821
TH
4385/*
4386 * Foreign dirty flushing
4387 *
4388 * There's an inherent mismatch between memcg and writeback. The former
4389 * trackes ownership per-page while the latter per-inode. This was a
4390 * deliberate design decision because honoring per-page ownership in the
4391 * writeback path is complicated, may lead to higher CPU and IO overheads
4392 * and deemed unnecessary given that write-sharing an inode across
4393 * different cgroups isn't a common use-case.
4394 *
4395 * Combined with inode majority-writer ownership switching, this works well
4396 * enough in most cases but there are some pathological cases. For
4397 * example, let's say there are two cgroups A and B which keep writing to
4398 * different but confined parts of the same inode. B owns the inode and
4399 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4400 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4401 * triggering background writeback. A will be slowed down without a way to
4402 * make writeback of the dirty pages happen.
4403 *
4404 * Conditions like the above can lead to a cgroup getting repatedly and
4405 * severely throttled after making some progress after each
4406 * dirty_expire_interval while the underyling IO device is almost
4407 * completely idle.
4408 *
4409 * Solving this problem completely requires matching the ownership tracking
4410 * granularities between memcg and writeback in either direction. However,
4411 * the more egregious behaviors can be avoided by simply remembering the
4412 * most recent foreign dirtying events and initiating remote flushes on
4413 * them when local writeback isn't enough to keep the memory clean enough.
4414 *
4415 * The following two functions implement such mechanism. When a foreign
4416 * page - a page whose memcg and writeback ownerships don't match - is
4417 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4418 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4419 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4420 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4421 * foreign bdi_writebacks which haven't expired. Both the numbers of
4422 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4423 * limited to MEMCG_CGWB_FRN_CNT.
4424 *
4425 * The mechanism only remembers IDs and doesn't hold any object references.
4426 * As being wrong occasionally doesn't matter, updates and accesses to the
4427 * records are lockless and racy.
4428 */
4429void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4430 struct bdi_writeback *wb)
4431{
4432 struct mem_cgroup *memcg = page->mem_cgroup;
4433 struct memcg_cgwb_frn *frn;
4434 u64 now = get_jiffies_64();
4435 u64 oldest_at = now;
4436 int oldest = -1;
4437 int i;
4438
3a8e9ac8
TH
4439 trace_track_foreign_dirty(page, wb);
4440
97b27821
TH
4441 /*
4442 * Pick the slot to use. If there is already a slot for @wb, keep
4443 * using it. If not replace the oldest one which isn't being
4444 * written out.
4445 */
4446 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4447 frn = &memcg->cgwb_frn[i];
4448 if (frn->bdi_id == wb->bdi->id &&
4449 frn->memcg_id == wb->memcg_css->id)
4450 break;
4451 if (time_before64(frn->at, oldest_at) &&
4452 atomic_read(&frn->done.cnt) == 1) {
4453 oldest = i;
4454 oldest_at = frn->at;
4455 }
4456 }
4457
4458 if (i < MEMCG_CGWB_FRN_CNT) {
4459 /*
4460 * Re-using an existing one. Update timestamp lazily to
4461 * avoid making the cacheline hot. We want them to be
4462 * reasonably up-to-date and significantly shorter than
4463 * dirty_expire_interval as that's what expires the record.
4464 * Use the shorter of 1s and dirty_expire_interval / 8.
4465 */
4466 unsigned long update_intv =
4467 min_t(unsigned long, HZ,
4468 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4469
4470 if (time_before64(frn->at, now - update_intv))
4471 frn->at = now;
4472 } else if (oldest >= 0) {
4473 /* replace the oldest free one */
4474 frn = &memcg->cgwb_frn[oldest];
4475 frn->bdi_id = wb->bdi->id;
4476 frn->memcg_id = wb->memcg_css->id;
4477 frn->at = now;
4478 }
4479}
4480
4481/* issue foreign writeback flushes for recorded foreign dirtying events */
4482void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4483{
4484 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4485 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4486 u64 now = jiffies_64;
4487 int i;
4488
4489 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4490 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4491
4492 /*
4493 * If the record is older than dirty_expire_interval,
4494 * writeback on it has already started. No need to kick it
4495 * off again. Also, don't start a new one if there's
4496 * already one in flight.
4497 */
4498 if (time_after64(frn->at, now - intv) &&
4499 atomic_read(&frn->done.cnt) == 1) {
4500 frn->at = 0;
3a8e9ac8 4501 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4502 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4503 WB_REASON_FOREIGN_FLUSH,
4504 &frn->done);
4505 }
4506 }
4507}
4508
841710aa
TH
4509#else /* CONFIG_CGROUP_WRITEBACK */
4510
4511static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4512{
4513 return 0;
4514}
4515
4516static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4517{
4518}
4519
2529bb3a
TH
4520static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4521{
4522}
4523
52ebea74
TH
4524#endif /* CONFIG_CGROUP_WRITEBACK */
4525
3bc942f3
TH
4526/*
4527 * DO NOT USE IN NEW FILES.
4528 *
4529 * "cgroup.event_control" implementation.
4530 *
4531 * This is way over-engineered. It tries to support fully configurable
4532 * events for each user. Such level of flexibility is completely
4533 * unnecessary especially in the light of the planned unified hierarchy.
4534 *
4535 * Please deprecate this and replace with something simpler if at all
4536 * possible.
4537 */
4538
79bd9814
TH
4539/*
4540 * Unregister event and free resources.
4541 *
4542 * Gets called from workqueue.
4543 */
3bc942f3 4544static void memcg_event_remove(struct work_struct *work)
79bd9814 4545{
3bc942f3
TH
4546 struct mem_cgroup_event *event =
4547 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4548 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4549
4550 remove_wait_queue(event->wqh, &event->wait);
4551
59b6f873 4552 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4553
4554 /* Notify userspace the event is going away. */
4555 eventfd_signal(event->eventfd, 1);
4556
4557 eventfd_ctx_put(event->eventfd);
4558 kfree(event);
59b6f873 4559 css_put(&memcg->css);
79bd9814
TH
4560}
4561
4562/*
a9a08845 4563 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4564 *
4565 * Called with wqh->lock held and interrupts disabled.
4566 */
ac6424b9 4567static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4568 int sync, void *key)
79bd9814 4569{
3bc942f3
TH
4570 struct mem_cgroup_event *event =
4571 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4572 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4573 __poll_t flags = key_to_poll(key);
79bd9814 4574
a9a08845 4575 if (flags & EPOLLHUP) {
79bd9814
TH
4576 /*
4577 * If the event has been detached at cgroup removal, we
4578 * can simply return knowing the other side will cleanup
4579 * for us.
4580 *
4581 * We can't race against event freeing since the other
4582 * side will require wqh->lock via remove_wait_queue(),
4583 * which we hold.
4584 */
fba94807 4585 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4586 if (!list_empty(&event->list)) {
4587 list_del_init(&event->list);
4588 /*
4589 * We are in atomic context, but cgroup_event_remove()
4590 * may sleep, so we have to call it in workqueue.
4591 */
4592 schedule_work(&event->remove);
4593 }
fba94807 4594 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4595 }
4596
4597 return 0;
4598}
4599
3bc942f3 4600static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4601 wait_queue_head_t *wqh, poll_table *pt)
4602{
3bc942f3
TH
4603 struct mem_cgroup_event *event =
4604 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4605
4606 event->wqh = wqh;
4607 add_wait_queue(wqh, &event->wait);
4608}
4609
4610/*
3bc942f3
TH
4611 * DO NOT USE IN NEW FILES.
4612 *
79bd9814
TH
4613 * Parse input and register new cgroup event handler.
4614 *
4615 * Input must be in format '<event_fd> <control_fd> <args>'.
4616 * Interpretation of args is defined by control file implementation.
4617 */
451af504
TH
4618static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4619 char *buf, size_t nbytes, loff_t off)
79bd9814 4620{
451af504 4621 struct cgroup_subsys_state *css = of_css(of);
fba94807 4622 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4623 struct mem_cgroup_event *event;
79bd9814
TH
4624 struct cgroup_subsys_state *cfile_css;
4625 unsigned int efd, cfd;
4626 struct fd efile;
4627 struct fd cfile;
fba94807 4628 const char *name;
79bd9814
TH
4629 char *endp;
4630 int ret;
4631
451af504
TH
4632 buf = strstrip(buf);
4633
4634 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4635 if (*endp != ' ')
4636 return -EINVAL;
451af504 4637 buf = endp + 1;
79bd9814 4638
451af504 4639 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4640 if ((*endp != ' ') && (*endp != '\0'))
4641 return -EINVAL;
451af504 4642 buf = endp + 1;
79bd9814
TH
4643
4644 event = kzalloc(sizeof(*event), GFP_KERNEL);
4645 if (!event)
4646 return -ENOMEM;
4647
59b6f873 4648 event->memcg = memcg;
79bd9814 4649 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4650 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4651 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4652 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4653
4654 efile = fdget(efd);
4655 if (!efile.file) {
4656 ret = -EBADF;
4657 goto out_kfree;
4658 }
4659
4660 event->eventfd = eventfd_ctx_fileget(efile.file);
4661 if (IS_ERR(event->eventfd)) {
4662 ret = PTR_ERR(event->eventfd);
4663 goto out_put_efile;
4664 }
4665
4666 cfile = fdget(cfd);
4667 if (!cfile.file) {
4668 ret = -EBADF;
4669 goto out_put_eventfd;
4670 }
4671
4672 /* the process need read permission on control file */
4673 /* AV: shouldn't we check that it's been opened for read instead? */
4674 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4675 if (ret < 0)
4676 goto out_put_cfile;
4677
fba94807
TH
4678 /*
4679 * Determine the event callbacks and set them in @event. This used
4680 * to be done via struct cftype but cgroup core no longer knows
4681 * about these events. The following is crude but the whole thing
4682 * is for compatibility anyway.
3bc942f3
TH
4683 *
4684 * DO NOT ADD NEW FILES.
fba94807 4685 */
b583043e 4686 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4687
4688 if (!strcmp(name, "memory.usage_in_bytes")) {
4689 event->register_event = mem_cgroup_usage_register_event;
4690 event->unregister_event = mem_cgroup_usage_unregister_event;
4691 } else if (!strcmp(name, "memory.oom_control")) {
4692 event->register_event = mem_cgroup_oom_register_event;
4693 event->unregister_event = mem_cgroup_oom_unregister_event;
4694 } else if (!strcmp(name, "memory.pressure_level")) {
4695 event->register_event = vmpressure_register_event;
4696 event->unregister_event = vmpressure_unregister_event;
4697 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4698 event->register_event = memsw_cgroup_usage_register_event;
4699 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4700 } else {
4701 ret = -EINVAL;
4702 goto out_put_cfile;
4703 }
4704
79bd9814 4705 /*
b5557c4c
TH
4706 * Verify @cfile should belong to @css. Also, remaining events are
4707 * automatically removed on cgroup destruction but the removal is
4708 * asynchronous, so take an extra ref on @css.
