mm: memcontrol: move out cgroup swaprate throttling
[linux-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
217bc319
KH
202enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 204 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
207 NR_CHARGE_TYPE,
208};
209
8c7c6e34 210/* for encoding cft->private value on file */
86ae53e1
GC
211enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
510fc4e1 215 _KMEM,
d55f90bf 216 _TCP,
86ae53e1
GC
217};
218
a0db00fc
KS
219#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 221#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
222/* Used for OOM nofiier */
223#define OOM_CONTROL (0)
8c7c6e34 224
b05706f1
KT
225/*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230#define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235#define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
7775face
TH
240static inline bool should_force_charge(void)
241{
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244}
245
70ddf637
AV
246/* Some nice accessors for the vmpressure. */
247struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248{
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252}
253
254struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255{
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257}
258
84c07d11 259#ifdef CONFIG_MEMCG_KMEM
55007d84 260/*
f7ce3190 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
55007d84 267 *
dbcf73e2
VD
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
55007d84 270 */
dbcf73e2
VD
271static DEFINE_IDA(memcg_cache_ida);
272int memcg_nr_cache_ids;
749c5415 273
05257a1a
VD
274/* Protects memcg_nr_cache_ids */
275static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277void memcg_get_cache_ids(void)
278{
279 down_read(&memcg_cache_ids_sem);
280}
281
282void memcg_put_cache_ids(void)
283{
284 up_read(&memcg_cache_ids_sem);
285}
286
55007d84
GC
287/*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
b8627835 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
297 * increase ours as well if it increases.
298 */
299#define MEMCG_CACHES_MIN_SIZE 4
b8627835 300#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 301
d7f25f8a
GC
302/*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
ef12947c 308DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 309EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 310
17cc4dfe 311struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 312#endif
17cc4dfe 313
0a4465d3
KT
314static int memcg_shrinker_map_size;
315static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318{
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320}
321
322static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324{
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
86daf94e 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350}
351
352static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353{
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368}
369
370static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371{
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
86daf94e 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392}
393
394int memcg_expand_shrinker_maps(int new_id)
395{
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 414 goto unlock;
75866af6 415 }
0a4465d3
KT
416 }
417unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422}
fae91d6d
KT
423
424void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425{
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
fae91d6d
KT
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436}
437
ad7fa852
TH
438/**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
ad7fa852
TH
448 */
449struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450{
451 struct mem_cgroup *memcg;
452
ad7fa852
TH
453 memcg = page->mem_cgroup;
454
9e10a130 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
456 memcg = root_mem_cgroup;
457
ad7fa852
TH
458 return &memcg->css;
459}
460
2fc04524
VD
461/**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474ino_t page_cgroup_ino(struct page *page)
475{
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
221ec5c0 480 if (PageSlab(page) && !PageTail(page))
4d96ba35
RG
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490}
491
ef8f2327
MG
492static struct mem_cgroup_per_node *
493mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 494{
97a6c37b 495 int nid = page_to_nid(page);
f64c3f54 496
ef8f2327 497 return memcg->nodeinfo[nid];
f64c3f54
BS
498}
499
ef8f2327
MG
500static struct mem_cgroup_tree_per_node *
501soft_limit_tree_node(int nid)
bb4cc1a8 502{
ef8f2327 503 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
504}
505
ef8f2327 506static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
507soft_limit_tree_from_page(struct page *page)
508{
509 int nid = page_to_nid(page);
bb4cc1a8 510
ef8f2327 511 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
512}
513
ef8f2327
MG
514static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 516 unsigned long new_usage_in_excess)
bb4cc1a8
AM
517{
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
ef8f2327 520 struct mem_cgroup_per_node *mz_node;
fa90b2fd 521 bool rightmost = true;
bb4cc1a8
AM
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
ef8f2327 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 532 tree_node);
fa90b2fd 533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 534 p = &(*p)->rb_left;
fa90b2fd
DB
535 rightmost = false;
536 }
537
bb4cc1a8
AM
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
fa90b2fd
DB
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
bb4cc1a8
AM
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552}
553
ef8f2327
MG
554static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
556{
557 if (!mz->on_tree)
558 return;
fa90b2fd
DB
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
bb4cc1a8
AM
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565}
566
ef8f2327
MG
567static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 569{
0a31bc97
JW
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 573 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 574 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
575}
576
3e32cb2e
JW
577static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578{
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587}
bb4cc1a8
AM
588
589static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590{
3e32cb2e 591 unsigned long excess;
ef8f2327
MG
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 594
e231875b 595 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
596 if (!mctz)
597 return;
bb4cc1a8
AM
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 603 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 604 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
0a31bc97
JW
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
613 /* if on-tree, remove it */
614 if (mz->on_tree)
cf2c8127 615 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
cf2c8127 620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 621 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
622 }
623 }
624}
625
626static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627{
ef8f2327
MG
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
bb4cc1a8 631
e231875b 632 for_each_node(nid) {
ef8f2327
MG
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
637 }
638}
639
ef8f2327
MG
640static struct mem_cgroup_per_node *
641__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 642{
ef8f2327 643 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
644
645retry:
646 mz = NULL;
fa90b2fd 647 if (!mctz->rb_rightmost)
bb4cc1a8
AM
648 goto done; /* Nothing to reclaim from */
649
fa90b2fd
DB
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
cf2c8127 657 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 658 if (!soft_limit_excess(mz->memcg) ||
8965aa28 659 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
660 goto retry;
661done:
662 return mz;
663}
664
ef8f2327
MG
665static struct mem_cgroup_per_node *
666mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 667{
ef8f2327 668 struct mem_cgroup_per_node *mz;
bb4cc1a8 669
0a31bc97 670 spin_lock_irq(&mctz->lock);
bb4cc1a8 671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 672 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
673 return mz;
674}
675
db9adbcb
JW
676/**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683{
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
691 struct mem_cgroup *mi;
692
766a4c19
YS
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703}
704
42a30035
JW
705static struct mem_cgroup_per_node *
706parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707{
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714}
715
db9adbcb
JW
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
42a30035 729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 730 struct mem_cgroup_per_node *pn;
42a30035 731 struct mem_cgroup *memcg;
db9adbcb
JW
732 long x;
733
734 /* Update node */
42a30035 735 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 741 memcg = pn->memcg;
db9adbcb
JW
742
743 /* Update memcg */
42a30035 744 __mod_memcg_state(memcg, idx, val);
db9adbcb 745
b4c46484
RG
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
db9adbcb
JW
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
751 struct mem_cgroup_per_node *pi;
752
42a30035
JW
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758}
759
ec9f0238
RG
760void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761{
4f103c63 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
4f103c63 767 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
867e5e1d 773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777}
778
8380ce47
RG
779void mod_memcg_obj_state(void *p, int idx, int val)
780{
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788}
789
db9adbcb
JW
790/**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798{
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
806 struct mem_cgroup *mi;
807
766a4c19
YS
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818}
819
42a30035 820static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 821{
871789d4 822 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
823}
824
42a30035
JW
825static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826{
815744d7
JW
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
42a30035
JW
833}
834
c0ff4b85 835static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 836 struct page *page,
3fba69a5 837 int nr_pages)
d52aa412 838{
b2402857
KH
839 /*
840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 * counted as CACHE even if it's on ANON LRU.
842 */
0a31bc97 843 if (PageAnon(page))
c9019e9b 844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 845 else {
c9019e9b 846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 847 if (PageSwapBacked(page))
c9019e9b 848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 849 }
55e462b0 850
3fba69a5 851 if (abs(nr_pages) > 1) {
f627c2f5 852 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 854 }
b070e65c 855
e401f176
KH
856 /* pagein of a big page is an event. So, ignore page size */
857 if (nr_pages > 0)
c9019e9b 858 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 859 else {
c9019e9b 860 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
861 nr_pages = -nr_pages; /* for event */
862 }
e401f176 863
871789d4 864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
865}
866
f53d7ce3
JW
867static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_target target)
7a159cc9
JW
869{
870 unsigned long val, next;
871
871789d4
CD
872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 874 /* from time_after() in jiffies.h */
6a1a8b80 875 if ((long)(next - val) < 0) {
f53d7ce3
JW
876 switch (target) {
877 case MEM_CGROUP_TARGET_THRESH:
878 next = val + THRESHOLDS_EVENTS_TARGET;
879 break;
bb4cc1a8
AM
880 case MEM_CGROUP_TARGET_SOFTLIMIT:
881 next = val + SOFTLIMIT_EVENTS_TARGET;
882 break;
f53d7ce3
JW
883 default:
884 break;
885 }
871789d4 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 887 return true;
7a159cc9 888 }
f53d7ce3 889 return false;
d2265e6f
KH
890}
891
892/*
893 * Check events in order.
894 *
895 */
c0ff4b85 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
897{
898 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 901 bool do_softlimit;
f53d7ce3 902
bb4cc1a8
AM
903 do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 905 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
906 if (unlikely(do_softlimit))
907 mem_cgroup_update_tree(memcg, page);
0a31bc97 908 }
d2265e6f
KH
909}
910
cf475ad2 911struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 912{
31a78f23
BS
913 /*
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
917 */
918 if (unlikely(!p))
919 return NULL;
920
073219e9 921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 922}
33398cf2 923EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 924
d46eb14b
SB
925/**
926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927 * @mm: mm from which memcg should be extracted. It can be NULL.
928 *
929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
931 * returned.
932 */
933struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 934{
d46eb14b
SB
935 struct mem_cgroup *memcg;
936
937 if (mem_cgroup_disabled())
938 return NULL;
0b7f569e 939
54595fe2
KH
940 rcu_read_lock();
941 do {
6f6acb00
MH
942 /*
943 * Page cache insertions can happen withou an
944 * actual mm context, e.g. during disk probing
945 * on boot, loopback IO, acct() writes etc.
946 */
947 if (unlikely(!mm))
df381975 948 memcg = root_mem_cgroup;
6f6acb00
MH
949 else {
950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 if (unlikely(!memcg))
952 memcg = root_mem_cgroup;
953 }
00d484f3 954 } while (!css_tryget(&memcg->css));
54595fe2 955 rcu_read_unlock();
c0ff4b85 956 return memcg;
54595fe2 957}
d46eb14b
SB
958EXPORT_SYMBOL(get_mem_cgroup_from_mm);
959
f745c6f5
SB
960/**
961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962 * @page: page from which memcg should be extracted.
963 *
964 * Obtain a reference on page->memcg and returns it if successful. Otherwise
965 * root_mem_cgroup is returned.
966 */
967struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
968{
969 struct mem_cgroup *memcg = page->mem_cgroup;
970
971 if (mem_cgroup_disabled())
972 return NULL;
973
974 rcu_read_lock();
8965aa28
SB
975 /* Page should not get uncharged and freed memcg under us. */
976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
977 memcg = root_mem_cgroup;
978 rcu_read_unlock();
979 return memcg;
980}
981EXPORT_SYMBOL(get_mem_cgroup_from_page);
982
d46eb14b
SB
983/**
984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985 */
986static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987{
988 if (unlikely(current->active_memcg)) {
8965aa28 989 struct mem_cgroup *memcg;
d46eb14b
SB
990
991 rcu_read_lock();
8965aa28
SB
992 /* current->active_memcg must hold a ref. */
993 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
994 memcg = root_mem_cgroup;
995 else
d46eb14b
SB
996 memcg = current->active_memcg;
997 rcu_read_unlock();
998 return memcg;
999 }
1000 return get_mem_cgroup_from_mm(current->mm);
1001}
54595fe2 1002
5660048c
JW
1003/**
1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1005 * @root: hierarchy root
1006 * @prev: previously returned memcg, NULL on first invocation
1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1008 *
1009 * Returns references to children of the hierarchy below @root, or
1010 * @root itself, or %NULL after a full round-trip.
1011 *
1012 * Caller must pass the return value in @prev on subsequent
1013 * invocations for reference counting, or use mem_cgroup_iter_break()
1014 * to cancel a hierarchy walk before the round-trip is complete.
1015 *
b213b54f 1016 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1017 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1018 * reclaimers operating on the same node and priority.
5660048c 1019 */
694fbc0f 1020struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1021 struct mem_cgroup *prev,
694fbc0f 1022 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1023{
33398cf2 1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1025 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1026 struct mem_cgroup *memcg = NULL;
5ac8fb31 1027 struct mem_cgroup *pos = NULL;
711d3d2c 1028
694fbc0f
AM
1029 if (mem_cgroup_disabled())
1030 return NULL;
5660048c 1031
9f3a0d09
JW
1032 if (!root)
1033 root = root_mem_cgroup;
7d74b06f 1034
9f3a0d09 1035 if (prev && !reclaim)
5ac8fb31 1036 pos = prev;
14067bb3 1037
9f3a0d09
JW
1038 if (!root->use_hierarchy && root != root_mem_cgroup) {
1039 if (prev)
5ac8fb31 1040 goto out;
694fbc0f 1041 return root;
9f3a0d09 1042 }
14067bb3 1043
542f85f9 1044 rcu_read_lock();
5f578161 1045
5ac8fb31 1046 if (reclaim) {
ef8f2327 1047 struct mem_cgroup_per_node *mz;
5ac8fb31 1048
ef8f2327 1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1050 iter = &mz->iter;
5ac8fb31
JW
1051
1052 if (prev && reclaim->generation != iter->generation)
1053 goto out_unlock;
1054
6df38689 1055 while (1) {
4db0c3c2 1056 pos = READ_ONCE(iter->position);
6df38689
VD
1057 if (!pos || css_tryget(&pos->css))
1058 break;
5ac8fb31 1059 /*
6df38689
VD
1060 * css reference reached zero, so iter->position will
1061 * be cleared by ->css_released. However, we should not
1062 * rely on this happening soon, because ->css_released
1063 * is called from a work queue, and by busy-waiting we
1064 * might block it. So we clear iter->position right
1065 * away.
5ac8fb31 1066 */
6df38689
VD
1067 (void)cmpxchg(&iter->position, pos, NULL);
1068 }
5ac8fb31
JW
1069 }
1070
1071 if (pos)
1072 css = &pos->css;
1073
1074 for (;;) {
1075 css = css_next_descendant_pre(css, &root->css);
1076 if (!css) {
1077 /*
1078 * Reclaimers share the hierarchy walk, and a
1079 * new one might jump in right at the end of
1080 * the hierarchy - make sure they see at least
1081 * one group and restart from the beginning.
1082 */
1083 if (!prev)
1084 continue;
1085 break;
527a5ec9 1086 }
7d74b06f 1087
5ac8fb31
JW
1088 /*
1089 * Verify the css and acquire a reference. The root
1090 * is provided by the caller, so we know it's alive
1091 * and kicking, and don't take an extra reference.
1092 */
1093 memcg = mem_cgroup_from_css(css);
14067bb3 1094
5ac8fb31
JW
1095 if (css == &root->css)
1096 break;
14067bb3 1097
0b8f73e1
JW
1098 if (css_tryget(css))
1099 break;
9f3a0d09 1100
5ac8fb31 1101 memcg = NULL;
9f3a0d09 1102 }
5ac8fb31
JW
1103
1104 if (reclaim) {
5ac8fb31 1105 /*
6df38689
VD
1106 * The position could have already been updated by a competing
1107 * thread, so check that the value hasn't changed since we read
1108 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1109 */
6df38689
VD
1110 (void)cmpxchg(&iter->position, pos, memcg);
1111
5ac8fb31
JW
1112 if (pos)
1113 css_put(&pos->css);
1114
1115 if (!memcg)
1116 iter->generation++;
1117 else if (!prev)
1118 reclaim->generation = iter->generation;
9f3a0d09 1119 }
5ac8fb31 1120
542f85f9
MH
1121out_unlock:
1122 rcu_read_unlock();
5ac8fb31 1123out:
c40046f3
MH
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1126
9f3a0d09 1127 return memcg;
14067bb3 1128}
7d74b06f 1129
5660048c
JW
1130/**
1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1132 * @root: hierarchy root
1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1134 */
1135void mem_cgroup_iter_break(struct mem_cgroup *root,
1136 struct mem_cgroup *prev)
9f3a0d09
JW
1137{
1138 if (!root)
1139 root = root_mem_cgroup;
1140 if (prev && prev != root)
1141 css_put(&prev->css);
1142}
7d74b06f 1143
54a83d6b
MC
1144static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1145 struct mem_cgroup *dead_memcg)
6df38689 1146{
6df38689 1147 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1148 struct mem_cgroup_per_node *mz;
1149 int nid;
6df38689 1150
54a83d6b
MC
1151 for_each_node(nid) {
1152 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1153 iter = &mz->iter;
1154 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1155 }
1156}
1157
54a83d6b
MC
1158static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1159{
1160 struct mem_cgroup *memcg = dead_memcg;
1161 struct mem_cgroup *last;
1162
1163 do {
1164 __invalidate_reclaim_iterators(memcg, dead_memcg);
1165 last = memcg;
1166 } while ((memcg = parent_mem_cgroup(memcg)));
1167
1168 /*
1169 * When cgruop1 non-hierarchy mode is used,
1170 * parent_mem_cgroup() does not walk all the way up to the
1171 * cgroup root (root_mem_cgroup). So we have to handle
1172 * dead_memcg from cgroup root separately.
1173 */
1174 if (last != root_mem_cgroup)
1175 __invalidate_reclaim_iterators(root_mem_cgroup,
1176 dead_memcg);
1177}
1178
7c5f64f8
VD
1179/**
1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1181 * @memcg: hierarchy root
1182 * @fn: function to call for each task
1183 * @arg: argument passed to @fn
1184 *
1185 * This function iterates over tasks attached to @memcg or to any of its
1186 * descendants and calls @fn for each task. If @fn returns a non-zero
1187 * value, the function breaks the iteration loop and returns the value.
1188 * Otherwise, it will iterate over all tasks and return 0.
1189 *
1190 * This function must not be called for the root memory cgroup.
1191 */
1192int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1193 int (*fn)(struct task_struct *, void *), void *arg)
1194{
1195 struct mem_cgroup *iter;
1196 int ret = 0;
1197
1198 BUG_ON(memcg == root_mem_cgroup);
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 struct css_task_iter it;
1202 struct task_struct *task;
1203
f168a9a5 1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1205 while (!ret && (task = css_task_iter_next(&it)))
1206 ret = fn(task, arg);
1207 css_task_iter_end(&it);
1208 if (ret) {
1209 mem_cgroup_iter_break(memcg, iter);
1210 break;
1211 }
1212 }
1213 return ret;
1214}
1215
925b7673 1216/**
dfe0e773 1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1218 * @page: the page
f144c390 1219 * @pgdat: pgdat of the page
dfe0e773
JW
1220 *
1221 * This function is only safe when following the LRU page isolation
1222 * and putback protocol: the LRU lock must be held, and the page must
1223 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1224 */
599d0c95 1225struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1226{
ef8f2327 1227 struct mem_cgroup_per_node *mz;
925b7673 1228 struct mem_cgroup *memcg;
bea8c150 1229 struct lruvec *lruvec;
6d12e2d8 1230
bea8c150 1231 if (mem_cgroup_disabled()) {
867e5e1d 1232 lruvec = &pgdat->__lruvec;
bea8c150
HD
1233 goto out;
1234 }
925b7673 1235
1306a85a 1236 memcg = page->mem_cgroup;
7512102c 1237 /*
dfe0e773 1238 * Swapcache readahead pages are added to the LRU - and
29833315 1239 * possibly migrated - before they are charged.
7512102c 1240 */
29833315
JW
1241 if (!memcg)
1242 memcg = root_mem_cgroup;
7512102c 1243
ef8f2327 1244 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1245 lruvec = &mz->lruvec;
1246out:
1247 /*
1248 * Since a node can be onlined after the mem_cgroup was created,
1249 * we have to be prepared to initialize lruvec->zone here;
1250 * and if offlined then reonlined, we need to reinitialize it.
1251 */
599d0c95
MG
1252 if (unlikely(lruvec->pgdat != pgdat))
1253 lruvec->pgdat = pgdat;
bea8c150 1254 return lruvec;
08e552c6 1255}
b69408e8 1256
925b7673 1257/**
fa9add64
HD
1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1259 * @lruvec: mem_cgroup per zone lru vector
1260 * @lru: index of lru list the page is sitting on
b4536f0c 1261 * @zid: zone id of the accounted pages
fa9add64 1262 * @nr_pages: positive when adding or negative when removing
925b7673 1263 *
ca707239
HD
1264 * This function must be called under lru_lock, just before a page is added
1265 * to or just after a page is removed from an lru list (that ordering being
1266 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1267 */
fa9add64 1268void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1269 int zid, int nr_pages)
3f58a829 1270{
ef8f2327 1271 struct mem_cgroup_per_node *mz;
fa9add64 1272 unsigned long *lru_size;
ca707239 1273 long size;
3f58a829
MK
1274
1275 if (mem_cgroup_disabled())
1276 return;
1277
ef8f2327 1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1279 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1280
1281 if (nr_pages < 0)
1282 *lru_size += nr_pages;
1283
1284 size = *lru_size;
b4536f0c
MH
1285 if (WARN_ONCE(size < 0,
1286 "%s(%p, %d, %d): lru_size %ld\n",
1287 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1288 VM_BUG_ON(1);
1289 *lru_size = 0;
1290 }
1291
1292 if (nr_pages > 0)
1293 *lru_size += nr_pages;
08e552c6 1294}
544122e5 1295
19942822 1296/**
9d11ea9f 1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1298 * @memcg: the memory cgroup
19942822 1299 *
9d11ea9f 1300 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1301 * pages.
19942822 1302 */
c0ff4b85 1303static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1304{
3e32cb2e
JW
1305 unsigned long margin = 0;
1306 unsigned long count;
1307 unsigned long limit;
9d11ea9f 1308
3e32cb2e 1309 count = page_counter_read(&memcg->memory);
bbec2e15 1310 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1311 if (count < limit)
1312 margin = limit - count;
1313
7941d214 1314 if (do_memsw_account()) {
3e32cb2e 1315 count = page_counter_read(&memcg->memsw);
bbec2e15 1316 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1317 if (count < limit)
3e32cb2e 1318 margin = min(margin, limit - count);
cbedbac3
LR
1319 else
1320 margin = 0;
3e32cb2e
JW
1321 }
1322
1323 return margin;
19942822
JW
1324}
1325
32047e2a 1326/*
bdcbb659 1327 * A routine for checking "mem" is under move_account() or not.
32047e2a 1328 *
bdcbb659
QH
1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1330 * moving cgroups. This is for waiting at high-memory pressure
1331 * caused by "move".
32047e2a 1332 */
c0ff4b85 1333static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1334{
2bd9bb20
KH
1335 struct mem_cgroup *from;
1336 struct mem_cgroup *to;
4b534334 1337 bool ret = false;
2bd9bb20
KH
1338 /*
1339 * Unlike task_move routines, we access mc.to, mc.from not under
1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1341 */
1342 spin_lock(&mc.lock);
1343 from = mc.from;
1344 to = mc.to;
1345 if (!from)
1346 goto unlock;
3e92041d 1347
2314b42d
JW
1348 ret = mem_cgroup_is_descendant(from, memcg) ||
1349 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1350unlock:
1351 spin_unlock(&mc.lock);
4b534334
KH
1352 return ret;
1353}
1354
c0ff4b85 1355static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1356{
1357 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1358 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1359 DEFINE_WAIT(wait);
1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 /* moving charge context might have finished. */
1362 if (mc.moving_task)
1363 schedule();
1364 finish_wait(&mc.waitq, &wait);
1365 return true;
1366 }
1367 }
1368 return false;
1369}
1370
c8713d0b
JW
1371static char *memory_stat_format(struct mem_cgroup *memcg)
1372{
1373 struct seq_buf s;
1374 int i;
71cd3113 1375
c8713d0b
JW
1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1377 if (!s.buffer)
1378 return NULL;
1379
1380 /*
1381 * Provide statistics on the state of the memory subsystem as
1382 * well as cumulative event counters that show past behavior.
1383 *
1384 * This list is ordered following a combination of these gradients:
1385 * 1) generic big picture -> specifics and details
1386 * 2) reflecting userspace activity -> reflecting kernel heuristics
1387 *
1388 * Current memory state:
1389 */
1390
1391 seq_buf_printf(&s, "anon %llu\n",
1392 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "file %llu\n",
1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "kernel_stack %llu\n",
1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1399 1024);
1400 seq_buf_printf(&s, "slab %llu\n",
1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1403 PAGE_SIZE);
1404 seq_buf_printf(&s, "sock %llu\n",
1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1406 PAGE_SIZE);
1407
1408 seq_buf_printf(&s, "shmem %llu\n",
1409 (u64)memcg_page_state(memcg, NR_SHMEM) *
1410 PAGE_SIZE);
1411 seq_buf_printf(&s, "file_mapped %llu\n",
1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1413 PAGE_SIZE);
1414 seq_buf_printf(&s, "file_dirty %llu\n",
1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "file_writeback %llu\n",
1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1419 PAGE_SIZE);
1420
1421 /*
1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1424 * arse because it requires migrating the work out of rmap to a place
1425 * where the page->mem_cgroup is set up and stable.
1426 */
1427 seq_buf_printf(&s, "anon_thp %llu\n",
1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1429 PAGE_SIZE);
1430
1431 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1434 PAGE_SIZE);
1435
1436 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1438 PAGE_SIZE);
1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1441 PAGE_SIZE);
1442
1443 /* Accumulated memory events */
1444
ebc5d83d
KK
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1446 memcg_events(memcg, PGFAULT));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1448 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1449
1450 seq_buf_printf(&s, "workingset_refault %lu\n",
1451 memcg_page_state(memcg, WORKINGSET_REFAULT));
1452 seq_buf_printf(&s, "workingset_activate %lu\n",
1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
a6f5576b
YS
1454 seq_buf_printf(&s, "workingset_restore %lu\n",
1455 memcg_page_state(memcg, WORKINGSET_RESTORE));
c8713d0b
JW
1456 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1457 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1458
ebc5d83d
KK
1459 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1460 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1461 seq_buf_printf(&s, "pgscan %lu\n",
1462 memcg_events(memcg, PGSCAN_KSWAPD) +
1463 memcg_events(memcg, PGSCAN_DIRECT));
1464 seq_buf_printf(&s, "pgsteal %lu\n",
1465 memcg_events(memcg, PGSTEAL_KSWAPD) +
1466 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1468 memcg_events(memcg, PGACTIVATE));
1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1470 memcg_events(memcg, PGDEACTIVATE));
1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1472 memcg_events(memcg, PGLAZYFREE));
1473 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1474 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1475
1476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1478 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1479 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1480 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1482
1483 /* The above should easily fit into one page */
1484 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1485
1486 return s.buffer;
1487}
71cd3113 1488
58cf188e 1489#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1490/**
f0c867d9 1491 * mem_cgroup_print_oom_context: Print OOM information relevant to
1492 * memory controller.
e222432b
BS
1493 * @memcg: The memory cgroup that went over limit
1494 * @p: Task that is going to be killed
1495 *
1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497 * enabled
1498 */
f0c867d9 1499void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1500{
e222432b
BS
1501 rcu_read_lock();
1502
f0c867d9 1503 if (memcg) {
1504 pr_cont(",oom_memcg=");
1505 pr_cont_cgroup_path(memcg->css.cgroup);
1506 } else
1507 pr_cont(",global_oom");
2415b9f5 1508 if (p) {
f0c867d9 1509 pr_cont(",task_memcg=");
2415b9f5 1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1511 }
e222432b 1512 rcu_read_unlock();
f0c867d9 1513}
1514
1515/**
1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517 * memory controller.
