mm, oom: reduce dependency on tasklist_lock
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 62static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c255a458 64#ifdef CONFIG_MEMCG_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
c255a458 69#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b 75#else
a0db00fc 76#define do_swap_account 0
c077719b
KH
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
91 MEM_CGROUP_STAT_NSTATS,
92};
93
af7c4b0e
JW
94static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99};
100
e9f8974f
JW
101enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
106 MEM_CGROUP_EVENTS_NSTATS,
107};
af7c4b0e
JW
108
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
7a159cc9
JW
116/*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 125 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
126 MEM_CGROUP_NTARGETS,
127};
a0db00fc
KS
128#define THRESHOLDS_EVENTS_TARGET 128
129#define SOFTLIMIT_EVENTS_TARGET 1024
130#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 131
d52aa412 132struct mem_cgroup_stat_cpu {
7a159cc9 133 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 135 unsigned long nr_page_events;
7a159cc9 136 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
137};
138
527a5ec9
JW
139struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144};
145
6d12e2d8
KH
146/*
147 * per-zone information in memory controller.
148 */
6d12e2d8 149struct mem_cgroup_per_zone {
6290df54 150 struct lruvec lruvec;
1eb49272 151 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 152
527a5ec9
JW
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
f64c3f54
BS
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
d79154bb 159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 160 /* use container_of */
6d12e2d8 161};
6d12e2d8
KH
162
163struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169};
170
f64c3f54
BS
171/*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179};
180
181struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183};
184
185struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187};
188
189static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
2e72b634
KS
191struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194};
195
9490ff27 196/* For threshold */
2e72b634 197struct mem_cgroup_threshold_ary {
748dad36 198 /* An array index points to threshold just below or equal to usage. */
5407a562 199 int current_threshold;
2e72b634
KS
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204};
2c488db2
KS
205
206struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215};
216
9490ff27
KH
217/* for OOM */
218struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221};
2e72b634 222
c0ff4b85
R
223static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 225
8cdea7c0
BS
226/*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
8cdea7c0
BS
236 */
237struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
59927fb9
HD
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
3afe36b1
GC
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
263 */
264 struct work_struct work_freeing;
265 };
266
78fb7466
PE
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
78fb7466 270 */
6d12e2d8 271 struct mem_cgroup_lru_info info;
889976db
YH
272 int last_scanned_node;
273#if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
453a9bf3
KH
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
889976db 277#endif
18f59ea7
BS
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
79dfdacc
MH
282
283 bool oom_lock;
284 atomic_t under_oom;
285
8c7c6e34 286 atomic_t refcnt;
14797e23 287
1f4c025b 288 int swappiness;
3c11ecf4
KH
289 /* OOM-Killer disable */
290 int oom_kill_disable;
a7885eb8 291
22a668d7
KH
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
2e72b634
KS
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
2c488db2 299 struct mem_cgroup_thresholds thresholds;
907860ed 300
2e72b634 301 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 303
9490ff27
KH
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
185efc0f 306
7dc74be0
DN
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
619d094b
KH
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
312734c0
KH
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
d52aa412 318 /*
c62b1a3b 319 * percpu counter.
d52aa412 320 */
3a7951b4 321 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
328
329#ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331#endif
8cdea7c0
BS
332};
333
7dc74be0
DN
334/* Stuffs for move charges at task migration. */
335/*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339enum move_type {
4ffef5fe 340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
342 NR_MOVE_TYPE,
343};
344
4ffef5fe
DN
345/* "mc" and its members are protected by cgroup_mutex */
346static struct move_charge_struct {
b1dd693e 347 spinlock_t lock; /* for from, to */
4ffef5fe
DN
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
854ffa8d 351 unsigned long moved_charge;
483c30b5 352 unsigned long moved_swap;
8033b97c
DN
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355} mc = {
2bd9bb20 356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358};
4ffef5fe 359
90254a65
DN
360static bool move_anon(void)
361{
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364}
365
87946a72
DN
366static bool move_file(void)
367{
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370}
371
4e416953
BS
372/*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
a0db00fc
KS
376#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 378
217bc319
KH
379enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 381 MEM_CGROUP_CHARGE_TYPE_ANON,
4f98a2fe 382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
d13d1443 383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
385 NR_CHARGE_TYPE,
386};
387
8c7c6e34 388/* for encoding cft->private value on file */
65c64ce8
GC
389#define _MEM (0)
390#define _MEMSWAP (1)
391#define _OOM_TYPE (2)
a0db00fc
KS
392#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 394#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
395/* Used for OOM nofiier */
396#define OOM_CONTROL (0)
8c7c6e34 397
75822b44
BS
398/*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
c0ff4b85
R
406static void mem_cgroup_get(struct mem_cgroup *memcg);
407static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
408
409/* Writing them here to avoid exposing memcg's inner layout */
c255a458 410#ifdef CONFIG_MEMCG_KMEM
e1aab161 411#include <net/sock.h>
d1a4c0b3 412#include <net/ip.h>
e1aab161
GC
413
414static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
415void sock_update_memcg(struct sock *sk)
416{
376be5ff 417 if (mem_cgroup_sockets_enabled) {
e1aab161 418 struct mem_cgroup *memcg;
3f134619 419 struct cg_proto *cg_proto;
e1aab161
GC
420
421 BUG_ON(!sk->sk_prot->proto_cgroup);
422
f3f511e1
GC
423 /* Socket cloning can throw us here with sk_cgrp already
424 * filled. It won't however, necessarily happen from
425 * process context. So the test for root memcg given
426 * the current task's memcg won't help us in this case.
427 *
428 * Respecting the original socket's memcg is a better
429 * decision in this case.
430 */
431 if (sk->sk_cgrp) {
432 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
433 mem_cgroup_get(sk->sk_cgrp->memcg);
434 return;
435 }
436
e1aab161
GC
437 rcu_read_lock();
438 memcg = mem_cgroup_from_task(current);
3f134619
GC
439 cg_proto = sk->sk_prot->proto_cgroup(memcg);
440 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 441 mem_cgroup_get(memcg);
3f134619 442 sk->sk_cgrp = cg_proto;
e1aab161
GC
443 }
444 rcu_read_unlock();
445 }
446}
447EXPORT_SYMBOL(sock_update_memcg);
448
449void sock_release_memcg(struct sock *sk)
450{
376be5ff 451 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
452 struct mem_cgroup *memcg;
453 WARN_ON(!sk->sk_cgrp->memcg);
454 memcg = sk->sk_cgrp->memcg;
455 mem_cgroup_put(memcg);
456 }
457}
d1a4c0b3 458
319d3b9c 459#ifdef CONFIG_INET
d1a4c0b3
GC
460struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
461{
462 if (!memcg || mem_cgroup_is_root(memcg))
463 return NULL;
464
465 return &memcg->tcp_mem.cg_proto;
466}
467EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 468#endif /* CONFIG_INET */
c255a458 469#endif /* CONFIG_MEMCG_KMEM */
e1aab161 470
c255a458 471#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
3f134619
GC
472static void disarm_sock_keys(struct mem_cgroup *memcg)
473{
474 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
475 return;
476 static_key_slow_dec(&memcg_socket_limit_enabled);
477}
478#else
479static void disarm_sock_keys(struct mem_cgroup *memcg)
480{
481}
482#endif
483
c0ff4b85 484static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 485
f64c3f54 486static struct mem_cgroup_per_zone *
c0ff4b85 487mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 488{
c0ff4b85 489 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
490}
491
c0ff4b85 492struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 493{
c0ff4b85 494 return &memcg->css;
d324236b
WF
495}
496
f64c3f54 497static struct mem_cgroup_per_zone *
c0ff4b85 498page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 499{
97a6c37b
JW
500 int nid = page_to_nid(page);
501 int zid = page_zonenum(page);
f64c3f54 502
c0ff4b85 503 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
504}
505
506static struct mem_cgroup_tree_per_zone *
507soft_limit_tree_node_zone(int nid, int zid)
508{
509 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
510}
511
512static struct mem_cgroup_tree_per_zone *
513soft_limit_tree_from_page(struct page *page)
514{
515 int nid = page_to_nid(page);
516 int zid = page_zonenum(page);
517
518 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
519}
520
521static void
c0ff4b85 522__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 523 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
524 struct mem_cgroup_tree_per_zone *mctz,
525 unsigned long long new_usage_in_excess)
f64c3f54
BS
526{
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_zone *mz_node;
530
531 if (mz->on_tree)
532 return;
533
ef8745c1
KH
534 mz->usage_in_excess = new_usage_in_excess;
535 if (!mz->usage_in_excess)
536 return;
f64c3f54
BS
537 while (*p) {
538 parent = *p;
539 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
540 tree_node);
541 if (mz->usage_in_excess < mz_node->usage_in_excess)
542 p = &(*p)->rb_left;
543 /*
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
549 }
550 rb_link_node(&mz->tree_node, parent, p);
551 rb_insert_color(&mz->tree_node, &mctz->rb_root);
552 mz->on_tree = true;
4e416953
BS
553}
554
555static void
c0ff4b85 556__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
557 struct mem_cgroup_per_zone *mz,
558 struct mem_cgroup_tree_per_zone *mctz)
559{
560 if (!mz->on_tree)
561 return;
562 rb_erase(&mz->tree_node, &mctz->rb_root);
563 mz->on_tree = false;
564}
565
f64c3f54 566static void
c0ff4b85 567mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
568 struct mem_cgroup_per_zone *mz,
569 struct mem_cgroup_tree_per_zone *mctz)
570{
571 spin_lock(&mctz->lock);
c0ff4b85 572 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
573 spin_unlock(&mctz->lock);
574}
575
f64c3f54 576
c0ff4b85 577static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 578{
ef8745c1 579 unsigned long long excess;
f64c3f54
BS
580 struct mem_cgroup_per_zone *mz;
581 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
582 int nid = page_to_nid(page);
583 int zid = page_zonenum(page);
f64c3f54
BS
584 mctz = soft_limit_tree_from_page(page);
585
586 /*
4e649152
KH
587 * Necessary to update all ancestors when hierarchy is used.
588 * because their event counter is not touched.
f64c3f54 589 */
c0ff4b85
R
590 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
591 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
592 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
593 /*
594 * We have to update the tree if mz is on RB-tree or
595 * mem is over its softlimit.
596 */
ef8745c1 597 if (excess || mz->on_tree) {
4e649152
KH
598 spin_lock(&mctz->lock);
599 /* if on-tree, remove it */
600 if (mz->on_tree)
c0ff4b85 601 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 602 /*
ef8745c1
KH
603 * Insert again. mz->usage_in_excess will be updated.