79bd9814 4709 */
b583043e 4710 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4711 &memory_cgrp_subsys);
79bd9814 4712 ret = -EINVAL;
5a17f543 4713 if (IS_ERR(cfile_css))
79bd9814 4714 goto out_put_cfile;
5a17f543
TH
4715 if (cfile_css != css) {
4716 css_put(cfile_css);
79bd9814 4717 goto out_put_cfile;
5a17f543 4718 }
79bd9814 4719
451af504 4720 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4721 if (ret)
4722 goto out_put_css;
4723
9965ed17 4724 vfs_poll(efile.file, &event->pt);
79bd9814 4725
fba94807
TH
4726 spin_lock(&memcg->event_list_lock);
4727 list_add(&event->list, &memcg->event_list);
4728 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4729
4730 fdput(cfile);
4731 fdput(efile);
4732
451af504 4733 return nbytes;
79bd9814
TH
4734
4735out_put_css:
b5557c4c 4736 css_put(css);
79bd9814
TH
4737out_put_cfile:
4738 fdput(cfile);
4739out_put_eventfd:
4740 eventfd_ctx_put(event->eventfd);
4741out_put_efile:
4742 fdput(efile);
4743out_kfree:
4744 kfree(event);
4745
4746 return ret;
4747}
4748
241994ed 4749static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4750 {
0eea1030 4751 .name = "usage_in_bytes",
8c7c6e34 4752 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4753 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4754 },
c84872e1
PE
4755 {
4756 .name = "max_usage_in_bytes",
8c7c6e34 4757 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4758 .write = mem_cgroup_reset,
791badbd 4759 .read_u64 = mem_cgroup_read_u64,
c84872e1 4760 },
8cdea7c0 4761 {
0eea1030 4762 .name = "limit_in_bytes",
8c7c6e34 4763 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4764 .write = mem_cgroup_write,
791badbd 4765 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4766 },
296c81d8
BS
4767 {
4768 .name = "soft_limit_in_bytes",
4769 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4770 .write = mem_cgroup_write,
791badbd 4771 .read_u64 = mem_cgroup_read_u64,
296c81d8 4772 },
8cdea7c0
BS
4773 {
4774 .name = "failcnt",
8c7c6e34 4775 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4776 .write = mem_cgroup_reset,
791badbd 4777 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4778 },
d2ceb9b7
KH
4779 {
4780 .name = "stat",
2da8ca82 4781 .seq_show = memcg_stat_show,
d2ceb9b7 4782 },
c1e862c1
KH
4783 {
4784 .name = "force_empty",
6770c64e 4785 .write = mem_cgroup_force_empty_write,
c1e862c1 4786 },
18f59ea7
BS
4787 {
4788 .name = "use_hierarchy",
4789 .write_u64 = mem_cgroup_hierarchy_write,
4790 .read_u64 = mem_cgroup_hierarchy_read,
4791 },
79bd9814 4792 {
3bc942f3 4793 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4794 .write = memcg_write_event_control,
7dbdb199 4795 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4796 },
a7885eb8
KM
4797 {
4798 .name = "swappiness",
4799 .read_u64 = mem_cgroup_swappiness_read,
4800 .write_u64 = mem_cgroup_swappiness_write,
4801 },
7dc74be0
DN
4802 {
4803 .name = "move_charge_at_immigrate",
4804 .read_u64 = mem_cgroup_move_charge_read,
4805 .write_u64 = mem_cgroup_move_charge_write,
4806 },
9490ff27
KH
4807 {
4808 .name = "oom_control",
2da8ca82 4809 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4810 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4811 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4812 },
70ddf637
AV
4813 {
4814 .name = "pressure_level",
70ddf637 4815 },
406eb0c9
YH
4816#ifdef CONFIG_NUMA
4817 {
4818 .name = "numa_stat",
2da8ca82 4819 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4820 },
4821#endif
510fc4e1
GC
4822 {
4823 .name = "kmem.limit_in_bytes",
4824 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4825 .write = mem_cgroup_write,
791badbd 4826 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4827 },
4828 {
4829 .name = "kmem.usage_in_bytes",
4830 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4831 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4832 },
4833 {
4834 .name = "kmem.failcnt",
4835 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4836 .write = mem_cgroup_reset,
791badbd 4837 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4838 },
4839 {
4840 .name = "kmem.max_usage_in_bytes",
4841 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4842 .write = mem_cgroup_reset,
791badbd 4843 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4844 },
5b365771 4845#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4846 {
4847 .name = "kmem.slabinfo",
bc2791f8
TH
4848 .seq_start = memcg_slab_start,
4849 .seq_next = memcg_slab_next,
4850 .seq_stop = memcg_slab_stop,
b047501c 4851 .seq_show = memcg_slab_show,
749c5415
GC
4852 },
4853#endif
d55f90bf
VD
4854 {
4855 .name = "kmem.tcp.limit_in_bytes",
4856 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4857 .write = mem_cgroup_write,
4858 .read_u64 = mem_cgroup_read_u64,
4859 },
4860 {
4861 .name = "kmem.tcp.usage_in_bytes",
4862 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4863 .read_u64 = mem_cgroup_read_u64,
4864 },
4865 {
4866 .name = "kmem.tcp.failcnt",
4867 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4868 .write = mem_cgroup_reset,
4869 .read_u64 = mem_cgroup_read_u64,
4870 },
4871 {
4872 .name = "kmem.tcp.max_usage_in_bytes",
4873 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4874 .write = mem_cgroup_reset,
4875 .read_u64 = mem_cgroup_read_u64,
4876 },
6bc10349 4877 { }, /* terminate */
af36f906 4878};
8c7c6e34 4879
73f576c0
JW
4880/*
4881 * Private memory cgroup IDR
4882 *
4883 * Swap-out records and page cache shadow entries need to store memcg
4884 * references in constrained space, so we maintain an ID space that is
4885 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4886 * memory-controlled cgroups to 64k.
4887 *
4888 * However, there usually are many references to the oflline CSS after
4889 * the cgroup has been destroyed, such as page cache or reclaimable
4890 * slab objects, that don't need to hang on to the ID. We want to keep
4891 * those dead CSS from occupying IDs, or we might quickly exhaust the
4892 * relatively small ID space and prevent the creation of new cgroups
4893 * even when there are much fewer than 64k cgroups - possibly none.
4894 *
4895 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4896 * be freed and recycled when it's no longer needed, which is usually
4897 * when the CSS is offlined.
4898 *
4899 * The only exception to that are records of swapped out tmpfs/shmem
4900 * pages that need to be attributed to live ancestors on swapin. But
4901 * those references are manageable from userspace.
4902 */
4903
4904static DEFINE_IDR(mem_cgroup_idr);
4905
7e97de0b
KT
4906static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4907{
4908 if (memcg->id.id > 0) {
4909 idr_remove(&mem_cgroup_idr, memcg->id.id);
4910 memcg->id.id = 0;
4911 }
4912}
4913
615d66c3 4914static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4915{
1c2d479a 4916 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4917}
4918
615d66c3 4919static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4920{
1c2d479a 4921 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4922 mem_cgroup_id_remove(memcg);
73f576c0
JW
4923
4924 /* Memcg ID pins CSS */
4925 css_put(&memcg->css);
4926 }
4927}
4928
615d66c3
VD
4929static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4930{
4931 mem_cgroup_id_put_many(memcg, 1);
4932}
4933
73f576c0
JW
4934/**
4935 * mem_cgroup_from_id - look up a memcg from a memcg id
4936 * @id: the memcg id to look up
4937 *
4938 * Caller must hold rcu_read_lock().
4939 */
4940struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4941{
4942 WARN_ON_ONCE(!rcu_read_lock_held());
4943 return idr_find(&mem_cgroup_idr, id);
4944}
4945
ef8f2327 4946static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4947{
4948 struct mem_cgroup_per_node *pn;
ef8f2327 4949 int tmp = node;
1ecaab2b
KH
4950 /*
4951 * This routine is called against possible nodes.
4952 * But it's BUG to call kmalloc() against offline node.
4953 *
4954 * TODO: this routine can waste much memory for nodes which will
4955 * never be onlined. It's better to use memory hotplug callback
4956 * function.
4957 */
41e3355d
KH
4958 if (!node_state(node, N_NORMAL_MEMORY))
4959 tmp = -1;
17295c88 4960 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4961 if (!pn)
4962 return 1;
1ecaab2b 4963
815744d7
JW
4964 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4965 if (!pn->lruvec_stat_local) {
4966 kfree(pn);
4967 return 1;
4968 }
4969
a983b5eb
JW
4970 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4971 if (!pn->lruvec_stat_cpu) {
815744d7 4972 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4973 kfree(pn);
4974 return 1;
4975 }
4976
ef8f2327
MG
4977 lruvec_init(&pn->lruvec);
4978 pn->usage_in_excess = 0;
4979 pn->on_tree = false;
4980 pn->memcg = memcg;
4981
54f72fe0 4982 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4983 return 0;
4984}
4985
ef8f2327 4986static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4987{
00f3ca2c
JW
4988 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4989
4eaf431f
MH
4990 if (!pn)
4991 return;
4992
a983b5eb 4993 free_percpu(pn->lruvec_stat_cpu);
815744d7 4994 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4995 kfree(pn);
1ecaab2b
KH
4996}
4997
40e952f9 4998static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4999{
c8b2a36f 5000 int node;
59927fb9 5001
c350a99e 5002 /*
bb65f89b 5003 * Flush percpu vmstats and vmevents to guarantee the value correctness
c350a99e
RG
5004 * on parent's and all ancestor levels.
5005 */
bee07b33 5006 memcg_flush_percpu_vmstats(memcg, false);
bb65f89b 5007 memcg_flush_percpu_vmevents(memcg);
c8b2a36f 5008 for_each_node(node)
ef8f2327 5009 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5010 free_percpu(memcg->vmstats_percpu);
815744d7 5011 free_percpu(memcg->vmstats_local);
8ff69e2c 5012 kfree(memcg);
59927fb9 5013}
3afe36b1 5014
40e952f9
TE
5015static void mem_cgroup_free(struct mem_cgroup *memcg)
5016{
5017 memcg_wb_domain_exit(memcg);
5018 __mem_cgroup_free(memcg);
5019}
5020
0b8f73e1 5021static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5022{
d142e3e6 5023 struct mem_cgroup *memcg;
b9726c26 5024 unsigned int size;
6d12e2d8 5025 int node;
97b27821 5026 int __maybe_unused i;
8cdea7c0 5027
0b8f73e1
JW
5028 size = sizeof(struct mem_cgroup);
5029 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5030
5031 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5032 if (!memcg)
0b8f73e1
JW
5033 return NULL;
5034
73f576c0
JW
5035 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5036 1, MEM_CGROUP_ID_MAX,
5037 GFP_KERNEL);
5038 if (memcg->id.id < 0)
5039 goto fail;
5040
815744d7
JW
5041 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5042 if (!memcg->vmstats_local)
5043 goto fail;
5044
871789d4
CD
5045 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5046 if (!memcg->vmstats_percpu)
0b8f73e1 5047 goto fail;
78fb7466 5048
3ed28fa1 5049 for_each_node(node)
ef8f2327 5050 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5051 goto fail;
f64c3f54 5052
0b8f73e1
JW
5053 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5054 goto fail;
28dbc4b6 5055
f7e1cb6e 5056 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
5057 memcg->last_scanned_node = MAX_NUMNODES;
5058 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5059 mutex_init(&memcg->thresholds_lock);
5060 spin_lock_init(&memcg->move_lock);
70ddf637 5061 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5062 INIT_LIST_HEAD(&memcg->event_list);
5063 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5064 memcg->socket_pressure = jiffies;
84c07d11 5065#ifdef CONFIG_MEMCG_KMEM
900a38f0 5066 memcg->kmemcg_id = -1;
900a38f0 5067#endif
52ebea74
TH
5068#ifdef CONFIG_CGROUP_WRITEBACK
5069 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5070 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5071 memcg->cgwb_frn[i].done =
5072 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5073#endif
5074#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5075 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5076 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5077 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5078#endif
73f576c0 5079 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5080 return memcg;
5081fail:
7e97de0b 5082 mem_cgroup_id_remove(memcg);
40e952f9 5083 __mem_cgroup_free(memcg);
0b8f73e1 5084 return NULL;
d142e3e6
GC
5085}
5086
0b8f73e1
JW
5087static struct cgroup_subsys_state * __ref
5088mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5089{
0b8f73e1
JW
5090 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5091 struct mem_cgroup *memcg;
5092 long error = -ENOMEM;
d142e3e6 5093
0b8f73e1
JW
5094 memcg = mem_cgroup_alloc();
5095 if (!memcg)
5096 return ERR_PTR(error);
d142e3e6 5097
0b8f73e1
JW
5098 memcg->high = PAGE_COUNTER_MAX;
5099 memcg->soft_limit = PAGE_COUNTER_MAX;
5100 if (parent) {
5101 memcg->swappiness = mem_cgroup_swappiness(parent);
5102 memcg->oom_kill_disable = parent->oom_kill_disable;
5103 }
5104 if (parent && parent->use_hierarchy) {
5105 memcg->use_hierarchy = true;
3e32cb2e 5106 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5107 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5108 page_counter_init(&memcg->memsw, &parent->memsw);
5109 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5110 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5111 } else {
3e32cb2e 5112 page_counter_init(&memcg->memory, NULL);
37e84351 5113 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5114 page_counter_init(&memcg->memsw, NULL);
5115 page_counter_init(&memcg->kmem, NULL);
0db15298 5116 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5117 /*
5118 * Deeper hierachy with use_hierarchy == false doesn't make
5119 * much sense so let cgroup subsystem know about this
5120 * unfortunate state in our controller.