1518 * @memcg: The memory cgroup that went over limit
1519 */
1520void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521{
c8713d0b 1522 char *buf;
e222432b 1523
3e32cb2e
JW
1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->memory)),
15b42562 1526 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1530 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1531 else {
1532 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64)page_counter_read(&memcg->memsw)),
1534 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->kmem)),
1537 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1538 }
c8713d0b
JW
1539
1540 pr_info("Memory cgroup stats for ");
1541 pr_cont_cgroup_path(memcg->css.cgroup);
1542 pr_cont(":");
1543 buf = memory_stat_format(memcg);
1544 if (!buf)
1545 return;
1546 pr_info("%s", buf);
1547 kfree(buf);
e222432b
BS
1548}
1549
a63d83f4
DR
1550/*
1551 * Return the memory (and swap, if configured) limit for a memcg.
1552 */
bbec2e15 1553unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1554{
bbec2e15 1555 unsigned long max;
f3e8eb70 1556
15b42562 1557 max = READ_ONCE(memcg->memory.max);
9a5a8f19 1558 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1559 unsigned long memsw_max;
1560 unsigned long swap_max;
9a5a8f19 1561
bbec2e15 1562 memsw_max = memcg->memsw.max;
32d087cd 1563 swap_max = READ_ONCE(memcg->swap.max);
bbec2e15
RG
1564 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1565 max = min(max + swap_max, memsw_max);
9a5a8f19 1566 }
bbec2e15 1567 return max;
a63d83f4
DR
1568}
1569
9783aa99
CD
1570unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1571{
1572 return page_counter_read(&memcg->memory);
1573}
1574
b6e6edcf 1575static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1576 int order)
9cbb78bb 1577{
6e0fc46d
DR
1578 struct oom_control oc = {
1579 .zonelist = NULL,
1580 .nodemask = NULL,
2a966b77 1581 .memcg = memcg,
6e0fc46d
DR
1582 .gfp_mask = gfp_mask,
1583 .order = order,
6e0fc46d 1584 };
7c5f64f8 1585 bool ret;
9cbb78bb 1586
7775face
TH
1587 if (mutex_lock_killable(&oom_lock))
1588 return true;
1589 /*
1590 * A few threads which were not waiting at mutex_lock_killable() can
1591 * fail to bail out. Therefore, check again after holding oom_lock.
1592 */
1593 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1594 mutex_unlock(&oom_lock);
7c5f64f8 1595 return ret;
9cbb78bb
DR
1596}
1597
0608f43d 1598static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1599 pg_data_t *pgdat,
0608f43d
AM
1600 gfp_t gfp_mask,
1601 unsigned long *total_scanned)
1602{
1603 struct mem_cgroup *victim = NULL;
1604 int total = 0;
1605 int loop = 0;
1606 unsigned long excess;
1607 unsigned long nr_scanned;
1608 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1609 .pgdat = pgdat,
0608f43d
AM
1610 };
1611
3e32cb2e 1612 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1613
1614 while (1) {
1615 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1616 if (!victim) {
1617 loop++;
1618 if (loop >= 2) {
1619 /*
1620 * If we have not been able to reclaim
1621 * anything, it might because there are
1622 * no reclaimable pages under this hierarchy
1623 */
1624 if (!total)
1625 break;
1626 /*
1627 * We want to do more targeted reclaim.
1628 * excess >> 2 is not to excessive so as to
1629 * reclaim too much, nor too less that we keep
1630 * coming back to reclaim from this cgroup
1631 */
1632 if (total >= (excess >> 2) ||
1633 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1634 break;
1635 }
1636 continue;
1637 }
a9dd0a83 1638 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1639 pgdat, &nr_scanned);
0608f43d 1640 *total_scanned += nr_scanned;
3e32cb2e 1641 if (!soft_limit_excess(root_memcg))
0608f43d 1642 break;
6d61ef40 1643 }
0608f43d
AM
1644 mem_cgroup_iter_break(root_memcg, victim);
1645 return total;
6d61ef40
BS
1646}
1647
0056f4e6
JW
1648#ifdef CONFIG_LOCKDEP
1649static struct lockdep_map memcg_oom_lock_dep_map = {
1650 .name = "memcg_oom_lock",
1651};
1652#endif
1653
fb2a6fc5
JW
1654static DEFINE_SPINLOCK(memcg_oom_lock);
1655
867578cb
KH
1656/*
1657 * Check OOM-Killer is already running under our hierarchy.
1658 * If someone is running, return false.
1659 */
fb2a6fc5 1660static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1661{
79dfdacc 1662 struct mem_cgroup *iter, *failed = NULL;
a636b327 1663
fb2a6fc5
JW
1664 spin_lock(&memcg_oom_lock);
1665
9f3a0d09 1666 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1667 if (iter->oom_lock) {
79dfdacc
MH
1668 /*
1669 * this subtree of our hierarchy is already locked
1670 * so we cannot give a lock.
1671 */
79dfdacc 1672 failed = iter;
9f3a0d09
JW
1673 mem_cgroup_iter_break(memcg, iter);
1674 break;
23751be0
JW
1675 } else
1676 iter->oom_lock = true;
7d74b06f 1677 }
867578cb 1678
fb2a6fc5
JW
1679 if (failed) {
1680 /*
1681 * OK, we failed to lock the whole subtree so we have
1682 * to clean up what we set up to the failing subtree
1683 */
1684 for_each_mem_cgroup_tree(iter, memcg) {
1685 if (iter == failed) {
1686 mem_cgroup_iter_break(memcg, iter);
1687 break;
1688 }
1689 iter->oom_lock = false;
79dfdacc 1690 }
0056f4e6
JW
1691 } else
1692 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1693
1694 spin_unlock(&memcg_oom_lock);
1695
1696 return !failed;
a636b327 1697}
0b7f569e 1698
fb2a6fc5 1699static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1700{
7d74b06f
KH
1701 struct mem_cgroup *iter;
1702
fb2a6fc5 1703 spin_lock(&memcg_oom_lock);
5facae4f 1704 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1705 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1706 iter->oom_lock = false;
fb2a6fc5 1707 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1708}
1709
c0ff4b85 1710static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1711{
1712 struct mem_cgroup *iter;
1713
c2b42d3c 1714 spin_lock(&memcg_oom_lock);
c0ff4b85 1715 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1716 iter->under_oom++;
1717 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1718}
1719
c0ff4b85 1720static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1721{
1722 struct mem_cgroup *iter;
1723
867578cb
KH
1724 /*
1725 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1726 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1727 */
c2b42d3c 1728 spin_lock(&memcg_oom_lock);
c0ff4b85 1729 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1730 if (iter->under_oom > 0)
1731 iter->under_oom--;
1732 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1733}
1734
867578cb
KH
1735static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1736
dc98df5a 1737struct oom_wait_info {
d79154bb 1738 struct mem_cgroup *memcg;
ac6424b9 1739 wait_queue_entry_t wait;
dc98df5a
KH
1740};
1741
ac6424b9 1742static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1743 unsigned mode, int sync, void *arg)
1744{
d79154bb
HD
1745 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1746 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1747 struct oom_wait_info *oom_wait_info;
1748
1749 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1750 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1751
2314b42d
JW
1752 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1753 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1754 return 0;
dc98df5a
KH
1755 return autoremove_wake_function(wait, mode, sync, arg);
1756}
1757
c0ff4b85 1758static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1759{
c2b42d3c
TH
1760 /*
1761 * For the following lockless ->under_oom test, the only required
1762 * guarantee is that it must see the state asserted by an OOM when
1763 * this function is called as a result of userland actions
1764 * triggered by the notification of the OOM. This is trivially
1765 * achieved by invoking mem_cgroup_mark_under_oom() before
1766 * triggering notification.
1767 */
1768 if (memcg && memcg->under_oom)
f4b90b70 1769 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1770}
1771
29ef680a
MH
1772enum oom_status {
1773 OOM_SUCCESS,
1774 OOM_FAILED,
1775 OOM_ASYNC,
1776 OOM_SKIPPED
1777};
1778
1779static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1780{
7056d3a3
MH
1781 enum oom_status ret;
1782 bool locked;
1783
29ef680a
MH
1784 if (order > PAGE_ALLOC_COSTLY_ORDER)
1785 return OOM_SKIPPED;
1786
7a1adfdd
RG
1787 memcg_memory_event(memcg, MEMCG_OOM);
1788
867578cb 1789 /*
49426420
JW
1790 * We are in the middle of the charge context here, so we
1791 * don't want to block when potentially sitting on a callstack
1792 * that holds all kinds of filesystem and mm locks.
1793 *
29ef680a
MH
1794 * cgroup1 allows disabling the OOM killer and waiting for outside
1795 * handling until the charge can succeed; remember the context and put
1796 * the task to sleep at the end of the page fault when all locks are
1797 * released.
49426420 1798 *
29ef680a
MH
1799 * On the other hand, in-kernel OOM killer allows for an async victim
1800 * memory reclaim (oom_reaper) and that means that we are not solely
1801 * relying on the oom victim to make a forward progress and we can
1802 * invoke the oom killer here.
1803 *
1804 * Please note that mem_cgroup_out_of_memory might fail to find a
1805 * victim and then we have to bail out from the charge path.
867578cb 1806 */
29ef680a
MH
1807 if (memcg->oom_kill_disable) {
1808 if (!current->in_user_fault)
1809 return OOM_SKIPPED;
1810 css_get(&memcg->css);
1811 current->memcg_in_oom = memcg;
1812 current->memcg_oom_gfp_mask = mask;
1813 current->memcg_oom_order = order;
1814
1815 return OOM_ASYNC;
1816 }
1817
7056d3a3
MH
1818 mem_cgroup_mark_under_oom(memcg);
1819
1820 locked = mem_cgroup_oom_trylock(memcg);
1821
1822 if (locked)
1823 mem_cgroup_oom_notify(memcg);
1824
1825 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1826 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1827 ret = OOM_SUCCESS;
1828 else
1829 ret = OOM_FAILED;
1830
1831 if (locked)
1832 mem_cgroup_oom_unlock(memcg);
29ef680a 1833
7056d3a3 1834 return ret;
3812c8c8
JW
1835}
1836
1837/**
1838 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1839 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1840 *
49426420
JW
1841 * This has to be called at the end of a page fault if the memcg OOM
1842 * handler was enabled.
3812c8c8 1843 *
49426420 1844 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1845 * sleep on a waitqueue until the userspace task resolves the
1846 * situation. Sleeping directly in the charge context with all kinds
1847 * of locks held is not a good idea, instead we remember an OOM state
1848 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1849 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1850 *
1851 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1852 * completed, %false otherwise.
3812c8c8 1853 */
49426420 1854bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1855{
626ebc41 1856 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1857 struct oom_wait_info owait;
49426420 1858 bool locked;
3812c8c8
JW
1859
1860 /* OOM is global, do not handle */
3812c8c8 1861 if (!memcg)
49426420 1862 return false;
3812c8c8 1863
7c5f64f8 1864 if (!handle)
49426420 1865 goto cleanup;
3812c8c8
JW
1866
1867 owait.memcg = memcg;
1868 owait.wait.flags = 0;
1869 owait.wait.func = memcg_oom_wake_function;
1870 owait.wait.private = current;
2055da97 1871 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1872
3812c8c8 1873 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1874 mem_cgroup_mark_under_oom(memcg);
1875
1876 locked = mem_cgroup_oom_trylock(memcg);
1877
1878 if (locked)
1879 mem_cgroup_oom_notify(memcg);
1880
1881 if (locked && !memcg->oom_kill_disable) {
1882 mem_cgroup_unmark_under_oom(memcg);
1883 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1884 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1885 current->memcg_oom_order);
49426420 1886 } else {
3812c8c8 1887 schedule();
49426420
JW
1888 mem_cgroup_unmark_under_oom(memcg);
1889 finish_wait(&memcg_oom_waitq, &owait.wait);
1890 }
1891
1892 if (locked) {
fb2a6fc5
JW
1893 mem_cgroup_oom_unlock(memcg);
1894 /*
1895 * There is no guarantee that an OOM-lock contender
1896 * sees the wakeups triggered by the OOM kill
1897 * uncharges. Wake any sleepers explicitely.
1898 */
1899 memcg_oom_recover(memcg);
1900 }
49426420 1901cleanup:
626ebc41 1902 current->memcg_in_oom = NULL;
3812c8c8 1903 css_put(&memcg->css);
867578cb 1904 return true;
0b7f569e
KH
1905}
1906
3d8b38eb
RG
1907/**
1908 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1909 * @victim: task to be killed by the OOM killer
1910 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1911 *
1912 * Returns a pointer to a memory cgroup, which has to be cleaned up
1913 * by killing all belonging OOM-killable tasks.
1914 *
1915 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1916 */
1917struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1918 struct mem_cgroup *oom_domain)
1919{
1920 struct mem_cgroup *oom_group = NULL;
1921 struct mem_cgroup *memcg;
1922
1923 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1924 return NULL;
1925
1926 if (!oom_domain)
1927 oom_domain = root_mem_cgroup;
1928
1929 rcu_read_lock();
1930
1931 memcg = mem_cgroup_from_task(victim);
1932 if (memcg == root_mem_cgroup)
1933 goto out;
1934
48fe267c
RG
1935 /*
1936 * If the victim task has been asynchronously moved to a different
1937 * memory cgroup, we might end up killing tasks outside oom_domain.
1938 * In this case it's better to ignore memory.group.oom.
1939 */
1940 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1941 goto out;
1942
3d8b38eb
RG
1943 /*
1944 * Traverse the memory cgroup hierarchy from the victim task's
1945 * cgroup up to the OOMing cgroup (or root) to find the
1946 * highest-level memory cgroup with oom.group set.
1947 */
1948 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1949 if (memcg->oom_group)
1950 oom_group = memcg;
1951
1952 if (memcg == oom_domain)
1953 break;
1954 }
1955
1956 if (oom_group)
1957 css_get(&oom_group->css);
1958out:
1959 rcu_read_unlock();
1960
1961 return oom_group;
1962}
1963
1964void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1965{
1966 pr_info("Tasks in ");
1967 pr_cont_cgroup_path(memcg->css.cgroup);
1968 pr_cont(" are going to be killed due to memory.oom.group set\n");
1969}
1970
d7365e78 1971/**
81f8c3a4
JW
1972 * lock_page_memcg - lock a page->mem_cgroup binding
1973 * @page: the page
32047e2a 1974 *
81f8c3a4 1975 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1976 * another cgroup.
1977 *
1978 * It ensures lifetime of the returned memcg. Caller is responsible
1979 * for the lifetime of the page; __unlock_page_memcg() is available
1980 * when @page might get freed inside the locked section.
d69b042f 1981 */
739f79fc 1982struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1983{
1984 struct mem_cgroup *memcg;
6de22619 1985 unsigned long flags;
89c06bd5 1986
6de22619
JW
1987 /*
1988 * The RCU lock is held throughout the transaction. The fast
1989 * path can get away without acquiring the memcg->move_lock
1990 * because page moving starts with an RCU grace period.
739f79fc
JW
1991 *
1992 * The RCU lock also protects the memcg from being freed when
1993 * the page state that is going to change is the only thing
1994 * preventing the page itself from being freed. E.g. writeback
1995 * doesn't hold a page reference and relies on PG_writeback to
1996 * keep off truncation, migration and so forth.
1997 */
d7365e78
JW
1998 rcu_read_lock();
1999
2000 if (mem_cgroup_disabled())
739f79fc 2001 return NULL;
89c06bd5 2002again:
1306a85a 2003 memcg = page->mem_cgroup;
29833315 2004 if (unlikely(!memcg))
739f79fc 2005 return NULL;
d7365e78 2006
bdcbb659 2007 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2008 return memcg;
89c06bd5 2009
6de22619 2010 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2011 if (memcg != page->mem_cgroup) {
6de22619 2012 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2013 goto again;
2014 }
6de22619
JW
2015
2016 /*
2017 * When charge migration first begins, we can have locked and
2018 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2019 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2020 */
2021 memcg->move_lock_task = current;
2022 memcg->move_lock_flags = flags;
d7365e78 2023
739f79fc 2024 return memcg;
89c06bd5 2025}
81f8c3a4 2026EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2027
d7365e78 2028/**
739f79fc
JW
2029 * __unlock_page_memcg - unlock and unpin a memcg
2030 * @memcg: the memcg
2031 *
2032 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2033 */
739f79fc 2034void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2035{
6de22619
JW
2036 if (memcg && memcg->move_lock_task == current) {
2037 unsigned long flags = memcg->move_lock_flags;
2038
2039 memcg->move_lock_task = NULL;
2040 memcg->move_lock_flags = 0;
2041
2042 spin_unlock_irqrestore(&memcg->move_lock, flags);
2043 }
89c06bd5 2044
d7365e78 2045 rcu_read_unlock();
89c06bd5 2046}
739f79fc
JW
2047
2048/**
2049 * unlock_page_memcg - unlock a page->mem_cgroup binding
2050 * @page: the page
2051 */
2052void unlock_page_memcg(struct page *page)
2053{
2054 __unlock_page_memcg(page->mem_cgroup);
2055}
81f8c3a4 2056EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2057
cdec2e42
KH
2058struct memcg_stock_pcp {
2059 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2060 unsigned int nr_pages;
cdec2e42 2061 struct work_struct work;
26fe6168 2062 unsigned long flags;
a0db00fc 2063#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2064};
2065static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2066static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2067
a0956d54
SS
2068/**
2069 * consume_stock: Try to consume stocked charge on this cpu.
2070 * @memcg: memcg to consume from.
2071 * @nr_pages: how many pages to charge.
2072 *
2073 * The charges will only happen if @memcg matches the current cpu's memcg
2074 * stock, and at least @nr_pages are available in that stock. Failure to
2075 * service an allocation will refill the stock.
2076 *
2077 * returns true if successful, false otherwise.
cdec2e42 2078 */
a0956d54 2079static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2080{
2081 struct memcg_stock_pcp *stock;
db2ba40c 2082 unsigned long flags;
3e32cb2e 2083 bool ret = false;
cdec2e42 2084
a983b5eb 2085 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2086 return ret;
a0956d54 2087
db2ba40c
JW
2088 local_irq_save(flags);
2089
2090 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2091 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2092 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2093 ret = true;
2094 }
db2ba40c
JW
2095
2096 local_irq_restore(flags);
2097
cdec2e42
KH
2098 return ret;
2099}
2100
2101/*
3e32cb2e 2102 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2103 */
2104static void drain_stock(struct memcg_stock_pcp *stock)
2105{
2106 struct mem_cgroup *old = stock->cached;
2107
11c9ea4e 2108 if (stock->nr_pages) {
3e32cb2e 2109 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2110 if (do_memsw_account())
3e32cb2e 2111 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2112 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2113 stock->nr_pages = 0;
cdec2e42
KH
2114 }
2115 stock->cached = NULL;
cdec2e42
KH
2116}
2117
cdec2e42
KH
2118static void drain_local_stock(struct work_struct *dummy)
2119{
db2ba40c
JW
2120 struct memcg_stock_pcp *stock;
2121 unsigned long flags;
2122
72f0184c
MH
2123 /*
2124 * The only protection from memory hotplug vs. drain_stock races is
2125 * that we always operate on local CPU stock here with IRQ disabled
2126 */
db2ba40c
JW
2127 local_irq_save(flags);
2128
2129 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2130 drain_stock(stock);
26fe6168 2131 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2132
2133 local_irq_restore(flags);
cdec2e42
KH
2134}
2135
2136/*
3e32cb2e 2137 * Cache charges(val) to local per_cpu area.
320cc51d 2138 * This will be consumed by consume_stock() function, later.
cdec2e42 2139 */
c0ff4b85 2140static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2141{
db2ba40c
JW
2142 struct memcg_stock_pcp *stock;
2143 unsigned long flags;
2144
2145 local_irq_save(flags);
cdec2e42 2146
db2ba40c 2147 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2148 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2149 drain_stock(stock);
c0ff4b85 2150 stock->cached = memcg;
cdec2e42 2151 }
11c9ea4e 2152 stock->nr_pages += nr_pages;
db2ba40c 2153
a983b5eb 2154 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2155 drain_stock(stock);
2156
db2ba40c 2157 local_irq_restore(flags);
cdec2e42
KH
2158}
2159
2160/*
c0ff4b85 2161 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2162 * of the hierarchy under it.
cdec2e42 2163 */
6d3d6aa2 2164static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2165{
26fe6168 2166 int cpu, curcpu;
d38144b7 2167
6d3d6aa2
JW
2168 /* If someone's already draining, avoid adding running more workers. */
2169 if (!mutex_trylock(&percpu_charge_mutex))
2170 return;
72f0184c
MH
2171 /*
2172 * Notify other cpus that system-wide "drain" is running
2173 * We do not care about races with the cpu hotplug because cpu down
2174 * as well as workers from this path always operate on the local
2175 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2176 */
5af12d0e 2177 curcpu = get_cpu();
cdec2e42
KH
2178 for_each_online_cpu(cpu) {
2179 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2180 struct mem_cgroup *memcg;
e1a366be 2181 bool flush = false;
26fe6168 2182
e1a366be 2183 rcu_read_lock();
c0ff4b85 2184 memcg = stock->cached;
e1a366be
RG
2185 if (memcg && stock->nr_pages &&
2186 mem_cgroup_is_descendant(memcg, root_memcg))
2187 flush = true;
2188 rcu_read_unlock();
2189
2190 if (flush &&
2191 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2192 if (cpu == curcpu)
2193 drain_local_stock(&stock->work);
2194 else
2195 schedule_work_on(cpu, &stock->work);
2196 }
cdec2e42 2197 }
5af12d0e 2198 put_cpu();
9f50fad6 2199 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2200}
2201
308167fc 2202static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2203{
cdec2e42 2204 struct memcg_stock_pcp *stock;
42a30035 2205 struct mem_cgroup *memcg, *mi;
cdec2e42 2206
cdec2e42
KH
2207 stock = &per_cpu(memcg_stock, cpu);
2208 drain_stock(stock);
a983b5eb
JW
2209
2210 for_each_mem_cgroup(memcg) {
2211 int i;
2212
2213 for (i = 0; i < MEMCG_NR_STAT; i++) {
2214 int nid;
2215 long x;
2216
871789d4 2217 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2218 if (x)
42a30035
JW
2219 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2220 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2221
2222 if (i >= NR_VM_NODE_STAT_ITEMS)
2223 continue;
2224
2225 for_each_node(nid) {
2226 struct mem_cgroup_per_node *pn;
2227
2228 pn = mem_cgroup_nodeinfo(memcg, nid);
2229 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2230 if (x)
42a30035
JW
2231 do {
2232 atomic_long_add(x, &pn->lruvec_stat[i]);
2233 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2234 }
2235 }
2236
e27be240 2237 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2238 long x;
2239
871789d4 2240 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2241 if (x)
42a30035
JW
2242 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2243 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2244 }
2245 }
2246
308167fc 2247 return 0;
cdec2e42
KH
2248}
2249
f7e1cb6e
JW
2250static void reclaim_high(struct mem_cgroup *memcg,
2251 unsigned int nr_pages,
2252 gfp_t gfp_mask)
2253{
2254 do {
d1663a90
JK
2255 if (page_counter_read(&memcg->memory) <=
2256 READ_ONCE(memcg->memory.high))
f7e1cb6e 2257 continue;
e27be240 2258 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e 2259 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
4bf17307
CD
2260 } while ((memcg = parent_mem_cgroup(memcg)) &&
2261 !mem_cgroup_is_root(memcg));
f7e1cb6e
JW
2262}
2263
2264static void high_work_func(struct work_struct *work)
2265{
2266 struct mem_cgroup *memcg;
2267
2268 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2269 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2270}
2271
0e4b01df
CD
2272/*
2273 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2274 * enough to still cause a significant slowdown in most cases, while still
2275 * allowing diagnostics and tracing to proceed without becoming stuck.
2276 */
2277#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2278
2279/*
2280 * When calculating the delay, we use these either side of the exponentiation to
2281 * maintain precision and scale to a reasonable number of jiffies (see the table
2282 * below.
2283 *
2284 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2285 * overage ratio to a delay.
2286 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2287 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2288 * to produce a reasonable delay curve.
