mm, oom: organize oom context into struct
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 80struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
c077719b 84int do_swap_account __read_mostly;
c077719b 85#else
a0db00fc 86#define do_swap_account 0
c077719b
KH
87#endif
88
af7c4b0e
JW
89static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
b070e65c 92 "rss_huge",
af7c4b0e 93 "mapped_file",
c4843a75 94 "dirty",
3ea67d06 95 "writeback",
af7c4b0e
JW
96 "swap",
97};
98
af7c4b0e
JW
99static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104};
105
58cf188e
SZ
106static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112};
113
7a159cc9
JW
114/*
115 * Per memcg event counter is incremented at every pagein/pageout. With THP,
116 * it will be incremated by the number of pages. This counter is used for
117 * for trigger some periodic events. This is straightforward and better
118 * than using jiffies etc. to handle periodic memcg event.
119 */
120enum mem_cgroup_events_target {
121 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 122 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 123 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
124 MEM_CGROUP_NTARGETS,
125};
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
d52aa412 130struct mem_cgroup_stat_cpu {
7a159cc9 131 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 132 unsigned long events[MEMCG_NR_EVENTS];
13114716 133 unsigned long nr_page_events;
7a159cc9 134 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
135};
136
5ac8fb31
JW
137struct reclaim_iter {
138 struct mem_cgroup *position;
527a5ec9
JW
139 /* scan generation, increased every round-trip */
140 unsigned int generation;
141};
142
6d12e2d8
KH
143/*
144 * per-zone information in memory controller.
145 */
6d12e2d8 146struct mem_cgroup_per_zone {
6290df54 147 struct lruvec lruvec;
1eb49272 148 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 149
5ac8fb31 150 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 151
bb4cc1a8 152 struct rb_node tree_node; /* RB tree node */
3e32cb2e 153 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
154 /* the soft limit is exceeded*/
155 bool on_tree;
d79154bb 156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 157 /* use container_of */
6d12e2d8 158};
6d12e2d8
KH
159
160struct mem_cgroup_per_node {
161 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
162};
163
bb4cc1a8
AM
164/*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172};
173
174struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176};
177
178struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180};
181
182static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
2e72b634
KS
184struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
3e32cb2e 186 unsigned long threshold;
2e72b634
KS
187};
188
9490ff27 189/* For threshold */
2e72b634 190struct mem_cgroup_threshold_ary {
748dad36 191 /* An array index points to threshold just below or equal to usage. */
5407a562 192 int current_threshold;
2e72b634
KS
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197};
2c488db2
KS
198
199struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208};
209
9490ff27
KH
210/* for OOM */
211struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214};
2e72b634 215
79bd9814
TH
216/*
217 * cgroup_event represents events which userspace want to receive.
218 */
3bc942f3 219struct mem_cgroup_event {
79bd9814 220 /*
59b6f873 221 * memcg which the event belongs to.
79bd9814 222 */
59b6f873 223 struct mem_cgroup *memcg;
79bd9814
TH
224 /*
225 * eventfd to signal userspace about the event.
226 */
227 struct eventfd_ctx *eventfd;
228 /*
229 * Each of these stored in a list by the cgroup.
230 */
231 struct list_head list;
fba94807
TH
232 /*
233 * register_event() callback will be used to add new userspace
234 * waiter for changes related to this event. Use eventfd_signal()
235 * on eventfd to send notification to userspace.
236 */
59b6f873 237 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 238 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
239 /*
240 * unregister_event() callback will be called when userspace closes
241 * the eventfd or on cgroup removing. This callback must be set,
242 * if you want provide notification functionality.
243 */
59b6f873 244 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 245 struct eventfd_ctx *eventfd);
79bd9814
TH
246 /*
247 * All fields below needed to unregister event when
248 * userspace closes eventfd.
249 */
250 poll_table pt;
251 wait_queue_head_t *wqh;
252 wait_queue_t wait;
253 struct work_struct remove;
254};
255
c0ff4b85
R
256static void mem_cgroup_threshold(struct mem_cgroup *memcg);
257static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 258
8cdea7c0
BS
259/*
260 * The memory controller data structure. The memory controller controls both
261 * page cache and RSS per cgroup. We would eventually like to provide
262 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263 * to help the administrator determine what knobs to tune.
8cdea7c0
BS
264 */
265struct mem_cgroup {
266 struct cgroup_subsys_state css;
3e32cb2e
JW
267
268 /* Accounted resources */
269 struct page_counter memory;
270 struct page_counter memsw;
271 struct page_counter kmem;
272
241994ed
JW
273 /* Normal memory consumption range */
274 unsigned long low;
275 unsigned long high;
276
3e32cb2e 277 unsigned long soft_limit;
59927fb9 278
70ddf637
AV
279 /* vmpressure notifications */
280 struct vmpressure vmpressure;
281
2f7dd7a4
JW
282 /* css_online() has been completed */
283 int initialized;
284
18f59ea7
BS
285 /*
286 * Should the accounting and control be hierarchical, per subtree?
287 */
288 bool use_hierarchy;
79dfdacc 289
c2b42d3c 290 /* protected by memcg_oom_lock */
79dfdacc 291 bool oom_lock;
c2b42d3c 292 int under_oom;
79dfdacc 293
1f4c025b 294 int swappiness;
3c11ecf4
KH
295 /* OOM-Killer disable */
296 int oom_kill_disable;
a7885eb8 297
2e72b634
KS
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds thresholds;
907860ed 303
2e72b634 304 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 305 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 306
9490ff27
KH
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
185efc0f 309
7dc74be0
DN
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
f894ffa8 314 unsigned long move_charge_at_immigrate;
619d094b
KH
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
6de22619 318 atomic_t moving_account;
312734c0 319 /* taken only while moving_account > 0 */
6de22619
JW
320 spinlock_t move_lock;
321 struct task_struct *move_lock_task;
322 unsigned long move_lock_flags;
d52aa412 323 /*
c62b1a3b 324 * percpu counter.
d52aa412 325 */
3a7951b4 326 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c 327 spinlock_t pcp_counter_lock;
d1a4c0b3 328
4bd2c1ee 329#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 330 struct cg_proto tcp_mem;
d1a4c0b3 331#endif
2633d7a0 332#if defined(CONFIG_MEMCG_KMEM)
f7ce3190 333 /* Index in the kmem_cache->memcg_params.memcg_caches array */
2633d7a0 334 int kmemcg_id;
2788cf0c 335 bool kmem_acct_activated;
2a4db7eb 336 bool kmem_acct_active;
2633d7a0 337#endif
45cf7ebd
GC
338
339 int last_scanned_node;
340#if MAX_NUMNODES > 1
341 nodemask_t scan_nodes;
342 atomic_t numainfo_events;
343 atomic_t numainfo_updating;
344#endif
70ddf637 345
52ebea74
TH
346#ifdef CONFIG_CGROUP_WRITEBACK
347 struct list_head cgwb_list;
841710aa 348 struct wb_domain cgwb_domain;
52ebea74
TH
349#endif
350
fba94807
TH
351 /* List of events which userspace want to receive */
352 struct list_head event_list;
353 spinlock_t event_list_lock;
354
54f72fe0
JW
355 struct mem_cgroup_per_node *nodeinfo[0];
356 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
357};
358
510fc4e1 359#ifdef CONFIG_MEMCG_KMEM
cb731d6c 360bool memcg_kmem_is_active(struct mem_cgroup *memcg)
7de37682 361{
2a4db7eb 362 return memcg->kmem_acct_active;
7de37682 363}
510fc4e1
GC
364#endif
365
7dc74be0
DN
366/* Stuffs for move charges at task migration. */
367/*
1dfab5ab 368 * Types of charges to be moved.
7dc74be0 369 */
1dfab5ab
JW
370#define MOVE_ANON 0x1U
371#define MOVE_FILE 0x2U
372#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 373
4ffef5fe
DN
374/* "mc" and its members are protected by cgroup_mutex */
375static struct move_charge_struct {
b1dd693e 376 spinlock_t lock; /* for from, to */
4ffef5fe
DN
377 struct mem_cgroup *from;
378 struct mem_cgroup *to;
1dfab5ab 379 unsigned long flags;
4ffef5fe 380 unsigned long precharge;
854ffa8d 381 unsigned long moved_charge;
483c30b5 382 unsigned long moved_swap;
8033b97c
DN
383 struct task_struct *moving_task; /* a task moving charges */
384 wait_queue_head_t waitq; /* a waitq for other context */
385} mc = {
2bd9bb20 386 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
387 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
388};
4ffef5fe 389
4e416953
BS
390/*
391 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
392 * limit reclaim to prevent infinite loops, if they ever occur.
393 */
a0db00fc 394#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 395#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 396
217bc319
KH
397enum charge_type {
398 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 399 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 400 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 401 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
402 NR_CHARGE_TYPE,
403};
404
8c7c6e34 405/* for encoding cft->private value on file */
86ae53e1
GC
406enum res_type {
407 _MEM,
408 _MEMSWAP,
409 _OOM_TYPE,
510fc4e1 410 _KMEM,
86ae53e1
GC
411};
412
a0db00fc
KS
413#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
414#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 415#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
416/* Used for OOM nofiier */
417#define OOM_CONTROL (0)
8c7c6e34 418
0999821b
GC
419/*
420 * The memcg_create_mutex will be held whenever a new cgroup is created.
421 * As a consequence, any change that needs to protect against new child cgroups
422 * appearing has to hold it as well.
423 */
424static DEFINE_MUTEX(memcg_create_mutex);
425
b2145145
WL
426struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
427{
a7c6d554 428 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
429}
430
70ddf637
AV
431/* Some nice accessors for the vmpressure. */
432struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
433{
434 if (!memcg)
435 memcg = root_mem_cgroup;
436 return &memcg->vmpressure;
437}
438
439struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
440{
441 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
442}
443
7ffc0edc
MH
444static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
445{
446 return (memcg == root_mem_cgroup);
447}
448
4219b2da
LZ
449/*
450 * We restrict the id in the range of [1, 65535], so it can fit into
451 * an unsigned short.
452 */
453#define MEM_CGROUP_ID_MAX USHRT_MAX
454
34c00c31
LZ
455static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
456{
15a4c835 457 return memcg->css.id;
34c00c31
LZ
458}
459
adbe427b
VD
460/*
461 * A helper function to get mem_cgroup from ID. must be called under
462 * rcu_read_lock(). The caller is responsible for calling
463 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
464 * refcnt from swap can be called against removed memcg.)
465 */
34c00c31
LZ
466static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
467{
468 struct cgroup_subsys_state *css;
469
7d699ddb 470 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
471 return mem_cgroup_from_css(css);
472}
473
e1aab161 474/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 475#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 476
e1aab161
GC
477void sock_update_memcg(struct sock *sk)
478{
376be5ff 479 if (mem_cgroup_sockets_enabled) {
e1aab161 480 struct mem_cgroup *memcg;
3f134619 481 struct cg_proto *cg_proto;
e1aab161
GC
482
483 BUG_ON(!sk->sk_prot->proto_cgroup);
484
f3f511e1
GC
485 /* Socket cloning can throw us here with sk_cgrp already
486 * filled. It won't however, necessarily happen from
487 * process context. So the test for root memcg given
488 * the current task's memcg won't help us in this case.
489 *
490 * Respecting the original socket's memcg is a better
491 * decision in this case.
492 */
493 if (sk->sk_cgrp) {
494 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 495 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
496 return;
497 }
498
e1aab161
GC
499 rcu_read_lock();
500 memcg = mem_cgroup_from_task(current);
3f134619 501 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 502 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
503 memcg_proto_active(cg_proto) &&
504 css_tryget_online(&memcg->css)) {
3f134619 505 sk->sk_cgrp = cg_proto;
e1aab161
GC
506 }
507 rcu_read_unlock();
508 }
509}
510EXPORT_SYMBOL(sock_update_memcg);
511
512void sock_release_memcg(struct sock *sk)
513{
376be5ff 514 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
515 struct mem_cgroup *memcg;
516 WARN_ON(!sk->sk_cgrp->memcg);
517 memcg = sk->sk_cgrp->memcg;
5347e5ae 518 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
519 }
520}
d1a4c0b3
GC
521
522struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
523{
524 if (!memcg || mem_cgroup_is_root(memcg))
525 return NULL;
526
2e685cad 527 return &memcg->tcp_mem;
d1a4c0b3
GC
528}
529EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 530
3f134619
GC
531#endif
532
a8964b9b 533#ifdef CONFIG_MEMCG_KMEM
55007d84 534/*
f7ce3190 535 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
536 * The main reason for not using cgroup id for this:
537 * this works better in sparse environments, where we have a lot of memcgs,
538 * but only a few kmem-limited. Or also, if we have, for instance, 200
539 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
540 * 200 entry array for that.
55007d84 541 *
dbcf73e2
VD
542 * The current size of the caches array is stored in memcg_nr_cache_ids. It
543 * will double each time we have to increase it.
55007d84 544 */
dbcf73e2
VD
545static DEFINE_IDA(memcg_cache_ida);
546int memcg_nr_cache_ids;
749c5415 547
05257a1a
VD
548/* Protects memcg_nr_cache_ids */
549static DECLARE_RWSEM(memcg_cache_ids_sem);
550
551void memcg_get_cache_ids(void)
552{
553 down_read(&memcg_cache_ids_sem);
554}
555
556void memcg_put_cache_ids(void)
557{
558 up_read(&memcg_cache_ids_sem);
559}
560
55007d84
GC
561/*
562 * MIN_SIZE is different than 1, because we would like to avoid going through
563 * the alloc/free process all the time. In a small machine, 4 kmem-limited
564 * cgroups is a reasonable guess. In the future, it could be a parameter or
565 * tunable, but that is strictly not necessary.
566 *
b8627835 567 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
568 * this constant directly from cgroup, but it is understandable that this is
569 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 570 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
571 * increase ours as well if it increases.
572 */
573#define MEMCG_CACHES_MIN_SIZE 4
b8627835 574#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 575
d7f25f8a
GC
576/*
577 * A lot of the calls to the cache allocation functions are expected to be
578 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
579 * conditional to this static branch, we'll have to allow modules that does
580 * kmem_cache_alloc and the such to see this symbol as well
581 */
a8964b9b 582struct static_key memcg_kmem_enabled_key;
d7f25f8a 583EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 584
a8964b9b
GC
585#endif /* CONFIG_MEMCG_KMEM */
586
f64c3f54 587static struct mem_cgroup_per_zone *
e231875b 588mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 589{
e231875b
JZ
590 int nid = zone_to_nid(zone);
591 int zid = zone_idx(zone);
592
54f72fe0 593 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
594}
595
c0ff4b85 596struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 597{
c0ff4b85 598 return &memcg->css;
d324236b
WF
599}
600
ad7fa852
TH
601/**
602 * mem_cgroup_css_from_page - css of the memcg associated with a page
603 * @page: page of interest
604 *
605 * If memcg is bound to the default hierarchy, css of the memcg associated
606 * with @page is returned. The returned css remains associated with @page
607 * until it is released.
608 *
609 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
610 * is returned.
611 *
612 * XXX: The above description of behavior on the default hierarchy isn't
613 * strictly true yet as replace_page_cache_page() can modify the
614 * association before @page is released even on the default hierarchy;
615 * however, the current and planned usages don't mix the the two functions
616 * and replace_page_cache_page() will soon be updated to make the invariant
617 * actually true.
618 */
619struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
620{
621 struct mem_cgroup *memcg;
622
623 rcu_read_lock();
624
625 memcg = page->mem_cgroup;
626
627 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
628 memcg = root_mem_cgroup;
629
630 rcu_read_unlock();
631 return &memcg->css;
632}
633
f64c3f54 634static struct mem_cgroup_per_zone *
e231875b 635mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 636{
97a6c37b
JW
637 int nid = page_to_nid(page);
638 int zid = page_zonenum(page);
f64c3f54 639
e231875b 640 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
641}
642
bb4cc1a8
AM
643static struct mem_cgroup_tree_per_zone *
644soft_limit_tree_node_zone(int nid, int zid)
645{
646 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
647}
648
649static struct mem_cgroup_tree_per_zone *
650soft_limit_tree_from_page(struct page *page)
651{
652 int nid = page_to_nid(page);
653 int zid = page_zonenum(page);
654
655 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
656}
657
cf2c8127
JW
658static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
659 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 660 unsigned long new_usage_in_excess)
bb4cc1a8
AM
661{
662 struct rb_node **p = &mctz->rb_root.rb_node;
663 struct rb_node *parent = NULL;
664 struct mem_cgroup_per_zone *mz_node;
665
666 if (mz->on_tree)
667 return;
668
669 mz->usage_in_excess = new_usage_in_excess;
670 if (!mz->usage_in_excess)
671 return;
672 while (*p) {
673 parent = *p;
674 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
675 tree_node);
676 if (mz->usage_in_excess < mz_node->usage_in_excess)
677 p = &(*p)->rb_left;
678 /*
679 * We can't avoid mem cgroups that are over their soft
680 * limit by the same amount
681 */
682 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
683 p = &(*p)->rb_right;
684 }
685 rb_link_node(&mz->tree_node, parent, p);
686 rb_insert_color(&mz->tree_node, &mctz->rb_root);
687 mz->on_tree = true;
688}
689
cf2c8127
JW
690static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
691 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
692{
693 if (!mz->on_tree)
694 return;
695 rb_erase(&mz->tree_node, &mctz->rb_root);
696 mz->on_tree = false;
697}
698
cf2c8127
JW
699static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
700 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 701{
0a31bc97
JW
702 unsigned long flags;
703
704 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 705 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 706 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
707}
708
3e32cb2e
JW
709static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
710{
711 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 712 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
713 unsigned long excess = 0;
714
715 if (nr_pages > soft_limit)
716 excess = nr_pages - soft_limit;
717
718 return excess;
719}
bb4cc1a8
AM
720
721static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
722{
3e32cb2e 723 unsigned long excess;
bb4cc1a8
AM
724 struct mem_cgroup_per_zone *mz;
725 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 726
e231875b 727 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
728 /*
729 * Necessary to update all ancestors when hierarchy is used.
730 * because their event counter is not touched.
731 */
732 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 733 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 734 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
735 /*
736 * We have to update the tree if mz is on RB-tree or
737 * mem is over its softlimit.
738 */
739 if (excess || mz->on_tree) {
0a31bc97
JW
740 unsigned long flags;
741
742 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
743 /* if on-tree, remove it */
744 if (mz->on_tree)
cf2c8127 745 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
746 /*
747 * Insert again. mz->usage_in_excess will be updated.
748 * If excess is 0, no tree ops.
749 */
cf2c8127 750 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 751 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
752 }
753 }
754}
755
756static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
757{
bb4cc1a8 758 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
759 struct mem_cgroup_per_zone *mz;
760 int nid, zid;
bb4cc1a8 761
e231875b
JZ
762 for_each_node(nid) {
763 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
764 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
765 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 766 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
767 }
768 }
769}
770
771static struct mem_cgroup_per_zone *
772__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
773{
774 struct rb_node *rightmost = NULL;
775 struct mem_cgroup_per_zone *mz;
776
777retry:
778 mz = NULL;
779 rightmost = rb_last(&mctz->rb_root);
780 if (!rightmost)
781 goto done; /* Nothing to reclaim from */
782
783 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
784 /*
785 * Remove the node now but someone else can add it back,
786 * we will to add it back at the end of reclaim to its correct
787 * position in the tree.
788 */
cf2c8127 789 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 790 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 791 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
792 goto retry;
793done:
794 return mz;
795}
796
797static struct mem_cgroup_per_zone *
798mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
799{
800 struct mem_cgroup_per_zone *mz;
801
0a31bc97 802 spin_lock_irq(&mctz->lock);
bb4cc1a8 803 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 804 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
805 return mz;
806}
807
711d3d2c
KH
808/*
809 * Implementation Note: reading percpu statistics for memcg.
810 *
811 * Both of vmstat[] and percpu_counter has threshold and do periodic
812 * synchronization to implement "quick" read. There are trade-off between
813 * reading cost and precision of value. Then, we may have a chance to implement
814 * a periodic synchronizion of counter in memcg's counter.
815 *
816 * But this _read() function is used for user interface now. The user accounts
817 * memory usage by memory cgroup and he _always_ requires exact value because
818 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
819 * have to visit all online cpus and make sum. So, for now, unnecessary
820 * synchronization is not implemented. (just implemented for cpu hotplug)
821 *
822 * If there are kernel internal actions which can make use of some not-exact
823 * value, and reading all cpu value can be performance bottleneck in some
824 * common workload, threashold and synchonization as vmstat[] should be
825 * implemented.
826 */
c0ff4b85 827static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 828 enum mem_cgroup_stat_index idx)
c62b1a3b 829{
7a159cc9 830 long val = 0;
c62b1a3b 831 int cpu;
c62b1a3b 832
733a572e 833 for_each_possible_cpu(cpu)
c0ff4b85 834 val += per_cpu(memcg->stat->count[idx], cpu);
c62b1a3b
KH
835 return val;
836}
837
c0ff4b85 838static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
839 enum mem_cgroup_events_index idx)
840{
841 unsigned long val = 0;
842 int cpu;
843
733a572e 844 for_each_possible_cpu(cpu)
c0ff4b85 845 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
846 return val;
847}
848
c0ff4b85 849static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 850 struct page *page,
0a31bc97 851 int nr_pages)
d52aa412 852{
b2402857
KH
853 /*
854 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
855 * counted as CACHE even if it's on ANON LRU.
856 */
0a31bc97 857 if (PageAnon(page))
b2402857 858 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 859 nr_pages);
d52aa412 860 else
b2402857 861 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 862 nr_pages);
55e462b0 863
b070e65c
DR
864 if (PageTransHuge(page))
865 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
866 nr_pages);
867
e401f176
KH
868 /* pagein of a big page is an event. So, ignore page size */
869 if (nr_pages > 0)
c0ff4b85 870 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 871 else {
c0ff4b85 872 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
873 nr_pages = -nr_pages; /* for event */
874 }
e401f176 875
13114716 876 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
877}
878
e231875b 879unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
880{
881 struct mem_cgroup_per_zone *mz;
882
883 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
884 return mz->lru_size[lru];
885}
886
e231875b
JZ
887static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
888 int nid,
889 unsigned int lru_mask)
bb2a0de9 890{
e231875b 891 unsigned long nr = 0;
889976db
YH
892 int zid;
893
e231875b 894 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 895
e231875b
JZ
896 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
897 struct mem_cgroup_per_zone *mz;
898 enum lru_list lru;
899
900 for_each_lru(lru) {
901 if (!(BIT(lru) & lru_mask))
902 continue;
903 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
904 nr += mz->lru_size[lru];
905 }
906 }
907 return nr;
889976db 908}
bb2a0de9 909
c0ff4b85 910static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 911 unsigned int lru_mask)
6d12e2d8 912{
e231875b 913 unsigned long nr = 0;
889976db 914 int nid;
6d12e2d8 915
31aaea4a 916 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
917 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
918 return nr;
d52aa412
KH
919}
920
f53d7ce3
JW
921static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
922 enum mem_cgroup_events_target target)
7a159cc9
JW
923{
924 unsigned long val, next;
925
13114716 926 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 927 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 928 /* from time_after() in jiffies.h */
f53d7ce3
JW
929 if ((long)next - (long)val < 0) {
930 switch (target) {
931 case MEM_CGROUP_TARGET_THRESH:
932 next = val + THRESHOLDS_EVENTS_TARGET;
933 break;
bb4cc1a8
AM
934 case MEM_CGROUP_TARGET_SOFTLIMIT:
935 next = val + SOFTLIMIT_EVENTS_TARGET;
936 break;
f53d7ce3
JW
937 case MEM_CGROUP_TARGET_NUMAINFO:
938 next = val + NUMAINFO_EVENTS_TARGET;
939 break;
940 default:
941 break;
942 }
943 __this_cpu_write(memcg->stat->targets[target], next);
944 return true;
7a159cc9 945 }
f53d7ce3 946 return false;
d2265e6f
KH
947}
948
949/*
950 * Check events in order.