5121 */
d142e3e6 5122 if (parent != root_mem_cgroup)
073219e9 5123 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5124 }
d6441637 5125
0b8f73e1
JW
5126 /* The following stuff does not apply to the root */
5127 if (!parent) {
fb2f2b0a
RG
5128#ifdef CONFIG_MEMCG_KMEM
5129 INIT_LIST_HEAD(&memcg->kmem_caches);
5130#endif
0b8f73e1
JW
5131 root_mem_cgroup = memcg;
5132 return &memcg->css;
5133 }
5134
b313aeee 5135 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5136 if (error)
5137 goto fail;
127424c8 5138
f7e1cb6e 5139 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5140 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5141
0b8f73e1
JW
5142 return &memcg->css;
5143fail:
7e97de0b 5144 mem_cgroup_id_remove(memcg);
0b8f73e1 5145 mem_cgroup_free(memcg);
ea3a9645 5146 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
5147}
5148
73f576c0 5149static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5150{
58fa2a55
VD
5151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5152
0a4465d3
KT
5153 /*
5154 * A memcg must be visible for memcg_expand_shrinker_maps()
5155 * by the time the maps are allocated. So, we allocate maps
5156 * here, when for_each_mem_cgroup() can't skip it.
5157 */
5158 if (memcg_alloc_shrinker_maps(memcg)) {
5159 mem_cgroup_id_remove(memcg);
5160 return -ENOMEM;
5161 }
5162
73f576c0 5163 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5164 refcount_set(&memcg->id.ref, 1);
73f576c0 5165 css_get(css);
2f7dd7a4 5166 return 0;
8cdea7c0
BS
5167}
5168
eb95419b 5169static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5170{
eb95419b 5171 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5172 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5173
5174 /*
5175 * Unregister events and notify userspace.
5176 * Notify userspace about cgroup removing only after rmdir of cgroup
5177 * directory to avoid race between userspace and kernelspace.
5178 */
fba94807
TH
5179 spin_lock(&memcg->event_list_lock);
5180 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5181 list_del_init(&event->list);
5182 schedule_work(&event->remove);
5183 }
fba94807 5184 spin_unlock(&memcg->event_list_lock);
ec64f515 5185
bf8d5d52 5186 page_counter_set_min(&memcg->memory, 0);
23067153 5187 page_counter_set_low(&memcg->memory, 0);
63677c74 5188
567e9ab2 5189 memcg_offline_kmem(memcg);
52ebea74 5190 wb_memcg_offline(memcg);
73f576c0 5191
591edfb1
RG
5192 drain_all_stock(memcg);
5193
73f576c0 5194 mem_cgroup_id_put(memcg);
df878fb0
KH
5195}
5196
6df38689
VD
5197static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5198{
5199 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5200
5201 invalidate_reclaim_iterators(memcg);
5202}
5203
eb95419b 5204static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5205{
eb95419b 5206 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5207 int __maybe_unused i;
c268e994 5208
97b27821
TH
5209#ifdef CONFIG_CGROUP_WRITEBACK
5210 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5211 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5212#endif
f7e1cb6e 5213 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5214 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5215
0db15298 5216 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5217 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5218
0b8f73e1
JW
5219 vmpressure_cleanup(&memcg->vmpressure);
5220 cancel_work_sync(&memcg->high_work);
5221 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5222 memcg_free_shrinker_maps(memcg);
d886f4e4 5223 memcg_free_kmem(memcg);
0b8f73e1 5224 mem_cgroup_free(memcg);
8cdea7c0
BS
5225}
5226
1ced953b
TH
5227/**
5228 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5229 * @css: the target css
5230 *
5231 * Reset the states of the mem_cgroup associated with @css. This is
5232 * invoked when the userland requests disabling on the default hierarchy
5233 * but the memcg is pinned through dependency. The memcg should stop
5234 * applying policies and should revert to the vanilla state as it may be
5235 * made visible again.
5236 *
5237 * The current implementation only resets the essential configurations.
5238 * This needs to be expanded to cover all the visible parts.
5239 */
5240static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5241{
5242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5243
bbec2e15
RG
5244 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5245 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5246 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5247 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5248 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5249 page_counter_set_min(&memcg->memory, 0);
23067153 5250 page_counter_set_low(&memcg->memory, 0);
241994ed 5251 memcg->high = PAGE_COUNTER_MAX;
24d404dc 5252 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 5253 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5254}
5255
02491447 5256#ifdef CONFIG_MMU
7dc74be0 5257/* Handlers for move charge at task migration. */
854ffa8d 5258static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5259{
05b84301 5260 int ret;
9476db97 5261
d0164adc
MG
5262 /* Try a single bulk charge without reclaim first, kswapd may wake */
5263 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5264 if (!ret) {
854ffa8d 5265 mc.precharge += count;
854ffa8d
DN
5266 return ret;
5267 }
9476db97 5268
3674534b 5269 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5270 while (count--) {
3674534b 5271 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5272 if (ret)
38c5d72f 5273 return ret;
854ffa8d 5274 mc.precharge++;
9476db97 5275 cond_resched();
854ffa8d 5276 }
9476db97 5277 return 0;
4ffef5fe
DN
5278}
5279
4ffef5fe
DN
5280union mc_target {
5281 struct page *page;
02491447 5282 swp_entry_t ent;
4ffef5fe
DN
5283};
5284
4ffef5fe 5285enum mc_target_type {
8d32ff84 5286 MC_TARGET_NONE = 0,
4ffef5fe 5287 MC_TARGET_PAGE,
02491447 5288 MC_TARGET_SWAP,
c733a828 5289 MC_TARGET_DEVICE,
4ffef5fe
DN
5290};
5291
90254a65
DN
5292static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5293 unsigned long addr, pte_t ptent)
4ffef5fe 5294{
25b2995a 5295 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5296
90254a65
DN
5297 if (!page || !page_mapped(page))
5298 return NULL;
5299 if (PageAnon(page)) {
1dfab5ab 5300 if (!(mc.flags & MOVE_ANON))
90254a65 5301 return NULL;
1dfab5ab
JW
5302 } else {
5303 if (!(mc.flags & MOVE_FILE))
5304 return NULL;
5305 }
90254a65
DN
5306 if (!get_page_unless_zero(page))
5307 return NULL;
5308
5309 return page;
5310}
5311
c733a828 5312#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5313static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5314 pte_t ptent, swp_entry_t *entry)
90254a65 5315{
90254a65
DN
5316 struct page *page = NULL;
5317 swp_entry_t ent = pte_to_swp_entry(ptent);
5318
1dfab5ab 5319 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5320 return NULL;
c733a828
JG
5321
5322 /*
5323 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5324 * a device and because they are not accessible by CPU they are store
5325 * as special swap entry in the CPU page table.
5326 */
5327 if (is_device_private_entry(ent)) {
5328 page = device_private_entry_to_page(ent);
5329 /*
5330 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5331 * a refcount of 1 when free (unlike normal page)
5332 */
5333 if (!page_ref_add_unless(page, 1, 1))
5334 return NULL;
5335 return page;
5336 }
5337
4b91355e
KH
5338 /*
5339 * Because lookup_swap_cache() updates some statistics counter,
5340 * we call find_get_page() with swapper_space directly.
5341 */
f6ab1f7f 5342 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5343 if (do_memsw_account())
90254a65
DN
5344 entry->val = ent.val;
5345
5346 return page;
5347}
4b91355e
KH
5348#else
5349static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5350 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5351{
5352 return NULL;
5353}
5354#endif
90254a65 5355
87946a72
DN
5356static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5357 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5358{
5359 struct page *page = NULL;
87946a72
DN
5360 struct address_space *mapping;
5361 pgoff_t pgoff;
5362
5363 if (!vma->vm_file) /* anonymous vma */
5364 return NULL;
1dfab5ab 5365 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5366 return NULL;
5367
87946a72 5368 mapping = vma->vm_file->f_mapping;
0661a336 5369 pgoff = linear_page_index(vma, addr);
87946a72
DN
5370
5371 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5372#ifdef CONFIG_SWAP
5373 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5374 if (shmem_mapping(mapping)) {
5375 page = find_get_entry(mapping, pgoff);
3159f943 5376 if (xa_is_value(page)) {
139b6a6f 5377 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5378 if (do_memsw_account())
139b6a6f 5379 *entry = swp;
f6ab1f7f
HY
5380 page = find_get_page(swap_address_space(swp),
5381 swp_offset(swp));
139b6a6f
JW
5382 }
5383 } else
5384 page = find_get_page(mapping, pgoff);
5385#else
5386 page = find_get_page(mapping, pgoff);
aa3b1895 5387#endif
87946a72
DN
5388 return page;
5389}
5390
b1b0deab
CG
5391/**
5392 * mem_cgroup_move_account - move account of the page
5393 * @page: the page
25843c2b 5394 * @compound: charge the page as compound or small page
b1b0deab
CG
5395 * @from: mem_cgroup which the page is moved from.
5396 * @to: mem_cgroup which the page is moved to. @from != @to.
5397 *
3ac808fd 5398 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5399 *
5400 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5401 * from old cgroup.
5402 */
5403static int mem_cgroup_move_account(struct page *page,
f627c2f5 5404 bool compound,
b1b0deab
CG
5405 struct mem_cgroup *from,
5406 struct mem_cgroup *to)
5407{
5408 unsigned long flags;
f627c2f5 5409 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5410 int ret;
c4843a75 5411 bool anon;
b1b0deab
CG
5412
5413 VM_BUG_ON(from == to);
5414 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5415 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5416
5417 /*
6a93ca8f 5418 * Prevent mem_cgroup_migrate() from looking at
45637bab 5419 * page->mem_cgroup of its source page while we change it.
b1b0deab 5420 */
f627c2f5 5421 ret = -EBUSY;
b1b0deab
CG
5422 if (!trylock_page(page))
5423 goto out;
5424
5425 ret = -EINVAL;
5426 if (page->mem_cgroup != from)
5427 goto out_unlock;
5428
c4843a75
GT
5429 anon = PageAnon(page);
5430
b1b0deab
CG
5431 spin_lock_irqsave(&from->move_lock, flags);
5432
c4843a75 5433 if (!anon && page_mapped(page)) {
c9019e9b
JW
5434 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5435 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5436 }
5437
c4843a75
GT
5438 /*
5439 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5440 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5441 * So mapping should be stable for dirty pages.