604 * If excess is 0, no tree ops.
4e649152 605 */
c0ff4b85 606 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
607 spin_unlock(&mctz->lock);
608 }
f64c3f54
BS
609 }
610}
611
c0ff4b85 612static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
613{
614 int node, zone;
615 struct mem_cgroup_per_zone *mz;
616 struct mem_cgroup_tree_per_zone *mctz;
617
3ed28fa1 618 for_each_node(node) {
f64c3f54 619 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 620 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 621 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 622 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
623 }
624 }
625}
626
4e416953
BS
627static struct mem_cgroup_per_zone *
628__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
629{
630 struct rb_node *rightmost = NULL;
26251eaf 631 struct mem_cgroup_per_zone *mz;
4e416953
BS
632
633retry:
26251eaf 634 mz = NULL;
4e416953
BS
635 rightmost = rb_last(&mctz->rb_root);
636 if (!rightmost)
637 goto done; /* Nothing to reclaim from */
638
639 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
640 /*
641 * Remove the node now but someone else can add it back,
642 * we will to add it back at the end of reclaim to its correct
643 * position in the tree.
644 */
d79154bb
HD
645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
646 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
647 !css_tryget(&mz->memcg->css))
4e416953
BS
648 goto retry;
649done:
650 return mz;
651}
652
653static struct mem_cgroup_per_zone *
654mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
655{
656 struct mem_cgroup_per_zone *mz;
657
658 spin_lock(&mctz->lock);
659 mz = __mem_cgroup_largest_soft_limit_node(mctz);
660 spin_unlock(&mctz->lock);
661 return mz;
662}
663
711d3d2c
KH
664/*
665 * Implementation Note: reading percpu statistics for memcg.
666 *
667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter.
671 *
672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug)
677 *
678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be
681 * implemented.
682 */
c0ff4b85 683static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 684 enum mem_cgroup_stat_index idx)
c62b1a3b 685{
7a159cc9 686 long val = 0;
c62b1a3b 687 int cpu;
c62b1a3b 688
711d3d2c
KH
689 get_online_cpus();
690 for_each_online_cpu(cpu)
c0ff4b85 691 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 692#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
693 spin_lock(&memcg->pcp_counter_lock);
694 val += memcg->nocpu_base.count[idx];
695 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
696#endif
697 put_online_cpus();
c62b1a3b
KH
698 return val;
699}
700
c0ff4b85 701static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
702 bool charge)
703{
704 int val = (charge) ? 1 : -1;
bff6bb83 705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
706}
707
c0ff4b85 708static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
709 enum mem_cgroup_events_index idx)
710{
711 unsigned long val = 0;
712 int cpu;
713
714 for_each_online_cpu(cpu)
c0ff4b85 715 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 716#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
717 spin_lock(&memcg->pcp_counter_lock);
718 val += memcg->nocpu_base.events[idx];
719 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
720#endif
721 return val;
722}
723
c0ff4b85 724static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 725 bool anon, int nr_pages)
d52aa412 726{
c62b1a3b
KH
727 preempt_disable();
728
b2402857
KH
729 /*
730 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
731 * counted as CACHE even if it's on ANON LRU.
732 */
733 if (anon)
734 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 735 nr_pages);
d52aa412 736 else
b2402857 737 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 738 nr_pages);
55e462b0 739
e401f176
KH
740 /* pagein of a big page is an event. So, ignore page size */
741 if (nr_pages > 0)
c0ff4b85 742 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 743 else {
c0ff4b85 744 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
745 nr_pages = -nr_pages; /* for event */
746 }
e401f176 747
13114716 748 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 749
c62b1a3b 750 preempt_enable();
6d12e2d8
KH
751}
752
bb2a0de9 753unsigned long
4d7dcca2 754mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
755{
756 struct mem_cgroup_per_zone *mz;
757
758 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
759 return mz->lru_size[lru];
760}
761
762static unsigned long
c0ff4b85 763mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 764 unsigned int lru_mask)
889976db
YH
765{
766 struct mem_cgroup_per_zone *mz;
f156ab93 767 enum lru_list lru;
bb2a0de9
KH
768 unsigned long ret = 0;
769
c0ff4b85 770 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 771
f156ab93
HD
772 for_each_lru(lru) {
773 if (BIT(lru) & lru_mask)
774 ret += mz->lru_size[lru];
bb2a0de9
KH
775 }
776 return ret;
777}
778
779static unsigned long
c0ff4b85 780mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
781 int nid, unsigned int lru_mask)
782{
889976db
YH
783 u64 total = 0;
784 int zid;
785
bb2a0de9 786 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
787 total += mem_cgroup_zone_nr_lru_pages(memcg,
788 nid, zid, lru_mask);
bb2a0de9 789
889976db
YH
790 return total;
791}
bb2a0de9 792
c0ff4b85 793static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 794 unsigned int lru_mask)
6d12e2d8 795{
889976db 796 int nid;
6d12e2d8
KH
797 u64 total = 0;
798
bb2a0de9 799 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 800 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 801 return total;
d52aa412
KH
802}
803
f53d7ce3
JW
804static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
805 enum mem_cgroup_events_target target)
7a159cc9
JW
806{
807 unsigned long val, next;
808
13114716 809 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 810 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 811 /* from time_after() in jiffies.h */
f53d7ce3
JW
812 if ((long)next - (long)val < 0) {
813 switch (target) {
814 case MEM_CGROUP_TARGET_THRESH:
815 next = val + THRESHOLDS_EVENTS_TARGET;
816 break;
817 case MEM_CGROUP_TARGET_SOFTLIMIT:
818 next = val + SOFTLIMIT_EVENTS_TARGET;
819 break;
820 case MEM_CGROUP_TARGET_NUMAINFO:
821 next = val + NUMAINFO_EVENTS_TARGET;
822 break;
823 default:
824 break;
825 }
826 __this_cpu_write(memcg->stat->targets[target], next);
827 return true;
7a159cc9 828 }
f53d7ce3 829 return false;
d2265e6f
KH
830}
831
832/*
833 * Check events in order.
834 *
835 */
c0ff4b85 836static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 837{
4799401f 838 preempt_disable();
d2265e6f 839 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
840 if (unlikely(mem_cgroup_event_ratelimit(memcg,
841 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
842 bool do_softlimit;
843 bool do_numainfo __maybe_unused;
f53d7ce3
JW
844
845 do_softlimit = mem_cgroup_event_ratelimit(memcg,
846 MEM_CGROUP_TARGET_SOFTLIMIT);
847#if MAX_NUMNODES > 1
848 do_numainfo = mem_cgroup_event_ratelimit(memcg,
849 MEM_CGROUP_TARGET_NUMAINFO);
850#endif
851 preempt_enable();
852
c0ff4b85 853 mem_cgroup_threshold(memcg);
f53d7ce3 854 if (unlikely(do_softlimit))
c0ff4b85 855 mem_cgroup_update_tree(memcg, page);
453a9bf3 856#if MAX_NUMNODES > 1
f53d7ce3 857 if (unlikely(do_numainfo))
c0ff4b85 858 atomic_inc(&memcg->numainfo_events);
453a9bf3 859#endif
f53d7ce3
JW
860 } else
861 preempt_enable();
d2265e6f
KH
862}
863
d1a4c0b3 864struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
865{
866 return container_of(cgroup_subsys_state(cont,
867 mem_cgroup_subsys_id), struct mem_cgroup,
868 css);
869}
870
cf475ad2 871struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 872{
31a78f23
BS
873 /*
874 * mm_update_next_owner() may clear mm->owner to NULL
875 * if it races with swapoff, page migration, etc.
876 * So this can be called with p == NULL.
877 */
878 if (unlikely(!p))
879 return NULL;
880
78fb7466
PE
881 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
882 struct mem_cgroup, css);
883}
884
a433658c 885struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 886{
c0ff4b85 887 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
888
889 if (!mm)
890 return NULL;
54595fe2
KH
891 /*
892 * Because we have no locks, mm->owner's may be being moved to other
893 * cgroup. We use css_tryget() here even if this looks
894 * pessimistic (rather than adding locks here).
895 */
896 rcu_read_lock();
897 do {
c0ff4b85
R
898 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
899 if (unlikely(!memcg))
54595fe2 900 break;
c0ff4b85 901 } while (!css_tryget(&memcg->css));
54595fe2 902 rcu_read_unlock();
c0ff4b85 903 return memcg;
54595fe2
KH
904}
905
5660048c
JW
906/**
907 * mem_cgroup_iter - iterate over memory cgroup hierarchy
908 * @root: hierarchy root
909 * @prev: previously returned memcg, NULL on first invocation
910 * @reclaim: cookie for shared reclaim walks, NULL for full walks
911 *
912 * Returns references to children of the hierarchy below @root, or
913 * @root itself, or %NULL after a full round-trip.
914 *
915 * Caller must pass the return value in @prev on subsequent
916 * invocations for reference counting, or use mem_cgroup_iter_break()
917 * to cancel a hierarchy walk before the round-trip is complete.
918 *
919 * Reclaimers can specify a zone and a priority level in @reclaim to
920 * divide up the memcgs in the hierarchy among all concurrent
921 * reclaimers operating on the same zone and priority.
922 */
923struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
924 struct mem_cgroup *prev,
925 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 926{
9f3a0d09
JW
927 struct mem_cgroup *memcg = NULL;
928 int id = 0;
711d3d2c 929
5660048c
JW
930 if (mem_cgroup_disabled())
931 return NULL;
932
9f3a0d09
JW
933 if (!root)
934 root = root_mem_cgroup;
7d74b06f 935
9f3a0d09
JW
936 if (prev && !reclaim)
937 id = css_id(&prev->css);
14067bb3 938
9f3a0d09
JW
939 if (prev && prev != root)
940 css_put(&prev->css);
14067bb3 941
9f3a0d09
JW
942 if (!root->use_hierarchy && root != root_mem_cgroup) {
943 if (prev)
944 return NULL;
945 return root;
946 }
14067bb3 947
9f3a0d09 948 while (!memcg) {
527a5ec9 949 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 950 struct cgroup_subsys_state *css;
711d3d2c 951
527a5ec9
JW
952 if (reclaim) {
953 int nid = zone_to_nid(reclaim->zone);
954 int zid = zone_idx(reclaim->zone);
955 struct mem_cgroup_per_zone *mz;
956
957 mz = mem_cgroup_zoneinfo(root, nid, zid);
958 iter = &mz->reclaim_iter[reclaim->priority];
959 if (prev && reclaim->generation != iter->generation)
960 return NULL;
961 id = iter->position;
962 }
7d74b06f 963
9f3a0d09
JW
964 rcu_read_lock();
965 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
966 if (css) {
967 if (css == &root->css || css_tryget(css))
968 memcg = container_of(css,
969 struct mem_cgroup, css);
970 } else
971 id = 0;
14067bb3 972 rcu_read_unlock();
14067bb3 973
527a5ec9
JW
974 if (reclaim) {
975 iter->position = id;
976 if (!css)
977 iter->generation++;
978 else if (!prev && memcg)
979 reclaim->generation = iter->generation;
980 }
9f3a0d09
JW
981
982 if (prev && !css)
983 return NULL;
984 }
985 return memcg;
14067bb3 986}
7d74b06f 987
5660048c
JW
988/**
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
992 */
993void mem_cgroup_iter_break(struct mem_cgroup *root,
994 struct mem_cgroup *prev)
9f3a0d09
JW
995{
996 if (!root)
997 root = root_mem_cgroup;
998 if (prev && prev != root)
999 css_put(&prev->css);
1000}
7d74b06f 1001
9f3a0d09
JW
1002/*
1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting.
