mm: add a __GFP_KMEMCG flag
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3 53#include <net/sock.h>
4bd2c1ee 54#include <net/ip.h>
d1a4c0b3 55#include <net/tcp_memcontrol.h>
8cdea7c0 56
8697d331
BS
57#include <asm/uaccess.h>
58
cc8e970c
KM
59#include <trace/events/vmscan.h>
60
a181b0e8 61struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
62EXPORT_SYMBOL(mem_cgroup_subsys);
63
a181b0e8 64#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 65static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 66
c255a458 67#ifdef CONFIG_MEMCG_SWAP
338c8431 68/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 69int do_swap_account __read_mostly;
a42c390c
MH
70
71/* for remember boot option*/
c255a458 72#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
73static int really_do_swap_account __initdata = 1;
74#else
75static int really_do_swap_account __initdata = 0;
76#endif
77
c077719b 78#else
a0db00fc 79#define do_swap_account 0
c077719b
KH
80#endif
81
82
d52aa412
KH
83/*
84 * Statistics for memory cgroup.
85 */
86enum mem_cgroup_stat_index {
87 /*
88 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
89 */
90 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 91 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 92 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 93 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
94 MEM_CGROUP_STAT_NSTATS,
95};
96
af7c4b0e
JW
97static const char * const mem_cgroup_stat_names[] = {
98 "cache",
99 "rss",
100 "mapped_file",
101 "swap",
102};
103
e9f8974f
JW
104enum mem_cgroup_events_index {
105 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
106 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
107 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
108 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
109 MEM_CGROUP_EVENTS_NSTATS,
110};
af7c4b0e
JW
111
112static const char * const mem_cgroup_events_names[] = {
113 "pgpgin",
114 "pgpgout",
115 "pgfault",
116 "pgmajfault",
117};
118
7a159cc9
JW
119/*
120 * Per memcg event counter is incremented at every pagein/pageout. With THP,
121 * it will be incremated by the number of pages. This counter is used for
122 * for trigger some periodic events. This is straightforward and better
123 * than using jiffies etc. to handle periodic memcg event.
124 */
125enum mem_cgroup_events_target {
126 MEM_CGROUP_TARGET_THRESH,
127 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 128 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
129 MEM_CGROUP_NTARGETS,
130};
a0db00fc
KS
131#define THRESHOLDS_EVENTS_TARGET 128
132#define SOFTLIMIT_EVENTS_TARGET 1024
133#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 134
d52aa412 135struct mem_cgroup_stat_cpu {
7a159cc9 136 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 137 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 138 unsigned long nr_page_events;
7a159cc9 139 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
140};
141
527a5ec9
JW
142struct mem_cgroup_reclaim_iter {
143 /* css_id of the last scanned hierarchy member */
144 int position;
145 /* scan generation, increased every round-trip */
146 unsigned int generation;
147};
148
6d12e2d8
KH
149/*
150 * per-zone information in memory controller.
151 */
6d12e2d8 152struct mem_cgroup_per_zone {
6290df54 153 struct lruvec lruvec;
1eb49272 154 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 155
527a5ec9
JW
156 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
157
f64c3f54
BS
158 struct rb_node tree_node; /* RB tree node */
159 unsigned long long usage_in_excess;/* Set to the value by which */
160 /* the soft limit is exceeded*/
161 bool on_tree;
d79154bb 162 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 163 /* use container_of */
6d12e2d8 164};
6d12e2d8
KH
165
166struct mem_cgroup_per_node {
167 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
168};
169
170struct mem_cgroup_lru_info {
171 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
172};
173
f64c3f54
BS
174/*
175 * Cgroups above their limits are maintained in a RB-Tree, independent of
176 * their hierarchy representation
177 */
178
179struct mem_cgroup_tree_per_zone {
180 struct rb_root rb_root;
181 spinlock_t lock;
182};
183
184struct mem_cgroup_tree_per_node {
185 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
186};
187
188struct mem_cgroup_tree {
189 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
190};
191
192static struct mem_cgroup_tree soft_limit_tree __read_mostly;
193
2e72b634
KS
194struct mem_cgroup_threshold {
195 struct eventfd_ctx *eventfd;
196 u64 threshold;
197};
198
9490ff27 199/* For threshold */
2e72b634 200struct mem_cgroup_threshold_ary {
748dad36 201 /* An array index points to threshold just below or equal to usage. */
5407a562 202 int current_threshold;
2e72b634
KS
203 /* Size of entries[] */
204 unsigned int size;
205 /* Array of thresholds */
206 struct mem_cgroup_threshold entries[0];
207};
2c488db2
KS
208
209struct mem_cgroup_thresholds {
210 /* Primary thresholds array */
211 struct mem_cgroup_threshold_ary *primary;
212 /*
213 * Spare threshold array.
214 * This is needed to make mem_cgroup_unregister_event() "never fail".
215 * It must be able to store at least primary->size - 1 entries.
216 */
217 struct mem_cgroup_threshold_ary *spare;
218};
219
9490ff27
KH
220/* for OOM */
221struct mem_cgroup_eventfd_list {
222 struct list_head list;
223 struct eventfd_ctx *eventfd;
224};
2e72b634 225
c0ff4b85
R
226static void mem_cgroup_threshold(struct mem_cgroup *memcg);
227static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 228
8cdea7c0
BS
229/*
230 * The memory controller data structure. The memory controller controls both
231 * page cache and RSS per cgroup. We would eventually like to provide
232 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
233 * to help the administrator determine what knobs to tune.
234 *
235 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
236 * we hit the water mark. May be even add a low water mark, such that
237 * no reclaim occurs from a cgroup at it's low water mark, this is
238 * a feature that will be implemented much later in the future.
8cdea7c0
BS
239 */
240struct mem_cgroup {
241 struct cgroup_subsys_state css;
242 /*
243 * the counter to account for memory usage
244 */
245 struct res_counter res;
59927fb9
HD
246
247 union {
248 /*
249 * the counter to account for mem+swap usage.
250 */
251 struct res_counter memsw;
252
253 /*
254 * rcu_freeing is used only when freeing struct mem_cgroup,
255 * so put it into a union to avoid wasting more memory.
256 * It must be disjoint from the css field. It could be
257 * in a union with the res field, but res plays a much
258 * larger part in mem_cgroup life than memsw, and might
259 * be of interest, even at time of free, when debugging.
260 * So share rcu_head with the less interesting memsw.
261 */
262 struct rcu_head rcu_freeing;
263 /*
3afe36b1
GC
264 * We also need some space for a worker in deferred freeing.
265 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
266 */
267 struct work_struct work_freeing;
268 };
269
510fc4e1
GC
270 /*
271 * the counter to account for kernel memory usage.
272 */
273 struct res_counter kmem;
78fb7466
PE
274 /*
275 * Per cgroup active and inactive list, similar to the
276 * per zone LRU lists.
78fb7466 277 */
6d12e2d8 278 struct mem_cgroup_lru_info info;
889976db
YH
279 int last_scanned_node;
280#if MAX_NUMNODES > 1
281 nodemask_t scan_nodes;
453a9bf3
KH
282 atomic_t numainfo_events;
283 atomic_t numainfo_updating;
889976db 284#endif
18f59ea7
BS
285 /*
286 * Should the accounting and control be hierarchical, per subtree?
287 */
288 bool use_hierarchy;
510fc4e1 289 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
290
291 bool oom_lock;
292 atomic_t under_oom;
293
8c7c6e34 294 atomic_t refcnt;
14797e23 295
1f4c025b 296 int swappiness;
3c11ecf4
KH
297 /* OOM-Killer disable */
298 int oom_kill_disable;
a7885eb8 299
22a668d7
KH
300 /* set when res.limit == memsw.limit */
301 bool memsw_is_minimum;
302
2e72b634
KS
303 /* protect arrays of thresholds */
304 struct mutex thresholds_lock;
305
306 /* thresholds for memory usage. RCU-protected */
2c488db2 307 struct mem_cgroup_thresholds thresholds;
907860ed 308
2e72b634 309 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 310 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 311
9490ff27
KH
312 /* For oom notifier event fd */
313 struct list_head oom_notify;
185efc0f 314
7dc74be0
DN
315 /*
316 * Should we move charges of a task when a task is moved into this
317 * mem_cgroup ? And what type of charges should we move ?
318 */
319 unsigned long move_charge_at_immigrate;
619d094b
KH
320 /*
321 * set > 0 if pages under this cgroup are moving to other cgroup.
322 */
323 atomic_t moving_account;
312734c0
KH
324 /* taken only while moving_account > 0 */
325 spinlock_t move_lock;
d52aa412 326 /*
c62b1a3b 327 * percpu counter.
d52aa412 328 */
3a7951b4 329 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
330 /*
331 * used when a cpu is offlined or other synchronizations
332 * See mem_cgroup_read_stat().
333 */
334 struct mem_cgroup_stat_cpu nocpu_base;
335 spinlock_t pcp_counter_lock;
d1a4c0b3 336
4bd2c1ee 337#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
338 struct tcp_memcontrol tcp_mem;
339#endif
8cdea7c0
BS
340};
341
510fc4e1
GC
342/* internal only representation about the status of kmem accounting. */
343enum {
344 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
345};
346
347#define KMEM_ACCOUNTED_MASK (1 << KMEM_ACCOUNTED_ACTIVE)
348
349#ifdef CONFIG_MEMCG_KMEM
350static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
351{
352 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
353}
354#endif
355
7dc74be0
DN
356/* Stuffs for move charges at task migration. */
357/*
358 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
359 * left-shifted bitmap of these types.
360 */
361enum move_type {
4ffef5fe 362 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 363 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
364 NR_MOVE_TYPE,
365};
366
4ffef5fe
DN
367/* "mc" and its members are protected by cgroup_mutex */
368static struct move_charge_struct {
b1dd693e 369 spinlock_t lock; /* for from, to */
4ffef5fe
DN
370 struct mem_cgroup *from;
371 struct mem_cgroup *to;
372 unsigned long precharge;
854ffa8d 373 unsigned long moved_charge;
483c30b5 374 unsigned long moved_swap;
8033b97c
DN
375 struct task_struct *moving_task; /* a task moving charges */
376 wait_queue_head_t waitq; /* a waitq for other context */
377} mc = {
2bd9bb20 378 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
379 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
380};
4ffef5fe 381
90254a65
DN
382static bool move_anon(void)
383{
384 return test_bit(MOVE_CHARGE_TYPE_ANON,
385 &mc.to->move_charge_at_immigrate);
386}
387
87946a72
DN
388static bool move_file(void)
389{
390 return test_bit(MOVE_CHARGE_TYPE_FILE,
391 &mc.to->move_charge_at_immigrate);
392}
393
4e416953
BS
394/*
395 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
396 * limit reclaim to prevent infinite loops, if they ever occur.
397 */
a0db00fc
KS
398#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
399#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 400
217bc319
KH
401enum charge_type {
402 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 403 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 404 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 405 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
406 NR_CHARGE_TYPE,
407};
408
8c7c6e34 409/* for encoding cft->private value on file */
86ae53e1
GC
410enum res_type {
411 _MEM,
412 _MEMSWAP,
413 _OOM_TYPE,
510fc4e1 414 _KMEM,
86ae53e1
GC
415};
416
a0db00fc
KS
417#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
418#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 419#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
420/* Used for OOM nofiier */
421#define OOM_CONTROL (0)
8c7c6e34 422
75822b44
BS
423/*
424 * Reclaim flags for mem_cgroup_hierarchical_reclaim
425 */
426#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
427#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
428#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
429#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
430
c0ff4b85
R
431static void mem_cgroup_get(struct mem_cgroup *memcg);
432static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 433
b2145145
WL
434static inline
435struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
436{
437 return container_of(s, struct mem_cgroup, css);
438}
439
7ffc0edc
MH
440static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
441{
442 return (memcg == root_mem_cgroup);
443}
444
e1aab161 445/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 446#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 447
e1aab161
GC
448void sock_update_memcg(struct sock *sk)
449{
376be5ff 450 if (mem_cgroup_sockets_enabled) {
e1aab161 451 struct mem_cgroup *memcg;
3f134619 452 struct cg_proto *cg_proto;
e1aab161
GC
453
454 BUG_ON(!sk->sk_prot->proto_cgroup);
455
f3f511e1
GC
456 /* Socket cloning can throw us here with sk_cgrp already
457 * filled. It won't however, necessarily happen from
458 * process context. So the test for root memcg given
459 * the current task's memcg won't help us in this case.
460 *
461 * Respecting the original socket's memcg is a better
462 * decision in this case.
463 */
464 if (sk->sk_cgrp) {
465 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
466 mem_cgroup_get(sk->sk_cgrp->memcg);
467 return;
468 }
469
e1aab161
GC
470 rcu_read_lock();
471 memcg = mem_cgroup_from_task(current);
3f134619
GC
472 cg_proto = sk->sk_prot->proto_cgroup(memcg);
473 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 474 mem_cgroup_get(memcg);
3f134619 475 sk->sk_cgrp = cg_proto;
e1aab161
GC
476 }
477 rcu_read_unlock();
478 }
479}
480EXPORT_SYMBOL(sock_update_memcg);
481
482void sock_release_memcg(struct sock *sk)
483{
376be5ff 484 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
485 struct mem_cgroup *memcg;
486 WARN_ON(!sk->sk_cgrp->memcg);
487 memcg = sk->sk_cgrp->memcg;
488 mem_cgroup_put(memcg);
489 }
490}
d1a4c0b3
GC
491
492struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
493{
494 if (!memcg || mem_cgroup_is_root(memcg))
495 return NULL;
496
497 return &memcg->tcp_mem.cg_proto;
498}
499EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 500
3f134619
GC
501static void disarm_sock_keys(struct mem_cgroup *memcg)
502{
503 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
504 return;
505 static_key_slow_dec(&memcg_socket_limit_enabled);
506}
507#else
508static void disarm_sock_keys(struct mem_cgroup *memcg)
509{
510}
511#endif
512
c0ff4b85 513static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 514
f64c3f54 515static struct mem_cgroup_per_zone *
c0ff4b85 516mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 517{
c0ff4b85 518 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
519}
520
c0ff4b85 521struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 522{
c0ff4b85 523 return &memcg->css;
d324236b
WF
524}
525
f64c3f54 526static struct mem_cgroup_per_zone *
c0ff4b85 527page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 528{
97a6c37b
JW
529 int nid = page_to_nid(page);
530 int zid = page_zonenum(page);
f64c3f54 531
c0ff4b85 532 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
533}
534
535static struct mem_cgroup_tree_per_zone *
536soft_limit_tree_node_zone(int nid, int zid)
537{
538 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
539}
540
541static struct mem_cgroup_tree_per_zone *
542soft_limit_tree_from_page(struct page *page)
543{
544 int nid = page_to_nid(page);
545 int zid = page_zonenum(page);
546
547 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
548}
549
550static void
c0ff4b85 551__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 552 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
553 struct mem_cgroup_tree_per_zone *mctz,
554 unsigned long long new_usage_in_excess)
f64c3f54
BS
555{
556 struct rb_node **p = &mctz->rb_root.rb_node;
557 struct rb_node *parent = NULL;
558 struct mem_cgroup_per_zone *mz_node;
559
560 if (mz->on_tree)
561 return;
562
ef8745c1
KH
563 mz->usage_in_excess = new_usage_in_excess;
564 if (!mz->usage_in_excess)
565 return;
f64c3f54
BS
566 while (*p) {
567 parent = *p;
568 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
569 tree_node);
570 if (mz->usage_in_excess < mz_node->usage_in_excess)
571 p = &(*p)->rb_left;
572 /*
573 * We can't avoid mem cgroups that are over their soft
574 * limit by the same amount
575 */
576 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
577 p = &(*p)->rb_right;
578 }
579 rb_link_node(&mz->tree_node, parent, p);
580 rb_insert_color(&mz->tree_node, &mctz->rb_root);
581 mz->on_tree = true;
4e416953
BS
582}
583
584static void
c0ff4b85 585__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
586 struct mem_cgroup_per_zone *mz,
587 struct mem_cgroup_tree_per_zone *mctz)
588{
589 if (!mz->on_tree)
590 return;
591 rb_erase(&mz->tree_node, &mctz->rb_root);
592 mz->on_tree = false;
593}
594
f64c3f54 595static void
c0ff4b85 596mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
597 struct mem_cgroup_per_zone *mz,
598 struct mem_cgroup_tree_per_zone *mctz)
599{
600 spin_lock(&mctz->lock);
c0ff4b85 601 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
602 spin_unlock(&mctz->lock);
603}
604
f64c3f54 605
c0ff4b85 606static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 607{
ef8745c1 608 unsigned long long excess;
f64c3f54
BS
609 struct mem_cgroup_per_zone *mz;
610 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
611 int nid = page_to_nid(page);
612 int zid = page_zonenum(page);
f64c3f54
BS
613 mctz = soft_limit_tree_from_page(page);
614
615 /*
4e649152
KH
616 * Necessary to update all ancestors when hierarchy is used.
617 * because their event counter is not touched.
f64c3f54 618 */
c0ff4b85
R
619 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
620 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
621 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
622 /*
623 * We have to update the tree if mz is on RB-tree or
624 * mem is over its softlimit.
625 */
ef8745c1 626 if (excess || mz->on_tree) {
4e649152
KH
627 spin_lock(&mctz->lock);
628 /* if on-tree, remove it */
629 if (mz->on_tree)
c0ff4b85 630 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 631 /*
ef8745c1
KH
632 * Insert again. mz->usage_in_excess will be updated.
633 * If excess is 0, no tree ops.
4e649152 634 */
c0ff4b85 635 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
636 spin_unlock(&mctz->lock);
637 }
f64c3f54
BS
638 }
639}
640
c0ff4b85 641static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
642{
643 int node, zone;
644 struct mem_cgroup_per_zone *mz;
645 struct mem_cgroup_tree_per_zone *mctz;
646
3ed28fa1 647 for_each_node(node) {
f64c3f54 648 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 649 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 650 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 651 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
652 }
653 }
654}
655
4e416953
BS
656static struct mem_cgroup_per_zone *
657__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
658{
659 struct rb_node *rightmost = NULL;
26251eaf 660 struct mem_cgroup_per_zone *mz;
4e416953
BS
661
662retry:
26251eaf 663 mz = NULL;
4e416953
BS
664 rightmost = rb_last(&mctz->rb_root);
665 if (!rightmost)
666 goto done; /* Nothing to reclaim from */
667
668 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
669 /*
670 * Remove the node now but someone else can add it back,
671 * we will to add it back at the end of reclaim to its correct
672 * position in the tree.
673 */
d79154bb
HD
674 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
675 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
676 !css_tryget(&mz->memcg->css))
4e416953
BS
677 goto retry;
678done:
679 return mz;
680}
681
682static struct mem_cgroup_per_zone *
683mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
684{
685 struct mem_cgroup_per_zone *mz;
686
687 spin_lock(&mctz->lock);
688 mz = __mem_cgroup_largest_soft_limit_node(mctz);
689 spin_unlock(&mctz->lock);
690 return mz;
691}
692
711d3d2c
KH
693/*
694 * Implementation Note: reading percpu statistics for memcg.
695 *
696 * Both of vmstat[] and percpu_counter has threshold and do periodic
697 * synchronization to implement "quick" read. There are trade-off between
698 * reading cost and precision of value. Then, we may have a chance to implement
699 * a periodic synchronizion of counter in memcg's counter.
700 *
701 * But this _read() function is used for user interface now. The user accounts
702 * memory usage by memory cgroup and he _always_ requires exact value because
703 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
704 * have to visit all online cpus and make sum. So, for now, unnecessary
705 * synchronization is not implemented. (just implemented for cpu hotplug)
706 *
707 * If there are kernel internal actions which can make use of some not-exact
708 * value, and reading all cpu value can be performance bottleneck in some
709 * common workload, threashold and synchonization as vmstat[] should be
710 * implemented.
711 */
c0ff4b85 712static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 713 enum mem_cgroup_stat_index idx)
c62b1a3b 714{
7a159cc9 715 long val = 0;
c62b1a3b 716 int cpu;
c62b1a3b 717
711d3d2c
KH
718 get_online_cpus();
719 for_each_online_cpu(cpu)
c0ff4b85 720 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 721#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
722 spin_lock(&memcg->pcp_counter_lock);
723 val += memcg->nocpu_base.count[idx];
724 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
725#endif
726 put_online_cpus();
c62b1a3b
KH
727 return val;
728}
729
c0ff4b85 730static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
731 bool charge)
732{
733 int val = (charge) ? 1 : -1;
bff6bb83 734 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
735}
736
c0ff4b85 737static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
738 enum mem_cgroup_events_index idx)
739{
740 unsigned long val = 0;
741 int cpu;
742
743 for_each_online_cpu(cpu)
c0ff4b85 744 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 745#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
746 spin_lock(&memcg->pcp_counter_lock);
747 val += memcg->nocpu_base.events[idx];
748 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
749#endif
750 return val;
751}
752
c0ff4b85 753static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 754 bool anon, int nr_pages)
d52aa412 755{
c62b1a3b
KH
756 preempt_disable();
757
b2402857
KH
758 /*
759 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
760 * counted as CACHE even if it's on ANON LRU.
761 */
762 if (anon)
763 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 764 nr_pages);
d52aa412 765 else
b2402857 766 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 767 nr_pages);
55e462b0 768
e401f176
KH
769 /* pagein of a big page is an event. So, ignore page size */
770 if (nr_pages > 0)
c0ff4b85 771 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 772 else {
c0ff4b85 773 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
774 nr_pages = -nr_pages; /* for event */
775 }
e401f176 776
13114716 777 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 778
c62b1a3b 779 preempt_enable();
6d12e2d8
KH
780}
781
bb2a0de9 782unsigned long
4d7dcca2 783mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
784{
785 struct mem_cgroup_per_zone *mz;
786
787 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
788 return mz->lru_size[lru];
789}
790
791static unsigned long
c0ff4b85 792mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 793 unsigned int lru_mask)
889976db
YH
794{
795 struct mem_cgroup_per_zone *mz;
f156ab93 796 enum lru_list lru;
bb2a0de9
KH
797 unsigned long ret = 0;
798
c0ff4b85 799 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 800
f156ab93
HD
801 for_each_lru(lru) {
802 if (BIT(lru) & lru_mask)
803 ret += mz->lru_size[lru];
bb2a0de9
KH
804 }
805 return ret;
806}
807
808static unsigned long
c0ff4b85 809mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
810 int nid, unsigned int lru_mask)
811{
889976db
YH
812 u64 total = 0;
813 int zid;
814
bb2a0de9 815 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
816 total += mem_cgroup_zone_nr_lru_pages(memcg,
817 nid, zid, lru_mask);
bb2a0de9 818
889976db
YH
819 return total;
820}
bb2a0de9 821
c0ff4b85 822static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 823 unsigned int lru_mask)
6d12e2d8 824{
889976db 825 int nid;
6d12e2d8
KH
826 u64 total = 0;
827
31aaea4a 828 for_each_node_state(nid, N_MEMORY)
c0ff4b85 829 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 830 return total;
d52aa412
KH
831}
832
f53d7ce3
JW
833static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
834 enum mem_cgroup_events_target target)
7a159cc9
JW
835{
836 unsigned long val, next;
837
13114716 838 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 839 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 840 /* from time_after() in jiffies.h */
f53d7ce3
JW
841 if ((long)next - (long)val < 0) {
842 switch (target) {
843 case MEM_CGROUP_TARGET_THRESH:
844 next = val + THRESHOLDS_EVENTS_TARGET;
845 break;
846 case MEM_CGROUP_TARGET_SOFTLIMIT:
847 next = val + SOFTLIMIT_EVENTS_TARGET;
848 break;
849 case MEM_CGROUP_TARGET_NUMAINFO:
850 next = val + NUMAINFO_EVENTS_TARGET;
851 break;
852 default:
853 break;
854 }
855 __this_cpu_write(memcg->stat->targets[target], next);
856 return true;
7a159cc9 857 }
f53d7ce3 858 return false;
d2265e6f
KH
859}
860
861/*
862 * Check events in order.