2289 *
2290 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2291 * reasonable delay curve compared to precision-adjusted overage, not
2292 * penalising heavily at first, but still making sure that growth beyond the
2293 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2294 * example, with a high of 100 megabytes:
2295 *
2296 * +-------+------------------------+
2297 * | usage | time to allocate in ms |
2298 * +-------+------------------------+
2299 * | 100M | 0 |
2300 * | 101M | 6 |
2301 * | 102M | 25 |
2302 * | 103M | 57 |
2303 * | 104M | 102 |
2304 * | 105M | 159 |
2305 * | 106M | 230 |
2306 * | 107M | 313 |
2307 * | 108M | 409 |
2308 * | 109M | 518 |
2309 * | 110M | 639 |
2310 * | 111M | 774 |
2311 * | 112M | 921 |
2312 * | 113M | 1081 |
2313 * | 114M | 1254 |
2314 * | 115M | 1439 |
2315 * | 116M | 1638 |
2316 * | 117M | 1849 |
2317 * | 118M | 2000 |
2318 * | 119M | 2000 |
2319 * | 120M | 2000 |
2320 * +-------+------------------------+
2321 */
2322 #define MEMCG_DELAY_PRECISION_SHIFT 20
2323 #define MEMCG_DELAY_SCALING_SHIFT 14
2324
8a5dbc65 2325static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2326{
8a5dbc65 2327 u64 overage;
b23afb93 2328
8a5dbc65
JK
2329 if (usage <= high)
2330 return 0;
e26733e0 2331
8a5dbc65
JK
2332 /*
2333 * Prevent division by 0 in overage calculation by acting as if
2334 * it was a threshold of 1 page
2335 */
2336 high = max(high, 1UL);
9b8b1754 2337
8a5dbc65
JK
2338 overage = usage - high;
2339 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2340 return div64_u64(overage, high);
2341}
e26733e0 2342
8a5dbc65
JK
2343static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2344{
2345 u64 overage, max_overage = 0;
e26733e0 2346
8a5dbc65
JK
2347 do {
2348 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2349 READ_ONCE(memcg->memory.high));
8a5dbc65 2350 max_overage = max(overage, max_overage);
e26733e0
CD
2351 } while ((memcg = parent_mem_cgroup(memcg)) &&
2352 !mem_cgroup_is_root(memcg));
2353
8a5dbc65
JK
2354 return max_overage;
2355}
2356
4b82ab4f
JK
2357static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2358{
2359 u64 overage, max_overage = 0;
2360
2361 do {
2362 overage = calculate_overage(page_counter_read(&memcg->swap),
2363 READ_ONCE(memcg->swap.high));
2364 if (overage)
2365 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2366 max_overage = max(overage, max_overage);
2367 } while ((memcg = parent_mem_cgroup(memcg)) &&
2368 !mem_cgroup_is_root(memcg));
2369
2370 return max_overage;
2371}
2372
8a5dbc65
JK
2373/*
2374 * Get the number of jiffies that we should penalise a mischievous cgroup which
2375 * is exceeding its memory.high by checking both it and its ancestors.
2376 */
2377static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2378 unsigned int nr_pages,
2379 u64 max_overage)
2380{
2381 unsigned long penalty_jiffies;
2382
e26733e0
CD
2383 if (!max_overage)
2384 return 0;
0e4b01df
CD
2385
2386 /*
0e4b01df
CD
2387 * We use overage compared to memory.high to calculate the number of
2388 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2389 * fairly lenient on small overages, and increasingly harsh when the
2390 * memcg in question makes it clear that it has no intention of stopping
2391 * its crazy behaviour, so we exponentially increase the delay based on
2392 * overage amount.
2393 */
e26733e0
CD
2394 penalty_jiffies = max_overage * max_overage * HZ;
2395 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2396 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2397
2398 /*
2399 * Factor in the task's own contribution to the overage, such that four
2400 * N-sized allocations are throttled approximately the same as one
2401 * 4N-sized allocation.
2402 *
2403 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2404 * larger the current charge patch is than that.
2405 */
ff144e69 2406 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2407}
2408
2409/*
2410 * Scheduled by try_charge() to be executed from the userland return path
2411 * and reclaims memory over the high limit.
2412 */
2413void mem_cgroup_handle_over_high(void)
2414{
2415 unsigned long penalty_jiffies;
2416 unsigned long pflags;
2417 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2418 struct mem_cgroup *memcg;
2419
2420 if (likely(!nr_pages))
2421 return;
2422
2423 memcg = get_mem_cgroup_from_mm(current->mm);
2424 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2425 current->memcg_nr_pages_over_high = 0;
2426
2427 /*
2428 * memory.high is breached and reclaim is unable to keep up. Throttle
2429 * allocators proactively to slow down excessive growth.
2430 */
8a5dbc65
JK
2431 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2432 mem_find_max_overage(memcg));
0e4b01df 2433
4b82ab4f
JK
2434 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2435 swap_find_max_overage(memcg));
2436
ff144e69
JK
2437 /*
2438 * Clamp the max delay per usermode return so as to still keep the
2439 * application moving forwards and also permit diagnostics, albeit
2440 * extremely slowly.
2441 */
2442 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2443
0e4b01df
CD
2444 /*
2445 * Don't sleep if the amount of jiffies this memcg owes us is so low
2446 * that it's not even worth doing, in an attempt to be nice to those who
2447 * go only a small amount over their memory.high value and maybe haven't
2448 * been aggressively reclaimed enough yet.
2449 */
2450 if (penalty_jiffies <= HZ / 100)
2451 goto out;
2452
2453 /*
2454 * If we exit early, we're guaranteed to die (since
2455 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2456 * need to account for any ill-begotten jiffies to pay them off later.
2457 */
2458 psi_memstall_enter(&pflags);
2459 schedule_timeout_killable(penalty_jiffies);
2460 psi_memstall_leave(&pflags);
2461
2462out:
2463 css_put(&memcg->css);
b23afb93
TH
2464}
2465
00501b53
JW
2466static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2467 unsigned int nr_pages)
8a9f3ccd 2468{
a983b5eb 2469 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2470 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2471 struct mem_cgroup *mem_over_limit;
3e32cb2e 2472 struct page_counter *counter;
6539cc05 2473 unsigned long nr_reclaimed;
b70a2a21
JW
2474 bool may_swap = true;
2475 bool drained = false;
29ef680a 2476 enum oom_status oom_status;
a636b327 2477
ce00a967 2478 if (mem_cgroup_is_root(memcg))
10d53c74 2479 return 0;
6539cc05 2480retry:
b6b6cc72 2481 if (consume_stock(memcg, nr_pages))
10d53c74 2482 return 0;
8a9f3ccd 2483
7941d214 2484 if (!do_memsw_account() ||
6071ca52
JW
2485 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2486 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2487 goto done_restock;
7941d214 2488 if (do_memsw_account())
3e32cb2e
JW
2489 page_counter_uncharge(&memcg->memsw, batch);
2490 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2491 } else {
3e32cb2e 2492 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2493 may_swap = false;
3fbe7244 2494 }
7a81b88c 2495
6539cc05
JW
2496 if (batch > nr_pages) {
2497 batch = nr_pages;
2498 goto retry;
2499 }
6d61ef40 2500
869712fd
JW
2501 /*
2502 * Memcg doesn't have a dedicated reserve for atomic
2503 * allocations. But like the global atomic pool, we need to
2504 * put the burden of reclaim on regular allocation requests
2505 * and let these go through as privileged allocations.
2506 */
2507 if (gfp_mask & __GFP_ATOMIC)
2508 goto force;
2509
06b078fc
JW
2510 /*
2511 * Unlike in global OOM situations, memcg is not in a physical
2512 * memory shortage. Allow dying and OOM-killed tasks to
2513 * bypass the last charges so that they can exit quickly and
2514 * free their memory.
2515 */
7775face 2516 if (unlikely(should_force_charge()))
10d53c74 2517 goto force;
06b078fc 2518
89a28483
JW
2519 /*
2520 * Prevent unbounded recursion when reclaim operations need to
2521 * allocate memory. This might exceed the limits temporarily,
2522 * but we prefer facilitating memory reclaim and getting back
2523 * under the limit over triggering OOM kills in these cases.
2524 */
2525 if (unlikely(current->flags & PF_MEMALLOC))
2526 goto force;
2527
06b078fc
JW
2528 if (unlikely(task_in_memcg_oom(current)))
2529 goto nomem;
2530
d0164adc 2531 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2532 goto nomem;
4b534334 2533
e27be240 2534 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2535
b70a2a21
JW
2536 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2537 gfp_mask, may_swap);
6539cc05 2538
61e02c74 2539 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2540 goto retry;
28c34c29 2541
b70a2a21 2542 if (!drained) {
6d3d6aa2 2543 drain_all_stock(mem_over_limit);
b70a2a21
JW
2544 drained = true;
2545 goto retry;
2546 }
2547
28c34c29
JW
2548 if (gfp_mask & __GFP_NORETRY)
2549 goto nomem;
6539cc05
JW
2550 /*
2551 * Even though the limit is exceeded at this point, reclaim
2552 * may have been able to free some pages. Retry the charge
2553 * before killing the task.
2554 *
2555 * Only for regular pages, though: huge pages are rather
2556 * unlikely to succeed so close to the limit, and we fall back
2557 * to regular pages anyway in case of failure.
2558 */
61e02c74 2559 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2560 goto retry;
2561 /*
2562 * At task move, charge accounts can be doubly counted. So, it's
2563 * better to wait until the end of task_move if something is going on.
2564 */
2565 if (mem_cgroup_wait_acct_move(mem_over_limit))
2566 goto retry;
2567
9b130619
JW
2568 if (nr_retries--)
2569 goto retry;
2570
38d38493 2571 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2572 goto nomem;
2573
06b078fc 2574 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2575 goto force;
06b078fc 2576
6539cc05 2577 if (fatal_signal_pending(current))
10d53c74 2578 goto force;
6539cc05 2579
29ef680a
MH
2580 /*
2581 * keep retrying as long as the memcg oom killer is able to make
2582 * a forward progress or bypass the charge if the oom killer
2583 * couldn't make any progress.
2584 */
2585 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2586 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2587 switch (oom_status) {
2588 case OOM_SUCCESS:
2589 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2590 goto retry;
2591 case OOM_FAILED:
2592 goto force;
2593 default:
2594 goto nomem;
2595 }
7a81b88c 2596nomem:
6d1fdc48 2597 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2598 return -ENOMEM;
10d53c74
TH
2599force:
2600 /*
2601 * The allocation either can't fail or will lead to more memory
2602 * being freed very soon. Allow memory usage go over the limit
2603 * temporarily by force charging it.
2604 */
2605 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2606 if (do_memsw_account())
10d53c74
TH
2607 page_counter_charge(&memcg->memsw, nr_pages);
2608 css_get_many(&memcg->css, nr_pages);
2609
2610 return 0;
6539cc05
JW
2611
2612done_restock:
e8ea14cc 2613 css_get_many(&memcg->css, batch);
6539cc05
JW
2614 if (batch > nr_pages)
2615 refill_stock(memcg, batch - nr_pages);
b23afb93 2616
241994ed 2617 /*
b23afb93
TH
2618 * If the hierarchy is above the normal consumption range, schedule
2619 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2620 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2621 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2622 * not recorded as it most likely matches current's and won't
2623 * change in the meantime. As high limit is checked again before
2624 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2625 */
2626 do {
4b82ab4f
JK
2627 bool mem_high, swap_high;
2628
2629 mem_high = page_counter_read(&memcg->memory) >
2630 READ_ONCE(memcg->memory.high);
2631 swap_high = page_counter_read(&memcg->swap) >
2632 READ_ONCE(memcg->swap.high);
2633
2634 /* Don't bother a random interrupted task */
2635 if (in_interrupt()) {
2636 if (mem_high) {
f7e1cb6e
JW
2637 schedule_work(&memcg->high_work);
2638 break;
2639 }
4b82ab4f
JK
2640 continue;
2641 }
2642
2643 if (mem_high || swap_high) {
2644 /*
2645 * The allocating tasks in this cgroup will need to do
2646 * reclaim or be throttled to prevent further growth
2647 * of the memory or swap footprints.
2648 *
2649 * Target some best-effort fairness between the tasks,
2650 * and distribute reclaim work and delay penalties
2651 * based on how much each task is actually allocating.
2652 */
9516a18a 2653 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2654 set_notify_resume(current);
2655 break;
2656 }
241994ed 2657 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2658
2659 return 0;
7a81b88c 2660}
8a9f3ccd 2661
00501b53 2662static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2663{
ce00a967
JW
2664 if (mem_cgroup_is_root(memcg))
2665 return;
2666
3e32cb2e 2667 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2668 if (do_memsw_account())
3e32cb2e 2669 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2670
e8ea14cc 2671 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2672}
2673
0a31bc97
JW
2674static void lock_page_lru(struct page *page, int *isolated)
2675{
f4b7e272 2676 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2677
f4b7e272 2678 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2679 if (PageLRU(page)) {
2680 struct lruvec *lruvec;
2681
f4b7e272 2682 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2683 ClearPageLRU(page);
2684 del_page_from_lru_list(page, lruvec, page_lru(page));
2685 *isolated = 1;
2686 } else
2687 *isolated = 0;
2688}
2689
2690static void unlock_page_lru(struct page *page, int isolated)
2691{
f4b7e272 2692 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2693
2694 if (isolated) {
2695 struct lruvec *lruvec;
2696
f4b7e272 2697 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2698 VM_BUG_ON_PAGE(PageLRU(page), page);
2699 SetPageLRU(page);
2700 add_page_to_lru_list(page, lruvec, page_lru(page));
2701 }
f4b7e272 2702 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2703}
2704
00501b53 2705static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2706 bool lrucare)
7a81b88c 2707{
0a31bc97 2708 int isolated;
9ce70c02 2709
1306a85a 2710 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2711
2712 /*
2713 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2714 * may already be on some other mem_cgroup's LRU. Take care of it.
2715 */
0a31bc97
JW
2716 if (lrucare)
2717 lock_page_lru(page, &isolated);
9ce70c02 2718
0a31bc97
JW
2719 /*
2720 * Nobody should be changing or seriously looking at
1306a85a 2721 * page->mem_cgroup at this point:
0a31bc97
JW
2722 *
2723 * - the page is uncharged
2724 *
2725 * - the page is off-LRU
2726 *
2727 * - an anonymous fault has exclusive page access, except for
2728 * a locked page table
2729 *
2730 * - a page cache insertion, a swapin fault, or a migration
2731 * have the page locked
2732 */
1306a85a 2733 page->mem_cgroup = memcg;
9ce70c02 2734
0a31bc97
JW
2735 if (lrucare)
2736 unlock_page_lru(page, isolated);
7a81b88c 2737}
66e1707b 2738
84c07d11 2739#ifdef CONFIG_MEMCG_KMEM
8380ce47
RG
2740/*
2741 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2742 *
2743 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2744 * cgroup_mutex, etc.
2745 */
2746struct mem_cgroup *mem_cgroup_from_obj(void *p)
2747{
2748 struct page *page;
2749
2750 if (mem_cgroup_disabled())
2751 return NULL;
2752
2753 page = virt_to_head_page(p);
2754
2755 /*
2756 * Slab pages don't have page->mem_cgroup set because corresponding
2757 * kmem caches can be reparented during the lifetime. That's why
2758 * memcg_from_slab_page() should be used instead.
2759 */
2760 if (PageSlab(page))
2761 return memcg_from_slab_page(page);
2762
2763 /* All other pages use page->mem_cgroup */
2764 return page->mem_cgroup;
2765}
2766
f3bb3043 2767static int memcg_alloc_cache_id(void)
55007d84 2768{
f3bb3043
VD
2769 int id, size;
2770 int err;
2771
dbcf73e2 2772 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2773 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2774 if (id < 0)
2775 return id;
55007d84 2776
dbcf73e2 2777 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2778 return id;
2779
2780 /*
2781 * There's no space for the new id in memcg_caches arrays,
2782 * so we have to grow them.
2783 */
05257a1a 2784 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2785
2786 size = 2 * (id + 1);
55007d84
GC
2787 if (size < MEMCG_CACHES_MIN_SIZE)
2788 size = MEMCG_CACHES_MIN_SIZE;
2789 else if (size > MEMCG_CACHES_MAX_SIZE)
2790 size = MEMCG_CACHES_MAX_SIZE;
2791
f3bb3043 2792 err = memcg_update_all_caches(size);
60d3fd32
VD
2793 if (!err)
2794 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2795 if (!err)
2796 memcg_nr_cache_ids = size;
2797
2798 up_write(&memcg_cache_ids_sem);
2799
f3bb3043 2800 if (err) {
dbcf73e2 2801 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2802 return err;
2803 }
2804 return id;
2805}
2806
2807static void memcg_free_cache_id(int id)
2808{
dbcf73e2 2809 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2810}
2811
d5b3cf71 2812struct memcg_kmem_cache_create_work {
5722d094
VD
2813 struct mem_cgroup *memcg;
2814 struct kmem_cache *cachep;
2815 struct work_struct work;
2816};
2817
d5b3cf71 2818static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2819{
d5b3cf71
VD
2820 struct memcg_kmem_cache_create_work *cw =
2821 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2822 struct mem_cgroup *memcg = cw->memcg;
2823 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2824
d5b3cf71 2825 memcg_create_kmem_cache(memcg, cachep);
bd673145 2826
5722d094 2827 css_put(&memcg->css);
d7f25f8a
GC
2828 kfree(cw);
2829}
2830
2831/*
2832 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2833 */
85cfb245 2834static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2835 struct kmem_cache *cachep)
d7f25f8a 2836{
d5b3cf71 2837 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2838
f0a3a24b
RG
2839 if (!css_tryget_online(&memcg->css))
2840 return;
2841
c892fd82 2842 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2843 if (!cw)
d7f25f8a 2844 return;
8135be5a 2845
d7f25f8a
GC
2846 cw->memcg = memcg;
2847 cw->cachep = cachep;
d5b3cf71 2848 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2849
17cc4dfe 2850 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2851}
2852
45264778
VD
2853static inline bool memcg_kmem_bypass(void)
2854{
50d53d7c
ZL
2855 if (in_interrupt())
2856 return true;
2857
2858 /* Allow remote memcg charging in kthread contexts. */
2859 if ((!current->mm || (current->flags & PF_KTHREAD)) &&
2860 !current->active_memcg)
45264778
VD
2861 return true;
2862 return false;
2863}
2864
2865/**
2866 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2867 * @cachep: the original global kmem cache
2868 *
d7f25f8a
GC
2869 * Return the kmem_cache we're supposed to use for a slab allocation.
2870 * We try to use the current memcg's version of the cache.
2871 *
45264778
VD
2872 * If the cache does not exist yet, if we are the first user of it, we
2873 * create it asynchronously in a workqueue and let the current allocation
2874 * go through with the original cache.
d7f25f8a 2875 *
45264778
VD
2876 * This function takes a reference to the cache it returns to assure it
2877 * won't get destroyed while we are working with it. Once the caller is
2878 * done with it, memcg_kmem_put_cache() must be called to release the
2879 * reference.
d7f25f8a 2880 */
45264778 2881struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2882{
2883 struct mem_cgroup *memcg;
959c8963 2884 struct kmem_cache *memcg_cachep;
f0a3a24b 2885 struct memcg_cache_array *arr;
2a4db7eb 2886 int kmemcg_id;
d7f25f8a 2887
f7ce3190 2888 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2889
45264778 2890 if (memcg_kmem_bypass())
230e9fc2
VD
2891 return cachep;
2892
f0a3a24b
RG
2893 rcu_read_lock();
2894
2895 if (unlikely(current->active_memcg))
2896 memcg = current->active_memcg;
2897 else
2898 memcg = mem_cgroup_from_task(current);
2899
2900 if (!memcg || memcg == root_mem_cgroup)
2901 goto out_unlock;
2902
4db0c3c2 2903 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2904 if (kmemcg_id < 0)
f0a3a24b 2905 goto out_unlock;
d7f25f8a 2906
f0a3a24b
RG
2907 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2908
2909 /*
2910 * Make sure we will access the up-to-date value. The code updating
2911 * memcg_caches issues a write barrier to match the data dependency
2912 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2913 */
2914 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2915
2916 /*
2917 * If we are in a safe context (can wait, and not in interrupt
2918 * context), we could be be predictable and return right away.
2919 * This would guarantee that the allocation being performed
2920 * already belongs in the new cache.
2921 *
2922 * However, there are some clashes that can arrive from locking.
2923 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2924 * memcg_create_kmem_cache, this means no further allocation
2925 * could happen with the slab_mutex held. So it's better to
2926 * defer everything.
f0a3a24b
RG
2927 *
2928 * If the memcg is dying or memcg_cache is about to be released,
2929 * don't bother creating new kmem_caches. Because memcg_cachep
2930 * is ZEROed as the fist step of kmem offlining, we don't need
2931 * percpu_ref_tryget_live() here. css_tryget_online() check in
2932 * memcg_schedule_kmem_cache_create() will prevent us from
2933 * creation of a new kmem_cache.
ca0dde97 2934 */
f0a3a24b
RG
2935 if (unlikely(!memcg_cachep))
2936 memcg_schedule_kmem_cache_create(memcg, cachep);
2937 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2938 cachep = memcg_cachep;
2939out_unlock:
2940 rcu_read_unlock();
ca0dde97 2941 return cachep;
d7f25f8a 2942}
d7f25f8a 2943
45264778
VD
2944/**
2945 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2946 * @cachep: the cache returned by memcg_kmem_get_cache
2947 */
2948void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2949{
2950 if (!is_root_cache(cachep))
f0a3a24b 2951 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2952}
2953
45264778 2954/**
4b13f64d 2955 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 2956 * @memcg: memory cgroup to charge
45264778 2957 * @gfp: reclaim mode
92d0510c 2958 * @nr_pages: number of pages to charge
45264778
VD
2959 *
2960 * Returns 0 on success, an error code on failure.
2961 */
4b13f64d
RG
2962int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2963 unsigned int nr_pages)
7ae1e1d0 2964{
f3ccb2c4 2965 struct page_counter *counter;
7ae1e1d0
GC
2966 int ret;
2967
f3ccb2c4 2968 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2969 if (ret)
f3ccb2c4 2970 return ret;
52c29b04
JW
2971
2972 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2973 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2974
2975 /*
2976 * Enforce __GFP_NOFAIL allocation because callers are not
2977 * prepared to see failures and likely do not have any failure
2978 * handling code.
2979 */
2980 if (gfp & __GFP_NOFAIL) {
2981 page_counter_charge(&memcg->kmem, nr_pages);
2982 return 0;
2983 }
52c29b04
JW
2984 cancel_charge(memcg, nr_pages);
2985 return -ENOMEM;
7ae1e1d0 2986 }
f3ccb2c4 2987 return 0;
7ae1e1d0
GC
2988}
2989
4b13f64d
RG
2990/**
2991 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2992 * @memcg: memcg to uncharge
2993 * @nr_pages: number of pages to uncharge
2994 */
2995void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2996{
2997 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2998 page_counter_uncharge(&memcg->kmem, nr_pages);
2999
3000 page_counter_uncharge(&memcg->memory, nr_pages);
3001 if (do_memsw_account())
3002 page_counter_uncharge(&memcg->memsw, nr_pages);
3003}
3004
45264778 3005/**
f4b00eab 3006 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3007 * @page: page to charge
3008 * @gfp: reclaim mode
3009 * @order: allocation order
3010 *
3011 * Returns 0 on success, an error code on failure.
3012 */
f4b00eab 3013int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3014{
f3ccb2c4 3015 struct mem_cgroup *memcg;
fcff7d7e 3016 int ret = 0;
7ae1e1d0 3017
60cd4bcd 3018 if (memcg_kmem_bypass())
45264778
VD
3019 return 0;
3020
d46eb14b 3021 memcg = get_mem_cgroup_from_current();
c4159a75 3022 if (!mem_cgroup_is_root(memcg)) {
4b13f64d 3023 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
3024 if (!ret) {
3025 page->mem_cgroup = memcg;
c4159a75 3026 __SetPageKmemcg(page);
4d96ba35 3027 }
c4159a75 3028 }
7ae1e1d0 3029 css_put(&memcg->css);
d05e83a6 3030 return ret;
7ae1e1d0 3031}
49a18eae 3032
45264778 3033/**
f4b00eab 3034 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3035 * @page: page to uncharge
3036 * @order: allocation order
3037 */
f4b00eab 3038void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3039{
1306a85a 3040 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3041 unsigned int nr_pages = 1 << order;
7ae1e1d0 3042
7ae1e1d0
GC
3043 if (!memcg)
3044 return;
3045
309381fe 3046 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3047 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 3048 page->mem_cgroup = NULL;
c4159a75
VD
3049
3050 /* slab pages do not have PageKmemcg flag set */
3051 if (PageKmemcg(page))
3052 __ClearPageKmemcg(page);
3053
f3ccb2c4 3054 css_put_many(&memcg->css, nr_pages);
60d3fd32 3055}
84c07d11 3056#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3057
ca3e0214
KH
3058#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3059
ca3e0214
KH
3060/*
3061 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3062 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3063 */
e94c8a9c 3064void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3065{
e94c8a9c 3066 int i;
ca3e0214 3067
3d37c4a9
KH
3068 if (mem_cgroup_disabled())
3069 return;
b070e65c 3070
29833315 3071 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3072 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3073
c9019e9b 3074 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 3075}
12d27107 3076#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3077
c255a458 3078#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3079/**
3080 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3081 * @entry: swap entry to be moved
3082 * @from: mem_cgroup which the entry is moved from
3083 * @to: mem_cgroup which the entry is moved to
3084 *
3085 * It succeeds only when the swap_cgroup's record for this entry is the same
3086 * as the mem_cgroup's id of @from.
3087 *
3088 * Returns 0 on success, -EINVAL on failure.
3089 *
3e32cb2e 3090 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3091 * both res and memsw, and called css_get().
3092 */
3093static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3094 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3095{
3096 unsigned short old_id, new_id;
3097
34c00c31
LZ
3098 old_id = mem_cgroup_id(from);
3099 new_id = mem_cgroup_id(to);
02491447
DN
3100
3101 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3102 mod_memcg_state(from, MEMCG_SWAP, -1);
3103 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3104 return 0;
3105 }
3106 return -EINVAL;
3107}
3108#else
3109static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3110 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3111{
3112 return -EINVAL;
3113}
8c7c6e34 3114#endif
d13d1443 3115
bbec2e15 3116static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3117
bbec2e15
RG
3118static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3119 unsigned long max, bool memsw)
628f4235 3120{
3e32cb2e 3121 bool enlarge = false;
bb4a7ea2 3122 bool drained = false;
3e32cb2e 3123 int ret;
c054a78c
YZ
3124 bool limits_invariant;
3125 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3126
3e32cb2e 3127 do {
628f4235
KH
3128 if (signal_pending(current)) {
3129 ret = -EINTR;
3130 break;
3131 }
3e32cb2e 3132
bbec2e15 3133 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3134 /*
3135 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3136 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3137 */
15b42562 3138 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3139 max <= memcg->memsw.max;
c054a78c 3140 if (!limits_invariant) {
bbec2e15 3141 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3142 ret = -EINVAL;
8c7c6e34
KH
3143 break;
3144 }
bbec2e15 3145 if (max > counter->max)
3e32cb2e 3146 enlarge = true;
bbec2e15
RG
3147 ret = page_counter_set_max(counter, max);
3148 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3149
3150 if (!ret)
3151 break;
3152
bb4a7ea2
SB
3153 if (!drained) {
3154 drain_all_stock(memcg);
3155 drained = true;
3156 continue;
3157 }
3158
1ab5c056
AR
3159 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3160 GFP_KERNEL, !memsw)) {
3161 ret = -EBUSY;
3162 break;
3163 }
3164 } while (true);
3e32cb2e 3165
3c11ecf4
KH
3166 if (!ret && enlarge)
3167 memcg_oom_recover(memcg);
3e32cb2e 3168
628f4235
KH
3169 return ret;
3170}
3171
ef8f2327 3172unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3173 gfp_t gfp_mask,
3174 unsigned long *total_scanned)
3175{
3176 unsigned long nr_reclaimed = 0;
ef8f2327 3177 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3178 unsigned long reclaimed;
3179 int loop = 0;
ef8f2327 3180 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3181 unsigned long excess;
0608f43d
AM
3182 unsigned long nr_scanned;
3183
3184 if (order > 0)
3185 return 0;
3186
ef8f2327 3187 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3188
3189 /*
3190 * Do not even bother to check the largest node if the root
3191 * is empty. Do it lockless to prevent lock bouncing. Races
3192 * are acceptable as soft limit is best effort anyway.