1006 */
1007#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1009 iter != NULL; \
527a5ec9 1010 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1011
9f3a0d09 1012#define for_each_mem_cgroup(iter) \
527a5ec9 1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1014 iter != NULL; \
527a5ec9 1015 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1016
c0ff4b85 1017static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 1018{
c0ff4b85 1019 return (memcg == root_mem_cgroup);
4b3bde4c
BS
1020}
1021
456f998e
YH
1022void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1023{
c0ff4b85 1024 struct mem_cgroup *memcg;
456f998e
YH
1025
1026 if (!mm)
1027 return;
1028
1029 rcu_read_lock();
c0ff4b85
R
1030 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1031 if (unlikely(!memcg))
456f998e
YH
1032 goto out;
1033
1034 switch (idx) {
456f998e 1035 case PGFAULT:
0e574a93
JW
1036 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1037 break;
1038 case PGMAJFAULT:
1039 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1040 break;
1041 default:
1042 BUG();
1043 }
1044out:
1045 rcu_read_unlock();
1046}
1047EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1048
925b7673
JW
1049/**
1050 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1051 * @zone: zone of the wanted lruvec
fa9add64 1052 * @memcg: memcg of the wanted lruvec
925b7673
JW
1053 *
1054 * Returns the lru list vector holding pages for the given @zone and
1055 * @mem. This can be the global zone lruvec, if the memory controller
1056 * is disabled.
1057 */
1058struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1059 struct mem_cgroup *memcg)
1060{
1061 struct mem_cgroup_per_zone *mz;
1062
1063 if (mem_cgroup_disabled())
1064 return &zone->lruvec;
1065
1066 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1067 return &mz->lruvec;
1068}
1069
08e552c6
KH
1070/*
1071 * Following LRU functions are allowed to be used without PCG_LOCK.
1072 * Operations are called by routine of global LRU independently from memcg.
1073 * What we have to take care of here is validness of pc->mem_cgroup.
1074 *
1075 * Changes to pc->mem_cgroup happens when
1076 * 1. charge
1077 * 2. moving account
1078 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1079 * It is added to LRU before charge.
1080 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1081 * When moving account, the page is not on LRU. It's isolated.
1082 */
4f98a2fe 1083
925b7673 1084/**
fa9add64 1085 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1086 * @page: the page
fa9add64 1087 * @zone: zone of the page
925b7673 1088 */
fa9add64 1089struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1090{
08e552c6 1091 struct mem_cgroup_per_zone *mz;
925b7673
JW
1092 struct mem_cgroup *memcg;
1093 struct page_cgroup *pc;
6d12e2d8 1094
f8d66542 1095 if (mem_cgroup_disabled())
925b7673
JW
1096 return &zone->lruvec;
1097
08e552c6 1098 pc = lookup_page_cgroup(page);
38c5d72f 1099 memcg = pc->mem_cgroup;
7512102c
HD
1100
1101 /*
fa9add64 1102 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1103 * an uncharged page off lru does nothing to secure
1104 * its former mem_cgroup from sudden removal.
1105 *
1106 * Our caller holds lru_lock, and PageCgroupUsed is updated
1107 * under page_cgroup lock: between them, they make all uses
1108 * of pc->mem_cgroup safe.
1109 */
fa9add64 1110 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1111 pc->mem_cgroup = memcg = root_mem_cgroup;
1112
925b7673 1113 mz = page_cgroup_zoneinfo(memcg, page);
925b7673 1114 return &mz->lruvec;
08e552c6 1115}
b69408e8 1116
925b7673 1117/**
fa9add64
HD
1118 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1119 * @lruvec: mem_cgroup per zone lru vector
1120 * @lru: index of lru list the page is sitting on
1121 * @nr_pages: positive when adding or negative when removing
925b7673 1122 *
fa9add64
HD
1123 * This function must be called when a page is added to or removed from an
1124 * lru list.
3f58a829 1125 */
fa9add64
HD
1126void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1127 int nr_pages)
3f58a829
MK
1128{
1129 struct mem_cgroup_per_zone *mz;
fa9add64 1130 unsigned long *lru_size;
3f58a829
MK
1131
1132 if (mem_cgroup_disabled())
1133 return;
1134
fa9add64
HD
1135 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1136 lru_size = mz->lru_size + lru;
1137 *lru_size += nr_pages;
1138 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1139}
544122e5 1140
3e92041d 1141/*
c0ff4b85 1142 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1143 * hierarchy subtree
1144 */
c3ac9a8a
JW
1145bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1146 struct mem_cgroup *memcg)
3e92041d 1147{
91c63734
JW
1148 if (root_memcg == memcg)
1149 return true;
3a981f48 1150 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1151 return false;
c3ac9a8a
JW
1152 return css_is_ancestor(&memcg->css, &root_memcg->css);
1153}
1154
1155static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1156 struct mem_cgroup *memcg)
1157{
1158 bool ret;
1159
91c63734 1160 rcu_read_lock();
c3ac9a8a 1161 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1162 rcu_read_unlock();
1163 return ret;
3e92041d
MH
1164}
1165
c0ff4b85 1166int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1167{
1168 int ret;
0b7f569e 1169 struct mem_cgroup *curr = NULL;
158e0a2d 1170 struct task_struct *p;
4c4a2214 1171
158e0a2d 1172 p = find_lock_task_mm(task);
de077d22
DR
1173 if (p) {
1174 curr = try_get_mem_cgroup_from_mm(p->mm);
1175 task_unlock(p);
1176 } else {
1177 /*
1178 * All threads may have already detached their mm's, but the oom
1179 * killer still needs to detect if they have already been oom
1180 * killed to prevent needlessly killing additional tasks.
1181 */
1182 task_lock(task);
1183 curr = mem_cgroup_from_task(task);
1184 if (curr)
1185 css_get(&curr->css);
1186 task_unlock(task);
1187 }
0b7f569e
KH
1188 if (!curr)
1189 return 0;
d31f56db 1190 /*
c0ff4b85 1191 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1192 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1193 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1194 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1195 */
c0ff4b85 1196 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1197 css_put(&curr->css);
4c4a2214
DR
1198 return ret;
1199}
1200
c56d5c7d 1201int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1202{
9b272977 1203 unsigned long inactive_ratio;
14797e23 1204 unsigned long inactive;
9b272977 1205 unsigned long active;
c772be93 1206 unsigned long gb;
14797e23 1207
4d7dcca2
HD
1208 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1209 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1210
c772be93
KM
1211 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1212 if (gb)
1213 inactive_ratio = int_sqrt(10 * gb);
1214 else
1215 inactive_ratio = 1;
1216
9b272977 1217 return inactive * inactive_ratio < active;
14797e23
KM
1218}
1219
c56d5c7d 1220int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1221{
1222 unsigned long active;
1223 unsigned long inactive;
1224
4d7dcca2
HD
1225 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1226 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1227
1228 return (active > inactive);
1229}
1230
6d61ef40
BS
1231#define mem_cgroup_from_res_counter(counter, member) \
1232 container_of(counter, struct mem_cgroup, member)
1233
19942822 1234/**
9d11ea9f 1235 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1236 * @memcg: the memory cgroup
19942822 1237 *
9d11ea9f 1238 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1239 * pages.
19942822 1240 */
c0ff4b85 1241static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1242{
9d11ea9f
JW
1243 unsigned long long margin;
1244
c0ff4b85 1245 margin = res_counter_margin(&memcg->res);
9d11ea9f 1246 if (do_swap_account)
c0ff4b85 1247 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1248 return margin >> PAGE_SHIFT;
19942822
JW
1249}
1250
1f4c025b 1251int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1252{
1253 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1254
1255 /* root ? */
1256 if (cgrp->parent == NULL)
1257 return vm_swappiness;
1258
bf1ff263 1259 return memcg->swappiness;
a7885eb8
KM
1260}
1261
619d094b
KH
1262/*
1263 * memcg->moving_account is used for checking possibility that some thread is
1264 * calling move_account(). When a thread on CPU-A starts moving pages under
1265 * a memcg, other threads should check memcg->moving_account under
1266 * rcu_read_lock(), like this:
1267 *
1268 * CPU-A CPU-B
1269 * rcu_read_lock()
1270 * memcg->moving_account+1 if (memcg->mocing_account)
1271 * take heavy locks.
1272 * synchronize_rcu() update something.
1273 * rcu_read_unlock()
1274 * start move here.
1275 */
4331f7d3
KH
1276
1277/* for quick checking without looking up memcg */
1278atomic_t memcg_moving __read_mostly;
1279
c0ff4b85 1280static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1281{
4331f7d3 1282 atomic_inc(&memcg_moving);
619d094b 1283 atomic_inc(&memcg->moving_account);
32047e2a
KH
1284 synchronize_rcu();
1285}
1286
c0ff4b85 1287static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1288{
619d094b
KH
1289 /*
1290 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1291 * We check NULL in callee rather than caller.
1292 */
4331f7d3
KH
1293 if (memcg) {
1294 atomic_dec(&memcg_moving);
619d094b 1295 atomic_dec(&memcg->moving_account);
4331f7d3 1296 }
32047e2a 1297}
619d094b 1298
32047e2a
KH
1299/*
1300 * 2 routines for checking "mem" is under move_account() or not.
1301 *
13fd1dd9
AM
1302 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1303 * is used for avoiding races in accounting. If true,
32047e2a
KH
1304 * pc->mem_cgroup may be overwritten.
1305 *
1306 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1307 * under hierarchy of moving cgroups. This is for
1308 * waiting at hith-memory prressure caused by "move".