951 *
952 */
c0ff4b85 953static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
954{
955 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
956 if (unlikely(mem_cgroup_event_ratelimit(memcg,
957 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 958 bool do_softlimit;
82b3f2a7 959 bool do_numainfo __maybe_unused;
f53d7ce3 960
bb4cc1a8
AM
961 do_softlimit = mem_cgroup_event_ratelimit(memcg,
962 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
963#if MAX_NUMNODES > 1
964 do_numainfo = mem_cgroup_event_ratelimit(memcg,
965 MEM_CGROUP_TARGET_NUMAINFO);
966#endif
c0ff4b85 967 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
968 if (unlikely(do_softlimit))
969 mem_cgroup_update_tree(memcg, page);
453a9bf3 970#if MAX_NUMNODES > 1
f53d7ce3 971 if (unlikely(do_numainfo))
c0ff4b85 972 atomic_inc(&memcg->numainfo_events);
453a9bf3 973#endif
0a31bc97 974 }
d2265e6f
KH
975}
976
cf475ad2 977struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 978{
31a78f23
BS
979 /*
980 * mm_update_next_owner() may clear mm->owner to NULL
981 * if it races with swapoff, page migration, etc.
982 * So this can be called with p == NULL.
983 */
984 if (unlikely(!p))
985 return NULL;
986
073219e9 987 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
988}
989
df381975 990static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 991{
c0ff4b85 992 struct mem_cgroup *memcg = NULL;
0b7f569e 993
54595fe2
KH
994 rcu_read_lock();
995 do {
6f6acb00
MH
996 /*
997 * Page cache insertions can happen withou an
998 * actual mm context, e.g. during disk probing
999 * on boot, loopback IO, acct() writes etc.
1000 */
1001 if (unlikely(!mm))
df381975 1002 memcg = root_mem_cgroup;
6f6acb00
MH
1003 else {
1004 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1005 if (unlikely(!memcg))
1006 memcg = root_mem_cgroup;
1007 }
ec903c0c 1008 } while (!css_tryget_online(&memcg->css));
54595fe2 1009 rcu_read_unlock();
c0ff4b85 1010 return memcg;
54595fe2
KH
1011}
1012
5660048c
JW
1013/**
1014 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1015 * @root: hierarchy root
1016 * @prev: previously returned memcg, NULL on first invocation
1017 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1018 *
1019 * Returns references to children of the hierarchy below @root, or
1020 * @root itself, or %NULL after a full round-trip.
1021 *
1022 * Caller must pass the return value in @prev on subsequent
1023 * invocations for reference counting, or use mem_cgroup_iter_break()
1024 * to cancel a hierarchy walk before the round-trip is complete.
1025 *
1026 * Reclaimers can specify a zone and a priority level in @reclaim to
1027 * divide up the memcgs in the hierarchy among all concurrent
1028 * reclaimers operating on the same zone and priority.
1029 */
694fbc0f 1030struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1031 struct mem_cgroup *prev,
694fbc0f 1032 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1033{
5ac8fb31
JW
1034 struct reclaim_iter *uninitialized_var(iter);
1035 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1036 struct mem_cgroup *memcg = NULL;
5ac8fb31 1037 struct mem_cgroup *pos = NULL;
711d3d2c 1038
694fbc0f
AM
1039 if (mem_cgroup_disabled())
1040 return NULL;
5660048c 1041
9f3a0d09
JW
1042 if (!root)
1043 root = root_mem_cgroup;
7d74b06f 1044
9f3a0d09 1045 if (prev && !reclaim)
5ac8fb31 1046 pos = prev;
14067bb3 1047
9f3a0d09
JW
1048 if (!root->use_hierarchy && root != root_mem_cgroup) {
1049 if (prev)
5ac8fb31 1050 goto out;
694fbc0f 1051 return root;
9f3a0d09 1052 }
14067bb3 1053
542f85f9 1054 rcu_read_lock();
5f578161 1055
5ac8fb31
JW
1056 if (reclaim) {
1057 struct mem_cgroup_per_zone *mz;
1058
1059 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1060 iter = &mz->iter[reclaim->priority];
1061
1062 if (prev && reclaim->generation != iter->generation)
1063 goto out_unlock;
1064
1065 do {
4db0c3c2 1066 pos = READ_ONCE(iter->position);
5ac8fb31
JW
1067 /*
1068 * A racing update may change the position and
1069 * put the last reference, hence css_tryget(),
1070 * or retry to see the updated position.
1071 */
1072 } while (pos && !css_tryget(&pos->css));
1073 }
1074
1075 if (pos)
1076 css = &pos->css;
1077
1078 for (;;) {
1079 css = css_next_descendant_pre(css, &root->css);
1080 if (!css) {
1081 /*
1082 * Reclaimers share the hierarchy walk, and a
1083 * new one might jump in right at the end of
1084 * the hierarchy - make sure they see at least
1085 * one group and restart from the beginning.
1086 */
1087 if (!prev)
1088 continue;
1089 break;
527a5ec9 1090 }
7d74b06f 1091
5ac8fb31
JW
1092 /*
1093 * Verify the css and acquire a reference. The root
1094 * is provided by the caller, so we know it's alive
1095 * and kicking, and don't take an extra reference.
1096 */
1097 memcg = mem_cgroup_from_css(css);
14067bb3 1098
5ac8fb31
JW
1099 if (css == &root->css)
1100 break;
14067bb3 1101
b2052564 1102 if (css_tryget(css)) {
5ac8fb31
JW
1103 /*
1104 * Make sure the memcg is initialized:
1105 * mem_cgroup_css_online() orders the the
1106 * initialization against setting the flag.
1107 */
1108 if (smp_load_acquire(&memcg->initialized))
1109 break;
542f85f9 1110
5ac8fb31 1111 css_put(css);
527a5ec9 1112 }
9f3a0d09 1113
5ac8fb31 1114 memcg = NULL;
9f3a0d09 1115 }
5ac8fb31
JW
1116
1117 if (reclaim) {
1118 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1119 if (memcg)
1120 css_get(&memcg->css);
1121 if (pos)
1122 css_put(&pos->css);
1123 }
1124
1125 /*
1126 * pairs with css_tryget when dereferencing iter->position
1127 * above.
1128 */
1129 if (pos)
1130 css_put(&pos->css);
1131
1132 if (!memcg)
1133 iter->generation++;
1134 else if (!prev)
1135 reclaim->generation = iter->generation;
9f3a0d09 1136 }
5ac8fb31 1137
542f85f9
MH
1138out_unlock:
1139 rcu_read_unlock();
5ac8fb31 1140out:
c40046f3
MH
1141 if (prev && prev != root)
1142 css_put(&prev->css);
1143
9f3a0d09 1144 return memcg;
14067bb3 1145}
7d74b06f 1146
5660048c
JW
1147/**
1148 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1149 * @root: hierarchy root
1150 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1151 */
1152void mem_cgroup_iter_break(struct mem_cgroup *root,
1153 struct mem_cgroup *prev)
9f3a0d09
JW
1154{
1155 if (!root)
1156 root = root_mem_cgroup;
1157 if (prev && prev != root)
1158 css_put(&prev->css);
1159}
7d74b06f 1160
9f3a0d09
JW
1161/*
1162 * Iteration constructs for visiting all cgroups (under a tree). If
1163 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1164 * be used for reference counting.
1165 */
1166#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1167 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1168 iter != NULL; \
527a5ec9 1169 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1170
9f3a0d09 1171#define for_each_mem_cgroup(iter) \
527a5ec9 1172 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1173 iter != NULL; \
527a5ec9 1174 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1175
68ae564b 1176void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1177{
c0ff4b85 1178 struct mem_cgroup *memcg;
456f998e 1179
456f998e 1180 rcu_read_lock();
c0ff4b85
R
1181 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1182 if (unlikely(!memcg))
456f998e
YH
1183 goto out;
1184
1185 switch (idx) {
456f998e 1186 case PGFAULT:
0e574a93
JW
1187 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1188 break;
1189 case PGMAJFAULT:
1190 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1191 break;
1192 default:
1193 BUG();
1194 }
1195out:
1196 rcu_read_unlock();
1197}
68ae564b 1198EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1199
925b7673
JW
1200/**
1201 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1202 * @zone: zone of the wanted lruvec
fa9add64 1203 * @memcg: memcg of the wanted lruvec
925b7673
JW
1204 *
1205 * Returns the lru list vector holding pages for the given @zone and
1206 * @mem. This can be the global zone lruvec, if the memory controller
1207 * is disabled.
1208 */
1209struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1210 struct mem_cgroup *memcg)
1211{
1212 struct mem_cgroup_per_zone *mz;
bea8c150 1213 struct lruvec *lruvec;
925b7673 1214
bea8c150
HD
1215 if (mem_cgroup_disabled()) {
1216 lruvec = &zone->lruvec;
1217 goto out;
1218 }
925b7673 1219
e231875b 1220 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1221 lruvec = &mz->lruvec;
1222out:
1223 /*
1224 * Since a node can be onlined after the mem_cgroup was created,
1225 * we have to be prepared to initialize lruvec->zone here;
1226 * and if offlined then reonlined, we need to reinitialize it.
1227 */
1228 if (unlikely(lruvec->zone != zone))
1229 lruvec->zone = zone;
1230 return lruvec;
925b7673
JW
1231}
1232
925b7673 1233/**
dfe0e773 1234 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1235 * @page: the page
fa9add64 1236 * @zone: zone of the page
dfe0e773
JW
1237 *
1238 * This function is only safe when following the LRU page isolation
1239 * and putback protocol: the LRU lock must be held, and the page must
1240 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1241 */
fa9add64 1242struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1243{
08e552c6 1244 struct mem_cgroup_per_zone *mz;
925b7673 1245 struct mem_cgroup *memcg;
bea8c150 1246 struct lruvec *lruvec;
6d12e2d8 1247
bea8c150
HD
1248 if (mem_cgroup_disabled()) {
1249 lruvec = &zone->lruvec;
1250 goto out;
1251 }
925b7673 1252
1306a85a 1253 memcg = page->mem_cgroup;
7512102c 1254 /*
dfe0e773 1255 * Swapcache readahead pages are added to the LRU - and
29833315 1256 * possibly migrated - before they are charged.
7512102c 1257 */
29833315
JW
1258 if (!memcg)
1259 memcg = root_mem_cgroup;
7512102c 1260
e231875b 1261 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1262 lruvec = &mz->lruvec;
1263out:
1264 /*
1265 * Since a node can be onlined after the mem_cgroup was created,
1266 * we have to be prepared to initialize lruvec->zone here;
1267 * and if offlined then reonlined, we need to reinitialize it.
1268 */
1269 if (unlikely(lruvec->zone != zone))
1270 lruvec->zone = zone;
1271 return lruvec;
08e552c6 1272}
b69408e8 1273
925b7673 1274/**
fa9add64
HD
1275 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1276 * @lruvec: mem_cgroup per zone lru vector
1277 * @lru: index of lru list the page is sitting on
1278 * @nr_pages: positive when adding or negative when removing
925b7673 1279 *
fa9add64
HD
1280 * This function must be called when a page is added to or removed from an
1281 * lru list.
3f58a829 1282 */
fa9add64
HD
1283void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284 int nr_pages)
3f58a829
MK
1285{
1286 struct mem_cgroup_per_zone *mz;
fa9add64 1287 unsigned long *lru_size;
3f58a829
MK
1288
1289 if (mem_cgroup_disabled())
1290 return;
1291
fa9add64
HD
1292 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1293 lru_size = mz->lru_size + lru;
1294 *lru_size += nr_pages;
1295 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1296}
544122e5 1297
2314b42d 1298bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1299{
2314b42d 1300 if (root == memcg)
91c63734 1301 return true;
2314b42d 1302 if (!root->use_hierarchy)
91c63734 1303 return false;
2314b42d 1304 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1305}
1306
2314b42d 1307bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1308{
2314b42d 1309 struct mem_cgroup *task_memcg;
158e0a2d 1310 struct task_struct *p;
ffbdccf5 1311 bool ret;
4c4a2214 1312
158e0a2d 1313 p = find_lock_task_mm(task);
de077d22 1314 if (p) {
2314b42d 1315 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1316 task_unlock(p);
1317 } else {
1318 /*
1319 * All threads may have already detached their mm's, but the oom
1320 * killer still needs to detect if they have already been oom
1321 * killed to prevent needlessly killing additional tasks.
1322 */
ffbdccf5 1323 rcu_read_lock();
2314b42d
JW
1324 task_memcg = mem_cgroup_from_task(task);
1325 css_get(&task_memcg->css);
ffbdccf5 1326 rcu_read_unlock();
de077d22 1327 }
2314b42d
JW
1328 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1329 css_put(&task_memcg->css);
4c4a2214
DR
1330 return ret;
1331}
1332
c56d5c7d 1333int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1334{
9b272977 1335 unsigned long inactive_ratio;
14797e23 1336 unsigned long inactive;
9b272977 1337 unsigned long active;
c772be93 1338 unsigned long gb;
14797e23 1339
4d7dcca2
HD
1340 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1341 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1342
c772be93
KM
1343 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1344 if (gb)
1345 inactive_ratio = int_sqrt(10 * gb);
1346 else
1347 inactive_ratio = 1;
1348
9b272977 1349 return inactive * inactive_ratio < active;
14797e23
KM
1350}
1351
90cbc250
VD
1352bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1353{
1354 struct mem_cgroup_per_zone *mz;
1355 struct mem_cgroup *memcg;
1356
1357 if (mem_cgroup_disabled())
1358 return true;
1359
1360 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1361 memcg = mz->memcg;
1362
1363 return !!(memcg->css.flags & CSS_ONLINE);
1364}
1365
3e32cb2e 1366#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1367 container_of(counter, struct mem_cgroup, member)
1368
19942822 1369/**
9d11ea9f 1370 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1371 * @memcg: the memory cgroup
19942822 1372 *
9d11ea9f 1373 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1374 * pages.
19942822 1375 */
c0ff4b85 1376static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1377{
3e32cb2e
JW
1378 unsigned long margin = 0;
1379 unsigned long count;
1380 unsigned long limit;
9d11ea9f 1381
3e32cb2e 1382 count = page_counter_read(&memcg->memory);
4db0c3c2 1383 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1384 if (count < limit)
1385 margin = limit - count;
1386
1387 if (do_swap_account) {
1388 count = page_counter_read(&memcg->memsw);
4db0c3c2 1389 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1390 if (count <= limit)
1391 margin = min(margin, limit - count);
1392 }
1393
1394 return margin;
19942822
JW
1395}
1396
1f4c025b 1397int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1398{
a7885eb8 1399 /* root ? */
14208b0e 1400 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1401 return vm_swappiness;
1402
bf1ff263 1403 return memcg->swappiness;
a7885eb8
KM
1404}
1405
32047e2a 1406/*
bdcbb659 1407 * A routine for checking "mem" is under move_account() or not.
32047e2a 1408 *
bdcbb659
QH
1409 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1410 * moving cgroups. This is for waiting at high-memory pressure
1411 * caused by "move".
32047e2a 1412 */
c0ff4b85 1413static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1414{
2bd9bb20
KH
1415 struct mem_cgroup *from;
1416 struct mem_cgroup *to;
4b534334 1417 bool ret = false;
2bd9bb20
KH
1418 /*
1419 * Unlike task_move routines, we access mc.to, mc.from not under
1420 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1421 */
1422 spin_lock(&mc.lock);
1423 from = mc.from;
1424 to = mc.to;
1425 if (!from)
1426 goto unlock;
3e92041d 1427
2314b42d
JW
1428 ret = mem_cgroup_is_descendant(from, memcg) ||
1429 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1430unlock:
1431 spin_unlock(&mc.lock);
4b534334
KH
1432 return ret;
1433}
1434
c0ff4b85 1435static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1436{
1437 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1438 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1439 DEFINE_WAIT(wait);
1440 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1441 /* moving charge context might have finished. */
1442 if (mc.moving_task)
1443 schedule();
1444 finish_wait(&mc.waitq, &wait);
1445 return true;
1446 }
1447 }
1448 return false;
1449}
1450
58cf188e 1451#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1452/**
58cf188e 1453 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1454 * @memcg: The memory cgroup that went over limit
1455 * @p: Task that is going to be killed
1456 *
1457 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1458 * enabled
1459 */
1460void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1461{
e61734c5 1462 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1463 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1464 struct mem_cgroup *iter;
1465 unsigned int i;
e222432b 1466
08088cb9 1467 mutex_lock(&oom_info_lock);
e222432b
BS
1468 rcu_read_lock();
1469
2415b9f5
BV
1470 if (p) {
1471 pr_info("Task in ");
1472 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1473 pr_cont(" killed as a result of limit of ");
1474 } else {
1475 pr_info("Memory limit reached of cgroup ");
1476 }
1477
e61734c5 1478 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1479 pr_cont("\n");
e222432b 1480
e222432b
BS
1481 rcu_read_unlock();
1482
3e32cb2e
JW
1483 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1484 K((u64)page_counter_read(&memcg->memory)),
1485 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1486 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memsw)),
1488 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1489 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->kmem)),
1491 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1492
1493 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1494 pr_info("Memory cgroup stats for ");
1495 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1496 pr_cont(":");
1497
1498 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1499 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1500 continue;
1501 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1502 K(mem_cgroup_read_stat(iter, i)));
1503 }
1504
1505 for (i = 0; i < NR_LRU_LISTS; i++)
1506 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1507 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1508
1509 pr_cont("\n");
1510 }
08088cb9 1511 mutex_unlock(&oom_info_lock);
e222432b
BS
1512}
1513
81d39c20
KH
1514/*
1515 * This function returns the number of memcg under hierarchy tree. Returns
1516 * 1(self count) if no children.
1517 */
c0ff4b85 1518static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1519{
1520 int num = 0;
7d74b06f
KH
1521 struct mem_cgroup *iter;
1522
c0ff4b85 1523 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1524 num++;
81d39c20
KH
1525 return num;
1526}
1527
a63d83f4
DR
1528/*
1529 * Return the memory (and swap, if configured) limit for a memcg.
1530 */
3e32cb2e 1531static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1532{
3e32cb2e 1533 unsigned long limit;
f3e8eb70 1534
3e32cb2e 1535 limit = memcg->memory.limit;
9a5a8f19 1536 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1537 unsigned long memsw_limit;
9a5a8f19 1538
3e32cb2e
JW
1539 memsw_limit = memcg->memsw.limit;
1540 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1541 }
9a5a8f19 1542 return limit;
a63d83f4
DR
1543}
1544
19965460
DR
1545static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1546 int order)
9cbb78bb 1547{
6e0fc46d
DR
1548 struct oom_control oc = {
1549 .zonelist = NULL,
1550 .nodemask = NULL,
1551 .gfp_mask = gfp_mask,
1552 .order = order,
1553 .force_kill = false,
1554 };
9cbb78bb
DR
1555 struct mem_cgroup *iter;
1556 unsigned long chosen_points = 0;
1557 unsigned long totalpages;
1558 unsigned int points = 0;
1559 struct task_struct *chosen = NULL;
1560
dc56401f
JW
1561 mutex_lock(&oom_lock);
1562
876aafbf 1563 /*
465adcf1
DR
1564 * If current has a pending SIGKILL or is exiting, then automatically
1565 * select it. The goal is to allow it to allocate so that it may
1566 * quickly exit and free its memory.
876aafbf 1567 */
d003f371 1568 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1569 mark_oom_victim(current);
dc56401f 1570 goto unlock;
876aafbf
DR
1571 }
1572
6e0fc46d 1573 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1574 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1575 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1576 struct css_task_iter it;
9cbb78bb
DR
1577 struct task_struct *task;
1578
72ec7029
TH
1579 css_task_iter_start(&iter->css, &it);
1580 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1581 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1582 case OOM_SCAN_SELECT:
1583 if (chosen)
1584 put_task_struct(chosen);
1585 chosen = task;
1586 chosen_points = ULONG_MAX;
1587 get_task_struct(chosen);
1588 /* fall through */
1589 case OOM_SCAN_CONTINUE:
1590 continue;
1591 case OOM_SCAN_ABORT:
72ec7029 1592 css_task_iter_end(&it);
9cbb78bb
DR
1593 mem_cgroup_iter_break(memcg, iter);
1594 if (chosen)
1595 put_task_struct(chosen);
dc56401f 1596 goto unlock;
9cbb78bb
DR
1597 case OOM_SCAN_OK:
1598 break;
1599 };
1600 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1601 if (!points || points < chosen_points)
1602 continue;
1603 /* Prefer thread group leaders for display purposes */
1604 if (points == chosen_points &&
1605 thread_group_leader(chosen))
1606 continue;
1607
1608 if (chosen)
1609 put_task_struct(chosen);
1610 chosen = task;
1611 chosen_points = points;
1612 get_task_struct(chosen);
9cbb78bb 1613 }
72ec7029 1614 css_task_iter_end(&it);
9cbb78bb
DR
1615 }
1616
dc56401f
JW
1617 if (chosen) {
1618 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1619 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1620 "Memory cgroup out of memory");
dc56401f
JW
1621 }
1622unlock:
1623 mutex_unlock(&oom_lock);
9cbb78bb
DR
1624}
1625
ae6e71d3
MC
1626#if MAX_NUMNODES > 1
1627
4d0c066d
KH
1628/**
1629 * test_mem_cgroup_node_reclaimable
dad7557e 1630 * @memcg: the target memcg
4d0c066d
KH
1631 * @nid: the node ID to be checked.
1632 * @noswap : specify true here if the user wants flle only information.
1633 *
1634 * This function returns whether the specified memcg contains any
1635 * reclaimable pages on a node. Returns true if there are any reclaimable
1636 * pages in the node.
1637 */
c0ff4b85 1638static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1639 int nid, bool noswap)
1640{
c0ff4b85 1641 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1642 return true;
1643 if (noswap || !total_swap_pages)
1644 return false;
c0ff4b85 1645 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1646 return true;
1647 return false;
1648
1649}
889976db
YH
1650
1651/*
1652 * Always updating the nodemask is not very good - even if we have an empty
1653 * list or the wrong list here, we can start from some node and traverse all
1654 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1655 *
1656 */
c0ff4b85 1657static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1658{
1659 int nid;
453a9bf3
KH
1660 /*
1661 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1662 * pagein/pageout changes since the last update.