863 *
864 */
c0ff4b85 865static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 866{
4799401f 867 preempt_disable();
d2265e6f 868 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
869 if (unlikely(mem_cgroup_event_ratelimit(memcg,
870 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
871 bool do_softlimit;
872 bool do_numainfo __maybe_unused;
f53d7ce3
JW
873
874 do_softlimit = mem_cgroup_event_ratelimit(memcg,
875 MEM_CGROUP_TARGET_SOFTLIMIT);
876#if MAX_NUMNODES > 1
877 do_numainfo = mem_cgroup_event_ratelimit(memcg,
878 MEM_CGROUP_TARGET_NUMAINFO);
879#endif
880 preempt_enable();
881
c0ff4b85 882 mem_cgroup_threshold(memcg);
f53d7ce3 883 if (unlikely(do_softlimit))
c0ff4b85 884 mem_cgroup_update_tree(memcg, page);
453a9bf3 885#if MAX_NUMNODES > 1
f53d7ce3 886 if (unlikely(do_numainfo))
c0ff4b85 887 atomic_inc(&memcg->numainfo_events);
453a9bf3 888#endif
f53d7ce3
JW
889 } else
890 preempt_enable();
d2265e6f
KH
891}
892
d1a4c0b3 893struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 894{
b2145145
WL
895 return mem_cgroup_from_css(
896 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
897}
898
cf475ad2 899struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 900{
31a78f23
BS
901 /*
902 * mm_update_next_owner() may clear mm->owner to NULL
903 * if it races with swapoff, page migration, etc.
904 * So this can be called with p == NULL.
905 */
906 if (unlikely(!p))
907 return NULL;
908
b2145145 909 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
910}
911
a433658c 912struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 913{
c0ff4b85 914 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
915
916 if (!mm)
917 return NULL;
54595fe2
KH
918 /*
919 * Because we have no locks, mm->owner's may be being moved to other
920 * cgroup. We use css_tryget() here even if this looks
921 * pessimistic (rather than adding locks here).
922 */
923 rcu_read_lock();
924 do {
c0ff4b85
R
925 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
926 if (unlikely(!memcg))
54595fe2 927 break;
c0ff4b85 928 } while (!css_tryget(&memcg->css));
54595fe2 929 rcu_read_unlock();
c0ff4b85 930 return memcg;
54595fe2
KH
931}
932
5660048c
JW
933/**
934 * mem_cgroup_iter - iterate over memory cgroup hierarchy
935 * @root: hierarchy root
936 * @prev: previously returned memcg, NULL on first invocation
937 * @reclaim: cookie for shared reclaim walks, NULL for full walks
938 *
939 * Returns references to children of the hierarchy below @root, or
940 * @root itself, or %NULL after a full round-trip.
941 *
942 * Caller must pass the return value in @prev on subsequent
943 * invocations for reference counting, or use mem_cgroup_iter_break()
944 * to cancel a hierarchy walk before the round-trip is complete.
945 *
946 * Reclaimers can specify a zone and a priority level in @reclaim to
947 * divide up the memcgs in the hierarchy among all concurrent
948 * reclaimers operating on the same zone and priority.
949 */
950struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
951 struct mem_cgroup *prev,
952 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 953{
9f3a0d09
JW
954 struct mem_cgroup *memcg = NULL;
955 int id = 0;
711d3d2c 956
5660048c
JW
957 if (mem_cgroup_disabled())
958 return NULL;
959
9f3a0d09
JW
960 if (!root)
961 root = root_mem_cgroup;
7d74b06f 962
9f3a0d09
JW
963 if (prev && !reclaim)
964 id = css_id(&prev->css);
14067bb3 965
9f3a0d09
JW
966 if (prev && prev != root)
967 css_put(&prev->css);
14067bb3 968
9f3a0d09
JW
969 if (!root->use_hierarchy && root != root_mem_cgroup) {
970 if (prev)
971 return NULL;
972 return root;
973 }
14067bb3 974
9f3a0d09 975 while (!memcg) {
527a5ec9 976 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 977 struct cgroup_subsys_state *css;
711d3d2c 978
527a5ec9
JW
979 if (reclaim) {
980 int nid = zone_to_nid(reclaim->zone);
981 int zid = zone_idx(reclaim->zone);
982 struct mem_cgroup_per_zone *mz;
983
984 mz = mem_cgroup_zoneinfo(root, nid, zid);
985 iter = &mz->reclaim_iter[reclaim->priority];
986 if (prev && reclaim->generation != iter->generation)
987 return NULL;
988 id = iter->position;
989 }
7d74b06f 990
9f3a0d09
JW
991 rcu_read_lock();
992 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
993 if (css) {
994 if (css == &root->css || css_tryget(css))
b2145145 995 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
996 } else
997 id = 0;
14067bb3 998 rcu_read_unlock();
14067bb3 999
527a5ec9
JW
1000 if (reclaim) {
1001 iter->position = id;
1002 if (!css)
1003 iter->generation++;
1004 else if (!prev && memcg)
1005 reclaim->generation = iter->generation;
1006 }
9f3a0d09
JW
1007
1008 if (prev && !css)
1009 return NULL;
1010 }
1011 return memcg;
14067bb3 1012}
7d74b06f 1013
5660048c
JW
1014/**
1015 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1016 * @root: hierarchy root
1017 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1018 */
1019void mem_cgroup_iter_break(struct mem_cgroup *root,
1020 struct mem_cgroup *prev)
9f3a0d09
JW
1021{
1022 if (!root)
1023 root = root_mem_cgroup;
1024 if (prev && prev != root)
1025 css_put(&prev->css);
1026}
7d74b06f 1027
9f3a0d09
JW
1028/*
1029 * Iteration constructs for visiting all cgroups (under a tree). If
1030 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1031 * be used for reference counting.
1032 */
1033#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1034 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1035 iter != NULL; \
527a5ec9 1036 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1037
9f3a0d09 1038#define for_each_mem_cgroup(iter) \
527a5ec9 1039 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1040 iter != NULL; \
527a5ec9 1041 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1042
68ae564b 1043void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1044{
c0ff4b85 1045 struct mem_cgroup *memcg;
456f998e 1046
456f998e 1047 rcu_read_lock();
c0ff4b85
R
1048 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1049 if (unlikely(!memcg))
456f998e
YH
1050 goto out;
1051
1052 switch (idx) {
456f998e 1053 case PGFAULT:
0e574a93
JW
1054 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1055 break;
1056 case PGMAJFAULT:
1057 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1058 break;
1059 default:
1060 BUG();
1061 }
1062out:
1063 rcu_read_unlock();
1064}
68ae564b 1065EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1066
925b7673
JW
1067/**
1068 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1069 * @zone: zone of the wanted lruvec
fa9add64 1070 * @memcg: memcg of the wanted lruvec
925b7673
JW
1071 *
1072 * Returns the lru list vector holding pages for the given @zone and
1073 * @mem. This can be the global zone lruvec, if the memory controller
1074 * is disabled.
1075 */
1076struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1077 struct mem_cgroup *memcg)
1078{
1079 struct mem_cgroup_per_zone *mz;
bea8c150 1080 struct lruvec *lruvec;
925b7673 1081
bea8c150
HD
1082 if (mem_cgroup_disabled()) {
1083 lruvec = &zone->lruvec;
1084 goto out;
1085 }
925b7673
JW
1086
1087 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1088 lruvec = &mz->lruvec;
1089out:
1090 /*
1091 * Since a node can be onlined after the mem_cgroup was created,
1092 * we have to be prepared to initialize lruvec->zone here;
1093 * and if offlined then reonlined, we need to reinitialize it.
1094 */
1095 if (unlikely(lruvec->zone != zone))
1096 lruvec->zone = zone;
1097 return lruvec;
925b7673
JW
1098}
1099
08e552c6
KH
1100/*
1101 * Following LRU functions are allowed to be used without PCG_LOCK.
1102 * Operations are called by routine of global LRU independently from memcg.
1103 * What we have to take care of here is validness of pc->mem_cgroup.
1104 *
1105 * Changes to pc->mem_cgroup happens when
1106 * 1. charge
1107 * 2. moving account
1108 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1109 * It is added to LRU before charge.
1110 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1111 * When moving account, the page is not on LRU. It's isolated.
1112 */
4f98a2fe 1113
925b7673 1114/**
fa9add64 1115 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1116 * @page: the page
fa9add64 1117 * @zone: zone of the page
925b7673 1118 */
fa9add64 1119struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1120{
08e552c6 1121 struct mem_cgroup_per_zone *mz;
925b7673
JW
1122 struct mem_cgroup *memcg;
1123 struct page_cgroup *pc;
bea8c150 1124 struct lruvec *lruvec;
6d12e2d8 1125
bea8c150
HD
1126 if (mem_cgroup_disabled()) {
1127 lruvec = &zone->lruvec;
1128 goto out;
1129 }
925b7673 1130
08e552c6 1131 pc = lookup_page_cgroup(page);
38c5d72f 1132 memcg = pc->mem_cgroup;
7512102c
HD
1133
1134 /*
fa9add64 1135 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1136 * an uncharged page off lru does nothing to secure
1137 * its former mem_cgroup from sudden removal.
1138 *
1139 * Our caller holds lru_lock, and PageCgroupUsed is updated
1140 * under page_cgroup lock: between them, they make all uses
1141 * of pc->mem_cgroup safe.
1142 */
fa9add64 1143 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1144 pc->mem_cgroup = memcg = root_mem_cgroup;
1145
925b7673 1146 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1147 lruvec = &mz->lruvec;
1148out:
1149 /*
1150 * Since a node can be onlined after the mem_cgroup was created,
1151 * we have to be prepared to initialize lruvec->zone here;
1152 * and if offlined then reonlined, we need to reinitialize it.
1153 */
1154 if (unlikely(lruvec->zone != zone))
1155 lruvec->zone = zone;
1156 return lruvec;
08e552c6 1157}
b69408e8 1158
925b7673 1159/**
fa9add64
HD
1160 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1161 * @lruvec: mem_cgroup per zone lru vector
1162 * @lru: index of lru list the page is sitting on
1163 * @nr_pages: positive when adding or negative when removing
925b7673 1164 *
fa9add64
HD
1165 * This function must be called when a page is added to or removed from an
1166 * lru list.
3f58a829 1167 */
fa9add64
HD
1168void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1169 int nr_pages)
3f58a829
MK
1170{
1171 struct mem_cgroup_per_zone *mz;
fa9add64 1172 unsigned long *lru_size;
3f58a829
MK
1173
1174 if (mem_cgroup_disabled())
1175 return;
1176
fa9add64
HD
1177 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1178 lru_size = mz->lru_size + lru;
1179 *lru_size += nr_pages;
1180 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1181}
544122e5 1182
3e92041d 1183/*
c0ff4b85 1184 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1185 * hierarchy subtree
1186 */
c3ac9a8a
JW
1187bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1188 struct mem_cgroup *memcg)
3e92041d 1189{
91c63734
JW
1190 if (root_memcg == memcg)
1191 return true;
3a981f48 1192 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1193 return false;
c3ac9a8a
JW
1194 return css_is_ancestor(&memcg->css, &root_memcg->css);
1195}
1196
1197static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1198 struct mem_cgroup *memcg)
1199{
1200 bool ret;
1201
91c63734 1202 rcu_read_lock();
c3ac9a8a 1203 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1204 rcu_read_unlock();
1205 return ret;
3e92041d
MH
1206}
1207
c0ff4b85 1208int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1209{
1210 int ret;
0b7f569e 1211 struct mem_cgroup *curr = NULL;
158e0a2d 1212 struct task_struct *p;
4c4a2214 1213
158e0a2d 1214 p = find_lock_task_mm(task);
de077d22
DR
1215 if (p) {
1216 curr = try_get_mem_cgroup_from_mm(p->mm);
1217 task_unlock(p);
1218 } else {
1219 /*
1220 * All threads may have already detached their mm's, but the oom
1221 * killer still needs to detect if they have already been oom
1222 * killed to prevent needlessly killing additional tasks.
1223 */
1224 task_lock(task);
1225 curr = mem_cgroup_from_task(task);
1226 if (curr)
1227 css_get(&curr->css);
1228 task_unlock(task);
1229 }
0b7f569e
KH
1230 if (!curr)
1231 return 0;
d31f56db 1232 /*
c0ff4b85 1233 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1234 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1235 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1236 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1237 */
c0ff4b85 1238 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1239 css_put(&curr->css);
4c4a2214
DR
1240 return ret;
1241}
1242
c56d5c7d 1243int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1244{
9b272977 1245 unsigned long inactive_ratio;
14797e23 1246 unsigned long inactive;
9b272977 1247 unsigned long active;
c772be93 1248 unsigned long gb;
14797e23 1249
4d7dcca2
HD
1250 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1251 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1252
c772be93
KM
1253 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1254 if (gb)
1255 inactive_ratio = int_sqrt(10 * gb);
1256 else
1257 inactive_ratio = 1;
1258
9b272977 1259 return inactive * inactive_ratio < active;
14797e23
KM
1260}
1261
c56d5c7d 1262int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1263{
1264 unsigned long active;
1265 unsigned long inactive;
1266
4d7dcca2
HD
1267 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1268 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1269
1270 return (active > inactive);
1271}
1272
6d61ef40
BS
1273#define mem_cgroup_from_res_counter(counter, member) \
1274 container_of(counter, struct mem_cgroup, member)
1275
19942822 1276/**
9d11ea9f 1277 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1278 * @memcg: the memory cgroup
19942822 1279 *
9d11ea9f 1280 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1281 * pages.
19942822 1282 */
c0ff4b85 1283static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1284{
9d11ea9f
JW
1285 unsigned long long margin;
1286
c0ff4b85 1287 margin = res_counter_margin(&memcg->res);
9d11ea9f 1288 if (do_swap_account)
c0ff4b85 1289 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1290 return margin >> PAGE_SHIFT;
19942822
JW
1291}
1292
1f4c025b 1293int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1294{
1295 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1296
1297 /* root ? */
1298 if (cgrp->parent == NULL)
1299 return vm_swappiness;
1300
bf1ff263 1301 return memcg->swappiness;
a7885eb8
KM
1302}
1303
619d094b
KH
1304/*
1305 * memcg->moving_account is used for checking possibility that some thread is
1306 * calling move_account(). When a thread on CPU-A starts moving pages under
1307 * a memcg, other threads should check memcg->moving_account under
1308 * rcu_read_lock(), like this:
1309 *
1310 * CPU-A CPU-B
1311 * rcu_read_lock()
1312 * memcg->moving_account+1 if (memcg->mocing_account)
1313 * take heavy locks.
1314 * synchronize_rcu() update something.
1315 * rcu_read_unlock()
1316 * start move here.
1317 */
4331f7d3
KH
1318
1319/* for quick checking without looking up memcg */
1320atomic_t memcg_moving __read_mostly;
1321
c0ff4b85 1322static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1323{
4331f7d3 1324 atomic_inc(&memcg_moving);
619d094b 1325 atomic_inc(&memcg->moving_account);
32047e2a
KH
1326 synchronize_rcu();
1327}
1328
c0ff4b85 1329static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1330{
619d094b
KH
1331 /*
1332 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1333 * We check NULL in callee rather than caller.
1334 */
4331f7d3
KH
1335 if (memcg) {
1336 atomic_dec(&memcg_moving);
619d094b 1337 atomic_dec(&memcg->moving_account);
4331f7d3 1338 }
32047e2a 1339}
619d094b 1340
32047e2a
KH
1341/*
1342 * 2 routines for checking "mem" is under move_account() or not.
1343 *
13fd1dd9
AM
1344 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1345 * is used for avoiding races in accounting. If true,
32047e2a
KH
1346 * pc->mem_cgroup may be overwritten.
1347 *
1348 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1349 * under hierarchy of moving cgroups. This is for
1350 * waiting at hith-memory prressure caused by "move".
1351 */
1352
13fd1dd9 1353static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1354{
1355 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1356 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1357}
4b534334 1358
c0ff4b85 1359static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1360{
2bd9bb20
KH
1361 struct mem_cgroup *from;
1362 struct mem_cgroup *to;
4b534334 1363 bool ret = false;
2bd9bb20
KH
1364 /*
1365 * Unlike task_move routines, we access mc.to, mc.from not under
1366 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1367 */
1368 spin_lock(&mc.lock);
1369 from = mc.from;
1370 to = mc.to;
1371 if (!from)
1372 goto unlock;
3e92041d 1373
c0ff4b85
R
1374 ret = mem_cgroup_same_or_subtree(memcg, from)
1375 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1376unlock:
1377 spin_unlock(&mc.lock);
4b534334
KH
1378 return ret;
1379}
1380
c0ff4b85 1381static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1382{
1383 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1384 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1385 DEFINE_WAIT(wait);
1386 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1387 /* moving charge context might have finished. */
1388 if (mc.moving_task)
1389 schedule();
1390 finish_wait(&mc.waitq, &wait);
1391 return true;
1392 }
1393 }
1394 return false;
1395}
1396
312734c0
KH
1397/*
1398 * Take this lock when
1399 * - a code tries to modify page's memcg while it's USED.
1400 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1401 * see mem_cgroup_stolen(), too.
312734c0
KH
1402 */
1403static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1404 unsigned long *flags)
1405{
1406 spin_lock_irqsave(&memcg->move_lock, *flags);
1407}
1408
1409static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1410 unsigned long *flags)
1411{
1412 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1413}
1414
e222432b 1415/**
6a6135b6 1416 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1417 * @memcg: The memory cgroup that went over limit
1418 * @p: Task that is going to be killed
1419 *
1420 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1421 * enabled
1422 */
1423void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1424{
1425 struct cgroup *task_cgrp;
1426 struct cgroup *mem_cgrp;
1427 /*
1428 * Need a buffer in BSS, can't rely on allocations. The code relies
1429 * on the assumption that OOM is serialized for memory controller.
1430 * If this assumption is broken, revisit this code.
1431 */
1432 static char memcg_name[PATH_MAX];
1433 int ret;
1434
d31f56db 1435 if (!memcg || !p)
e222432b
BS
1436 return;
1437
e222432b
BS
1438 rcu_read_lock();
1439
1440 mem_cgrp = memcg->css.cgroup;
1441 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1442
1443 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1444 if (ret < 0) {
1445 /*
1446 * Unfortunately, we are unable to convert to a useful name
1447 * But we'll still print out the usage information
1448 */
1449 rcu_read_unlock();
1450 goto done;
1451 }
1452 rcu_read_unlock();
1453
1454 printk(KERN_INFO "Task in %s killed", memcg_name);
1455
1456 rcu_read_lock();
1457 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1458 if (ret < 0) {
1459 rcu_read_unlock();
1460 goto done;
1461 }
1462 rcu_read_unlock();
1463
1464 /*
1465 * Continues from above, so we don't need an KERN_ level
1466 */
1467 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1468done:
1469
1470 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1471 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1472 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1473 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1474 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1475 "failcnt %llu\n",
1476 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1477 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1478 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
510fc4e1
GC
1479 printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1480 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1481 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1482 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
e222432b
BS
1483}
1484
81d39c20
KH
1485/*
1486 * This function returns the number of memcg under hierarchy tree. Returns
1487 * 1(self count) if no children.
1488 */
c0ff4b85 1489static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1490{
1491 int num = 0;
7d74b06f
KH
1492 struct mem_cgroup *iter;
1493
c0ff4b85 1494 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1495 num++;
81d39c20
KH
1496 return num;
1497}
1498
a63d83f4
DR
1499/*
1500 * Return the memory (and swap, if configured) limit for a memcg.
1501 */
9cbb78bb 1502static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1503{
1504 u64 limit;
a63d83f4 1505
f3e8eb70 1506 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1507
a63d83f4 1508 /*
9a5a8f19 1509 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1510 */
9a5a8f19
MH
1511 if (mem_cgroup_swappiness(memcg)) {
1512 u64 memsw;
1513
1514 limit += total_swap_pages << PAGE_SHIFT;
1515 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1516
1517 /*
1518 * If memsw is finite and limits the amount of swap space
1519 * available to this memcg, return that limit.
1520 */
1521 limit = min(limit, memsw);
1522 }
1523
1524 return limit;
a63d83f4
DR
1525}
1526
19965460
DR
1527static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1528 int order)
9cbb78bb
DR
1529{
1530 struct mem_cgroup *iter;
1531 unsigned long chosen_points = 0;
1532 unsigned long totalpages;
1533 unsigned int points = 0;
1534 struct task_struct *chosen = NULL;
1535
876aafbf
DR
1536 /*
1537 * If current has a pending SIGKILL, then automatically select it. The
1538 * goal is to allow it to allocate so that it may quickly exit and free
1539 * its memory.
1540 */
1541 if (fatal_signal_pending(current)) {
1542 set_thread_flag(TIF_MEMDIE);
1543 return;
1544 }
1545
1546 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1547 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1548 for_each_mem_cgroup_tree(iter, memcg) {
1549 struct cgroup *cgroup = iter->css.cgroup;
1550 struct cgroup_iter it;
1551 struct task_struct *task;
1552
1553 cgroup_iter_start(cgroup, &it);
1554 while ((task = cgroup_iter_next(cgroup, &it))) {
1555 switch (oom_scan_process_thread(task, totalpages, NULL,
1556 false)) {
1557 case OOM_SCAN_SELECT:
1558 if (chosen)
1559 put_task_struct(chosen);
1560 chosen = task;
1561 chosen_points = ULONG_MAX;
1562 get_task_struct(chosen);
1563 /* fall through */
1564 case OOM_SCAN_CONTINUE:
1565 continue;
1566 case OOM_SCAN_ABORT:
1567 cgroup_iter_end(cgroup, &it);
1568 mem_cgroup_iter_break(memcg, iter);
1569 if (chosen)
1570 put_task_struct(chosen);
1571 return;
1572 case OOM_SCAN_OK:
1573 break;
1574 };
1575 points = oom_badness(task, memcg, NULL, totalpages);
1576 if (points > chosen_points) {
1577 if (chosen)
1578 put_task_struct(chosen);
1579 chosen = task;
1580 chosen_points = points;
1581 get_task_struct(chosen);
1582 }
1583 }
1584 cgroup_iter_end(cgroup, &it);
1585 }
1586
1587 if (!chosen)
1588 return;
1589 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1590 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1591 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1592}
1593
5660048c
JW
1594static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1595 gfp_t gfp_mask,
1596 unsigned long flags)
1597{
1598 unsigned long total = 0;
1599 bool noswap = false;
1600 int loop;
1601
1602 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1603 noswap = true;
1604 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1605 noswap = true;
1606
1607 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1608 if (loop)
1609 drain_all_stock_async(memcg);
1610 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1611 /*
1612 * Allow limit shrinkers, which are triggered directly
1613 * by userspace, to catch signals and stop reclaim
1614 * after minimal progress, regardless of the margin.