1309 */
1310
13fd1dd9 1311static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1312{
1313 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1314 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1315}
4b534334 1316
c0ff4b85 1317static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1318{
2bd9bb20
KH
1319 struct mem_cgroup *from;
1320 struct mem_cgroup *to;
4b534334 1321 bool ret = false;
2bd9bb20
KH
1322 /*
1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1325 */
1326 spin_lock(&mc.lock);
1327 from = mc.from;
1328 to = mc.to;
1329 if (!from)
1330 goto unlock;
3e92041d 1331
c0ff4b85
R
1332 ret = mem_cgroup_same_or_subtree(memcg, from)
1333 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1334unlock:
1335 spin_unlock(&mc.lock);
4b534334
KH
1336 return ret;
1337}
1338
c0ff4b85 1339static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1340{
1341 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1342 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1343 DEFINE_WAIT(wait);
1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 /* moving charge context might have finished. */
1346 if (mc.moving_task)
1347 schedule();
1348 finish_wait(&mc.waitq, &wait);
1349 return true;
1350 }
1351 }
1352 return false;
1353}
1354
312734c0
KH
1355/*
1356 * Take this lock when
1357 * - a code tries to modify page's memcg while it's USED.
1358 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1359 * see mem_cgroup_stolen(), too.
312734c0
KH
1360 */
1361static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1362 unsigned long *flags)
1363{
1364 spin_lock_irqsave(&memcg->move_lock, *flags);
1365}
1366
1367static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1368 unsigned long *flags)
1369{
1370 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1371}
1372
e222432b 1373/**
6a6135b6 1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1377 *
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1379 * enabled
1380 */
1381void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1382{
1383 struct cgroup *task_cgrp;
1384 struct cgroup *mem_cgrp;
1385 /*
1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code.
1389 */
1390 static char memcg_name[PATH_MAX];
1391 int ret;
1392
d31f56db 1393 if (!memcg || !p)
e222432b
BS
1394 return;
1395
e222432b
BS
1396 rcu_read_lock();
1397
1398 mem_cgrp = memcg->css.cgroup;
1399 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1400
1401 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1402 if (ret < 0) {
1403 /*
1404 * Unfortunately, we are unable to convert to a useful name
1405 * But we'll still print out the usage information
1406 */
1407 rcu_read_unlock();
1408 goto done;
1409 }
1410 rcu_read_unlock();
1411
1412 printk(KERN_INFO "Task in %s killed", memcg_name);
1413
1414 rcu_read_lock();
1415 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1416 if (ret < 0) {
1417 rcu_read_unlock();
1418 goto done;
1419 }
1420 rcu_read_unlock();
1421
1422 /*
1423 * Continues from above, so we don't need an KERN_ level
1424 */
1425 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1426done:
1427
1428 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1429 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1430 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1431 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1432 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1433 "failcnt %llu\n",
1434 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1435 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1436 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1437}
1438
81d39c20
KH
1439/*
1440 * This function returns the number of memcg under hierarchy tree. Returns
1441 * 1(self count) if no children.
1442 */
c0ff4b85 1443static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1444{
1445 int num = 0;
7d74b06f
KH
1446 struct mem_cgroup *iter;
1447
c0ff4b85 1448 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1449 num++;
81d39c20
KH
1450 return num;
1451}
1452
a63d83f4
DR
1453/*
1454 * Return the memory (and swap, if configured) limit for a memcg.
1455 */
9cbb78bb 1456static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1457{
1458 u64 limit;
1459 u64 memsw;
1460
f3e8eb70
JW
1461 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1462 limit += total_swap_pages << PAGE_SHIFT;
1463
a63d83f4
DR
1464 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1465 /*
1466 * If memsw is finite and limits the amount of swap space available
1467 * to this memcg, return that limit.
1468 */
1469 return min(limit, memsw);
1470}
1471
9cbb78bb
DR
1472void __mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1473 int order)
1474{
1475 struct mem_cgroup *iter;
1476 unsigned long chosen_points = 0;
1477 unsigned long totalpages;
1478 unsigned int points = 0;
1479 struct task_struct *chosen = NULL;
1480
1481 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1482 for_each_mem_cgroup_tree(iter, memcg) {
1483 struct cgroup *cgroup = iter->css.cgroup;
1484 struct cgroup_iter it;
1485 struct task_struct *task;
1486
1487 cgroup_iter_start(cgroup, &it);
1488 while ((task = cgroup_iter_next(cgroup, &it))) {
1489 switch (oom_scan_process_thread(task, totalpages, NULL,
1490 false)) {
1491 case OOM_SCAN_SELECT:
1492 if (chosen)
1493 put_task_struct(chosen);
1494 chosen = task;
1495 chosen_points = ULONG_MAX;
1496 get_task_struct(chosen);
1497 /* fall through */
1498 case OOM_SCAN_CONTINUE:
1499 continue;
1500 case OOM_SCAN_ABORT:
1501 cgroup_iter_end(cgroup, &it);
1502 mem_cgroup_iter_break(memcg, iter);
1503 if (chosen)
1504 put_task_struct(chosen);
1505 return;
1506 case OOM_SCAN_OK:
1507 break;
1508 };
1509 points = oom_badness(task, memcg, NULL, totalpages);
1510 if (points > chosen_points) {
1511 if (chosen)
1512 put_task_struct(chosen);
1513 chosen = task;
1514 chosen_points = points;
1515 get_task_struct(chosen);
1516 }
1517 }
1518 cgroup_iter_end(cgroup, &it);
1519 }
1520
1521 if (!chosen)
1522 return;
1523 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1524 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1525 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1526}
1527
5660048c
JW
1528static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1529 gfp_t gfp_mask,
1530 unsigned long flags)
1531{
1532 unsigned long total = 0;
1533 bool noswap = false;
1534 int loop;
1535
1536 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1537 noswap = true;
1538 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1539 noswap = true;
1540
1541 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1542 if (loop)
1543 drain_all_stock_async(memcg);
1544 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1545 /*
1546 * Allow limit shrinkers, which are triggered directly
1547 * by userspace, to catch signals and stop reclaim
1548 * after minimal progress, regardless of the margin.
1549 */
1550 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1551 break;
1552 if (mem_cgroup_margin(memcg))
1553 break;
1554 /*
1555 * If nothing was reclaimed after two attempts, there
1556 * may be no reclaimable pages in this hierarchy.
1557 */
1558 if (loop && !total)
1559 break;
1560 }
1561 return total;
1562}
1563
4d0c066d
KH
1564/**
1565 * test_mem_cgroup_node_reclaimable
dad7557e 1566 * @memcg: the target memcg
4d0c066d
KH
1567 * @nid: the node ID to be checked.
1568 * @noswap : specify true here if the user wants flle only information.
1569 *
1570 * This function returns whether the specified memcg contains any
1571 * reclaimable pages on a node. Returns true if there are any reclaimable
1572 * pages in the node.
1573 */
c0ff4b85 1574static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1575 int nid, bool noswap)
1576{
c0ff4b85 1577 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1578 return true;
1579 if (noswap || !total_swap_pages)
1580 return false;
c0ff4b85 1581 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1582 return true;
1583 return false;
1584
1585}
889976db
YH
1586#if MAX_NUMNODES > 1
1587
1588/*
1589 * Always updating the nodemask is not very good - even if we have an empty
1590 * list or the wrong list here, we can start from some node and traverse all
1591 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1592 *
1593 */
c0ff4b85 1594static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1595{
1596 int nid;
453a9bf3
KH
1597 /*
1598 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1599 * pagein/pageout changes since the last update.
1600 */
c0ff4b85 1601 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1602 return;
c0ff4b85 1603 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1604 return;
1605
889976db 1606 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1607 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1608
1609 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1610
c0ff4b85
R
1611 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1612 node_clear(nid, memcg->scan_nodes);
889976db 1613 }
453a9bf3 1614
c0ff4b85
R
1615 atomic_set(&memcg->numainfo_events, 0);
1616 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1617}
1618
1619/*
1620 * Selecting a node where we start reclaim from. Because what we need is just
1621 * reducing usage counter, start from anywhere is O,K. Considering
1622 * memory reclaim from current node, there are pros. and cons.
1623 *
1624 * Freeing memory from current node means freeing memory from a node which
1625 * we'll use or we've used. So, it may make LRU bad. And if several threads
1626 * hit limits, it will see a contention on a node. But freeing from remote
1627 * node means more costs for memory reclaim because of memory latency.
1628 *
1629 * Now, we use round-robin. Better algorithm is welcomed.
1630 */
c0ff4b85 1631int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1632{
1633 int node;
1634
c0ff4b85
R
1635 mem_cgroup_may_update_nodemask(memcg);
1636 node = memcg->last_scanned_node;
889976db 1637
c0ff4b85 1638 node = next_node(node, memcg->scan_nodes);
889976db 1639 if (node == MAX_NUMNODES)
c0ff4b85 1640 node = first_node(memcg->scan_nodes);
889976db
YH
1641 /*
1642 * We call this when we hit limit, not when pages are added to LRU.
1643 * No LRU may hold pages because all pages are UNEVICTABLE or
1644 * memcg is too small and all pages are not on LRU. In that case,
1645 * we use curret node.
1646 */
1647 if (unlikely(node == MAX_NUMNODES))
1648 node = numa_node_id();
1649
c0ff4b85 1650 memcg->last_scanned_node = node;
889976db
YH
1651 return node;
1652}
1653
4d0c066d
KH
1654/*
1655 * Check all nodes whether it contains reclaimable pages or not.
1656 * For quick scan, we make use of scan_nodes. This will allow us to skip
1657 * unused nodes. But scan_nodes is lazily updated and may not cotain
1658 * enough new information. We need to do double check.
1659 */
6bbda35c 1660static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1661{
1662 int nid;
1663
1664 /*
1665 * quick check...making use of scan_node.
1666 * We can skip unused nodes.
1667 */
c0ff4b85
R
1668 if (!nodes_empty(memcg->scan_nodes)) {
1669 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1670 nid < MAX_NUMNODES;
c0ff4b85 1671 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1672
c0ff4b85 1673 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1674 return true;
1675 }
1676 }
1677 /*
1678 * Check rest of nodes.