3193 */
bfc7228b 3194 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3195 return 0;
3196
0608f43d
AM
3197 /*
3198 * This loop can run a while, specially if mem_cgroup's continuously
3199 * keep exceeding their soft limit and putting the system under
3200 * pressure
3201 */
3202 do {
3203 if (next_mz)
3204 mz = next_mz;
3205 else
3206 mz = mem_cgroup_largest_soft_limit_node(mctz);
3207 if (!mz)
3208 break;
3209
3210 nr_scanned = 0;
ef8f2327 3211 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3212 gfp_mask, &nr_scanned);
3213 nr_reclaimed += reclaimed;
3214 *total_scanned += nr_scanned;
0a31bc97 3215 spin_lock_irq(&mctz->lock);
bc2f2e7f 3216 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3217
3218 /*
3219 * If we failed to reclaim anything from this memory cgroup
3220 * it is time to move on to the next cgroup
3221 */
3222 next_mz = NULL;
bc2f2e7f
VD
3223 if (!reclaimed)
3224 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3225
3e32cb2e 3226 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3227 /*
3228 * One school of thought says that we should not add
3229 * back the node to the tree if reclaim returns 0.
3230 * But our reclaim could return 0, simply because due
3231 * to priority we are exposing a smaller subset of
3232 * memory to reclaim from. Consider this as a longer
3233 * term TODO.
3234 */
3235 /* If excess == 0, no tree ops */
cf2c8127 3236 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3237 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3238 css_put(&mz->memcg->css);
3239 loop++;
3240 /*
3241 * Could not reclaim anything and there are no more
3242 * mem cgroups to try or we seem to be looping without
3243 * reclaiming anything.
3244 */
3245 if (!nr_reclaimed &&
3246 (next_mz == NULL ||
3247 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3248 break;
3249 } while (!nr_reclaimed);
3250 if (next_mz)
3251 css_put(&next_mz->memcg->css);
3252 return nr_reclaimed;
3253}
3254
ea280e7b
TH
3255/*
3256 * Test whether @memcg has children, dead or alive. Note that this
3257 * function doesn't care whether @memcg has use_hierarchy enabled and
3258 * returns %true if there are child csses according to the cgroup
3259 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3260 */
b5f99b53
GC
3261static inline bool memcg_has_children(struct mem_cgroup *memcg)
3262{
ea280e7b
TH
3263 bool ret;
3264
ea280e7b
TH
3265 rcu_read_lock();
3266 ret = css_next_child(NULL, &memcg->css);
3267 rcu_read_unlock();
3268 return ret;
b5f99b53
GC
3269}
3270
c26251f9 3271/*
51038171 3272 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3273 *
3274 * Caller is responsible for holding css reference for memcg.
3275 */
3276static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3277{
3278 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3279
c1e862c1
KH
3280 /* we call try-to-free pages for make this cgroup empty */
3281 lru_add_drain_all();
d12c60f6
JS
3282
3283 drain_all_stock(memcg);
3284
f817ed48 3285 /* try to free all pages in this cgroup */
3e32cb2e 3286 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3287 int progress;
c1e862c1 3288
c26251f9
MH
3289 if (signal_pending(current))
3290 return -EINTR;
3291
b70a2a21
JW
3292 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3293 GFP_KERNEL, true);
c1e862c1 3294 if (!progress) {
f817ed48 3295 nr_retries--;
c1e862c1 3296 /* maybe some writeback is necessary */
8aa7e847 3297 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3298 }
f817ed48
KH
3299
3300 }
ab5196c2
MH
3301
3302 return 0;
cc847582
KH
3303}
3304
6770c64e
TH
3305static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3306 char *buf, size_t nbytes,
3307 loff_t off)
c1e862c1 3308{
6770c64e 3309 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3310
d8423011
MH
3311 if (mem_cgroup_is_root(memcg))
3312 return -EINVAL;
6770c64e 3313 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3314}
3315
182446d0
TH
3316static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3317 struct cftype *cft)
18f59ea7 3318{
182446d0 3319 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3320}
3321
182446d0
TH
3322static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3323 struct cftype *cft, u64 val)
18f59ea7
BS
3324{
3325 int retval = 0;
182446d0 3326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3327 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3328
567fb435 3329 if (memcg->use_hierarchy == val)
0b8f73e1 3330 return 0;
567fb435 3331
18f59ea7 3332 /*
af901ca1 3333 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3334 * in the child subtrees. If it is unset, then the change can
3335 * occur, provided the current cgroup has no children.
3336 *
3337 * For the root cgroup, parent_mem is NULL, we allow value to be
3338 * set if there are no children.
3339 */
c0ff4b85 3340 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3341 (val == 1 || val == 0)) {
ea280e7b 3342 if (!memcg_has_children(memcg))
c0ff4b85 3343 memcg->use_hierarchy = val;
18f59ea7
BS
3344 else
3345 retval = -EBUSY;
3346 } else
3347 retval = -EINVAL;
567fb435 3348
18f59ea7
BS
3349 return retval;
3350}
3351
6f646156 3352static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3353{
42a30035 3354 unsigned long val;
ce00a967 3355
3e32cb2e 3356 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3357 val = memcg_page_state(memcg, MEMCG_CACHE) +
3358 memcg_page_state(memcg, MEMCG_RSS);
3359 if (swap)
3360 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3361 } else {
ce00a967 3362 if (!swap)
3e32cb2e 3363 val = page_counter_read(&memcg->memory);
ce00a967 3364 else
3e32cb2e 3365 val = page_counter_read(&memcg->memsw);
ce00a967 3366 }
c12176d3 3367 return val;
ce00a967
JW
3368}
3369
3e32cb2e
JW
3370enum {
3371 RES_USAGE,
3372 RES_LIMIT,
3373 RES_MAX_USAGE,
3374 RES_FAILCNT,
3375 RES_SOFT_LIMIT,
3376};
ce00a967 3377
791badbd 3378static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3379 struct cftype *cft)
8cdea7c0 3380{
182446d0 3381 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3382 struct page_counter *counter;
af36f906 3383
3e32cb2e 3384 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3385 case _MEM:
3e32cb2e
JW
3386 counter = &memcg->memory;
3387 break;
8c7c6e34 3388 case _MEMSWAP:
3e32cb2e
JW
3389 counter = &memcg->memsw;
3390 break;
510fc4e1 3391 case _KMEM:
3e32cb2e 3392 counter = &memcg->kmem;
510fc4e1 3393 break;
d55f90bf 3394 case _TCP:
0db15298 3395 counter = &memcg->tcpmem;
d55f90bf 3396 break;
8c7c6e34
KH
3397 default:
3398 BUG();
8c7c6e34 3399 }
3e32cb2e
JW
3400
3401 switch (MEMFILE_ATTR(cft->private)) {
3402 case RES_USAGE:
3403 if (counter == &memcg->memory)
c12176d3 3404 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3405 if (counter == &memcg->memsw)
c12176d3 3406 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3407 return (u64)page_counter_read(counter) * PAGE_SIZE;
3408 case RES_LIMIT:
bbec2e15 3409 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3410 case RES_MAX_USAGE:
3411 return (u64)counter->watermark * PAGE_SIZE;
3412 case RES_FAILCNT:
3413 return counter->failcnt;
3414 case RES_SOFT_LIMIT:
3415 return (u64)memcg->soft_limit * PAGE_SIZE;
3416 default:
3417 BUG();
3418 }
8cdea7c0 3419}
510fc4e1 3420
4a87e2a2 3421static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3422{
4a87e2a2 3423 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3424 struct mem_cgroup *mi;
3425 int node, cpu, i;
c350a99e
RG
3426
3427 for_each_online_cpu(cpu)
4a87e2a2 3428 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3429 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3430
3431 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3432 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3433 atomic_long_add(stat[i], &mi->vmstats[i]);
3434
3435 for_each_node(node) {
3436 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3437 struct mem_cgroup_per_node *pi;
3438
4a87e2a2 3439 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3440 stat[i] = 0;
3441
3442 for_each_online_cpu(cpu)
4a87e2a2 3443 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3444 stat[i] += per_cpu(
3445 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3446
3447 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3448 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3449 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3450 }
3451}
3452
bb65f89b
RG
3453static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3454{
3455 unsigned long events[NR_VM_EVENT_ITEMS];
3456 struct mem_cgroup *mi;
3457 int cpu, i;
3458
3459 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3460 events[i] = 0;
3461
3462 for_each_online_cpu(cpu)
3463 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3464 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3465 cpu);
bb65f89b
RG
3466
3467 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3468 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3469 atomic_long_add(events[i], &mi->vmevents[i]);
3470}
3471
84c07d11 3472#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3473static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3474{
d6441637
VD
3475 int memcg_id;
3476
b313aeee
VD
3477 if (cgroup_memory_nokmem)
3478 return 0;
3479
2a4db7eb 3480 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3481 BUG_ON(memcg->kmem_state);
d6441637 3482
f3bb3043 3483 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3484 if (memcg_id < 0)
3485 return memcg_id;
d6441637 3486
ef12947c 3487 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3488 /*
567e9ab2 3489 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3490 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3491 * guarantee no one starts accounting before all call sites are
3492 * patched.
3493 */
900a38f0 3494 memcg->kmemcg_id = memcg_id;
567e9ab2 3495 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3496 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3497
3498 return 0;
d6441637
VD
3499}
3500
8e0a8912
JW
3501static void memcg_offline_kmem(struct mem_cgroup *memcg)
3502{
3503 struct cgroup_subsys_state *css;
3504 struct mem_cgroup *parent, *child;
3505 int kmemcg_id;
3506
3507 if (memcg->kmem_state != KMEM_ONLINE)
3508 return;
3509 /*
3510 * Clear the online state before clearing memcg_caches array
3511 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3512 * guarantees that no cache will be created for this cgroup
3513 * after we are done (see memcg_create_kmem_cache()).
3514 */
3515 memcg->kmem_state = KMEM_ALLOCATED;
3516
8e0a8912
JW
3517 parent = parent_mem_cgroup(memcg);
3518 if (!parent)
3519 parent = root_mem_cgroup;
3520
bee07b33 3521 /*
4a87e2a2 3522 * Deactivate and reparent kmem_caches.
bee07b33 3523 */
fb2f2b0a
RG
3524 memcg_deactivate_kmem_caches(memcg, parent);
3525
3526 kmemcg_id = memcg->kmemcg_id;
3527 BUG_ON(kmemcg_id < 0);
3528
8e0a8912
JW
3529 /*
3530 * Change kmemcg_id of this cgroup and all its descendants to the
3531 * parent's id, and then move all entries from this cgroup's list_lrus
3532 * to ones of the parent. After we have finished, all list_lrus
3533 * corresponding to this cgroup are guaranteed to remain empty. The
3534 * ordering is imposed by list_lru_node->lock taken by
3535 * memcg_drain_all_list_lrus().
3536 */
3a06bb78 3537 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3538 css_for_each_descendant_pre(css, &memcg->css) {
3539 child = mem_cgroup_from_css(css);
3540 BUG_ON(child->kmemcg_id != kmemcg_id);
3541 child->kmemcg_id = parent->kmemcg_id;
3542 if (!memcg->use_hierarchy)
3543 break;
3544 }
3a06bb78
TH
3545 rcu_read_unlock();
3546
9bec5c35 3547 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3548
3549 memcg_free_cache_id(kmemcg_id);
3550}
3551
3552static void memcg_free_kmem(struct mem_cgroup *memcg)
3553{
0b8f73e1
JW
3554 /* css_alloc() failed, offlining didn't happen */
3555 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3556 memcg_offline_kmem(memcg);
3557
8e0a8912 3558 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3559 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3560 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3561 }
8e0a8912 3562}
d6441637 3563#else
0b8f73e1 3564static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3565{
3566 return 0;
3567}
3568static void memcg_offline_kmem(struct mem_cgroup *memcg)
3569{
3570}
3571static void memcg_free_kmem(struct mem_cgroup *memcg)
3572{
3573}
84c07d11 3574#endif /* CONFIG_MEMCG_KMEM */
127424c8 3575
bbec2e15
RG
3576static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3577 unsigned long max)
d6441637 3578{
b313aeee 3579 int ret;
127424c8 3580
bbec2e15
RG
3581 mutex_lock(&memcg_max_mutex);
3582 ret = page_counter_set_max(&memcg->kmem, max);
3583 mutex_unlock(&memcg_max_mutex);
127424c8 3584 return ret;
d6441637 3585}
510fc4e1 3586
bbec2e15 3587static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3588{
3589 int ret;
3590
bbec2e15 3591 mutex_lock(&memcg_max_mutex);
d55f90bf 3592
bbec2e15 3593 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3594 if (ret)
3595 goto out;
3596
0db15298 3597 if (!memcg->tcpmem_active) {
d55f90bf
VD
3598 /*
3599 * The active flag needs to be written after the static_key
3600 * update. This is what guarantees that the socket activation
2d758073
JW
3601 * function is the last one to run. See mem_cgroup_sk_alloc()
3602 * for details, and note that we don't mark any socket as
3603 * belonging to this memcg until that flag is up.
d55f90bf
VD
3604 *
3605 * We need to do this, because static_keys will span multiple
3606 * sites, but we can't control their order. If we mark a socket
3607 * as accounted, but the accounting functions are not patched in
3608 * yet, we'll lose accounting.
3609 *
2d758073 3610 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3611 * because when this value change, the code to process it is not
3612 * patched in yet.
3613 */
3614 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3615 memcg->tcpmem_active = true;
d55f90bf
VD
3616 }
3617out:
bbec2e15 3618 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3619 return ret;
3620}
d55f90bf 3621
628f4235
KH
3622/*
3623 * The user of this function is...
3624 * RES_LIMIT.
3625 */
451af504
TH
3626static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3627 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3628{
451af504 3629 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3630 unsigned long nr_pages;
628f4235
KH
3631 int ret;
3632
451af504 3633 buf = strstrip(buf);
650c5e56 3634 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3635 if (ret)
3636 return ret;
af36f906 3637
3e32cb2e 3638 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3639 case RES_LIMIT:
4b3bde4c
BS
3640 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3641 ret = -EINVAL;
3642 break;
3643 }
3e32cb2e
JW
3644 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3645 case _MEM:
bbec2e15 3646 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3647 break;
3e32cb2e 3648 case _MEMSWAP:
bbec2e15 3649 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3650 break;
3e32cb2e 3651 case _KMEM:
0158115f
MH
3652 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3653 "Please report your usecase to linux-mm@kvack.org if you "
3654 "depend on this functionality.\n");
bbec2e15 3655 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3656 break;
d55f90bf 3657 case _TCP:
bbec2e15 3658 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3659 break;
3e32cb2e 3660 }
296c81d8 3661 break;
3e32cb2e
JW
3662 case RES_SOFT_LIMIT:
3663 memcg->soft_limit = nr_pages;
3664 ret = 0;
628f4235
KH
3665 break;
3666 }
451af504 3667 return ret ?: nbytes;
8cdea7c0
BS
3668}
3669
6770c64e
TH
3670static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3671 size_t nbytes, loff_t off)
c84872e1 3672{
6770c64e 3673 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3674 struct page_counter *counter;
c84872e1 3675
3e32cb2e
JW
3676 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3677 case _MEM:
3678 counter = &memcg->memory;
3679 break;
3680 case _MEMSWAP:
3681 counter = &memcg->memsw;
3682 break;
3683 case _KMEM:
3684 counter = &memcg->kmem;
3685 break;
d55f90bf 3686 case _TCP:
0db15298 3687 counter = &memcg->tcpmem;
d55f90bf 3688 break;
3e32cb2e
JW
3689 default:
3690 BUG();
3691 }
af36f906 3692
3e32cb2e 3693 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3694 case RES_MAX_USAGE:
3e32cb2e 3695 page_counter_reset_watermark(counter);
29f2a4da
PE
3696 break;
3697 case RES_FAILCNT:
3e32cb2e 3698 counter->failcnt = 0;
29f2a4da 3699 break;
3e32cb2e
JW
3700 default:
3701 BUG();
29f2a4da 3702 }
f64c3f54 3703
6770c64e 3704 return nbytes;
c84872e1
PE
3705}
3706
182446d0 3707static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3708 struct cftype *cft)
3709{
182446d0 3710 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3711}
3712
02491447 3713#ifdef CONFIG_MMU
182446d0 3714static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3715 struct cftype *cft, u64 val)
3716{
182446d0 3717 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3718
1dfab5ab 3719 if (val & ~MOVE_MASK)
7dc74be0 3720 return -EINVAL;
ee5e8472 3721
7dc74be0 3722 /*
ee5e8472
GC
3723 * No kind of locking is needed in here, because ->can_attach() will
3724 * check this value once in the beginning of the process, and then carry
3725 * on with stale data. This means that changes to this value will only
3726 * affect task migrations starting after the change.
7dc74be0 3727 */
c0ff4b85 3728 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3729 return 0;
3730}
02491447 3731#else
182446d0 3732static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3733 struct cftype *cft, u64 val)
3734{
3735 return -ENOSYS;
3736}
3737#endif
7dc74be0 3738
406eb0c9 3739#ifdef CONFIG_NUMA
113b7dfd
JW
3740
3741#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3742#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3743#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3744
3745static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3746 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3747{
867e5e1d 3748 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3749 unsigned long nr = 0;
3750 enum lru_list lru;
3751
3752 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3753
3754 for_each_lru(lru) {
3755 if (!(BIT(lru) & lru_mask))
3756 continue;
dd8657b6
SB
3757 if (tree)
3758 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3759 else
3760 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3761 }
3762 return nr;
3763}
3764
3765static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3766 unsigned int lru_mask,
3767 bool tree)
113b7dfd
JW
3768{
3769 unsigned long nr = 0;
3770 enum lru_list lru;
3771
3772 for_each_lru(lru) {
3773 if (!(BIT(lru) & lru_mask))
3774 continue;
dd8657b6
SB
3775 if (tree)
3776 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3777 else
3778 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3779 }
3780 return nr;
3781}
3782
2da8ca82 3783static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3784{
25485de6
GT
3785 struct numa_stat {
3786 const char *name;
3787 unsigned int lru_mask;
3788 };
3789
3790 static const struct numa_stat stats[] = {
3791 { "total", LRU_ALL },
3792 { "file", LRU_ALL_FILE },
3793 { "anon", LRU_ALL_ANON },
3794 { "unevictable", BIT(LRU_UNEVICTABLE) },
3795 };
3796 const struct numa_stat *stat;
406eb0c9 3797 int nid;
aa9694bb 3798 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3799
25485de6 3800 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3801 seq_printf(m, "%s=%lu", stat->name,
3802 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3803 false));
3804 for_each_node_state(nid, N_MEMORY)
3805 seq_printf(m, " N%d=%lu", nid,
3806 mem_cgroup_node_nr_lru_pages(memcg, nid,
3807 stat->lru_mask, false));
25485de6 3808 seq_putc(m, '\n');
406eb0c9 3809 }
406eb0c9 3810
071aee13 3811 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3812
3813 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3814 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3815 true));
3816 for_each_node_state(nid, N_MEMORY)
3817 seq_printf(m, " N%d=%lu", nid,
3818 mem_cgroup_node_nr_lru_pages(memcg, nid,
3819 stat->lru_mask, true));
071aee13 3820 seq_putc(m, '\n');
406eb0c9 3821 }
406eb0c9 3822
406eb0c9
YH
3823 return 0;
3824}
3825#endif /* CONFIG_NUMA */
3826
c8713d0b
JW
3827static const unsigned int memcg1_stats[] = {
3828 MEMCG_CACHE,
3829 MEMCG_RSS,
3830 MEMCG_RSS_HUGE,
3831 NR_SHMEM,
3832 NR_FILE_MAPPED,
3833 NR_FILE_DIRTY,
3834 NR_WRITEBACK,
3835 MEMCG_SWAP,
3836};
3837
3838static const char *const memcg1_stat_names[] = {
3839 "cache",
3840 "rss",
3841 "rss_huge",
3842 "shmem",
3843 "mapped_file",
3844 "dirty",
3845 "writeback",
3846 "swap",
3847};
3848
df0e53d0 3849/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3850static const unsigned int memcg1_events[] = {
df0e53d0
JW
3851 PGPGIN,
3852 PGPGOUT,
3853 PGFAULT,
3854 PGMAJFAULT,
3855};
3856
2da8ca82 3857static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3858{
aa9694bb 3859 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3860 unsigned long memory, memsw;
af7c4b0e
JW
3861 struct mem_cgroup *mi;
3862 unsigned int i;
406eb0c9 3863
71cd3113 3864 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3865
71cd3113
JW
3866 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3867 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3868 continue;
71cd3113 3869 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3870 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3871 PAGE_SIZE);
1dd3a273 3872 }
7b854121 3873
df0e53d0 3874 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3875 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3876 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3877
3878 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3879 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3880 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3881 PAGE_SIZE);
af7c4b0e 3882
14067bb3 3883 /* Hierarchical information */
3e32cb2e
JW
3884 memory = memsw = PAGE_COUNTER_MAX;
3885 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3886 memory = min(memory, READ_ONCE(mi->memory.max));
3887 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 3888 }
3e32cb2e
JW
3889 seq_printf(m, "hierarchical_memory_limit %llu\n",
3890 (u64)memory * PAGE_SIZE);
7941d214 3891 if (do_memsw_account())
3e32cb2e
JW
3892 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3893 (u64)memsw * PAGE_SIZE);
7f016ee8 3894
8de7ecc6 3895 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3896 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3897 continue;
8de7ecc6 3898 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3899 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3900 PAGE_SIZE);
af7c4b0e
JW
3901 }
3902
8de7ecc6 3903 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3904 seq_printf(m, "total_%s %llu\n",
3905 vm_event_name(memcg1_events[i]),
dd923990 3906 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3907
8de7ecc6 3908 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3909 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
3910 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3911 PAGE_SIZE);
14067bb3 3912
7f016ee8 3913#ifdef CONFIG_DEBUG_VM
7f016ee8 3914 {
ef8f2327
MG
3915 pg_data_t *pgdat;
3916 struct mem_cgroup_per_node *mz;
89abfab1 3917 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3918 unsigned long recent_rotated[2] = {0, 0};
3919 unsigned long recent_scanned[2] = {0, 0};
3920
ef8f2327
MG
3921 for_each_online_pgdat(pgdat) {
3922 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3923 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3924
ef8f2327
MG
3925 recent_rotated[0] += rstat->recent_rotated[0];
3926 recent_rotated[1] += rstat->recent_rotated[1];
3927 recent_scanned[0] += rstat->recent_scanned[0];
3928 recent_scanned[1] += rstat->recent_scanned[1];
3929 }
78ccf5b5
JW
3930 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3931 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3932 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3933 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3934 }
3935#endif
3936
d2ceb9b7
KH
3937 return 0;
3938}
3939
182446d0
TH
3940static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3941 struct cftype *cft)
a7885eb8 3942{
182446d0 3943 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3944
1f4c025b 3945 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3946}
3947
182446d0
TH
3948static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3949 struct cftype *cft, u64 val)
a7885eb8 3950{
182446d0 3951 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3952
3dae7fec 3953 if (val > 100)
a7885eb8
KM
3954 return -EINVAL;
3955
14208b0e 3956 if (css->parent)
3dae7fec
JW
3957 memcg->swappiness = val;
3958 else
3959 vm_swappiness = val;
068b38c1 3960
a7885eb8
KM
3961 return 0;
3962}
3963
2e72b634
KS
3964static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3965{
3966 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3967 unsigned long usage;
2e72b634
KS
3968 int i;
3969
3970 rcu_read_lock();
3971 if (!swap)
2c488db2 3972 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3973 else
2c488db2 3974 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3975
3976 if (!t)
3977 goto unlock;
3978
ce00a967 3979 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3980
3981 /*
748dad36 3982 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3983 * If it's not true, a threshold was crossed after last
3984 * call of __mem_cgroup_threshold().
3985 */
5407a562 3986 i = t->current_threshold;
2e72b634
KS
3987
3988 /*
3989 * Iterate backward over array of thresholds starting from
3990 * current_threshold and check if a threshold is crossed.
3991 * If none of thresholds below usage is crossed, we read
3992 * only one element of the array here.
3993 */
3994 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3995 eventfd_signal(t->entries[i].eventfd, 1);
3996
3997 /* i = current_threshold + 1 */
3998 i++;
3999
4000 /*
4001 * Iterate forward over array of thresholds starting from
4002 * current_threshold+1 and check if a threshold is crossed.
4003 * If none of thresholds above usage is crossed, we read
4004 * only one element of the array here.