1615 */
1616 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1617 break;
1618 if (mem_cgroup_margin(memcg))
1619 break;
1620 /*
1621 * If nothing was reclaimed after two attempts, there
1622 * may be no reclaimable pages in this hierarchy.
1623 */
1624 if (loop && !total)
1625 break;
1626 }
1627 return total;
1628}
1629
4d0c066d
KH
1630/**
1631 * test_mem_cgroup_node_reclaimable
dad7557e 1632 * @memcg: the target memcg
4d0c066d
KH
1633 * @nid: the node ID to be checked.
1634 * @noswap : specify true here if the user wants flle only information.
1635 *
1636 * This function returns whether the specified memcg contains any
1637 * reclaimable pages on a node. Returns true if there are any reclaimable
1638 * pages in the node.
1639 */
c0ff4b85 1640static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1641 int nid, bool noswap)
1642{
c0ff4b85 1643 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1644 return true;
1645 if (noswap || !total_swap_pages)
1646 return false;
c0ff4b85 1647 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1648 return true;
1649 return false;
1650
1651}
889976db
YH
1652#if MAX_NUMNODES > 1
1653
1654/*
1655 * Always updating the nodemask is not very good - even if we have an empty
1656 * list or the wrong list here, we can start from some node and traverse all
1657 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1658 *
1659 */
c0ff4b85 1660static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1661{
1662 int nid;
453a9bf3
KH
1663 /*
1664 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1665 * pagein/pageout changes since the last update.
1666 */
c0ff4b85 1667 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1668 return;
c0ff4b85 1669 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1670 return;
1671
889976db 1672 /* make a nodemask where this memcg uses memory from */
31aaea4a 1673 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1674
31aaea4a 1675 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1676
c0ff4b85
R
1677 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1678 node_clear(nid, memcg->scan_nodes);
889976db 1679 }
453a9bf3 1680
c0ff4b85
R
1681 atomic_set(&memcg->numainfo_events, 0);
1682 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1683}
1684
1685/*
1686 * Selecting a node where we start reclaim from. Because what we need is just
1687 * reducing usage counter, start from anywhere is O,K. Considering
1688 * memory reclaim from current node, there are pros. and cons.
1689 *
1690 * Freeing memory from current node means freeing memory from a node which
1691 * we'll use or we've used. So, it may make LRU bad. And if several threads
1692 * hit limits, it will see a contention on a node. But freeing from remote
1693 * node means more costs for memory reclaim because of memory latency.
1694 *
1695 * Now, we use round-robin. Better algorithm is welcomed.
1696 */
c0ff4b85 1697int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1698{
1699 int node;
1700
c0ff4b85
R
1701 mem_cgroup_may_update_nodemask(memcg);
1702 node = memcg->last_scanned_node;
889976db 1703
c0ff4b85 1704 node = next_node(node, memcg->scan_nodes);
889976db 1705 if (node == MAX_NUMNODES)
c0ff4b85 1706 node = first_node(memcg->scan_nodes);
889976db
YH
1707 /*
1708 * We call this when we hit limit, not when pages are added to LRU.
1709 * No LRU may hold pages because all pages are UNEVICTABLE or
1710 * memcg is too small and all pages are not on LRU. In that case,
1711 * we use curret node.
1712 */
1713 if (unlikely(node == MAX_NUMNODES))
1714 node = numa_node_id();
1715
c0ff4b85 1716 memcg->last_scanned_node = node;
889976db
YH
1717 return node;
1718}
1719
4d0c066d
KH
1720/*
1721 * Check all nodes whether it contains reclaimable pages or not.
1722 * For quick scan, we make use of scan_nodes. This will allow us to skip
1723 * unused nodes. But scan_nodes is lazily updated and may not cotain
1724 * enough new information. We need to do double check.
1725 */
6bbda35c 1726static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1727{
1728 int nid;
1729
1730 /*
1731 * quick check...making use of scan_node.
1732 * We can skip unused nodes.
1733 */
c0ff4b85
R
1734 if (!nodes_empty(memcg->scan_nodes)) {
1735 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1736 nid < MAX_NUMNODES;
c0ff4b85 1737 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1738
c0ff4b85 1739 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1740 return true;
1741 }
1742 }
1743 /*
1744 * Check rest of nodes.
1745 */
31aaea4a 1746 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1747 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1748 continue;
c0ff4b85 1749 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1750 return true;
1751 }
1752 return false;
1753}
1754
889976db 1755#else
c0ff4b85 1756int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1757{
1758 return 0;
1759}
4d0c066d 1760
6bbda35c 1761static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1762{
c0ff4b85 1763 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1764}
889976db
YH
1765#endif
1766
5660048c
JW
1767static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1768 struct zone *zone,
1769 gfp_t gfp_mask,
1770 unsigned long *total_scanned)
6d61ef40 1771{
9f3a0d09 1772 struct mem_cgroup *victim = NULL;
5660048c 1773 int total = 0;
04046e1a 1774 int loop = 0;
9d11ea9f 1775 unsigned long excess;
185efc0f 1776 unsigned long nr_scanned;
527a5ec9
JW
1777 struct mem_cgroup_reclaim_cookie reclaim = {
1778 .zone = zone,
1779 .priority = 0,
1780 };
9d11ea9f 1781
c0ff4b85 1782 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1783
4e416953 1784 while (1) {
527a5ec9 1785 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1786 if (!victim) {
04046e1a 1787 loop++;
4e416953
BS
1788 if (loop >= 2) {
1789 /*
1790 * If we have not been able to reclaim
1791 * anything, it might because there are
1792 * no reclaimable pages under this hierarchy
1793 */
5660048c 1794 if (!total)
4e416953 1795 break;
4e416953 1796 /*
25985edc 1797 * We want to do more targeted reclaim.
4e416953
BS
1798 * excess >> 2 is not to excessive so as to
1799 * reclaim too much, nor too less that we keep
1800 * coming back to reclaim from this cgroup
1801 */
1802 if (total >= (excess >> 2) ||
9f3a0d09 1803 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1804 break;
4e416953 1805 }
9f3a0d09 1806 continue;
4e416953 1807 }
5660048c 1808 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1809 continue;
5660048c
JW
1810 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1811 zone, &nr_scanned);
1812 *total_scanned += nr_scanned;
1813 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1814 break;
6d61ef40 1815 }
9f3a0d09 1816 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1817 return total;
6d61ef40
BS
1818}
1819
867578cb
KH
1820/*
1821 * Check OOM-Killer is already running under our hierarchy.
1822 * If someone is running, return false.
1af8efe9 1823 * Has to be called with memcg_oom_lock
867578cb 1824 */
c0ff4b85 1825static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1826{
79dfdacc 1827 struct mem_cgroup *iter, *failed = NULL;
a636b327 1828
9f3a0d09 1829 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1830 if (iter->oom_lock) {
79dfdacc
MH
1831 /*
1832 * this subtree of our hierarchy is already locked
1833 * so we cannot give a lock.
1834 */
79dfdacc 1835 failed = iter;
9f3a0d09
JW
1836 mem_cgroup_iter_break(memcg, iter);
1837 break;
23751be0
JW
1838 } else
1839 iter->oom_lock = true;
7d74b06f 1840 }
867578cb 1841
79dfdacc 1842 if (!failed)
23751be0 1843 return true;
79dfdacc
MH
1844
1845 /*
1846 * OK, we failed to lock the whole subtree so we have to clean up
1847 * what we set up to the failing subtree
1848 */
9f3a0d09 1849 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1850 if (iter == failed) {
9f3a0d09
JW
1851 mem_cgroup_iter_break(memcg, iter);
1852 break;
79dfdacc
MH
1853 }
1854 iter->oom_lock = false;
1855 }
23751be0 1856 return false;
a636b327 1857}
0b7f569e 1858
79dfdacc 1859/*
1af8efe9 1860 * Has to be called with memcg_oom_lock
79dfdacc 1861 */
c0ff4b85 1862static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1863{
7d74b06f
KH
1864 struct mem_cgroup *iter;
1865
c0ff4b85 1866 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1867 iter->oom_lock = false;
1868 return 0;
1869}
1870
c0ff4b85 1871static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1872{
1873 struct mem_cgroup *iter;
1874
c0ff4b85 1875 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1876 atomic_inc(&iter->under_oom);
1877}
1878
c0ff4b85 1879static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1880{
1881 struct mem_cgroup *iter;
1882
867578cb
KH
1883 /*
1884 * When a new child is created while the hierarchy is under oom,
1885 * mem_cgroup_oom_lock() may not be called. We have to use
1886 * atomic_add_unless() here.
1887 */
c0ff4b85 1888 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1889 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1890}
1891
1af8efe9 1892static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1893static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1894
dc98df5a 1895struct oom_wait_info {
d79154bb 1896 struct mem_cgroup *memcg;
dc98df5a
KH
1897 wait_queue_t wait;
1898};
1899
1900static int memcg_oom_wake_function(wait_queue_t *wait,
1901 unsigned mode, int sync, void *arg)
1902{
d79154bb
HD
1903 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1904 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1905 struct oom_wait_info *oom_wait_info;
1906
1907 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1908 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1909
dc98df5a 1910 /*
d79154bb 1911 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1912 * Then we can use css_is_ancestor without taking care of RCU.
1913 */
c0ff4b85
R
1914 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1915 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1916 return 0;
dc98df5a
KH
1917 return autoremove_wake_function(wait, mode, sync, arg);
1918}
1919
c0ff4b85 1920static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1921{
c0ff4b85
R
1922 /* for filtering, pass "memcg" as argument. */
1923 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1924}
1925
c0ff4b85 1926static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1927{
c0ff4b85
R
1928 if (memcg && atomic_read(&memcg->under_oom))
1929 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1930}
1931
867578cb
KH
1932/*
1933 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1934 */
6bbda35c
KS
1935static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1936 int order)
0b7f569e 1937{
dc98df5a 1938 struct oom_wait_info owait;
3c11ecf4 1939 bool locked, need_to_kill;
867578cb 1940
d79154bb 1941 owait.memcg = memcg;
dc98df5a
KH
1942 owait.wait.flags = 0;
1943 owait.wait.func = memcg_oom_wake_function;
1944 owait.wait.private = current;
1945 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1946 need_to_kill = true;
c0ff4b85 1947 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1948
c0ff4b85 1949 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1950 spin_lock(&memcg_oom_lock);
c0ff4b85 1951 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1952 /*
1953 * Even if signal_pending(), we can't quit charge() loop without
1954 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1955 * under OOM is always welcomed, use TASK_KILLABLE here.
1956 */
3c11ecf4 1957 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1958 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1959 need_to_kill = false;
1960 if (locked)
c0ff4b85 1961 mem_cgroup_oom_notify(memcg);
1af8efe9 1962 spin_unlock(&memcg_oom_lock);
867578cb 1963
3c11ecf4
KH
1964 if (need_to_kill) {
1965 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1966 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1967 } else {
867578cb 1968 schedule();
dc98df5a 1969 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1970 }
1af8efe9 1971 spin_lock(&memcg_oom_lock);
79dfdacc 1972 if (locked)
c0ff4b85
R
1973 mem_cgroup_oom_unlock(memcg);
1974 memcg_wakeup_oom(memcg);
1af8efe9 1975 spin_unlock(&memcg_oom_lock);
867578cb 1976
c0ff4b85 1977 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1978
867578cb
KH
1979 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1980 return false;
1981 /* Give chance to dying process */
715a5ee8 1982 schedule_timeout_uninterruptible(1);
867578cb 1983 return true;
0b7f569e
KH
1984}
1985
d69b042f
BS
1986/*
1987 * Currently used to update mapped file statistics, but the routine can be
1988 * generalized to update other statistics as well.
32047e2a
KH
1989 *
1990 * Notes: Race condition
1991 *
1992 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1993 * it tends to be costly. But considering some conditions, we doesn't need
1994 * to do so _always_.
1995 *
1996 * Considering "charge", lock_page_cgroup() is not required because all
1997 * file-stat operations happen after a page is attached to radix-tree. There
1998 * are no race with "charge".
1999 *
2000 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2001 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2002 * if there are race with "uncharge". Statistics itself is properly handled
2003 * by flags.
2004 *
2005 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2006 * small, we check mm->moving_account and detect there are possibility of race
2007 * If there is, we take a lock.
d69b042f 2008 */
26174efd 2009
89c06bd5
KH
2010void __mem_cgroup_begin_update_page_stat(struct page *page,
2011 bool *locked, unsigned long *flags)
2012{
2013 struct mem_cgroup *memcg;
2014 struct page_cgroup *pc;
2015
2016 pc = lookup_page_cgroup(page);
2017again:
2018 memcg = pc->mem_cgroup;
2019 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2020 return;
2021 /*
2022 * If this memory cgroup is not under account moving, we don't
da92c47d 2023 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2024 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2025 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2026 */
13fd1dd9 2027 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2028 return;
2029
2030 move_lock_mem_cgroup(memcg, flags);
2031 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2032 move_unlock_mem_cgroup(memcg, flags);
2033 goto again;
2034 }
2035 *locked = true;
2036}
2037
2038void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2039{
2040 struct page_cgroup *pc = lookup_page_cgroup(page);
2041
2042 /*
2043 * It's guaranteed that pc->mem_cgroup never changes while
2044 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2045 * should take move_lock_mem_cgroup().
89c06bd5
KH
2046 */
2047 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2048}
2049
2a7106f2
GT
2050void mem_cgroup_update_page_stat(struct page *page,
2051 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2052{
c0ff4b85 2053 struct mem_cgroup *memcg;
32047e2a 2054 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2055 unsigned long uninitialized_var(flags);
d69b042f 2056
cfa44946 2057 if (mem_cgroup_disabled())
d69b042f 2058 return;
89c06bd5 2059
c0ff4b85
R
2060 memcg = pc->mem_cgroup;
2061 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2062 return;
26174efd 2063
26174efd 2064 switch (idx) {
2a7106f2 2065 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2066 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2067 break;
2068 default:
2069 BUG();
8725d541 2070 }
d69b042f 2071
c0ff4b85 2072 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2073}
26174efd 2074
cdec2e42
KH
2075/*
2076 * size of first charge trial. "32" comes from vmscan.c's magic value.
2077 * TODO: maybe necessary to use big numbers in big irons.
2078 */
7ec99d62 2079#define CHARGE_BATCH 32U
cdec2e42
KH
2080struct memcg_stock_pcp {
2081 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2082 unsigned int nr_pages;
cdec2e42 2083 struct work_struct work;
26fe6168 2084 unsigned long flags;
a0db00fc 2085#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2086};
2087static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2088static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2089
a0956d54
SS
2090/**
2091 * consume_stock: Try to consume stocked charge on this cpu.
2092 * @memcg: memcg to consume from.
2093 * @nr_pages: how many pages to charge.
2094 *
2095 * The charges will only happen if @memcg matches the current cpu's memcg
2096 * stock, and at least @nr_pages are available in that stock. Failure to
2097 * service an allocation will refill the stock.
2098 *
2099 * returns true if successful, false otherwise.
cdec2e42 2100 */
a0956d54 2101static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2102{
2103 struct memcg_stock_pcp *stock;
2104 bool ret = true;
2105
a0956d54
SS
2106 if (nr_pages > CHARGE_BATCH)
2107 return false;
2108
cdec2e42 2109 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2110 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2111 stock->nr_pages -= nr_pages;
cdec2e42
KH
2112 else /* need to call res_counter_charge */
2113 ret = false;
2114 put_cpu_var(memcg_stock);
2115 return ret;
2116}
2117
2118/*
2119 * Returns stocks cached in percpu to res_counter and reset cached information.
2120 */
2121static void drain_stock(struct memcg_stock_pcp *stock)
2122{
2123 struct mem_cgroup *old = stock->cached;
2124
11c9ea4e
JW
2125 if (stock->nr_pages) {
2126 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2127
2128 res_counter_uncharge(&old->res, bytes);
cdec2e42 2129 if (do_swap_account)
11c9ea4e
JW
2130 res_counter_uncharge(&old->memsw, bytes);
2131 stock->nr_pages = 0;
cdec2e42
KH
2132 }
2133 stock->cached = NULL;
cdec2e42
KH
2134}
2135
2136/*
2137 * This must be called under preempt disabled or must be called by
2138 * a thread which is pinned to local cpu.
2139 */
2140static void drain_local_stock(struct work_struct *dummy)
2141{
2142 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2143 drain_stock(stock);
26fe6168 2144 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2145}
2146
2147/*
2148 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2149 * This will be consumed by consume_stock() function, later.
cdec2e42 2150 */
c0ff4b85 2151static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2152{
2153 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2154
c0ff4b85 2155 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2156 drain_stock(stock);
c0ff4b85 2157 stock->cached = memcg;
cdec2e42 2158 }
11c9ea4e 2159 stock->nr_pages += nr_pages;
cdec2e42
KH
2160 put_cpu_var(memcg_stock);
2161}
2162
2163/*
c0ff4b85 2164 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2165 * of the hierarchy under it. sync flag says whether we should block
2166 * until the work is done.
cdec2e42 2167 */
c0ff4b85 2168static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2169{
26fe6168 2170 int cpu, curcpu;
d38144b7 2171
cdec2e42 2172 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2173 get_online_cpus();
5af12d0e 2174 curcpu = get_cpu();
cdec2e42
KH
2175 for_each_online_cpu(cpu) {
2176 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2177 struct mem_cgroup *memcg;
26fe6168 2178
c0ff4b85
R
2179 memcg = stock->cached;
2180 if (!memcg || !stock->nr_pages)
26fe6168 2181 continue;
c0ff4b85 2182 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2183 continue;
d1a05b69
MH
2184 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2185 if (cpu == curcpu)
2186 drain_local_stock(&stock->work);
2187 else
2188 schedule_work_on(cpu, &stock->work);
2189 }
cdec2e42 2190 }
5af12d0e 2191 put_cpu();
d38144b7
MH
2192
2193 if (!sync)
2194 goto out;
2195
2196 for_each_online_cpu(cpu) {
2197 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2198 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2199 flush_work(&stock->work);
2200 }
2201out:
cdec2e42 2202 put_online_cpus();
d38144b7
MH
2203}
2204
2205/*
2206 * Tries to drain stocked charges in other cpus. This function is asynchronous
2207 * and just put a work per cpu for draining localy on each cpu. Caller can
2208 * expects some charges will be back to res_counter later but cannot wait for
2209 * it.
2210 */
c0ff4b85 2211static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2212{
9f50fad6
MH
2213 /*
2214 * If someone calls draining, avoid adding more kworker runs.
2215 */
2216 if (!mutex_trylock(&percpu_charge_mutex))
2217 return;
c0ff4b85 2218 drain_all_stock(root_memcg, false);
9f50fad6 2219 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2220}
2221
2222/* This is a synchronous drain interface. */
c0ff4b85 2223static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2224{
2225 /* called when force_empty is called */
9f50fad6 2226 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2227 drain_all_stock(root_memcg, true);
9f50fad6 2228 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2229}
2230
711d3d2c
KH
2231/*
2232 * This function drains percpu counter value from DEAD cpu and
2233 * move it to local cpu. Note that this function can be preempted.
2234 */
c0ff4b85 2235static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2236{
2237 int i;
2238
c0ff4b85 2239 spin_lock(&memcg->pcp_counter_lock);
6104621d 2240 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2241 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2242
c0ff4b85
R
2243 per_cpu(memcg->stat->count[i], cpu) = 0;
2244 memcg->nocpu_base.count[i] += x;
711d3d2c 2245 }
e9f8974f 2246 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2247 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2248
c0ff4b85
R
2249 per_cpu(memcg->stat->events[i], cpu) = 0;
2250 memcg->nocpu_base.events[i] += x;
e9f8974f 2251 }
c0ff4b85 2252 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2253}
2254
2255static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2256 unsigned long action,
2257 void *hcpu)
2258{
2259 int cpu = (unsigned long)hcpu;
2260 struct memcg_stock_pcp *stock;
711d3d2c 2261 struct mem_cgroup *iter;
cdec2e42 2262
619d094b 2263 if (action == CPU_ONLINE)
1489ebad 2264 return NOTIFY_OK;
1489ebad 2265
d833049b 2266 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2267 return NOTIFY_OK;
711d3d2c 2268
9f3a0d09 2269 for_each_mem_cgroup(iter)
711d3d2c
KH
2270 mem_cgroup_drain_pcp_counter(iter, cpu);
2271
cdec2e42
KH
2272 stock = &per_cpu(memcg_stock, cpu);
2273 drain_stock(stock);
2274 return NOTIFY_OK;
2275}
2276
4b534334
KH
2277
2278/* See __mem_cgroup_try_charge() for details */
2279enum {
2280 CHARGE_OK, /* success */
2281 CHARGE_RETRY, /* need to retry but retry is not bad */
2282 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2283 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2284 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2285};
2286
c0ff4b85 2287static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2288 unsigned int nr_pages, unsigned int min_pages,
2289 bool oom_check)
4b534334 2290{
7ec99d62 2291 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2292 struct mem_cgroup *mem_over_limit;
2293 struct res_counter *fail_res;
2294 unsigned long flags = 0;
2295 int ret;
2296
c0ff4b85 2297 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2298
2299 if (likely(!ret)) {
2300 if (!do_swap_account)
2301 return CHARGE_OK;
c0ff4b85 2302 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2303 if (likely(!ret))
2304 return CHARGE_OK;
2305
c0ff4b85 2306 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2307 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2308 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2309 } else
2310 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2311 /*
9221edb7
JW
2312 * Never reclaim on behalf of optional batching, retry with a
2313 * single page instead.
2314 */
4c9c5359 2315 if (nr_pages > min_pages)
4b534334
KH
2316 return CHARGE_RETRY;
2317
2318 if (!(gfp_mask & __GFP_WAIT))
2319 return CHARGE_WOULDBLOCK;
2320
4c9c5359
SS
2321 if (gfp_mask & __GFP_NORETRY)
2322 return CHARGE_NOMEM;
2323
5660048c 2324 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2325 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2326 return CHARGE_RETRY;
4b534334 2327 /*
19942822
JW
2328 * Even though the limit is exceeded at this point, reclaim
2329 * may have been able to free some pages. Retry the charge
2330 * before killing the task.