1663 */
c0ff4b85 1664 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1665 return;
c0ff4b85 1666 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1667 return;
1668
889976db 1669 /* make a nodemask where this memcg uses memory from */
31aaea4a 1670 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1671
31aaea4a 1672 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1673
c0ff4b85
R
1674 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1675 node_clear(nid, memcg->scan_nodes);
889976db 1676 }
453a9bf3 1677
c0ff4b85
R
1678 atomic_set(&memcg->numainfo_events, 0);
1679 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1680}
1681
1682/*
1683 * Selecting a node where we start reclaim from. Because what we need is just
1684 * reducing usage counter, start from anywhere is O,K. Considering
1685 * memory reclaim from current node, there are pros. and cons.
1686 *
1687 * Freeing memory from current node means freeing memory from a node which
1688 * we'll use or we've used. So, it may make LRU bad. And if several threads
1689 * hit limits, it will see a contention on a node. But freeing from remote
1690 * node means more costs for memory reclaim because of memory latency.
1691 *
1692 * Now, we use round-robin. Better algorithm is welcomed.
1693 */
c0ff4b85 1694int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1695{
1696 int node;
1697
c0ff4b85
R
1698 mem_cgroup_may_update_nodemask(memcg);
1699 node = memcg->last_scanned_node;
889976db 1700
c0ff4b85 1701 node = next_node(node, memcg->scan_nodes);
889976db 1702 if (node == MAX_NUMNODES)
c0ff4b85 1703 node = first_node(memcg->scan_nodes);
889976db
YH
1704 /*
1705 * We call this when we hit limit, not when pages are added to LRU.
1706 * No LRU may hold pages because all pages are UNEVICTABLE or
1707 * memcg is too small and all pages are not on LRU. In that case,
1708 * we use curret node.
1709 */
1710 if (unlikely(node == MAX_NUMNODES))
1711 node = numa_node_id();
1712
c0ff4b85 1713 memcg->last_scanned_node = node;
889976db
YH
1714 return node;
1715}
889976db 1716#else
c0ff4b85 1717int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1718{
1719 return 0;
1720}
1721#endif
1722
0608f43d
AM
1723static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1724 struct zone *zone,
1725 gfp_t gfp_mask,
1726 unsigned long *total_scanned)
1727{
1728 struct mem_cgroup *victim = NULL;
1729 int total = 0;
1730 int loop = 0;
1731 unsigned long excess;
1732 unsigned long nr_scanned;
1733 struct mem_cgroup_reclaim_cookie reclaim = {
1734 .zone = zone,
1735 .priority = 0,
1736 };
1737
3e32cb2e 1738 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1739
1740 while (1) {
1741 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1742 if (!victim) {
1743 loop++;
1744 if (loop >= 2) {
1745 /*
1746 * If we have not been able to reclaim
1747 * anything, it might because there are
1748 * no reclaimable pages under this hierarchy
1749 */
1750 if (!total)
1751 break;
1752 /*
1753 * We want to do more targeted reclaim.
1754 * excess >> 2 is not to excessive so as to
1755 * reclaim too much, nor too less that we keep
1756 * coming back to reclaim from this cgroup
1757 */
1758 if (total >= (excess >> 2) ||
1759 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1760 break;
1761 }
1762 continue;
1763 }
0608f43d
AM
1764 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1765 zone, &nr_scanned);
1766 *total_scanned += nr_scanned;
3e32cb2e 1767 if (!soft_limit_excess(root_memcg))
0608f43d 1768 break;
6d61ef40 1769 }
0608f43d
AM
1770 mem_cgroup_iter_break(root_memcg, victim);
1771 return total;
6d61ef40
BS
1772}
1773
0056f4e6
JW
1774#ifdef CONFIG_LOCKDEP
1775static struct lockdep_map memcg_oom_lock_dep_map = {
1776 .name = "memcg_oom_lock",
1777};
1778#endif
1779
fb2a6fc5
JW
1780static DEFINE_SPINLOCK(memcg_oom_lock);
1781
867578cb
KH
1782/*
1783 * Check OOM-Killer is already running under our hierarchy.
1784 * If someone is running, return false.
1785 */
fb2a6fc5 1786static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1787{
79dfdacc 1788 struct mem_cgroup *iter, *failed = NULL;
a636b327 1789
fb2a6fc5
JW
1790 spin_lock(&memcg_oom_lock);
1791
9f3a0d09 1792 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1793 if (iter->oom_lock) {
79dfdacc
MH
1794 /*
1795 * this subtree of our hierarchy is already locked
1796 * so we cannot give a lock.
1797 */
79dfdacc 1798 failed = iter;
9f3a0d09
JW
1799 mem_cgroup_iter_break(memcg, iter);
1800 break;
23751be0
JW
1801 } else
1802 iter->oom_lock = true;
7d74b06f 1803 }
867578cb 1804
fb2a6fc5
JW
1805 if (failed) {
1806 /*
1807 * OK, we failed to lock the whole subtree so we have
1808 * to clean up what we set up to the failing subtree
1809 */
1810 for_each_mem_cgroup_tree(iter, memcg) {
1811 if (iter == failed) {
1812 mem_cgroup_iter_break(memcg, iter);
1813 break;
1814 }
1815 iter->oom_lock = false;
79dfdacc 1816 }
0056f4e6
JW
1817 } else
1818 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1819
1820 spin_unlock(&memcg_oom_lock);
1821
1822 return !failed;
a636b327 1823}
0b7f569e 1824
fb2a6fc5 1825static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1826{
7d74b06f
KH
1827 struct mem_cgroup *iter;
1828
fb2a6fc5 1829 spin_lock(&memcg_oom_lock);
0056f4e6 1830 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1831 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1832 iter->oom_lock = false;
fb2a6fc5 1833 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1834}
1835
c0ff4b85 1836static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1837{
1838 struct mem_cgroup *iter;
1839
c2b42d3c 1840 spin_lock(&memcg_oom_lock);
c0ff4b85 1841 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1842 iter->under_oom++;
1843 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1844}
1845
c0ff4b85 1846static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1847{
1848 struct mem_cgroup *iter;
1849
867578cb
KH
1850 /*
1851 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1852 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1853 */
c2b42d3c 1854 spin_lock(&memcg_oom_lock);
c0ff4b85 1855 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1856 if (iter->under_oom > 0)
1857 iter->under_oom--;
1858 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1859}
1860
867578cb
KH
1861static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1862
dc98df5a 1863struct oom_wait_info {
d79154bb 1864 struct mem_cgroup *memcg;
dc98df5a
KH
1865 wait_queue_t wait;
1866};
1867
1868static int memcg_oom_wake_function(wait_queue_t *wait,
1869 unsigned mode, int sync, void *arg)
1870{
d79154bb
HD
1871 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1872 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1873 struct oom_wait_info *oom_wait_info;
1874
1875 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1876 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1877
2314b42d
JW
1878 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1879 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1880 return 0;
dc98df5a
KH
1881 return autoremove_wake_function(wait, mode, sync, arg);
1882}
1883
c0ff4b85 1884static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1885{
c2b42d3c
TH
1886 /*
1887 * For the following lockless ->under_oom test, the only required
1888 * guarantee is that it must see the state asserted by an OOM when
1889 * this function is called as a result of userland actions
1890 * triggered by the notification of the OOM. This is trivially
1891 * achieved by invoking mem_cgroup_mark_under_oom() before
1892 * triggering notification.
1893 */
1894 if (memcg && memcg->under_oom)
f4b90b70 1895 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1896}
1897
3812c8c8 1898static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1899{
3812c8c8
JW
1900 if (!current->memcg_oom.may_oom)
1901 return;
867578cb 1902 /*
49426420
JW
1903 * We are in the middle of the charge context here, so we
1904 * don't want to block when potentially sitting on a callstack
1905 * that holds all kinds of filesystem and mm locks.
1906 *
1907 * Also, the caller may handle a failed allocation gracefully
1908 * (like optional page cache readahead) and so an OOM killer
1909 * invocation might not even be necessary.
1910 *
1911 * That's why we don't do anything here except remember the
1912 * OOM context and then deal with it at the end of the page
1913 * fault when the stack is unwound, the locks are released,
1914 * and when we know whether the fault was overall successful.
867578cb 1915 */
49426420
JW
1916 css_get(&memcg->css);
1917 current->memcg_oom.memcg = memcg;
1918 current->memcg_oom.gfp_mask = mask;
1919 current->memcg_oom.order = order;
3812c8c8
JW
1920}
1921
1922/**
1923 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1924 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1925 *
49426420
JW
1926 * This has to be called at the end of a page fault if the memcg OOM
1927 * handler was enabled.
3812c8c8 1928 *
49426420 1929 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1930 * sleep on a waitqueue until the userspace task resolves the
1931 * situation. Sleeping directly in the charge context with all kinds
1932 * of locks held is not a good idea, instead we remember an OOM state
1933 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1934 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1935 *
1936 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1937 * completed, %false otherwise.
3812c8c8 1938 */
49426420 1939bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1940{
49426420 1941 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1942 struct oom_wait_info owait;
49426420 1943 bool locked;
3812c8c8
JW
1944
1945 /* OOM is global, do not handle */
3812c8c8 1946 if (!memcg)
49426420 1947 return false;
3812c8c8 1948
c32b3cbe 1949 if (!handle || oom_killer_disabled)
49426420 1950 goto cleanup;
3812c8c8
JW
1951
1952 owait.memcg = memcg;
1953 owait.wait.flags = 0;
1954 owait.wait.func = memcg_oom_wake_function;
1955 owait.wait.private = current;
1956 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1957
3812c8c8 1958 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1959 mem_cgroup_mark_under_oom(memcg);
1960
1961 locked = mem_cgroup_oom_trylock(memcg);
1962
1963 if (locked)
1964 mem_cgroup_oom_notify(memcg);
1965
1966 if (locked && !memcg->oom_kill_disable) {
1967 mem_cgroup_unmark_under_oom(memcg);
1968 finish_wait(&memcg_oom_waitq, &owait.wait);
1969 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1970 current->memcg_oom.order);
1971 } else {
3812c8c8 1972 schedule();
49426420
JW
1973 mem_cgroup_unmark_under_oom(memcg);
1974 finish_wait(&memcg_oom_waitq, &owait.wait);
1975 }
1976
1977 if (locked) {
fb2a6fc5
JW
1978 mem_cgroup_oom_unlock(memcg);
1979 /*
1980 * There is no guarantee that an OOM-lock contender
1981 * sees the wakeups triggered by the OOM kill
1982 * uncharges. Wake any sleepers explicitely.
1983 */
1984 memcg_oom_recover(memcg);
1985 }
49426420
JW
1986cleanup:
1987 current->memcg_oom.memcg = NULL;
3812c8c8 1988 css_put(&memcg->css);
867578cb 1989 return true;
0b7f569e
KH
1990}
1991
d7365e78
JW
1992/**
1993 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1994 * @page: page that is going to change accounted state
32047e2a 1995 *
d7365e78
JW
1996 * This function must mark the beginning of an accounted page state
1997 * change to prevent double accounting when the page is concurrently
1998 * being moved to another memcg:
32047e2a 1999 *
6de22619 2000 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
2001 * if (TestClearPageState(page))
2002 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 2003 * mem_cgroup_end_page_stat(memcg);
d69b042f 2004 */
6de22619 2005struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
2006{
2007 struct mem_cgroup *memcg;
6de22619 2008 unsigned long flags;
89c06bd5 2009
6de22619
JW
2010 /*
2011 * The RCU lock is held throughout the transaction. The fast
2012 * path can get away without acquiring the memcg->move_lock
2013 * because page moving starts with an RCU grace period.
2014 *
2015 * The RCU lock also protects the memcg from being freed when
2016 * the page state that is going to change is the only thing
2017 * preventing the page from being uncharged.
2018 * E.g. end-writeback clearing PageWriteback(), which allows
2019 * migration to go ahead and uncharge the page before the
2020 * account transaction might be complete.
2021 */
d7365e78
JW
2022 rcu_read_lock();
2023
2024 if (mem_cgroup_disabled())
2025 return NULL;
89c06bd5 2026again:
1306a85a 2027 memcg = page->mem_cgroup;
29833315 2028 if (unlikely(!memcg))
d7365e78
JW
2029 return NULL;
2030
bdcbb659 2031 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2032 return memcg;
89c06bd5 2033
6de22619 2034 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2035 if (memcg != page->mem_cgroup) {
6de22619 2036 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2037 goto again;
2038 }
6de22619
JW
2039
2040 /*
2041 * When charge migration first begins, we can have locked and
2042 * unlocked page stat updates happening concurrently. Track
2043 * the task who has the lock for mem_cgroup_end_page_stat().
2044 */
2045 memcg->move_lock_task = current;
2046 memcg->move_lock_flags = flags;
d7365e78
JW
2047
2048 return memcg;
89c06bd5 2049}
c4843a75 2050EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 2051
d7365e78
JW
2052/**
2053 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2054 * @memcg: the memcg that was accounted against
d7365e78 2055 */
6de22619 2056void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2057{
6de22619
JW
2058 if (memcg && memcg->move_lock_task == current) {
2059 unsigned long flags = memcg->move_lock_flags;
2060
2061 memcg->move_lock_task = NULL;
2062 memcg->move_lock_flags = 0;
2063
2064 spin_unlock_irqrestore(&memcg->move_lock, flags);
2065 }
89c06bd5 2066
d7365e78 2067 rcu_read_unlock();
89c06bd5 2068}
c4843a75 2069EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 2070
d7365e78
JW
2071/**
2072 * mem_cgroup_update_page_stat - update page state statistics
2073 * @memcg: memcg to account against
2074 * @idx: page state item to account
2075 * @val: number of pages (positive or negative)
2076 *
2077 * See mem_cgroup_begin_page_stat() for locking requirements.
2078 */
2079void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2080 enum mem_cgroup_stat_index idx, int val)
d69b042f 2081{
658b72c5 2082 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2083
d7365e78
JW
2084 if (memcg)
2085 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2086}
26174efd 2087
cdec2e42
KH
2088/*
2089 * size of first charge trial. "32" comes from vmscan.c's magic value.
2090 * TODO: maybe necessary to use big numbers in big irons.
2091 */
7ec99d62 2092#define CHARGE_BATCH 32U
cdec2e42
KH
2093struct memcg_stock_pcp {
2094 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2095 unsigned int nr_pages;
cdec2e42 2096 struct work_struct work;
26fe6168 2097 unsigned long flags;
a0db00fc 2098#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2099};
2100static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2101static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2102
a0956d54
SS
2103/**
2104 * consume_stock: Try to consume stocked charge on this cpu.
2105 * @memcg: memcg to consume from.
2106 * @nr_pages: how many pages to charge.
2107 *
2108 * The charges will only happen if @memcg matches the current cpu's memcg
2109 * stock, and at least @nr_pages are available in that stock. Failure to
2110 * service an allocation will refill the stock.
2111 *
2112 * returns true if successful, false otherwise.
cdec2e42 2113 */
a0956d54 2114static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2115{
2116 struct memcg_stock_pcp *stock;
3e32cb2e 2117 bool ret = false;
cdec2e42 2118
a0956d54 2119 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2120 return ret;
a0956d54 2121
cdec2e42 2122 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2123 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2124 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2125 ret = true;
2126 }
cdec2e42
KH
2127 put_cpu_var(memcg_stock);
2128 return ret;
2129}
2130
2131/*
3e32cb2e 2132 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2133 */
2134static void drain_stock(struct memcg_stock_pcp *stock)
2135{
2136 struct mem_cgroup *old = stock->cached;
2137
11c9ea4e 2138 if (stock->nr_pages) {
3e32cb2e 2139 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2140 if (do_swap_account)
3e32cb2e 2141 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2142 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2143 stock->nr_pages = 0;
cdec2e42
KH
2144 }
2145 stock->cached = NULL;
cdec2e42
KH
2146}
2147
2148/*
2149 * This must be called under preempt disabled or must be called by
2150 * a thread which is pinned to local cpu.
2151 */
2152static void drain_local_stock(struct work_struct *dummy)
2153{
7c8e0181 2154 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2155 drain_stock(stock);
26fe6168 2156 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2157}
2158
2159/*
3e32cb2e 2160 * Cache charges(val) to local per_cpu area.
320cc51d 2161 * This will be consumed by consume_stock() function, later.
cdec2e42 2162 */
c0ff4b85 2163static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2164{
2165 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2166
c0ff4b85 2167 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2168 drain_stock(stock);
c0ff4b85 2169 stock->cached = memcg;
cdec2e42 2170 }
11c9ea4e 2171 stock->nr_pages += nr_pages;
cdec2e42
KH
2172 put_cpu_var(memcg_stock);
2173}
2174
2175/*
c0ff4b85 2176 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2177 * of the hierarchy under it.
cdec2e42 2178 */
6d3d6aa2 2179static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2180{
26fe6168 2181 int cpu, curcpu;
d38144b7 2182
6d3d6aa2
JW
2183 /* If someone's already draining, avoid adding running more workers. */
2184 if (!mutex_trylock(&percpu_charge_mutex))
2185 return;
cdec2e42 2186 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2187 get_online_cpus();
5af12d0e 2188 curcpu = get_cpu();
cdec2e42
KH
2189 for_each_online_cpu(cpu) {
2190 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2191 struct mem_cgroup *memcg;
26fe6168 2192
c0ff4b85
R
2193 memcg = stock->cached;
2194 if (!memcg || !stock->nr_pages)
26fe6168 2195 continue;
2314b42d 2196 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2197 continue;
d1a05b69
MH
2198 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2199 if (cpu == curcpu)
2200 drain_local_stock(&stock->work);
2201 else
2202 schedule_work_on(cpu, &stock->work);
2203 }
cdec2e42 2204 }
5af12d0e 2205 put_cpu();
f894ffa8 2206 put_online_cpus();
9f50fad6 2207 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2208}
2209
0db0628d 2210static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2211 unsigned long action,
2212 void *hcpu)
2213{
2214 int cpu = (unsigned long)hcpu;
2215 struct memcg_stock_pcp *stock;
2216
619d094b 2217 if (action == CPU_ONLINE)
1489ebad 2218 return NOTIFY_OK;
1489ebad 2219
d833049b 2220 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2221 return NOTIFY_OK;
711d3d2c 2222
cdec2e42
KH
2223 stock = &per_cpu(memcg_stock, cpu);
2224 drain_stock(stock);
2225 return NOTIFY_OK;
2226}
2227
00501b53
JW
2228static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2229 unsigned int nr_pages)
8a9f3ccd 2230{
7ec99d62 2231 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2232 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2233 struct mem_cgroup *mem_over_limit;
3e32cb2e 2234 struct page_counter *counter;
6539cc05 2235 unsigned long nr_reclaimed;
b70a2a21
JW
2236 bool may_swap = true;
2237 bool drained = false;
05b84301 2238 int ret = 0;
a636b327 2239
ce00a967
JW
2240 if (mem_cgroup_is_root(memcg))
2241 goto done;
6539cc05 2242retry:
b6b6cc72
MH
2243 if (consume_stock(memcg, nr_pages))
2244 goto done;
8a9f3ccd 2245
3fbe7244 2246 if (!do_swap_account ||
3e32cb2e
JW
2247 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2248 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2249 goto done_restock;
3fbe7244 2250 if (do_swap_account)
3e32cb2e
JW
2251 page_counter_uncharge(&memcg->memsw, batch);
2252 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2253 } else {
3e32cb2e 2254 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2255 may_swap = false;
3fbe7244 2256 }
7a81b88c 2257
6539cc05
JW
2258 if (batch > nr_pages) {
2259 batch = nr_pages;
2260 goto retry;
2261 }
6d61ef40 2262
06b078fc
JW
2263 /*
2264 * Unlike in global OOM situations, memcg is not in a physical
2265 * memory shortage. Allow dying and OOM-killed tasks to
2266 * bypass the last charges so that they can exit quickly and
2267 * free their memory.
2268 */
2269 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2270 fatal_signal_pending(current) ||
2271 current->flags & PF_EXITING))
2272 goto bypass;
2273
2274 if (unlikely(task_in_memcg_oom(current)))
2275 goto nomem;
2276
6539cc05
JW
2277 if (!(gfp_mask & __GFP_WAIT))
2278 goto nomem;
4b534334 2279
241994ed
JW
2280 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2281
b70a2a21
JW
2282 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2283 gfp_mask, may_swap);
6539cc05 2284
61e02c74 2285 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2286 goto retry;
28c34c29 2287
b70a2a21 2288 if (!drained) {
6d3d6aa2 2289 drain_all_stock(mem_over_limit);
b70a2a21
JW
2290 drained = true;
2291 goto retry;
2292 }
2293
28c34c29
JW
2294 if (gfp_mask & __GFP_NORETRY)
2295 goto nomem;
6539cc05
JW
2296 /*
2297 * Even though the limit is exceeded at this point, reclaim
2298 * may have been able to free some pages. Retry the charge
2299 * before killing the task.
2300 *
2301 * Only for regular pages, though: huge pages are rather
2302 * unlikely to succeed so close to the limit, and we fall back
2303 * to regular pages anyway in case of failure.
2304 */
61e02c74 2305 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2306 goto retry;
2307 /*
2308 * At task move, charge accounts can be doubly counted. So, it's
2309 * better to wait until the end of task_move if something is going on.
2310 */
2311 if (mem_cgroup_wait_acct_move(mem_over_limit))
2312 goto retry;
2313
9b130619
JW
2314 if (nr_retries--)
2315 goto retry;
2316
06b078fc
JW
2317 if (gfp_mask & __GFP_NOFAIL)
2318 goto bypass;
2319
6539cc05
JW
2320 if (fatal_signal_pending(current))
2321 goto bypass;
2322
241994ed
JW
2323 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2324
61e02c74 2325 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2326nomem:
6d1fdc48 2327 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2328 return -ENOMEM;
867578cb 2329bypass:
ce00a967 2330 return -EINTR;
6539cc05
JW
2331
2332done_restock:
e8ea14cc 2333 css_get_many(&memcg->css, batch);
6539cc05
JW
2334 if (batch > nr_pages)
2335 refill_stock(memcg, batch - nr_pages);
7d638093
VD
2336 if (!(gfp_mask & __GFP_WAIT))
2337 goto done;
241994ed
JW
2338 /*
2339 * If the hierarchy is above the normal consumption range,
2340 * make the charging task trim their excess contribution.
2341 */
2342 do {
2343 if (page_counter_read(&memcg->memory) <= memcg->high)
2344 continue;
2345 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2346 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2347 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2348done:
05b84301 2349 return ret;
7a81b88c 2350}
8a9f3ccd 2351
00501b53 2352static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2353{
ce00a967
JW
2354 if (mem_cgroup_is_root(memcg))
2355 return;
2356
3e32cb2e 2357 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2358 if (do_swap_account)
3e32cb2e 2359 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2360
e8ea14cc 2361 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2362}
2363
0a31bc97
JW
2364/*
2365 * try_get_mem_cgroup_from_page - look up page's memcg association
2366 * @page: the page
2367 *
2368 * Look up, get a css reference, and return the memcg that owns @page.