5442 */
5443 if (!anon && PageDirty(page)) {
5444 struct address_space *mapping = page_mapping(page);
5445
5446 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
5447 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5448 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5449 }
5450 }
5451
b1b0deab 5452 if (PageWriteback(page)) {
c9019e9b
JW
5453 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5454 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5455 }
5456
87eaceb3
YS
5457#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5458 if (compound && !list_empty(page_deferred_list(page))) {
5459 spin_lock(&from->deferred_split_queue.split_queue_lock);
5460 list_del_init(page_deferred_list(page));
5461 from->deferred_split_queue.split_queue_len--;
5462 spin_unlock(&from->deferred_split_queue.split_queue_lock);
5463 }
5464#endif
b1b0deab
CG
5465 /*
5466 * It is safe to change page->mem_cgroup here because the page
5467 * is referenced, charged, and isolated - we can't race with
5468 * uncharging, charging, migration, or LRU putback.
5469 */
5470
5471 /* caller should have done css_get */
5472 page->mem_cgroup = to;
87eaceb3
YS
5473
5474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5475 if (compound && list_empty(page_deferred_list(page))) {
5476 spin_lock(&to->deferred_split_queue.split_queue_lock);
5477 list_add_tail(page_deferred_list(page),
5478 &to->deferred_split_queue.split_queue);
5479 to->deferred_split_queue.split_queue_len++;
5480 spin_unlock(&to->deferred_split_queue.split_queue_lock);
5481 }
5482#endif
5483
b1b0deab
CG
5484 spin_unlock_irqrestore(&from->move_lock, flags);
5485
5486 ret = 0;
5487
5488 local_irq_disable();
f627c2f5 5489 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5490 memcg_check_events(to, page);
f627c2f5 5491 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5492 memcg_check_events(from, page);
5493 local_irq_enable();
5494out_unlock:
5495 unlock_page(page);
5496out:
5497 return ret;
5498}
5499
7cf7806c
LR
5500/**
5501 * get_mctgt_type - get target type of moving charge
5502 * @vma: the vma the pte to be checked belongs
5503 * @addr: the address corresponding to the pte to be checked
5504 * @ptent: the pte to be checked
5505 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5506 *
5507 * Returns
5508 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5509 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5510 * move charge. if @target is not NULL, the page is stored in target->page
5511 * with extra refcnt got(Callers should handle it).
5512 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5513 * target for charge migration. if @target is not NULL, the entry is stored
5514 * in target->ent.
25b2995a
CH
5515 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5516 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5517 * For now we such page is charge like a regular page would be as for all
5518 * intent and purposes it is just special memory taking the place of a
5519 * regular page.
c733a828
JG
5520 *
5521 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5522 *
5523 * Called with pte lock held.
5524 */
5525
8d32ff84 5526static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5527 unsigned long addr, pte_t ptent, union mc_target *target)
5528{
5529 struct page *page = NULL;
8d32ff84 5530 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5531 swp_entry_t ent = { .val = 0 };
5532
5533 if (pte_present(ptent))
5534 page = mc_handle_present_pte(vma, addr, ptent);
5535 else if (is_swap_pte(ptent))
48406ef8 5536 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5537 else if (pte_none(ptent))
87946a72 5538 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5539
5540 if (!page && !ent.val)
8d32ff84 5541 return ret;
02491447 5542 if (page) {
02491447 5543 /*
0a31bc97 5544 * Do only loose check w/o serialization.
1306a85a 5545 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5546 * not under LRU exclusion.
02491447 5547 */
1306a85a 5548 if (page->mem_cgroup == mc.from) {
02491447 5549 ret = MC_TARGET_PAGE;
25b2995a 5550 if (is_device_private_page(page))
c733a828 5551 ret = MC_TARGET_DEVICE;
02491447
DN
5552 if (target)
5553 target->page = page;
5554 }
5555 if (!ret || !target)
5556 put_page(page);
5557 }
3e14a57b
HY
5558 /*
5559 * There is a swap entry and a page doesn't exist or isn't charged.
5560 * But we cannot move a tail-page in a THP.
5561 */
5562 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5563 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5564 ret = MC_TARGET_SWAP;
5565 if (target)
5566 target->ent = ent;
4ffef5fe 5567 }
4ffef5fe
DN
5568 return ret;
5569}
5570
12724850
NH
5571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5572/*
d6810d73
HY
5573 * We don't consider PMD mapped swapping or file mapped pages because THP does
5574 * not support them for now.
12724850
NH
5575 * Caller should make sure that pmd_trans_huge(pmd) is true.
5576 */
5577static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5578 unsigned long addr, pmd_t pmd, union mc_target *target)
5579{
5580 struct page *page = NULL;
12724850
NH
5581 enum mc_target_type ret = MC_TARGET_NONE;
5582
84c3fc4e
ZY
5583 if (unlikely(is_swap_pmd(pmd))) {
5584 VM_BUG_ON(thp_migration_supported() &&
5585 !is_pmd_migration_entry(pmd));
5586 return ret;
5587 }
12724850 5588 page = pmd_page(pmd);
309381fe 5589 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5590 if (!(mc.flags & MOVE_ANON))
12724850 5591 return ret;
1306a85a 5592 if (page->mem_cgroup == mc.from) {
12724850
NH
5593 ret = MC_TARGET_PAGE;
5594 if (target) {
5595 get_page(page);
5596 target->page = page;
5597 }
5598 }
5599 return ret;
5600}
5601#else
5602static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5603 unsigned long addr, pmd_t pmd, union mc_target *target)
5604{
5605 return MC_TARGET_NONE;
5606}
5607#endif
5608
4ffef5fe
DN
5609static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5610 unsigned long addr, unsigned long end,
5611 struct mm_walk *walk)
5612{
26bcd64a 5613 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5614 pte_t *pte;
5615 spinlock_t *ptl;
5616
b6ec57f4
KS
5617 ptl = pmd_trans_huge_lock(pmd, vma);
5618 if (ptl) {
c733a828
JG
5619 /*
5620 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5621 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5622 * this might change.
c733a828 5623 */
12724850
NH
5624 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5625 mc.precharge += HPAGE_PMD_NR;
bf929152 5626 spin_unlock(ptl);
1a5a9906 5627 return 0;
12724850 5628 }
03319327 5629
45f83cef
AA
5630 if (pmd_trans_unstable(pmd))
5631 return 0;
4ffef5fe
DN
5632 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5633 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5634 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5635 mc.precharge++; /* increment precharge temporarily */
5636 pte_unmap_unlock(pte - 1, ptl);
5637 cond_resched();
5638
7dc74be0
DN
5639 return 0;
5640}
5641
7b86ac33
CH
5642static const struct mm_walk_ops precharge_walk_ops = {
5643 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5644};
5645
4ffef5fe
DN
5646static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5647{
5648 unsigned long precharge;
4ffef5fe 5649
dfe076b0 5650 down_read(&mm->mmap_sem);
7b86ac33 5651 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5652 up_read(&mm->mmap_sem);
4ffef5fe
DN
5653
5654 precharge = mc.precharge;
5655 mc.precharge = 0;
5656
5657 return precharge;
5658}
5659
4ffef5fe
DN
5660static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5661{
dfe076b0
DN
5662 unsigned long precharge = mem_cgroup_count_precharge(mm);
5663
5664 VM_BUG_ON(mc.moving_task);
5665 mc.moving_task = current;
5666 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5667}
5668
dfe076b0
DN
5669/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5670static void __mem_cgroup_clear_mc(void)
4ffef5fe 5671{
2bd9bb20
KH
5672 struct mem_cgroup *from = mc.from;
5673 struct mem_cgroup *to = mc.to;
5674
4ffef5fe 5675 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5676 if (mc.precharge) {
00501b53 5677 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5678 mc.precharge = 0;
5679 }
5680 /*
5681 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5682 * we must uncharge here.
5683 */
5684 if (mc.moved_charge) {
00501b53 5685 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5686 mc.moved_charge = 0;
4ffef5fe 5687 }
483c30b5
DN
5688 /* we must fixup refcnts and charges */
5689 if (mc.moved_swap) {
483c30b5 5690 /* uncharge swap account from the old cgroup */
ce00a967 5691 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5692 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5693
615d66c3
VD
5694 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5695
05b84301 5696 /*
3e32cb2e
JW
5697 * we charged both to->memory and to->memsw, so we
5698 * should uncharge to->memory.
05b84301 5699 */
ce00a967 5700 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5701 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5702
615d66c3
VD
5703 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5704 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5705
483c30b5
DN
5706 mc.moved_swap = 0;
5707 }
dfe076b0
DN
5708 memcg_oom_recover(from);
5709 memcg_oom_recover(to);
5710 wake_up_all(&mc.waitq);
5711}
5712
5713static void mem_cgroup_clear_mc(void)
5714{
264a0ae1
TH
5715 struct mm_struct *mm = mc.mm;
5716
dfe076b0
DN
5717 /*
5718 * we must clear moving_task before waking up waiters at the end of
5719 * task migration.
5720 */
5721 mc.moving_task = NULL;
5722 __mem_cgroup_clear_mc();
2bd9bb20 5723 spin_lock(&mc.lock);
4ffef5fe
DN
5724 mc.from = NULL;
5725 mc.to = NULL;
264a0ae1 5726 mc.mm = NULL;
2bd9bb20 5727 spin_unlock(&mc.lock);
264a0ae1
TH
5728
5729 mmput(mm);
4ffef5fe
DN
5730}
5731
1f7dd3e5 5732static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5733{
1f7dd3e5 5734 struct cgroup_subsys_state *css;
eed67d75 5735 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5736 struct mem_cgroup *from;
4530eddb 5737 struct task_struct *leader, *p;
9f2115f9 5738 struct mm_struct *mm;
1dfab5ab 5739 unsigned long move_flags;
9f2115f9 5740 int ret = 0;
7dc74be0 5741
1f7dd3e5
TH
5742 /* charge immigration isn't supported on the default hierarchy */
5743 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5744 return 0;
5745
4530eddb
TH
5746 /*
5747 * Multi-process migrations only happen on the default hierarchy
5748 * where charge immigration is not used. Perform charge
5749 * immigration if @tset contains a leader and whine if there are
5750 * multiple.
5751 */
5752 p = NULL;
1f7dd3e5 5753 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5754 WARN_ON_ONCE(p);
5755 p = leader;
1f7dd3e5 5756 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5757 }
5758 if (!p)
5759 return 0;
5760
1f7dd3e5
TH
5761 /*
5762 * We are now commited to this value whatever it is. Changes in this
5763 * tunable will only affect upcoming migrations, not the current one.
5764 * So we need to save it, and keep it going.