1679 */
1680 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1681 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1682 continue;
c0ff4b85 1683 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1684 return true;
1685 }
1686 return false;
1687}
1688
889976db 1689#else
c0ff4b85 1690int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1691{
1692 return 0;
1693}
4d0c066d 1694
6bbda35c 1695static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1696{
c0ff4b85 1697 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1698}
889976db
YH
1699#endif
1700
5660048c
JW
1701static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1702 struct zone *zone,
1703 gfp_t gfp_mask,
1704 unsigned long *total_scanned)
6d61ef40 1705{
9f3a0d09 1706 struct mem_cgroup *victim = NULL;
5660048c 1707 int total = 0;
04046e1a 1708 int loop = 0;
9d11ea9f 1709 unsigned long excess;
185efc0f 1710 unsigned long nr_scanned;
527a5ec9
JW
1711 struct mem_cgroup_reclaim_cookie reclaim = {
1712 .zone = zone,
1713 .priority = 0,
1714 };
9d11ea9f 1715
c0ff4b85 1716 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1717
4e416953 1718 while (1) {
527a5ec9 1719 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1720 if (!victim) {
04046e1a 1721 loop++;
4e416953
BS
1722 if (loop >= 2) {
1723 /*
1724 * If we have not been able to reclaim
1725 * anything, it might because there are
1726 * no reclaimable pages under this hierarchy
1727 */
5660048c 1728 if (!total)
4e416953 1729 break;
4e416953 1730 /*
25985edc 1731 * We want to do more targeted reclaim.
4e416953
BS
1732 * excess >> 2 is not to excessive so as to
1733 * reclaim too much, nor too less that we keep
1734 * coming back to reclaim from this cgroup
1735 */
1736 if (total >= (excess >> 2) ||
9f3a0d09 1737 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1738 break;
4e416953 1739 }
9f3a0d09 1740 continue;
4e416953 1741 }
5660048c 1742 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1743 continue;
5660048c
JW
1744 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1745 zone, &nr_scanned);
1746 *total_scanned += nr_scanned;
1747 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1748 break;
6d61ef40 1749 }
9f3a0d09 1750 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1751 return total;
6d61ef40
BS
1752}
1753
867578cb
KH
1754/*
1755 * Check OOM-Killer is already running under our hierarchy.
1756 * If someone is running, return false.
1af8efe9 1757 * Has to be called with memcg_oom_lock
867578cb 1758 */
c0ff4b85 1759static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1760{
79dfdacc 1761 struct mem_cgroup *iter, *failed = NULL;
a636b327 1762
9f3a0d09 1763 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1764 if (iter->oom_lock) {
79dfdacc
MH
1765 /*
1766 * this subtree of our hierarchy is already locked
1767 * so we cannot give a lock.
1768 */
79dfdacc 1769 failed = iter;
9f3a0d09
JW
1770 mem_cgroup_iter_break(memcg, iter);
1771 break;
23751be0
JW
1772 } else
1773 iter->oom_lock = true;
7d74b06f 1774 }
867578cb 1775
79dfdacc 1776 if (!failed)
23751be0 1777 return true;
79dfdacc
MH
1778
1779 /*
1780 * OK, we failed to lock the whole subtree so we have to clean up
1781 * what we set up to the failing subtree
1782 */
9f3a0d09 1783 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1784 if (iter == failed) {
9f3a0d09
JW
1785 mem_cgroup_iter_break(memcg, iter);
1786 break;
79dfdacc
MH
1787 }
1788 iter->oom_lock = false;
1789 }
23751be0 1790 return false;
a636b327 1791}
0b7f569e 1792
79dfdacc 1793/*
1af8efe9 1794 * Has to be called with memcg_oom_lock
79dfdacc 1795 */
c0ff4b85 1796static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1797{
7d74b06f
KH
1798 struct mem_cgroup *iter;
1799
c0ff4b85 1800 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1801 iter->oom_lock = false;
1802 return 0;
1803}
1804
c0ff4b85 1805static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1806{
1807 struct mem_cgroup *iter;
1808
c0ff4b85 1809 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1810 atomic_inc(&iter->under_oom);
1811}
1812
c0ff4b85 1813static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1814{
1815 struct mem_cgroup *iter;
1816
867578cb
KH
1817 /*
1818 * When a new child is created while the hierarchy is under oom,
1819 * mem_cgroup_oom_lock() may not be called. We have to use
1820 * atomic_add_unless() here.
1821 */
c0ff4b85 1822 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1823 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1824}
1825
1af8efe9 1826static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1827static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1828
dc98df5a 1829struct oom_wait_info {
d79154bb 1830 struct mem_cgroup *memcg;
dc98df5a
KH
1831 wait_queue_t wait;
1832};
1833
1834static int memcg_oom_wake_function(wait_queue_t *wait,
1835 unsigned mode, int sync, void *arg)
1836{
d79154bb
HD
1837 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1838 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1839 struct oom_wait_info *oom_wait_info;
1840
1841 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1842 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1843
dc98df5a 1844 /*
d79154bb 1845 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1846 * Then we can use css_is_ancestor without taking care of RCU.
1847 */
c0ff4b85
R
1848 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1849 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1850 return 0;
dc98df5a
KH
1851 return autoremove_wake_function(wait, mode, sync, arg);
1852}
1853
c0ff4b85 1854static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1855{
c0ff4b85
R
1856 /* for filtering, pass "memcg" as argument. */
1857 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1858}
1859
c0ff4b85 1860static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1861{
c0ff4b85
R
1862 if (memcg && atomic_read(&memcg->under_oom))
1863 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1864}
1865
867578cb
KH
1866/*
1867 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1868 */
6bbda35c
KS
1869static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1870 int order)
0b7f569e 1871{
dc98df5a 1872 struct oom_wait_info owait;
3c11ecf4 1873 bool locked, need_to_kill;
867578cb 1874
d79154bb 1875 owait.memcg = memcg;
dc98df5a
KH
1876 owait.wait.flags = 0;
1877 owait.wait.func = memcg_oom_wake_function;
1878 owait.wait.private = current;
1879 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1880 need_to_kill = true;
c0ff4b85 1881 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1882
c0ff4b85 1883 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1884 spin_lock(&memcg_oom_lock);
c0ff4b85 1885 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1886 /*
1887 * Even if signal_pending(), we can't quit charge() loop without
1888 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1889 * under OOM is always welcomed, use TASK_KILLABLE here.
1890 */
3c11ecf4 1891 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1892 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1893 need_to_kill = false;
1894 if (locked)
c0ff4b85 1895 mem_cgroup_oom_notify(memcg);
1af8efe9 1896 spin_unlock(&memcg_oom_lock);
867578cb 1897
3c11ecf4
KH
1898 if (need_to_kill) {
1899 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1900 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1901 } else {
867578cb 1902 schedule();
dc98df5a 1903 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1904 }
1af8efe9 1905 spin_lock(&memcg_oom_lock);
79dfdacc 1906 if (locked)
c0ff4b85
R
1907 mem_cgroup_oom_unlock(memcg);
1908 memcg_wakeup_oom(memcg);
1af8efe9 1909 spin_unlock(&memcg_oom_lock);
867578cb 1910
c0ff4b85 1911 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1912
867578cb
KH
1913 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1914 return false;
1915 /* Give chance to dying process */
715a5ee8 1916 schedule_timeout_uninterruptible(1);
867578cb 1917 return true;
0b7f569e
KH
1918}
1919
d69b042f
BS
1920/*
1921 * Currently used to update mapped file statistics, but the routine can be
1922 * generalized to update other statistics as well.
32047e2a
KH
1923 *
1924 * Notes: Race condition
1925 *
1926 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1927 * it tends to be costly. But considering some conditions, we doesn't need
1928 * to do so _always_.
1929 *
1930 * Considering "charge", lock_page_cgroup() is not required because all
1931 * file-stat operations happen after a page is attached to radix-tree. There
1932 * are no race with "charge".
1933 *
1934 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1935 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1936 * if there are race with "uncharge". Statistics itself is properly handled
1937 * by flags.
1938 *
1939 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1940 * small, we check mm->moving_account and detect there are possibility of race
1941 * If there is, we take a lock.
d69b042f 1942 */
26174efd 1943
89c06bd5
KH
1944void __mem_cgroup_begin_update_page_stat(struct page *page,
1945 bool *locked, unsigned long *flags)
1946{
1947 struct mem_cgroup *memcg;
1948 struct page_cgroup *pc;
1949
1950 pc = lookup_page_cgroup(page);
1951again:
1952 memcg = pc->mem_cgroup;
1953 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1954 return;
1955 /*
1956 * If this memory cgroup is not under account moving, we don't
da92c47d 1957 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 1958 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1959 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1960 */
13fd1dd9 1961 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1962 return;
1963
1964 move_lock_mem_cgroup(memcg, flags);
1965 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1966 move_unlock_mem_cgroup(memcg, flags);
1967 goto again;
1968 }
1969 *locked = true;
1970}
1971
1972void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1973{
1974 struct page_cgroup *pc = lookup_page_cgroup(page);
1975
1976 /*
1977 * It's guaranteed that pc->mem_cgroup never changes while
1978 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 1979 * should take move_lock_mem_cgroup().
89c06bd5
KH
1980 */
1981 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1982}
1983
2a7106f2
GT
1984void mem_cgroup_update_page_stat(struct page *page,
1985 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1986{
c0ff4b85 1987 struct mem_cgroup *memcg;
32047e2a 1988 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1989 unsigned long uninitialized_var(flags);
d69b042f 1990
cfa44946 1991 if (mem_cgroup_disabled())
d69b042f 1992 return;
89c06bd5 1993
c0ff4b85
R
1994 memcg = pc->mem_cgroup;
1995 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1996 return;
26174efd 1997
26174efd 1998 switch (idx) {
2a7106f2 1999 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2000 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2001 break;
2002 default:
2003 BUG();
8725d541 2004 }
d69b042f 2005
c0ff4b85 2006 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2007}
26174efd 2008
cdec2e42
KH
2009/*
2010 * size of first charge trial. "32" comes from vmscan.c's magic value.
2011 * TODO: maybe necessary to use big numbers in big irons.
2012 */
7ec99d62 2013#define CHARGE_BATCH 32U
cdec2e42
KH
2014struct memcg_stock_pcp {
2015 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2016 unsigned int nr_pages;
cdec2e42 2017 struct work_struct work;
26fe6168 2018 unsigned long flags;
a0db00fc 2019#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2020};
2021static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2022static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2023
2024/*
11c9ea4e 2025 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2026 * from local stock and true is returned. If the stock is 0 or charges from a
2027 * cgroup which is not current target, returns false. This stock will be
2028 * refilled.
2029 */
c0ff4b85 2030static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2031{
2032 struct memcg_stock_pcp *stock;
2033 bool ret = true;
2034
2035 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2036 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2037 stock->nr_pages--;
cdec2e42
KH
2038 else /* need to call res_counter_charge */
2039 ret = false;
2040 put_cpu_var(memcg_stock);
2041 return ret;
2042}
2043
2044/*
2045 * Returns stocks cached in percpu to res_counter and reset cached information.