4005 */
4006 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4007 eventfd_signal(t->entries[i].eventfd, 1);
4008
4009 /* Update current_threshold */
5407a562 4010 t->current_threshold = i - 1;
2e72b634
KS
4011unlock:
4012 rcu_read_unlock();
4013}
4014
4015static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4016{
ad4ca5f4
KS
4017 while (memcg) {
4018 __mem_cgroup_threshold(memcg, false);
7941d214 4019 if (do_memsw_account())
ad4ca5f4
KS
4020 __mem_cgroup_threshold(memcg, true);
4021
4022 memcg = parent_mem_cgroup(memcg);
4023 }
2e72b634
KS
4024}
4025
4026static int compare_thresholds(const void *a, const void *b)
4027{
4028 const struct mem_cgroup_threshold *_a = a;
4029 const struct mem_cgroup_threshold *_b = b;
4030
2bff24a3
GT
4031 if (_a->threshold > _b->threshold)
4032 return 1;
4033
4034 if (_a->threshold < _b->threshold)
4035 return -1;
4036
4037 return 0;
2e72b634
KS
4038}
4039
c0ff4b85 4040static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4041{
4042 struct mem_cgroup_eventfd_list *ev;
4043
2bcf2e92
MH
4044 spin_lock(&memcg_oom_lock);
4045
c0ff4b85 4046 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4047 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4048
4049 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4050 return 0;
4051}
4052
c0ff4b85 4053static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4054{
7d74b06f
KH
4055 struct mem_cgroup *iter;
4056
c0ff4b85 4057 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4058 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4059}
4060
59b6f873 4061static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4062 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4063{
2c488db2
KS
4064 struct mem_cgroup_thresholds *thresholds;
4065 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4066 unsigned long threshold;
4067 unsigned long usage;
2c488db2 4068 int i, size, ret;
2e72b634 4069
650c5e56 4070 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4071 if (ret)
4072 return ret;
4073
4074 mutex_lock(&memcg->thresholds_lock);
2c488db2 4075
05b84301 4076 if (type == _MEM) {
2c488db2 4077 thresholds = &memcg->thresholds;
ce00a967 4078 usage = mem_cgroup_usage(memcg, false);
05b84301 4079 } else if (type == _MEMSWAP) {
2c488db2 4080 thresholds = &memcg->memsw_thresholds;
ce00a967 4081 usage = mem_cgroup_usage(memcg, true);
05b84301 4082 } else
2e72b634
KS
4083 BUG();
4084
2e72b634 4085 /* Check if a threshold crossed before adding a new one */
2c488db2 4086 if (thresholds->primary)
2e72b634
KS
4087 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4088
2c488db2 4089 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4090
4091 /* Allocate memory for new array of thresholds */
67b8046f 4092 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4093 if (!new) {
2e72b634
KS
4094 ret = -ENOMEM;
4095 goto unlock;
4096 }
2c488db2 4097 new->size = size;
2e72b634
KS
4098
4099 /* Copy thresholds (if any) to new array */
2c488db2
KS
4100 if (thresholds->primary) {
4101 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4102 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4103 }
4104
2e72b634 4105 /* Add new threshold */
2c488db2
KS
4106 new->entries[size - 1].eventfd = eventfd;
4107 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4108
4109 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4110 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4111 compare_thresholds, NULL);
4112
4113 /* Find current threshold */
2c488db2 4114 new->current_threshold = -1;
2e72b634 4115 for (i = 0; i < size; i++) {
748dad36 4116 if (new->entries[i].threshold <= usage) {
2e72b634 4117 /*
2c488db2
KS
4118 * new->current_threshold will not be used until
4119 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4120 * it here.
4121 */
2c488db2 4122 ++new->current_threshold;
748dad36
SZ
4123 } else
4124 break;
2e72b634
KS
4125 }
4126
2c488db2
KS
4127 /* Free old spare buffer and save old primary buffer as spare */
4128 kfree(thresholds->spare);
4129 thresholds->spare = thresholds->primary;
4130
4131 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4132
907860ed 4133 /* To be sure that nobody uses thresholds */
2e72b634
KS
4134 synchronize_rcu();
4135
2e72b634
KS
4136unlock:
4137 mutex_unlock(&memcg->thresholds_lock);
4138
4139 return ret;
4140}
4141
59b6f873 4142static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4143 struct eventfd_ctx *eventfd, const char *args)
4144{
59b6f873 4145 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4146}
4147
59b6f873 4148static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4149 struct eventfd_ctx *eventfd, const char *args)
4150{
59b6f873 4151 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4152}
4153
59b6f873 4154static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4155 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4156{
2c488db2
KS
4157 struct mem_cgroup_thresholds *thresholds;
4158 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4159 unsigned long usage;
7d36665a 4160 int i, j, size, entries;
2e72b634
KS
4161
4162 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4163
4164 if (type == _MEM) {
2c488db2 4165 thresholds = &memcg->thresholds;
ce00a967 4166 usage = mem_cgroup_usage(memcg, false);
05b84301 4167 } else if (type == _MEMSWAP) {
2c488db2 4168 thresholds = &memcg->memsw_thresholds;
ce00a967 4169 usage = mem_cgroup_usage(memcg, true);
05b84301 4170 } else
2e72b634
KS
4171 BUG();
4172
371528ca
AV
4173 if (!thresholds->primary)
4174 goto unlock;
4175
2e72b634
KS
4176 /* Check if a threshold crossed before removing */
4177 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4178
4179 /* Calculate new number of threshold */
7d36665a 4180 size = entries = 0;
2c488db2
KS
4181 for (i = 0; i < thresholds->primary->size; i++) {
4182 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4183 size++;
7d36665a
CX
4184 else
4185 entries++;
2e72b634
KS
4186 }
4187
2c488db2 4188 new = thresholds->spare;
907860ed 4189
7d36665a
CX
4190 /* If no items related to eventfd have been cleared, nothing to do */
4191 if (!entries)
4192 goto unlock;
4193
2e72b634
KS
4194 /* Set thresholds array to NULL if we don't have thresholds */
4195 if (!size) {
2c488db2
KS
4196 kfree(new);
4197 new = NULL;
907860ed 4198 goto swap_buffers;
2e72b634
KS
4199 }
4200
2c488db2 4201 new->size = size;
2e72b634
KS
4202
4203 /* Copy thresholds and find current threshold */
2c488db2
KS
4204 new->current_threshold = -1;
4205 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4206 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4207 continue;
4208
2c488db2 4209 new->entries[j] = thresholds->primary->entries[i];
748dad36 4210 if (new->entries[j].threshold <= usage) {
2e72b634 4211 /*
2c488db2 4212 * new->current_threshold will not be used
2e72b634
KS
4213 * until rcu_assign_pointer(), so it's safe to increment
4214 * it here.
4215 */
2c488db2 4216 ++new->current_threshold;
2e72b634
KS
4217 }
4218 j++;
4219 }
4220
907860ed 4221swap_buffers:
2c488db2
KS
4222 /* Swap primary and spare array */
4223 thresholds->spare = thresholds->primary;
8c757763 4224
2c488db2 4225 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4226
907860ed 4227 /* To be sure that nobody uses thresholds */
2e72b634 4228 synchronize_rcu();
6611d8d7
MC
4229
4230 /* If all events are unregistered, free the spare array */
4231 if (!new) {
4232 kfree(thresholds->spare);
4233 thresholds->spare = NULL;
4234 }
371528ca 4235unlock:
2e72b634 4236 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4237}
c1e862c1 4238
59b6f873 4239static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4240 struct eventfd_ctx *eventfd)
4241{
59b6f873 4242 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4243}
4244
59b6f873 4245static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4246 struct eventfd_ctx *eventfd)
4247{
59b6f873 4248 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4249}
4250
59b6f873 4251static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4252 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4253{
9490ff27 4254 struct mem_cgroup_eventfd_list *event;
9490ff27 4255
9490ff27
KH
4256 event = kmalloc(sizeof(*event), GFP_KERNEL);
4257 if (!event)
4258 return -ENOMEM;
4259
1af8efe9 4260 spin_lock(&memcg_oom_lock);
9490ff27
KH
4261
4262 event->eventfd = eventfd;
4263 list_add(&event->list, &memcg->oom_notify);
4264
4265 /* already in OOM ? */
c2b42d3c 4266 if (memcg->under_oom)
9490ff27 4267 eventfd_signal(eventfd, 1);
1af8efe9 4268 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4269
4270 return 0;
4271}
4272
59b6f873 4273static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4274 struct eventfd_ctx *eventfd)
9490ff27 4275{
9490ff27 4276 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4277
1af8efe9 4278 spin_lock(&memcg_oom_lock);
9490ff27 4279
c0ff4b85 4280 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4281 if (ev->eventfd == eventfd) {
4282 list_del(&ev->list);
4283 kfree(ev);
4284 }
4285 }
4286
1af8efe9 4287 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4288}
4289
2da8ca82 4290static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4291{
aa9694bb 4292 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4293
791badbd 4294 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4295 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4296 seq_printf(sf, "oom_kill %lu\n",
4297 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4298 return 0;
4299}
4300
182446d0 4301static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4302 struct cftype *cft, u64 val)
4303{
182446d0 4304 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4305
4306 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4307 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4308 return -EINVAL;
4309
c0ff4b85 4310 memcg->oom_kill_disable = val;
4d845ebf 4311 if (!val)
c0ff4b85 4312 memcg_oom_recover(memcg);
3dae7fec 4313
3c11ecf4
KH
4314 return 0;
4315}
4316
52ebea74
TH
4317#ifdef CONFIG_CGROUP_WRITEBACK
4318
3a8e9ac8
TH
4319#include <trace/events/writeback.h>
4320
841710aa
TH
4321static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4322{
4323 return wb_domain_init(&memcg->cgwb_domain, gfp);
4324}
4325
4326static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4327{
4328 wb_domain_exit(&memcg->cgwb_domain);
4329}
4330
2529bb3a
TH
4331static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4332{
4333 wb_domain_size_changed(&memcg->cgwb_domain);
4334}
4335
841710aa
TH
4336struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4337{
4338 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4339
4340 if (!memcg->css.parent)
4341 return NULL;
4342
4343 return &memcg->cgwb_domain;
4344}
4345
0b3d6e6f
GT
4346/*
4347 * idx can be of type enum memcg_stat_item or node_stat_item.
4348 * Keep in sync with memcg_exact_page().
4349 */
4350static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4351{
871789d4 4352 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4353 int cpu;
4354
4355 for_each_online_cpu(cpu)
871789d4 4356 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4357 if (x < 0)
4358 x = 0;
4359 return x;
4360}
4361
c2aa723a
TH
4362/**
4363 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4364 * @wb: bdi_writeback in question
c5edf9cd
TH
4365 * @pfilepages: out parameter for number of file pages
4366 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4367 * @pdirty: out parameter for number of dirty pages
4368 * @pwriteback: out parameter for number of pages under writeback
4369 *
c5edf9cd
TH
4370 * Determine the numbers of file, headroom, dirty, and writeback pages in
4371 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4372 * is a bit more involved.
c2aa723a 4373 *
c5edf9cd
TH
4374 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4375 * headroom is calculated as the lowest headroom of itself and the
4376 * ancestors. Note that this doesn't consider the actual amount of
4377 * available memory in the system. The caller should further cap
4378 * *@pheadroom accordingly.
c2aa723a 4379 */
c5edf9cd
TH
4380void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4381 unsigned long *pheadroom, unsigned long *pdirty,
4382 unsigned long *pwriteback)
c2aa723a
TH
4383{
4384 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4385 struct mem_cgroup *parent;
c2aa723a 4386
0b3d6e6f 4387 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4388
0b3d6e6f 4389 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4390 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4391 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4392 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4393
c2aa723a 4394 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4395 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4396 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4397 unsigned long used = page_counter_read(&memcg->memory);
4398
c5edf9cd 4399 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4400 memcg = parent;
4401 }
c2aa723a
TH
4402}
4403
97b27821
TH
4404/*
4405 * Foreign dirty flushing
4406 *
4407 * There's an inherent mismatch between memcg and writeback. The former
4408 * trackes ownership per-page while the latter per-inode. This was a
4409 * deliberate design decision because honoring per-page ownership in the
4410 * writeback path is complicated, may lead to higher CPU and IO overheads
4411 * and deemed unnecessary given that write-sharing an inode across
4412 * different cgroups isn't a common use-case.
4413 *
4414 * Combined with inode majority-writer ownership switching, this works well
4415 * enough in most cases but there are some pathological cases. For
4416 * example, let's say there are two cgroups A and B which keep writing to
4417 * different but confined parts of the same inode. B owns the inode and
4418 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4419 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4420 * triggering background writeback. A will be slowed down without a way to
4421 * make writeback of the dirty pages happen.
4422 *
4423 * Conditions like the above can lead to a cgroup getting repatedly and
4424 * severely throttled after making some progress after each
4425 * dirty_expire_interval while the underyling IO device is almost
4426 * completely idle.
4427 *
4428 * Solving this problem completely requires matching the ownership tracking
4429 * granularities between memcg and writeback in either direction. However,
4430 * the more egregious behaviors can be avoided by simply remembering the
4431 * most recent foreign dirtying events and initiating remote flushes on
4432 * them when local writeback isn't enough to keep the memory clean enough.
4433 *
4434 * The following two functions implement such mechanism. When a foreign
4435 * page - a page whose memcg and writeback ownerships don't match - is
4436 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4437 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4438 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4439 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4440 * foreign bdi_writebacks which haven't expired. Both the numbers of
4441 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4442 * limited to MEMCG_CGWB_FRN_CNT.
4443 *
4444 * The mechanism only remembers IDs and doesn't hold any object references.
4445 * As being wrong occasionally doesn't matter, updates and accesses to the
4446 * records are lockless and racy.
4447 */
4448void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4449 struct bdi_writeback *wb)
4450{
4451 struct mem_cgroup *memcg = page->mem_cgroup;
4452 struct memcg_cgwb_frn *frn;
4453 u64 now = get_jiffies_64();
4454 u64 oldest_at = now;
4455 int oldest = -1;
4456 int i;
4457
3a8e9ac8
TH
4458 trace_track_foreign_dirty(page, wb);
4459
97b27821
TH
4460 /*
4461 * Pick the slot to use. If there is already a slot for @wb, keep
4462 * using it. If not replace the oldest one which isn't being
4463 * written out.
4464 */
4465 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4466 frn = &memcg->cgwb_frn[i];
4467 if (frn->bdi_id == wb->bdi->id &&
4468 frn->memcg_id == wb->memcg_css->id)
4469 break;
4470 if (time_before64(frn->at, oldest_at) &&
4471 atomic_read(&frn->done.cnt) == 1) {
4472 oldest = i;
4473 oldest_at = frn->at;
4474 }
4475 }
4476
4477 if (i < MEMCG_CGWB_FRN_CNT) {
4478 /*
4479 * Re-using an existing one. Update timestamp lazily to
4480 * avoid making the cacheline hot. We want them to be
4481 * reasonably up-to-date and significantly shorter than
4482 * dirty_expire_interval as that's what expires the record.
4483 * Use the shorter of 1s and dirty_expire_interval / 8.
4484 */
4485 unsigned long update_intv =
4486 min_t(unsigned long, HZ,
4487 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4488
4489 if (time_before64(frn->at, now - update_intv))
4490 frn->at = now;
4491 } else if (oldest >= 0) {
4492 /* replace the oldest free one */
4493 frn = &memcg->cgwb_frn[oldest];
4494 frn->bdi_id = wb->bdi->id;
4495 frn->memcg_id = wb->memcg_css->id;
4496 frn->at = now;
4497 }
4498}
4499
4500/* issue foreign writeback flushes for recorded foreign dirtying events */
4501void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4502{
4503 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4505 u64 now = jiffies_64;
4506 int i;
4507
4508 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4509 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4510
4511 /*
4512 * If the record is older than dirty_expire_interval,
4513 * writeback on it has already started. No need to kick it
4514 * off again. Also, don't start a new one if there's
4515 * already one in flight.
4516 */
4517 if (time_after64(frn->at, now - intv) &&
4518 atomic_read(&frn->done.cnt) == 1) {
4519 frn->at = 0;
3a8e9ac8 4520 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4521 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4522 WB_REASON_FOREIGN_FLUSH,
4523 &frn->done);
4524 }
4525 }
4526}
4527
841710aa
TH
4528#else /* CONFIG_CGROUP_WRITEBACK */
4529
4530static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4531{
4532 return 0;
4533}
4534
4535static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4536{
4537}
4538
2529bb3a
TH
4539static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4540{
4541}
4542
52ebea74
TH
4543#endif /* CONFIG_CGROUP_WRITEBACK */
4544
3bc942f3
TH
4545/*
4546 * DO NOT USE IN NEW FILES.
4547 *
4548 * "cgroup.event_control" implementation.
4549 *
4550 * This is way over-engineered. It tries to support fully configurable
4551 * events for each user. Such level of flexibility is completely
4552 * unnecessary especially in the light of the planned unified hierarchy.
4553 *
4554 * Please deprecate this and replace with something simpler if at all
4555 * possible.
4556 */
4557
79bd9814
TH
4558/*
4559 * Unregister event and free resources.
4560 *
4561 * Gets called from workqueue.
4562 */
3bc942f3 4563static void memcg_event_remove(struct work_struct *work)
79bd9814 4564{
3bc942f3
TH
4565 struct mem_cgroup_event *event =
4566 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4567 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4568
4569 remove_wait_queue(event->wqh, &event->wait);
4570
59b6f873 4571 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4572
4573 /* Notify userspace the event is going away. */
4574 eventfd_signal(event->eventfd, 1);
4575
4576 eventfd_ctx_put(event->eventfd);
4577 kfree(event);
59b6f873 4578 css_put(&memcg->css);
79bd9814
TH
4579}
4580
4581/*
a9a08845 4582 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4583 *
4584 * Called with wqh->lock held and interrupts disabled.
4585 */
ac6424b9 4586static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4587 int sync, void *key)
79bd9814 4588{
3bc942f3
TH
4589 struct mem_cgroup_event *event =
4590 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4591 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4592 __poll_t flags = key_to_poll(key);
79bd9814 4593
a9a08845 4594 if (flags & EPOLLHUP) {
79bd9814
TH
4595 /*
4596 * If the event has been detached at cgroup removal, we
4597 * can simply return knowing the other side will cleanup
4598 * for us.
4599 *
4600 * We can't race against event freeing since the other
4601 * side will require wqh->lock via remove_wait_queue(),
4602 * which we hold.
4603 */
fba94807 4604 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4605 if (!list_empty(&event->list)) {
4606 list_del_init(&event->list);
4607 /*
4608 * We are in atomic context, but cgroup_event_remove()
4609 * may sleep, so we have to call it in workqueue.
4610 */
4611 schedule_work(&event->remove);
4612 }
fba94807 4613 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4614 }
4615
4616 return 0;
4617}
4618
3bc942f3 4619static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4620 wait_queue_head_t *wqh, poll_table *pt)
4621{
3bc942f3
TH
4622 struct mem_cgroup_event *event =
4623 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4624
4625 event->wqh = wqh;
4626 add_wait_queue(wqh, &event->wait);
4627}
4628
4629/*
3bc942f3
TH
4630 * DO NOT USE IN NEW FILES.
4631 *
79bd9814
TH
4632 * Parse input and register new cgroup event handler.
4633 *
4634 * Input must be in format '<event_fd> <control_fd> <args>'.
4635 * Interpretation of args is defined by control file implementation.
4636 */
451af504
TH
4637static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4638 char *buf, size_t nbytes, loff_t off)
79bd9814 4639{
451af504 4640 struct cgroup_subsys_state *css = of_css(of);
fba94807 4641 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4642 struct mem_cgroup_event *event;
79bd9814
TH
4643 struct cgroup_subsys_state *cfile_css;
4644 unsigned int efd, cfd;
4645 struct fd efile;
4646 struct fd cfile;
fba94807 4647 const char *name;
79bd9814
TH
4648 char *endp;
4649 int ret;
4650
451af504
TH
4651 buf = strstrip(buf);
4652
4653 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4654 if (*endp != ' ')
4655 return -EINVAL;
451af504 4656 buf = endp + 1;
79bd9814 4657
451af504 4658 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4659 if ((*endp != ' ') && (*endp != '\0'))
4660 return -EINVAL;
451af504 4661 buf = endp + 1;
79bd9814
TH
4662
4663 event = kzalloc(sizeof(*event), GFP_KERNEL);
4664 if (!event)
4665 return -ENOMEM;
4666
59b6f873 4667 event->memcg = memcg;
79bd9814 4668 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4669 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4670 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4671 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4672
4673 efile = fdget(efd);
4674 if (!efile.file) {
4675 ret = -EBADF;
4676 goto out_kfree;
4677 }
4678
4679 event->eventfd = eventfd_ctx_fileget(efile.file);
4680 if (IS_ERR(event->eventfd)) {
4681 ret = PTR_ERR(event->eventfd);
4682 goto out_put_efile;
4683 }
4684
4685 cfile = fdget(cfd);
4686 if (!cfile.file) {
4687 ret = -EBADF;
4688 goto out_put_eventfd;
4689 }
4690
4691 /* the process need read permission on control file */
4692 /* AV: shouldn't we check that it's been opened for read instead? */
4693 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4694 if (ret < 0)
4695 goto out_put_cfile;
4696
fba94807
TH
4697 /*
4698 * Determine the event callbacks and set them in @event. This used
4699 * to be done via struct cftype but cgroup core no longer knows
4700 * about these events. The following is crude but the whole thing
4701 * is for compatibility anyway.
3bc942f3
TH
4702 *
4703 * DO NOT ADD NEW FILES.
fba94807 4704 */
b583043e 4705 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4706
4707 if (!strcmp(name, "memory.usage_in_bytes")) {
4708 event->register_event = mem_cgroup_usage_register_event;
4709 event->unregister_event = mem_cgroup_usage_unregister_event;
4710 } else if (!strcmp(name, "memory.oom_control")) {
4711 event->register_event = mem_cgroup_oom_register_event;
4712 event->unregister_event = mem_cgroup_oom_unregister_event;
4713 } else if (!strcmp(name, "memory.pressure_level")) {
4714 event->register_event = vmpressure_register_event;
4715 event->unregister_event = vmpressure_unregister_event;
4716 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4717 event->register_event = memsw_cgroup_usage_register_event;
4718 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4719 } else {
4720 ret = -EINVAL;
4721 goto out_put_cfile;
4722 }
4723
79bd9814 4724 /*
b5557c4c
TH
4725 * Verify @cfile should belong to @css. Also, remaining events are
4726 * automatically removed on cgroup destruction but the removal is
4727 * asynchronous, so take an extra ref on @css.
79bd9814 4728 */
b583043e 4729 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4730 &memory_cgrp_subsys);
79bd9814 4731 ret = -EINVAL;
5a17f543 4732 if (IS_ERR(cfile_css))
79bd9814 4733 goto out_put_cfile;
5a17f543
TH
4734 if (cfile_css != css) {
4735 css_put(cfile_css);
79bd9814 4736 goto out_put_cfile;
5a17f543 4737 }
79bd9814 4738
451af504 4739 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4740 if (ret)
4741 goto out_put_css;
4742
9965ed17 4743 vfs_poll(efile.file, &event->pt);
79bd9814 4744
fba94807
TH
4745 spin_lock(&memcg->event_list_lock);
4746 list_add(&event->list, &memcg->event_list);
4747 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4748
4749 fdput(cfile);
4750 fdput(efile);
4751
451af504 4752 return nbytes;
79bd9814
TH
4753
4754out_put_css:
b5557c4c 4755 css_put(css);
79bd9814
TH
4756out_put_cfile:
4757 fdput(cfile);
4758out_put_eventfd:
4759 eventfd_ctx_put(event->eventfd);
4760out_put_efile:
4761 fdput(efile);
4762out_kfree:
4763 kfree(event);
4764
4765 return ret;
4766}
4767
241994ed 4768static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4769 {
0eea1030 4770 .name = "usage_in_bytes",
8c7c6e34 4771 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4772 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4773 },
c84872e1
PE
4774 {
4775 .name = "max_usage_in_bytes",
8c7c6e34 4776 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4777 .write = mem_cgroup_reset,
791badbd 4778 .read_u64 = mem_cgroup_read_u64,
c84872e1 4779 },
8cdea7c0 4780 {
0eea1030 4781 .name = "limit_in_bytes",
8c7c6e34 4782 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4783 .write = mem_cgroup_write,
791badbd 4784 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4785 },
296c81d8
BS
4786 {
4787 .name = "soft_limit_in_bytes",
4788 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4789 .write = mem_cgroup_write,
791badbd 4790 .read_u64 = mem_cgroup_read_u64,
296c81d8 4791 },
8cdea7c0
BS
4792 {
4793 .name = "failcnt",
8c7c6e34 4794 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4795 .write = mem_cgroup_reset,
791badbd 4796 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4797 },
d2ceb9b7
KH
4798 {
4799 .name = "stat",
2da8ca82 4800 .seq_show = memcg_stat_show,
d2ceb9b7 4801 },
c1e862c1
KH
4802 {
4803 .name = "force_empty",
6770c64e 4804 .write = mem_cgroup_force_empty_write,
c1e862c1 4805 },
18f59ea7
BS
4806 {
4807 .name = "use_hierarchy",
4808 .write_u64 = mem_cgroup_hierarchy_write,
4809 .read_u64 = mem_cgroup_hierarchy_read,
4810 },
79bd9814 4811 {
3bc942f3 4812 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4813 .write = memcg_write_event_control,
7dbdb199 4814 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4815 },
a7885eb8
KM
4816 {
4817 .name = "swappiness",
4818 .read_u64 = mem_cgroup_swappiness_read,
4819 .write_u64 = mem_cgroup_swappiness_write,
4820 },
7dc74be0
DN
4821 {
4822 .name = "move_charge_at_immigrate",
4823 .read_u64 = mem_cgroup_move_charge_read,
4824 .write_u64 = mem_cgroup_move_charge_write,
4825 },
9490ff27
KH
4826 {
4827 .name = "oom_control",
2da8ca82 4828 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4829 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4830 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4831 },
70ddf637
AV
4832 {
4833 .name = "pressure_level",
70ddf637 4834 },
406eb0c9
YH
4835#ifdef CONFIG_NUMA
4836 {
4837 .name = "numa_stat",
2da8ca82 4838 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4839 },
4840#endif
510fc4e1
GC
4841 {
4842 .name = "kmem.limit_in_bytes",
4843 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4844 .write = mem_cgroup_write,
791badbd 4845 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4846 },
4847 {
4848 .name = "kmem.usage_in_bytes",
4849 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4850 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4851 },
4852 {
4853 .name = "kmem.failcnt",
4854 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4855 .write = mem_cgroup_reset,
791badbd 4856 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4857 },
4858 {
4859 .name = "kmem.max_usage_in_bytes",
4860 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4861 .write = mem_cgroup_reset,
791badbd 4862 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4863 },
a87425a3
YS
4864#if defined(CONFIG_MEMCG_KMEM) && \
4865 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4866 {
4867 .name = "kmem.slabinfo",
bc2791f8
TH
4868 .seq_start = memcg_slab_start,
4869 .seq_next = memcg_slab_next,
4870 .seq_stop = memcg_slab_stop,
b047501c 4871 .seq_show = memcg_slab_show,
749c5415
GC
4872 },
4873#endif
d55f90bf
VD
4874 {
4875 .name = "kmem.tcp.limit_in_bytes",
4876 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4877 .write = mem_cgroup_write,
4878 .read_u64 = mem_cgroup_read_u64,
4879 },
4880 {
4881 .name = "kmem.tcp.usage_in_bytes",
4882 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4883 .read_u64 = mem_cgroup_read_u64,
4884 },
4885 {
4886 .name = "kmem.tcp.failcnt",
4887 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4888 .write = mem_cgroup_reset,
4889 .read_u64 = mem_cgroup_read_u64,
4890 },
4891 {
4892 .name = "kmem.tcp.max_usage_in_bytes",
4893 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4894 .write = mem_cgroup_reset,
4895 .read_u64 = mem_cgroup_read_u64,
4896 },
6bc10349 4897 { }, /* terminate */
af36f906 4898};
8c7c6e34 4899
73f576c0
JW
4900/*
4901 * Private memory cgroup IDR
4902 *
4903 * Swap-out records and page cache shadow entries need to store memcg
4904 * references in constrained space, so we maintain an ID space that is
4905 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4906 * memory-controlled cgroups to 64k.