2331 *
2332 * Only for regular pages, though: huge pages are rather
2333 * unlikely to succeed so close to the limit, and we fall back
2334 * to regular pages anyway in case of failure.
4b534334 2335 */
4c9c5359 2336 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2337 return CHARGE_RETRY;
2338
2339 /*
2340 * At task move, charge accounts can be doubly counted. So, it's
2341 * better to wait until the end of task_move if something is going on.
2342 */
2343 if (mem_cgroup_wait_acct_move(mem_over_limit))
2344 return CHARGE_RETRY;
2345
2346 /* If we don't need to call oom-killer at el, return immediately */
2347 if (!oom_check)
2348 return CHARGE_NOMEM;
2349 /* check OOM */
e845e199 2350 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2351 return CHARGE_OOM_DIE;
2352
2353 return CHARGE_RETRY;
2354}
2355
f817ed48 2356/*
38c5d72f
KH
2357 * __mem_cgroup_try_charge() does
2358 * 1. detect memcg to be charged against from passed *mm and *ptr,
2359 * 2. update res_counter
2360 * 3. call memory reclaim if necessary.
2361 *
2362 * In some special case, if the task is fatal, fatal_signal_pending() or
2363 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2364 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2365 * as possible without any hazards. 2: all pages should have a valid
2366 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2367 * pointer, that is treated as a charge to root_mem_cgroup.
2368 *
2369 * So __mem_cgroup_try_charge() will return
2370 * 0 ... on success, filling *ptr with a valid memcg pointer.
2371 * -ENOMEM ... charge failure because of resource limits.
2372 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2373 *
2374 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2375 * the oom-killer can be invoked.
8a9f3ccd 2376 */
f817ed48 2377static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2378 gfp_t gfp_mask,
7ec99d62 2379 unsigned int nr_pages,
c0ff4b85 2380 struct mem_cgroup **ptr,
7ec99d62 2381 bool oom)
8a9f3ccd 2382{
7ec99d62 2383 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2384 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2385 struct mem_cgroup *memcg = NULL;
4b534334 2386 int ret;
a636b327 2387
867578cb
KH
2388 /*
2389 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2390 * in system level. So, allow to go ahead dying process in addition to
2391 * MEMDIE process.
2392 */
2393 if (unlikely(test_thread_flag(TIF_MEMDIE)
2394 || fatal_signal_pending(current)))
2395 goto bypass;
a636b327 2396
8a9f3ccd 2397 /*
3be91277
HD
2398 * We always charge the cgroup the mm_struct belongs to.
2399 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2400 * thread group leader migrates. It's possible that mm is not
24467cac 2401 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2402 */
c0ff4b85 2403 if (!*ptr && !mm)
38c5d72f 2404 *ptr = root_mem_cgroup;
f75ca962 2405again:
c0ff4b85
R
2406 if (*ptr) { /* css should be a valid one */
2407 memcg = *ptr;
c0ff4b85 2408 if (mem_cgroup_is_root(memcg))
f75ca962 2409 goto done;
a0956d54 2410 if (consume_stock(memcg, nr_pages))
f75ca962 2411 goto done;
c0ff4b85 2412 css_get(&memcg->css);
4b534334 2413 } else {
f75ca962 2414 struct task_struct *p;
54595fe2 2415
f75ca962
KH
2416 rcu_read_lock();
2417 p = rcu_dereference(mm->owner);
f75ca962 2418 /*
ebb76ce1 2419 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2420 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2421 * race with swapoff. Then, we have small risk of mis-accouning.
2422 * But such kind of mis-account by race always happens because
2423 * we don't have cgroup_mutex(). It's overkill and we allo that
2424 * small race, here.
2425 * (*) swapoff at el will charge against mm-struct not against
2426 * task-struct. So, mm->owner can be NULL.
f75ca962 2427 */
c0ff4b85 2428 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2429 if (!memcg)
2430 memcg = root_mem_cgroup;
2431 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2432 rcu_read_unlock();
2433 goto done;
2434 }
a0956d54 2435 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2436 /*
2437 * It seems dagerous to access memcg without css_get().
2438 * But considering how consume_stok works, it's not
2439 * necessary. If consume_stock success, some charges
2440 * from this memcg are cached on this cpu. So, we
2441 * don't need to call css_get()/css_tryget() before
2442 * calling consume_stock().
2443 */
2444 rcu_read_unlock();
2445 goto done;
2446 }
2447 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2448 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2449 rcu_read_unlock();
2450 goto again;
2451 }
2452 rcu_read_unlock();
2453 }
8a9f3ccd 2454
4b534334
KH
2455 do {
2456 bool oom_check;
7a81b88c 2457
4b534334 2458 /* If killed, bypass charge */
f75ca962 2459 if (fatal_signal_pending(current)) {
c0ff4b85 2460 css_put(&memcg->css);
4b534334 2461 goto bypass;
f75ca962 2462 }
6d61ef40 2463
4b534334
KH
2464 oom_check = false;
2465 if (oom && !nr_oom_retries) {
2466 oom_check = true;
2467 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2468 }
66e1707b 2469
4c9c5359
SS
2470 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2471 oom_check);
4b534334
KH
2472 switch (ret) {
2473 case CHARGE_OK:
2474 break;
2475 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2476 batch = nr_pages;
c0ff4b85
R
2477 css_put(&memcg->css);
2478 memcg = NULL;
f75ca962 2479 goto again;
4b534334 2480 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2481 css_put(&memcg->css);
4b534334
KH
2482 goto nomem;
2483 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2484 if (!oom) {
c0ff4b85 2485 css_put(&memcg->css);
867578cb 2486 goto nomem;
f75ca962 2487 }
4b534334
KH
2488 /* If oom, we never return -ENOMEM */
2489 nr_oom_retries--;
2490 break;
2491 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2492 css_put(&memcg->css);
867578cb 2493 goto bypass;
66e1707b 2494 }
4b534334
KH
2495 } while (ret != CHARGE_OK);
2496
7ec99d62 2497 if (batch > nr_pages)
c0ff4b85
R
2498 refill_stock(memcg, batch - nr_pages);
2499 css_put(&memcg->css);
0c3e73e8 2500done:
c0ff4b85 2501 *ptr = memcg;
7a81b88c
KH
2502 return 0;
2503nomem:
c0ff4b85 2504 *ptr = NULL;
7a81b88c 2505 return -ENOMEM;
867578cb 2506bypass:
38c5d72f
KH
2507 *ptr = root_mem_cgroup;
2508 return -EINTR;
7a81b88c 2509}
8a9f3ccd 2510
a3032a2c
DN
2511/*
2512 * Somemtimes we have to undo a charge we got by try_charge().
2513 * This function is for that and do uncharge, put css's refcnt.
2514 * gotten by try_charge().
2515 */
c0ff4b85 2516static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2517 unsigned int nr_pages)
a3032a2c 2518{
c0ff4b85 2519 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2520 unsigned long bytes = nr_pages * PAGE_SIZE;
2521
c0ff4b85 2522 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2523 if (do_swap_account)
c0ff4b85 2524 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2525 }
854ffa8d
DN
2526}
2527
d01dd17f
KH
2528/*
2529 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2530 * This is useful when moving usage to parent cgroup.
2531 */
2532static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2533 unsigned int nr_pages)
2534{
2535 unsigned long bytes = nr_pages * PAGE_SIZE;
2536
2537 if (mem_cgroup_is_root(memcg))
2538 return;
2539
2540 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2541 if (do_swap_account)
2542 res_counter_uncharge_until(&memcg->memsw,
2543 memcg->memsw.parent, bytes);
2544}
2545
a3b2d692
KH
2546/*
2547 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2548 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2549 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2550 * called against removed memcg.)
a3b2d692
KH
2551 */
2552static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2553{
2554 struct cgroup_subsys_state *css;
2555
2556 /* ID 0 is unused ID */
2557 if (!id)
2558 return NULL;
2559 css = css_lookup(&mem_cgroup_subsys, id);
2560 if (!css)
2561 return NULL;
b2145145 2562 return mem_cgroup_from_css(css);
a3b2d692
KH
2563}
2564
e42d9d5d 2565struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2566{
c0ff4b85 2567 struct mem_cgroup *memcg = NULL;
3c776e64 2568 struct page_cgroup *pc;
a3b2d692 2569 unsigned short id;
b5a84319
KH
2570 swp_entry_t ent;
2571
3c776e64
DN
2572 VM_BUG_ON(!PageLocked(page));
2573
3c776e64 2574 pc = lookup_page_cgroup(page);
c0bd3f63 2575 lock_page_cgroup(pc);
a3b2d692 2576 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2577 memcg = pc->mem_cgroup;
2578 if (memcg && !css_tryget(&memcg->css))
2579 memcg = NULL;
e42d9d5d 2580 } else if (PageSwapCache(page)) {
3c776e64 2581 ent.val = page_private(page);
9fb4b7cc 2582 id = lookup_swap_cgroup_id(ent);
a3b2d692 2583 rcu_read_lock();
c0ff4b85
R
2584 memcg = mem_cgroup_lookup(id);
2585 if (memcg && !css_tryget(&memcg->css))
2586 memcg = NULL;
a3b2d692 2587 rcu_read_unlock();
3c776e64 2588 }
c0bd3f63 2589 unlock_page_cgroup(pc);
c0ff4b85 2590 return memcg;
b5a84319
KH
2591}
2592
c0ff4b85 2593static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2594 struct page *page,
7ec99d62 2595 unsigned int nr_pages,
9ce70c02
HD
2596 enum charge_type ctype,
2597 bool lrucare)
7a81b88c 2598{
ce587e65 2599 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2600 struct zone *uninitialized_var(zone);
fa9add64 2601 struct lruvec *lruvec;
9ce70c02 2602 bool was_on_lru = false;
b2402857 2603 bool anon;
9ce70c02 2604
ca3e0214 2605 lock_page_cgroup(pc);
90deb788 2606 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2607 /*
2608 * we don't need page_cgroup_lock about tail pages, becase they are not
2609 * accessed by any other context at this point.
2610 */
9ce70c02
HD
2611
2612 /*
2613 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2614 * may already be on some other mem_cgroup's LRU. Take care of it.
2615 */
2616 if (lrucare) {
2617 zone = page_zone(page);
2618 spin_lock_irq(&zone->lru_lock);
2619 if (PageLRU(page)) {
fa9add64 2620 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2621 ClearPageLRU(page);
fa9add64 2622 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2623 was_on_lru = true;
2624 }
2625 }
2626
c0ff4b85 2627 pc->mem_cgroup = memcg;
261fb61a
KH
2628 /*
2629 * We access a page_cgroup asynchronously without lock_page_cgroup().
2630 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2631 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2632 * before USED bit, we need memory barrier here.
2633 * See mem_cgroup_add_lru_list(), etc.
2634 */
08e552c6 2635 smp_wmb();
b2402857 2636 SetPageCgroupUsed(pc);
3be91277 2637
9ce70c02
HD
2638 if (lrucare) {
2639 if (was_on_lru) {
fa9add64 2640 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2641 VM_BUG_ON(PageLRU(page));
2642 SetPageLRU(page);
fa9add64 2643 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2644 }
2645 spin_unlock_irq(&zone->lru_lock);
2646 }
2647
41326c17 2648 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2649 anon = true;
2650 else
2651 anon = false;
2652
2653 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2654 unlock_page_cgroup(pc);
9ce70c02 2655
430e4863
KH
2656 /*
2657 * "charge_statistics" updated event counter. Then, check it.
2658 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2659 * if they exceeds softlimit.
2660 */
c0ff4b85 2661 memcg_check_events(memcg, page);
7a81b88c 2662}
66e1707b 2663
ca3e0214
KH
2664#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2665
a0db00fc 2666#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2667/*
2668 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2669 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2670 * charge/uncharge will be never happen and move_account() is done under
2671 * compound_lock(), so we don't have to take care of races.
ca3e0214 2672 */
e94c8a9c 2673void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2674{
2675 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2676 struct page_cgroup *pc;
2677 int i;
ca3e0214 2678
3d37c4a9
KH
2679 if (mem_cgroup_disabled())
2680 return;
e94c8a9c
KH
2681 for (i = 1; i < HPAGE_PMD_NR; i++) {
2682 pc = head_pc + i;
2683 pc->mem_cgroup = head_pc->mem_cgroup;
2684 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2685 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2686 }
ca3e0214 2687}
12d27107 2688#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2689
f817ed48 2690/**
de3638d9 2691 * mem_cgroup_move_account - move account of the page
5564e88b 2692 * @page: the page
7ec99d62 2693 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2694 * @pc: page_cgroup of the page.
2695 * @from: mem_cgroup which the page is moved from.
2696 * @to: mem_cgroup which the page is moved to. @from != @to.
2697 *
2698 * The caller must confirm following.
08e552c6 2699 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2700 * - compound_lock is held when nr_pages > 1
f817ed48 2701 *
2f3479b1
KH
2702 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2703 * from old cgroup.
f817ed48 2704 */
7ec99d62
JW
2705static int mem_cgroup_move_account(struct page *page,
2706 unsigned int nr_pages,
2707 struct page_cgroup *pc,
2708 struct mem_cgroup *from,
2f3479b1 2709 struct mem_cgroup *to)
f817ed48 2710{
de3638d9
JW
2711 unsigned long flags;
2712 int ret;
b2402857 2713 bool anon = PageAnon(page);
987eba66 2714
f817ed48 2715 VM_BUG_ON(from == to);
5564e88b 2716 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2717 /*
2718 * The page is isolated from LRU. So, collapse function
2719 * will not handle this page. But page splitting can happen.
2720 * Do this check under compound_page_lock(). The caller should
2721 * hold it.
2722 */
2723 ret = -EBUSY;
7ec99d62 2724 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2725 goto out;
2726
2727 lock_page_cgroup(pc);
2728
2729 ret = -EINVAL;
2730 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2731 goto unlock;
2732
312734c0 2733 move_lock_mem_cgroup(from, &flags);
f817ed48 2734
2ff76f11 2735 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2736 /* Update mapped_file data for mem_cgroup */
2737 preempt_disable();
2738 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2739 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2740 preempt_enable();
d69b042f 2741 }
b2402857 2742 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2743
854ffa8d 2744 /* caller should have done css_get */
08e552c6 2745 pc->mem_cgroup = to;
b2402857 2746 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 2747 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2748 ret = 0;
2749unlock:
57f9fd7d 2750 unlock_page_cgroup(pc);
d2265e6f
KH
2751 /*
2752 * check events
2753 */
5564e88b
JW
2754 memcg_check_events(to, page);
2755 memcg_check_events(from, page);
de3638d9 2756out:
f817ed48
KH
2757 return ret;
2758}
2759
2ef37d3f
MH
2760/**
2761 * mem_cgroup_move_parent - moves page to the parent group
2762 * @page: the page to move
2763 * @pc: page_cgroup of the page
2764 * @child: page's cgroup
2765 *
2766 * move charges to its parent or the root cgroup if the group has no
2767 * parent (aka use_hierarchy==0).
2768 * Although this might fail (get_page_unless_zero, isolate_lru_page or
2769 * mem_cgroup_move_account fails) the failure is always temporary and
2770 * it signals a race with a page removal/uncharge or migration. In the
2771 * first case the page is on the way out and it will vanish from the LRU
2772 * on the next attempt and the call should be retried later.
2773 * Isolation from the LRU fails only if page has been isolated from
2774 * the LRU since we looked at it and that usually means either global
2775 * reclaim or migration going on. The page will either get back to the
2776 * LRU or vanish.
2777 * Finaly mem_cgroup_move_account fails only if the page got uncharged
2778 * (!PageCgroupUsed) or moved to a different group. The page will
2779 * disappear in the next attempt.
f817ed48 2780 */
5564e88b
JW
2781static int mem_cgroup_move_parent(struct page *page,
2782 struct page_cgroup *pc,
6068bf01 2783 struct mem_cgroup *child)
f817ed48 2784{
f817ed48 2785 struct mem_cgroup *parent;
7ec99d62 2786 unsigned int nr_pages;
4be4489f 2787 unsigned long uninitialized_var(flags);
f817ed48
KH
2788 int ret;
2789
d8423011 2790 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 2791
57f9fd7d
DN
2792 ret = -EBUSY;
2793 if (!get_page_unless_zero(page))
2794 goto out;
2795 if (isolate_lru_page(page))
2796 goto put;
52dbb905 2797
7ec99d62 2798 nr_pages = hpage_nr_pages(page);
08e552c6 2799
cc926f78
KH
2800 parent = parent_mem_cgroup(child);
2801 /*
2802 * If no parent, move charges to root cgroup.
2803 */
2804 if (!parent)
2805 parent = root_mem_cgroup;
f817ed48 2806
2ef37d3f
MH
2807 if (nr_pages > 1) {
2808 VM_BUG_ON(!PageTransHuge(page));
987eba66 2809 flags = compound_lock_irqsave(page);
2ef37d3f 2810 }
987eba66 2811
cc926f78 2812 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2813 pc, child, parent);
cc926f78
KH
2814 if (!ret)
2815 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2816
7ec99d62 2817 if (nr_pages > 1)
987eba66 2818 compound_unlock_irqrestore(page, flags);
08e552c6 2819 putback_lru_page(page);
57f9fd7d 2820put:
40d58138 2821 put_page(page);
57f9fd7d 2822out:
f817ed48
KH
2823 return ret;
2824}
2825
7a81b88c
KH
2826/*
2827 * Charge the memory controller for page usage.
2828 * Return
2829 * 0 if the charge was successful
2830 * < 0 if the cgroup is over its limit
2831 */
2832static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2833 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2834{
c0ff4b85 2835 struct mem_cgroup *memcg = NULL;
7ec99d62 2836 unsigned int nr_pages = 1;
8493ae43 2837 bool oom = true;
7a81b88c 2838 int ret;
ec168510 2839
37c2ac78 2840 if (PageTransHuge(page)) {
7ec99d62 2841 nr_pages <<= compound_order(page);
37c2ac78 2842 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2843 /*
2844 * Never OOM-kill a process for a huge page. The
2845 * fault handler will fall back to regular pages.
2846 */
2847 oom = false;
37c2ac78 2848 }
7a81b88c 2849
c0ff4b85 2850 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2851 if (ret == -ENOMEM)
7a81b88c 2852 return ret;
ce587e65 2853 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2854 return 0;
8a9f3ccd
BS
2855}
2856
7a81b88c
KH
2857int mem_cgroup_newpage_charge(struct page *page,
2858 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2859{
f8d66542 2860 if (mem_cgroup_disabled())
cede86ac 2861 return 0;
7a0524cf
JW
2862 VM_BUG_ON(page_mapped(page));
2863 VM_BUG_ON(page->mapping && !PageAnon(page));
2864 VM_BUG_ON(!mm);
217bc319 2865 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2866 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2867}
2868
54595fe2
KH
2869/*
2870 * While swap-in, try_charge -> commit or cancel, the page is locked.
2871 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2872 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2873 * "commit()" or removed by "cancel()"
2874 */
0435a2fd
JW
2875static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2876 struct page *page,
2877 gfp_t mask,
2878 struct mem_cgroup **memcgp)
8c7c6e34 2879{
c0ff4b85 2880 struct mem_cgroup *memcg;
90deb788 2881 struct page_cgroup *pc;
54595fe2 2882 int ret;
8c7c6e34 2883
90deb788
JW
2884 pc = lookup_page_cgroup(page);
2885 /*
2886 * Every swap fault against a single page tries to charge the
2887 * page, bail as early as possible. shmem_unuse() encounters
2888 * already charged pages, too. The USED bit is protected by
2889 * the page lock, which serializes swap cache removal, which
2890 * in turn serializes uncharging.
2891 */
2892 if (PageCgroupUsed(pc))
2893 return 0;
8c7c6e34
KH
2894 if (!do_swap_account)
2895 goto charge_cur_mm;
c0ff4b85
R
2896 memcg = try_get_mem_cgroup_from_page(page);
2897 if (!memcg)
54595fe2 2898 goto charge_cur_mm;
72835c86
JW
2899 *memcgp = memcg;
2900 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2901 css_put(&memcg->css);
38c5d72f
KH
2902 if (ret == -EINTR)
2903 ret = 0;
54595fe2 2904 return ret;
8c7c6e34 2905charge_cur_mm:
38c5d72f
KH
2906 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2907 if (ret == -EINTR)
2908 ret = 0;
2909 return ret;
8c7c6e34
KH
2910}
2911
0435a2fd
JW
2912int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2913 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2914{
2915 *memcgp = NULL;
2916 if (mem_cgroup_disabled())
2917 return 0;
bdf4f4d2
JW
2918 /*
2919 * A racing thread's fault, or swapoff, may have already
2920 * updated the pte, and even removed page from swap cache: in
2921 * those cases unuse_pte()'s pte_same() test will fail; but
2922 * there's also a KSM case which does need to charge the page.
2923 */
2924 if (!PageSwapCache(page)) {
2925 int ret;
2926
2927 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2928 if (ret == -EINTR)
2929 ret = 0;
2930 return ret;
2931 }
0435a2fd
JW
2932 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2933}
2934
827a03d2
JW
2935void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2936{
2937 if (mem_cgroup_disabled())
2938 return;
2939 if (!memcg)
2940 return;
2941 __mem_cgroup_cancel_charge(memcg, 1);
2942}
2943
83aae4c7 2944static void
72835c86 2945__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2946 enum charge_type ctype)
7a81b88c 2947{
f8d66542 2948 if (mem_cgroup_disabled())
7a81b88c 2949 return;
72835c86 2950 if (!memcg)
7a81b88c 2951 return;
5a6475a4 2952
ce587e65 2953 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2954 /*
2955 * Now swap is on-memory. This means this page may be
2956 * counted both as mem and swap....double count.
03f3c433
KH
2957 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2958 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2959 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2960 */
03f3c433 2961 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2962 swp_entry_t ent = {.val = page_private(page)};
86493009 2963 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2964 }
7a81b88c
KH
2965}
2966
72835c86
JW
2967void mem_cgroup_commit_charge_swapin(struct page *page,
2968 struct mem_cgroup *memcg)
83aae4c7 2969{
72835c86 2970 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2971 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2972}
2973
827a03d2
JW
2974int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2975 gfp_t gfp_mask)
7a81b88c 2976{
827a03d2
JW
2977 struct mem_cgroup *memcg = NULL;
2978 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2979 int ret;
2980
f8d66542 2981 if (mem_cgroup_disabled())
827a03d2
JW
2982 return 0;
2983 if (PageCompound(page))
2984 return 0;
2985
827a03d2
JW
2986 if (!PageSwapCache(page))
2987 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2988 else { /* page is swapcache/shmem */
0435a2fd
JW
2989 ret = __mem_cgroup_try_charge_swapin(mm, page,
2990 gfp_mask, &memcg);
827a03d2
JW
2991 if (!ret)
2992 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2993 }
2994 return ret;
7a81b88c
KH
2995}
2996
c0ff4b85 2997static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2998 unsigned int nr_pages,
2999 const enum charge_type ctype)
569b846d
KH
3000{
3001 struct memcg_batch_info *batch = NULL;
3002 bool uncharge_memsw = true;
7ec99d62 3003
569b846d
KH
3004 /* If swapout, usage of swap doesn't decrease */
3005 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3006 uncharge_memsw = false;
569b846d
KH
3007
3008 batch = &current->memcg_batch;
3009 /*
3010 * In usual, we do css_get() when we remember memcg pointer.