2046 */
2047static void drain_stock(struct memcg_stock_pcp *stock)
2048{
2049 struct mem_cgroup *old = stock->cached;
2050
11c9ea4e
JW
2051 if (stock->nr_pages) {
2052 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2053
2054 res_counter_uncharge(&old->res, bytes);
cdec2e42 2055 if (do_swap_account)
11c9ea4e
JW
2056 res_counter_uncharge(&old->memsw, bytes);
2057 stock->nr_pages = 0;
cdec2e42
KH
2058 }
2059 stock->cached = NULL;
cdec2e42
KH
2060}
2061
2062/*
2063 * This must be called under preempt disabled or must be called by
2064 * a thread which is pinned to local cpu.
2065 */
2066static void drain_local_stock(struct work_struct *dummy)
2067{
2068 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2069 drain_stock(stock);
26fe6168 2070 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2071}
2072
2073/*
2074 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2075 * This will be consumed by consume_stock() function, later.
cdec2e42 2076 */
c0ff4b85 2077static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2078{
2079 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2080
c0ff4b85 2081 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2082 drain_stock(stock);
c0ff4b85 2083 stock->cached = memcg;
cdec2e42 2084 }
11c9ea4e 2085 stock->nr_pages += nr_pages;
cdec2e42
KH
2086 put_cpu_var(memcg_stock);
2087}
2088
2089/*
c0ff4b85 2090 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2091 * of the hierarchy under it. sync flag says whether we should block
2092 * until the work is done.
cdec2e42 2093 */
c0ff4b85 2094static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2095{
26fe6168 2096 int cpu, curcpu;
d38144b7 2097
cdec2e42 2098 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2099 get_online_cpus();
5af12d0e 2100 curcpu = get_cpu();
cdec2e42
KH
2101 for_each_online_cpu(cpu) {
2102 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2103 struct mem_cgroup *memcg;
26fe6168 2104
c0ff4b85
R
2105 memcg = stock->cached;
2106 if (!memcg || !stock->nr_pages)
26fe6168 2107 continue;
c0ff4b85 2108 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2109 continue;
d1a05b69
MH
2110 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2111 if (cpu == curcpu)
2112 drain_local_stock(&stock->work);
2113 else
2114 schedule_work_on(cpu, &stock->work);
2115 }
cdec2e42 2116 }
5af12d0e 2117 put_cpu();
d38144b7
MH
2118
2119 if (!sync)
2120 goto out;
2121
2122 for_each_online_cpu(cpu) {
2123 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2124 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2125 flush_work(&stock->work);
2126 }
2127out:
cdec2e42 2128 put_online_cpus();
d38144b7
MH
2129}
2130
2131/*
2132 * Tries to drain stocked charges in other cpus. This function is asynchronous
2133 * and just put a work per cpu for draining localy on each cpu. Caller can
2134 * expects some charges will be back to res_counter later but cannot wait for
2135 * it.
2136 */
c0ff4b85 2137static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2138{
9f50fad6
MH
2139 /*
2140 * If someone calls draining, avoid adding more kworker runs.
2141 */
2142 if (!mutex_trylock(&percpu_charge_mutex))
2143 return;
c0ff4b85 2144 drain_all_stock(root_memcg, false);
9f50fad6 2145 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2146}
2147
2148/* This is a synchronous drain interface. */
c0ff4b85 2149static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2150{
2151 /* called when force_empty is called */
9f50fad6 2152 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2153 drain_all_stock(root_memcg, true);
9f50fad6 2154 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2155}
2156
711d3d2c
KH
2157/*
2158 * This function drains percpu counter value from DEAD cpu and
2159 * move it to local cpu. Note that this function can be preempted.
2160 */
c0ff4b85 2161static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2162{
2163 int i;
2164
c0ff4b85 2165 spin_lock(&memcg->pcp_counter_lock);
6104621d 2166 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2167 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2168
c0ff4b85
R
2169 per_cpu(memcg->stat->count[i], cpu) = 0;
2170 memcg->nocpu_base.count[i] += x;
711d3d2c 2171 }
e9f8974f 2172 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2173 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2174
c0ff4b85
R
2175 per_cpu(memcg->stat->events[i], cpu) = 0;
2176 memcg->nocpu_base.events[i] += x;
e9f8974f 2177 }
c0ff4b85 2178 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2179}
2180
2181static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2182 unsigned long action,
2183 void *hcpu)
2184{
2185 int cpu = (unsigned long)hcpu;
2186 struct memcg_stock_pcp *stock;
711d3d2c 2187 struct mem_cgroup *iter;
cdec2e42 2188
619d094b 2189 if (action == CPU_ONLINE)
1489ebad 2190 return NOTIFY_OK;
1489ebad 2191
d833049b 2192 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2193 return NOTIFY_OK;
711d3d2c 2194
9f3a0d09 2195 for_each_mem_cgroup(iter)
711d3d2c
KH
2196 mem_cgroup_drain_pcp_counter(iter, cpu);
2197
cdec2e42
KH
2198 stock = &per_cpu(memcg_stock, cpu);
2199 drain_stock(stock);
2200 return NOTIFY_OK;
2201}
2202
4b534334
KH
2203
2204/* See __mem_cgroup_try_charge() for details */
2205enum {
2206 CHARGE_OK, /* success */
2207 CHARGE_RETRY, /* need to retry but retry is not bad */
2208 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2209 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2210 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2211};
2212
c0ff4b85 2213static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2214 unsigned int nr_pages, bool oom_check)
4b534334 2215{
7ec99d62 2216 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2217 struct mem_cgroup *mem_over_limit;
2218 struct res_counter *fail_res;
2219 unsigned long flags = 0;
2220 int ret;
2221
c0ff4b85 2222 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2223
2224 if (likely(!ret)) {
2225 if (!do_swap_account)
2226 return CHARGE_OK;
c0ff4b85 2227 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2228 if (likely(!ret))
2229 return CHARGE_OK;
2230
c0ff4b85 2231 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2232 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2233 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2234 } else
2235 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2236 /*
7ec99d62
JW
2237 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2238 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2239 *
2240 * Never reclaim on behalf of optional batching, retry with a
2241 * single page instead.
2242 */
7ec99d62 2243 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2244 return CHARGE_RETRY;
2245
2246 if (!(gfp_mask & __GFP_WAIT))
2247 return CHARGE_WOULDBLOCK;
2248
5660048c 2249 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2250 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2251 return CHARGE_RETRY;
4b534334 2252 /*
19942822
JW
2253 * Even though the limit is exceeded at this point, reclaim
2254 * may have been able to free some pages. Retry the charge
2255 * before killing the task.
2256 *
2257 * Only for regular pages, though: huge pages are rather
2258 * unlikely to succeed so close to the limit, and we fall back
2259 * to regular pages anyway in case of failure.
4b534334 2260 */
7ec99d62 2261 if (nr_pages == 1 && ret)
4b534334
KH
2262 return CHARGE_RETRY;
2263
2264 /*
2265 * At task move, charge accounts can be doubly counted. So, it's
2266 * better to wait until the end of task_move if something is going on.
2267 */
2268 if (mem_cgroup_wait_acct_move(mem_over_limit))
2269 return CHARGE_RETRY;
2270
2271 /* If we don't need to call oom-killer at el, return immediately */
2272 if (!oom_check)
2273 return CHARGE_NOMEM;
2274 /* check OOM */
e845e199 2275 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2276 return CHARGE_OOM_DIE;
2277
2278 return CHARGE_RETRY;
2279}
2280
f817ed48 2281/*
38c5d72f
KH
2282 * __mem_cgroup_try_charge() does
2283 * 1. detect memcg to be charged against from passed *mm and *ptr,
2284 * 2. update res_counter
2285 * 3. call memory reclaim if necessary.
2286 *
2287 * In some special case, if the task is fatal, fatal_signal_pending() or
2288 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2289 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2290 * as possible without any hazards. 2: all pages should have a valid
2291 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2292 * pointer, that is treated as a charge to root_mem_cgroup.
2293 *
2294 * So __mem_cgroup_try_charge() will return
2295 * 0 ... on success, filling *ptr with a valid memcg pointer.
2296 * -ENOMEM ... charge failure because of resource limits.
2297 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2298 *
2299 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2300 * the oom-killer can be invoked.
8a9f3ccd 2301 */
f817ed48 2302static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2303 gfp_t gfp_mask,
7ec99d62 2304 unsigned int nr_pages,
c0ff4b85 2305 struct mem_cgroup **ptr,
7ec99d62 2306 bool oom)
8a9f3ccd 2307{
7ec99d62 2308 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2309 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2310 struct mem_cgroup *memcg = NULL;
4b534334 2311 int ret;
a636b327 2312
867578cb
KH
2313 /*
2314 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2315 * in system level. So, allow to go ahead dying process in addition to
2316 * MEMDIE process.
2317 */
2318 if (unlikely(test_thread_flag(TIF_MEMDIE)
2319 || fatal_signal_pending(current)))
2320 goto bypass;
a636b327 2321
8a9f3ccd 2322 /*
3be91277
HD
2323 * We always charge the cgroup the mm_struct belongs to.
2324 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2325 * thread group leader migrates. It's possible that mm is not
2326 * set, if so charge the init_mm (happens for pagecache usage).
2327 */
c0ff4b85 2328 if (!*ptr && !mm)
38c5d72f 2329 *ptr = root_mem_cgroup;
f75ca962 2330again:
c0ff4b85
R
2331 if (*ptr) { /* css should be a valid one */
2332 memcg = *ptr;
2333 VM_BUG_ON(css_is_removed(&memcg->css));
2334 if (mem_cgroup_is_root(memcg))
f75ca962 2335 goto done;
c0ff4b85 2336 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2337 goto done;
c0ff4b85 2338 css_get(&memcg->css);
4b534334 2339 } else {
f75ca962 2340 struct task_struct *p;
54595fe2 2341
f75ca962
KH
2342 rcu_read_lock();
2343 p = rcu_dereference(mm->owner);
f75ca962 2344 /*
ebb76ce1 2345 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2346 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2347 * race with swapoff. Then, we have small risk of mis-accouning.
2348 * But such kind of mis-account by race always happens because
2349 * we don't have cgroup_mutex(). It's overkill and we allo that
2350 * small race, here.
2351 * (*) swapoff at el will charge against mm-struct not against
2352 * task-struct. So, mm->owner can be NULL.
f75ca962 2353 */
c0ff4b85 2354 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2355 if (!memcg)
2356 memcg = root_mem_cgroup;
2357 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2358 rcu_read_unlock();
2359 goto done;
2360 }
c0ff4b85 2361 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2362 /*
2363 * It seems dagerous to access memcg without css_get().