5765 */
5766 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5767 if (!move_flags)
5768 return 0;
5769
9f2115f9
TH
5770 from = mem_cgroup_from_task(p);
5771
5772 VM_BUG_ON(from == memcg);
5773
5774 mm = get_task_mm(p);
5775 if (!mm)
5776 return 0;
5777 /* We move charges only when we move a owner of the mm */
5778 if (mm->owner == p) {
5779 VM_BUG_ON(mc.from);
5780 VM_BUG_ON(mc.to);
5781 VM_BUG_ON(mc.precharge);
5782 VM_BUG_ON(mc.moved_charge);
5783 VM_BUG_ON(mc.moved_swap);
5784
5785 spin_lock(&mc.lock);
264a0ae1 5786 mc.mm = mm;
9f2115f9
TH
5787 mc.from = from;
5788 mc.to = memcg;
5789 mc.flags = move_flags;
5790 spin_unlock(&mc.lock);
5791 /* We set mc.moving_task later */
5792
5793 ret = mem_cgroup_precharge_mc(mm);
5794 if (ret)
5795 mem_cgroup_clear_mc();
264a0ae1
TH
5796 } else {
5797 mmput(mm);
7dc74be0
DN
5798 }
5799 return ret;
5800}
5801
1f7dd3e5 5802static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5803{
4e2f245d
JW
5804 if (mc.to)
5805 mem_cgroup_clear_mc();
7dc74be0
DN
5806}
5807
4ffef5fe
DN
5808static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5809 unsigned long addr, unsigned long end,
5810 struct mm_walk *walk)
7dc74be0 5811{
4ffef5fe 5812 int ret = 0;
26bcd64a 5813 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5814 pte_t *pte;
5815 spinlock_t *ptl;
12724850
NH
5816 enum mc_target_type target_type;
5817 union mc_target target;
5818 struct page *page;
4ffef5fe 5819
b6ec57f4
KS
5820 ptl = pmd_trans_huge_lock(pmd, vma);
5821 if (ptl) {
62ade86a 5822 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5823 spin_unlock(ptl);
12724850
NH
5824 return 0;
5825 }
5826 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5827 if (target_type == MC_TARGET_PAGE) {
5828 page = target.page;
5829 if (!isolate_lru_page(page)) {
f627c2f5 5830 if (!mem_cgroup_move_account(page, true,
1306a85a 5831 mc.from, mc.to)) {
12724850
NH
5832 mc.precharge -= HPAGE_PMD_NR;
5833 mc.moved_charge += HPAGE_PMD_NR;
5834 }
5835 putback_lru_page(page);
5836 }
5837 put_page(page);
c733a828
JG
5838 } else if (target_type == MC_TARGET_DEVICE) {
5839 page = target.page;
5840 if (!mem_cgroup_move_account(page, true,
5841 mc.from, mc.to)) {
5842 mc.precharge -= HPAGE_PMD_NR;
5843 mc.moved_charge += HPAGE_PMD_NR;
5844 }
5845 put_page(page);
12724850 5846 }
bf929152 5847 spin_unlock(ptl);
1a5a9906 5848 return 0;
12724850
NH
5849 }
5850
45f83cef
AA
5851 if (pmd_trans_unstable(pmd))
5852 return 0;
4ffef5fe
DN
5853retry:
5854 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5855 for (; addr != end; addr += PAGE_SIZE) {
5856 pte_t ptent = *(pte++);
c733a828 5857 bool device = false;
02491447 5858 swp_entry_t ent;
4ffef5fe
DN
5859
5860 if (!mc.precharge)
5861 break;
5862
8d32ff84 5863 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5864 case MC_TARGET_DEVICE:
5865 device = true;
5866 /* fall through */
4ffef5fe
DN
5867 case MC_TARGET_PAGE:
5868 page = target.page;
53f9263b
KS
5869 /*
5870 * We can have a part of the split pmd here. Moving it
5871 * can be done but it would be too convoluted so simply
5872 * ignore such a partial THP and keep it in original
5873 * memcg. There should be somebody mapping the head.
5874 */
5875 if (PageTransCompound(page))
5876 goto put;
c733a828 5877 if (!device && isolate_lru_page(page))
4ffef5fe 5878 goto put;
f627c2f5
KS
5879 if (!mem_cgroup_move_account(page, false,
5880 mc.from, mc.to)) {
4ffef5fe 5881 mc.precharge--;
854ffa8d
DN
5882 /* we uncharge from mc.from later. */
5883 mc.moved_charge++;
4ffef5fe 5884 }
c733a828
JG
5885 if (!device)
5886 putback_lru_page(page);
8d32ff84 5887put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5888 put_page(page);
5889 break;
02491447
DN
5890 case MC_TARGET_SWAP:
5891 ent = target.ent;
e91cbb42 5892 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5893 mc.precharge--;
483c30b5
DN
5894 /* we fixup refcnts and charges later. */
5895 mc.moved_swap++;
5896 }
02491447 5897 break;
4ffef5fe
DN
5898 default:
5899 break;
5900 }
5901 }
5902 pte_unmap_unlock(pte - 1, ptl);
5903 cond_resched();
5904
5905 if (addr != end) {
5906 /*
5907 * We have consumed all precharges we got in can_attach().
5908 * We try charge one by one, but don't do any additional
5909 * charges to mc.to if we have failed in charge once in attach()
5910 * phase.
5911 */
854ffa8d 5912 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5913 if (!ret)
5914 goto retry;
5915 }
5916
5917 return ret;
5918}
5919
7b86ac33
CH
5920static const struct mm_walk_ops charge_walk_ops = {
5921 .pmd_entry = mem_cgroup_move_charge_pte_range,
5922};
5923
264a0ae1 5924static void mem_cgroup_move_charge(void)
4ffef5fe 5925{
4ffef5fe 5926 lru_add_drain_all();
312722cb 5927 /*
81f8c3a4
JW
5928 * Signal lock_page_memcg() to take the memcg's move_lock
5929 * while we're moving its pages to another memcg. Then wait
5930 * for already started RCU-only updates to finish.
312722cb
JW
5931 */
5932 atomic_inc(&mc.from->moving_account);
5933 synchronize_rcu();
dfe076b0 5934retry:
264a0ae1 5935 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5936 /*
5937 * Someone who are holding the mmap_sem might be waiting in
5938 * waitq. So we cancel all extra charges, wake up all waiters,
5939 * and retry. Because we cancel precharges, we might not be able
5940 * to move enough charges, but moving charge is a best-effort
5941 * feature anyway, so it wouldn't be a big problem.
5942 */
5943 __mem_cgroup_clear_mc();
5944 cond_resched();
5945 goto retry;
5946 }
26bcd64a
NH
5947 /*
5948 * When we have consumed all precharges and failed in doing
5949 * additional charge, the page walk just aborts.
5950 */
7b86ac33
CH
5951 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5952 NULL);
0247f3f4 5953
264a0ae1 5954 up_read(&mc.mm->mmap_sem);
312722cb 5955 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5956}
5957
264a0ae1 5958static void mem_cgroup_move_task(void)
67e465a7 5959{
264a0ae1
TH
5960 if (mc.to) {
5961 mem_cgroup_move_charge();
a433658c 5962 mem_cgroup_clear_mc();
264a0ae1 5963 }
67e465a7 5964}
5cfb80a7 5965#else /* !CONFIG_MMU */
1f7dd3e5 5966static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5967{
5968 return 0;
5969}
1f7dd3e5 5970static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5971{
5972}
264a0ae1 5973static void mem_cgroup_move_task(void)
5cfb80a7
DN
5974{
5975}
5976#endif
67e465a7 5977
f00baae7
TH
5978/*
5979 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5980 * to verify whether we're attached to the default hierarchy on each mount
5981 * attempt.
f00baae7 5982 */
eb95419b 5983static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5984{
5985 /*
aa6ec29b 5986 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5987 * guarantees that @root doesn't have any children, so turning it
5988 * on for the root memcg is enough.
5989 */
9e10a130 5990 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5991 root_mem_cgroup->use_hierarchy = true;
5992 else
5993 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5994}
5995
677dc973
CD
5996static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5997{
5998 if (value == PAGE_COUNTER_MAX)
5999 seq_puts(m, "max\n");
6000 else
6001 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6002
6003 return 0;
6004}
6005
241994ed
JW
6006static u64 memory_current_read(struct cgroup_subsys_state *css,
6007 struct cftype *cft)
6008{
f5fc3c5d
JW
6009 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6010
6011 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6012}
6013
bf8d5d52
RG
6014static int memory_min_show(struct seq_file *m, void *v)
6015{
677dc973
CD
6016 return seq_puts_memcg_tunable(m,
6017 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6018}
6019
6020static ssize_t memory_min_write(struct kernfs_open_file *of,
6021 char *buf, size_t nbytes, loff_t off)
6022{
6023 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6024 unsigned long min;
6025 int err;
6026
6027 buf = strstrip(buf);
6028 err = page_counter_memparse(buf, "max", &min);
6029 if (err)
6030 return err;
6031
6032 page_counter_set_min(&memcg->memory, min);
6033
6034 return nbytes;
6035}
6036
241994ed
JW
6037static int memory_low_show(struct seq_file *m, void *v)
6038{
677dc973
CD
6039 return seq_puts_memcg_tunable(m,
6040 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6041}
6042
6043static ssize_t memory_low_write(struct kernfs_open_file *of,
6044 char *buf, size_t nbytes, loff_t off)
6045{
6046 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6047 unsigned long low;
6048 int err;
6049
6050 buf = strstrip(buf);
d2973697 6051 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6052 if (err)
6053 return err;
6054
23067153 6055 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6056
6057 return nbytes;
6058}
6059
6060static int memory_high_show(struct seq_file *m, void *v)
6061{
677dc973 6062 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
6063}
6064
6065static ssize_t memory_high_write(struct kernfs_open_file *of,
6066 char *buf, size_t nbytes, loff_t off)
6067{
6068 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 6069 unsigned long nr_pages;
241994ed
JW
6070 unsigned long high;
6071 int err;
6072
6073 buf = strstrip(buf);
d2973697 6074 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6075 if (err)
6076 return err;
6077
6078 memcg->high = high;
6079
588083bb
JW
6080 nr_pages = page_counter_read(&memcg->memory);
6081 if (nr_pages > high)
6082 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6083 GFP_KERNEL, true);
6084
2529bb3a 6085 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6086 return nbytes;
6087}
6088
6089static int memory_max_show(struct seq_file *m, void *v)
6090{
677dc973
CD
6091 return seq_puts_memcg_tunable(m,
6092 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6093}
6094
6095static ssize_t memory_max_write(struct kernfs_open_file *of,
6096 char *buf, size_t nbytes, loff_t off)
6097{
6098 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6099 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6100 bool drained = false;
241994ed
JW
6101 unsigned long max;
6102 int err;
6103
6104 buf = strstrip(buf);
d2973697 6105 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6106 if (err)
6107 return err;
6108
bbec2e15 6109 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6110
6111 for (;;) {
6112 unsigned long nr_pages = page_counter_read(&memcg->memory);
6113
6114 if (nr_pages <= max)
6115 break;
6116
6117 if (signal_pending(current)) {
6118 err = -EINTR;
6119 break;
6120 }
6121
6122 if (!drained) {
6123 drain_all_stock(memcg);
6124 drained = true;
6125 continue;
6126 }
6127
6128 if (nr_reclaims) {
6129 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6130 GFP_KERNEL, true))
6131 nr_reclaims--;
6132 continue;
6133 }
6134
e27be240 6135 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6136 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6137 break;
6138 }
241994ed 6139
2529bb3a 6140 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6141 return nbytes;
6142}
6143
1e577f97
SB
6144static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6145{
6146 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6147 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6148 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6149 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6150 seq_printf(m, "oom_kill %lu\n",
6151 atomic_long_read(&events[MEMCG_OOM_KILL]));
6152}
6153
241994ed
JW
6154static int memory_events_show(struct seq_file *m, void *v)
6155{
aa9694bb 6156 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6157
1e577f97
SB
6158 __memory_events_show(m, memcg->memory_events);
6159 return 0;
6160}
6161
6162static int memory_events_local_show(struct seq_file *m, void *v)
6163{
6164 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6165