4907 *
4908 * However, there usually are many references to the oflline CSS after
4909 * the cgroup has been destroyed, such as page cache or reclaimable
4910 * slab objects, that don't need to hang on to the ID. We want to keep
4911 * those dead CSS from occupying IDs, or we might quickly exhaust the
4912 * relatively small ID space and prevent the creation of new cgroups
4913 * even when there are much fewer than 64k cgroups - possibly none.
4914 *
4915 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4916 * be freed and recycled when it's no longer needed, which is usually
4917 * when the CSS is offlined.
4918 *
4919 * The only exception to that are records of swapped out tmpfs/shmem
4920 * pages that need to be attributed to live ancestors on swapin. But
4921 * those references are manageable from userspace.
4922 */
4923
4924static DEFINE_IDR(mem_cgroup_idr);
4925
7e97de0b
KT
4926static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4927{
4928 if (memcg->id.id > 0) {
4929 idr_remove(&mem_cgroup_idr, memcg->id.id);
4930 memcg->id.id = 0;
4931 }
4932}
4933
c1514c0a
VF
4934static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4935 unsigned int n)
73f576c0 4936{
1c2d479a 4937 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4938}
4939
615d66c3 4940static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4941{
1c2d479a 4942 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4943 mem_cgroup_id_remove(memcg);
73f576c0
JW
4944
4945 /* Memcg ID pins CSS */
4946 css_put(&memcg->css);
4947 }
4948}
4949
615d66c3
VD
4950static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4951{
4952 mem_cgroup_id_put_many(memcg, 1);
4953}
4954
73f576c0
JW
4955/**
4956 * mem_cgroup_from_id - look up a memcg from a memcg id
4957 * @id: the memcg id to look up
4958 *
4959 * Caller must hold rcu_read_lock().
4960 */
4961struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4962{
4963 WARN_ON_ONCE(!rcu_read_lock_held());
4964 return idr_find(&mem_cgroup_idr, id);
4965}
4966
ef8f2327 4967static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4968{
4969 struct mem_cgroup_per_node *pn;
ef8f2327 4970 int tmp = node;
1ecaab2b
KH
4971 /*
4972 * This routine is called against possible nodes.
4973 * But it's BUG to call kmalloc() against offline node.
4974 *
4975 * TODO: this routine can waste much memory for nodes which will
4976 * never be onlined. It's better to use memory hotplug callback
4977 * function.
4978 */
41e3355d
KH
4979 if (!node_state(node, N_NORMAL_MEMORY))
4980 tmp = -1;
17295c88 4981 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4982 if (!pn)
4983 return 1;
1ecaab2b 4984
815744d7
JW
4985 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4986 if (!pn->lruvec_stat_local) {
4987 kfree(pn);
4988 return 1;
4989 }
4990
a983b5eb
JW
4991 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4992 if (!pn->lruvec_stat_cpu) {
815744d7 4993 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4994 kfree(pn);
4995 return 1;
4996 }
4997
ef8f2327
MG
4998 lruvec_init(&pn->lruvec);
4999 pn->usage_in_excess = 0;
5000 pn->on_tree = false;
5001 pn->memcg = memcg;
5002
54f72fe0 5003 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5004 return 0;
5005}
5006
ef8f2327 5007static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5008{
00f3ca2c
JW
5009 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5010
4eaf431f
MH
5011 if (!pn)
5012 return;
5013
a983b5eb 5014 free_percpu(pn->lruvec_stat_cpu);
815744d7 5015 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5016 kfree(pn);
1ecaab2b
KH
5017}
5018
40e952f9 5019static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5020{
c8b2a36f 5021 int node;
59927fb9 5022
c8b2a36f 5023 for_each_node(node)
ef8f2327 5024 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5025 free_percpu(memcg->vmstats_percpu);
815744d7 5026 free_percpu(memcg->vmstats_local);
8ff69e2c 5027 kfree(memcg);
59927fb9 5028}
3afe36b1 5029
40e952f9
TE
5030static void mem_cgroup_free(struct mem_cgroup *memcg)
5031{
5032 memcg_wb_domain_exit(memcg);
7961eee3
SB
5033 /*
5034 * Flush percpu vmstats and vmevents to guarantee the value correctness
5035 * on parent's and all ancestor levels.
5036 */
4a87e2a2 5037 memcg_flush_percpu_vmstats(memcg);
7961eee3 5038 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5039 __mem_cgroup_free(memcg);
5040}
5041
0b8f73e1 5042static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5043{
d142e3e6 5044 struct mem_cgroup *memcg;
b9726c26 5045 unsigned int size;
6d12e2d8 5046 int node;
97b27821 5047 int __maybe_unused i;
11d67612 5048 long error = -ENOMEM;
8cdea7c0 5049
0b8f73e1
JW
5050 size = sizeof(struct mem_cgroup);
5051 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5052
5053 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5054 if (!memcg)
11d67612 5055 return ERR_PTR(error);
0b8f73e1 5056
73f576c0
JW
5057 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5058 1, MEM_CGROUP_ID_MAX,
5059 GFP_KERNEL);
11d67612
YS
5060 if (memcg->id.id < 0) {
5061 error = memcg->id.id;
73f576c0 5062 goto fail;
11d67612 5063 }
73f576c0 5064
815744d7
JW
5065 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5066 if (!memcg->vmstats_local)
5067 goto fail;
5068
871789d4
CD
5069 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5070 if (!memcg->vmstats_percpu)
0b8f73e1 5071 goto fail;
78fb7466 5072
3ed28fa1 5073 for_each_node(node)
ef8f2327 5074 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5075 goto fail;
f64c3f54 5076
0b8f73e1
JW
5077 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5078 goto fail;
28dbc4b6 5079
f7e1cb6e 5080 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5081 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5082 mutex_init(&memcg->thresholds_lock);
5083 spin_lock_init(&memcg->move_lock);
70ddf637 5084 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5085 INIT_LIST_HEAD(&memcg->event_list);
5086 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5087 memcg->socket_pressure = jiffies;
84c07d11 5088#ifdef CONFIG_MEMCG_KMEM
900a38f0 5089 memcg->kmemcg_id = -1;
900a38f0 5090#endif
52ebea74
TH
5091#ifdef CONFIG_CGROUP_WRITEBACK
5092 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5093 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5094 memcg->cgwb_frn[i].done =
5095 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5096#endif
5097#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5098 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5099 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5100 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5101#endif
73f576c0 5102 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5103 return memcg;
5104fail:
7e97de0b 5105 mem_cgroup_id_remove(memcg);
40e952f9 5106 __mem_cgroup_free(memcg);
11d67612 5107 return ERR_PTR(error);
d142e3e6
GC
5108}
5109
0b8f73e1
JW
5110static struct cgroup_subsys_state * __ref
5111mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5112{
0b8f73e1
JW
5113 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5114 struct mem_cgroup *memcg;
5115 long error = -ENOMEM;
d142e3e6 5116
0b8f73e1 5117 memcg = mem_cgroup_alloc();
11d67612
YS
5118 if (IS_ERR(memcg))
5119 return ERR_CAST(memcg);
d142e3e6 5120
d1663a90 5121 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5122 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5123 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5124 if (parent) {
5125 memcg->swappiness = mem_cgroup_swappiness(parent);
5126 memcg->oom_kill_disable = parent->oom_kill_disable;
5127 }
5128 if (parent && parent->use_hierarchy) {
5129 memcg->use_hierarchy = true;
3e32cb2e 5130 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5131 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5132 page_counter_init(&memcg->memsw, &parent->memsw);
5133 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5134 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5135 } else {
3e32cb2e 5136 page_counter_init(&memcg->memory, NULL);
37e84351 5137 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5138 page_counter_init(&memcg->memsw, NULL);
5139 page_counter_init(&memcg->kmem, NULL);
0db15298 5140 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5141 /*
5142 * Deeper hierachy with use_hierarchy == false doesn't make
5143 * much sense so let cgroup subsystem know about this
5144 * unfortunate state in our controller.
5145 */
d142e3e6 5146 if (parent != root_mem_cgroup)
073219e9 5147 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5148 }
d6441637 5149
0b8f73e1
JW
5150 /* The following stuff does not apply to the root */
5151 if (!parent) {
fb2f2b0a
RG
5152#ifdef CONFIG_MEMCG_KMEM
5153 INIT_LIST_HEAD(&memcg->kmem_caches);
5154#endif
0b8f73e1
JW
5155 root_mem_cgroup = memcg;
5156 return &memcg->css;
5157 }
5158
b313aeee 5159 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5160 if (error)
5161 goto fail;
127424c8 5162
f7e1cb6e 5163 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5164 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5165
0b8f73e1
JW
5166 return &memcg->css;
5167fail:
7e97de0b 5168 mem_cgroup_id_remove(memcg);
0b8f73e1 5169 mem_cgroup_free(memcg);
11d67612 5170 return ERR_PTR(error);
0b8f73e1
JW
5171}
5172
73f576c0 5173static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5174{
58fa2a55
VD
5175 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5176
0a4465d3
KT
5177 /*
5178 * A memcg must be visible for memcg_expand_shrinker_maps()
5179 * by the time the maps are allocated. So, we allocate maps
5180 * here, when for_each_mem_cgroup() can't skip it.
5181 */
5182 if (memcg_alloc_shrinker_maps(memcg)) {
5183 mem_cgroup_id_remove(memcg);
5184 return -ENOMEM;
5185 }
5186
73f576c0 5187 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5188 refcount_set(&memcg->id.ref, 1);
73f576c0 5189 css_get(css);
2f7dd7a4 5190 return 0;
8cdea7c0
BS
5191}
5192
eb95419b 5193static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5194{
eb95419b 5195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5196 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5197
5198 /*
5199 * Unregister events and notify userspace.
5200 * Notify userspace about cgroup removing only after rmdir of cgroup
5201 * directory to avoid race between userspace and kernelspace.
5202 */
fba94807
TH
5203 spin_lock(&memcg->event_list_lock);
5204 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5205 list_del_init(&event->list);
5206 schedule_work(&event->remove);
5207 }
fba94807 5208 spin_unlock(&memcg->event_list_lock);
ec64f515 5209
bf8d5d52 5210 page_counter_set_min(&memcg->memory, 0);
23067153 5211 page_counter_set_low(&memcg->memory, 0);
63677c74 5212
567e9ab2 5213 memcg_offline_kmem(memcg);
52ebea74 5214 wb_memcg_offline(memcg);
73f576c0 5215
591edfb1
RG
5216 drain_all_stock(memcg);
5217
73f576c0 5218 mem_cgroup_id_put(memcg);
df878fb0
KH
5219}
5220
6df38689
VD
5221static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5222{
5223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5224
5225 invalidate_reclaim_iterators(memcg);
5226}
5227
eb95419b 5228static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5229{
eb95419b 5230 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5231 int __maybe_unused i;
c268e994 5232
97b27821
TH
5233#ifdef CONFIG_CGROUP_WRITEBACK
5234 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5235 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5236#endif
f7e1cb6e 5237 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5238 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5239
0db15298 5240 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5241 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5242
0b8f73e1
JW
5243 vmpressure_cleanup(&memcg->vmpressure);
5244 cancel_work_sync(&memcg->high_work);
5245 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5246 memcg_free_shrinker_maps(memcg);
d886f4e4 5247 memcg_free_kmem(memcg);
0b8f73e1 5248 mem_cgroup_free(memcg);
8cdea7c0
BS
5249}
5250
1ced953b
TH
5251/**
5252 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5253 * @css: the target css
5254 *
5255 * Reset the states of the mem_cgroup associated with @css. This is
5256 * invoked when the userland requests disabling on the default hierarchy
5257 * but the memcg is pinned through dependency. The memcg should stop
5258 * applying policies and should revert to the vanilla state as it may be
5259 * made visible again.
5260 *
5261 * The current implementation only resets the essential configurations.
5262 * This needs to be expanded to cover all the visible parts.
5263 */
5264static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5265{
5266 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5267
bbec2e15
RG
5268 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5269 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5270 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5271 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5272 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5273 page_counter_set_min(&memcg->memory, 0);
23067153 5274 page_counter_set_low(&memcg->memory, 0);
d1663a90 5275 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5276 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5277 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5278 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5279}
5280
02491447 5281#ifdef CONFIG_MMU
7dc74be0 5282/* Handlers for move charge at task migration. */
854ffa8d 5283static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5284{
05b84301 5285 int ret;
9476db97 5286
d0164adc
MG
5287 /* Try a single bulk charge without reclaim first, kswapd may wake */
5288 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5289 if (!ret) {
854ffa8d 5290 mc.precharge += count;
854ffa8d
DN
5291 return ret;
5292 }
9476db97 5293
3674534b 5294 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5295 while (count--) {
3674534b 5296 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5297 if (ret)
38c5d72f 5298 return ret;
854ffa8d 5299 mc.precharge++;
9476db97 5300 cond_resched();
854ffa8d 5301 }
9476db97 5302 return 0;
4ffef5fe
DN
5303}
5304
4ffef5fe
DN
5305union mc_target {
5306 struct page *page;
02491447 5307 swp_entry_t ent;
4ffef5fe
DN
5308};
5309
4ffef5fe 5310enum mc_target_type {
8d32ff84 5311 MC_TARGET_NONE = 0,
4ffef5fe 5312 MC_TARGET_PAGE,
02491447 5313 MC_TARGET_SWAP,
c733a828 5314 MC_TARGET_DEVICE,
4ffef5fe
DN
5315};
5316
90254a65
DN
5317static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5318 unsigned long addr, pte_t ptent)
4ffef5fe 5319{
25b2995a 5320 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5321
90254a65
DN
5322 if (!page || !page_mapped(page))
5323 return NULL;
5324 if (PageAnon(page)) {
1dfab5ab 5325 if (!(mc.flags & MOVE_ANON))
90254a65 5326 return NULL;
1dfab5ab
JW
5327 } else {
5328 if (!(mc.flags & MOVE_FILE))
5329 return NULL;
5330 }
90254a65
DN
5331 if (!get_page_unless_zero(page))
5332 return NULL;
5333
5334 return page;
5335}
5336
c733a828 5337#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5338static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5339 pte_t ptent, swp_entry_t *entry)
90254a65 5340{
90254a65
DN
5341 struct page *page = NULL;
5342 swp_entry_t ent = pte_to_swp_entry(ptent);
5343
1dfab5ab 5344 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5345 return NULL;
c733a828
JG
5346
5347 /*
5348 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5349 * a device and because they are not accessible by CPU they are store
5350 * as special swap entry in the CPU page table.
5351 */
5352 if (is_device_private_entry(ent)) {
5353 page = device_private_entry_to_page(ent);
5354 /*
5355 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5356 * a refcount of 1 when free (unlike normal page)
5357 */
5358 if (!page_ref_add_unless(page, 1, 1))
5359 return NULL;
5360 return page;
5361 }
5362
4b91355e
KH
5363 /*
5364 * Because lookup_swap_cache() updates some statistics counter,
5365 * we call find_get_page() with swapper_space directly.
5366 */
f6ab1f7f 5367 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5368 if (do_memsw_account())
90254a65
DN
5369 entry->val = ent.val;
5370
5371 return page;
5372}
4b91355e
KH
5373#else
5374static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5375 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5376{
5377 return NULL;
5378}
5379#endif
90254a65 5380
87946a72
DN
5381static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5382 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5383{
5384 struct page *page = NULL;
87946a72
DN
5385 struct address_space *mapping;
5386 pgoff_t pgoff;
5387
5388 if (!vma->vm_file) /* anonymous vma */
5389 return NULL;
1dfab5ab 5390 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5391 return NULL;
5392
87946a72 5393 mapping = vma->vm_file->f_mapping;
0661a336 5394 pgoff = linear_page_index(vma, addr);
87946a72
DN
5395
5396 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5397#ifdef CONFIG_SWAP
5398 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5399 if (shmem_mapping(mapping)) {
5400 page = find_get_entry(mapping, pgoff);
3159f943 5401 if (xa_is_value(page)) {
139b6a6f 5402 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5403 if (do_memsw_account())
139b6a6f 5404 *entry = swp;
f6ab1f7f
HY
5405 page = find_get_page(swap_address_space(swp),
5406 swp_offset(swp));
139b6a6f
JW
5407 }
5408 } else
5409 page = find_get_page(mapping, pgoff);
5410#else
5411 page = find_get_page(mapping, pgoff);
aa3b1895 5412#endif
87946a72
DN
5413 return page;
5414}
5415
b1b0deab
CG
5416/**
5417 * mem_cgroup_move_account - move account of the page
5418 * @page: the page
25843c2b 5419 * @compound: charge the page as compound or small page
b1b0deab
CG
5420 * @from: mem_cgroup which the page is moved from.
5421 * @to: mem_cgroup which the page is moved to. @from != @to.
5422 *
3ac808fd 5423 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5424 *
5425 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5426 * from old cgroup.
5427 */
5428static int mem_cgroup_move_account(struct page *page,
f627c2f5 5429 bool compound,
b1b0deab
CG
5430 struct mem_cgroup *from,
5431 struct mem_cgroup *to)
5432{
ae8af438
KK
5433 struct lruvec *from_vec, *to_vec;
5434 struct pglist_data *pgdat;
f627c2f5 5435 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5436 int ret;
c4843a75 5437 bool anon;
b1b0deab
CG
5438
5439 VM_BUG_ON(from == to);
5440 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5441 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5442
5443 /*
6a93ca8f 5444 * Prevent mem_cgroup_migrate() from looking at
45637bab 5445 * page->mem_cgroup of its source page while we change it.
b1b0deab 5446 */
f627c2f5 5447 ret = -EBUSY;
b1b0deab
CG
5448 if (!trylock_page(page))
5449 goto out;
5450
5451 ret = -EINVAL;
5452 if (page->mem_cgroup != from)
5453 goto out_unlock;
5454
c4843a75
GT
5455 anon = PageAnon(page);
5456
ae8af438 5457 pgdat = page_pgdat(page);
867e5e1d
JW
5458 from_vec = mem_cgroup_lruvec(from, pgdat);
5459 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5460
abb242f5 5461 lock_page_memcg(page);
b1b0deab 5462
c4843a75 5463 if (!anon && page_mapped(page)) {
ae8af438
KK
5464 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5465 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5466 }
5467
c4843a75
GT
5468 if (!anon && PageDirty(page)) {
5469 struct address_space *mapping = page_mapping(page);
5470
5471 if (mapping_cap_account_dirty(mapping)) {
ae8af438
KK
5472 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5473 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5474 }
5475 }
5476
b1b0deab 5477 if (PageWriteback(page)) {
ae8af438
KK
5478 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5479 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5480 }
5481
5482 /*
abb242f5
JW
5483 * All state has been migrated, let's switch to the new memcg.
5484 *
b1b0deab 5485 * It is safe to change page->mem_cgroup here because the page
abb242f5
JW
5486 * is referenced, charged, isolated, and locked: we can't race
5487 * with (un)charging, migration, LRU putback, or anything else
5488 * that would rely on a stable page->mem_cgroup.
5489 *
5490 * Note that lock_page_memcg is a memcg lock, not a page lock,
5491 * to save space. As soon as we switch page->mem_cgroup to a
5492 * new memcg that isn't locked, the above state can change
5493 * concurrently again. Make sure we're truly done with it.
b1b0deab 5494 */
abb242f5 5495 smp_mb();
b1b0deab 5496
abb242f5 5497 page->mem_cgroup = to; /* caller should have done css_get */
87eaceb3 5498
abb242f5 5499 __unlock_page_memcg(from);
b1b0deab
CG
5500
5501 ret = 0;
5502
5503 local_irq_disable();
3fba69a5 5504 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5505 memcg_check_events(to, page);
3fba69a5 5506 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5507 memcg_check_events(from, page);
5508 local_irq_enable();
5509out_unlock:
5510 unlock_page(page);
5511out:
5512 return ret;
5513}
5514
7cf7806c
LR
5515/**
5516 * get_mctgt_type - get target type of moving charge
5517 * @vma: the vma the pte to be checked belongs
5518 * @addr: the address corresponding to the pte to be checked
5519 * @ptent: the pte to be checked
5520 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5521 *
5522 * Returns
5523 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5524 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5525 * move charge. if @target is not NULL, the page is stored in target->page
5526 * with extra refcnt got(Callers should handle it).
5527 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5528 * target for charge migration. if @target is not NULL, the entry is stored
5529 * in target->ent.
25b2995a
CH
5530 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5531 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5532 * For now we such page is charge like a regular page would be as for all
5533 * intent and purposes it is just special memory taking the place of a
5534 * regular page.
c733a828
JG
5535 *
5536 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5537 *
5538 * Called with pte lock held.
5539 */
5540
8d32ff84 5541static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5542 unsigned long addr, pte_t ptent, union mc_target *target)
5543{
5544 struct page *page = NULL;
8d32ff84 5545 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5546 swp_entry_t ent = { .val = 0 };
5547
5548 if (pte_present(ptent))
5549 page = mc_handle_present_pte(vma, addr, ptent);
5550 else if (is_swap_pte(ptent))
48406ef8 5551 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5552 else if (pte_none(ptent))
87946a72 5553 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5554
5555 if (!page && !ent.val)
8d32ff84 5556 return ret;
02491447 5557 if (page) {
02491447 5558 /*
0a31bc97 5559 * Do only loose check w/o serialization.
1306a85a 5560 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5561 * not under LRU exclusion.
02491447 5562 */
1306a85a 5563 if (page->mem_cgroup == mc.from) {
02491447 5564 ret = MC_TARGET_PAGE;
25b2995a 5565 if (is_device_private_page(page))
c733a828 5566 ret = MC_TARGET_DEVICE;
02491447
DN
5567 if (target)
5568 target->page = page;
5569 }
5570 if (!ret || !target)
5571 put_page(page);
5572 }
3e14a57b
HY
5573 /*
5574 * There is a swap entry and a page doesn't exist or isn't charged.
5575 * But we cannot move a tail-page in a THP.
5576 */
5577 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5578 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5579 ret = MC_TARGET_SWAP;
5580 if (target)
5581 target->ent = ent;
4ffef5fe 5582 }
4ffef5fe
DN
5583 return ret;
5584}
5585
12724850
NH
5586#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5587/*
d6810d73
HY
5588 * We don't consider PMD mapped swapping or file mapped pages because THP does
5589 * not support them for now.
12724850
NH
5590 * Caller should make sure that pmd_trans_huge(pmd) is true.
5591 */
5592static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5593 unsigned long addr, pmd_t pmd, union mc_target *target)
5594{
5595 struct page *page = NULL;
12724850
NH
5596 enum mc_target_type ret = MC_TARGET_NONE;
5597
84c3fc4e
ZY
5598 if (unlikely(is_swap_pmd(pmd))) {
5599 VM_BUG_ON(thp_migration_supported() &&
5600 !is_pmd_migration_entry(pmd));
5601 return ret;
5602 }
12724850 5603 page = pmd_page(pmd);
309381fe 5604 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5605 if (!(mc.flags & MOVE_ANON))
12724850 5606 return ret;
1306a85a 5607 if (page->mem_cgroup == mc.from) {
12724850
NH
5608 ret = MC_TARGET_PAGE;
5609 if (target) {
5610 get_page(page);
5611 target->page = page;
5612 }
5613 }
5614 return ret;
5615}
5616#else
5617static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5618 unsigned long addr, pmd_t pmd, union mc_target *target)
5619{
5620 return MC_TARGET_NONE;
5621}
5622#endif
5623
4ffef5fe
DN
5624static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5625 unsigned long addr, unsigned long end,
5626 struct mm_walk *walk)
5627{
26bcd64a 5628 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5629 pte_t *pte;
5630 spinlock_t *ptl;
5631
b6ec57f4
KS
5632 ptl = pmd_trans_huge_lock(pmd, vma);
5633 if (ptl) {
c733a828
JG
5634 /*
5635 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5636 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5637 * this might change.
c733a828 5638 */
12724850
NH
5639 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5640 mc.precharge += HPAGE_PMD_NR;
bf929152 5641 spin_unlock(ptl);
1a5a9906 5642 return 0;
12724850 5643 }
03319327 5644
45f83cef
AA
5645 if (pmd_trans_unstable(pmd))
5646 return 0;
4ffef5fe
DN
5647 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5648 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5649 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5650 mc.precharge++; /* increment precharge temporarily */
5651 pte_unmap_unlock(pte - 1, ptl);
5652 cond_resched();
5653
7dc74be0
DN
5654 return 0;
5655}
5656
7b86ac33
CH
5657static const struct mm_walk_ops precharge_walk_ops = {
5658 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5659};
5660
4ffef5fe
DN
5661static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5662{
5663 unsigned long precharge;
4ffef5fe 5664
dfe076b0 5665 down_read(&mm->mmap_sem);
7b86ac33 5666 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5667 up_read(&mm->mmap_sem);
4ffef5fe
DN
5668
5669 precharge = mc.precharge;
5670 mc.precharge = 0;
5671
5672 return precharge;
5673}
5674
4ffef5fe
DN
5675static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5676{
dfe076b0
DN
5677 unsigned long precharge = mem_cgroup_count_precharge(mm);
5678
5679 VM_BUG_ON(mc.moving_task);
5680 mc.moving_task = current;
5681 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5682}
5683
dfe076b0
DN
5684/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5685static void __mem_cgroup_clear_mc(void)
4ffef5fe 5686{
2bd9bb20
KH
5687 struct mem_cgroup *from = mc.from;
5688 struct mem_cgroup *to = mc.to;
5689
4ffef5fe 5690 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5691 if (mc.precharge) {
00501b53 5692 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5693 mc.precharge = 0;
5694 }
5695 /*
5696 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5697 * we must uncharge here.