2364 * But considering how consume_stok works, it's not
2365 * necessary. If consume_stock success, some charges
2366 * from this memcg are cached on this cpu. So, we
2367 * don't need to call css_get()/css_tryget() before
2368 * calling consume_stock().
2369 */
2370 rcu_read_unlock();
2371 goto done;
2372 }
2373 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2374 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2375 rcu_read_unlock();
2376 goto again;
2377 }
2378 rcu_read_unlock();
2379 }
8a9f3ccd 2380
4b534334
KH
2381 do {
2382 bool oom_check;
7a81b88c 2383
4b534334 2384 /* If killed, bypass charge */
f75ca962 2385 if (fatal_signal_pending(current)) {
c0ff4b85 2386 css_put(&memcg->css);
4b534334 2387 goto bypass;
f75ca962 2388 }
6d61ef40 2389
4b534334
KH
2390 oom_check = false;
2391 if (oom && !nr_oom_retries) {
2392 oom_check = true;
2393 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2394 }
66e1707b 2395
c0ff4b85 2396 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2397 switch (ret) {
2398 case CHARGE_OK:
2399 break;
2400 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2401 batch = nr_pages;
c0ff4b85
R
2402 css_put(&memcg->css);
2403 memcg = NULL;
f75ca962 2404 goto again;
4b534334 2405 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2406 css_put(&memcg->css);
4b534334
KH
2407 goto nomem;
2408 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2409 if (!oom) {
c0ff4b85 2410 css_put(&memcg->css);
867578cb 2411 goto nomem;
f75ca962 2412 }
4b534334
KH
2413 /* If oom, we never return -ENOMEM */
2414 nr_oom_retries--;
2415 break;
2416 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2417 css_put(&memcg->css);
867578cb 2418 goto bypass;
66e1707b 2419 }
4b534334
KH
2420 } while (ret != CHARGE_OK);
2421
7ec99d62 2422 if (batch > nr_pages)
c0ff4b85
R
2423 refill_stock(memcg, batch - nr_pages);
2424 css_put(&memcg->css);
0c3e73e8 2425done:
c0ff4b85 2426 *ptr = memcg;
7a81b88c
KH
2427 return 0;
2428nomem:
c0ff4b85 2429 *ptr = NULL;
7a81b88c 2430 return -ENOMEM;
867578cb 2431bypass:
38c5d72f
KH
2432 *ptr = root_mem_cgroup;
2433 return -EINTR;
7a81b88c 2434}
8a9f3ccd 2435
a3032a2c
DN
2436/*
2437 * Somemtimes we have to undo a charge we got by try_charge().
2438 * This function is for that and do uncharge, put css's refcnt.
2439 * gotten by try_charge().
2440 */
c0ff4b85 2441static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2442 unsigned int nr_pages)
a3032a2c 2443{
c0ff4b85 2444 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2445 unsigned long bytes = nr_pages * PAGE_SIZE;
2446
c0ff4b85 2447 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2448 if (do_swap_account)
c0ff4b85 2449 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2450 }
854ffa8d
DN
2451}
2452
d01dd17f
KH
2453/*
2454 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2455 * This is useful when moving usage to parent cgroup.
2456 */
2457static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2458 unsigned int nr_pages)
2459{
2460 unsigned long bytes = nr_pages * PAGE_SIZE;
2461
2462 if (mem_cgroup_is_root(memcg))
2463 return;
2464
2465 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2466 if (do_swap_account)
2467 res_counter_uncharge_until(&memcg->memsw,
2468 memcg->memsw.parent, bytes);
2469}
2470
a3b2d692
KH
2471/*
2472 * A helper function to get mem_cgroup from ID. must be called under
2473 * rcu_read_lock(). The caller must check css_is_removed() or some if
2474 * it's concern. (dropping refcnt from swap can be called against removed
2475 * memcg.)
2476 */
2477static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2478{
2479 struct cgroup_subsys_state *css;
2480
2481 /* ID 0 is unused ID */
2482 if (!id)
2483 return NULL;
2484 css = css_lookup(&mem_cgroup_subsys, id);
2485 if (!css)
2486 return NULL;
2487 return container_of(css, struct mem_cgroup, css);
2488}
2489
e42d9d5d 2490struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2491{
c0ff4b85 2492 struct mem_cgroup *memcg = NULL;
3c776e64 2493 struct page_cgroup *pc;
a3b2d692 2494 unsigned short id;
b5a84319
KH
2495 swp_entry_t ent;
2496
3c776e64
DN
2497 VM_BUG_ON(!PageLocked(page));
2498
3c776e64 2499 pc = lookup_page_cgroup(page);
c0bd3f63 2500 lock_page_cgroup(pc);
a3b2d692 2501 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2502 memcg = pc->mem_cgroup;
2503 if (memcg && !css_tryget(&memcg->css))
2504 memcg = NULL;
e42d9d5d 2505 } else if (PageSwapCache(page)) {
3c776e64 2506 ent.val = page_private(page);
9fb4b7cc 2507 id = lookup_swap_cgroup_id(ent);
a3b2d692 2508 rcu_read_lock();
c0ff4b85
R
2509 memcg = mem_cgroup_lookup(id);
2510 if (memcg && !css_tryget(&memcg->css))
2511 memcg = NULL;
a3b2d692 2512 rcu_read_unlock();
3c776e64 2513 }
c0bd3f63 2514 unlock_page_cgroup(pc);
c0ff4b85 2515 return memcg;
b5a84319
KH
2516}
2517
c0ff4b85 2518static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2519 struct page *page,
7ec99d62 2520 unsigned int nr_pages,
9ce70c02
HD
2521 enum charge_type ctype,
2522 bool lrucare)
7a81b88c 2523{
ce587e65 2524 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2525 struct zone *uninitialized_var(zone);
fa9add64 2526 struct lruvec *lruvec;
9ce70c02 2527 bool was_on_lru = false;
b2402857 2528 bool anon;
9ce70c02 2529
ca3e0214
KH
2530 lock_page_cgroup(pc);
2531 if (unlikely(PageCgroupUsed(pc))) {
2532 unlock_page_cgroup(pc);
c0ff4b85 2533 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2534 return;
2535 }
2536 /*
2537 * we don't need page_cgroup_lock about tail pages, becase they are not
2538 * accessed by any other context at this point.
2539 */
9ce70c02
HD
2540
2541 /*
2542 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2543 * may already be on some other mem_cgroup's LRU. Take care of it.
2544 */
2545 if (lrucare) {
2546 zone = page_zone(page);
2547 spin_lock_irq(&zone->lru_lock);
2548 if (PageLRU(page)) {
fa9add64 2549 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2550 ClearPageLRU(page);
fa9add64 2551 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2552 was_on_lru = true;
2553 }
2554 }
2555
c0ff4b85 2556 pc->mem_cgroup = memcg;
261fb61a
KH
2557 /*
2558 * We access a page_cgroup asynchronously without lock_page_cgroup().
2559 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2560 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2561 * before USED bit, we need memory barrier here.
2562 * See mem_cgroup_add_lru_list(), etc.
2563 */
08e552c6 2564 smp_wmb();
b2402857 2565 SetPageCgroupUsed(pc);
3be91277 2566
9ce70c02
HD
2567 if (lrucare) {
2568 if (was_on_lru) {
fa9add64 2569 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2570 VM_BUG_ON(PageLRU(page));
2571 SetPageLRU(page);
fa9add64 2572 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2573 }
2574 spin_unlock_irq(&zone->lru_lock);
2575 }
2576
41326c17 2577 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2578 anon = true;
2579 else
2580 anon = false;
2581
2582 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2583 unlock_page_cgroup(pc);
9ce70c02 2584
430e4863
KH
2585 /*
2586 * "charge_statistics" updated event counter. Then, check it.
2587 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2588 * if they exceeds softlimit.
2589 */
c0ff4b85 2590 memcg_check_events(memcg, page);
7a81b88c 2591}
66e1707b 2592
ca3e0214
KH
2593#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2594
a0db00fc 2595#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2596/*
2597 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2598 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2599 * charge/uncharge will be never happen and move_account() is done under
2600 * compound_lock(), so we don't have to take care of races.
ca3e0214 2601 */
e94c8a9c 2602void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2603{
2604 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2605 struct page_cgroup *pc;
2606 int i;
ca3e0214 2607
3d37c4a9
KH
2608 if (mem_cgroup_disabled())
2609 return;
e94c8a9c
KH
2610 for (i = 1; i < HPAGE_PMD_NR; i++) {
2611 pc = head_pc + i;
2612 pc->mem_cgroup = head_pc->mem_cgroup;
2613 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2614 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2615 }
ca3e0214 2616}
12d27107 2617#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2618
f817ed48 2619/**
de3638d9 2620 * mem_cgroup_move_account - move account of the page
5564e88b 2621 * @page: the page
7ec99d62 2622 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2623 * @pc: page_cgroup of the page.
2624 * @from: mem_cgroup which the page is moved from.
2625 * @to: mem_cgroup which the page is moved to. @from != @to.
2626 *
2627 * The caller must confirm following.
08e552c6 2628 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2629 * - compound_lock is held when nr_pages > 1
f817ed48 2630 *
2f3479b1
KH
2631 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2632 * from old cgroup.
f817ed48 2633 */
7ec99d62
JW
2634static int mem_cgroup_move_account(struct page *page,
2635 unsigned int nr_pages,
2636 struct page_cgroup *pc,
2637 struct mem_cgroup *from,
2f3479b1 2638 struct mem_cgroup *to)
f817ed48 2639{
de3638d9
JW
2640 unsigned long flags;
2641 int ret;
b2402857 2642 bool anon = PageAnon(page);
987eba66 2643
f817ed48 2644 VM_BUG_ON(from == to);
5564e88b 2645 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2646 /*
2647 * The page is isolated from LRU. So, collapse function
2648 * will not handle this page. But page splitting can happen.
2649 * Do this check under compound_page_lock(). The caller should
2650 * hold it.
2651 */
2652 ret = -EBUSY;
7ec99d62 2653 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2654 goto out;
2655
2656 lock_page_cgroup(pc);
2657
2658 ret = -EINVAL;
2659 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2660 goto unlock;
2661
312734c0 2662 move_lock_mem_cgroup(from, &flags);
f817ed48 2663
2ff76f11 2664 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2665 /* Update mapped_file data for mem_cgroup */
2666 preempt_disable();
2667 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2668 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2669 preempt_enable();
d69b042f 2670 }
b2402857 2671 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2672
854ffa8d 2673 /* caller should have done css_get */
08e552c6 2674 pc->mem_cgroup = to;
b2402857 2675 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2676 /*
2677 * We charges against "to" which may not have any tasks. Then, "to"
2678 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2679 * this function is just force_empty() and move charge, so it's
25985edc 2680 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2681 * status here.