1e577f97 6166 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6167 return 0;
6168}
6169
587d9f72
JW
6170static int memory_stat_show(struct seq_file *m, void *v)
6171{
aa9694bb 6172 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6173 char *buf;
1ff9e6e1 6174
c8713d0b
JW
6175 buf = memory_stat_format(memcg);
6176 if (!buf)
6177 return -ENOMEM;
6178 seq_puts(m, buf);
6179 kfree(buf);
587d9f72
JW
6180 return 0;
6181}
6182
3d8b38eb
RG
6183static int memory_oom_group_show(struct seq_file *m, void *v)
6184{
aa9694bb 6185 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6186
6187 seq_printf(m, "%d\n", memcg->oom_group);
6188
6189 return 0;
6190}
6191
6192static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6193 char *buf, size_t nbytes, loff_t off)
6194{
6195 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6196 int ret, oom_group;
6197
6198 buf = strstrip(buf);
6199 if (!buf)
6200 return -EINVAL;
6201
6202 ret = kstrtoint(buf, 0, &oom_group);
6203 if (ret)
6204 return ret;
6205
6206 if (oom_group != 0 && oom_group != 1)
6207 return -EINVAL;
6208
6209 memcg->oom_group = oom_group;
6210
6211 return nbytes;
6212}
6213
241994ed
JW
6214static struct cftype memory_files[] = {
6215 {
6216 .name = "current",
f5fc3c5d 6217 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6218 .read_u64 = memory_current_read,
6219 },
bf8d5d52
RG
6220 {
6221 .name = "min",
6222 .flags = CFTYPE_NOT_ON_ROOT,
6223 .seq_show = memory_min_show,
6224 .write = memory_min_write,
6225 },
241994ed
JW
6226 {
6227 .name = "low",
6228 .flags = CFTYPE_NOT_ON_ROOT,
6229 .seq_show = memory_low_show,
6230 .write = memory_low_write,
6231 },
6232 {
6233 .name = "high",
6234 .flags = CFTYPE_NOT_ON_ROOT,
6235 .seq_show = memory_high_show,
6236 .write = memory_high_write,
6237 },
6238 {
6239 .name = "max",
6240 .flags = CFTYPE_NOT_ON_ROOT,
6241 .seq_show = memory_max_show,
6242 .write = memory_max_write,
6243 },
6244 {
6245 .name = "events",
6246 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6247 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6248 .seq_show = memory_events_show,
6249 },
1e577f97
SB
6250 {
6251 .name = "events.local",
6252 .flags = CFTYPE_NOT_ON_ROOT,
6253 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6254 .seq_show = memory_events_local_show,
6255 },
587d9f72
JW
6256 {
6257 .name = "stat",
6258 .flags = CFTYPE_NOT_ON_ROOT,
6259 .seq_show = memory_stat_show,
6260 },
3d8b38eb
RG
6261 {
6262 .name = "oom.group",
6263 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6264 .seq_show = memory_oom_group_show,
6265 .write = memory_oom_group_write,
6266 },
241994ed
JW
6267 { } /* terminate */
6268};
6269
073219e9 6270struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6271 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6272 .css_online = mem_cgroup_css_online,
92fb9748 6273 .css_offline = mem_cgroup_css_offline,
6df38689 6274 .css_released = mem_cgroup_css_released,
92fb9748 6275 .css_free = mem_cgroup_css_free,
1ced953b 6276 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6277 .can_attach = mem_cgroup_can_attach,
6278 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6279 .post_attach = mem_cgroup_move_task,
f00baae7 6280 .bind = mem_cgroup_bind,
241994ed
JW
6281 .dfl_cftypes = memory_files,
6282 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6283 .early_init = 0,
8cdea7c0 6284};
c077719b 6285
241994ed 6286/**
bf8d5d52 6287 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6288 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6289 * @memcg: the memory cgroup to check
6290 *
23067153
RG
6291 * WARNING: This function is not stateless! It can only be used as part
6292 * of a top-down tree iteration, not for isolated queries.
34c81057 6293 *
bf8d5d52
RG
6294 * Returns one of the following:
6295 * MEMCG_PROT_NONE: cgroup memory is not protected
6296 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6297 * an unprotected supply of reclaimable memory from other cgroups.
6298 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 6299 *
bf8d5d52 6300 * @root is exclusive; it is never protected when looked at directly
34c81057 6301 *
bf8d5d52
RG
6302 * To provide a proper hierarchical behavior, effective memory.min/low values
6303 * are used. Below is the description of how effective memory.low is calculated.
6304 * Effective memory.min values is calculated in the same way.
34c81057 6305 *
23067153
RG
6306 * Effective memory.low is always equal or less than the original memory.low.
6307 * If there is no memory.low overcommittment (which is always true for
6308 * top-level memory cgroups), these two values are equal.
6309 * Otherwise, it's a part of parent's effective memory.low,
6310 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6311 * memory.low usages, where memory.low usage is the size of actually
6312 * protected memory.
34c81057 6313 *
23067153
RG
6314 * low_usage
6315 * elow = min( memory.low, parent->elow * ------------------ ),
6316 * siblings_low_usage
34c81057 6317 *
23067153
RG
6318 * | memory.current, if memory.current < memory.low
6319 * low_usage = |
82ede7ee 6320 * | 0, otherwise.
34c81057 6321 *
23067153
RG
6322 *
6323 * Such definition of the effective memory.low provides the expected
6324 * hierarchical behavior: parent's memory.low value is limiting
6325 * children, unprotected memory is reclaimed first and cgroups,
6326 * which are not using their guarantee do not affect actual memory
6327 * distribution.
6328 *
6329 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6330 *
6331 * A A/memory.low = 2G, A/memory.current = 6G
6332 * //\\
6333 * BC DE B/memory.low = 3G B/memory.current = 2G
6334 * C/memory.low = 1G C/memory.current = 2G
6335 * D/memory.low = 0 D/memory.current = 2G
6336 * E/memory.low = 10G E/memory.current = 0
6337 *
6338 * and the memory pressure is applied, the following memory distribution
6339 * is expected (approximately):
6340 *
6341 * A/memory.current = 2G
6342 *
6343 * B/memory.current = 1.3G
6344 * C/memory.current = 0.6G
6345 * D/memory.current = 0
6346 * E/memory.current = 0
6347 *
6348 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
6349 * (see propagate_protected_usage()), as well as recursive calculation of
6350 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
6351 * path for each memory cgroup top-down from the reclaim,
6352 * it's possible to optimize this part, and save calculated elow
6353 * for next usage. This part is intentionally racy, but it's ok,
6354 * as memory.low is a best-effort mechanism.
241994ed 6355 */
bf8d5d52
RG
6356enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6357 struct mem_cgroup *memcg)
241994ed 6358{
23067153 6359 struct mem_cgroup *parent;
bf8d5d52
RG
6360 unsigned long emin, parent_emin;
6361 unsigned long elow, parent_elow;
6362 unsigned long usage;
23067153 6363
241994ed 6364 if (mem_cgroup_disabled())
bf8d5d52 6365 return MEMCG_PROT_NONE;
241994ed 6366
34c81057
SC
6367 if (!root)
6368 root = root_mem_cgroup;
6369 if (memcg == root)
bf8d5d52 6370 return MEMCG_PROT_NONE;
241994ed 6371
23067153 6372 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6373 if (!usage)
6374 return MEMCG_PROT_NONE;
6375
6376 emin = memcg->memory.min;
6377 elow = memcg->memory.low;
34c81057 6378
bf8d5d52 6379 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6380 /* No parent means a non-hierarchical mode on v1 memcg */
6381 if (!parent)
6382 return MEMCG_PROT_NONE;
6383
23067153
RG
6384 if (parent == root)
6385 goto exit;
6386
bf8d5d52
RG
6387 parent_emin = READ_ONCE(parent->memory.emin);
6388 emin = min(emin, parent_emin);
6389 if (emin && parent_emin) {
6390 unsigned long min_usage, siblings_min_usage;
6391
6392 min_usage = min(usage, memcg->memory.min);
6393 siblings_min_usage = atomic_long_read(
6394 &parent->memory.children_min_usage);
6395
6396 if (min_usage && siblings_min_usage)
6397 emin = min(emin, parent_emin * min_usage /
6398 siblings_min_usage);
6399 }
6400
23067153
RG
6401 parent_elow = READ_ONCE(parent->memory.elow);
6402 elow = min(elow, parent_elow);
bf8d5d52
RG
6403 if (elow && parent_elow) {
6404 unsigned long low_usage, siblings_low_usage;
23067153 6405
bf8d5d52
RG
6406 low_usage = min(usage, memcg->memory.low);
6407 siblings_low_usage = atomic_long_read(
6408 &parent->memory.children_low_usage);
23067153 6409
bf8d5d52
RG
6410 if (low_usage && siblings_low_usage)
6411 elow = min(elow, parent_elow * low_usage /
6412 siblings_low_usage);
6413 }
23067153 6414
23067153 6415exit:
bf8d5d52 6416 memcg->memory.emin = emin;
23067153 6417 memcg->memory.elow = elow;
bf8d5d52
RG
6418
6419 if (usage <= emin)
6420 return MEMCG_PROT_MIN;
6421 else if (usage <= elow)
6422 return MEMCG_PROT_LOW;
6423 else
6424 return MEMCG_PROT_NONE;
241994ed
JW
6425}
6426
00501b53
JW
6427/**
6428 * mem_cgroup_try_charge - try charging a page
6429 * @page: page to charge
6430 * @mm: mm context of the victim
6431 * @gfp_mask: reclaim mode
6432 * @memcgp: charged memcg return
25843c2b 6433 * @compound: charge the page as compound or small page
00501b53
JW
6434 *
6435 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6436 * pages according to @gfp_mask if necessary.
6437 *
6438 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6439 * Otherwise, an error code is returned.
6440 *
6441 * After page->mapping has been set up, the caller must finalize the
6442 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6443 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6444 */
6445int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6446 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6447 bool compound)
00501b53
JW
6448{
6449 struct mem_cgroup *memcg = NULL;
f627c2f5 6450 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6451 int ret = 0;
6452
6453 if (mem_cgroup_disabled())
6454 goto out;
6455
6456 if (PageSwapCache(page)) {
00501b53
JW
6457 /*
6458 * Every swap fault against a single page tries to charge the
6459 * page, bail as early as possible. shmem_unuse() encounters
6460 * already charged pages, too. The USED bit is protected by
6461 * the page lock, which serializes swap cache removal, which
6462 * in turn serializes uncharging.
6463 */
e993d905 6464 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6465 if (compound_head(page)->mem_cgroup)
00501b53 6466 goto out;
e993d905 6467
37e84351 6468 if (do_swap_account) {
e993d905
VD
6469 swp_entry_t ent = { .val = page_private(page), };
6470 unsigned short id = lookup_swap_cgroup_id(ent);
6471
6472 rcu_read_lock();
6473 memcg = mem_cgroup_from_id(id);
6474 if (memcg && !css_tryget_online(&memcg->css))
6475 memcg = NULL;
6476 rcu_read_unlock();
6477 }
00501b53
JW
6478 }
6479
00501b53
JW
6480 if (!memcg)
6481 memcg = get_mem_cgroup_from_mm(mm);
6482
6483 ret = try_charge(memcg, gfp_mask, nr_pages);
6484
6485 css_put(&memcg->css);
00501b53
JW
6486out:
6487 *memcgp = memcg;
6488 return ret;
6489}
6490
2cf85583
TH
6491int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6492 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6493 bool compound)
6494{
6495 struct mem_cgroup *memcg;
6496 int ret;
6497
6498 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6499 memcg = *memcgp;
6500 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6501 return ret;
6502}
6503
00501b53
JW
6504/**
6505 * mem_cgroup_commit_charge - commit a page charge
6506 * @page: page to charge
6507 * @memcg: memcg to charge the page to
6508 * @lrucare: page might be on LRU already
25843c2b 6509 * @compound: charge the page as compound or small page
00501b53
JW
6510 *
6511 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6512 * after page->mapping has been set up. This must happen atomically
6513 * as part of the page instantiation, i.e. under the page table lock
6514 * for anonymous pages, under the page lock for page and swap cache.