5698 */
5699 if (mc.moved_charge) {
00501b53 5700 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5701 mc.moved_charge = 0;
4ffef5fe 5702 }
483c30b5
DN
5703 /* we must fixup refcnts and charges */
5704 if (mc.moved_swap) {
483c30b5 5705 /* uncharge swap account from the old cgroup */
ce00a967 5706 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5707 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5708
615d66c3
VD
5709 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5710
05b84301 5711 /*
3e32cb2e
JW
5712 * we charged both to->memory and to->memsw, so we
5713 * should uncharge to->memory.
05b84301 5714 */
ce00a967 5715 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5716 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5717
615d66c3
VD
5718 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5719 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5720
483c30b5
DN
5721 mc.moved_swap = 0;
5722 }
dfe076b0
DN
5723 memcg_oom_recover(from);
5724 memcg_oom_recover(to);
5725 wake_up_all(&mc.waitq);
5726}
5727
5728static void mem_cgroup_clear_mc(void)
5729{
264a0ae1
TH
5730 struct mm_struct *mm = mc.mm;
5731
dfe076b0
DN
5732 /*
5733 * we must clear moving_task before waking up waiters at the end of
5734 * task migration.
5735 */
5736 mc.moving_task = NULL;
5737 __mem_cgroup_clear_mc();
2bd9bb20 5738 spin_lock(&mc.lock);
4ffef5fe
DN
5739 mc.from = NULL;
5740 mc.to = NULL;
264a0ae1 5741 mc.mm = NULL;
2bd9bb20 5742 spin_unlock(&mc.lock);
264a0ae1
TH
5743
5744 mmput(mm);
4ffef5fe
DN
5745}
5746
1f7dd3e5 5747static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5748{
1f7dd3e5 5749 struct cgroup_subsys_state *css;
eed67d75 5750 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5751 struct mem_cgroup *from;
4530eddb 5752 struct task_struct *leader, *p;
9f2115f9 5753 struct mm_struct *mm;
1dfab5ab 5754 unsigned long move_flags;
9f2115f9 5755 int ret = 0;
7dc74be0 5756
1f7dd3e5
TH
5757 /* charge immigration isn't supported on the default hierarchy */
5758 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5759 return 0;
5760
4530eddb
TH
5761 /*
5762 * Multi-process migrations only happen on the default hierarchy
5763 * where charge immigration is not used. Perform charge
5764 * immigration if @tset contains a leader and whine if there are
5765 * multiple.
5766 */
5767 p = NULL;
1f7dd3e5 5768 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5769 WARN_ON_ONCE(p);
5770 p = leader;
1f7dd3e5 5771 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5772 }
5773 if (!p)
5774 return 0;
5775
1f7dd3e5
TH
5776 /*
5777 * We are now commited to this value whatever it is. Changes in this
5778 * tunable will only affect upcoming migrations, not the current one.
5779 * So we need to save it, and keep it going.
5780 */
5781 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5782 if (!move_flags)
5783 return 0;
5784
9f2115f9
TH
5785 from = mem_cgroup_from_task(p);
5786
5787 VM_BUG_ON(from == memcg);
5788
5789 mm = get_task_mm(p);
5790 if (!mm)
5791 return 0;
5792 /* We move charges only when we move a owner of the mm */
5793 if (mm->owner == p) {
5794 VM_BUG_ON(mc.from);
5795 VM_BUG_ON(mc.to);
5796 VM_BUG_ON(mc.precharge);
5797 VM_BUG_ON(mc.moved_charge);
5798 VM_BUG_ON(mc.moved_swap);
5799
5800 spin_lock(&mc.lock);
264a0ae1 5801 mc.mm = mm;
9f2115f9
TH
5802 mc.from = from;
5803 mc.to = memcg;
5804 mc.flags = move_flags;
5805 spin_unlock(&mc.lock);
5806 /* We set mc.moving_task later */
5807
5808 ret = mem_cgroup_precharge_mc(mm);
5809 if (ret)
5810 mem_cgroup_clear_mc();
264a0ae1
TH
5811 } else {
5812 mmput(mm);
7dc74be0
DN
5813 }
5814 return ret;
5815}
5816
1f7dd3e5 5817static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5818{
4e2f245d
JW
5819 if (mc.to)
5820 mem_cgroup_clear_mc();
7dc74be0
DN
5821}
5822
4ffef5fe
DN
5823static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5824 unsigned long addr, unsigned long end,
5825 struct mm_walk *walk)
7dc74be0 5826{
4ffef5fe 5827 int ret = 0;
26bcd64a 5828 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5829 pte_t *pte;
5830 spinlock_t *ptl;
12724850
NH
5831 enum mc_target_type target_type;
5832 union mc_target target;
5833 struct page *page;
4ffef5fe 5834
b6ec57f4
KS
5835 ptl = pmd_trans_huge_lock(pmd, vma);
5836 if (ptl) {
62ade86a 5837 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5838 spin_unlock(ptl);
12724850
NH
5839 return 0;
5840 }
5841 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5842 if (target_type == MC_TARGET_PAGE) {
5843 page = target.page;
5844 if (!isolate_lru_page(page)) {
f627c2f5 5845 if (!mem_cgroup_move_account(page, true,
1306a85a 5846 mc.from, mc.to)) {
12724850
NH
5847 mc.precharge -= HPAGE_PMD_NR;
5848 mc.moved_charge += HPAGE_PMD_NR;
5849 }
5850 putback_lru_page(page);
5851 }
5852 put_page(page);
c733a828
JG
5853 } else if (target_type == MC_TARGET_DEVICE) {
5854 page = target.page;
5855 if (!mem_cgroup_move_account(page, true,
5856 mc.from, mc.to)) {
5857 mc.precharge -= HPAGE_PMD_NR;
5858 mc.moved_charge += HPAGE_PMD_NR;
5859 }
5860 put_page(page);
12724850 5861 }
bf929152 5862 spin_unlock(ptl);
1a5a9906 5863 return 0;
12724850
NH
5864 }
5865
45f83cef
AA
5866 if (pmd_trans_unstable(pmd))
5867 return 0;
4ffef5fe
DN
5868retry:
5869 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5870 for (; addr != end; addr += PAGE_SIZE) {
5871 pte_t ptent = *(pte++);
c733a828 5872 bool device = false;
02491447 5873 swp_entry_t ent;
4ffef5fe
DN
5874
5875 if (!mc.precharge)
5876 break;
5877
8d32ff84 5878 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5879 case MC_TARGET_DEVICE:
5880 device = true;
e4a9bc58 5881 fallthrough;
4ffef5fe
DN
5882 case MC_TARGET_PAGE:
5883 page = target.page;
53f9263b
KS
5884 /*
5885 * We can have a part of the split pmd here. Moving it
5886 * can be done but it would be too convoluted so simply
5887 * ignore such a partial THP and keep it in original
5888 * memcg. There should be somebody mapping the head.
5889 */
5890 if (PageTransCompound(page))
5891 goto put;
c733a828 5892 if (!device && isolate_lru_page(page))
4ffef5fe 5893 goto put;
f627c2f5
KS
5894 if (!mem_cgroup_move_account(page, false,
5895 mc.from, mc.to)) {
4ffef5fe 5896 mc.precharge--;
854ffa8d
DN
5897 /* we uncharge from mc.from later. */
5898 mc.moved_charge++;
4ffef5fe 5899 }
c733a828
JG
5900 if (!device)
5901 putback_lru_page(page);
8d32ff84 5902put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5903 put_page(page);
5904 break;
02491447
DN
5905 case MC_TARGET_SWAP:
5906 ent = target.ent;
e91cbb42 5907 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5908 mc.precharge--;
483c30b5
DN
5909 /* we fixup refcnts and charges later. */
5910 mc.moved_swap++;
5911 }
02491447 5912 break;
4ffef5fe
DN
5913 default:
5914 break;
5915 }
5916 }
5917 pte_unmap_unlock(pte - 1, ptl);
5918 cond_resched();
5919
5920 if (addr != end) {
5921 /*
5922 * We have consumed all precharges we got in can_attach().
5923 * We try charge one by one, but don't do any additional
5924 * charges to mc.to if we have failed in charge once in attach()
5925 * phase.
5926 */
854ffa8d 5927 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5928 if (!ret)
5929 goto retry;
5930 }
5931
5932 return ret;
5933}
5934
7b86ac33
CH
5935static const struct mm_walk_ops charge_walk_ops = {
5936 .pmd_entry = mem_cgroup_move_charge_pte_range,
5937};
5938
264a0ae1 5939static void mem_cgroup_move_charge(void)
4ffef5fe 5940{
4ffef5fe 5941 lru_add_drain_all();
312722cb 5942 /*
81f8c3a4
JW
5943 * Signal lock_page_memcg() to take the memcg's move_lock
5944 * while we're moving its pages to another memcg. Then wait
5945 * for already started RCU-only updates to finish.
312722cb
JW
5946 */
5947 atomic_inc(&mc.from->moving_account);
5948 synchronize_rcu();
dfe076b0 5949retry:
264a0ae1 5950 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5951 /*
5952 * Someone who are holding the mmap_sem might be waiting in
5953 * waitq. So we cancel all extra charges, wake up all waiters,
5954 * and retry. Because we cancel precharges, we might not be able
5955 * to move enough charges, but moving charge is a best-effort
5956 * feature anyway, so it wouldn't be a big problem.
5957 */
5958 __mem_cgroup_clear_mc();
5959 cond_resched();
5960 goto retry;
5961 }
26bcd64a
NH
5962 /*
5963 * When we have consumed all precharges and failed in doing
5964 * additional charge, the page walk just aborts.
5965 */
7b86ac33
CH
5966 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5967 NULL);
0247f3f4 5968
264a0ae1 5969 up_read(&mc.mm->mmap_sem);
312722cb 5970 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5971}
5972
264a0ae1 5973static void mem_cgroup_move_task(void)
67e465a7 5974{
264a0ae1
TH
5975 if (mc.to) {
5976 mem_cgroup_move_charge();
a433658c 5977 mem_cgroup_clear_mc();
264a0ae1 5978 }
67e465a7 5979}
5cfb80a7 5980#else /* !CONFIG_MMU */
1f7dd3e5 5981static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5982{
5983 return 0;
5984}
1f7dd3e5 5985static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5986{
5987}
264a0ae1 5988static void mem_cgroup_move_task(void)
5cfb80a7
DN
5989{
5990}
5991#endif
67e465a7 5992
f00baae7
TH
5993/*
5994 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5995 * to verify whether we're attached to the default hierarchy on each mount
5996 * attempt.
f00baae7 5997 */
eb95419b 5998static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5999{
6000 /*
aa6ec29b 6001 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6002 * guarantees that @root doesn't have any children, so turning it
6003 * on for the root memcg is enough.
6004 */
9e10a130 6005 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
6006 root_mem_cgroup->use_hierarchy = true;
6007 else
6008 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
6009}
6010
677dc973
CD
6011static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6012{
6013 if (value == PAGE_COUNTER_MAX)
6014 seq_puts(m, "max\n");
6015 else
6016 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6017
6018 return 0;
6019}
6020
241994ed
JW
6021static u64 memory_current_read(struct cgroup_subsys_state *css,
6022 struct cftype *cft)
6023{
f5fc3c5d
JW
6024 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6025
6026 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6027}
6028
bf8d5d52
RG
6029static int memory_min_show(struct seq_file *m, void *v)
6030{
677dc973
CD
6031 return seq_puts_memcg_tunable(m,
6032 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6033}
6034
6035static ssize_t memory_min_write(struct kernfs_open_file *of,
6036 char *buf, size_t nbytes, loff_t off)
6037{
6038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6039 unsigned long min;
6040 int err;
6041
6042 buf = strstrip(buf);
6043 err = page_counter_memparse(buf, "max", &min);
6044 if (err)
6045 return err;
6046
6047 page_counter_set_min(&memcg->memory, min);
6048
6049 return nbytes;
6050}
6051
241994ed
JW
6052static int memory_low_show(struct seq_file *m, void *v)
6053{
677dc973
CD
6054 return seq_puts_memcg_tunable(m,
6055 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6056}
6057
6058static ssize_t memory_low_write(struct kernfs_open_file *of,
6059 char *buf, size_t nbytes, loff_t off)
6060{
6061 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6062 unsigned long low;
6063 int err;
6064
6065 buf = strstrip(buf);
d2973697 6066 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6067 if (err)
6068 return err;
6069
23067153 6070 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6071
6072 return nbytes;
6073}
6074
6075static int memory_high_show(struct seq_file *m, void *v)
6076{
d1663a90
JK
6077 return seq_puts_memcg_tunable(m,
6078 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6079}
6080
6081static ssize_t memory_high_write(struct kernfs_open_file *of,
6082 char *buf, size_t nbytes, loff_t off)
6083{
6084 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8c8c383c
JW
6085 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6086 bool drained = false;
241994ed
JW
6087 unsigned long high;
6088 int err;
6089
6090 buf = strstrip(buf);
d2973697 6091 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6092 if (err)
6093 return err;
6094
d1663a90 6095 page_counter_set_high(&memcg->memory, high);
241994ed 6096
8c8c383c
JW
6097 for (;;) {
6098 unsigned long nr_pages = page_counter_read(&memcg->memory);
6099 unsigned long reclaimed;
6100
6101 if (nr_pages <= high)
6102 break;
6103
6104 if (signal_pending(current))
6105 break;
6106
6107 if (!drained) {
6108 drain_all_stock(memcg);
6109 drained = true;
6110 continue;
6111 }
6112
6113 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6114 GFP_KERNEL, true);
6115
6116 if (!reclaimed && !nr_retries--)
6117 break;
6118 }
588083bb 6119
241994ed
JW
6120 return nbytes;
6121}
6122
6123static int memory_max_show(struct seq_file *m, void *v)
6124{
677dc973
CD
6125 return seq_puts_memcg_tunable(m,
6126 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6127}
6128
6129static ssize_t memory_max_write(struct kernfs_open_file *of,
6130 char *buf, size_t nbytes, loff_t off)
6131{
6132 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6133 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6134 bool drained = false;
241994ed
JW
6135 unsigned long max;
6136 int err;
6137
6138 buf = strstrip(buf);
d2973697 6139 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6140 if (err)
6141 return err;
6142
bbec2e15 6143 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6144
6145 for (;;) {
6146 unsigned long nr_pages = page_counter_read(&memcg->memory);
6147
6148 if (nr_pages <= max)
6149 break;
6150
7249c9f0 6151 if (signal_pending(current))
b6e6edcf 6152 break;
b6e6edcf
JW
6153
6154 if (!drained) {
6155 drain_all_stock(memcg);
6156 drained = true;
6157 continue;
6158 }
6159
6160 if (nr_reclaims) {
6161 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6162 GFP_KERNEL, true))
6163 nr_reclaims--;
6164 continue;
6165 }
6166
e27be240 6167 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6168 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6169 break;
6170 }
241994ed 6171
2529bb3a 6172 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6173 return nbytes;
6174}
6175
1e577f97
SB
6176static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6177{
6178 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6179 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6180 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6181 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6182 seq_printf(m, "oom_kill %lu\n",
6183 atomic_long_read(&events[MEMCG_OOM_KILL]));
6184}
6185
241994ed
JW
6186static int memory_events_show(struct seq_file *m, void *v)
6187{
aa9694bb 6188 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6189
1e577f97
SB
6190 __memory_events_show(m, memcg->memory_events);
6191 return 0;
6192}
6193
6194static int memory_events_local_show(struct seq_file *m, void *v)
6195{
6196 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6197
1e577f97 6198 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6199 return 0;
6200}
6201
587d9f72
JW
6202static int memory_stat_show(struct seq_file *m, void *v)
6203{
aa9694bb 6204 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6205 char *buf;
1ff9e6e1 6206
c8713d0b
JW
6207 buf = memory_stat_format(memcg);
6208 if (!buf)
6209 return -ENOMEM;
6210 seq_puts(m, buf);
6211 kfree(buf);
587d9f72
JW
6212 return 0;
6213}
6214
3d8b38eb
RG
6215static int memory_oom_group_show(struct seq_file *m, void *v)
6216{
aa9694bb 6217 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6218
6219 seq_printf(m, "%d\n", memcg->oom_group);
6220
6221 return 0;
6222}
6223
6224static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6225 char *buf, size_t nbytes, loff_t off)
6226{
6227 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6228 int ret, oom_group;
6229
6230 buf = strstrip(buf);
6231 if (!buf)
6232 return -EINVAL;
6233
6234 ret = kstrtoint(buf, 0, &oom_group);
6235 if (ret)
6236 return ret;
6237
6238 if (oom_group != 0 && oom_group != 1)
6239 return -EINVAL;
6240
6241 memcg->oom_group = oom_group;
6242
6243 return nbytes;
6244}
6245
241994ed
JW
6246static struct cftype memory_files[] = {
6247 {
6248 .name = "current",
f5fc3c5d 6249 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6250 .read_u64 = memory_current_read,
6251 },
bf8d5d52
RG
6252 {
6253 .name = "min",
6254 .flags = CFTYPE_NOT_ON_ROOT,
6255 .seq_show = memory_min_show,
6256 .write = memory_min_write,
6257 },
241994ed
JW
6258 {
6259 .name = "low",
6260 .flags = CFTYPE_NOT_ON_ROOT,
6261 .seq_show = memory_low_show,
6262 .write = memory_low_write,
6263 },
6264 {
6265 .name = "high",
6266 .flags = CFTYPE_NOT_ON_ROOT,
6267 .seq_show = memory_high_show,
6268 .write = memory_high_write,
6269 },
6270 {
6271 .name = "max",
6272 .flags = CFTYPE_NOT_ON_ROOT,
6273 .seq_show = memory_max_show,
6274 .write = memory_max_write,
6275 },
6276 {
6277 .name = "events",
6278 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6279 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6280 .seq_show = memory_events_show,
6281 },
1e577f97
SB
6282 {
6283 .name = "events.local",
6284 .flags = CFTYPE_NOT_ON_ROOT,
6285 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6286 .seq_show = memory_events_local_show,
6287 },
587d9f72
JW
6288 {
6289 .name = "stat",
587d9f72
JW
6290 .seq_show = memory_stat_show,
6291 },
3d8b38eb
RG
6292 {
6293 .name = "oom.group",
6294 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6295 .seq_show = memory_oom_group_show,
6296 .write = memory_oom_group_write,
6297 },
241994ed
JW
6298 { } /* terminate */
6299};
6300
073219e9 6301struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6302 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6303 .css_online = mem_cgroup_css_online,
92fb9748 6304 .css_offline = mem_cgroup_css_offline,
6df38689 6305 .css_released = mem_cgroup_css_released,
92fb9748 6306 .css_free = mem_cgroup_css_free,
1ced953b 6307 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6308 .can_attach = mem_cgroup_can_attach,
6309 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6310 .post_attach = mem_cgroup_move_task,
f00baae7 6311 .bind = mem_cgroup_bind,
241994ed
JW
6312 .dfl_cftypes = memory_files,
6313 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6314 .early_init = 0,
8cdea7c0 6315};
c077719b 6316
bc50bcc6
JW
6317/*
6318 * This function calculates an individual cgroup's effective
6319 * protection which is derived from its own memory.min/low, its
6320 * parent's and siblings' settings, as well as the actual memory
6321 * distribution in the tree.
6322 *
6323 * The following rules apply to the effective protection values:
6324 *
6325 * 1. At the first level of reclaim, effective protection is equal to
6326 * the declared protection in memory.min and memory.low.
6327 *
6328 * 2. To enable safe delegation of the protection configuration, at
6329 * subsequent levels the effective protection is capped to the
6330 * parent's effective protection.
6331 *
6332 * 3. To make complex and dynamic subtrees easier to configure, the
6333 * user is allowed to overcommit the declared protection at a given
6334 * level. If that is the case, the parent's effective protection is
6335 * distributed to the children in proportion to how much protection
6336 * they have declared and how much of it they are utilizing.
6337 *
6338 * This makes distribution proportional, but also work-conserving:
6339 * if one cgroup claims much more protection than it uses memory,
6340 * the unused remainder is available to its siblings.
6341 *
6342 * 4. Conversely, when the declared protection is undercommitted at a
6343 * given level, the distribution of the larger parental protection
6344 * budget is NOT proportional. A cgroup's protection from a sibling
6345 * is capped to its own memory.min/low setting.
6346 *
8a931f80
JW
6347 * 5. However, to allow protecting recursive subtrees from each other
6348 * without having to declare each individual cgroup's fixed share
6349 * of the ancestor's claim to protection, any unutilized -
6350 * "floating" - protection from up the tree is distributed in
6351 * proportion to each cgroup's *usage*. This makes the protection
6352 * neutral wrt sibling cgroups and lets them compete freely over
6353 * the shared parental protection budget, but it protects the
6354 * subtree as a whole from neighboring subtrees.
6355 *
6356 * Note that 4. and 5. are not in conflict: 4. is about protecting
6357 * against immediate siblings whereas 5. is about protecting against
6358 * neighboring subtrees.
bc50bcc6
JW
6359 */
6360static unsigned long effective_protection(unsigned long usage,
8a931f80 6361 unsigned long parent_usage,
bc50bcc6
JW
6362 unsigned long setting,
6363 unsigned long parent_effective,
6364 unsigned long siblings_protected)
6365{
6366 unsigned long protected;
8a931f80 6367 unsigned long ep;
bc50bcc6
JW
6368
6369 protected = min(usage, setting);
6370 /*
6371 * If all cgroups at this level combined claim and use more
6372 * protection then what the parent affords them, distribute
6373 * shares in proportion to utilization.
6374 *
6375 * We are using actual utilization rather than the statically
6376 * claimed protection in order to be work-conserving: claimed
6377 * but unused protection is available to siblings that would
6378 * otherwise get a smaller chunk than what they claimed.
6379 */
6380 if (siblings_protected > parent_effective)
6381 return protected * parent_effective / siblings_protected;
6382
6383 /*
6384 * Ok, utilized protection of all children is within what the
6385 * parent affords them, so we know whatever this child claims
6386 * and utilizes is effectively protected.
6387 *
6388 * If there is unprotected usage beyond this value, reclaim
6389 * will apply pressure in proportion to that amount.
6390 *
6391 * If there is unutilized protection, the cgroup will be fully
6392 * shielded from reclaim, but we do return a smaller value for
6393 * protection than what the group could enjoy in theory. This
6394 * is okay. With the overcommit distribution above, effective
6395 * protection is always dependent on how memory is actually
6396 * consumed among the siblings anyway.
6397 */
8a931f80
JW
6398 ep = protected;
6399
6400 /*
6401 * If the children aren't claiming (all of) the protection
6402 * afforded to them by the parent, distribute the remainder in
6403 * proportion to the (unprotected) memory of each cgroup. That
6404 * way, cgroups that aren't explicitly prioritized wrt each
6405 * other compete freely over the allowance, but they are
6406 * collectively protected from neighboring trees.
6407 *
6408 * We're using unprotected memory for the weight so that if
6409 * some cgroups DO claim explicit protection, we don't protect
6410 * the same bytes twice.
6411 */
6412 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6413 return ep;
6414
6415 if (parent_effective > siblings_protected && usage > protected) {
6416 unsigned long unclaimed;
6417
6418 unclaimed = parent_effective - siblings_protected;
6419 unclaimed *= usage - protected;
6420 unclaimed /= parent_usage - siblings_protected;
6421
6422 ep += unclaimed;
6423 }
6424
6425 return ep;
bc50bcc6
JW
6426}
6427
241994ed 6428/**
bf8d5d52 6429 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6430 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6431 * @memcg: the memory cgroup to check
6432 *
23067153
RG
6433 * WARNING: This function is not stateless! It can only be used as part
6434 * of a top-down tree iteration, not for isolated queries.
34c81057 6435 *
bf8d5d52
RG
6436 * Returns one of the following:
6437 * MEMCG_PROT_NONE: cgroup memory is not protected
6438 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6439 * an unprotected supply of reclaimable memory from other cgroups.
6440 * MEMCG_PROT_MIN: cgroup memory is protected
241994ed 6441 */
bf8d5d52
RG
6442enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6443 struct mem_cgroup *memcg)
241994ed 6444{
8a931f80 6445 unsigned long usage, parent_usage;
23067153
RG
6446 struct mem_cgroup *parent;
6447
241994ed 6448 if (mem_cgroup_disabled())
bf8d5d52 6449 return MEMCG_PROT_NONE;
241994ed 6450
34c81057
SC
6451 if (!root)
6452 root = root_mem_cgroup;
6453 if (memcg == root)
bf8d5d52 6454 return MEMCG_PROT_NONE;
241994ed 6455
23067153 6456 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6457 if (!usage)
6458 return MEMCG_PROT_NONE;
6459
bf8d5d52 6460 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6461 /* No parent means a non-hierarchical mode on v1 memcg */
6462 if (!parent)
6463 return MEMCG_PROT_NONE;
6464
bc50bcc6 6465 if (parent == root) {
c3d53200 6466 memcg->memory.emin = READ_ONCE(memcg->memory.min);
bc50bcc6
JW
6467 memcg->memory.elow = memcg->memory.low;
6468 goto out;
bf8d5d52
RG
6469 }
6470
8a931f80
JW
6471 parent_usage = page_counter_read(&parent->memory);
6472
b3a7822e 6473 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6474 READ_ONCE(memcg->memory.min),
6475 READ_ONCE(parent->memory.emin),
b3a7822e 6476 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6477
b3a7822e 6478 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
bc50bcc6 6479 memcg->memory.low, READ_ONCE(parent->memory.elow),
b3a7822e 6480 atomic_long_read(&parent->memory.children_low_usage)));
23067153 6481
bc50bcc6
JW
6482out:
6483 if (usage <= memcg->memory.emin)
bf8d5d52 6484 return MEMCG_PROT_MIN;
bc50bcc6 6485 else if (usage <= memcg->memory.elow)
bf8d5d52
RG
6486 return MEMCG_PROT_LOW;
6487 else
6488 return MEMCG_PROT_NONE;
241994ed
JW
6489}
6490
00501b53
JW
6491/**
6492 * mem_cgroup_try_charge - try charging a page
6493 * @page: page to charge
6494 * @mm: mm context of the victim
6495 * @gfp_mask: reclaim mode
6496 * @memcgp: charged memcg return
6497 *
6498 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6499 * pages according to @gfp_mask if necessary.