2369 *
2370 * The page must be locked to prevent racing with swap-in and page
2371 * cache charges. If coming from an unlocked page table, the caller
2372 * must ensure the page is on the LRU or this can race with charging.
2373 */
e42d9d5d 2374struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2375{
29833315 2376 struct mem_cgroup *memcg;
a3b2d692 2377 unsigned short id;
b5a84319
KH
2378 swp_entry_t ent;
2379
309381fe 2380 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2381
1306a85a 2382 memcg = page->mem_cgroup;
29833315
JW
2383 if (memcg) {
2384 if (!css_tryget_online(&memcg->css))
c0ff4b85 2385 memcg = NULL;
e42d9d5d 2386 } else if (PageSwapCache(page)) {
3c776e64 2387 ent.val = page_private(page);
9fb4b7cc 2388 id = lookup_swap_cgroup_id(ent);
a3b2d692 2389 rcu_read_lock();
adbe427b 2390 memcg = mem_cgroup_from_id(id);
ec903c0c 2391 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2392 memcg = NULL;
a3b2d692 2393 rcu_read_unlock();
3c776e64 2394 }
c0ff4b85 2395 return memcg;
b5a84319
KH
2396}
2397
0a31bc97
JW
2398static void lock_page_lru(struct page *page, int *isolated)
2399{
2400 struct zone *zone = page_zone(page);
2401
2402 spin_lock_irq(&zone->lru_lock);
2403 if (PageLRU(page)) {
2404 struct lruvec *lruvec;
2405
2406 lruvec = mem_cgroup_page_lruvec(page, zone);
2407 ClearPageLRU(page);
2408 del_page_from_lru_list(page, lruvec, page_lru(page));
2409 *isolated = 1;
2410 } else
2411 *isolated = 0;
2412}
2413
2414static void unlock_page_lru(struct page *page, int isolated)
2415{
2416 struct zone *zone = page_zone(page);
2417
2418 if (isolated) {
2419 struct lruvec *lruvec;
2420
2421 lruvec = mem_cgroup_page_lruvec(page, zone);
2422 VM_BUG_ON_PAGE(PageLRU(page), page);
2423 SetPageLRU(page);
2424 add_page_to_lru_list(page, lruvec, page_lru(page));
2425 }
2426 spin_unlock_irq(&zone->lru_lock);
2427}
2428
00501b53 2429static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2430 bool lrucare)
7a81b88c 2431{
0a31bc97 2432 int isolated;
9ce70c02 2433
1306a85a 2434 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2435
2436 /*
2437 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2438 * may already be on some other mem_cgroup's LRU. Take care of it.
2439 */
0a31bc97
JW
2440 if (lrucare)
2441 lock_page_lru(page, &isolated);
9ce70c02 2442
0a31bc97
JW
2443 /*
2444 * Nobody should be changing or seriously looking at
1306a85a 2445 * page->mem_cgroup at this point:
0a31bc97
JW
2446 *
2447 * - the page is uncharged
2448 *
2449 * - the page is off-LRU
2450 *
2451 * - an anonymous fault has exclusive page access, except for
2452 * a locked page table
2453 *
2454 * - a page cache insertion, a swapin fault, or a migration
2455 * have the page locked
2456 */
1306a85a 2457 page->mem_cgroup = memcg;
9ce70c02 2458
0a31bc97
JW
2459 if (lrucare)
2460 unlock_page_lru(page, isolated);
7a81b88c 2461}
66e1707b 2462
7ae1e1d0 2463#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2464int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2465 unsigned long nr_pages)
7ae1e1d0 2466{
3e32cb2e 2467 struct page_counter *counter;
7ae1e1d0 2468 int ret = 0;
7ae1e1d0 2469
3e32cb2e
JW
2470 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2471 if (ret < 0)
7ae1e1d0
GC
2472 return ret;
2473
3e32cb2e 2474 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2475 if (ret == -EINTR) {
2476 /*
00501b53
JW
2477 * try_charge() chose to bypass to root due to OOM kill or
2478 * fatal signal. Since our only options are to either fail
2479 * the allocation or charge it to this cgroup, do it as a
2480 * temporary condition. But we can't fail. From a kmem/slab
2481 * perspective, the cache has already been selected, by
2482 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2483 * our minds.
2484 *
2485 * This condition will only trigger if the task entered
00501b53
JW
2486 * memcg_charge_kmem in a sane state, but was OOM-killed
2487 * during try_charge() above. Tasks that were already dying
2488 * when the allocation triggers should have been already
7ae1e1d0
GC
2489 * directed to the root cgroup in memcontrol.h
2490 */
3e32cb2e 2491 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2492 if (do_swap_account)
3e32cb2e 2493 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2494 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2495 ret = 0;
2496 } else if (ret)
3e32cb2e 2497 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2498
2499 return ret;
2500}
2501
dbf22eb6 2502void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2503{
3e32cb2e 2504 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2505 if (do_swap_account)
3e32cb2e 2506 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2507
64f21993 2508 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2509
e8ea14cc 2510 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2511}
2512
2633d7a0
GC
2513/*
2514 * helper for acessing a memcg's index. It will be used as an index in the
2515 * child cache array in kmem_cache, and also to derive its name. This function
2516 * will return -1 when this is not a kmem-limited memcg.
2517 */
2518int memcg_cache_id(struct mem_cgroup *memcg)
2519{
2520 return memcg ? memcg->kmemcg_id : -1;
2521}
2522
f3bb3043 2523static int memcg_alloc_cache_id(void)
55007d84 2524{
f3bb3043
VD
2525 int id, size;
2526 int err;
2527
dbcf73e2 2528 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2529 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2530 if (id < 0)
2531 return id;
55007d84 2532
dbcf73e2 2533 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2534 return id;
2535
2536 /*
2537 * There's no space for the new id in memcg_caches arrays,
2538 * so we have to grow them.
2539 */
05257a1a 2540 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2541
2542 size = 2 * (id + 1);
55007d84
GC
2543 if (size < MEMCG_CACHES_MIN_SIZE)
2544 size = MEMCG_CACHES_MIN_SIZE;
2545 else if (size > MEMCG_CACHES_MAX_SIZE)
2546 size = MEMCG_CACHES_MAX_SIZE;
2547
f3bb3043 2548 err = memcg_update_all_caches(size);
60d3fd32
VD
2549 if (!err)
2550 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2551 if (!err)
2552 memcg_nr_cache_ids = size;
2553
2554 up_write(&memcg_cache_ids_sem);
2555
f3bb3043 2556 if (err) {
dbcf73e2 2557 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2558 return err;
2559 }
2560 return id;
2561}
2562
2563static void memcg_free_cache_id(int id)
2564{
dbcf73e2 2565 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2566}
2567
d5b3cf71 2568struct memcg_kmem_cache_create_work {
5722d094
VD
2569 struct mem_cgroup *memcg;
2570 struct kmem_cache *cachep;
2571 struct work_struct work;
2572};
2573
d5b3cf71 2574static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2575{
d5b3cf71
VD
2576 struct memcg_kmem_cache_create_work *cw =
2577 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2578 struct mem_cgroup *memcg = cw->memcg;
2579 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2580
d5b3cf71 2581 memcg_create_kmem_cache(memcg, cachep);
bd673145 2582
5722d094 2583 css_put(&memcg->css);
d7f25f8a
GC
2584 kfree(cw);
2585}
2586
2587/*
2588 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2589 */
d5b3cf71
VD
2590static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2591 struct kmem_cache *cachep)
d7f25f8a 2592{
d5b3cf71 2593 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2594
776ed0f0 2595 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2596 if (!cw)
d7f25f8a 2597 return;
8135be5a
VD
2598
2599 css_get(&memcg->css);
d7f25f8a
GC
2600
2601 cw->memcg = memcg;
2602 cw->cachep = cachep;
d5b3cf71 2603 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2604
d7f25f8a
GC
2605 schedule_work(&cw->work);
2606}
2607
d5b3cf71
VD
2608static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2609 struct kmem_cache *cachep)
0e9d92f2
GC
2610{
2611 /*
2612 * We need to stop accounting when we kmalloc, because if the
2613 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2614 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2615 *
2616 * However, it is better to enclose the whole function. Depending on
2617 * the debugging options enabled, INIT_WORK(), for instance, can
2618 * trigger an allocation. This too, will make us recurse. Because at
2619 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2620 * the safest choice is to do it like this, wrapping the whole function.
2621 */
6f185c29 2622 current->memcg_kmem_skip_account = 1;
d5b3cf71 2623 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2624 current->memcg_kmem_skip_account = 0;
0e9d92f2 2625}
c67a8a68 2626
d7f25f8a
GC
2627/*
2628 * Return the kmem_cache we're supposed to use for a slab allocation.
2629 * We try to use the current memcg's version of the cache.
2630 *
2631 * If the cache does not exist yet, if we are the first user of it,
2632 * we either create it immediately, if possible, or create it asynchronously
2633 * in a workqueue.
2634 * In the latter case, we will let the current allocation go through with
2635 * the original cache.
2636 *
2637 * Can't be called in interrupt context or from kernel threads.
2638 * This function needs to be called with rcu_read_lock() held.
2639 */
056b7cce 2640struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2641{
2642 struct mem_cgroup *memcg;
959c8963 2643 struct kmem_cache *memcg_cachep;
2a4db7eb 2644 int kmemcg_id;
d7f25f8a 2645
f7ce3190 2646 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2647
9d100c5e 2648 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2649 return cachep;
2650
8135be5a 2651 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2652 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2653 if (kmemcg_id < 0)
ca0dde97 2654 goto out;
d7f25f8a 2655
2a4db7eb 2656 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2657 if (likely(memcg_cachep))
2658 return memcg_cachep;
ca0dde97
LZ
2659
2660 /*
2661 * If we are in a safe context (can wait, and not in interrupt
2662 * context), we could be be predictable and return right away.
2663 * This would guarantee that the allocation being performed
2664 * already belongs in the new cache.
2665 *
2666 * However, there are some clashes that can arrive from locking.
2667 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2668 * memcg_create_kmem_cache, this means no further allocation
2669 * could happen with the slab_mutex held. So it's better to
2670 * defer everything.
ca0dde97 2671 */
d5b3cf71 2672 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2673out:
8135be5a 2674 css_put(&memcg->css);
ca0dde97 2675 return cachep;
d7f25f8a 2676}
d7f25f8a 2677
8135be5a
VD
2678void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2679{
2680 if (!is_root_cache(cachep))
f7ce3190 2681 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2682}
2683
7ae1e1d0
GC
2684/*
2685 * We need to verify if the allocation against current->mm->owner's memcg is
2686 * possible for the given order. But the page is not allocated yet, so we'll
2687 * need a further commit step to do the final arrangements.
2688 *
2689 * It is possible for the task to switch cgroups in this mean time, so at
2690 * commit time, we can't rely on task conversion any longer. We'll then use
2691 * the handle argument to return to the caller which cgroup we should commit
2692 * against. We could also return the memcg directly and avoid the pointer
2693 * passing, but a boolean return value gives better semantics considering
2694 * the compiled-out case as well.
2695 *
2696 * Returning true means the allocation is possible.
2697 */
2698bool
2699__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2700{
2701 struct mem_cgroup *memcg;
2702 int ret;
2703
2704 *_memcg = NULL;
6d42c232 2705
df381975 2706 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2707
cf2b8fbf 2708 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2709 css_put(&memcg->css);
2710 return true;
2711 }
2712
3e32cb2e 2713 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2714 if (!ret)
2715 *_memcg = memcg;
7ae1e1d0
GC
2716
2717 css_put(&memcg->css);
2718 return (ret == 0);
2719}
2720
2721void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2722 int order)
2723{
7ae1e1d0
GC
2724 VM_BUG_ON(mem_cgroup_is_root(memcg));
2725
2726 /* The page allocation failed. Revert */
2727 if (!page) {
3e32cb2e 2728 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2729 return;
2730 }
1306a85a 2731 page->mem_cgroup = memcg;
7ae1e1d0
GC
2732}
2733
2734void __memcg_kmem_uncharge_pages(struct page *page, int order)
2735{
1306a85a 2736 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2737
7ae1e1d0
GC
2738 if (!memcg)
2739 return;
2740
309381fe 2741 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2742
3e32cb2e 2743 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2744 page->mem_cgroup = NULL;
7ae1e1d0 2745}
60d3fd32
VD
2746
2747struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2748{
2749 struct mem_cgroup *memcg = NULL;
2750 struct kmem_cache *cachep;
2751 struct page *page;
2752
2753 page = virt_to_head_page(ptr);
2754 if (PageSlab(page)) {
2755 cachep = page->slab_cache;
2756 if (!is_root_cache(cachep))
f7ce3190 2757 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2758 } else
2759 /* page allocated by alloc_kmem_pages */
2760 memcg = page->mem_cgroup;
2761
2762 return memcg;
2763}
7ae1e1d0
GC
2764#endif /* CONFIG_MEMCG_KMEM */
2765
ca3e0214
KH
2766#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2767
ca3e0214
KH
2768/*
2769 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2770 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2771 * charge/uncharge will be never happen and move_account() is done under
2772 * compound_lock(), so we don't have to take care of races.
ca3e0214 2773 */
e94c8a9c 2774void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2775{
e94c8a9c 2776 int i;
ca3e0214 2777
3d37c4a9
KH
2778 if (mem_cgroup_disabled())
2779 return;
b070e65c 2780
29833315 2781 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2782 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2783
1306a85a 2784 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2785 HPAGE_PMD_NR);
ca3e0214 2786}
12d27107 2787#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2788
c255a458 2789#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2790static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2791 bool charge)
d13d1443 2792{
0a31bc97
JW
2793 int val = (charge) ? 1 : -1;
2794 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2795}
02491447
DN
2796
2797/**
2798 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2799 * @entry: swap entry to be moved
2800 * @from: mem_cgroup which the entry is moved from
2801 * @to: mem_cgroup which the entry is moved to
2802 *
2803 * It succeeds only when the swap_cgroup's record for this entry is the same
2804 * as the mem_cgroup's id of @from.
2805 *
2806 * Returns 0 on success, -EINVAL on failure.
2807 *
3e32cb2e 2808 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2809 * both res and memsw, and called css_get().
2810 */
2811static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2812 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2813{
2814 unsigned short old_id, new_id;
2815
34c00c31
LZ
2816 old_id = mem_cgroup_id(from);
2817 new_id = mem_cgroup_id(to);
02491447
DN
2818
2819 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2820 mem_cgroup_swap_statistics(from, false);
483c30b5 2821 mem_cgroup_swap_statistics(to, true);
02491447
DN
2822 return 0;
2823 }
2824 return -EINVAL;
2825}
2826#else
2827static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2828 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2829{
2830 return -EINVAL;
2831}
8c7c6e34 2832#endif
d13d1443 2833
3e32cb2e 2834static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2835
d38d2a75 2836static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2837 unsigned long limit)
628f4235 2838{
3e32cb2e
JW
2839 unsigned long curusage;
2840 unsigned long oldusage;
2841 bool enlarge = false;
81d39c20 2842 int retry_count;
3e32cb2e 2843 int ret;
81d39c20
KH
2844
2845 /*
2846 * For keeping hierarchical_reclaim simple, how long we should retry
2847 * is depends on callers. We set our retry-count to be function
2848 * of # of children which we should visit in this loop.
2849 */
3e32cb2e
JW
2850 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2851 mem_cgroup_count_children(memcg);
81d39c20 2852
3e32cb2e 2853 oldusage = page_counter_read(&memcg->memory);
628f4235 2854
3e32cb2e 2855 do {
628f4235
KH
2856 if (signal_pending(current)) {
2857 ret = -EINTR;
2858 break;
2859 }
3e32cb2e
JW
2860
2861 mutex_lock(&memcg_limit_mutex);
2862 if (limit > memcg->memsw.limit) {
2863 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2864 ret = -EINVAL;
628f4235
KH
2865 break;
2866 }
3e32cb2e
JW
2867 if (limit > memcg->memory.limit)
2868 enlarge = true;
2869 ret = page_counter_limit(&memcg->memory, limit);
2870 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2871
2872 if (!ret)
2873 break;
2874
b70a2a21
JW
2875 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2876
3e32cb2e 2877 curusage = page_counter_read(&memcg->memory);
81d39c20 2878 /* Usage is reduced ? */
f894ffa8 2879 if (curusage >= oldusage)
81d39c20
KH
2880 retry_count--;
2881 else
2882 oldusage = curusage;
3e32cb2e
JW
2883 } while (retry_count);
2884
3c11ecf4
KH
2885 if (!ret && enlarge)
2886 memcg_oom_recover(memcg);
14797e23 2887
8c7c6e34
KH
2888 return ret;
2889}
2890
338c8431 2891static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2892 unsigned long limit)
8c7c6e34 2893{
3e32cb2e
JW
2894 unsigned long curusage;
2895 unsigned long oldusage;
2896 bool enlarge = false;
81d39c20 2897 int retry_count;
3e32cb2e 2898 int ret;
8c7c6e34 2899
81d39c20 2900 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2901 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2902 mem_cgroup_count_children(memcg);
2903
2904 oldusage = page_counter_read(&memcg->memsw);
2905
2906 do {
8c7c6e34
KH
2907 if (signal_pending(current)) {
2908 ret = -EINTR;
2909 break;
2910 }
3e32cb2e
JW
2911
2912 mutex_lock(&memcg_limit_mutex);
2913 if (limit < memcg->memory.limit) {
2914 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2915 ret = -EINVAL;
8c7c6e34
KH
2916 break;
2917 }
3e32cb2e
JW
2918 if (limit > memcg->memsw.limit)
2919 enlarge = true;
2920 ret = page_counter_limit(&memcg->memsw, limit);
2921 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2922
2923 if (!ret)
2924 break;
2925
b70a2a21
JW
2926 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2927
3e32cb2e 2928 curusage = page_counter_read(&memcg->memsw);
81d39c20 2929 /* Usage is reduced ? */
8c7c6e34 2930 if (curusage >= oldusage)
628f4235 2931 retry_count--;
81d39c20
KH
2932 else
2933 oldusage = curusage;
3e32cb2e
JW
2934 } while (retry_count);
2935
3c11ecf4
KH
2936 if (!ret && enlarge)
2937 memcg_oom_recover(memcg);
3e32cb2e 2938
628f4235
KH
2939 return ret;
2940}
2941
0608f43d
AM
2942unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2943 gfp_t gfp_mask,
2944 unsigned long *total_scanned)
2945{
2946 unsigned long nr_reclaimed = 0;
2947 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2948 unsigned long reclaimed;
2949 int loop = 0;
2950 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2951 unsigned long excess;
0608f43d
AM
2952 unsigned long nr_scanned;
2953
2954 if (order > 0)
2955 return 0;
2956
2957 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2958 /*
2959 * This loop can run a while, specially if mem_cgroup's continuously
2960 * keep exceeding their soft limit and putting the system under
2961 * pressure
2962 */
2963 do {
2964 if (next_mz)
2965 mz = next_mz;
2966 else
2967 mz = mem_cgroup_largest_soft_limit_node(mctz);
2968 if (!mz)
2969 break;
2970
2971 nr_scanned = 0;
2972 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2973 gfp_mask, &nr_scanned);
2974 nr_reclaimed += reclaimed;
2975 *total_scanned += nr_scanned;
0a31bc97 2976 spin_lock_irq(&mctz->lock);
bc2f2e7f 2977 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2978
2979 /*
2980 * If we failed to reclaim anything from this memory cgroup
2981 * it is time to move on to the next cgroup
2982 */
2983 next_mz = NULL;
bc2f2e7f
VD
2984 if (!reclaimed)
2985 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2986
3e32cb2e 2987 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2988 /*
2989 * One school of thought says that we should not add
2990 * back the node to the tree if reclaim returns 0.
2991 * But our reclaim could return 0, simply because due
2992 * to priority we are exposing a smaller subset of
2993 * memory to reclaim from. Consider this as a longer
2994 * term TODO.
2995 */
2996 /* If excess == 0, no tree ops */
cf2c8127 2997 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2998 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2999 css_put(&mz->memcg->css);
3000 loop++;
3001 /*
3002 * Could not reclaim anything and there are no more
3003 * mem cgroups to try or we seem to be looping without
3004 * reclaiming anything.
3005 */
3006 if (!nr_reclaimed &&
3007 (next_mz == NULL ||
3008 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3009 break;
3010 } while (!nr_reclaimed);
3011 if (next_mz)
3012 css_put(&next_mz->memcg->css);
3013 return nr_reclaimed;
3014}
3015
ea280e7b
TH
3016/*
3017 * Test whether @memcg has children, dead or alive. Note that this
3018 * function doesn't care whether @memcg has use_hierarchy enabled and
3019 * returns %true if there are child csses according to the cgroup
3020 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3021 */
b5f99b53
GC
3022static inline bool memcg_has_children(struct mem_cgroup *memcg)
3023{
ea280e7b
TH
3024 bool ret;
3025
696ac172 3026 /*
ea280e7b
TH
3027 * The lock does not prevent addition or deletion of children, but
3028 * it prevents a new child from being initialized based on this
3029 * parent in css_online(), so it's enough to decide whether
3030 * hierarchically inherited attributes can still be changed or not.
696ac172 3031 */
ea280e7b
TH
3032 lockdep_assert_held(&memcg_create_mutex);
3033
3034 rcu_read_lock();
3035 ret = css_next_child(NULL, &memcg->css);
3036 rcu_read_unlock();
3037 return ret;
b5f99b53
GC
3038}
3039
c26251f9
MH
3040/*
3041 * Reclaims as many pages from the given memcg as possible and moves
3042 * the rest to the parent.
3043 *
3044 * Caller is responsible for holding css reference for memcg.
3045 */
3046static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3047{
3048 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3049
c1e862c1
KH
3050 /* we call try-to-free pages for make this cgroup empty */
3051 lru_add_drain_all();
f817ed48 3052 /* try to free all pages in this cgroup */
3e32cb2e 3053 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3054 int progress;
c1e862c1 3055
c26251f9
MH
3056 if (signal_pending(current))
3057 return -EINTR;
3058
b70a2a21
JW
3059 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3060 GFP_KERNEL, true);
c1e862c1 3061 if (!progress) {
f817ed48 3062 nr_retries--;
c1e862c1 3063 /* maybe some writeback is necessary */
8aa7e847 3064 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3065 }
f817ed48
KH
3066
3067 }
ab5196c2
MH
3068
3069 return 0;
cc847582
KH
3070}
3071
6770c64e
TH
3072static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3073 char *buf, size_t nbytes,
3074 loff_t off)
c1e862c1 3075{
6770c64e 3076 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3077
d8423011
MH
3078 if (mem_cgroup_is_root(memcg))
3079 return -EINVAL;
6770c64e 3080 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3081}
3082
182446d0
TH
3083static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3084 struct cftype *cft)
18f59ea7 3085{
182446d0 3086 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3087}
3088
182446d0
TH
3089static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3090 struct cftype *cft, u64 val)
18f59ea7
BS
3091{
3092 int retval = 0;
182446d0 3093 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3094 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3095
0999821b 3096 mutex_lock(&memcg_create_mutex);
567fb435
GC
3097
3098 if (memcg->use_hierarchy == val)
3099 goto out;
3100
18f59ea7 3101 /*
af901ca1 3102 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3103 * in the child subtrees. If it is unset, then the change can
3104 * occur, provided the current cgroup has no children.