6515 *
6516 * In addition, the page must not be on the LRU during the commit, to
6517 * prevent racing with task migration. If it might be, use @lrucare.
6518 *
6519 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6520 */
6521void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6522 bool lrucare, bool compound)
00501b53 6523{
f627c2f5 6524 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6525
6526 VM_BUG_ON_PAGE(!page->mapping, page);
6527 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6528
6529 if (mem_cgroup_disabled())
6530 return;
6531 /*
6532 * Swap faults will attempt to charge the same page multiple
6533 * times. But reuse_swap_page() might have removed the page
6534 * from swapcache already, so we can't check PageSwapCache().
6535 */
6536 if (!memcg)
6537 return;
6538
6abb5a86
JW
6539 commit_charge(page, memcg, lrucare);
6540
6abb5a86 6541 local_irq_disable();
f627c2f5 6542 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6543 memcg_check_events(memcg, page);
6544 local_irq_enable();
00501b53 6545
7941d214 6546 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6547 swp_entry_t entry = { .val = page_private(page) };
6548 /*
6549 * The swap entry might not get freed for a long time,
6550 * let's not wait for it. The page already received a
6551 * memory+swap charge, drop the swap entry duplicate.
6552 */
38d8b4e6 6553 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6554 }
6555}
6556
6557/**
6558 * mem_cgroup_cancel_charge - cancel a page charge
6559 * @page: page to charge
6560 * @memcg: memcg to charge the page to
25843c2b 6561 * @compound: charge the page as compound or small page
00501b53
JW
6562 *
6563 * Cancel a charge transaction started by mem_cgroup_try_charge().
6564 */
f627c2f5
KS
6565void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6566 bool compound)
00501b53 6567{
f627c2f5 6568 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6569
6570 if (mem_cgroup_disabled())
6571 return;
6572 /*
6573 * Swap faults will attempt to charge the same page multiple
6574 * times. But reuse_swap_page() might have removed the page
6575 * from swapcache already, so we can't check PageSwapCache().
6576 */
6577 if (!memcg)
6578 return;
6579
00501b53
JW
6580 cancel_charge(memcg, nr_pages);
6581}
6582
a9d5adee
JG
6583struct uncharge_gather {
6584 struct mem_cgroup *memcg;
6585 unsigned long pgpgout;
6586 unsigned long nr_anon;
6587 unsigned long nr_file;
6588 unsigned long nr_kmem;
6589 unsigned long nr_huge;
6590 unsigned long nr_shmem;
6591 struct page *dummy_page;
6592};
6593
6594static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6595{
a9d5adee
JG
6596 memset(ug, 0, sizeof(*ug));
6597}
6598
6599static void uncharge_batch(const struct uncharge_gather *ug)
6600{
6601 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6602 unsigned long flags;
6603
a9d5adee
JG
6604 if (!mem_cgroup_is_root(ug->memcg)) {
6605 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6606 if (do_memsw_account())
a9d5adee
JG
6607 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6608 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6609 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6610 memcg_oom_recover(ug->memcg);
ce00a967 6611 }
747db954
JW
6612
6613 local_irq_save(flags);
c9019e9b
JW
6614 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6615 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6616 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6617 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6618 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6619 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6620 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6621 local_irq_restore(flags);
e8ea14cc 6622
a9d5adee
JG
6623 if (!mem_cgroup_is_root(ug->memcg))
6624 css_put_many(&ug->memcg->css, nr_pages);
6625}
6626
6627static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6628{
6629 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6630 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6631 !PageHWPoison(page) , page);
a9d5adee
JG
6632
6633 if (!page->mem_cgroup)
6634 return;
6635
6636 /*
6637 * Nobody should be changing or seriously looking at
6638 * page->mem_cgroup at this point, we have fully
6639 * exclusive access to the page.
6640 */
6641
6642 if (ug->memcg != page->mem_cgroup) {
6643 if (ug->memcg) {
6644 uncharge_batch(ug);
6645 uncharge_gather_clear(ug);
6646 }
6647 ug->memcg = page->mem_cgroup;
6648 }
6649
6650 if (!PageKmemcg(page)) {
6651 unsigned int nr_pages = 1;
6652
6653 if (PageTransHuge(page)) {
d8c6546b 6654 nr_pages = compound_nr(page);
a9d5adee
JG
6655 ug->nr_huge += nr_pages;
6656 }
6657 if (PageAnon(page))
6658 ug->nr_anon += nr_pages;
6659 else {
6660 ug->nr_file += nr_pages;
6661 if (PageSwapBacked(page))
6662 ug->nr_shmem += nr_pages;
6663 }
6664 ug->pgpgout++;
6665 } else {
d8c6546b 6666 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6667 __ClearPageKmemcg(page);
6668 }
6669
6670 ug->dummy_page = page;
6671 page->mem_cgroup = NULL;
747db954
JW
6672}
6673
6674static void uncharge_list(struct list_head *page_list)
6675{
a9d5adee 6676 struct uncharge_gather ug;
747db954 6677 struct list_head *next;
a9d5adee
JG
6678
6679 uncharge_gather_clear(&ug);
747db954 6680
8b592656
JW
6681 /*
6682 * Note that the list can be a single page->lru; hence the
6683 * do-while loop instead of a simple list_for_each_entry().
6684 */
747db954
JW
6685 next = page_list->next;
6686 do {
a9d5adee
JG
6687 struct page *page;
6688
747db954
JW
6689 page = list_entry(next, struct page, lru);
6690 next = page->lru.next;
6691
a9d5adee 6692 uncharge_page(page, &ug);
747db954
JW
6693 } while (next != page_list);
6694
a9d5adee
JG
6695 if (ug.memcg)
6696 uncharge_batch(&ug);
747db954
JW
6697}
6698
0a31bc97
JW
6699/**
6700 * mem_cgroup_uncharge - uncharge a page
6701 * @page: page to uncharge
6702 *
6703 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6704 * mem_cgroup_commit_charge().
6705 */
6706void mem_cgroup_uncharge(struct page *page)
6707{
a9d5adee
JG
6708 struct uncharge_gather ug;
6709
0a31bc97
JW
6710 if (mem_cgroup_disabled())
6711 return;
6712
747db954 6713 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6714 if (!page->mem_cgroup)
0a31bc97
JW
6715 return;
6716
a9d5adee
JG
6717 uncharge_gather_clear(&ug);
6718 uncharge_page(page, &ug);
6719 uncharge_batch(&ug);
747db954 6720}
0a31bc97 6721
747db954
JW
6722/**
6723 * mem_cgroup_uncharge_list - uncharge a list of page
6724 * @page_list: list of pages to uncharge
6725 *
6726 * Uncharge a list of pages previously charged with
6727 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6728 */
6729void mem_cgroup_uncharge_list(struct list_head *page_list)
6730{
6731 if (mem_cgroup_disabled())
6732 return;
0a31bc97 6733
747db954
JW
6734 if (!list_empty(page_list))
6735 uncharge_list(page_list);
0a31bc97
JW
6736}
6737
6738/**
6a93ca8f
JW
6739 * mem_cgroup_migrate - charge a page's replacement
6740 * @oldpage: currently circulating page
6741 * @newpage: replacement page
0a31bc97 6742 *
6a93ca8f
JW
6743 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6744 * be uncharged upon free.
0a31bc97
JW
6745 *
6746 * Both pages must be locked, @newpage->mapping must be set up.
6747 */
6a93ca8f 6748void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6749{
29833315 6750 struct mem_cgroup *memcg;
44b7a8d3
JW
6751 unsigned int nr_pages;
6752 bool compound;
d93c4130 6753 unsigned long flags;
0a31bc97
JW
6754
6755 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6756 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6757 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6758 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6759 newpage);
0a31bc97
JW
6760
6761 if (mem_cgroup_disabled())
6762 return;
6763
6764 /* Page cache replacement: new page already charged? */
1306a85a 6765 if (newpage->mem_cgroup)
0a31bc97
JW
6766 return;
6767
45637bab 6768 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6769 memcg = oldpage->mem_cgroup;
29833315 6770 if (!memcg)
0a31bc97
JW
6771 return;
6772
44b7a8d3
JW
6773 /* Force-charge the new page. The old one will be freed soon */
6774 compound = PageTransHuge(newpage);
6775 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6776
6777 page_counter_charge(&memcg->memory, nr_pages);
6778 if (do_memsw_account())
6779 page_counter_charge(&memcg->memsw, nr_pages);
6780 css_get_many(&memcg->css, nr_pages);
0a31bc97 6781
9cf7666a 6782 commit_charge(newpage, memcg, false);
44b7a8d3 6783
d93c4130 6784 local_irq_save(flags);
44b7a8d3
JW
6785 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6786 memcg_check_events(memcg, newpage);
d93c4130 6787 local_irq_restore(flags);
0a31bc97
JW
6788}
6789
ef12947c 6790DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6791EXPORT_SYMBOL(memcg_sockets_enabled_key);
6792
2d758073 6793void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6794{
6795 struct mem_cgroup *memcg;
6796
2d758073
JW
6797 if (!mem_cgroup_sockets_enabled)
6798 return;
6799
edbe69ef
RG
6800 /*
6801 * Socket cloning can throw us here with sk_memcg already
6802 * filled. It won't however, necessarily happen from
6803 * process context. So the test for root memcg given
6804 * the current task's memcg won't help us in this case.
6805 *
6806 * Respecting the original socket's memcg is a better
6807 * decision in this case.
6808 */
6809 if (sk->sk_memcg) {
6810 css_get(&sk->sk_memcg->css);
6811 return;
6812 }
6813
11092087
JW
6814 rcu_read_lock();
6815 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6816 if (memcg == root_mem_cgroup)
6817 goto out;
0db15298 6818 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6819 goto out;
f7e1cb6e 6820 if (css_tryget_online(&memcg->css))
11092087 6821 sk->sk_memcg = memcg;
f7e1cb6e 6822out:
11092087
JW
6823 rcu_read_unlock();
6824}
11092087 6825
2d758073 6826void mem_cgroup_sk_free(struct sock *sk)
11092087 6827{
2d758073
JW
6828 if (sk->sk_memcg)
6829 css_put(&sk->sk_memcg->css);
11092087
JW
6830}
6831
6832/**
6833 * mem_cgroup_charge_skmem - charge socket memory
6834 * @memcg: memcg to charge
6835 * @nr_pages: number of pages to charge
6836 *
6837 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6838 * @memcg's configured limit, %false if the charge had to be forced.