3011 * But in this case, we keep res->usage until end of a series of
3012 * uncharges. Then, it's ok to ignore memcg's refcnt.
3013 */
3014 if (!batch->memcg)
c0ff4b85 3015 batch->memcg = memcg;
3c11ecf4
KH
3016 /*
3017 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3018 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3019 * the same cgroup and we have chance to coalesce uncharges.
3020 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3021 * because we want to do uncharge as soon as possible.
3022 */
3023
3024 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3025 goto direct_uncharge;
3026
7ec99d62 3027 if (nr_pages > 1)
ec168510
AA
3028 goto direct_uncharge;
3029
569b846d
KH
3030 /*
3031 * In typical case, batch->memcg == mem. This means we can
3032 * merge a series of uncharges to an uncharge of res_counter.
3033 * If not, we uncharge res_counter ony by one.
3034 */
c0ff4b85 3035 if (batch->memcg != memcg)
569b846d
KH
3036 goto direct_uncharge;
3037 /* remember freed charge and uncharge it later */
7ffd4ca7 3038 batch->nr_pages++;
569b846d 3039 if (uncharge_memsw)
7ffd4ca7 3040 batch->memsw_nr_pages++;
569b846d
KH
3041 return;
3042direct_uncharge:
c0ff4b85 3043 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3044 if (uncharge_memsw)
c0ff4b85
R
3045 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3046 if (unlikely(batch->memcg != memcg))
3047 memcg_oom_recover(memcg);
569b846d 3048}
7a81b88c 3049
8a9f3ccd 3050/*
69029cd5 3051 * uncharge if !page_mapped(page)
8a9f3ccd 3052 */
8c7c6e34 3053static struct mem_cgroup *
0030f535
JW
3054__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3055 bool end_migration)
8a9f3ccd 3056{
c0ff4b85 3057 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3058 unsigned int nr_pages = 1;
3059 struct page_cgroup *pc;
b2402857 3060 bool anon;
8a9f3ccd 3061
f8d66542 3062 if (mem_cgroup_disabled())
8c7c6e34 3063 return NULL;
4077960e 3064
0c59b89c 3065 VM_BUG_ON(PageSwapCache(page));
d13d1443 3066
37c2ac78 3067 if (PageTransHuge(page)) {
7ec99d62 3068 nr_pages <<= compound_order(page);
37c2ac78
AA
3069 VM_BUG_ON(!PageTransHuge(page));
3070 }
8697d331 3071 /*
3c541e14 3072 * Check if our page_cgroup is valid
8697d331 3073 */
52d4b9ac 3074 pc = lookup_page_cgroup(page);
cfa44946 3075 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3076 return NULL;
b9c565d5 3077
52d4b9ac 3078 lock_page_cgroup(pc);
d13d1443 3079
c0ff4b85 3080 memcg = pc->mem_cgroup;
8c7c6e34 3081
d13d1443
KH
3082 if (!PageCgroupUsed(pc))
3083 goto unlock_out;
3084
b2402857
KH
3085 anon = PageAnon(page);
3086
d13d1443 3087 switch (ctype) {
41326c17 3088 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3089 /*
3090 * Generally PageAnon tells if it's the anon statistics to be
3091 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3092 * used before page reached the stage of being marked PageAnon.
3093 */
b2402857
KH
3094 anon = true;
3095 /* fallthrough */
8a9478ca 3096 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3097 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3098 if (page_mapped(page))
3099 goto unlock_out;
3100 /*
3101 * Pages under migration may not be uncharged. But
3102 * end_migration() /must/ be the one uncharging the
3103 * unused post-migration page and so it has to call
3104 * here with the migration bit still set. See the
3105 * res_counter handling below.
3106 */
3107 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3108 goto unlock_out;
3109 break;
3110 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3111 if (!PageAnon(page)) { /* Shared memory */
3112 if (page->mapping && !page_is_file_cache(page))
3113 goto unlock_out;
3114 } else if (page_mapped(page)) /* Anon */
3115 goto unlock_out;
3116 break;
3117 default:
3118 break;
52d4b9ac 3119 }
d13d1443 3120
b2402857 3121 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3122
52d4b9ac 3123 ClearPageCgroupUsed(pc);
544122e5
KH
3124 /*
3125 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3126 * freed from LRU. This is safe because uncharged page is expected not
3127 * to be reused (freed soon). Exception is SwapCache, it's handled by
3128 * special functions.
3129 */
b9c565d5 3130
52d4b9ac 3131 unlock_page_cgroup(pc);
f75ca962 3132 /*
c0ff4b85 3133 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3134 * will never be freed.
3135 */
c0ff4b85 3136 memcg_check_events(memcg, page);
f75ca962 3137 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3138 mem_cgroup_swap_statistics(memcg, true);
3139 mem_cgroup_get(memcg);
f75ca962 3140 }
0030f535
JW
3141 /*
3142 * Migration does not charge the res_counter for the
3143 * replacement page, so leave it alone when phasing out the
3144 * page that is unused after the migration.
3145 */
3146 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3147 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3148
c0ff4b85 3149 return memcg;
d13d1443
KH
3150
3151unlock_out:
3152 unlock_page_cgroup(pc);
8c7c6e34 3153 return NULL;
3c541e14
BS
3154}
3155
69029cd5
KH
3156void mem_cgroup_uncharge_page(struct page *page)
3157{
52d4b9ac
KH
3158 /* early check. */
3159 if (page_mapped(page))
3160 return;
40f23a21 3161 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3162 if (PageSwapCache(page))
3163 return;
0030f535 3164 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3165}
3166
3167void mem_cgroup_uncharge_cache_page(struct page *page)
3168{
3169 VM_BUG_ON(page_mapped(page));
b7abea96 3170 VM_BUG_ON(page->mapping);
0030f535 3171 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3172}
3173
569b846d
KH
3174/*
3175 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3176 * In that cases, pages are freed continuously and we can expect pages
3177 * are in the same memcg. All these calls itself limits the number of
3178 * pages freed at once, then uncharge_start/end() is called properly.
3179 * This may be called prural(2) times in a context,
3180 */
3181
3182void mem_cgroup_uncharge_start(void)
3183{
3184 current->memcg_batch.do_batch++;
3185 /* We can do nest. */
3186 if (current->memcg_batch.do_batch == 1) {
3187 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3188 current->memcg_batch.nr_pages = 0;
3189 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3190 }
3191}
3192
3193void mem_cgroup_uncharge_end(void)
3194{
3195 struct memcg_batch_info *batch = &current->memcg_batch;
3196
3197 if (!batch->do_batch)
3198 return;
3199
3200 batch->do_batch--;
3201 if (batch->do_batch) /* If stacked, do nothing. */
3202 return;
3203
3204 if (!batch->memcg)
3205 return;
3206 /*
3207 * This "batch->memcg" is valid without any css_get/put etc...
3208 * bacause we hide charges behind us.
3209 */
7ffd4ca7
JW
3210 if (batch->nr_pages)
3211 res_counter_uncharge(&batch->memcg->res,
3212 batch->nr_pages * PAGE_SIZE);
3213 if (batch->memsw_nr_pages)
3214 res_counter_uncharge(&batch->memcg->memsw,
3215 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3216 memcg_oom_recover(batch->memcg);
569b846d
KH
3217 /* forget this pointer (for sanity check) */
3218 batch->memcg = NULL;
3219}
3220
e767e056 3221#ifdef CONFIG_SWAP
8c7c6e34 3222/*
e767e056 3223 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3224 * memcg information is recorded to swap_cgroup of "ent"
3225 */
8a9478ca
KH
3226void
3227mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3228{
3229 struct mem_cgroup *memcg;
8a9478ca
KH
3230 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3231
3232 if (!swapout) /* this was a swap cache but the swap is unused ! */
3233 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3234
0030f535 3235 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3236
f75ca962
KH
3237 /*
3238 * record memcg information, if swapout && memcg != NULL,
3239 * mem_cgroup_get() was called in uncharge().
3240 */
3241 if (do_swap_account && swapout && memcg)
a3b2d692 3242 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3243}
e767e056 3244#endif
8c7c6e34 3245
c255a458 3246#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3247/*
3248 * called from swap_entry_free(). remove record in swap_cgroup and
3249 * uncharge "memsw" account.
3250 */
3251void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3252{
8c7c6e34 3253 struct mem_cgroup *memcg;
a3b2d692 3254 unsigned short id;
8c7c6e34
KH
3255
3256 if (!do_swap_account)
3257 return;
3258
a3b2d692
KH
3259 id = swap_cgroup_record(ent, 0);
3260 rcu_read_lock();
3261 memcg = mem_cgroup_lookup(id);
8c7c6e34 3262 if (memcg) {
a3b2d692
KH
3263 /*
3264 * We uncharge this because swap is freed.
3265 * This memcg can be obsolete one. We avoid calling css_tryget
3266 */
0c3e73e8 3267 if (!mem_cgroup_is_root(memcg))
4e649152 3268 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3269 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3270 mem_cgroup_put(memcg);
3271 }
a3b2d692 3272 rcu_read_unlock();
d13d1443 3273}
02491447
DN
3274
3275/**
3276 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3277 * @entry: swap entry to be moved
3278 * @from: mem_cgroup which the entry is moved from
3279 * @to: mem_cgroup which the entry is moved to
3280 *
3281 * It succeeds only when the swap_cgroup's record for this entry is the same
3282 * as the mem_cgroup's id of @from.
3283 *
3284 * Returns 0 on success, -EINVAL on failure.
3285 *
3286 * The caller must have charged to @to, IOW, called res_counter_charge() about
3287 * both res and memsw, and called css_get().
3288 */
3289static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3290 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3291{
3292 unsigned short old_id, new_id;
3293
3294 old_id = css_id(&from->css);
3295 new_id = css_id(&to->css);
3296
3297 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3298 mem_cgroup_swap_statistics(from, false);
483c30b5 3299 mem_cgroup_swap_statistics(to, true);
02491447 3300 /*
483c30b5
DN
3301 * This function is only called from task migration context now.
3302 * It postpones res_counter and refcount handling till the end
3303 * of task migration(mem_cgroup_clear_mc()) for performance
3304 * improvement. But we cannot postpone mem_cgroup_get(to)
3305 * because if the process that has been moved to @to does
3306 * swap-in, the refcount of @to might be decreased to 0.
02491447 3307 */
02491447 3308 mem_cgroup_get(to);
02491447
DN
3309 return 0;
3310 }
3311 return -EINVAL;
3312}
3313#else
3314static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3315 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3316{
3317 return -EINVAL;
3318}
8c7c6e34 3319#endif
d13d1443 3320
ae41be37 3321/*
01b1ae63
KH
3322 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3323 * page belongs to.
ae41be37 3324 */
0030f535
JW
3325void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3326 struct mem_cgroup **memcgp)
ae41be37 3327{
c0ff4b85 3328 struct mem_cgroup *memcg = NULL;
b32967ff 3329 unsigned int nr_pages = 1;
7ec99d62 3330 struct page_cgroup *pc;
ac39cf8c 3331 enum charge_type ctype;
8869b8f6 3332
72835c86 3333 *memcgp = NULL;
56039efa 3334
f8d66542 3335 if (mem_cgroup_disabled())
0030f535 3336 return;
4077960e 3337
b32967ff
MG
3338 if (PageTransHuge(page))
3339 nr_pages <<= compound_order(page);
3340
52d4b9ac
KH
3341 pc = lookup_page_cgroup(page);
3342 lock_page_cgroup(pc);
3343 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3344 memcg = pc->mem_cgroup;
3345 css_get(&memcg->css);
ac39cf8c 3346 /*
3347 * At migrating an anonymous page, its mapcount goes down
3348 * to 0 and uncharge() will be called. But, even if it's fully
3349 * unmapped, migration may fail and this page has to be
3350 * charged again. We set MIGRATION flag here and delay uncharge
3351 * until end_migration() is called
3352 *
3353 * Corner Case Thinking
3354 * A)
3355 * When the old page was mapped as Anon and it's unmap-and-freed
3356 * while migration was ongoing.
3357 * If unmap finds the old page, uncharge() of it will be delayed
3358 * until end_migration(). If unmap finds a new page, it's
3359 * uncharged when it make mapcount to be 1->0. If unmap code
3360 * finds swap_migration_entry, the new page will not be mapped
3361 * and end_migration() will find it(mapcount==0).
3362 *
3363 * B)
3364 * When the old page was mapped but migraion fails, the kernel
3365 * remaps it. A charge for it is kept by MIGRATION flag even
3366 * if mapcount goes down to 0. We can do remap successfully
3367 * without charging it again.
3368 *
3369 * C)
3370 * The "old" page is under lock_page() until the end of
3371 * migration, so, the old page itself will not be swapped-out.
3372 * If the new page is swapped out before end_migraton, our
3373 * hook to usual swap-out path will catch the event.
3374 */
3375 if (PageAnon(page))
3376 SetPageCgroupMigration(pc);
e8589cc1 3377 }
52d4b9ac 3378 unlock_page_cgroup(pc);
ac39cf8c 3379 /*
3380 * If the page is not charged at this point,
3381 * we return here.
3382 */
c0ff4b85 3383 if (!memcg)
0030f535 3384 return;
01b1ae63 3385
72835c86 3386 *memcgp = memcg;
ac39cf8c 3387 /*
3388 * We charge new page before it's used/mapped. So, even if unlock_page()
3389 * is called before end_migration, we can catch all events on this new
3390 * page. In the case new page is migrated but not remapped, new page's
3391 * mapcount will be finally 0 and we call uncharge in end_migration().
3392 */
ac39cf8c 3393 if (PageAnon(page))
41326c17 3394 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3395 else
62ba7442 3396 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
3397 /*
3398 * The page is committed to the memcg, but it's not actually
3399 * charged to the res_counter since we plan on replacing the
3400 * old one and only one page is going to be left afterwards.
3401 */
b32967ff 3402 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 3403}
8869b8f6 3404
69029cd5 3405/* remove redundant charge if migration failed*/
c0ff4b85 3406void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3407 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3408{
ac39cf8c 3409 struct page *used, *unused;
01b1ae63 3410 struct page_cgroup *pc;
b2402857 3411 bool anon;
01b1ae63 3412
c0ff4b85 3413 if (!memcg)
01b1ae63 3414 return;
b25ed609 3415
50de1dd9 3416 if (!migration_ok) {
ac39cf8c 3417 used = oldpage;
3418 unused = newpage;
01b1ae63 3419 } else {
ac39cf8c 3420 used = newpage;
01b1ae63
KH
3421 unused = oldpage;
3422 }
0030f535 3423 anon = PageAnon(used);
7d188958
JW
3424 __mem_cgroup_uncharge_common(unused,
3425 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3426 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3427 true);
0030f535 3428 css_put(&memcg->css);
69029cd5 3429 /*
ac39cf8c 3430 * We disallowed uncharge of pages under migration because mapcount
3431 * of the page goes down to zero, temporarly.
3432 * Clear the flag and check the page should be charged.
01b1ae63 3433 */
ac39cf8c 3434 pc = lookup_page_cgroup(oldpage);
3435 lock_page_cgroup(pc);
3436 ClearPageCgroupMigration(pc);
3437 unlock_page_cgroup(pc);
ac39cf8c 3438
01b1ae63 3439 /*
ac39cf8c 3440 * If a page is a file cache, radix-tree replacement is very atomic
3441 * and we can skip this check. When it was an Anon page, its mapcount
3442 * goes down to 0. But because we added MIGRATION flage, it's not
3443 * uncharged yet. There are several case but page->mapcount check
3444 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3445 * check. (see prepare_charge() also)
69029cd5 3446 */
b2402857 3447 if (anon)
ac39cf8c 3448 mem_cgroup_uncharge_page(used);
ae41be37 3449}
78fb7466 3450
ab936cbc
KH
3451/*
3452 * At replace page cache, newpage is not under any memcg but it's on
3453 * LRU. So, this function doesn't touch res_counter but handles LRU
3454 * in correct way. Both pages are locked so we cannot race with uncharge.
3455 */
3456void mem_cgroup_replace_page_cache(struct page *oldpage,
3457 struct page *newpage)
3458{
bde05d1c 3459 struct mem_cgroup *memcg = NULL;
ab936cbc 3460 struct page_cgroup *pc;
ab936cbc 3461 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3462
3463 if (mem_cgroup_disabled())
3464 return;
3465
3466 pc = lookup_page_cgroup(oldpage);
3467 /* fix accounting on old pages */
3468 lock_page_cgroup(pc);
bde05d1c
HD
3469 if (PageCgroupUsed(pc)) {
3470 memcg = pc->mem_cgroup;
3471 mem_cgroup_charge_statistics(memcg, false, -1);
3472 ClearPageCgroupUsed(pc);
3473 }
ab936cbc
KH
3474 unlock_page_cgroup(pc);
3475
bde05d1c
HD
3476 /*
3477 * When called from shmem_replace_page(), in some cases the
3478 * oldpage has already been charged, and in some cases not.
3479 */
3480 if (!memcg)
3481 return;
ab936cbc
KH
3482 /*
3483 * Even if newpage->mapping was NULL before starting replacement,
3484 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3485 * LRU while we overwrite pc->mem_cgroup.
3486 */
ce587e65 3487 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3488}
3489
f212ad7c
DN
3490#ifdef CONFIG_DEBUG_VM
3491static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3492{
3493 struct page_cgroup *pc;
3494
3495 pc = lookup_page_cgroup(page);
cfa44946
JW
3496 /*
3497 * Can be NULL while feeding pages into the page allocator for
3498 * the first time, i.e. during boot or memory hotplug;
3499 * or when mem_cgroup_disabled().
3500 */
f212ad7c
DN
3501 if (likely(pc) && PageCgroupUsed(pc))
3502 return pc;
3503 return NULL;
3504}
3505
3506bool mem_cgroup_bad_page_check(struct page *page)
3507{
3508 if (mem_cgroup_disabled())
3509 return false;
3510
3511 return lookup_page_cgroup_used(page) != NULL;
3512}
3513
3514void mem_cgroup_print_bad_page(struct page *page)
3515{
3516 struct page_cgroup *pc;
3517
3518 pc = lookup_page_cgroup_used(page);
3519 if (pc) {
90b3feae 3520 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3521 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3522 }
3523}
3524#endif
3525
8c7c6e34
KH
3526static DEFINE_MUTEX(set_limit_mutex);
3527
d38d2a75 3528static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3529 unsigned long long val)
628f4235 3530{
81d39c20 3531 int retry_count;
3c11ecf4 3532 u64 memswlimit, memlimit;
628f4235 3533 int ret = 0;
81d39c20
KH
3534 int children = mem_cgroup_count_children(memcg);
3535 u64 curusage, oldusage;
3c11ecf4 3536 int enlarge;
81d39c20
KH
3537
3538 /*
3539 * For keeping hierarchical_reclaim simple, how long we should retry
3540 * is depends on callers. We set our retry-count to be function
3541 * of # of children which we should visit in this loop.
3542 */
3543 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3544
3545 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3546
3c11ecf4 3547 enlarge = 0;
8c7c6e34 3548 while (retry_count) {
628f4235
KH
3549 if (signal_pending(current)) {
3550 ret = -EINTR;
3551 break;
3552 }
8c7c6e34
KH
3553 /*
3554 * Rather than hide all in some function, I do this in
3555 * open coded manner. You see what this really does.
aaad153e 3556 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3557 */
3558 mutex_lock(&set_limit_mutex);
3559 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3560 if (memswlimit < val) {
3561 ret = -EINVAL;
3562 mutex_unlock(&set_limit_mutex);
628f4235
KH
3563 break;
3564 }
3c11ecf4
KH
3565
3566 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3567 if (memlimit < val)
3568 enlarge = 1;
3569
8c7c6e34 3570 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3571 if (!ret) {
3572 if (memswlimit == val)
3573 memcg->memsw_is_minimum = true;
3574 else
3575 memcg->memsw_is_minimum = false;
3576 }
8c7c6e34
KH
3577 mutex_unlock(&set_limit_mutex);
3578
3579 if (!ret)
3580 break;
3581
5660048c
JW
3582 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3583 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3584 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3585 /* Usage is reduced ? */
3586 if (curusage >= oldusage)
3587 retry_count--;
3588 else
3589 oldusage = curusage;
8c7c6e34 3590 }
3c11ecf4
KH
3591 if (!ret && enlarge)
3592 memcg_oom_recover(memcg);
14797e23 3593
8c7c6e34
KH
3594 return ret;
3595}
3596
338c8431
LZ
3597static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3598 unsigned long long val)
8c7c6e34 3599{
81d39c20 3600 int retry_count;
3c11ecf4 3601 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3602 int children = mem_cgroup_count_children(memcg);
3603 int ret = -EBUSY;
3c11ecf4 3604 int enlarge = 0;
8c7c6e34 3605
81d39c20
KH
3606 /* see mem_cgroup_resize_res_limit */
3607 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3608 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3609 while (retry_count) {
3610 if (signal_pending(current)) {
3611 ret = -EINTR;
3612 break;
3613 }
3614 /*
3615 * Rather than hide all in some function, I do this in
3616 * open coded manner. You see what this really does.
aaad153e 3617 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3618 */
3619 mutex_lock(&set_limit_mutex);
3620 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3621 if (memlimit > val) {
3622 ret = -EINVAL;
3623 mutex_unlock(&set_limit_mutex);
3624 break;
3625 }
3c11ecf4
KH
3626 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3627 if (memswlimit < val)
3628 enlarge = 1;
8c7c6e34 3629 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3630 if (!ret) {
3631 if (memlimit == val)
3632 memcg->memsw_is_minimum = true;
3633 else
3634 memcg->memsw_is_minimum = false;
3635 }
8c7c6e34
KH
3636 mutex_unlock(&set_limit_mutex);
3637
3638 if (!ret)
3639 break;
3640
5660048c
JW
3641 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3642 MEM_CGROUP_RECLAIM_NOSWAP |
3643 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3644 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3645 /* Usage is reduced ? */
8c7c6e34 3646 if (curusage >= oldusage)
628f4235 3647 retry_count--;
81d39c20
KH
3648 else
3649 oldusage = curusage;
628f4235 3650 }
3c11ecf4
KH
3651 if (!ret && enlarge)
3652 memcg_oom_recover(memcg);
628f4235
KH
3653 return ret;
3654}
3655
4e416953 3656unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3657 gfp_t gfp_mask,
3658 unsigned long *total_scanned)
4e416953
BS
3659{
3660 unsigned long nr_reclaimed = 0;
3661 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3662 unsigned long reclaimed;
3663 int loop = 0;
3664 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3665 unsigned long long excess;
0ae5e89c 3666 unsigned long nr_scanned;
4e416953
BS
3667
3668 if (order > 0)
3669 return 0;
3670
00918b6a 3671 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3672 /*
3673 * This loop can run a while, specially if mem_cgroup's continuously
3674 * keep exceeding their soft limit and putting the system under
3675 * pressure
3676 */
3677 do {
3678 if (next_mz)
3679 mz = next_mz;
3680 else
3681 mz = mem_cgroup_largest_soft_limit_node(mctz);
3682 if (!mz)
3683 break;
3684
0ae5e89c 3685 nr_scanned = 0;
d79154bb 3686 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3687 gfp_mask, &nr_scanned);
4e416953 3688 nr_reclaimed += reclaimed;
0ae5e89c 3689 *total_scanned += nr_scanned;
4e416953
BS
3690 spin_lock(&mctz->lock);
3691
3692 /*
3693 * If we failed to reclaim anything from this memory cgroup
3694 * it is time to move on to the next cgroup
3695 */
3696 next_mz = NULL;
3697 if (!reclaimed) {
3698 do {
3699 /*
3700 * Loop until we find yet another one.