3105 *
3106 * For the root cgroup, parent_mem is NULL, we allow value to be
3107 * set if there are no children.
3108 */
c0ff4b85 3109 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3110 (val == 1 || val == 0)) {
ea280e7b 3111 if (!memcg_has_children(memcg))
c0ff4b85 3112 memcg->use_hierarchy = val;
18f59ea7
BS
3113 else
3114 retval = -EBUSY;
3115 } else
3116 retval = -EINVAL;
567fb435
GC
3117
3118out:
0999821b 3119 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3120
3121 return retval;
3122}
3123
3e32cb2e
JW
3124static unsigned long tree_stat(struct mem_cgroup *memcg,
3125 enum mem_cgroup_stat_index idx)
ce00a967
JW
3126{
3127 struct mem_cgroup *iter;
3128 long val = 0;
3129
3130 /* Per-cpu values can be negative, use a signed accumulator */
3131 for_each_mem_cgroup_tree(iter, memcg)
3132 val += mem_cgroup_read_stat(iter, idx);
3133
3134 if (val < 0) /* race ? */
3135 val = 0;
3136 return val;
3137}
3138
3139static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3140{
3141 u64 val;
3142
3e32cb2e
JW
3143 if (mem_cgroup_is_root(memcg)) {
3144 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3145 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3146 if (swap)
3147 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3148 } else {
ce00a967 3149 if (!swap)
3e32cb2e 3150 val = page_counter_read(&memcg->memory);
ce00a967 3151 else
3e32cb2e 3152 val = page_counter_read(&memcg->memsw);
ce00a967 3153 }
ce00a967
JW
3154 return val << PAGE_SHIFT;
3155}
3156
3e32cb2e
JW
3157enum {
3158 RES_USAGE,
3159 RES_LIMIT,
3160 RES_MAX_USAGE,
3161 RES_FAILCNT,
3162 RES_SOFT_LIMIT,
3163};
ce00a967 3164
791badbd 3165static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3166 struct cftype *cft)
8cdea7c0 3167{
182446d0 3168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3169 struct page_counter *counter;
af36f906 3170
3e32cb2e 3171 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3172 case _MEM:
3e32cb2e
JW
3173 counter = &memcg->memory;
3174 break;
8c7c6e34 3175 case _MEMSWAP:
3e32cb2e
JW
3176 counter = &memcg->memsw;
3177 break;
510fc4e1 3178 case _KMEM:
3e32cb2e 3179 counter = &memcg->kmem;
510fc4e1 3180 break;
8c7c6e34
KH
3181 default:
3182 BUG();
8c7c6e34 3183 }
3e32cb2e
JW
3184
3185 switch (MEMFILE_ATTR(cft->private)) {
3186 case RES_USAGE:
3187 if (counter == &memcg->memory)
3188 return mem_cgroup_usage(memcg, false);
3189 if (counter == &memcg->memsw)
3190 return mem_cgroup_usage(memcg, true);
3191 return (u64)page_counter_read(counter) * PAGE_SIZE;
3192 case RES_LIMIT:
3193 return (u64)counter->limit * PAGE_SIZE;
3194 case RES_MAX_USAGE:
3195 return (u64)counter->watermark * PAGE_SIZE;
3196 case RES_FAILCNT:
3197 return counter->failcnt;
3198 case RES_SOFT_LIMIT:
3199 return (u64)memcg->soft_limit * PAGE_SIZE;
3200 default:
3201 BUG();
3202 }
8cdea7c0 3203}
510fc4e1 3204
510fc4e1 3205#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3206static int memcg_activate_kmem(struct mem_cgroup *memcg,
3207 unsigned long nr_pages)
d6441637
VD
3208{
3209 int err = 0;
3210 int memcg_id;
3211
2a4db7eb 3212 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 3213 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 3214 BUG_ON(memcg->kmem_acct_active);
d6441637 3215
510fc4e1
GC
3216 /*
3217 * For simplicity, we won't allow this to be disabled. It also can't
3218 * be changed if the cgroup has children already, or if tasks had
3219 * already joined.
3220 *
3221 * If tasks join before we set the limit, a person looking at
3222 * kmem.usage_in_bytes will have no way to determine when it took
3223 * place, which makes the value quite meaningless.
3224 *
3225 * After it first became limited, changes in the value of the limit are
3226 * of course permitted.
510fc4e1 3227 */
0999821b 3228 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3229 if (cgroup_has_tasks(memcg->css.cgroup) ||
3230 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3231 err = -EBUSY;
3232 mutex_unlock(&memcg_create_mutex);
3233 if (err)
3234 goto out;
510fc4e1 3235
f3bb3043 3236 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3237 if (memcg_id < 0) {
3238 err = memcg_id;
3239 goto out;
3240 }
3241
d6441637 3242 /*
900a38f0
VD
3243 * We couldn't have accounted to this cgroup, because it hasn't got
3244 * activated yet, so this should succeed.
d6441637 3245 */
3e32cb2e 3246 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3247 VM_BUG_ON(err);
3248
3249 static_key_slow_inc(&memcg_kmem_enabled_key);
3250 /*
900a38f0
VD
3251 * A memory cgroup is considered kmem-active as soon as it gets
3252 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3253 * guarantee no one starts accounting before all call sites are
3254 * patched.
3255 */
900a38f0 3256 memcg->kmemcg_id = memcg_id;
2788cf0c 3257 memcg->kmem_acct_activated = true;
2a4db7eb 3258 memcg->kmem_acct_active = true;
510fc4e1 3259out:
d6441637 3260 return err;
d6441637
VD
3261}
3262
d6441637 3263static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3264 unsigned long limit)
d6441637
VD
3265{
3266 int ret;
3267
3e32cb2e 3268 mutex_lock(&memcg_limit_mutex);
d6441637 3269 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3270 ret = memcg_activate_kmem(memcg, limit);
d6441637 3271 else
3e32cb2e
JW
3272 ret = page_counter_limit(&memcg->kmem, limit);
3273 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3274 return ret;
3275}
3276
55007d84 3277static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3278{
55007d84 3279 int ret = 0;
510fc4e1 3280 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3281
d6441637
VD
3282 if (!parent)
3283 return 0;
55007d84 3284
8c0145b6 3285 mutex_lock(&memcg_limit_mutex);
55007d84 3286 /*
d6441637
VD
3287 * If the parent cgroup is not kmem-active now, it cannot be activated
3288 * after this point, because it has at least one child already.
55007d84 3289 */
d6441637 3290 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3291 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3292 mutex_unlock(&memcg_limit_mutex);
55007d84 3293 return ret;
510fc4e1 3294}
d6441637
VD
3295#else
3296static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3297 unsigned long limit)
d6441637
VD
3298{
3299 return -EINVAL;
3300}
6d043990 3301#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3302
628f4235
KH
3303/*
3304 * The user of this function is...
3305 * RES_LIMIT.
3306 */
451af504
TH
3307static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3308 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3309{
451af504 3310 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3311 unsigned long nr_pages;
628f4235
KH
3312 int ret;
3313
451af504 3314 buf = strstrip(buf);
650c5e56 3315 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3316 if (ret)
3317 return ret;
af36f906 3318
3e32cb2e 3319 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3320 case RES_LIMIT:
4b3bde4c
BS
3321 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3322 ret = -EINVAL;
3323 break;
3324 }
3e32cb2e
JW
3325 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3326 case _MEM:
3327 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3328 break;
3e32cb2e
JW
3329 case _MEMSWAP:
3330 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3331 break;
3e32cb2e
JW
3332 case _KMEM:
3333 ret = memcg_update_kmem_limit(memcg, nr_pages);
3334 break;
3335 }
296c81d8 3336 break;
3e32cb2e
JW
3337 case RES_SOFT_LIMIT:
3338 memcg->soft_limit = nr_pages;
3339 ret = 0;
628f4235
KH
3340 break;
3341 }
451af504 3342 return ret ?: nbytes;
8cdea7c0
BS
3343}
3344
6770c64e
TH
3345static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3346 size_t nbytes, loff_t off)
c84872e1 3347{
6770c64e 3348 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3349 struct page_counter *counter;
c84872e1 3350
3e32cb2e
JW
3351 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3352 case _MEM:
3353 counter = &memcg->memory;
3354 break;
3355 case _MEMSWAP:
3356 counter = &memcg->memsw;
3357 break;
3358 case _KMEM:
3359 counter = &memcg->kmem;
3360 break;
3361 default:
3362 BUG();
3363 }
af36f906 3364
3e32cb2e 3365 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3366 case RES_MAX_USAGE:
3e32cb2e 3367 page_counter_reset_watermark(counter);
29f2a4da
PE
3368 break;
3369 case RES_FAILCNT:
3e32cb2e 3370 counter->failcnt = 0;
29f2a4da 3371 break;
3e32cb2e
JW
3372 default:
3373 BUG();
29f2a4da 3374 }
f64c3f54 3375
6770c64e 3376 return nbytes;
c84872e1
PE
3377}
3378
182446d0 3379static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3380 struct cftype *cft)
3381{
182446d0 3382 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3383}
3384
02491447 3385#ifdef CONFIG_MMU
182446d0 3386static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3387 struct cftype *cft, u64 val)
3388{
182446d0 3389 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3390
1dfab5ab 3391 if (val & ~MOVE_MASK)
7dc74be0 3392 return -EINVAL;
ee5e8472 3393
7dc74be0 3394 /*
ee5e8472
GC
3395 * No kind of locking is needed in here, because ->can_attach() will
3396 * check this value once in the beginning of the process, and then carry
3397 * on with stale data. This means that changes to this value will only
3398 * affect task migrations starting after the change.
7dc74be0 3399 */
c0ff4b85 3400 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3401 return 0;
3402}
02491447 3403#else
182446d0 3404static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3405 struct cftype *cft, u64 val)
3406{
3407 return -ENOSYS;
3408}
3409#endif
7dc74be0 3410
406eb0c9 3411#ifdef CONFIG_NUMA
2da8ca82 3412static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3413{
25485de6
GT
3414 struct numa_stat {
3415 const char *name;
3416 unsigned int lru_mask;
3417 };
3418
3419 static const struct numa_stat stats[] = {
3420 { "total", LRU_ALL },
3421 { "file", LRU_ALL_FILE },
3422 { "anon", LRU_ALL_ANON },
3423 { "unevictable", BIT(LRU_UNEVICTABLE) },
3424 };
3425 const struct numa_stat *stat;
406eb0c9 3426 int nid;
25485de6 3427 unsigned long nr;
2da8ca82 3428 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3429
25485de6
GT
3430 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3431 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3432 seq_printf(m, "%s=%lu", stat->name, nr);
3433 for_each_node_state(nid, N_MEMORY) {
3434 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3435 stat->lru_mask);
3436 seq_printf(m, " N%d=%lu", nid, nr);
3437 }
3438 seq_putc(m, '\n');
406eb0c9 3439 }
406eb0c9 3440
071aee13
YH
3441 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3442 struct mem_cgroup *iter;
3443
3444 nr = 0;
3445 for_each_mem_cgroup_tree(iter, memcg)
3446 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3447 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3448 for_each_node_state(nid, N_MEMORY) {
3449 nr = 0;
3450 for_each_mem_cgroup_tree(iter, memcg)
3451 nr += mem_cgroup_node_nr_lru_pages(
3452 iter, nid, stat->lru_mask);
3453 seq_printf(m, " N%d=%lu", nid, nr);
3454 }
3455 seq_putc(m, '\n');
406eb0c9 3456 }
406eb0c9 3457
406eb0c9
YH
3458 return 0;
3459}
3460#endif /* CONFIG_NUMA */
3461
2da8ca82 3462static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3463{
2da8ca82 3464 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3465 unsigned long memory, memsw;
af7c4b0e
JW
3466 struct mem_cgroup *mi;
3467 unsigned int i;
406eb0c9 3468
0ca44b14
GT
3469 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3470 MEM_CGROUP_STAT_NSTATS);
3471 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3472 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3473 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3474
af7c4b0e 3475 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3476 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3477 continue;
af7c4b0e
JW
3478 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3479 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3480 }
7b854121 3481
af7c4b0e
JW
3482 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3483 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3484 mem_cgroup_read_events(memcg, i));
3485
3486 for (i = 0; i < NR_LRU_LISTS; i++)
3487 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3488 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3489
14067bb3 3490 /* Hierarchical information */
3e32cb2e
JW
3491 memory = memsw = PAGE_COUNTER_MAX;
3492 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3493 memory = min(memory, mi->memory.limit);
3494 memsw = min(memsw, mi->memsw.limit);
fee7b548 3495 }
3e32cb2e
JW
3496 seq_printf(m, "hierarchical_memory_limit %llu\n",
3497 (u64)memory * PAGE_SIZE);
3498 if (do_swap_account)
3499 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3500 (u64)memsw * PAGE_SIZE);
7f016ee8 3501
af7c4b0e
JW
3502 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3503 long long val = 0;
3504
bff6bb83 3505 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3506 continue;
af7c4b0e
JW
3507 for_each_mem_cgroup_tree(mi, memcg)
3508 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3509 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3510 }
3511
3512 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3513 unsigned long long val = 0;
3514
3515 for_each_mem_cgroup_tree(mi, memcg)
3516 val += mem_cgroup_read_events(mi, i);
3517 seq_printf(m, "total_%s %llu\n",
3518 mem_cgroup_events_names[i], val);
3519 }
3520
3521 for (i = 0; i < NR_LRU_LISTS; i++) {
3522 unsigned long long val = 0;
3523
3524 for_each_mem_cgroup_tree(mi, memcg)
3525 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3526 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3527 }
14067bb3 3528
7f016ee8 3529#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3530 {
3531 int nid, zid;
3532 struct mem_cgroup_per_zone *mz;
89abfab1 3533 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3534 unsigned long recent_rotated[2] = {0, 0};
3535 unsigned long recent_scanned[2] = {0, 0};
3536
3537 for_each_online_node(nid)
3538 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3539 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3540 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3541
89abfab1
HD
3542 recent_rotated[0] += rstat->recent_rotated[0];
3543 recent_rotated[1] += rstat->recent_rotated[1];
3544 recent_scanned[0] += rstat->recent_scanned[0];
3545 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3546 }
78ccf5b5
JW
3547 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3548 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3549 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3550 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3551 }
3552#endif
3553
d2ceb9b7
KH
3554 return 0;
3555}
3556
182446d0
TH
3557static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3558 struct cftype *cft)
a7885eb8 3559{
182446d0 3560 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3561
1f4c025b 3562 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3563}
3564
182446d0
TH
3565static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3566 struct cftype *cft, u64 val)
a7885eb8 3567{
182446d0 3568 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3569
3dae7fec 3570 if (val > 100)
a7885eb8
KM
3571 return -EINVAL;
3572
14208b0e 3573 if (css->parent)
3dae7fec
JW
3574 memcg->swappiness = val;
3575 else
3576 vm_swappiness = val;
068b38c1 3577
a7885eb8
KM
3578 return 0;
3579}
3580
2e72b634
KS
3581static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3582{
3583 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3584 unsigned long usage;
2e72b634
KS
3585 int i;
3586
3587 rcu_read_lock();
3588 if (!swap)
2c488db2 3589 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3590 else
2c488db2 3591 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3592
3593 if (!t)
3594 goto unlock;
3595
ce00a967 3596 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3597
3598 /*
748dad36 3599 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3600 * If it's not true, a threshold was crossed after last
3601 * call of __mem_cgroup_threshold().
3602 */
5407a562 3603 i = t->current_threshold;
2e72b634
KS
3604
3605 /*
3606 * Iterate backward over array of thresholds starting from
3607 * current_threshold and check if a threshold is crossed.
3608 * If none of thresholds below usage is crossed, we read
3609 * only one element of the array here.
3610 */
3611 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3612 eventfd_signal(t->entries[i].eventfd, 1);
3613
3614 /* i = current_threshold + 1 */
3615 i++;
3616
3617 /*
3618 * Iterate forward over array of thresholds starting from
3619 * current_threshold+1 and check if a threshold is crossed.
3620 * If none of thresholds above usage is crossed, we read
3621 * only one element of the array here.
3622 */
3623 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3624 eventfd_signal(t->entries[i].eventfd, 1);
3625
3626 /* Update current_threshold */
5407a562 3627 t->current_threshold = i - 1;
2e72b634
KS
3628unlock:
3629 rcu_read_unlock();
3630}
3631
3632static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3633{
ad4ca5f4
KS
3634 while (memcg) {
3635 __mem_cgroup_threshold(memcg, false);
3636 if (do_swap_account)
3637 __mem_cgroup_threshold(memcg, true);
3638
3639 memcg = parent_mem_cgroup(memcg);
3640 }
2e72b634
KS
3641}
3642
3643static int compare_thresholds(const void *a, const void *b)
3644{
3645 const struct mem_cgroup_threshold *_a = a;
3646 const struct mem_cgroup_threshold *_b = b;
3647
2bff24a3
GT
3648 if (_a->threshold > _b->threshold)
3649 return 1;
3650
3651 if (_a->threshold < _b->threshold)
3652 return -1;
3653
3654 return 0;
2e72b634
KS
3655}
3656
c0ff4b85 3657static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3658{
3659 struct mem_cgroup_eventfd_list *ev;
3660
2bcf2e92
MH
3661 spin_lock(&memcg_oom_lock);
3662
c0ff4b85 3663 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3664 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3665
3666 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3667 return 0;
3668}
3669
c0ff4b85 3670static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3671{
7d74b06f
KH
3672 struct mem_cgroup *iter;
3673
c0ff4b85 3674 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3675 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3676}
3677
59b6f873 3678static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3679 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3680{
2c488db2
KS
3681 struct mem_cgroup_thresholds *thresholds;
3682 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3683 unsigned long threshold;
3684 unsigned long usage;
2c488db2 3685 int i, size, ret;
2e72b634 3686
650c5e56 3687 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3688 if (ret)
3689 return ret;
3690
3691 mutex_lock(&memcg->thresholds_lock);
2c488db2 3692
05b84301 3693 if (type == _MEM) {
2c488db2 3694 thresholds = &memcg->thresholds;
ce00a967 3695 usage = mem_cgroup_usage(memcg, false);
05b84301 3696 } else if (type == _MEMSWAP) {
2c488db2 3697 thresholds = &memcg->memsw_thresholds;
ce00a967 3698 usage = mem_cgroup_usage(memcg, true);
05b84301 3699 } else
2e72b634
KS
3700 BUG();
3701
2e72b634 3702 /* Check if a threshold crossed before adding a new one */
2c488db2 3703 if (thresholds->primary)
2e72b634
KS
3704 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3705
2c488db2 3706 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3707
3708 /* Allocate memory for new array of thresholds */
2c488db2 3709 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3710 GFP_KERNEL);
2c488db2 3711 if (!new) {
2e72b634
KS
3712 ret = -ENOMEM;
3713 goto unlock;
3714 }
2c488db2 3715 new->size = size;
2e72b634
KS
3716
3717 /* Copy thresholds (if any) to new array */
2c488db2
KS
3718 if (thresholds->primary) {
3719 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3720 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3721 }
3722
2e72b634 3723 /* Add new threshold */
2c488db2
KS
3724 new->entries[size - 1].eventfd = eventfd;
3725 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3726
3727 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3728 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3729 compare_thresholds, NULL);
3730
3731 /* Find current threshold */
2c488db2 3732 new->current_threshold = -1;
2e72b634 3733 for (i = 0; i < size; i++) {
748dad36 3734 if (new->entries[i].threshold <= usage) {
2e72b634 3735 /*
2c488db2
KS
3736 * new->current_threshold will not be used until
3737 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3738 * it here.
3739 */
2c488db2 3740 ++new->current_threshold;
748dad36
SZ
3741 } else
3742 break;
2e72b634
KS
3743 }
3744
2c488db2
KS
3745 /* Free old spare buffer and save old primary buffer as spare */
3746 kfree(thresholds->spare);
3747 thresholds->spare = thresholds->primary;
3748
3749 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3750
907860ed 3751 /* To be sure that nobody uses thresholds */
2e72b634
KS
3752 synchronize_rcu();
3753
2e72b634
KS
3754unlock:
3755 mutex_unlock(&memcg->thresholds_lock);
3756
3757 return ret;
3758}
3759
59b6f873 3760static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3761 struct eventfd_ctx *eventfd, const char *args)
3762{
59b6f873 3763 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3764}
3765
59b6f873 3766static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3767 struct eventfd_ctx *eventfd, const char *args)
3768{
59b6f873 3769 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3770}
3771
59b6f873 3772static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3773 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3774{
2c488db2
KS
3775 struct mem_cgroup_thresholds *thresholds;
3776 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3777 unsigned long usage;
2c488db2 3778 int i, j, size;
2e72b634
KS
3779
3780 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3781
3782 if (type == _MEM) {
2c488db2 3783 thresholds = &memcg->thresholds;
ce00a967 3784 usage = mem_cgroup_usage(memcg, false);
05b84301 3785 } else if (type == _MEMSWAP) {
2c488db2 3786 thresholds = &memcg->memsw_thresholds;
ce00a967 3787 usage = mem_cgroup_usage(memcg, true);
05b84301 3788 } else
2e72b634
KS
3789 BUG();
3790
371528ca
AV
3791 if (!thresholds->primary)
3792 goto unlock;
3793
2e72b634
KS
3794 /* Check if a threshold crossed before removing */
3795 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3796
3797 /* Calculate new number of threshold */
2c488db2
KS
3798 size = 0;
3799 for (i = 0; i < thresholds->primary->size; i++) {
3800 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3801 size++;
3802 }
3803
2c488db2 3804 new = thresholds->spare;
907860ed 3805
2e72b634
KS
3806 /* Set thresholds array to NULL if we don't have thresholds */
3807 if (!size) {
2c488db2
KS
3808 kfree(new);
3809 new = NULL;
907860ed 3810 goto swap_buffers;
2e72b634
KS
3811 }
3812
2c488db2 3813 new->size = size;
2e72b634
KS
3814
3815 /* Copy thresholds and find current threshold */
2c488db2
KS
3816 new->current_threshold = -1;
3817 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3818 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3819 continue;
3820
2c488db2 3821 new->entries[j] = thresholds->primary->entries[i];
748dad36 3822 if (new->entries[j].threshold <= usage) {
2e72b634 3823 /*
2c488db2 3824 * new->current_threshold will not be used
2e72b634
KS
3825 * until rcu_assign_pointer(), so it's safe to increment
3826 * it here.