6500 *
6501 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6502 * Otherwise, an error code is returned.
6503 *
6504 * After page->mapping has been set up, the caller must finalize the
6505 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6506 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6507 */
6508int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
3fba69a5 6509 gfp_t gfp_mask, struct mem_cgroup **memcgp)
00501b53 6510{
3fba69a5 6511 unsigned int nr_pages = hpage_nr_pages(page);
00501b53 6512 struct mem_cgroup *memcg = NULL;
00501b53
JW
6513 int ret = 0;
6514
6515 if (mem_cgroup_disabled())
6516 goto out;
6517
6518 if (PageSwapCache(page)) {
00501b53
JW
6519 /*
6520 * Every swap fault against a single page tries to charge the
6521 * page, bail as early as possible. shmem_unuse() encounters
6522 * already charged pages, too. The USED bit is protected by
6523 * the page lock, which serializes swap cache removal, which
6524 * in turn serializes uncharging.
6525 */
e993d905 6526 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6527 if (compound_head(page)->mem_cgroup)
00501b53 6528 goto out;
e993d905 6529
37e84351 6530 if (do_swap_account) {
e993d905
VD
6531 swp_entry_t ent = { .val = page_private(page), };
6532 unsigned short id = lookup_swap_cgroup_id(ent);
6533
6534 rcu_read_lock();
6535 memcg = mem_cgroup_from_id(id);
6536 if (memcg && !css_tryget_online(&memcg->css))
6537 memcg = NULL;
6538 rcu_read_unlock();
6539 }
00501b53
JW
6540 }
6541
00501b53
JW
6542 if (!memcg)
6543 memcg = get_mem_cgroup_from_mm(mm);
6544
6545 ret = try_charge(memcg, gfp_mask, nr_pages);
6546
6547 css_put(&memcg->css);
00501b53
JW
6548out:
6549 *memcgp = memcg;
6550 return ret;
6551}
6552
2cf85583 6553int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
3fba69a5 6554 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2cf85583 6555{
2cf85583
TH
6556 int ret;
6557
3fba69a5 6558 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp);
6caa6a07
JW
6559 if (*memcgp)
6560 cgroup_throttle_swaprate(page, gfp_mask);
2cf85583
TH
6561 return ret;
6562}
6563
00501b53
JW
6564/**
6565 * mem_cgroup_commit_charge - commit a page charge
6566 * @page: page to charge
6567 * @memcg: memcg to charge the page to
6568 * @lrucare: page might be on LRU already
6569 *
6570 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6571 * after page->mapping has been set up. This must happen atomically
6572 * as part of the page instantiation, i.e. under the page table lock
6573 * for anonymous pages, under the page lock for page and swap cache.
6574 *
6575 * In addition, the page must not be on the LRU during the commit, to
6576 * prevent racing with task migration. If it might be, use @lrucare.
6577 *
6578 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6579 */
6580void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
3fba69a5 6581 bool lrucare)
00501b53 6582{
3fba69a5 6583 unsigned int nr_pages = hpage_nr_pages(page);
00501b53
JW
6584
6585 VM_BUG_ON_PAGE(!page->mapping, page);
6586 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6587
6588 if (mem_cgroup_disabled())
6589 return;
6590 /*
6591 * Swap faults will attempt to charge the same page multiple
6592 * times. But reuse_swap_page() might have removed the page
6593 * from swapcache already, so we can't check PageSwapCache().
6594 */
6595 if (!memcg)
6596 return;
6597
6abb5a86
JW
6598 commit_charge(page, memcg, lrucare);
6599
6abb5a86 6600 local_irq_disable();
3fba69a5 6601 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6602 memcg_check_events(memcg, page);
6603 local_irq_enable();
00501b53 6604
7941d214 6605 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6606 swp_entry_t entry = { .val = page_private(page) };
6607 /*
6608 * The swap entry might not get freed for a long time,
6609 * let's not wait for it. The page already received a
6610 * memory+swap charge, drop the swap entry duplicate.
6611 */
38d8b4e6 6612 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6613 }
6614}
6615
6616/**
6617 * mem_cgroup_cancel_charge - cancel a page charge
6618 * @page: page to charge
6619 * @memcg: memcg to charge the page to
6620 *
6621 * Cancel a charge transaction started by mem_cgroup_try_charge().
6622 */
3fba69a5 6623void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
00501b53 6624{
3fba69a5 6625 unsigned int nr_pages = hpage_nr_pages(page);
00501b53
JW
6626
6627 if (mem_cgroup_disabled())
6628 return;
6629 /*
6630 * Swap faults will attempt to charge the same page multiple
6631 * times. But reuse_swap_page() might have removed the page
6632 * from swapcache already, so we can't check PageSwapCache().
6633 */
6634 if (!memcg)
6635 return;
6636
00501b53
JW
6637 cancel_charge(memcg, nr_pages);
6638}
6639
a9d5adee
JG
6640struct uncharge_gather {
6641 struct mem_cgroup *memcg;
6642 unsigned long pgpgout;
6643 unsigned long nr_anon;
6644 unsigned long nr_file;
6645 unsigned long nr_kmem;
6646 unsigned long nr_huge;
6647 unsigned long nr_shmem;
6648 struct page *dummy_page;
6649};
6650
6651static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6652{
a9d5adee
JG
6653 memset(ug, 0, sizeof(*ug));
6654}
6655
6656static void uncharge_batch(const struct uncharge_gather *ug)
6657{
6658 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6659 unsigned long flags;
6660
a9d5adee
JG
6661 if (!mem_cgroup_is_root(ug->memcg)) {
6662 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6663 if (do_memsw_account())
a9d5adee
JG
6664 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6665 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6666 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6667 memcg_oom_recover(ug->memcg);
ce00a967 6668 }
747db954
JW
6669
6670 local_irq_save(flags);
c9019e9b
JW
6671 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6672 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6673 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6674 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6675 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6676 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6677 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6678 local_irq_restore(flags);
e8ea14cc 6679
a9d5adee
JG
6680 if (!mem_cgroup_is_root(ug->memcg))
6681 css_put_many(&ug->memcg->css, nr_pages);
6682}
6683
6684static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6685{
6686 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6687 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6688 !PageHWPoison(page) , page);
a9d5adee
JG
6689
6690 if (!page->mem_cgroup)
6691 return;
6692
6693 /*
6694 * Nobody should be changing or seriously looking at
6695 * page->mem_cgroup at this point, we have fully
6696 * exclusive access to the page.
6697 */
6698
6699 if (ug->memcg != page->mem_cgroup) {
6700 if (ug->memcg) {
6701 uncharge_batch(ug);
6702 uncharge_gather_clear(ug);
6703 }
6704 ug->memcg = page->mem_cgroup;
6705 }
6706
6707 if (!PageKmemcg(page)) {
6708 unsigned int nr_pages = 1;
6709
6710 if (PageTransHuge(page)) {
d8c6546b 6711 nr_pages = compound_nr(page);
a9d5adee
JG
6712 ug->nr_huge += nr_pages;
6713 }
6714 if (PageAnon(page))
6715 ug->nr_anon += nr_pages;
6716 else {
6717 ug->nr_file += nr_pages;
6718 if (PageSwapBacked(page))
6719 ug->nr_shmem += nr_pages;
6720 }
6721 ug->pgpgout++;
6722 } else {
d8c6546b 6723 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6724 __ClearPageKmemcg(page);
6725 }
6726
6727 ug->dummy_page = page;
6728 page->mem_cgroup = NULL;
747db954
JW
6729}
6730
6731static void uncharge_list(struct list_head *page_list)
6732{
a9d5adee 6733 struct uncharge_gather ug;
747db954 6734 struct list_head *next;
a9d5adee
JG
6735
6736 uncharge_gather_clear(&ug);
747db954 6737
8b592656
JW
6738 /*
6739 * Note that the list can be a single page->lru; hence the
6740 * do-while loop instead of a simple list_for_each_entry().
6741 */
747db954
JW
6742 next = page_list->next;
6743 do {
a9d5adee
JG
6744 struct page *page;
6745
747db954
JW
6746 page = list_entry(next, struct page, lru);
6747 next = page->lru.next;
6748
a9d5adee 6749 uncharge_page(page, &ug);
747db954
JW
6750 } while (next != page_list);
6751
a9d5adee
JG
6752 if (ug.memcg)
6753 uncharge_batch(&ug);
747db954
JW
6754}
6755
0a31bc97
JW
6756/**
6757 * mem_cgroup_uncharge - uncharge a page
6758 * @page: page to uncharge
6759 *
6760 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6761 * mem_cgroup_commit_charge().
6762 */
6763void mem_cgroup_uncharge(struct page *page)
6764{
a9d5adee
JG
6765 struct uncharge_gather ug;
6766
0a31bc97
JW
6767 if (mem_cgroup_disabled())
6768 return;
6769
747db954 6770 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6771 if (!page->mem_cgroup)
0a31bc97
JW
6772 return;
6773
a9d5adee
JG
6774 uncharge_gather_clear(&ug);
6775 uncharge_page(page, &ug);
6776 uncharge_batch(&ug);
747db954 6777}
0a31bc97 6778
747db954
JW
6779/**
6780 * mem_cgroup_uncharge_list - uncharge a list of page
6781 * @page_list: list of pages to uncharge
6782 *
6783 * Uncharge a list of pages previously charged with
6784 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6785 */
6786void mem_cgroup_uncharge_list(struct list_head *page_list)
6787{
6788 if (mem_cgroup_disabled())
6789 return;
0a31bc97 6790
747db954
JW
6791 if (!list_empty(page_list))
6792 uncharge_list(page_list);
0a31bc97
JW
6793}
6794
6795/**
6a93ca8f
JW
6796 * mem_cgroup_migrate - charge a page's replacement
6797 * @oldpage: currently circulating page
6798 * @newpage: replacement page
0a31bc97 6799 *
6a93ca8f
JW
6800 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6801 * be uncharged upon free.
0a31bc97
JW
6802 *
6803 * Both pages must be locked, @newpage->mapping must be set up.
6804 */
6a93ca8f 6805void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6806{
29833315 6807 struct mem_cgroup *memcg;
44b7a8d3 6808 unsigned int nr_pages;
d93c4130 6809 unsigned long flags;
0a31bc97
JW
6810
6811 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6812 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6813 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6814 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6815 newpage);
0a31bc97
JW
6816
6817 if (mem_cgroup_disabled())
6818 return;
6819
6820 /* Page cache replacement: new page already charged? */
1306a85a 6821 if (newpage->mem_cgroup)
0a31bc97
JW
6822 return;
6823
45637bab 6824 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6825 memcg = oldpage->mem_cgroup;
29833315 6826 if (!memcg)
0a31bc97
JW
6827 return;
6828
44b7a8d3 6829 /* Force-charge the new page. The old one will be freed soon */
92855270 6830 nr_pages = hpage_nr_pages(newpage);
44b7a8d3
JW
6831
6832 page_counter_charge(&memcg->memory, nr_pages);
6833 if (do_memsw_account())
6834 page_counter_charge(&memcg->memsw, nr_pages);
6835 css_get_many(&memcg->css, nr_pages);
0a31bc97 6836
9cf7666a 6837 commit_charge(newpage, memcg, false);
44b7a8d3 6838
d93c4130 6839 local_irq_save(flags);
3fba69a5 6840 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6841 memcg_check_events(memcg, newpage);
d93c4130 6842 local_irq_restore(flags);
0a31bc97
JW
6843}
6844
ef12947c 6845DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6846EXPORT_SYMBOL(memcg_sockets_enabled_key);
6847
2d758073 6848void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6849{
6850 struct mem_cgroup *memcg;
6851
2d758073
JW
6852 if (!mem_cgroup_sockets_enabled)
6853 return;
6854
e876ecc6
SB
6855 /* Do not associate the sock with unrelated interrupted task's memcg. */
6856 if (in_interrupt())
6857 return;
6858
11092087
JW
6859 rcu_read_lock();
6860 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6861 if (memcg == root_mem_cgroup)
6862 goto out;
0db15298 6863 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6864 goto out;
8965aa28 6865 if (css_tryget(&memcg->css))
11092087 6866 sk->sk_memcg = memcg;
f7e1cb6e 6867out:
11092087
JW
6868 rcu_read_unlock();
6869}
11092087 6870
2d758073 6871void mem_cgroup_sk_free(struct sock *sk)
11092087 6872{
2d758073
JW
6873 if (sk->sk_memcg)
6874 css_put(&sk->sk_memcg->css);
11092087
JW
6875}
6876
6877/**
6878 * mem_cgroup_charge_skmem - charge socket memory
6879 * @memcg: memcg to charge
6880 * @nr_pages: number of pages to charge
6881 *
6882 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6883 * @memcg's configured limit, %false if the charge had to be forced.
6884 */
6885bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6886{
f7e1cb6e 6887 gfp_t gfp_mask = GFP_KERNEL;
11092087 6888
f7e1cb6e 6889 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6890 struct page_counter *fail;
f7e1cb6e 6891
0db15298
JW
6892 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6893 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6894 return true;
6895 }
0db15298
JW
6896 page_counter_charge(&memcg->tcpmem, nr_pages);
6897 memcg->tcpmem_pressure = 1;
f7e1cb6e 6898 return false;
11092087 6899 }
d886f4e4 6900
f7e1cb6e
JW
6901 /* Don't block in the packet receive path */
6902 if (in_softirq())
6903 gfp_mask = GFP_NOWAIT;
6904
c9019e9b 6905 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6906
f7e1cb6e
JW
6907 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6908 return true;
6909
6910 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6911 return false;
6912}
6913
6914/**
6915 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6916 * @memcg: memcg to uncharge
6917 * @nr_pages: number of pages to uncharge
11092087
JW
6918 */
6919void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6920{
f7e1cb6e 6921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6922 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6923 return;
6924 }
d886f4e4 6925
c9019e9b 6926 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6927
475d0487 6928 refill_stock(memcg, nr_pages);
11092087
JW
6929}
6930
f7e1cb6e
JW
6931static int __init cgroup_memory(char *s)
6932{
6933 char *token;
6934
6935 while ((token = strsep(&s, ",")) != NULL) {
6936 if (!*token)
6937 continue;
6938 if (!strcmp(token, "nosocket"))
6939 cgroup_memory_nosocket = true;
04823c83
VD
6940 if (!strcmp(token, "nokmem"))
6941 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6942 }
6943 return 0;
6944}
6945__setup("cgroup.memory=", cgroup_memory);
11092087 6946
2d11085e 6947/*
1081312f
MH
6948 * subsys_initcall() for memory controller.
6949 *
308167fc
SAS
6950 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6951 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6952 * basically everything that doesn't depend on a specific mem_cgroup structure
6953 * should be initialized from here.
2d11085e
MH
6954 */
6955static int __init mem_cgroup_init(void)
6956{
95a045f6
JW
6957 int cpu, node;
6958
84c07d11 6959#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6960 /*
6961 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6962 * so use a workqueue with limited concurrency to avoid stalling
6963 * all worker threads in case lots of cgroups are created and
6964 * destroyed simultaneously.
13583c3d 6965 */
17cc4dfe
TH
6966 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6967 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6968#endif
6969
308167fc
SAS
6970 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6971 memcg_hotplug_cpu_dead);
95a045f6
JW
6972
6973 for_each_possible_cpu(cpu)
6974 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6975 drain_local_stock);
6976
6977 for_each_node(node) {
6978 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6979
6980 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6981 node_online(node) ? node : NUMA_NO_NODE);
6982
ef8f2327 6983 rtpn->rb_root = RB_ROOT;
fa90b2fd 6984 rtpn->rb_rightmost = NULL;
ef8f2327 6985 spin_lock_init(&rtpn->lock);
95a045f6
JW
6986 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6987 }
6988
2d11085e
MH
6989 return 0;
6990}
6991subsys_initcall(mem_cgroup_init);
21afa38e
JW
6992
6993#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6994static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6995{
1c2d479a 6996 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6997 /*
6998 * The root cgroup cannot be destroyed, so it's refcount must
6999 * always be >= 1.
7000 */
7001 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7002 VM_BUG_ON(1);
7003 break;
7004 }
7005 memcg = parent_mem_cgroup(memcg);
7006 if (!memcg)
7007 memcg = root_mem_cgroup;
7008 }
7009 return memcg;
7010}
7011
21afa38e
JW
7012/**
7013 * mem_cgroup_swapout - transfer a memsw charge to swap
7014 * @page: page whose memsw charge to transfer
7015 * @entry: swap entry to move the charge to
7016 *
7017 * Transfer the memsw charge of @page to @entry.
7018 */
7019void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7020{
1f47b61f 7021 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7022 unsigned int nr_entries;
21afa38e
JW
7023 unsigned short oldid;
7024
7025 VM_BUG_ON_PAGE(PageLRU(page), page);
7026 VM_BUG_ON_PAGE(page_count(page), page);
7027
7941d214 7028 if (!do_memsw_account())
21afa38e
JW
7029 return;
7030
7031 memcg = page->mem_cgroup;
7032
7033 /* Readahead page, never charged */
7034 if (!memcg)
7035 return;
7036
1f47b61f
VD
7037 /*
7038 * In case the memcg owning these pages has been offlined and doesn't
7039 * have an ID allocated to it anymore, charge the closest online
7040 * ancestor for the swap instead and transfer the memory+swap charge.
7041 */
7042 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
7043 nr_entries = hpage_nr_pages(page);
7044 /* Get references for the tail pages, too */
7045 if (nr_entries > 1)
7046 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7047 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7048 nr_entries);
21afa38e 7049 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7050 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7051
7052 page->mem_cgroup = NULL;
7053
7054 if (!mem_cgroup_is_root(memcg))
d6810d73 7055 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7056
1f47b61f
VD
7057 if (memcg != swap_memcg) {
7058 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7059 page_counter_charge(&swap_memcg->memsw, nr_entries);
7060 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7061 }
7062
ce9ce665
SAS
7063 /*
7064 * Interrupts should be disabled here because the caller holds the
b93b0163 7065 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7066 * important here to have the interrupts disabled because it is the
b93b0163 7067 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7068 */
7069 VM_BUG_ON(!irqs_disabled());
3fba69a5 7070 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7071 memcg_check_events(memcg, page);
73f576c0
JW
7072
7073 if (!mem_cgroup_is_root(memcg))
d08afa14 7074 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
7075}
7076
38d8b4e6
HY
7077/**
7078 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7079 * @page: page being added to swap
7080 * @entry: swap entry to charge
7081 *
38d8b4e6 7082 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7083 *
7084 * Returns 0 on success, -ENOMEM on failure.
7085 */
7086int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7087{
38d8b4e6 7088 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7089 struct page_counter *counter;
38d8b4e6 7090 struct mem_cgroup *memcg;
37e84351
VD
7091 unsigned short oldid;
7092
7093 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7094 return 0;
7095
7096 memcg = page->mem_cgroup;
7097
7098 /* Readahead page, never charged */
7099 if (!memcg)
7100 return 0;
7101
f3a53a3a
TH
7102 if (!entry.val) {
7103 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7104 return 0;
f3a53a3a 7105 }
bb98f2c5 7106
1f47b61f
VD
7107 memcg = mem_cgroup_id_get_online(memcg);
7108
37e84351 7109 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7110 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7111 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7112 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7113 mem_cgroup_id_put(memcg);
37e84351 7114 return -ENOMEM;
1f47b61f 7115 }
37e84351 7116
38d8b4e6
HY
7117 /* Get references for the tail pages, too */
7118 if (nr_pages > 1)
7119 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7120 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7121 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7122 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7123
37e84351
VD
7124 return 0;
7125}
7126
21afa38e 7127/**
38d8b4e6 7128 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7129 * @entry: swap entry to uncharge
38d8b4e6 7130 * @nr_pages: the amount of swap space to uncharge
21afa38e 7131 */
38d8b4e6 7132void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7133{
7134 struct mem_cgroup *memcg;
7135 unsigned short id;
7136
37e84351 7137 if (!do_swap_account)
21afa38e
JW
7138 return;
7139
38d8b4e6 7140 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7141 rcu_read_lock();
adbe427b 7142 memcg = mem_cgroup_from_id(id);
21afa38e 7143 if (memcg) {
37e84351
VD
7144 if (!mem_cgroup_is_root(memcg)) {
7145 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7146 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7147 else
38d8b4e6 7148 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7149 }
c9019e9b 7150 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7151 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7152 }
7153 rcu_read_unlock();
7154}
7155
d8b38438
VD
7156long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7157{
7158 long nr_swap_pages = get_nr_swap_pages();
7159
7160 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7161 return nr_swap_pages;
7162 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7163 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7164 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7165 page_counter_read(&memcg->swap));
7166 return nr_swap_pages;
7167}
7168
5ccc5aba
VD
7169bool mem_cgroup_swap_full(struct page *page)
7170{
7171 struct mem_cgroup *memcg;
7172
7173 VM_BUG_ON_PAGE(!PageLocked(page), page);
7174
7175 if (vm_swap_full())
7176 return true;
7177 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7178 return false;
7179
7180 memcg = page->mem_cgroup;
7181 if (!memcg)
7182 return false;
7183
4b82ab4f
JK
7184 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7185 unsigned long usage = page_counter_read(&memcg->swap);
7186
7187 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7188 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7189 return true;
4b82ab4f 7190 }
5ccc5aba
VD
7191
7192 return false;
7193}
7194
21afa38e
JW
7195/* for remember boot option*/
7196#ifdef CONFIG_MEMCG_SWAP_ENABLED
7197static int really_do_swap_account __initdata = 1;
7198#else
7199static int really_do_swap_account __initdata;
7200#endif
7201
7202static int __init enable_swap_account(char *s)
7203{
7204 if (!strcmp(s, "1"))
7205 really_do_swap_account = 1;
7206 else if (!strcmp(s, "0"))
7207 really_do_swap_account = 0;
7208 return 1;
7209}
7210__setup("swapaccount=", enable_swap_account);
7211
37e84351
VD
7212static u64 swap_current_read(struct cgroup_subsys_state *css,
7213 struct cftype *cft)
7214{
7215 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7216
7217 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7218}
7219
4b82ab4f
JK
7220static int swap_high_show(struct seq_file *m, void *v)
7221{
7222 return seq_puts_memcg_tunable(m,
7223 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7224}
7225
7226static ssize_t swap_high_write(struct kernfs_open_file *of,
7227 char *buf, size_t nbytes, loff_t off)
7228{
7229 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7230 unsigned long high;
7231 int err;
7232
7233 buf = strstrip(buf);
7234 err = page_counter_memparse(buf, "max", &high);
7235 if (err)
7236 return err;
7237
7238 page_counter_set_high(&memcg->swap, high);
7239
7240 return nbytes;
7241}
7242
37e84351
VD
7243static int swap_max_show(struct seq_file *m, void *v)
7244{
677dc973
CD
7245 return seq_puts_memcg_tunable(m,
7246 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7247}
7248
7249static ssize_t swap_max_write(struct kernfs_open_file *of,
7250 char *buf, size_t nbytes, loff_t off)
7251{
7252 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7253 unsigned long max;
7254 int err;
7255
7256 buf = strstrip(buf);
7257 err = page_counter_memparse(buf, "max", &max);
7258 if (err)
7259 return err;
7260
be09102b 7261 xchg(&memcg->swap.max, max);
37e84351
VD
7262
7263 return nbytes;
7264}
7265
f3a53a3a
TH
7266static int swap_events_show(struct seq_file *m, void *v)
7267{
aa9694bb 7268 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7269
4b82ab4f
JK
7270 seq_printf(m, "high %lu\n",
7271 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7272 seq_printf(m, "max %lu\n",
7273 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7274 seq_printf(m, "fail %lu\n",
7275 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7276
7277 return 0;
7278}
7279
37e84351
VD
7280static struct cftype swap_files[] = {
7281 {
7282 .name = "swap.current",
7283 .flags = CFTYPE_NOT_ON_ROOT,
7284 .read_u64 = swap_current_read,
7285 },
4b82ab4f
JK
7286 {
7287 .name = "swap.high",
7288 .flags = CFTYPE_NOT_ON_ROOT,
7289 .seq_show = swap_high_show,
7290 .write = swap_high_write,
7291 },
37e84351
VD
7292 {
7293 .name = "swap.max",
7294 .flags = CFTYPE_NOT_ON_ROOT,
7295 .seq_show = swap_max_show,
7296 .write = swap_max_write,
7297 },
f3a53a3a
TH
7298 {
7299 .name = "swap.events",
7300 .flags = CFTYPE_NOT_ON_ROOT,
7301 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7302 .seq_show = swap_events_show,
7303 },
37e84351
VD
7304 { } /* terminate */
7305};
7306
21afa38e
JW
7307static struct cftype memsw_cgroup_files[] = {
7308 {
7309 .name = "memsw.usage_in_bytes",
7310 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7311 .read_u64 = mem_cgroup_read_u64,
7312 },
7313 {
7314 .name = "memsw.max_usage_in_bytes",
7315 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7316 .write = mem_cgroup_reset,
7317 .read_u64 = mem_cgroup_read_u64,
7318 },
7319 {
7320 .name = "memsw.limit_in_bytes",
7321 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7322 .write = mem_cgroup_write,
7323 .read_u64 = mem_cgroup_read_u64,
7324 },
7325 {
7326 .name = "memsw.failcnt",
7327 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7328 .write = mem_cgroup_reset,
7329 .read_u64 = mem_cgroup_read_u64,
7330 },
7331 { }, /* terminate */
7332};
7333
7334static int __init mem_cgroup_swap_init(void)
7335{
7336 if (!mem_cgroup_disabled() && really_do_swap_account) {
7337 do_swap_account = 1;
37e84351
VD
7338 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7339 swap_files));
21afa38e
JW
7340 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7341 memsw_cgroup_files));
7342 }
7343 return 0;
7344}
7345subsys_initcall(mem_cgroup_swap_init);
7346
7347#endif /* CONFIG_MEMCG_SWAP */