3701 *
3702 * By the time we get the soft_limit lock
3703 * again, someone might have aded the
3704 * group back on the RB tree. Iterate to
3705 * make sure we get a different mem.
3706 * mem_cgroup_largest_soft_limit_node returns
3707 * NULL if no other cgroup is present on
3708 * the tree
3709 */
3710 next_mz =
3711 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3712 if (next_mz == mz)
d79154bb 3713 css_put(&next_mz->memcg->css);
39cc98f1 3714 else /* next_mz == NULL or other memcg */
4e416953
BS
3715 break;
3716 } while (1);
3717 }
d79154bb
HD
3718 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3719 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3720 /*
3721 * One school of thought says that we should not add
3722 * back the node to the tree if reclaim returns 0.
3723 * But our reclaim could return 0, simply because due
3724 * to priority we are exposing a smaller subset of
3725 * memory to reclaim from. Consider this as a longer
3726 * term TODO.
3727 */
ef8745c1 3728 /* If excess == 0, no tree ops */
d79154bb 3729 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3730 spin_unlock(&mctz->lock);
d79154bb 3731 css_put(&mz->memcg->css);
4e416953
BS
3732 loop++;
3733 /*
3734 * Could not reclaim anything and there are no more
3735 * mem cgroups to try or we seem to be looping without
3736 * reclaiming anything.
3737 */
3738 if (!nr_reclaimed &&
3739 (next_mz == NULL ||
3740 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3741 break;
3742 } while (!nr_reclaimed);
3743 if (next_mz)
d79154bb 3744 css_put(&next_mz->memcg->css);
4e416953
BS
3745 return nr_reclaimed;
3746}
3747
2ef37d3f
MH
3748/**
3749 * mem_cgroup_force_empty_list - clears LRU of a group
3750 * @memcg: group to clear
3751 * @node: NUMA node
3752 * @zid: zone id
3753 * @lru: lru to to clear
3754 *
3c935d18 3755 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3756 * reclaim the pages page themselves - pages are moved to the parent (or root)
3757 * group.
cc847582 3758 */
2ef37d3f 3759static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3760 int node, int zid, enum lru_list lru)
cc847582 3761{
bea8c150 3762 struct lruvec *lruvec;
2ef37d3f 3763 unsigned long flags;
072c56c1 3764 struct list_head *list;
925b7673
JW
3765 struct page *busy;
3766 struct zone *zone;
072c56c1 3767
08e552c6 3768 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3769 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3770 list = &lruvec->lists[lru];
cc847582 3771
f817ed48 3772 busy = NULL;
2ef37d3f 3773 do {
925b7673 3774 struct page_cgroup *pc;
5564e88b
JW
3775 struct page *page;
3776
08e552c6 3777 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3778 if (list_empty(list)) {
08e552c6 3779 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3780 break;
f817ed48 3781 }
925b7673
JW
3782 page = list_entry(list->prev, struct page, lru);
3783 if (busy == page) {
3784 list_move(&page->lru, list);
648bcc77 3785 busy = NULL;
08e552c6 3786 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3787 continue;
3788 }
08e552c6 3789 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3790
925b7673 3791 pc = lookup_page_cgroup(page);
5564e88b 3792
3c935d18 3793 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3794 /* found lock contention or "pc" is obsolete. */
925b7673 3795 busy = page;
f817ed48
KH
3796 cond_resched();
3797 } else
3798 busy = NULL;
2ef37d3f 3799 } while (!list_empty(list));
cc847582
KH
3800}
3801
3802/*
c26251f9
MH
3803 * make mem_cgroup's charge to be 0 if there is no task by moving
3804 * all the charges and pages to the parent.
cc847582 3805 * This enables deleting this mem_cgroup.
c26251f9
MH
3806 *
3807 * Caller is responsible for holding css reference on the memcg.
cc847582 3808 */
ab5196c2 3809static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3810{
c26251f9 3811 int node, zid;
f817ed48 3812
fce66477 3813 do {
52d4b9ac
KH
3814 /* This is for making all *used* pages to be on LRU. */
3815 lru_add_drain_all();
c0ff4b85 3816 drain_all_stock_sync(memcg);
c0ff4b85 3817 mem_cgroup_start_move(memcg);
31aaea4a 3818 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3819 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3820 enum lru_list lru;
3821 for_each_lru(lru) {
2ef37d3f 3822 mem_cgroup_force_empty_list(memcg,
f156ab93 3823 node, zid, lru);
f817ed48 3824 }
1ecaab2b 3825 }
f817ed48 3826 }
c0ff4b85
R
3827 mem_cgroup_end_move(memcg);
3828 memcg_oom_recover(memcg);
52d4b9ac 3829 cond_resched();
f817ed48 3830
2ef37d3f
MH
3831 /*
3832 * This is a safety check because mem_cgroup_force_empty_list
3833 * could have raced with mem_cgroup_replace_page_cache callers
3834 * so the lru seemed empty but the page could have been added
3835 * right after the check. RES_USAGE should be safe as we always
3836 * charge before adding to the LRU.
3837 */
3838 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
c26251f9
MH
3839}
3840
3841/*
3842 * Reclaims as many pages from the given memcg as possible and moves
3843 * the rest to the parent.
3844 *
3845 * Caller is responsible for holding css reference for memcg.
3846 */
3847static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3848{
3849 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3850 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 3851
c1e862c1 3852 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
3853 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3854 return -EBUSY;
3855
c1e862c1
KH
3856 /* we call try-to-free pages for make this cgroup empty */
3857 lru_add_drain_all();
f817ed48 3858 /* try to free all pages in this cgroup */
569530fb 3859 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3860 int progress;
c1e862c1 3861
c26251f9
MH
3862 if (signal_pending(current))
3863 return -EINTR;
3864
c0ff4b85 3865 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3866 false);
c1e862c1 3867 if (!progress) {
f817ed48 3868 nr_retries--;
c1e862c1 3869 /* maybe some writeback is necessary */
8aa7e847 3870 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3871 }
f817ed48
KH
3872
3873 }
08e552c6 3874 lru_add_drain();
ab5196c2
MH
3875 mem_cgroup_reparent_charges(memcg);
3876
3877 return 0;
cc847582
KH
3878}
3879
6bbda35c 3880static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 3881{
c26251f9
MH
3882 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3883 int ret;
3884
d8423011
MH
3885 if (mem_cgroup_is_root(memcg))
3886 return -EINVAL;
c26251f9
MH
3887 css_get(&memcg->css);
3888 ret = mem_cgroup_force_empty(memcg);
3889 css_put(&memcg->css);
3890
3891 return ret;
c1e862c1
KH
3892}
3893
3894
18f59ea7
BS
3895static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3896{
3897 return mem_cgroup_from_cont(cont)->use_hierarchy;
3898}
3899
3900static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3901 u64 val)
3902{
3903 int retval = 0;
c0ff4b85 3904 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3905 struct cgroup *parent = cont->parent;
c0ff4b85 3906 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3907
3908 if (parent)
c0ff4b85 3909 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3910
3911 cgroup_lock();
567fb435
GC
3912
3913 if (memcg->use_hierarchy == val)
3914 goto out;
3915
18f59ea7 3916 /*
af901ca1 3917 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3918 * in the child subtrees. If it is unset, then the change can
3919 * occur, provided the current cgroup has no children.
3920 *
3921 * For the root cgroup, parent_mem is NULL, we allow value to be
3922 * set if there are no children.
3923 */
c0ff4b85 3924 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3925 (val == 1 || val == 0)) {
3926 if (list_empty(&cont->children))
c0ff4b85 3927 memcg->use_hierarchy = val;
18f59ea7
BS
3928 else
3929 retval = -EBUSY;
3930 } else
3931 retval = -EINVAL;
567fb435
GC
3932
3933out:
18f59ea7
BS
3934 cgroup_unlock();
3935
3936 return retval;
3937}
3938
0c3e73e8 3939
c0ff4b85 3940static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3941 enum mem_cgroup_stat_index idx)
0c3e73e8 3942{
7d74b06f 3943 struct mem_cgroup *iter;
7a159cc9 3944 long val = 0;
0c3e73e8 3945
7a159cc9 3946 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3947 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3948 val += mem_cgroup_read_stat(iter, idx);
3949
3950 if (val < 0) /* race ? */
3951 val = 0;
3952 return val;
0c3e73e8
BS
3953}
3954
c0ff4b85 3955static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3956{
7d74b06f 3957 u64 val;
104f3928 3958
c0ff4b85 3959 if (!mem_cgroup_is_root(memcg)) {
104f3928 3960 if (!swap)
65c64ce8 3961 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3962 else
65c64ce8 3963 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3964 }
3965
c0ff4b85
R
3966 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3967 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3968
7d74b06f 3969 if (swap)
bff6bb83 3970 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3971
3972 return val << PAGE_SHIFT;
3973}
3974
af36f906
TH
3975static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3976 struct file *file, char __user *buf,
3977 size_t nbytes, loff_t *ppos)
8cdea7c0 3978{
c0ff4b85 3979 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3980 char str[64];
104f3928 3981 u64 val;
86ae53e1
GC
3982 int name, len;
3983 enum res_type type;
8c7c6e34
KH
3984
3985 type = MEMFILE_TYPE(cft->private);
3986 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3987
3988 if (!do_swap_account && type == _MEMSWAP)
3989 return -EOPNOTSUPP;
3990
8c7c6e34
KH
3991 switch (type) {
3992 case _MEM:
104f3928 3993 if (name == RES_USAGE)
c0ff4b85 3994 val = mem_cgroup_usage(memcg, false);
104f3928 3995 else
c0ff4b85 3996 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3997 break;
3998 case _MEMSWAP:
104f3928 3999 if (name == RES_USAGE)
c0ff4b85 4000 val = mem_cgroup_usage(memcg, true);
104f3928 4001 else
c0ff4b85 4002 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4003 break;
510fc4e1
GC
4004 case _KMEM:
4005 val = res_counter_read_u64(&memcg->kmem, name);
4006 break;
8c7c6e34
KH
4007 default:
4008 BUG();
8c7c6e34 4009 }
af36f906
TH
4010
4011 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4012 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 4013}
510fc4e1
GC
4014
4015static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4016{
4017 int ret = -EINVAL;
4018#ifdef CONFIG_MEMCG_KMEM
4019 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4020 /*
4021 * For simplicity, we won't allow this to be disabled. It also can't
4022 * be changed if the cgroup has children already, or if tasks had
4023 * already joined.
4024 *
4025 * If tasks join before we set the limit, a person looking at
4026 * kmem.usage_in_bytes will have no way to determine when it took
4027 * place, which makes the value quite meaningless.
4028 *
4029 * After it first became limited, changes in the value of the limit are
4030 * of course permitted.
4031 *
4032 * Taking the cgroup_lock is really offensive, but it is so far the only
4033 * way to guarantee that no children will appear. There are plenty of
4034 * other offenders, and they should all go away. Fine grained locking
4035 * is probably the way to go here. When we are fully hierarchical, we
4036 * can also get rid of the use_hierarchy check.
4037 */
4038 cgroup_lock();
4039 mutex_lock(&set_limit_mutex);
4040 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4041 if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
4042 !list_empty(&cont->children))) {
4043 ret = -EBUSY;
4044 goto out;
4045 }
4046 ret = res_counter_set_limit(&memcg->kmem, val);
4047 VM_BUG_ON(ret);
4048
4049 memcg_kmem_set_active(memcg);
4050 } else
4051 ret = res_counter_set_limit(&memcg->kmem, val);
4052out:
4053 mutex_unlock(&set_limit_mutex);
4054 cgroup_unlock();
4055#endif
4056 return ret;
4057}
4058
4059static void memcg_propagate_kmem(struct mem_cgroup *memcg)
4060{
4061 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4062 if (!parent)
4063 return;
4064 memcg->kmem_account_flags = parent->kmem_account_flags;
4065}
4066
628f4235
KH
4067/*
4068 * The user of this function is...
4069 * RES_LIMIT.
4070 */
856c13aa
PM
4071static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4072 const char *buffer)
8cdea7c0 4073{
628f4235 4074 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
4075 enum res_type type;
4076 int name;
628f4235
KH
4077 unsigned long long val;
4078 int ret;
4079
8c7c6e34
KH
4080 type = MEMFILE_TYPE(cft->private);
4081 name = MEMFILE_ATTR(cft->private);
af36f906
TH
4082
4083 if (!do_swap_account && type == _MEMSWAP)
4084 return -EOPNOTSUPP;
4085
8c7c6e34 4086 switch (name) {
628f4235 4087 case RES_LIMIT:
4b3bde4c
BS
4088 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4089 ret = -EINVAL;
4090 break;
4091 }
628f4235
KH
4092 /* This function does all necessary parse...reuse it */
4093 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4094 if (ret)
4095 break;
4096 if (type == _MEM)
628f4235 4097 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 4098 else if (type == _MEMSWAP)
8c7c6e34 4099 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
4100 else if (type == _KMEM)
4101 ret = memcg_update_kmem_limit(cont, val);
4102 else
4103 return -EINVAL;
628f4235 4104 break;
296c81d8
BS
4105 case RES_SOFT_LIMIT:
4106 ret = res_counter_memparse_write_strategy(buffer, &val);
4107 if (ret)
4108 break;
4109 /*
4110 * For memsw, soft limits are hard to implement in terms
4111 * of semantics, for now, we support soft limits for
4112 * control without swap
4113 */
4114 if (type == _MEM)
4115 ret = res_counter_set_soft_limit(&memcg->res, val);
4116 else
4117 ret = -EINVAL;
4118 break;
628f4235
KH
4119 default:
4120 ret = -EINVAL; /* should be BUG() ? */
4121 break;
4122 }
4123 return ret;
8cdea7c0
BS
4124}
4125
fee7b548
KH
4126static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4127 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4128{
4129 struct cgroup *cgroup;
4130 unsigned long long min_limit, min_memsw_limit, tmp;
4131
4132 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4133 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4134 cgroup = memcg->css.cgroup;
4135 if (!memcg->use_hierarchy)
4136 goto out;
4137
4138 while (cgroup->parent) {
4139 cgroup = cgroup->parent;
4140 memcg = mem_cgroup_from_cont(cgroup);
4141 if (!memcg->use_hierarchy)
4142 break;
4143 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4144 min_limit = min(min_limit, tmp);
4145 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4146 min_memsw_limit = min(min_memsw_limit, tmp);
4147 }
4148out:
4149 *mem_limit = min_limit;
4150 *memsw_limit = min_memsw_limit;
fee7b548
KH
4151}
4152
29f2a4da 4153static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4154{
af36f906 4155 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
4156 int name;
4157 enum res_type type;
c84872e1 4158
8c7c6e34
KH
4159 type = MEMFILE_TYPE(event);
4160 name = MEMFILE_ATTR(event);
af36f906
TH
4161
4162 if (!do_swap_account && type == _MEMSWAP)
4163 return -EOPNOTSUPP;
4164
8c7c6e34 4165 switch (name) {
29f2a4da 4166 case RES_MAX_USAGE:
8c7c6e34 4167 if (type == _MEM)
c0ff4b85 4168 res_counter_reset_max(&memcg->res);
510fc4e1 4169 else if (type == _MEMSWAP)
c0ff4b85 4170 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
4171 else if (type == _KMEM)
4172 res_counter_reset_max(&memcg->kmem);
4173 else
4174 return -EINVAL;
29f2a4da
PE
4175 break;
4176 case RES_FAILCNT:
8c7c6e34 4177 if (type == _MEM)
c0ff4b85 4178 res_counter_reset_failcnt(&memcg->res);
510fc4e1 4179 else if (type == _MEMSWAP)
c0ff4b85 4180 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
4181 else if (type == _KMEM)
4182 res_counter_reset_failcnt(&memcg->kmem);
4183 else
4184 return -EINVAL;
29f2a4da
PE
4185 break;
4186 }
f64c3f54 4187
85cc59db 4188 return 0;
c84872e1
PE
4189}
4190
7dc74be0
DN
4191static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4192 struct cftype *cft)
4193{
4194 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4195}
4196
02491447 4197#ifdef CONFIG_MMU
7dc74be0
DN
4198static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4199 struct cftype *cft, u64 val)
4200{
c0ff4b85 4201 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4202
4203 if (val >= (1 << NR_MOVE_TYPE))
4204 return -EINVAL;
4205 /*
4206 * We check this value several times in both in can_attach() and
4207 * attach(), so we need cgroup lock to prevent this value from being
4208 * inconsistent.
4209 */
4210 cgroup_lock();
c0ff4b85 4211 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4212 cgroup_unlock();
4213
4214 return 0;
4215}
02491447
DN
4216#else
4217static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4218 struct cftype *cft, u64 val)
4219{
4220 return -ENOSYS;
4221}
4222#endif
7dc74be0 4223
406eb0c9 4224#ifdef CONFIG_NUMA
ab215884 4225static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4226 struct seq_file *m)
406eb0c9
YH
4227{
4228 int nid;
4229 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4230 unsigned long node_nr;
d79154bb 4231 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4232
d79154bb 4233 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 4234 seq_printf(m, "total=%lu", total_nr);
31aaea4a 4235 for_each_node_state(nid, N_MEMORY) {
d79154bb 4236 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4237 seq_printf(m, " N%d=%lu", nid, node_nr);
4238 }
4239 seq_putc(m, '\n');
4240
d79154bb 4241 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 4242 seq_printf(m, "file=%lu", file_nr);
31aaea4a 4243 for_each_node_state(nid, N_MEMORY) {
d79154bb 4244 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4245 LRU_ALL_FILE);
406eb0c9
YH
4246 seq_printf(m, " N%d=%lu", nid, node_nr);
4247 }
4248 seq_putc(m, '\n');
4249
d79154bb 4250 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 4251 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 4252 for_each_node_state(nid, N_MEMORY) {
d79154bb 4253 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4254 LRU_ALL_ANON);
406eb0c9
YH
4255 seq_printf(m, " N%d=%lu", nid, node_nr);
4256 }
4257 seq_putc(m, '\n');
4258
d79154bb 4259 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 4260 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 4261 for_each_node_state(nid, N_MEMORY) {
d79154bb 4262 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4263 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4264 seq_printf(m, " N%d=%lu", nid, node_nr);
4265 }
4266 seq_putc(m, '\n');
4267 return 0;
4268}
4269#endif /* CONFIG_NUMA */
4270
af7c4b0e
JW
4271static const char * const mem_cgroup_lru_names[] = {
4272 "inactive_anon",
4273 "active_anon",
4274 "inactive_file",
4275 "active_file",
4276 "unevictable",
4277};
4278
4279static inline void mem_cgroup_lru_names_not_uptodate(void)
4280{
4281 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4282}
4283
ab215884 4284static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4285 struct seq_file *m)
d2ceb9b7 4286{
d79154bb 4287 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4288 struct mem_cgroup *mi;
4289 unsigned int i;
406eb0c9 4290
af7c4b0e 4291 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4292 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4293 continue;
af7c4b0e
JW
4294 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4295 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4296 }
7b854121 4297
af7c4b0e
JW
4298 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4299 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4300 mem_cgroup_read_events(memcg, i));
4301
4302 for (i = 0; i < NR_LRU_LISTS; i++)
4303 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4304 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4305
14067bb3 4306 /* Hierarchical information */
fee7b548
KH
4307 {
4308 unsigned long long limit, memsw_limit;
d79154bb 4309 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4310 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4311 if (do_swap_account)
78ccf5b5
JW
4312 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4313 memsw_limit);
fee7b548 4314 }
7f016ee8 4315
af7c4b0e
JW
4316 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4317 long long val = 0;
4318
bff6bb83 4319 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4320 continue;
af7c4b0e
JW
4321 for_each_mem_cgroup_tree(mi, memcg)
4322 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4323 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4324 }
4325
4326 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4327 unsigned long long val = 0;
4328
4329 for_each_mem_cgroup_tree(mi, memcg)
4330 val += mem_cgroup_read_events(mi, i);
4331 seq_printf(m, "total_%s %llu\n",
4332 mem_cgroup_events_names[i], val);
4333 }
4334
4335 for (i = 0; i < NR_LRU_LISTS; i++) {
4336 unsigned long long val = 0;
4337
4338 for_each_mem_cgroup_tree(mi, memcg)
4339 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4340 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4341 }
14067bb3 4342
7f016ee8 4343#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4344 {
4345 int nid, zid;
4346 struct mem_cgroup_per_zone *mz;
89abfab1 4347 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4348 unsigned long recent_rotated[2] = {0, 0};
4349 unsigned long recent_scanned[2] = {0, 0};
4350
4351 for_each_online_node(nid)
4352 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4353 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4354 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4355
89abfab1
HD
4356 recent_rotated[0] += rstat->recent_rotated[0];
4357 recent_rotated[1] += rstat->recent_rotated[1];
4358 recent_scanned[0] += rstat->recent_scanned[0];
4359 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4360 }
78ccf5b5
JW
4361 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4362 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4363 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4364 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4365 }
4366#endif
4367
d2ceb9b7
KH
4368 return 0;
4369}
4370
a7885eb8
KM
4371static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4372{
4373 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4374
1f4c025b 4375 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4376}
4377
4378static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4379 u64 val)
4380{
4381 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4382 struct mem_cgroup *parent;
068b38c1 4383
a7885eb8
KM
4384 if (val > 100)
4385 return -EINVAL;
4386
4387 if (cgrp->parent == NULL)
4388 return -EINVAL;
4389
4390 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4391
4392 cgroup_lock();
4393
a7885eb8
KM
4394 /* If under hierarchy, only empty-root can set this value */
4395 if ((parent->use_hierarchy) ||
068b38c1
LZ
4396 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4397 cgroup_unlock();
a7885eb8 4398 return -EINVAL;
068b38c1 4399 }
a7885eb8 4400
a7885eb8 4401 memcg->swappiness = val;
a7885eb8 4402
068b38c1
LZ
4403 cgroup_unlock();
4404
a7885eb8
KM
4405 return 0;
4406}
4407
2e72b634
KS
4408static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4409{
4410 struct mem_cgroup_threshold_ary *t;
4411 u64 usage;
4412 int i;
4413
4414 rcu_read_lock();
4415 if (!swap)
2c488db2 4416 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4417 else
2c488db2 4418 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4419
4420 if (!t)
4421 goto unlock;
4422
4423 usage = mem_cgroup_usage(memcg, swap);
4424
4425 /*
748dad36 4426 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4427 * If it's not true, a threshold was crossed after last
4428 * call of __mem_cgroup_threshold().