6839 */
6840bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6841{
f7e1cb6e 6842 gfp_t gfp_mask = GFP_KERNEL;
11092087 6843
f7e1cb6e 6844 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6845 struct page_counter *fail;
f7e1cb6e 6846
0db15298
JW
6847 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6848 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6849 return true;
6850 }
0db15298
JW
6851 page_counter_charge(&memcg->tcpmem, nr_pages);
6852 memcg->tcpmem_pressure = 1;
f7e1cb6e 6853 return false;
11092087 6854 }
d886f4e4 6855
f7e1cb6e
JW
6856 /* Don't block in the packet receive path */
6857 if (in_softirq())
6858 gfp_mask = GFP_NOWAIT;
6859
c9019e9b 6860 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6861
f7e1cb6e
JW
6862 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6863 return true;
6864
6865 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6866 return false;
6867}
6868
6869/**
6870 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6871 * @memcg: memcg to uncharge
6872 * @nr_pages: number of pages to uncharge
11092087
JW
6873 */
6874void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6875{
f7e1cb6e 6876 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6877 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6878 return;
6879 }
d886f4e4 6880
c9019e9b 6881 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6882
475d0487 6883 refill_stock(memcg, nr_pages);
11092087
JW
6884}
6885
f7e1cb6e
JW
6886static int __init cgroup_memory(char *s)
6887{
6888 char *token;
6889
6890 while ((token = strsep(&s, ",")) != NULL) {
6891 if (!*token)
6892 continue;
6893 if (!strcmp(token, "nosocket"))
6894 cgroup_memory_nosocket = true;
04823c83
VD
6895 if (!strcmp(token, "nokmem"))
6896 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6897 }
6898 return 0;
6899}
6900__setup("cgroup.memory=", cgroup_memory);
11092087 6901
2d11085e 6902/*
1081312f
MH
6903 * subsys_initcall() for memory controller.
6904 *
308167fc
SAS
6905 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6906 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6907 * basically everything that doesn't depend on a specific mem_cgroup structure
6908 * should be initialized from here.
2d11085e
MH
6909 */
6910static int __init mem_cgroup_init(void)
6911{
95a045f6
JW
6912 int cpu, node;
6913
84c07d11 6914#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6915 /*
6916 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6917 * so use a workqueue with limited concurrency to avoid stalling
6918 * all worker threads in case lots of cgroups are created and
6919 * destroyed simultaneously.
13583c3d 6920 */
17cc4dfe
TH
6921 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6922 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6923#endif
6924
308167fc
SAS
6925 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6926 memcg_hotplug_cpu_dead);
95a045f6
JW
6927
6928 for_each_possible_cpu(cpu)
6929 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6930 drain_local_stock);
6931
6932 for_each_node(node) {
6933 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6934
6935 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6936 node_online(node) ? node : NUMA_NO_NODE);
6937
ef8f2327 6938 rtpn->rb_root = RB_ROOT;
fa90b2fd 6939 rtpn->rb_rightmost = NULL;
ef8f2327 6940 spin_lock_init(&rtpn->lock);
95a045f6
JW
6941 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6942 }
6943
2d11085e
MH
6944 return 0;
6945}
6946subsys_initcall(mem_cgroup_init);
21afa38e
JW
6947
6948#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6949static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6950{
1c2d479a 6951 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6952 /*
6953 * The root cgroup cannot be destroyed, so it's refcount must
6954 * always be >= 1.
6955 */
6956 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6957 VM_BUG_ON(1);
6958 break;
6959 }
6960 memcg = parent_mem_cgroup(memcg);
6961 if (!memcg)
6962 memcg = root_mem_cgroup;
6963 }
6964 return memcg;
6965}
6966
21afa38e
JW
6967/**
6968 * mem_cgroup_swapout - transfer a memsw charge to swap
6969 * @page: page whose memsw charge to transfer
6970 * @entry: swap entry to move the charge to
6971 *
6972 * Transfer the memsw charge of @page to @entry.
6973 */
6974void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6975{
1f47b61f 6976 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6977 unsigned int nr_entries;
21afa38e
JW
6978 unsigned short oldid;
6979
6980 VM_BUG_ON_PAGE(PageLRU(page), page);
6981 VM_BUG_ON_PAGE(page_count(page), page);
6982
7941d214 6983 if (!do_memsw_account())
21afa38e
JW
6984 return;
6985
6986 memcg = page->mem_cgroup;
6987
6988 /* Readahead page, never charged */
6989 if (!memcg)
6990 return;
6991
1f47b61f
VD
6992 /*
6993 * In case the memcg owning these pages has been offlined and doesn't
6994 * have an ID allocated to it anymore, charge the closest online
6995 * ancestor for the swap instead and transfer the memory+swap charge.
6996 */
6997 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6998 nr_entries = hpage_nr_pages(page);
6999 /* Get references for the tail pages, too */
7000 if (nr_entries > 1)
7001 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7002 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7003 nr_entries);
21afa38e 7004 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7005 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7006
7007 page->mem_cgroup = NULL;
7008
7009 if (!mem_cgroup_is_root(memcg))
d6810d73 7010 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7011
1f47b61f
VD
7012 if (memcg != swap_memcg) {
7013 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7014 page_counter_charge(&swap_memcg->memsw, nr_entries);
7015 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7016 }
7017
ce9ce665
SAS
7018 /*
7019 * Interrupts should be disabled here because the caller holds the
b93b0163 7020 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7021 * important here to have the interrupts disabled because it is the
b93b0163 7022 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7023 */
7024 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
7025 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7026 -nr_entries);
21afa38e 7027 memcg_check_events(memcg, page);
73f576c0
JW
7028
7029 if (!mem_cgroup_is_root(memcg))
d08afa14 7030 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
7031}
7032
38d8b4e6
HY
7033/**
7034 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7035 * @page: page being added to swap
7036 * @entry: swap entry to charge
7037 *
38d8b4e6 7038 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7039 *
7040 * Returns 0 on success, -ENOMEM on failure.
7041 */
7042int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7043{
38d8b4e6 7044 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7045 struct page_counter *counter;
38d8b4e6 7046 struct mem_cgroup *memcg;
37e84351
VD
7047 unsigned short oldid;
7048
7049 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7050 return 0;
7051
7052 memcg = page->mem_cgroup;
7053
7054 /* Readahead page, never charged */
7055 if (!memcg)
7056 return 0;
7057
f3a53a3a
TH
7058 if (!entry.val) {
7059 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7060 return 0;
f3a53a3a 7061 }
bb98f2c5 7062
1f47b61f
VD
7063 memcg = mem_cgroup_id_get_online(memcg);
7064
37e84351 7065 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7066 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7067 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7068 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7069 mem_cgroup_id_put(memcg);
37e84351 7070 return -ENOMEM;
1f47b61f 7071 }
37e84351 7072
38d8b4e6
HY
7073 /* Get references for the tail pages, too */
7074 if (nr_pages > 1)
7075 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7076 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7077 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7078 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7079
37e84351
VD
7080 return 0;
7081}
7082
21afa38e 7083/**
38d8b4e6 7084 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7085 * @entry: swap entry to uncharge
38d8b4e6 7086 * @nr_pages: the amount of swap space to uncharge
21afa38e 7087 */
38d8b4e6 7088void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7089{
7090 struct mem_cgroup *memcg;
7091 unsigned short id;
7092
37e84351 7093 if (!do_swap_account)
21afa38e
JW
7094 return;
7095
38d8b4e6 7096 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7097 rcu_read_lock();
adbe427b 7098 memcg = mem_cgroup_from_id(id);
21afa38e 7099 if (memcg) {
37e84351
VD
7100 if (!mem_cgroup_is_root(memcg)) {
7101 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7102 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7103 else
38d8b4e6 7104 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7105 }
c9019e9b 7106 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7107 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7108 }
7109 rcu_read_unlock();
7110}
7111
d8b38438
VD
7112long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7113{
7114 long nr_swap_pages = get_nr_swap_pages();
7115
7116 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7117 return nr_swap_pages;
7118 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7119 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7120 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7121 page_counter_read(&memcg->swap));
7122 return nr_swap_pages;
7123}
7124
5ccc5aba
VD
7125bool mem_cgroup_swap_full(struct page *page)
7126{
7127 struct mem_cgroup *memcg;
7128
7129 VM_BUG_ON_PAGE(!PageLocked(page), page);
7130
7131 if (vm_swap_full())
7132 return true;
7133 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7134 return false;
7135
7136 memcg = page->mem_cgroup;
7137 if (!memcg)
7138 return false;
7139
7140 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 7141 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
7142 return true;
7143
7144 return false;
7145}
7146
21afa38e
JW
7147/* for remember boot option*/
7148#ifdef CONFIG_MEMCG_SWAP_ENABLED
7149static int really_do_swap_account __initdata = 1;
7150#else
7151static int really_do_swap_account __initdata;
7152#endif
7153
7154static int __init enable_swap_account(char *s)
7155{
7156 if (!strcmp(s, "1"))
7157 really_do_swap_account = 1;
7158 else if (!strcmp(s, "0"))
7159 really_do_swap_account = 0;
7160 return 1;
7161}
7162__setup("swapaccount=", enable_swap_account);
7163
37e84351
VD
7164static u64 swap_current_read(struct cgroup_subsys_state *css,
7165 struct cftype *cft)
7166{
7167 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7168
7169 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7170}
7171
7172static int swap_max_show(struct seq_file *m, void *v)
7173{
677dc973
CD
7174 return seq_puts_memcg_tunable(m,
7175 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7176}
7177
7178static ssize_t swap_max_write(struct kernfs_open_file *of,
7179 char *buf, size_t nbytes, loff_t off)
7180{
7181 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7182 unsigned long max;
7183 int err;
7184
7185 buf = strstrip(buf);
7186 err = page_counter_memparse(buf, "max", &max);
7187 if (err)
7188 return err;
7189
be09102b 7190 xchg(&memcg->swap.max, max);
37e84351
VD
7191
7192 return nbytes;
7193}
7194
f3a53a3a
TH
7195static int swap_events_show(struct seq_file *m, void *v)
7196{
aa9694bb 7197 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
7198
7199 seq_printf(m, "max %lu\n",
7200 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7201 seq_printf(m, "fail %lu\n",
7202 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7203
7204 return 0;
7205}
7206
37e84351
VD
7207static struct cftype swap_files[] = {
7208 {
7209 .name = "swap.current",
7210 .flags = CFTYPE_NOT_ON_ROOT,
7211 .read_u64 = swap_current_read,
7212 },
7213 {
7214 .name = "swap.max",
7215 .flags = CFTYPE_NOT_ON_ROOT,
7216 .seq_show = swap_max_show,
7217 .write = swap_max_write,
7218 },
f3a53a3a
TH
7219 {
7220 .name = "swap.events",
7221 .flags = CFTYPE_NOT_ON_ROOT,
7222 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7223 .seq_show = swap_events_show,
7224 },
37e84351
VD
7225 { } /* terminate */
7226};
7227
21afa38e
JW
7228static struct cftype memsw_cgroup_files[] = {
7229 {
7230 .name = "memsw.usage_in_bytes",
7231 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7232 .read_u64 = mem_cgroup_read_u64,
7233 },
7234 {
7235 .name = "memsw.max_usage_in_bytes",
7236 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7237 .write = mem_cgroup_reset,
7238 .read_u64 = mem_cgroup_read_u64,
7239 },
7240 {
7241 .name = "memsw.limit_in_bytes",
7242 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7243 .write = mem_cgroup_write,
7244 .read_u64 = mem_cgroup_read_u64,
7245 },
7246 {
7247 .name = "memsw.failcnt",
7248 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7249 .write = mem_cgroup_reset,
7250 .read_u64 = mem_cgroup_read_u64,
7251 },
7252 { }, /* terminate */
7253};
7254
7255static int __init mem_cgroup_swap_init(void)
7256{
7257 if (!mem_cgroup_disabled() && really_do_swap_account) {
7258 do_swap_account = 1;
37e84351
VD
7259 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7260 swap_files));
21afa38e
JW
7261 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7262 memsw_cgroup_files));
7263 }
7264 return 0;
7265}
7266subsys_initcall(mem_cgroup_swap_init);
7267
7268#endif /* CONFIG_MEMCG_SWAP */