3827 */
2c488db2 3828 ++new->current_threshold;
2e72b634
KS
3829 }
3830 j++;
3831 }
3832
907860ed 3833swap_buffers:
2c488db2
KS
3834 /* Swap primary and spare array */
3835 thresholds->spare = thresholds->primary;
8c757763
SZ
3836 /* If all events are unregistered, free the spare array */
3837 if (!new) {
3838 kfree(thresholds->spare);
3839 thresholds->spare = NULL;
3840 }
3841
2c488db2 3842 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3843
907860ed 3844 /* To be sure that nobody uses thresholds */
2e72b634 3845 synchronize_rcu();
371528ca 3846unlock:
2e72b634 3847 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3848}
c1e862c1 3849
59b6f873 3850static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3851 struct eventfd_ctx *eventfd)
3852{
59b6f873 3853 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3854}
3855
59b6f873 3856static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3857 struct eventfd_ctx *eventfd)
3858{
59b6f873 3859 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3860}
3861
59b6f873 3862static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3863 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3864{
9490ff27 3865 struct mem_cgroup_eventfd_list *event;
9490ff27 3866
9490ff27
KH
3867 event = kmalloc(sizeof(*event), GFP_KERNEL);
3868 if (!event)
3869 return -ENOMEM;
3870
1af8efe9 3871 spin_lock(&memcg_oom_lock);
9490ff27
KH
3872
3873 event->eventfd = eventfd;
3874 list_add(&event->list, &memcg->oom_notify);
3875
3876 /* already in OOM ? */
c2b42d3c 3877 if (memcg->under_oom)
9490ff27 3878 eventfd_signal(eventfd, 1);
1af8efe9 3879 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3880
3881 return 0;
3882}
3883
59b6f873 3884static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3885 struct eventfd_ctx *eventfd)
9490ff27 3886{
9490ff27 3887 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3888
1af8efe9 3889 spin_lock(&memcg_oom_lock);
9490ff27 3890
c0ff4b85 3891 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3892 if (ev->eventfd == eventfd) {
3893 list_del(&ev->list);
3894 kfree(ev);
3895 }
3896 }
3897
1af8efe9 3898 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3899}
3900
2da8ca82 3901static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3902{
2da8ca82 3903 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3904
791badbd 3905 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3906 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3907 return 0;
3908}
3909
182446d0 3910static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3911 struct cftype *cft, u64 val)
3912{
182446d0 3913 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3914
3915 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3916 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3917 return -EINVAL;
3918
c0ff4b85 3919 memcg->oom_kill_disable = val;
4d845ebf 3920 if (!val)
c0ff4b85 3921 memcg_oom_recover(memcg);
3dae7fec 3922
3c11ecf4
KH
3923 return 0;
3924}
3925
c255a458 3926#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3927static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3928{
55007d84
GC
3929 int ret;
3930
55007d84
GC
3931 ret = memcg_propagate_kmem(memcg);
3932 if (ret)
3933 return ret;
2633d7a0 3934
1d62e436 3935 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3936}
e5671dfa 3937
2a4db7eb
VD
3938static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3939{
2788cf0c
VD
3940 struct cgroup_subsys_state *css;
3941 struct mem_cgroup *parent, *child;
3942 int kmemcg_id;
3943
2a4db7eb
VD
3944 if (!memcg->kmem_acct_active)
3945 return;
3946
3947 /*
3948 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3949 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3950 * guarantees no cache will be created for this cgroup after we are
3951 * done (see memcg_create_kmem_cache()).
3952 */
3953 memcg->kmem_acct_active = false;
3954
3955 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3956
3957 kmemcg_id = memcg->kmemcg_id;
3958 BUG_ON(kmemcg_id < 0);
3959
3960 parent = parent_mem_cgroup(memcg);
3961 if (!parent)
3962 parent = root_mem_cgroup;
3963
3964 /*
3965 * Change kmemcg_id of this cgroup and all its descendants to the
3966 * parent's id, and then move all entries from this cgroup's list_lrus
3967 * to ones of the parent. After we have finished, all list_lrus
3968 * corresponding to this cgroup are guaranteed to remain empty. The
3969 * ordering is imposed by list_lru_node->lock taken by
3970 * memcg_drain_all_list_lrus().
3971 */
3972 css_for_each_descendant_pre(css, &memcg->css) {
3973 child = mem_cgroup_from_css(css);
3974 BUG_ON(child->kmemcg_id != kmemcg_id);
3975 child->kmemcg_id = parent->kmemcg_id;
3976 if (!memcg->use_hierarchy)
3977 break;
3978 }
3979 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3980
3981 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3982}
3983
10d5ebf4 3984static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3985{
f48b80a5
VD
3986 if (memcg->kmem_acct_activated) {
3987 memcg_destroy_kmem_caches(memcg);
3988 static_key_slow_dec(&memcg_kmem_enabled_key);
3989 WARN_ON(page_counter_read(&memcg->kmem));
3990 }
1d62e436 3991 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3992}
e5671dfa 3993#else
cbe128e3 3994static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3995{
3996 return 0;
3997}
d1a4c0b3 3998
2a4db7eb
VD
3999static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4000{
4001}
4002
10d5ebf4
LZ
4003static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4004{
4005}
e5671dfa
GC
4006#endif
4007
52ebea74
TH
4008#ifdef CONFIG_CGROUP_WRITEBACK
4009
4010struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
4011{
4012 return &memcg->cgwb_list;
4013}
4014
841710aa
TH
4015static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4016{
4017 return wb_domain_init(&memcg->cgwb_domain, gfp);
4018}
4019
4020static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4021{
4022 wb_domain_exit(&memcg->cgwb_domain);
4023}
4024
2529bb3a
TH
4025static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4026{
4027 wb_domain_size_changed(&memcg->cgwb_domain);
4028}
4029
841710aa
TH
4030struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4031{
4032 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4033
4034 if (!memcg->css.parent)
4035 return NULL;
4036
4037 return &memcg->cgwb_domain;
4038}
4039
c2aa723a
TH
4040/**
4041 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4042 * @wb: bdi_writeback in question
4043 * @pavail: out parameter for number of available pages
4044 * @pdirty: out parameter for number of dirty pages
4045 * @pwriteback: out parameter for number of pages under writeback
4046 *
4047 * Determine the numbers of available, dirty, and writeback pages in @wb's
4048 * memcg. Dirty and writeback are self-explanatory. Available is a bit
4049 * more involved.
4050 *
4051 * A memcg's headroom is "min(max, high) - used". The available memory is
4052 * calculated as the lowest headroom of itself and the ancestors plus the
4053 * number of pages already being used for file pages. Note that this
4054 * doesn't consider the actual amount of available memory in the system.
4055 * The caller should further cap *@pavail accordingly.
4056 */
4057void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
4058 unsigned long *pdirty, unsigned long *pwriteback)
4059{
4060 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4061 struct mem_cgroup *parent;
4062 unsigned long head_room = PAGE_COUNTER_MAX;
4063 unsigned long file_pages;
4064
4065 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
4066
4067 /* this should eventually include NR_UNSTABLE_NFS */
4068 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
4069
4070 file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
4071 (1 << LRU_ACTIVE_FILE));
4072 while ((parent = parent_mem_cgroup(memcg))) {
4073 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
4074 unsigned long used = page_counter_read(&memcg->memory);
4075
4076 head_room = min(head_room, ceiling - min(ceiling, used));
4077 memcg = parent;
4078 }
4079
4080 *pavail = file_pages + head_room;
4081}
4082
841710aa
TH
4083#else /* CONFIG_CGROUP_WRITEBACK */
4084
4085static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4086{
4087 return 0;
4088}
4089
4090static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4091{
4092}
4093
2529bb3a
TH
4094static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4095{
4096}
4097
52ebea74
TH
4098#endif /* CONFIG_CGROUP_WRITEBACK */
4099
3bc942f3
TH
4100/*
4101 * DO NOT USE IN NEW FILES.
4102 *
4103 * "cgroup.event_control" implementation.
4104 *
4105 * This is way over-engineered. It tries to support fully configurable
4106 * events for each user. Such level of flexibility is completely
4107 * unnecessary especially in the light of the planned unified hierarchy.
4108 *
4109 * Please deprecate this and replace with something simpler if at all
4110 * possible.
4111 */
4112
79bd9814
TH
4113/*
4114 * Unregister event and free resources.
4115 *
4116 * Gets called from workqueue.
4117 */
3bc942f3 4118static void memcg_event_remove(struct work_struct *work)
79bd9814 4119{
3bc942f3
TH
4120 struct mem_cgroup_event *event =
4121 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4122 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4123
4124 remove_wait_queue(event->wqh, &event->wait);
4125
59b6f873 4126 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4127
4128 /* Notify userspace the event is going away. */
4129 eventfd_signal(event->eventfd, 1);
4130
4131 eventfd_ctx_put(event->eventfd);
4132 kfree(event);
59b6f873 4133 css_put(&memcg->css);
79bd9814
TH
4134}
4135
4136/*
4137 * Gets called on POLLHUP on eventfd when user closes it.
4138 *
4139 * Called with wqh->lock held and interrupts disabled.
4140 */
3bc942f3
TH
4141static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4142 int sync, void *key)
79bd9814 4143{
3bc942f3
TH
4144 struct mem_cgroup_event *event =
4145 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4146 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4147 unsigned long flags = (unsigned long)key;
4148
4149 if (flags & POLLHUP) {
4150 /*
4151 * If the event has been detached at cgroup removal, we
4152 * can simply return knowing the other side will cleanup
4153 * for us.
4154 *
4155 * We can't race against event freeing since the other
4156 * side will require wqh->lock via remove_wait_queue(),
4157 * which we hold.
4158 */
fba94807 4159 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4160 if (!list_empty(&event->list)) {
4161 list_del_init(&event->list);
4162 /*
4163 * We are in atomic context, but cgroup_event_remove()
4164 * may sleep, so we have to call it in workqueue.
4165 */
4166 schedule_work(&event->remove);
4167 }
fba94807 4168 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4169 }
4170
4171 return 0;
4172}
4173
3bc942f3 4174static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4175 wait_queue_head_t *wqh, poll_table *pt)
4176{
3bc942f3
TH
4177 struct mem_cgroup_event *event =
4178 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4179
4180 event->wqh = wqh;
4181 add_wait_queue(wqh, &event->wait);
4182}
4183
4184/*
3bc942f3
TH
4185 * DO NOT USE IN NEW FILES.
4186 *
79bd9814
TH
4187 * Parse input and register new cgroup event handler.
4188 *
4189 * Input must be in format '<event_fd> <control_fd> <args>'.
4190 * Interpretation of args is defined by control file implementation.
4191 */
451af504
TH
4192static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4193 char *buf, size_t nbytes, loff_t off)
79bd9814 4194{
451af504 4195 struct cgroup_subsys_state *css = of_css(of);
fba94807 4196 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4197 struct mem_cgroup_event *event;
79bd9814
TH
4198 struct cgroup_subsys_state *cfile_css;
4199 unsigned int efd, cfd;
4200 struct fd efile;
4201 struct fd cfile;
fba94807 4202 const char *name;
79bd9814
TH
4203 char *endp;
4204 int ret;
4205
451af504
TH
4206 buf = strstrip(buf);
4207
4208 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4209 if (*endp != ' ')
4210 return -EINVAL;
451af504 4211 buf = endp + 1;
79bd9814 4212
451af504 4213 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4214 if ((*endp != ' ') && (*endp != '\0'))
4215 return -EINVAL;
451af504 4216 buf = endp + 1;
79bd9814
TH
4217
4218 event = kzalloc(sizeof(*event), GFP_KERNEL);
4219 if (!event)
4220 return -ENOMEM;
4221
59b6f873 4222 event->memcg = memcg;
79bd9814 4223 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4224 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4225 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4226 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4227
4228 efile = fdget(efd);
4229 if (!efile.file) {
4230 ret = -EBADF;
4231 goto out_kfree;
4232 }
4233
4234 event->eventfd = eventfd_ctx_fileget(efile.file);
4235 if (IS_ERR(event->eventfd)) {
4236 ret = PTR_ERR(event->eventfd);
4237 goto out_put_efile;
4238 }
4239
4240 cfile = fdget(cfd);
4241 if (!cfile.file) {
4242 ret = -EBADF;
4243 goto out_put_eventfd;
4244 }
4245
4246 /* the process need read permission on control file */
4247 /* AV: shouldn't we check that it's been opened for read instead? */
4248 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4249 if (ret < 0)
4250 goto out_put_cfile;
4251
fba94807
TH
4252 /*
4253 * Determine the event callbacks and set them in @event. This used
4254 * to be done via struct cftype but cgroup core no longer knows
4255 * about these events. The following is crude but the whole thing
4256 * is for compatibility anyway.
3bc942f3
TH
4257 *
4258 * DO NOT ADD NEW FILES.
fba94807 4259 */
b583043e 4260 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4261
4262 if (!strcmp(name, "memory.usage_in_bytes")) {
4263 event->register_event = mem_cgroup_usage_register_event;
4264 event->unregister_event = mem_cgroup_usage_unregister_event;
4265 } else if (!strcmp(name, "memory.oom_control")) {
4266 event->register_event = mem_cgroup_oom_register_event;
4267 event->unregister_event = mem_cgroup_oom_unregister_event;
4268 } else if (!strcmp(name, "memory.pressure_level")) {
4269 event->register_event = vmpressure_register_event;
4270 event->unregister_event = vmpressure_unregister_event;
4271 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4272 event->register_event = memsw_cgroup_usage_register_event;
4273 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4274 } else {
4275 ret = -EINVAL;
4276 goto out_put_cfile;
4277 }
4278
79bd9814 4279 /*
b5557c4c
TH
4280 * Verify @cfile should belong to @css. Also, remaining events are
4281 * automatically removed on cgroup destruction but the removal is
4282 * asynchronous, so take an extra ref on @css.
79bd9814 4283 */
b583043e 4284 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4285 &memory_cgrp_subsys);
79bd9814 4286 ret = -EINVAL;
5a17f543 4287 if (IS_ERR(cfile_css))
79bd9814 4288 goto out_put_cfile;
5a17f543
TH
4289 if (cfile_css != css) {
4290 css_put(cfile_css);
79bd9814 4291 goto out_put_cfile;
5a17f543 4292 }
79bd9814 4293
451af504 4294 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4295 if (ret)
4296 goto out_put_css;
4297
4298 efile.file->f_op->poll(efile.file, &event->pt);
4299
fba94807
TH
4300 spin_lock(&memcg->event_list_lock);
4301 list_add(&event->list, &memcg->event_list);
4302 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4303
4304 fdput(cfile);
4305 fdput(efile);
4306
451af504 4307 return nbytes;
79bd9814
TH
4308
4309out_put_css:
b5557c4c 4310 css_put(css);
79bd9814
TH
4311out_put_cfile:
4312 fdput(cfile);
4313out_put_eventfd:
4314 eventfd_ctx_put(event->eventfd);
4315out_put_efile:
4316 fdput(efile);
4317out_kfree:
4318 kfree(event);
4319
4320 return ret;
4321}
4322
241994ed 4323static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4324 {
0eea1030 4325 .name = "usage_in_bytes",
8c7c6e34 4326 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4327 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4328 },
c84872e1
PE
4329 {
4330 .name = "max_usage_in_bytes",
8c7c6e34 4331 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4332 .write = mem_cgroup_reset,
791badbd 4333 .read_u64 = mem_cgroup_read_u64,
c84872e1 4334 },
8cdea7c0 4335 {
0eea1030 4336 .name = "limit_in_bytes",
8c7c6e34 4337 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4338 .write = mem_cgroup_write,
791badbd 4339 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4340 },
296c81d8
BS
4341 {
4342 .name = "soft_limit_in_bytes",
4343 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4344 .write = mem_cgroup_write,
791badbd 4345 .read_u64 = mem_cgroup_read_u64,
296c81d8 4346 },
8cdea7c0
BS
4347 {
4348 .name = "failcnt",
8c7c6e34 4349 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4350 .write = mem_cgroup_reset,
791badbd 4351 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4352 },
d2ceb9b7
KH
4353 {
4354 .name = "stat",
2da8ca82 4355 .seq_show = memcg_stat_show,
d2ceb9b7 4356 },
c1e862c1
KH
4357 {
4358 .name = "force_empty",
6770c64e 4359 .write = mem_cgroup_force_empty_write,
c1e862c1 4360 },
18f59ea7
BS
4361 {
4362 .name = "use_hierarchy",
4363 .write_u64 = mem_cgroup_hierarchy_write,
4364 .read_u64 = mem_cgroup_hierarchy_read,
4365 },
79bd9814 4366 {
3bc942f3 4367 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4368 .write = memcg_write_event_control,
79bd9814
TH
4369 .flags = CFTYPE_NO_PREFIX,
4370 .mode = S_IWUGO,
4371 },
a7885eb8
KM
4372 {
4373 .name = "swappiness",
4374 .read_u64 = mem_cgroup_swappiness_read,
4375 .write_u64 = mem_cgroup_swappiness_write,
4376 },
7dc74be0
DN
4377 {
4378 .name = "move_charge_at_immigrate",
4379 .read_u64 = mem_cgroup_move_charge_read,
4380 .write_u64 = mem_cgroup_move_charge_write,
4381 },
9490ff27
KH
4382 {
4383 .name = "oom_control",
2da8ca82 4384 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4385 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4386 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4387 },
70ddf637
AV
4388 {
4389 .name = "pressure_level",
70ddf637 4390 },
406eb0c9
YH
4391#ifdef CONFIG_NUMA
4392 {
4393 .name = "numa_stat",
2da8ca82 4394 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4395 },
4396#endif
510fc4e1
GC
4397#ifdef CONFIG_MEMCG_KMEM
4398 {
4399 .name = "kmem.limit_in_bytes",
4400 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4401 .write = mem_cgroup_write,
791badbd 4402 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4403 },
4404 {
4405 .name = "kmem.usage_in_bytes",
4406 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4407 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4408 },
4409 {
4410 .name = "kmem.failcnt",
4411 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4412 .write = mem_cgroup_reset,
791badbd 4413 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4414 },
4415 {
4416 .name = "kmem.max_usage_in_bytes",
4417 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4418 .write = mem_cgroup_reset,
791badbd 4419 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4420 },
749c5415
GC
4421#ifdef CONFIG_SLABINFO
4422 {
4423 .name = "kmem.slabinfo",
b047501c
VD
4424 .seq_start = slab_start,
4425 .seq_next = slab_next,
4426 .seq_stop = slab_stop,
4427 .seq_show = memcg_slab_show,
749c5415
GC
4428 },
4429#endif
8c7c6e34 4430#endif
6bc10349 4431 { }, /* terminate */
af36f906 4432};
8c7c6e34 4433
c0ff4b85 4434static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4435{
4436 struct mem_cgroup_per_node *pn;
1ecaab2b 4437 struct mem_cgroup_per_zone *mz;
41e3355d 4438 int zone, tmp = node;
1ecaab2b
KH
4439 /*
4440 * This routine is called against possible nodes.
4441 * But it's BUG to call kmalloc() against offline node.
4442 *
4443 * TODO: this routine can waste much memory for nodes which will
4444 * never be onlined. It's better to use memory hotplug callback
4445 * function.
4446 */
41e3355d
KH
4447 if (!node_state(node, N_NORMAL_MEMORY))
4448 tmp = -1;
17295c88 4449 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4450 if (!pn)
4451 return 1;
1ecaab2b 4452
1ecaab2b
KH
4453 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4454 mz = &pn->zoneinfo[zone];
bea8c150 4455 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4456 mz->usage_in_excess = 0;
4457 mz->on_tree = false;
d79154bb 4458 mz->memcg = memcg;
1ecaab2b 4459 }
54f72fe0 4460 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4461 return 0;
4462}
4463
c0ff4b85 4464static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4465{
54f72fe0 4466 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4467}
4468
33327948
KH
4469static struct mem_cgroup *mem_cgroup_alloc(void)
4470{
d79154bb 4471 struct mem_cgroup *memcg;
8ff69e2c 4472 size_t size;
33327948 4473
8ff69e2c
VD
4474 size = sizeof(struct mem_cgroup);
4475 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4476
8ff69e2c 4477 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4478 if (!memcg)
e7bbcdf3
DC
4479 return NULL;
4480
d79154bb
HD
4481 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4482 if (!memcg->stat)
d2e61b8d 4483 goto out_free;
841710aa
TH
4484
4485 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4486 goto out_free_stat;
4487
d79154bb
HD
4488 spin_lock_init(&memcg->pcp_counter_lock);
4489 return memcg;
d2e61b8d 4490
841710aa
TH
4491out_free_stat:
4492 free_percpu(memcg->stat);
d2e61b8d 4493out_free:
8ff69e2c 4494 kfree(memcg);
d2e61b8d 4495 return NULL;
33327948
KH
4496}
4497
59927fb9 4498/*
c8b2a36f
GC
4499 * At destroying mem_cgroup, references from swap_cgroup can remain.
4500 * (scanning all at force_empty is too costly...)
4501 *
4502 * Instead of clearing all references at force_empty, we remember
4503 * the number of reference from swap_cgroup and free mem_cgroup when
4504 * it goes down to 0.
4505 *
4506 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4507 */
c8b2a36f
GC
4508
4509static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4510{
c8b2a36f 4511 int node;
59927fb9 4512
bb4cc1a8 4513 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4514
4515 for_each_node(node)
4516 free_mem_cgroup_per_zone_info(memcg, node);
4517
4518 free_percpu(memcg->stat);
841710aa 4519 memcg_wb_domain_exit(memcg);
8ff69e2c 4520 kfree(memcg);
59927fb9 4521}
3afe36b1 4522
7bcc1bb1
DN
4523/*
4524 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4525 */
e1aab161 4526struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4527{
3e32cb2e 4528 if (!memcg->memory.parent)
7bcc1bb1 4529 return NULL;
3e32cb2e 4530 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4531}
e1aab161 4532EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4533
0eb253e2 4534static struct cgroup_subsys_state * __ref
eb95419b 4535mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4536{
d142e3e6 4537 struct mem_cgroup *memcg;
04046e1a 4538 long error = -ENOMEM;
6d12e2d8 4539 int node;
8cdea7c0 4540
c0ff4b85
R
4541 memcg = mem_cgroup_alloc();
4542 if (!memcg)
04046e1a 4543 return ERR_PTR(error);
78fb7466 4544
3ed28fa1 4545 for_each_node(node)
c0ff4b85 4546 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4547 goto free_out;
f64c3f54 4548
c077719b 4549 /* root ? */
eb95419b 4550 if (parent_css == NULL) {
a41c58a6 4551 root_mem_cgroup = memcg;
56161634 4552 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4553 page_counter_init(&memcg->memory, NULL);
241994ed 4554 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4555 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4556 page_counter_init(&memcg->memsw, NULL);
4557 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4558 }
28dbc4b6 4559
d142e3e6
GC
4560 memcg->last_scanned_node = MAX_NUMNODES;
4561 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4562 memcg->move_charge_at_immigrate = 0;
4563 mutex_init(&memcg->thresholds_lock);
4564 spin_lock_init(&memcg->move_lock);
70ddf637 4565 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4566 INIT_LIST_HEAD(&memcg->event_list);
4567 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4568#ifdef CONFIG_MEMCG_KMEM
4569 memcg->kmemcg_id = -1;
900a38f0 4570#endif
52ebea74
TH
4571#ifdef CONFIG_CGROUP_WRITEBACK
4572 INIT_LIST_HEAD(&memcg->cgwb_list);
4573#endif
d142e3e6
GC
4574 return &memcg->css;
4575
4576free_out:
4577 __mem_cgroup_free(memcg);
4578 return ERR_PTR(error);
4579}
4580
4581static int
eb95419b 4582mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4583{
eb95419b 4584 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4585 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4586 int ret;
d142e3e6 4587
15a4c835 4588 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4589 return -ENOSPC;
4590
63876986 4591 if (!parent)
d142e3e6
GC
4592 return 0;
4593
0999821b 4594 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4595
4596 memcg->use_hierarchy = parent->use_hierarchy;
4597 memcg->oom_kill_disable = parent->oom_kill_disable;
4598 memcg->swappiness = mem_cgroup_swappiness(parent);
4599
4600 if (parent->use_hierarchy) {
3e32cb2e 4601 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4602 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4603 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4604 page_counter_init(&memcg->memsw, &parent->memsw);
4605 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4606
7bcc1bb1 4607 /*
8d76a979
LZ
4608 * No need to take a reference to the parent because cgroup
4609 * core guarantees its existence.