4429 */
5407a562 4430 i = t->current_threshold;
2e72b634
KS
4431
4432 /*
4433 * Iterate backward over array of thresholds starting from
4434 * current_threshold and check if a threshold is crossed.
4435 * If none of thresholds below usage is crossed, we read
4436 * only one element of the array here.
4437 */
4438 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4439 eventfd_signal(t->entries[i].eventfd, 1);
4440
4441 /* i = current_threshold + 1 */
4442 i++;
4443
4444 /*
4445 * Iterate forward over array of thresholds starting from
4446 * current_threshold+1 and check if a threshold is crossed.
4447 * If none of thresholds above usage is crossed, we read
4448 * only one element of the array here.
4449 */
4450 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4451 eventfd_signal(t->entries[i].eventfd, 1);
4452
4453 /* Update current_threshold */
5407a562 4454 t->current_threshold = i - 1;
2e72b634
KS
4455unlock:
4456 rcu_read_unlock();
4457}
4458
4459static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4460{
ad4ca5f4
KS
4461 while (memcg) {
4462 __mem_cgroup_threshold(memcg, false);
4463 if (do_swap_account)
4464 __mem_cgroup_threshold(memcg, true);
4465
4466 memcg = parent_mem_cgroup(memcg);
4467 }
2e72b634
KS
4468}
4469
4470static int compare_thresholds(const void *a, const void *b)
4471{
4472 const struct mem_cgroup_threshold *_a = a;
4473 const struct mem_cgroup_threshold *_b = b;
4474
4475 return _a->threshold - _b->threshold;
4476}
4477
c0ff4b85 4478static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4479{
4480 struct mem_cgroup_eventfd_list *ev;
4481
c0ff4b85 4482 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4483 eventfd_signal(ev->eventfd, 1);
4484 return 0;
4485}
4486
c0ff4b85 4487static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4488{
7d74b06f
KH
4489 struct mem_cgroup *iter;
4490
c0ff4b85 4491 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4492 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4493}
4494
4495static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4496 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4497{
4498 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4499 struct mem_cgroup_thresholds *thresholds;
4500 struct mem_cgroup_threshold_ary *new;
86ae53e1 4501 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 4502 u64 threshold, usage;
2c488db2 4503 int i, size, ret;
2e72b634
KS
4504
4505 ret = res_counter_memparse_write_strategy(args, &threshold);
4506 if (ret)
4507 return ret;
4508
4509 mutex_lock(&memcg->thresholds_lock);
2c488db2 4510
2e72b634 4511 if (type == _MEM)
2c488db2 4512 thresholds = &memcg->thresholds;
2e72b634 4513 else if (type == _MEMSWAP)
2c488db2 4514 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4515 else
4516 BUG();
4517
4518 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4519
4520 /* Check if a threshold crossed before adding a new one */
2c488db2 4521 if (thresholds->primary)
2e72b634
KS
4522 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4523
2c488db2 4524 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4525
4526 /* Allocate memory for new array of thresholds */
2c488db2 4527 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4528 GFP_KERNEL);
2c488db2 4529 if (!new) {
2e72b634
KS
4530 ret = -ENOMEM;
4531 goto unlock;
4532 }
2c488db2 4533 new->size = size;
2e72b634
KS
4534
4535 /* Copy thresholds (if any) to new array */
2c488db2
KS
4536 if (thresholds->primary) {
4537 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4538 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4539 }
4540
2e72b634 4541 /* Add new threshold */
2c488db2
KS
4542 new->entries[size - 1].eventfd = eventfd;
4543 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4544
4545 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4546 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4547 compare_thresholds, NULL);
4548
4549 /* Find current threshold */
2c488db2 4550 new->current_threshold = -1;
2e72b634 4551 for (i = 0; i < size; i++) {
748dad36 4552 if (new->entries[i].threshold <= usage) {
2e72b634 4553 /*
2c488db2
KS
4554 * new->current_threshold will not be used until
4555 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4556 * it here.
4557 */
2c488db2 4558 ++new->current_threshold;
748dad36
SZ
4559 } else
4560 break;
2e72b634
KS
4561 }
4562
2c488db2
KS
4563 /* Free old spare buffer and save old primary buffer as spare */
4564 kfree(thresholds->spare);
4565 thresholds->spare = thresholds->primary;
4566
4567 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4568
907860ed 4569 /* To be sure that nobody uses thresholds */
2e72b634
KS
4570 synchronize_rcu();
4571
2e72b634
KS
4572unlock:
4573 mutex_unlock(&memcg->thresholds_lock);
4574
4575 return ret;
4576}
4577
907860ed 4578static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4579 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4580{
4581 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4582 struct mem_cgroup_thresholds *thresholds;
4583 struct mem_cgroup_threshold_ary *new;
86ae53e1 4584 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 4585 u64 usage;
2c488db2 4586 int i, j, size;
2e72b634
KS
4587
4588 mutex_lock(&memcg->thresholds_lock);
4589 if (type == _MEM)
2c488db2 4590 thresholds = &memcg->thresholds;
2e72b634 4591 else if (type == _MEMSWAP)
2c488db2 4592 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4593 else
4594 BUG();
4595
371528ca
AV
4596 if (!thresholds->primary)
4597 goto unlock;
4598
2e72b634
KS
4599 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4600
4601 /* Check if a threshold crossed before removing */
4602 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4603
4604 /* Calculate new number of threshold */
2c488db2
KS
4605 size = 0;
4606 for (i = 0; i < thresholds->primary->size; i++) {
4607 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4608 size++;
4609 }
4610
2c488db2 4611 new = thresholds->spare;
907860ed 4612
2e72b634
KS
4613 /* Set thresholds array to NULL if we don't have thresholds */
4614 if (!size) {
2c488db2
KS
4615 kfree(new);
4616 new = NULL;
907860ed 4617 goto swap_buffers;
2e72b634
KS
4618 }
4619
2c488db2 4620 new->size = size;
2e72b634
KS
4621
4622 /* Copy thresholds and find current threshold */
2c488db2
KS
4623 new->current_threshold = -1;
4624 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4625 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4626 continue;
4627
2c488db2 4628 new->entries[j] = thresholds->primary->entries[i];
748dad36 4629 if (new->entries[j].threshold <= usage) {
2e72b634 4630 /*
2c488db2 4631 * new->current_threshold will not be used
2e72b634
KS
4632 * until rcu_assign_pointer(), so it's safe to increment
4633 * it here.
4634 */
2c488db2 4635 ++new->current_threshold;
2e72b634
KS
4636 }
4637 j++;
4638 }
4639
907860ed 4640swap_buffers:
2c488db2
KS
4641 /* Swap primary and spare array */
4642 thresholds->spare = thresholds->primary;
8c757763
SZ
4643 /* If all events are unregistered, free the spare array */
4644 if (!new) {
4645 kfree(thresholds->spare);
4646 thresholds->spare = NULL;
4647 }
4648
2c488db2 4649 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4650
907860ed 4651 /* To be sure that nobody uses thresholds */
2e72b634 4652 synchronize_rcu();
371528ca 4653unlock:
2e72b634 4654 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4655}
c1e862c1 4656
9490ff27
KH
4657static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4658 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4659{
4660 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4661 struct mem_cgroup_eventfd_list *event;
86ae53e1 4662 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
4663
4664 BUG_ON(type != _OOM_TYPE);
4665 event = kmalloc(sizeof(*event), GFP_KERNEL);
4666 if (!event)
4667 return -ENOMEM;
4668
1af8efe9 4669 spin_lock(&memcg_oom_lock);
9490ff27
KH
4670
4671 event->eventfd = eventfd;
4672 list_add(&event->list, &memcg->oom_notify);
4673
4674 /* already in OOM ? */
79dfdacc 4675 if (atomic_read(&memcg->under_oom))
9490ff27 4676 eventfd_signal(eventfd, 1);
1af8efe9 4677 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4678
4679 return 0;
4680}
4681
907860ed 4682static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4683 struct cftype *cft, struct eventfd_ctx *eventfd)
4684{
c0ff4b85 4685 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 4686 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 4687 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
4688
4689 BUG_ON(type != _OOM_TYPE);
4690
1af8efe9 4691 spin_lock(&memcg_oom_lock);
9490ff27 4692
c0ff4b85 4693 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4694 if (ev->eventfd == eventfd) {
4695 list_del(&ev->list);
4696 kfree(ev);
4697 }
4698 }
4699
1af8efe9 4700 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4701}
4702
3c11ecf4
KH
4703static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4704 struct cftype *cft, struct cgroup_map_cb *cb)
4705{
c0ff4b85 4706 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4707
c0ff4b85 4708 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4709
c0ff4b85 4710 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4711 cb->fill(cb, "under_oom", 1);
4712 else
4713 cb->fill(cb, "under_oom", 0);
4714 return 0;
4715}
4716
3c11ecf4
KH
4717static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4718 struct cftype *cft, u64 val)
4719{
c0ff4b85 4720 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4721 struct mem_cgroup *parent;
4722
4723 /* cannot set to root cgroup and only 0 and 1 are allowed */
4724 if (!cgrp->parent || !((val == 0) || (val == 1)))
4725 return -EINVAL;
4726
4727 parent = mem_cgroup_from_cont(cgrp->parent);
4728
4729 cgroup_lock();
4730 /* oom-kill-disable is a flag for subhierarchy. */
4731 if ((parent->use_hierarchy) ||
c0ff4b85 4732 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4733 cgroup_unlock();
4734 return -EINVAL;
4735 }
c0ff4b85 4736 memcg->oom_kill_disable = val;
4d845ebf 4737 if (!val)
c0ff4b85 4738 memcg_oom_recover(memcg);
3c11ecf4
KH
4739 cgroup_unlock();
4740 return 0;
4741}
4742
c255a458 4743#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4744static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4745{
510fc4e1 4746 memcg_propagate_kmem(memcg);
1d62e436 4747 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4748};
4749
1d62e436 4750static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4751{
1d62e436 4752 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4753}
e5671dfa 4754#else
cbe128e3 4755static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4756{
4757 return 0;
4758}
d1a4c0b3 4759
1d62e436 4760static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4761{
4762}
e5671dfa
GC
4763#endif
4764
8cdea7c0
BS
4765static struct cftype mem_cgroup_files[] = {
4766 {
0eea1030 4767 .name = "usage_in_bytes",
8c7c6e34 4768 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4769 .read = mem_cgroup_read,
9490ff27
KH
4770 .register_event = mem_cgroup_usage_register_event,
4771 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4772 },
c84872e1
PE
4773 {
4774 .name = "max_usage_in_bytes",
8c7c6e34 4775 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4776 .trigger = mem_cgroup_reset,
af36f906 4777 .read = mem_cgroup_read,
c84872e1 4778 },
8cdea7c0 4779 {
0eea1030 4780 .name = "limit_in_bytes",
8c7c6e34 4781 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4782 .write_string = mem_cgroup_write,
af36f906 4783 .read = mem_cgroup_read,
8cdea7c0 4784 },
296c81d8
BS
4785 {
4786 .name = "soft_limit_in_bytes",
4787 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4788 .write_string = mem_cgroup_write,
af36f906 4789 .read = mem_cgroup_read,
296c81d8 4790 },
8cdea7c0
BS
4791 {
4792 .name = "failcnt",
8c7c6e34 4793 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4794 .trigger = mem_cgroup_reset,
af36f906 4795 .read = mem_cgroup_read,
8cdea7c0 4796 },
d2ceb9b7
KH
4797 {
4798 .name = "stat",
ab215884 4799 .read_seq_string = memcg_stat_show,
d2ceb9b7 4800 },
c1e862c1
KH
4801 {
4802 .name = "force_empty",
4803 .trigger = mem_cgroup_force_empty_write,
4804 },
18f59ea7
BS
4805 {
4806 .name = "use_hierarchy",
4807 .write_u64 = mem_cgroup_hierarchy_write,
4808 .read_u64 = mem_cgroup_hierarchy_read,
4809 },
a7885eb8
KM
4810 {
4811 .name = "swappiness",
4812 .read_u64 = mem_cgroup_swappiness_read,
4813 .write_u64 = mem_cgroup_swappiness_write,
4814 },
7dc74be0
DN
4815 {
4816 .name = "move_charge_at_immigrate",
4817 .read_u64 = mem_cgroup_move_charge_read,
4818 .write_u64 = mem_cgroup_move_charge_write,
4819 },
9490ff27
KH
4820 {
4821 .name = "oom_control",
3c11ecf4
KH
4822 .read_map = mem_cgroup_oom_control_read,
4823 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4824 .register_event = mem_cgroup_oom_register_event,
4825 .unregister_event = mem_cgroup_oom_unregister_event,
4826 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4827 },
406eb0c9
YH
4828#ifdef CONFIG_NUMA
4829 {
4830 .name = "numa_stat",
ab215884 4831 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
4832 },
4833#endif
c255a458 4834#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4835 {
4836 .name = "memsw.usage_in_bytes",
4837 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4838 .read = mem_cgroup_read,
9490ff27
KH
4839 .register_event = mem_cgroup_usage_register_event,
4840 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4841 },
4842 {
4843 .name = "memsw.max_usage_in_bytes",
4844 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4845 .trigger = mem_cgroup_reset,
af36f906 4846 .read = mem_cgroup_read,
8c7c6e34
KH
4847 },
4848 {
4849 .name = "memsw.limit_in_bytes",
4850 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4851 .write_string = mem_cgroup_write,
af36f906 4852 .read = mem_cgroup_read,
8c7c6e34
KH
4853 },
4854 {
4855 .name = "memsw.failcnt",
4856 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4857 .trigger = mem_cgroup_reset,
af36f906 4858 .read = mem_cgroup_read,
8c7c6e34 4859 },
510fc4e1
GC
4860#endif
4861#ifdef CONFIG_MEMCG_KMEM
4862 {
4863 .name = "kmem.limit_in_bytes",
4864 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4865 .write_string = mem_cgroup_write,
4866 .read = mem_cgroup_read,
4867 },
4868 {
4869 .name = "kmem.usage_in_bytes",
4870 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4871 .read = mem_cgroup_read,
4872 },
4873 {
4874 .name = "kmem.failcnt",
4875 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4876 .trigger = mem_cgroup_reset,
4877 .read = mem_cgroup_read,
4878 },
4879 {
4880 .name = "kmem.max_usage_in_bytes",
4881 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4882 .trigger = mem_cgroup_reset,
4883 .read = mem_cgroup_read,
4884 },
8c7c6e34 4885#endif
6bc10349 4886 { }, /* terminate */
af36f906 4887};
8c7c6e34 4888
c0ff4b85 4889static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4890{
4891 struct mem_cgroup_per_node *pn;
1ecaab2b 4892 struct mem_cgroup_per_zone *mz;
41e3355d 4893 int zone, tmp = node;
1ecaab2b
KH
4894 /*
4895 * This routine is called against possible nodes.
4896 * But it's BUG to call kmalloc() against offline node.
4897 *
4898 * TODO: this routine can waste much memory for nodes which will
4899 * never be onlined. It's better to use memory hotplug callback
4900 * function.
4901 */
41e3355d
KH
4902 if (!node_state(node, N_NORMAL_MEMORY))
4903 tmp = -1;
17295c88 4904 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4905 if (!pn)
4906 return 1;
1ecaab2b 4907
1ecaab2b
KH
4908 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4909 mz = &pn->zoneinfo[zone];
bea8c150 4910 lruvec_init(&mz->lruvec);
f64c3f54 4911 mz->usage_in_excess = 0;
4e416953 4912 mz->on_tree = false;
d79154bb 4913 mz->memcg = memcg;
1ecaab2b 4914 }
0a619e58 4915 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4916 return 0;
4917}
4918
c0ff4b85 4919static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4920{
c0ff4b85 4921 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4922}
4923
33327948
KH
4924static struct mem_cgroup *mem_cgroup_alloc(void)
4925{
d79154bb 4926 struct mem_cgroup *memcg;
c62b1a3b 4927 int size = sizeof(struct mem_cgroup);
33327948 4928
c62b1a3b 4929 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4930 if (size < PAGE_SIZE)
d79154bb 4931 memcg = kzalloc(size, GFP_KERNEL);
33327948 4932 else
d79154bb 4933 memcg = vzalloc(size);
33327948 4934
d79154bb 4935 if (!memcg)
e7bbcdf3
DC
4936 return NULL;
4937
d79154bb
HD
4938 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4939 if (!memcg->stat)
d2e61b8d 4940 goto out_free;
d79154bb
HD
4941 spin_lock_init(&memcg->pcp_counter_lock);
4942 return memcg;
d2e61b8d
DC
4943
4944out_free:
4945 if (size < PAGE_SIZE)
d79154bb 4946 kfree(memcg);
d2e61b8d 4947 else
d79154bb 4948 vfree(memcg);
d2e61b8d 4949 return NULL;
33327948
KH
4950}
4951
59927fb9 4952/*
3afe36b1 4953 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4954 * but in process context. The work_freeing structure is overlaid
4955 * on the rcu_freeing structure, which itself is overlaid on memsw.
4956 */
3afe36b1 4957static void free_work(struct work_struct *work)
59927fb9
HD
4958{
4959 struct mem_cgroup *memcg;
3afe36b1 4960 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4961
4962 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4963 /*
4964 * We need to make sure that (at least for now), the jump label
4965 * destruction code runs outside of the cgroup lock. This is because
4966 * get_online_cpus(), which is called from the static_branch update,
4967 * can't be called inside the cgroup_lock. cpusets are the ones
4968 * enforcing this dependency, so if they ever change, we might as well.
4969 *
4970 * schedule_work() will guarantee this happens. Be careful if you need
4971 * to move this code around, and make sure it is outside
4972 * the cgroup_lock.
4973 */
4974 disarm_sock_keys(memcg);
3afe36b1
GC
4975 if (size < PAGE_SIZE)
4976 kfree(memcg);
4977 else
4978 vfree(memcg);
59927fb9 4979}
3afe36b1
GC
4980
4981static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4982{
4983 struct mem_cgroup *memcg;
4984
4985 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4986 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4987 schedule_work(&memcg->work_freeing);
4988}
4989
8c7c6e34
KH
4990/*
4991 * At destroying mem_cgroup, references from swap_cgroup can remain.
4992 * (scanning all at force_empty is too costly...)
4993 *
4994 * Instead of clearing all references at force_empty, we remember
4995 * the number of reference from swap_cgroup and free mem_cgroup when
4996 * it goes down to 0.
4997 *
8c7c6e34
KH
4998 * Removal of cgroup itself succeeds regardless of refs from swap.
4999 */
5000
c0ff4b85 5001static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 5002{
08e552c6
KH
5003 int node;
5004
c0ff4b85
R
5005 mem_cgroup_remove_from_trees(memcg);
5006 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 5007
3ed28fa1 5008 for_each_node(node)
c0ff4b85 5009 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 5010
c0ff4b85 5011 free_percpu(memcg->stat);
3afe36b1 5012 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
5013}
5014
c0ff4b85 5015static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 5016{
c0ff4b85 5017 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
5018}
5019
c0ff4b85 5020static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 5021{
c0ff4b85
R
5022 if (atomic_sub_and_test(count, &memcg->refcnt)) {
5023 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5024 __mem_cgroup_free(memcg);
7bcc1bb1
DN
5025 if (parent)
5026 mem_cgroup_put(parent);
5027 }
8c7c6e34
KH
5028}
5029
c0ff4b85 5030static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 5031{
c0ff4b85 5032 __mem_cgroup_put(memcg, 1);
483c30b5
DN
5033}
5034
7bcc1bb1
DN
5035/*
5036 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5037 */
e1aab161 5038struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5039{
c0ff4b85 5040 if (!memcg->res.parent)
7bcc1bb1 5041 return NULL;
c0ff4b85 5042 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 5043}
e1aab161 5044EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5045
c255a458 5046#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
5047static void __init enable_swap_cgroup(void)
5048{
f8d66542 5049 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
5050 do_swap_account = 1;
5051}
5052#else
5053static void __init enable_swap_cgroup(void)
5054{
5055}
5056#endif
5057
f64c3f54
BS
5058static int mem_cgroup_soft_limit_tree_init(void)
5059{
5060 struct mem_cgroup_tree_per_node *rtpn;
5061 struct mem_cgroup_tree_per_zone *rtpz;
5062 int tmp, node, zone;
5063
3ed28fa1 5064 for_each_node(node) {
f64c3f54
BS
5065 tmp = node;
5066 if (!node_state(node, N_NORMAL_MEMORY))
5067 tmp = -1;
5068 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5069 if (!rtpn)
c3cecc68 5070 goto err_cleanup;
f64c3f54
BS
5071
5072 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5073
5074 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5075 rtpz = &rtpn->rb_tree_per_zone[zone];
5076 rtpz->rb_root = RB_ROOT;
5077 spin_lock_init(&rtpz->lock);
5078 }
5079 }
5080 return 0;
c3cecc68
MH
5081
5082err_cleanup:
3ed28fa1 5083 for_each_node(node) {
c3cecc68
MH
5084 if (!soft_limit_tree.rb_tree_per_node[node])
5085 break;
5086 kfree(soft_limit_tree.rb_tree_per_node[node]);
5087 soft_limit_tree.rb_tree_per_node[node] = NULL;
5088 }
5089 return 1;
5090
f64c3f54
BS
5091}
5092
0eb253e2 5093static struct cgroup_subsys_state * __ref
92fb9748 5094mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 5095{
c0ff4b85 5096 struct mem_cgroup *memcg, *parent;
04046e1a 5097 long error = -ENOMEM;
6d12e2d8 5098 int node;
8cdea7c0 5099
c0ff4b85
R
5100 memcg = mem_cgroup_alloc();
5101 if (!memcg)
04046e1a 5102 return ERR_PTR(error);
78fb7466 5103
3ed28fa1 5104 for_each_node(node)
c0ff4b85 5105 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5106 goto free_out;
f64c3f54 5107
c077719b 5108 /* root ? */
28dbc4b6 5109 if (cont->parent == NULL) {
cdec2e42 5110 int cpu;
c077719b 5111 enable_swap_cgroup();
28dbc4b6 5112 parent = NULL;
f64c3f54
BS
5113 if (mem_cgroup_soft_limit_tree_init())
5114 goto free_out;
a41c58a6 5115 root_mem_cgroup = memcg;
cdec2e42
KH
5116 for_each_possible_cpu(cpu) {
5117 struct memcg_stock_pcp *stock =
5118 &per_cpu(memcg_stock, cpu);
5119 INIT_WORK(&stock->work, drain_local_stock);
5120 }
711d3d2c 5121 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5122 } else {
28dbc4b6 5123 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
5124 memcg->use_hierarchy = parent->use_hierarchy;
5125 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5126 }
28dbc4b6 5127
18f59ea7 5128 if (parent && parent->use_hierarchy) {
c0ff4b85
R
5129 res_counter_init(&memcg->res, &parent->res);
5130 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 5131 res_counter_init(&memcg->kmem, &parent->kmem);
7bcc1bb1
DN
5132 /*
5133 * We increment refcnt of the parent to ensure that we can
5134 * safely access it on res_counter_charge/uncharge.