7bcc1bb1 4610 */
18f59ea7 4611 } else {
3e32cb2e 4612 page_counter_init(&memcg->memory, NULL);
241994ed 4613 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4614 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4615 page_counter_init(&memcg->memsw, NULL);
4616 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4617 /*
4618 * Deeper hierachy with use_hierarchy == false doesn't make
4619 * much sense so let cgroup subsystem know about this
4620 * unfortunate state in our controller.
4621 */
d142e3e6 4622 if (parent != root_mem_cgroup)
073219e9 4623 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4624 }
0999821b 4625 mutex_unlock(&memcg_create_mutex);
d6441637 4626
2f7dd7a4
JW
4627 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4628 if (ret)
4629 return ret;
4630
4631 /*
4632 * Make sure the memcg is initialized: mem_cgroup_iter()
4633 * orders reading memcg->initialized against its callers
4634 * reading the memcg members.
4635 */
4636 smp_store_release(&memcg->initialized, 1);
4637
4638 return 0;
8cdea7c0
BS
4639}
4640
eb95419b 4641static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4642{
eb95419b 4643 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4644 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4645
4646 /*
4647 * Unregister events and notify userspace.
4648 * Notify userspace about cgroup removing only after rmdir of cgroup
4649 * directory to avoid race between userspace and kernelspace.
4650 */
fba94807
TH
4651 spin_lock(&memcg->event_list_lock);
4652 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4653 list_del_init(&event->list);
4654 schedule_work(&event->remove);
4655 }
fba94807 4656 spin_unlock(&memcg->event_list_lock);
ec64f515 4657
33cb876e 4658 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4659
4660 memcg_deactivate_kmem(memcg);
52ebea74
TH
4661
4662 wb_memcg_offline(memcg);
df878fb0
KH
4663}
4664
eb95419b 4665static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4666{
eb95419b 4667 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4668
10d5ebf4 4669 memcg_destroy_kmem(memcg);
465939a1 4670 __mem_cgroup_free(memcg);
8cdea7c0
BS
4671}
4672
1ced953b
TH
4673/**
4674 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4675 * @css: the target css
4676 *
4677 * Reset the states of the mem_cgroup associated with @css. This is
4678 * invoked when the userland requests disabling on the default hierarchy
4679 * but the memcg is pinned through dependency. The memcg should stop
4680 * applying policies and should revert to the vanilla state as it may be
4681 * made visible again.
4682 *
4683 * The current implementation only resets the essential configurations.
4684 * This needs to be expanded to cover all the visible parts.
4685 */
4686static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4687{
4688 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4689
3e32cb2e
JW
4690 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4691 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4692 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4693 memcg->low = 0;
4694 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4695 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4696 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4697}
4698
02491447 4699#ifdef CONFIG_MMU
7dc74be0 4700/* Handlers for move charge at task migration. */
854ffa8d 4701static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4702{
05b84301 4703 int ret;
9476db97
JW
4704
4705 /* Try a single bulk charge without reclaim first */
00501b53 4706 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4707 if (!ret) {
854ffa8d 4708 mc.precharge += count;
854ffa8d
DN
4709 return ret;
4710 }
692e7c45 4711 if (ret == -EINTR) {
00501b53 4712 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4713 return ret;
4714 }
9476db97
JW
4715
4716 /* Try charges one by one with reclaim */
854ffa8d 4717 while (count--) {
00501b53 4718 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4719 /*
4720 * In case of failure, any residual charges against
4721 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4722 * later on. However, cancel any charges that are
4723 * bypassed to root right away or they'll be lost.
9476db97 4724 */
692e7c45 4725 if (ret == -EINTR)
00501b53 4726 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4727 if (ret)
38c5d72f 4728 return ret;
854ffa8d 4729 mc.precharge++;
9476db97 4730 cond_resched();
854ffa8d 4731 }
9476db97 4732 return 0;
4ffef5fe
DN
4733}
4734
4735/**
8d32ff84 4736 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4737 * @vma: the vma the pte to be checked belongs
4738 * @addr: the address corresponding to the pte to be checked
4739 * @ptent: the pte to be checked
02491447 4740 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4741 *
4742 * Returns
4743 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4744 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4745 * move charge. if @target is not NULL, the page is stored in target->page
4746 * with extra refcnt got(Callers should handle it).
02491447
DN
4747 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4748 * target for charge migration. if @target is not NULL, the entry is stored
4749 * in target->ent.
4ffef5fe
DN
4750 *
4751 * Called with pte lock held.
4752 */
4ffef5fe
DN
4753union mc_target {
4754 struct page *page;
02491447 4755 swp_entry_t ent;
4ffef5fe
DN
4756};
4757
4ffef5fe 4758enum mc_target_type {
8d32ff84 4759 MC_TARGET_NONE = 0,
4ffef5fe 4760 MC_TARGET_PAGE,
02491447 4761 MC_TARGET_SWAP,
4ffef5fe
DN
4762};
4763
90254a65
DN
4764static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4765 unsigned long addr, pte_t ptent)
4ffef5fe 4766{
90254a65 4767 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4768
90254a65
DN
4769 if (!page || !page_mapped(page))
4770 return NULL;
4771 if (PageAnon(page)) {
1dfab5ab 4772 if (!(mc.flags & MOVE_ANON))
90254a65 4773 return NULL;
1dfab5ab
JW
4774 } else {
4775 if (!(mc.flags & MOVE_FILE))
4776 return NULL;
4777 }
90254a65
DN
4778 if (!get_page_unless_zero(page))
4779 return NULL;
4780
4781 return page;
4782}
4783
4b91355e 4784#ifdef CONFIG_SWAP
90254a65
DN
4785static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4786 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4787{
90254a65
DN
4788 struct page *page = NULL;
4789 swp_entry_t ent = pte_to_swp_entry(ptent);
4790
1dfab5ab 4791 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4792 return NULL;
4b91355e
KH
4793 /*
4794 * Because lookup_swap_cache() updates some statistics counter,
4795 * we call find_get_page() with swapper_space directly.
4796 */
33806f06 4797 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4798 if (do_swap_account)
4799 entry->val = ent.val;
4800
4801 return page;
4802}
4b91355e
KH
4803#else
4804static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4805 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4806{
4807 return NULL;
4808}
4809#endif
90254a65 4810
87946a72
DN
4811static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4812 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4813{
4814 struct page *page = NULL;
87946a72
DN
4815 struct address_space *mapping;
4816 pgoff_t pgoff;
4817
4818 if (!vma->vm_file) /* anonymous vma */
4819 return NULL;
1dfab5ab 4820 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4821 return NULL;
4822
87946a72 4823 mapping = vma->vm_file->f_mapping;
0661a336 4824 pgoff = linear_page_index(vma, addr);
87946a72
DN
4825
4826 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4827#ifdef CONFIG_SWAP
4828 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4829 if (shmem_mapping(mapping)) {
4830 page = find_get_entry(mapping, pgoff);
4831 if (radix_tree_exceptional_entry(page)) {
4832 swp_entry_t swp = radix_to_swp_entry(page);
4833 if (do_swap_account)
4834 *entry = swp;
4835 page = find_get_page(swap_address_space(swp), swp.val);
4836 }
4837 } else
4838 page = find_get_page(mapping, pgoff);
4839#else
4840 page = find_get_page(mapping, pgoff);
aa3b1895 4841#endif
87946a72
DN
4842 return page;
4843}
4844
b1b0deab
CG
4845/**
4846 * mem_cgroup_move_account - move account of the page
4847 * @page: the page
4848 * @nr_pages: number of regular pages (>1 for huge pages)
4849 * @from: mem_cgroup which the page is moved from.
4850 * @to: mem_cgroup which the page is moved to. @from != @to.
4851 *
4852 * The caller must confirm following.
4853 * - page is not on LRU (isolate_page() is useful.)
4854 * - compound_lock is held when nr_pages > 1
4855 *
4856 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4857 * from old cgroup.
4858 */
4859static int mem_cgroup_move_account(struct page *page,
4860 unsigned int nr_pages,
4861 struct mem_cgroup *from,
4862 struct mem_cgroup *to)
4863{
4864 unsigned long flags;
4865 int ret;
c4843a75 4866 bool anon;
b1b0deab
CG
4867
4868 VM_BUG_ON(from == to);
4869 VM_BUG_ON_PAGE(PageLRU(page), page);
4870 /*
4871 * The page is isolated from LRU. So, collapse function
4872 * will not handle this page. But page splitting can happen.
4873 * Do this check under compound_page_lock(). The caller should
4874 * hold it.
4875 */
4876 ret = -EBUSY;
4877 if (nr_pages > 1 && !PageTransHuge(page))
4878 goto out;
4879
4880 /*
4881 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4882 * of its source page while we change it: page migration takes
4883 * both pages off the LRU, but page cache replacement doesn't.
4884 */
4885 if (!trylock_page(page))
4886 goto out;
4887
4888 ret = -EINVAL;
4889 if (page->mem_cgroup != from)
4890 goto out_unlock;
4891
c4843a75
GT
4892 anon = PageAnon(page);
4893
b1b0deab
CG
4894 spin_lock_irqsave(&from->move_lock, flags);
4895
c4843a75 4896 if (!anon && page_mapped(page)) {
b1b0deab
CG
4897 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4898 nr_pages);
4899 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4900 nr_pages);
4901 }
4902
c4843a75
GT
4903 /*
4904 * move_lock grabbed above and caller set from->moving_account, so
4905 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4906 * So mapping should be stable for dirty pages.
4907 */
4908 if (!anon && PageDirty(page)) {
4909 struct address_space *mapping = page_mapping(page);
4910
4911 if (mapping_cap_account_dirty(mapping)) {
4912 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4913 nr_pages);
4914 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4915 nr_pages);
4916 }
4917 }
4918
b1b0deab
CG
4919 if (PageWriteback(page)) {
4920 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4921 nr_pages);
4922 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4923 nr_pages);
4924 }
4925
4926 /*
4927 * It is safe to change page->mem_cgroup here because the page
4928 * is referenced, charged, and isolated - we can't race with
4929 * uncharging, charging, migration, or LRU putback.
4930 */
4931
4932 /* caller should have done css_get */
4933 page->mem_cgroup = to;
4934 spin_unlock_irqrestore(&from->move_lock, flags);
4935
4936 ret = 0;
4937
4938 local_irq_disable();
4939 mem_cgroup_charge_statistics(to, page, nr_pages);
4940 memcg_check_events(to, page);
4941 mem_cgroup_charge_statistics(from, page, -nr_pages);
4942 memcg_check_events(from, page);
4943 local_irq_enable();
4944out_unlock:
4945 unlock_page(page);
4946out:
4947 return ret;
4948}
4949
8d32ff84 4950static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4951 unsigned long addr, pte_t ptent, union mc_target *target)
4952{
4953 struct page *page = NULL;
8d32ff84 4954 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4955 swp_entry_t ent = { .val = 0 };
4956
4957 if (pte_present(ptent))
4958 page = mc_handle_present_pte(vma, addr, ptent);
4959 else if (is_swap_pte(ptent))
4960 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4961 else if (pte_none(ptent))
87946a72 4962 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4963
4964 if (!page && !ent.val)
8d32ff84 4965 return ret;
02491447 4966 if (page) {
02491447 4967 /*
0a31bc97 4968 * Do only loose check w/o serialization.
1306a85a 4969 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4970 * not under LRU exclusion.
02491447 4971 */
1306a85a 4972 if (page->mem_cgroup == mc.from) {
02491447
DN
4973 ret = MC_TARGET_PAGE;
4974 if (target)
4975 target->page = page;
4976 }
4977 if (!ret || !target)
4978 put_page(page);
4979 }
90254a65
DN
4980 /* There is a swap entry and a page doesn't exist or isn't charged */
4981 if (ent.val && !ret &&
34c00c31 4982 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4983 ret = MC_TARGET_SWAP;
4984 if (target)
4985 target->ent = ent;
4ffef5fe 4986 }
4ffef5fe
DN
4987 return ret;
4988}
4989
12724850
NH
4990#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4991/*
4992 * We don't consider swapping or file mapped pages because THP does not
4993 * support them for now.
4994 * Caller should make sure that pmd_trans_huge(pmd) is true.
4995 */
4996static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4997 unsigned long addr, pmd_t pmd, union mc_target *target)
4998{
4999 struct page *page = NULL;
12724850
NH
5000 enum mc_target_type ret = MC_TARGET_NONE;
5001
5002 page = pmd_page(pmd);
309381fe 5003 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5004 if (!(mc.flags & MOVE_ANON))
12724850 5005 return ret;
1306a85a 5006 if (page->mem_cgroup == mc.from) {
12724850
NH
5007 ret = MC_TARGET_PAGE;
5008 if (target) {
5009 get_page(page);
5010 target->page = page;
5011 }
5012 }
5013 return ret;
5014}
5015#else
5016static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5017 unsigned long addr, pmd_t pmd, union mc_target *target)
5018{
5019 return MC_TARGET_NONE;
5020}
5021#endif
5022
4ffef5fe
DN
5023static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5024 unsigned long addr, unsigned long end,
5025 struct mm_walk *walk)
5026{
26bcd64a 5027 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5028 pte_t *pte;
5029 spinlock_t *ptl;
5030
bf929152 5031 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5032 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5033 mc.precharge += HPAGE_PMD_NR;
bf929152 5034 spin_unlock(ptl);
1a5a9906 5035 return 0;
12724850 5036 }
03319327 5037
45f83cef
AA
5038 if (pmd_trans_unstable(pmd))
5039 return 0;
4ffef5fe
DN
5040 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5041 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5042 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5043 mc.precharge++; /* increment precharge temporarily */
5044 pte_unmap_unlock(pte - 1, ptl);
5045 cond_resched();
5046
7dc74be0
DN
5047 return 0;
5048}
5049
4ffef5fe
DN
5050static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5051{
5052 unsigned long precharge;
4ffef5fe 5053
26bcd64a
NH
5054 struct mm_walk mem_cgroup_count_precharge_walk = {
5055 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5056 .mm = mm,
5057 };
dfe076b0 5058 down_read(&mm->mmap_sem);
26bcd64a 5059 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 5060 up_read(&mm->mmap_sem);
4ffef5fe
DN
5061
5062 precharge = mc.precharge;
5063 mc.precharge = 0;
5064
5065 return precharge;
5066}
5067
4ffef5fe
DN
5068static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5069{
dfe076b0
DN
5070 unsigned long precharge = mem_cgroup_count_precharge(mm);
5071
5072 VM_BUG_ON(mc.moving_task);
5073 mc.moving_task = current;
5074 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5075}
5076
dfe076b0
DN
5077/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5078static void __mem_cgroup_clear_mc(void)
4ffef5fe 5079{
2bd9bb20
KH
5080 struct mem_cgroup *from = mc.from;
5081 struct mem_cgroup *to = mc.to;
5082
4ffef5fe 5083 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5084 if (mc.precharge) {
00501b53 5085 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5086 mc.precharge = 0;
5087 }
5088 /*
5089 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5090 * we must uncharge here.
5091 */
5092 if (mc.moved_charge) {
00501b53 5093 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5094 mc.moved_charge = 0;
4ffef5fe 5095 }
483c30b5
DN
5096 /* we must fixup refcnts and charges */
5097 if (mc.moved_swap) {
483c30b5 5098 /* uncharge swap account from the old cgroup */
ce00a967 5099 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5100 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5101
05b84301 5102 /*
3e32cb2e
JW
5103 * we charged both to->memory and to->memsw, so we
5104 * should uncharge to->memory.
05b84301 5105 */
ce00a967 5106 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5107 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5108
e8ea14cc 5109 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5110
4050377b 5111 /* we've already done css_get(mc.to) */
483c30b5
DN
5112 mc.moved_swap = 0;
5113 }
dfe076b0
DN
5114 memcg_oom_recover(from);
5115 memcg_oom_recover(to);
5116 wake_up_all(&mc.waitq);
5117}
5118
5119static void mem_cgroup_clear_mc(void)
5120{
dfe076b0
DN
5121 /*
5122 * we must clear moving_task before waking up waiters at the end of
5123 * task migration.
5124 */
5125 mc.moving_task = NULL;
5126 __mem_cgroup_clear_mc();
2bd9bb20 5127 spin_lock(&mc.lock);
4ffef5fe
DN
5128 mc.from = NULL;
5129 mc.to = NULL;
2bd9bb20 5130 spin_unlock(&mc.lock);
4ffef5fe
DN
5131}
5132
eb95419b 5133static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5134 struct cgroup_taskset *tset)
7dc74be0 5135{
2f7ee569 5136 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5137 int ret = 0;
eb95419b 5138 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 5139 unsigned long move_flags;
7dc74be0 5140
ee5e8472
GC
5141 /*
5142 * We are now commited to this value whatever it is. Changes in this
5143 * tunable will only affect upcoming migrations, not the current one.
5144 * So we need to save it, and keep it going.
5145 */
4db0c3c2 5146 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1dfab5ab 5147 if (move_flags) {
7dc74be0
DN
5148 struct mm_struct *mm;
5149 struct mem_cgroup *from = mem_cgroup_from_task(p);
5150
c0ff4b85 5151 VM_BUG_ON(from == memcg);
7dc74be0
DN
5152
5153 mm = get_task_mm(p);
5154 if (!mm)
5155 return 0;
7dc74be0 5156 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5157 if (mm->owner == p) {
5158 VM_BUG_ON(mc.from);
5159 VM_BUG_ON(mc.to);
5160 VM_BUG_ON(mc.precharge);
854ffa8d 5161 VM_BUG_ON(mc.moved_charge);
483c30b5 5162 VM_BUG_ON(mc.moved_swap);
247b1447 5163
2bd9bb20 5164 spin_lock(&mc.lock);
4ffef5fe 5165 mc.from = from;
c0ff4b85 5166 mc.to = memcg;
1dfab5ab 5167 mc.flags = move_flags;
2bd9bb20 5168 spin_unlock(&mc.lock);
dfe076b0 5169 /* We set mc.moving_task later */
4ffef5fe
DN
5170
5171 ret = mem_cgroup_precharge_mc(mm);
5172 if (ret)
5173 mem_cgroup_clear_mc();
dfe076b0
DN
5174 }
5175 mmput(mm);
7dc74be0
DN
5176 }
5177 return ret;
5178}
5179
eb95419b 5180static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5181 struct cgroup_taskset *tset)
7dc74be0 5182{
4e2f245d
JW
5183 if (mc.to)
5184 mem_cgroup_clear_mc();
7dc74be0
DN
5185}
5186
4ffef5fe
DN
5187static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5188 unsigned long addr, unsigned long end,
5189 struct mm_walk *walk)
7dc74be0 5190{
4ffef5fe 5191 int ret = 0;
26bcd64a 5192 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5193 pte_t *pte;
5194 spinlock_t *ptl;
12724850
NH
5195 enum mc_target_type target_type;
5196 union mc_target target;
5197 struct page *page;
4ffef5fe 5198
12724850
NH
5199 /*
5200 * We don't take compound_lock() here but no race with splitting thp
5201 * happens because:
5202 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5203 * under splitting, which means there's no concurrent thp split,
5204 * - if another thread runs into split_huge_page() just after we
5205 * entered this if-block, the thread must wait for page table lock
5206 * to be unlocked in __split_huge_page_splitting(), where the main
5207 * part of thp split is not executed yet.
5208 */
bf929152 5209 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5210 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5211 spin_unlock(ptl);
12724850
NH
5212 return 0;
5213 }
5214 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5215 if (target_type == MC_TARGET_PAGE) {
5216 page = target.page;
5217 if (!isolate_lru_page(page)) {
12724850 5218 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5219 mc.from, mc.to)) {
12724850
NH
5220 mc.precharge -= HPAGE_PMD_NR;
5221 mc.moved_charge += HPAGE_PMD_NR;
5222 }
5223 putback_lru_page(page);
5224 }
5225 put_page(page);
5226 }
bf929152 5227 spin_unlock(ptl);
1a5a9906 5228 return 0;
12724850
NH
5229 }
5230
45f83cef
AA
5231 if (pmd_trans_unstable(pmd))
5232 return 0;
4ffef5fe
DN
5233retry:
5234 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5235 for (; addr != end; addr += PAGE_SIZE) {
5236 pte_t ptent = *(pte++);
02491447 5237 swp_entry_t ent;
4ffef5fe
DN
5238
5239 if (!mc.precharge)
5240 break;
5241
8d32ff84 5242 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5243 case MC_TARGET_PAGE:
5244 page = target.page;
5245 if (isolate_lru_page(page))
5246 goto put;
1306a85a 5247 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5248 mc.precharge--;
854ffa8d
DN
5249 /* we uncharge from mc.from later. */
5250 mc.moved_charge++;
4ffef5fe
DN
5251 }
5252 putback_lru_page(page);
8d32ff84 5253put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5254 put_page(page);
5255 break;
02491447
DN
5256 case MC_TARGET_SWAP:
5257 ent = target.ent;
e91cbb42 5258 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5259 mc.precharge--;
483c30b5
DN
5260 /* we fixup refcnts and charges later. */
5261 mc.moved_swap++;
5262 }
02491447 5263 break;
4ffef5fe
DN
5264 default:
5265 break;
5266 }
5267 }
5268 pte_unmap_unlock(pte - 1, ptl);
5269 cond_resched();
5270
5271 if (addr != end) {
5272 /*
5273 * We have consumed all precharges we got in can_attach().
5274 * We try charge one by one, but don't do any additional
5275 * charges to mc.to if we have failed in charge once in attach()
5276 * phase.