5135 * This refcnt will be decremented when freeing this
5136 * mem_cgroup(see mem_cgroup_put).
5137 */
5138 mem_cgroup_get(parent);
18f59ea7 5139 } else {
c0ff4b85
R
5140 res_counter_init(&memcg->res, NULL);
5141 res_counter_init(&memcg->memsw, NULL);
510fc4e1 5142 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5143 /*
5144 * Deeper hierachy with use_hierarchy == false doesn't make
5145 * much sense so let cgroup subsystem know about this
5146 * unfortunate state in our controller.
5147 */
5148 if (parent && parent != root_mem_cgroup)
5149 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 5150 }
c0ff4b85
R
5151 memcg->last_scanned_node = MAX_NUMNODES;
5152 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5153
a7885eb8 5154 if (parent)
c0ff4b85
R
5155 memcg->swappiness = mem_cgroup_swappiness(parent);
5156 atomic_set(&memcg->refcnt, 1);
5157 memcg->move_charge_at_immigrate = 0;
5158 mutex_init(&memcg->thresholds_lock);
312734c0 5159 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
5160
5161 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5162 if (error) {
5163 /*
5164 * We call put now because our (and parent's) refcnts
5165 * are already in place. mem_cgroup_put() will internally
5166 * call __mem_cgroup_free, so return directly
5167 */
5168 mem_cgroup_put(memcg);
5169 return ERR_PTR(error);
5170 }
c0ff4b85 5171 return &memcg->css;
6d12e2d8 5172free_out:
c0ff4b85 5173 __mem_cgroup_free(memcg);
04046e1a 5174 return ERR_PTR(error);
8cdea7c0
BS
5175}
5176
92fb9748 5177static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 5178{
c0ff4b85 5179 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5180
ab5196c2 5181 mem_cgroup_reparent_charges(memcg);
df878fb0
KH
5182}
5183
92fb9748 5184static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 5185{
c0ff4b85 5186 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5187
1d62e436 5188 kmem_cgroup_destroy(memcg);
d1a4c0b3 5189
c0ff4b85 5190 mem_cgroup_put(memcg);
8cdea7c0
BS
5191}
5192
02491447 5193#ifdef CONFIG_MMU
7dc74be0 5194/* Handlers for move charge at task migration. */
854ffa8d
DN
5195#define PRECHARGE_COUNT_AT_ONCE 256
5196static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5197{
854ffa8d
DN
5198 int ret = 0;
5199 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5200 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5201
c0ff4b85 5202 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5203 mc.precharge += count;
5204 /* we don't need css_get for root */
5205 return ret;
5206 }
5207 /* try to charge at once */
5208 if (count > 1) {
5209 struct res_counter *dummy;
5210 /*
c0ff4b85 5211 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5212 * by cgroup_lock_live_cgroup() that it is not removed and we
5213 * are still under the same cgroup_mutex. So we can postpone
5214 * css_get().
5215 */
c0ff4b85 5216 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5217 goto one_by_one;
c0ff4b85 5218 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5219 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5220 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5221 goto one_by_one;
5222 }
5223 mc.precharge += count;
854ffa8d
DN
5224 return ret;
5225 }
5226one_by_one:
5227 /* fall back to one by one charge */
5228 while (count--) {
5229 if (signal_pending(current)) {
5230 ret = -EINTR;
5231 break;
5232 }
5233 if (!batch_count--) {
5234 batch_count = PRECHARGE_COUNT_AT_ONCE;
5235 cond_resched();
5236 }
c0ff4b85
R
5237 ret = __mem_cgroup_try_charge(NULL,
5238 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5239 if (ret)
854ffa8d 5240 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5241 return ret;
854ffa8d
DN
5242 mc.precharge++;
5243 }
4ffef5fe
DN
5244 return ret;
5245}
5246
5247/**
8d32ff84 5248 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5249 * @vma: the vma the pte to be checked belongs
5250 * @addr: the address corresponding to the pte to be checked
5251 * @ptent: the pte to be checked
02491447 5252 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5253 *
5254 * Returns
5255 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5256 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5257 * move charge. if @target is not NULL, the page is stored in target->page
5258 * with extra refcnt got(Callers should handle it).
02491447
DN
5259 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5260 * target for charge migration. if @target is not NULL, the entry is stored
5261 * in target->ent.
4ffef5fe
DN
5262 *
5263 * Called with pte lock held.
5264 */
4ffef5fe
DN
5265union mc_target {
5266 struct page *page;
02491447 5267 swp_entry_t ent;
4ffef5fe
DN
5268};
5269
4ffef5fe 5270enum mc_target_type {
8d32ff84 5271 MC_TARGET_NONE = 0,
4ffef5fe 5272 MC_TARGET_PAGE,
02491447 5273 MC_TARGET_SWAP,
4ffef5fe
DN
5274};
5275
90254a65
DN
5276static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5277 unsigned long addr, pte_t ptent)
4ffef5fe 5278{
90254a65 5279 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5280
90254a65
DN
5281 if (!page || !page_mapped(page))
5282 return NULL;
5283 if (PageAnon(page)) {
5284 /* we don't move shared anon */
4b91355e 5285 if (!move_anon())
90254a65 5286 return NULL;
87946a72
DN
5287 } else if (!move_file())
5288 /* we ignore mapcount for file pages */
90254a65
DN
5289 return NULL;
5290 if (!get_page_unless_zero(page))
5291 return NULL;
5292
5293 return page;
5294}
5295
4b91355e 5296#ifdef CONFIG_SWAP
90254a65
DN
5297static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5298 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5299{
90254a65
DN
5300 struct page *page = NULL;
5301 swp_entry_t ent = pte_to_swp_entry(ptent);
5302
5303 if (!move_anon() || non_swap_entry(ent))
5304 return NULL;
4b91355e
KH
5305 /*
5306 * Because lookup_swap_cache() updates some statistics counter,
5307 * we call find_get_page() with swapper_space directly.
5308 */
5309 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5310 if (do_swap_account)
5311 entry->val = ent.val;
5312
5313 return page;
5314}
4b91355e
KH
5315#else
5316static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5317 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5318{
5319 return NULL;
5320}
5321#endif
90254a65 5322
87946a72
DN
5323static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5324 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5325{
5326 struct page *page = NULL;
87946a72
DN
5327 struct address_space *mapping;
5328 pgoff_t pgoff;
5329
5330 if (!vma->vm_file) /* anonymous vma */
5331 return NULL;
5332 if (!move_file())
5333 return NULL;
5334
87946a72
DN
5335 mapping = vma->vm_file->f_mapping;
5336 if (pte_none(ptent))
5337 pgoff = linear_page_index(vma, addr);
5338 else /* pte_file(ptent) is true */
5339 pgoff = pte_to_pgoff(ptent);
5340
5341 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5342 page = find_get_page(mapping, pgoff);
5343
5344#ifdef CONFIG_SWAP
5345 /* shmem/tmpfs may report page out on swap: account for that too. */
5346 if (radix_tree_exceptional_entry(page)) {
5347 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5348 if (do_swap_account)
aa3b1895
HD
5349 *entry = swap;
5350 page = find_get_page(&swapper_space, swap.val);
87946a72 5351 }
aa3b1895 5352#endif
87946a72
DN
5353 return page;
5354}
5355
8d32ff84 5356static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5357 unsigned long addr, pte_t ptent, union mc_target *target)
5358{
5359 struct page *page = NULL;
5360 struct page_cgroup *pc;
8d32ff84 5361 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5362 swp_entry_t ent = { .val = 0 };
5363
5364 if (pte_present(ptent))
5365 page = mc_handle_present_pte(vma, addr, ptent);
5366 else if (is_swap_pte(ptent))
5367 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5368 else if (pte_none(ptent) || pte_file(ptent))
5369 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5370
5371 if (!page && !ent.val)
8d32ff84 5372 return ret;
02491447
DN
5373 if (page) {
5374 pc = lookup_page_cgroup(page);
5375 /*
5376 * Do only loose check w/o page_cgroup lock.
5377 * mem_cgroup_move_account() checks the pc is valid or not under
5378 * the lock.
5379 */
5380 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5381 ret = MC_TARGET_PAGE;
5382 if (target)
5383 target->page = page;
5384 }
5385 if (!ret || !target)
5386 put_page(page);
5387 }
90254a65
DN
5388 /* There is a swap entry and a page doesn't exist or isn't charged */
5389 if (ent.val && !ret &&
9fb4b7cc 5390 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5391 ret = MC_TARGET_SWAP;
5392 if (target)
5393 target->ent = ent;
4ffef5fe 5394 }
4ffef5fe
DN
5395 return ret;
5396}
5397
12724850
NH
5398#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5399/*
5400 * We don't consider swapping or file mapped pages because THP does not
5401 * support them for now.
5402 * Caller should make sure that pmd_trans_huge(pmd) is true.
5403 */
5404static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5405 unsigned long addr, pmd_t pmd, union mc_target *target)
5406{
5407 struct page *page = NULL;
5408 struct page_cgroup *pc;
5409 enum mc_target_type ret = MC_TARGET_NONE;
5410
5411 page = pmd_page(pmd);
5412 VM_BUG_ON(!page || !PageHead(page));
5413 if (!move_anon())
5414 return ret;
5415 pc = lookup_page_cgroup(page);
5416 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5417 ret = MC_TARGET_PAGE;
5418 if (target) {
5419 get_page(page);
5420 target->page = page;
5421 }
5422 }
5423 return ret;
5424}
5425#else
5426static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5427 unsigned long addr, pmd_t pmd, union mc_target *target)
5428{
5429 return MC_TARGET_NONE;
5430}
5431#endif
5432
4ffef5fe
DN
5433static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5434 unsigned long addr, unsigned long end,
5435 struct mm_walk *walk)
5436{
5437 struct vm_area_struct *vma = walk->private;
5438 pte_t *pte;
5439 spinlock_t *ptl;
5440
12724850
NH
5441 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5442 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5443 mc.precharge += HPAGE_PMD_NR;
5444 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5445 return 0;
12724850 5446 }
03319327 5447
45f83cef
AA
5448 if (pmd_trans_unstable(pmd))
5449 return 0;
4ffef5fe
DN
5450 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5451 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5452 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5453 mc.precharge++; /* increment precharge temporarily */
5454 pte_unmap_unlock(pte - 1, ptl);
5455 cond_resched();
5456
7dc74be0
DN
5457 return 0;
5458}
5459
4ffef5fe
DN
5460static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5461{
5462 unsigned long precharge;
5463 struct vm_area_struct *vma;
5464
dfe076b0 5465 down_read(&mm->mmap_sem);
4ffef5fe
DN
5466 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5467 struct mm_walk mem_cgroup_count_precharge_walk = {
5468 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5469 .mm = mm,
5470 .private = vma,
5471 };
5472 if (is_vm_hugetlb_page(vma))
5473 continue;
4ffef5fe
DN
5474 walk_page_range(vma->vm_start, vma->vm_end,
5475 &mem_cgroup_count_precharge_walk);
5476 }
dfe076b0 5477 up_read(&mm->mmap_sem);
4ffef5fe
DN
5478
5479 precharge = mc.precharge;
5480 mc.precharge = 0;
5481
5482 return precharge;
5483}
5484
4ffef5fe
DN
5485static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5486{
dfe076b0
DN
5487 unsigned long precharge = mem_cgroup_count_precharge(mm);
5488
5489 VM_BUG_ON(mc.moving_task);
5490 mc.moving_task = current;
5491 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5492}
5493
dfe076b0
DN
5494/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5495static void __mem_cgroup_clear_mc(void)
4ffef5fe 5496{
2bd9bb20
KH
5497 struct mem_cgroup *from = mc.from;
5498 struct mem_cgroup *to = mc.to;
5499
4ffef5fe 5500 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5501 if (mc.precharge) {
5502 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5503 mc.precharge = 0;
5504 }
5505 /*
5506 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5507 * we must uncharge here.
5508 */
5509 if (mc.moved_charge) {
5510 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5511 mc.moved_charge = 0;
4ffef5fe 5512 }
483c30b5
DN
5513 /* we must fixup refcnts and charges */
5514 if (mc.moved_swap) {
483c30b5
DN
5515 /* uncharge swap account from the old cgroup */
5516 if (!mem_cgroup_is_root(mc.from))
5517 res_counter_uncharge(&mc.from->memsw,
5518 PAGE_SIZE * mc.moved_swap);
5519 __mem_cgroup_put(mc.from, mc.moved_swap);
5520
5521 if (!mem_cgroup_is_root(mc.to)) {
5522 /*
5523 * we charged both to->res and to->memsw, so we should
5524 * uncharge to->res.
5525 */
5526 res_counter_uncharge(&mc.to->res,
5527 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5528 }
5529 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5530 mc.moved_swap = 0;
5531 }
dfe076b0
DN
5532 memcg_oom_recover(from);
5533 memcg_oom_recover(to);
5534 wake_up_all(&mc.waitq);
5535}
5536
5537static void mem_cgroup_clear_mc(void)
5538{
5539 struct mem_cgroup *from = mc.from;
5540
5541 /*
5542 * we must clear moving_task before waking up waiters at the end of
5543 * task migration.
5544 */
5545 mc.moving_task = NULL;
5546 __mem_cgroup_clear_mc();
2bd9bb20 5547 spin_lock(&mc.lock);
4ffef5fe
DN
5548 mc.from = NULL;
5549 mc.to = NULL;
2bd9bb20 5550 spin_unlock(&mc.lock);
32047e2a 5551 mem_cgroup_end_move(from);
4ffef5fe
DN
5552}
5553
761b3ef5
LZ
5554static int mem_cgroup_can_attach(struct cgroup *cgroup,
5555 struct cgroup_taskset *tset)
7dc74be0 5556{
2f7ee569 5557 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5558 int ret = 0;
c0ff4b85 5559 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5560
c0ff4b85 5561 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5562 struct mm_struct *mm;
5563 struct mem_cgroup *from = mem_cgroup_from_task(p);
5564
c0ff4b85 5565 VM_BUG_ON(from == memcg);
7dc74be0
DN
5566
5567 mm = get_task_mm(p);
5568 if (!mm)
5569 return 0;
7dc74be0 5570 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5571 if (mm->owner == p) {
5572 VM_BUG_ON(mc.from);
5573 VM_BUG_ON(mc.to);
5574 VM_BUG_ON(mc.precharge);
854ffa8d 5575 VM_BUG_ON(mc.moved_charge);
483c30b5 5576 VM_BUG_ON(mc.moved_swap);
32047e2a 5577 mem_cgroup_start_move(from);
2bd9bb20 5578 spin_lock(&mc.lock);
4ffef5fe 5579 mc.from = from;
c0ff4b85 5580 mc.to = memcg;
2bd9bb20 5581 spin_unlock(&mc.lock);
dfe076b0 5582 /* We set mc.moving_task later */
4ffef5fe
DN
5583
5584 ret = mem_cgroup_precharge_mc(mm);
5585 if (ret)
5586 mem_cgroup_clear_mc();
dfe076b0
DN
5587 }
5588 mmput(mm);
7dc74be0
DN
5589 }
5590 return ret;
5591}
5592
761b3ef5
LZ
5593static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5594 struct cgroup_taskset *tset)
7dc74be0 5595{
4ffef5fe 5596 mem_cgroup_clear_mc();
7dc74be0
DN
5597}
5598
4ffef5fe
DN
5599static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5600 unsigned long addr, unsigned long end,
5601 struct mm_walk *walk)
7dc74be0 5602{
4ffef5fe
DN
5603 int ret = 0;
5604 struct vm_area_struct *vma = walk->private;
5605 pte_t *pte;
5606 spinlock_t *ptl;
12724850
NH
5607 enum mc_target_type target_type;
5608 union mc_target target;
5609 struct page *page;
5610 struct page_cgroup *pc;
4ffef5fe 5611
12724850
NH
5612 /*
5613 * We don't take compound_lock() here but no race with splitting thp
5614 * happens because:
5615 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5616 * under splitting, which means there's no concurrent thp split,
5617 * - if another thread runs into split_huge_page() just after we
5618 * entered this if-block, the thread must wait for page table lock
5619 * to be unlocked in __split_huge_page_splitting(), where the main
5620 * part of thp split is not executed yet.
5621 */
5622 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5623 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5624 spin_unlock(&vma->vm_mm->page_table_lock);
5625 return 0;
5626 }
5627 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5628 if (target_type == MC_TARGET_PAGE) {
5629 page = target.page;
5630 if (!isolate_lru_page(page)) {
5631 pc = lookup_page_cgroup(page);
5632 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5633 pc, mc.from, mc.to)) {
12724850
NH
5634 mc.precharge -= HPAGE_PMD_NR;
5635 mc.moved_charge += HPAGE_PMD_NR;
5636 }
5637 putback_lru_page(page);
5638 }
5639 put_page(page);
5640 }
5641 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5642 return 0;
12724850
NH
5643 }
5644
45f83cef
AA
5645 if (pmd_trans_unstable(pmd))
5646 return 0;
4ffef5fe
DN
5647retry:
5648 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5649 for (; addr != end; addr += PAGE_SIZE) {
5650 pte_t ptent = *(pte++);
02491447 5651 swp_entry_t ent;
4ffef5fe
DN
5652
5653 if (!mc.precharge)
5654 break;
5655
8d32ff84 5656 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5657 case MC_TARGET_PAGE:
5658 page = target.page;
5659 if (isolate_lru_page(page))
5660 goto put;
5661 pc = lookup_page_cgroup(page);
7ec99d62 5662 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5663 mc.from, mc.to)) {
4ffef5fe 5664 mc.precharge--;
854ffa8d
DN
5665 /* we uncharge from mc.from later. */
5666 mc.moved_charge++;
4ffef5fe
DN
5667 }
5668 putback_lru_page(page);
8d32ff84 5669put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5670 put_page(page);
5671 break;
02491447
DN
5672 case MC_TARGET_SWAP:
5673 ent = target.ent;
e91cbb42 5674 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5675 mc.precharge--;
483c30b5
DN
5676 /* we fixup refcnts and charges later. */
5677 mc.moved_swap++;
5678 }
02491447 5679 break;
4ffef5fe
DN
5680 default:
5681 break;
5682 }
5683 }
5684 pte_unmap_unlock(pte - 1, ptl);
5685 cond_resched();
5686
5687 if (addr != end) {
5688 /*
5689 * We have consumed all precharges we got in can_attach().
5690 * We try charge one by one, but don't do any additional
5691 * charges to mc.to if we have failed in charge once in attach()
5692 * phase.
5693 */
854ffa8d 5694 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5695 if (!ret)
5696 goto retry;
5697 }
5698
5699 return ret;
5700}
5701
5702static void mem_cgroup_move_charge(struct mm_struct *mm)
5703{
5704 struct vm_area_struct *vma;
5705
5706 lru_add_drain_all();
dfe076b0
DN
5707retry:
5708 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5709 /*
5710 * Someone who are holding the mmap_sem might be waiting in
5711 * waitq. So we cancel all extra charges, wake up all waiters,
5712 * and retry. Because we cancel precharges, we might not be able
5713 * to move enough charges, but moving charge is a best-effort
5714 * feature anyway, so it wouldn't be a big problem.
5715 */
5716 __mem_cgroup_clear_mc();
5717 cond_resched();
5718 goto retry;
5719 }
4ffef5fe
DN
5720 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5721 int ret;
5722 struct mm_walk mem_cgroup_move_charge_walk = {
5723 .pmd_entry = mem_cgroup_move_charge_pte_range,
5724 .mm = mm,
5725 .private = vma,
5726 };
5727 if (is_vm_hugetlb_page(vma))
5728 continue;
4ffef5fe
DN
5729 ret = walk_page_range(vma->vm_start, vma->vm_end,
5730 &mem_cgroup_move_charge_walk);
5731 if (ret)
5732 /*
5733 * means we have consumed all precharges and failed in
5734 * doing additional charge. Just abandon here.
5735 */
5736 break;
5737 }
dfe076b0 5738 up_read(&mm->mmap_sem);
7dc74be0
DN
5739}
5740
761b3ef5
LZ
5741static void mem_cgroup_move_task(struct cgroup *cont,
5742 struct cgroup_taskset *tset)
67e465a7 5743{
2f7ee569 5744 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5745 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5746
dfe076b0 5747 if (mm) {
a433658c
KM
5748 if (mc.to)
5749 mem_cgroup_move_charge(mm);
dfe076b0
DN
5750 mmput(mm);
5751 }
a433658c
KM
5752 if (mc.to)
5753 mem_cgroup_clear_mc();
67e465a7 5754}
5cfb80a7 5755#else /* !CONFIG_MMU */
761b3ef5
LZ
5756static int mem_cgroup_can_attach(struct cgroup *cgroup,
5757 struct cgroup_taskset *tset)
5cfb80a7
DN
5758{
5759 return 0;
5760}
761b3ef5
LZ
5761static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5762 struct cgroup_taskset *tset)
5cfb80a7
DN
5763{
5764}
761b3ef5
LZ
5765static void mem_cgroup_move_task(struct cgroup *cont,
5766 struct cgroup_taskset *tset)
5cfb80a7
DN
5767{
5768}
5769#endif
67e465a7 5770
8cdea7c0
BS
5771struct cgroup_subsys mem_cgroup_subsys = {
5772 .name = "memory",
5773 .subsys_id = mem_cgroup_subsys_id,
92fb9748
TH
5774 .css_alloc = mem_cgroup_css_alloc,
5775 .css_offline = mem_cgroup_css_offline,
5776 .css_free = mem_cgroup_css_free,
7dc74be0
DN
5777 .can_attach = mem_cgroup_can_attach,
5778 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5779 .attach = mem_cgroup_move_task,
6bc10349 5780 .base_cftypes = mem_cgroup_files,
6d12e2d8 5781 .early_init = 0,
04046e1a 5782 .use_id = 1,
8cdea7c0 5783};
c077719b 5784
c255a458 5785#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5786static int __init enable_swap_account(char *s)
5787{
5788 /* consider enabled if no parameter or 1 is given */
a2c8990a 5789 if (!strcmp(s, "1"))
a42c390c 5790 really_do_swap_account = 1;
a2c8990a 5791 else if (!strcmp(s, "0"))
a42c390c
MH
5792 really_do_swap_account = 0;
5793 return 1;
5794}
a2c8990a 5795__setup("swapaccount=", enable_swap_account);
c077719b 5796
c077719b 5797#endif