5277 */
854ffa8d 5278 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5279 if (!ret)
5280 goto retry;
5281 }
5282
5283 return ret;
5284}
5285
5286static void mem_cgroup_move_charge(struct mm_struct *mm)
5287{
26bcd64a
NH
5288 struct mm_walk mem_cgroup_move_charge_walk = {
5289 .pmd_entry = mem_cgroup_move_charge_pte_range,
5290 .mm = mm,
5291 };
4ffef5fe
DN
5292
5293 lru_add_drain_all();
312722cb
JW
5294 /*
5295 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5296 * move_lock while we're moving its pages to another memcg.
5297 * Then wait for already started RCU-only updates to finish.
5298 */
5299 atomic_inc(&mc.from->moving_account);
5300 synchronize_rcu();
dfe076b0
DN
5301retry:
5302 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5303 /*
5304 * Someone who are holding the mmap_sem might be waiting in
5305 * waitq. So we cancel all extra charges, wake up all waiters,
5306 * and retry. Because we cancel precharges, we might not be able
5307 * to move enough charges, but moving charge is a best-effort
5308 * feature anyway, so it wouldn't be a big problem.
5309 */
5310 __mem_cgroup_clear_mc();
5311 cond_resched();
5312 goto retry;
5313 }
26bcd64a
NH
5314 /*
5315 * When we have consumed all precharges and failed in doing
5316 * additional charge, the page walk just aborts.
5317 */
5318 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5319 up_read(&mm->mmap_sem);
312722cb 5320 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5321}
5322
eb95419b 5323static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5324 struct cgroup_taskset *tset)
67e465a7 5325{
2f7ee569 5326 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5327 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5328
dfe076b0 5329 if (mm) {
a433658c
KM
5330 if (mc.to)
5331 mem_cgroup_move_charge(mm);
dfe076b0
DN
5332 mmput(mm);
5333 }
a433658c
KM
5334 if (mc.to)
5335 mem_cgroup_clear_mc();
67e465a7 5336}
5cfb80a7 5337#else /* !CONFIG_MMU */
eb95419b 5338static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5339 struct cgroup_taskset *tset)
5cfb80a7
DN
5340{
5341 return 0;
5342}
eb95419b 5343static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5344 struct cgroup_taskset *tset)
5cfb80a7
DN
5345{
5346}
eb95419b 5347static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5348 struct cgroup_taskset *tset)
5cfb80a7
DN
5349{
5350}
5351#endif
67e465a7 5352
f00baae7
TH
5353/*
5354 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5355 * to verify whether we're attached to the default hierarchy on each mount
5356 * attempt.
f00baae7 5357 */
eb95419b 5358static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5359{
5360 /*
aa6ec29b 5361 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5362 * guarantees that @root doesn't have any children, so turning it
5363 * on for the root memcg is enough.
5364 */
aa6ec29b 5365 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5366 root_mem_cgroup->use_hierarchy = true;
5367 else
5368 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5369}
5370
241994ed
JW
5371static u64 memory_current_read(struct cgroup_subsys_state *css,
5372 struct cftype *cft)
5373{
5374 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5375}
5376
5377static int memory_low_show(struct seq_file *m, void *v)
5378{
5379 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5380 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5381
5382 if (low == PAGE_COUNTER_MAX)
d2973697 5383 seq_puts(m, "max\n");
241994ed
JW
5384 else
5385 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5386
5387 return 0;
5388}
5389
5390static ssize_t memory_low_write(struct kernfs_open_file *of,
5391 char *buf, size_t nbytes, loff_t off)
5392{
5393 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5394 unsigned long low;
5395 int err;
5396
5397 buf = strstrip(buf);
d2973697 5398 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5399 if (err)
5400 return err;
5401
5402 memcg->low = low;
5403
5404 return nbytes;
5405}
5406
5407static int memory_high_show(struct seq_file *m, void *v)
5408{
5409 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5410 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5411
5412 if (high == PAGE_COUNTER_MAX)
d2973697 5413 seq_puts(m, "max\n");
241994ed
JW
5414 else
5415 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5416
5417 return 0;
5418}
5419
5420static ssize_t memory_high_write(struct kernfs_open_file *of,
5421 char *buf, size_t nbytes, loff_t off)
5422{
5423 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5424 unsigned long high;
5425 int err;
5426
5427 buf = strstrip(buf);
d2973697 5428 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5429 if (err)
5430 return err;
5431
5432 memcg->high = high;
5433
2529bb3a 5434 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5435 return nbytes;
5436}
5437
5438static int memory_max_show(struct seq_file *m, void *v)
5439{
5440 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5441 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5442
5443 if (max == PAGE_COUNTER_MAX)
d2973697 5444 seq_puts(m, "max\n");
241994ed
JW
5445 else
5446 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5447
5448 return 0;
5449}
5450
5451static ssize_t memory_max_write(struct kernfs_open_file *of,
5452 char *buf, size_t nbytes, loff_t off)
5453{
5454 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5455 unsigned long max;
5456 int err;
5457
5458 buf = strstrip(buf);
d2973697 5459 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5460 if (err)
5461 return err;
5462
5463 err = mem_cgroup_resize_limit(memcg, max);
5464 if (err)
5465 return err;
5466
2529bb3a 5467 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5468 return nbytes;
5469}
5470
5471static int memory_events_show(struct seq_file *m, void *v)
5472{
5473 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5474
5475 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5476 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5477 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5478 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5479
5480 return 0;
5481}
5482
5483static struct cftype memory_files[] = {
5484 {
5485 .name = "current",
5486 .read_u64 = memory_current_read,
5487 },
5488 {
5489 .name = "low",
5490 .flags = CFTYPE_NOT_ON_ROOT,
5491 .seq_show = memory_low_show,
5492 .write = memory_low_write,
5493 },
5494 {
5495 .name = "high",
5496 .flags = CFTYPE_NOT_ON_ROOT,
5497 .seq_show = memory_high_show,
5498 .write = memory_high_write,
5499 },
5500 {
5501 .name = "max",
5502 .flags = CFTYPE_NOT_ON_ROOT,
5503 .seq_show = memory_max_show,
5504 .write = memory_max_write,
5505 },
5506 {
5507 .name = "events",
5508 .flags = CFTYPE_NOT_ON_ROOT,
5509 .seq_show = memory_events_show,
5510 },
5511 { } /* terminate */
5512};
5513
073219e9 5514struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5515 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5516 .css_online = mem_cgroup_css_online,
92fb9748
TH
5517 .css_offline = mem_cgroup_css_offline,
5518 .css_free = mem_cgroup_css_free,
1ced953b 5519 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5520 .can_attach = mem_cgroup_can_attach,
5521 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5522 .attach = mem_cgroup_move_task,
f00baae7 5523 .bind = mem_cgroup_bind,
241994ed
JW
5524 .dfl_cftypes = memory_files,
5525 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5526 .early_init = 0,
8cdea7c0 5527};
c077719b 5528
241994ed
JW
5529/**
5530 * mem_cgroup_events - count memory events against a cgroup
5531 * @memcg: the memory cgroup
5532 * @idx: the event index
5533 * @nr: the number of events to account for
5534 */
5535void mem_cgroup_events(struct mem_cgroup *memcg,
5536 enum mem_cgroup_events_index idx,
5537 unsigned int nr)
5538{
5539 this_cpu_add(memcg->stat->events[idx], nr);
5540}
5541
5542/**
5543 * mem_cgroup_low - check if memory consumption is below the normal range
5544 * @root: the highest ancestor to consider
5545 * @memcg: the memory cgroup to check
5546 *
5547 * Returns %true if memory consumption of @memcg, and that of all
5548 * configurable ancestors up to @root, is below the normal range.
5549 */
5550bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5551{
5552 if (mem_cgroup_disabled())
5553 return false;
5554
5555 /*
5556 * The toplevel group doesn't have a configurable range, so
5557 * it's never low when looked at directly, and it is not
5558 * considered an ancestor when assessing the hierarchy.
5559 */
5560
5561 if (memcg == root_mem_cgroup)
5562 return false;
5563
4e54dede 5564 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5565 return false;
5566
5567 while (memcg != root) {
5568 memcg = parent_mem_cgroup(memcg);
5569
5570 if (memcg == root_mem_cgroup)
5571 break;
5572
4e54dede 5573 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5574 return false;
5575 }
5576 return true;
5577}
5578
00501b53
JW
5579/**
5580 * mem_cgroup_try_charge - try charging a page
5581 * @page: page to charge
5582 * @mm: mm context of the victim
5583 * @gfp_mask: reclaim mode
5584 * @memcgp: charged memcg return
5585 *
5586 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5587 * pages according to @gfp_mask if necessary.
5588 *
5589 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5590 * Otherwise, an error code is returned.
5591 *
5592 * After page->mapping has been set up, the caller must finalize the
5593 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5594 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5595 */
5596int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5597 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5598{
5599 struct mem_cgroup *memcg = NULL;
5600 unsigned int nr_pages = 1;
5601 int ret = 0;
5602
5603 if (mem_cgroup_disabled())
5604 goto out;
5605
5606 if (PageSwapCache(page)) {
00501b53
JW
5607 /*
5608 * Every swap fault against a single page tries to charge the
5609 * page, bail as early as possible. shmem_unuse() encounters
5610 * already charged pages, too. The USED bit is protected by
5611 * the page lock, which serializes swap cache removal, which
5612 * in turn serializes uncharging.
5613 */
1306a85a 5614 if (page->mem_cgroup)
00501b53
JW
5615 goto out;
5616 }
5617
5618 if (PageTransHuge(page)) {
5619 nr_pages <<= compound_order(page);
5620 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5621 }
5622
5623 if (do_swap_account && PageSwapCache(page))
5624 memcg = try_get_mem_cgroup_from_page(page);
5625 if (!memcg)
5626 memcg = get_mem_cgroup_from_mm(mm);
5627
5628 ret = try_charge(memcg, gfp_mask, nr_pages);
5629
5630 css_put(&memcg->css);
5631
5632 if (ret == -EINTR) {
5633 memcg = root_mem_cgroup;
5634 ret = 0;
5635 }
5636out:
5637 *memcgp = memcg;
5638 return ret;
5639}
5640
5641/**
5642 * mem_cgroup_commit_charge - commit a page charge
5643 * @page: page to charge
5644 * @memcg: memcg to charge the page to
5645 * @lrucare: page might be on LRU already
5646 *
5647 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5648 * after page->mapping has been set up. This must happen atomically
5649 * as part of the page instantiation, i.e. under the page table lock
5650 * for anonymous pages, under the page lock for page and swap cache.
5651 *
5652 * In addition, the page must not be on the LRU during the commit, to
5653 * prevent racing with task migration. If it might be, use @lrucare.
5654 *
5655 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5656 */
5657void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5658 bool lrucare)
5659{
5660 unsigned int nr_pages = 1;
5661
5662 VM_BUG_ON_PAGE(!page->mapping, page);
5663 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5664
5665 if (mem_cgroup_disabled())
5666 return;
5667 /*
5668 * Swap faults will attempt to charge the same page multiple
5669 * times. But reuse_swap_page() might have removed the page
5670 * from swapcache already, so we can't check PageSwapCache().
5671 */
5672 if (!memcg)
5673 return;
5674
6abb5a86
JW
5675 commit_charge(page, memcg, lrucare);
5676
00501b53
JW
5677 if (PageTransHuge(page)) {
5678 nr_pages <<= compound_order(page);
5679 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5680 }
5681
6abb5a86
JW
5682 local_irq_disable();
5683 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5684 memcg_check_events(memcg, page);
5685 local_irq_enable();
00501b53
JW
5686
5687 if (do_swap_account && PageSwapCache(page)) {
5688 swp_entry_t entry = { .val = page_private(page) };
5689 /*
5690 * The swap entry might not get freed for a long time,
5691 * let's not wait for it. The page already received a
5692 * memory+swap charge, drop the swap entry duplicate.
5693 */
5694 mem_cgroup_uncharge_swap(entry);
5695 }
5696}
5697
5698/**
5699 * mem_cgroup_cancel_charge - cancel a page charge
5700 * @page: page to charge
5701 * @memcg: memcg to charge the page to
5702 *
5703 * Cancel a charge transaction started by mem_cgroup_try_charge().
5704 */
5705void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5706{
5707 unsigned int nr_pages = 1;
5708
5709 if (mem_cgroup_disabled())
5710 return;
5711 /*
5712 * Swap faults will attempt to charge the same page multiple
5713 * times. But reuse_swap_page() might have removed the page
5714 * from swapcache already, so we can't check PageSwapCache().
5715 */
5716 if (!memcg)
5717 return;
5718
5719 if (PageTransHuge(page)) {
5720 nr_pages <<= compound_order(page);
5721 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5722 }
5723
5724 cancel_charge(memcg, nr_pages);
5725}
5726
747db954 5727static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5728 unsigned long nr_anon, unsigned long nr_file,
5729 unsigned long nr_huge, struct page *dummy_page)
5730{
18eca2e6 5731 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5732 unsigned long flags;
5733
ce00a967 5734 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5735 page_counter_uncharge(&memcg->memory, nr_pages);
5736 if (do_swap_account)
5737 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5738 memcg_oom_recover(memcg);
5739 }
747db954
JW
5740
5741 local_irq_save(flags);
5742 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5743 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5744 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5745 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5746 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5747 memcg_check_events(memcg, dummy_page);
5748 local_irq_restore(flags);
e8ea14cc
JW
5749
5750 if (!mem_cgroup_is_root(memcg))
18eca2e6 5751 css_put_many(&memcg->css, nr_pages);
747db954
JW
5752}
5753
5754static void uncharge_list(struct list_head *page_list)
5755{
5756 struct mem_cgroup *memcg = NULL;
747db954
JW
5757 unsigned long nr_anon = 0;
5758 unsigned long nr_file = 0;
5759 unsigned long nr_huge = 0;
5760 unsigned long pgpgout = 0;
747db954
JW
5761 struct list_head *next;
5762 struct page *page;
5763
5764 next = page_list->next;
5765 do {
5766 unsigned int nr_pages = 1;
747db954
JW
5767
5768 page = list_entry(next, struct page, lru);
5769 next = page->lru.next;
5770
5771 VM_BUG_ON_PAGE(PageLRU(page), page);
5772 VM_BUG_ON_PAGE(page_count(page), page);
5773
1306a85a 5774 if (!page->mem_cgroup)
747db954
JW
5775 continue;
5776
5777 /*
5778 * Nobody should be changing or seriously looking at
1306a85a 5779 * page->mem_cgroup at this point, we have fully
29833315 5780 * exclusive access to the page.
747db954
JW
5781 */
5782
1306a85a 5783 if (memcg != page->mem_cgroup) {
747db954 5784 if (memcg) {
18eca2e6
JW
5785 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5786 nr_huge, page);
5787 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5788 }
1306a85a 5789 memcg = page->mem_cgroup;
747db954
JW
5790 }
5791
5792 if (PageTransHuge(page)) {
5793 nr_pages <<= compound_order(page);
5794 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5795 nr_huge += nr_pages;
5796 }
5797
5798 if (PageAnon(page))
5799 nr_anon += nr_pages;
5800 else
5801 nr_file += nr_pages;
5802
1306a85a 5803 page->mem_cgroup = NULL;
747db954
JW
5804
5805 pgpgout++;
5806 } while (next != page_list);
5807
5808 if (memcg)
18eca2e6
JW
5809 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5810 nr_huge, page);
747db954
JW
5811}
5812
0a31bc97
JW
5813/**
5814 * mem_cgroup_uncharge - uncharge a page
5815 * @page: page to uncharge
5816 *
5817 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5818 * mem_cgroup_commit_charge().
5819 */
5820void mem_cgroup_uncharge(struct page *page)
5821{
0a31bc97
JW
5822 if (mem_cgroup_disabled())
5823 return;
5824
747db954 5825 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5826 if (!page->mem_cgroup)
0a31bc97
JW
5827 return;
5828
747db954
JW
5829 INIT_LIST_HEAD(&page->lru);
5830 uncharge_list(&page->lru);
5831}
0a31bc97 5832
747db954
JW
5833/**
5834 * mem_cgroup_uncharge_list - uncharge a list of page
5835 * @page_list: list of pages to uncharge
5836 *
5837 * Uncharge a list of pages previously charged with
5838 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5839 */
5840void mem_cgroup_uncharge_list(struct list_head *page_list)
5841{
5842 if (mem_cgroup_disabled())
5843 return;
0a31bc97 5844
747db954
JW
5845 if (!list_empty(page_list))
5846 uncharge_list(page_list);
0a31bc97
JW
5847}
5848
5849/**
5850 * mem_cgroup_migrate - migrate a charge to another page
5851 * @oldpage: currently charged page
5852 * @newpage: page to transfer the charge to
f5e03a49 5853 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5854 *
5855 * Migrate the charge from @oldpage to @newpage.
5856 *
5857 * Both pages must be locked, @newpage->mapping must be set up.
5858 */
5859void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5860 bool lrucare)
5861{
29833315 5862 struct mem_cgroup *memcg;
0a31bc97
JW
5863 int isolated;
5864
5865 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5866 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5867 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5868 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5869 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5870 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5871 newpage);
0a31bc97
JW
5872
5873 if (mem_cgroup_disabled())
5874 return;
5875
5876 /* Page cache replacement: new page already charged? */
1306a85a 5877 if (newpage->mem_cgroup)
0a31bc97
JW
5878 return;
5879
7d5e3245
JW
5880 /*
5881 * Swapcache readahead pages can get migrated before being
5882 * charged, and migration from compaction can happen to an
5883 * uncharged page when the PFN walker finds a page that
5884 * reclaim just put back on the LRU but has not released yet.
5885 */
1306a85a 5886 memcg = oldpage->mem_cgroup;
29833315 5887 if (!memcg)
0a31bc97
JW
5888 return;
5889
0a31bc97
JW
5890 if (lrucare)
5891 lock_page_lru(oldpage, &isolated);
5892
1306a85a 5893 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5894
5895 if (lrucare)
5896 unlock_page_lru(oldpage, isolated);
5897
29833315 5898 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5899}
5900
2d11085e 5901/*
1081312f
MH
5902 * subsys_initcall() for memory controller.
5903 *
5904 * Some parts like hotcpu_notifier() have to be initialized from this context
5905 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5906 * everything that doesn't depend on a specific mem_cgroup structure should
5907 * be initialized from here.
2d11085e
MH
5908 */
5909static int __init mem_cgroup_init(void)
5910{
95a045f6
JW
5911 int cpu, node;
5912
2d11085e 5913 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5914
5915 for_each_possible_cpu(cpu)
5916 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5917 drain_local_stock);
5918
5919 for_each_node(node) {
5920 struct mem_cgroup_tree_per_node *rtpn;
5921 int zone;
5922
5923 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5924 node_online(node) ? node : NUMA_NO_NODE);
5925
5926 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5927 struct mem_cgroup_tree_per_zone *rtpz;
5928
5929 rtpz = &rtpn->rb_tree_per_zone[zone];
5930 rtpz->rb_root = RB_ROOT;
5931 spin_lock_init(&rtpz->lock);
5932 }
5933 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5934 }
5935
2d11085e
MH
5936 return 0;
5937}
5938subsys_initcall(mem_cgroup_init);
21afa38e
JW
5939
5940#ifdef CONFIG_MEMCG_SWAP
5941/**
5942 * mem_cgroup_swapout - transfer a memsw charge to swap
5943 * @page: page whose memsw charge to transfer
5944 * @entry: swap entry to move the charge to
5945 *
5946 * Transfer the memsw charge of @page to @entry.
5947 */
5948void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5949{
5950 struct mem_cgroup *memcg;
5951 unsigned short oldid;
5952
5953 VM_BUG_ON_PAGE(PageLRU(page), page);
5954 VM_BUG_ON_PAGE(page_count(page), page);
5955
5956 if (!do_swap_account)
5957 return;
5958
5959 memcg = page->mem_cgroup;
5960
5961 /* Readahead page, never charged */
5962 if (!memcg)
5963 return;
5964
5965 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5966 VM_BUG_ON_PAGE(oldid, page);
5967 mem_cgroup_swap_statistics(memcg, true);
5968
5969 page->mem_cgroup = NULL;
5970
5971 if (!mem_cgroup_is_root(memcg))
5972 page_counter_uncharge(&memcg->memory, 1);
5973
ce9ce665
SAS
5974 /*
5975 * Interrupts should be disabled here because the caller holds the
5976 * mapping->tree_lock lock which is taken with interrupts-off. It is
5977 * important here to have the interrupts disabled because it is the
5978 * only synchronisation we have for udpating the per-CPU variables.
5979 */
5980 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5981 mem_cgroup_charge_statistics(memcg, page, -1);
5982 memcg_check_events(memcg, page);
5983}
5984
5985/**
5986 * mem_cgroup_uncharge_swap - uncharge a swap entry
5987 * @entry: swap entry to uncharge
5988 *
5989 * Drop the memsw charge associated with @entry.
5990 */
5991void mem_cgroup_uncharge_swap(swp_entry_t entry)
5992{
5993 struct mem_cgroup *memcg;
5994 unsigned short id;
5995
5996 if (!do_swap_account)
5997 return;
5998
5999 id = swap_cgroup_record(entry, 0);
6000 rcu_read_lock();
adbe427b 6001 memcg = mem_cgroup_from_id(id);
21afa38e
JW
6002 if (memcg) {
6003 if (!mem_cgroup_is_root(memcg))
6004 page_counter_uncharge(&memcg->memsw, 1);
6005 mem_cgroup_swap_statistics(memcg, false);
6006 css_put(&memcg->css);
6007 }
6008 rcu_read_unlock();
6009}
6010
6011/* for remember boot option*/
6012#ifdef CONFIG_MEMCG_SWAP_ENABLED
6013static int really_do_swap_account __initdata = 1;
6014#else
6015static int really_do_swap_account __initdata;
6016#endif
6017
6018static int __init enable_swap_account(char *s)
6019{
6020 if (!strcmp(s, "1"))
6021 really_do_swap_account = 1;
6022 else if (!strcmp(s, "0"))
6023 really_do_swap_account = 0;
6024 return 1;
6025}
6026__setup("swapaccount=", enable_swap_account);
6027
6028static struct cftype memsw_cgroup_files[] = {
6029 {
6030 .name = "memsw.usage_in_bytes",
6031 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6032 .read_u64 = mem_cgroup_read_u64,
6033 },
6034 {
6035 .name = "memsw.max_usage_in_bytes",
6036 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6037 .write = mem_cgroup_reset,
6038 .read_u64 = mem_cgroup_read_u64,
6039 },
6040 {
6041 .name = "memsw.limit_in_bytes",
6042 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6043 .write = mem_cgroup_write,
6044 .read_u64 = mem_cgroup_read_u64,
6045 },
6046 {
6047 .name = "memsw.failcnt",
6048 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6049 .write = mem_cgroup_reset,
6050 .read_u64 = mem_cgroup_read_u64,
6051 },
6052 { }, /* terminate */
6053};
6054
6055static int __init mem_cgroup_swap_init(void)
6056{
6057 if (!mem_cgroup_disabled() && really_do_swap_account) {
6058 do_swap_account = 1;
6059 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6060 memsw_cgroup_files));
6061 }
6062 return 0;
6063}
6064subsys_initcall(mem_cgroup_swap_init);
6065
6066#endif /* CONFIG_MEMCG_SWAP */