88703267 2682 */
312734c0 2683 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2684 ret = 0;
2685unlock:
57f9fd7d 2686 unlock_page_cgroup(pc);
d2265e6f
KH
2687 /*
2688 * check events
2689 */
5564e88b
JW
2690 memcg_check_events(to, page);
2691 memcg_check_events(from, page);
de3638d9 2692out:
f817ed48
KH
2693 return ret;
2694}
2695
2696/*
2697 * move charges to its parent.
2698 */
2699
5564e88b
JW
2700static int mem_cgroup_move_parent(struct page *page,
2701 struct page_cgroup *pc,
6068bf01 2702 struct mem_cgroup *child)
f817ed48 2703{
f817ed48 2704 struct mem_cgroup *parent;
7ec99d62 2705 unsigned int nr_pages;
4be4489f 2706 unsigned long uninitialized_var(flags);
f817ed48
KH
2707 int ret;
2708
2709 /* Is ROOT ? */
cc926f78 2710 if (mem_cgroup_is_root(child))
f817ed48
KH
2711 return -EINVAL;
2712
57f9fd7d
DN
2713 ret = -EBUSY;
2714 if (!get_page_unless_zero(page))
2715 goto out;
2716 if (isolate_lru_page(page))
2717 goto put;
52dbb905 2718
7ec99d62 2719 nr_pages = hpage_nr_pages(page);
08e552c6 2720
cc926f78
KH
2721 parent = parent_mem_cgroup(child);
2722 /*
2723 * If no parent, move charges to root cgroup.
2724 */
2725 if (!parent)
2726 parent = root_mem_cgroup;
f817ed48 2727
7ec99d62 2728 if (nr_pages > 1)
987eba66
KH
2729 flags = compound_lock_irqsave(page);
2730
cc926f78 2731 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2732 pc, child, parent);
cc926f78
KH
2733 if (!ret)
2734 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2735
7ec99d62 2736 if (nr_pages > 1)
987eba66 2737 compound_unlock_irqrestore(page, flags);
08e552c6 2738 putback_lru_page(page);
57f9fd7d 2739put:
40d58138 2740 put_page(page);
57f9fd7d 2741out:
f817ed48
KH
2742 return ret;
2743}
2744
7a81b88c
KH
2745/*
2746 * Charge the memory controller for page usage.
2747 * Return
2748 * 0 if the charge was successful
2749 * < 0 if the cgroup is over its limit
2750 */
2751static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2752 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2753{
c0ff4b85 2754 struct mem_cgroup *memcg = NULL;
7ec99d62 2755 unsigned int nr_pages = 1;
8493ae43 2756 bool oom = true;
7a81b88c 2757 int ret;
ec168510 2758
37c2ac78 2759 if (PageTransHuge(page)) {
7ec99d62 2760 nr_pages <<= compound_order(page);
37c2ac78 2761 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2762 /*
2763 * Never OOM-kill a process for a huge page. The
2764 * fault handler will fall back to regular pages.
2765 */
2766 oom = false;
37c2ac78 2767 }
7a81b88c 2768
c0ff4b85 2769 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2770 if (ret == -ENOMEM)
7a81b88c 2771 return ret;
ce587e65 2772 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2773 return 0;
8a9f3ccd
BS
2774}
2775
7a81b88c
KH
2776int mem_cgroup_newpage_charge(struct page *page,
2777 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2778{
f8d66542 2779 if (mem_cgroup_disabled())
cede86ac 2780 return 0;
7a0524cf
JW
2781 VM_BUG_ON(page_mapped(page));
2782 VM_BUG_ON(page->mapping && !PageAnon(page));
2783 VM_BUG_ON(!mm);
217bc319 2784 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2785 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2786}
2787
83aae4c7
DN
2788static void
2789__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2790 enum charge_type ctype);
2791
e1a1cd59
BS
2792int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2793 gfp_t gfp_mask)
8697d331 2794{
c0ff4b85 2795 struct mem_cgroup *memcg = NULL;
dc67d504 2796 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2797 int ret;
2798
f8d66542 2799 if (mem_cgroup_disabled())
cede86ac 2800 return 0;
52d4b9ac
KH
2801 if (PageCompound(page))
2802 return 0;
accf163e 2803
73045c47 2804 if (unlikely(!mm))
8697d331 2805 mm = &init_mm;
dc67d504
KH
2806 if (!page_is_file_cache(page))
2807 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2808
38c5d72f 2809 if (!PageSwapCache(page))
dc67d504 2810 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2811 else { /* page is swapcache/shmem */
c0ff4b85 2812 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2813 if (!ret)
dc67d504
KH
2814 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2815 }
b5a84319 2816 return ret;
e8589cc1
KH
2817}
2818
54595fe2
KH
2819/*
2820 * While swap-in, try_charge -> commit or cancel, the page is locked.
2821 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2822 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2823 * "commit()" or removed by "cancel()"
2824 */
8c7c6e34
KH
2825int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2826 struct page *page,
72835c86 2827 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2828{
c0ff4b85 2829 struct mem_cgroup *memcg;
54595fe2 2830 int ret;
8c7c6e34 2831
72835c86 2832 *memcgp = NULL;
56039efa 2833
f8d66542 2834 if (mem_cgroup_disabled())
8c7c6e34
KH
2835 return 0;
2836
2837 if (!do_swap_account)
2838 goto charge_cur_mm;
8c7c6e34
KH
2839 /*
2840 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2841 * the pte, and even removed page from swap cache: in those cases
2842 * do_swap_page()'s pte_same() test will fail; but there's also a
2843 * KSM case which does need to charge the page.
8c7c6e34
KH
2844 */
2845 if (!PageSwapCache(page))
407f9c8b 2846 goto charge_cur_mm;
c0ff4b85
R
2847 memcg = try_get_mem_cgroup_from_page(page);
2848 if (!memcg)
54595fe2 2849 goto charge_cur_mm;
72835c86
JW
2850 *memcgp = memcg;
2851 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2852 css_put(&memcg->css);
38c5d72f
KH
2853 if (ret == -EINTR)
2854 ret = 0;
54595fe2 2855 return ret;
8c7c6e34
KH
2856charge_cur_mm:
2857 if (unlikely(!mm))
2858 mm = &init_mm;
38c5d72f
KH
2859 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2860 if (ret == -EINTR)
2861 ret = 0;
2862 return ret;
8c7c6e34
KH
2863}
2864
83aae4c7 2865static void
72835c86 2866__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2867 enum charge_type ctype)
7a81b88c 2868{
f8d66542 2869 if (mem_cgroup_disabled())
7a81b88c 2870 return;
72835c86 2871 if (!memcg)
7a81b88c 2872 return;
72835c86 2873 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2874
ce587e65 2875 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2876 /*
2877 * Now swap is on-memory. This means this page may be
2878 * counted both as mem and swap....double count.
03f3c433
KH
2879 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2880 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2881 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2882 */
03f3c433 2883 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2884 swp_entry_t ent = {.val = page_private(page)};
86493009 2885 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2886 }
88703267
KH
2887 /*
2888 * At swapin, we may charge account against cgroup which has no tasks.
2889 * So, rmdir()->pre_destroy() can be called while we do this charge.
2890 * In that case, we need to call pre_destroy() again. check it here.
2891 */
72835c86 2892 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2893}
2894
72835c86
JW
2895void mem_cgroup_commit_charge_swapin(struct page *page,
2896 struct mem_cgroup *memcg)
83aae4c7 2897{
72835c86 2898 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2899 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2900}
2901
c0ff4b85 2902void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2903{
f8d66542 2904 if (mem_cgroup_disabled())
7a81b88c 2905 return;
c0ff4b85 2906 if (!memcg)
7a81b88c 2907 return;
c0ff4b85 2908 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2909}
2910
c0ff4b85 2911static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2912 unsigned int nr_pages,
2913 const enum charge_type ctype)
569b846d
KH
2914{
2915 struct memcg_batch_info *batch = NULL;
2916 bool uncharge_memsw = true;
7ec99d62 2917
569b846d
KH
2918 /* If swapout, usage of swap doesn't decrease */
2919 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2920 uncharge_memsw = false;
569b846d
KH
2921
2922 batch = &current->memcg_batch;
2923 /*
2924 * In usual, we do css_get() when we remember memcg pointer.
2925 * But in this case, we keep res->usage until end of a series of
2926 * uncharges. Then, it's ok to ignore memcg's refcnt.
2927 */
2928 if (!batch->memcg)
c0ff4b85 2929 batch->memcg = memcg;
3c11ecf4
KH
2930 /*
2931 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2932 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2933 * the same cgroup and we have chance to coalesce uncharges.
2934 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2935 * because we want to do uncharge as soon as possible.
2936 */
2937
2938 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2939 goto direct_uncharge;
2940
7ec99d62 2941 if (nr_pages > 1)
ec168510
AA
2942 goto direct_uncharge;
2943
569b846d
KH
2944 /*
2945 * In typical case, batch->memcg == mem. This means we can
2946 * merge a series of uncharges to an uncharge of res_counter.
2947 * If not, we uncharge res_counter ony by one.
2948 */
c0ff4b85 2949 if (batch->memcg != memcg)
569b846d
KH
2950 goto direct_uncharge;
2951 /* remember freed charge and uncharge it later */
7ffd4ca7 2952 batch->nr_pages++;
569b846d 2953 if (uncharge_memsw)
7ffd4ca7 2954 batch->memsw_nr_pages++;
569b846d
KH
2955 return;
2956direct_uncharge:
c0ff4b85 2957 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2958 if (uncharge_memsw)
c0ff4b85
R
2959 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2960 if (unlikely(batch->memcg != memcg))
2961 memcg_oom_recover(memcg);
569b846d 2962}
7a81b88c 2963
8a9f3ccd 2964/*
69029cd5 2965 * uncharge if !page_mapped(page)
8a9f3ccd 2966 */
8c7c6e34 2967static struct mem_cgroup *
69029cd5 2968__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2969{
c0ff4b85 2970 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2971 unsigned int nr_pages = 1;
2972 struct page_cgroup *pc;
b2402857 2973 bool anon;
8a9f3ccd 2974
f8d66542 2975 if (mem_cgroup_disabled())
8c7c6e34 2976 return NULL;
4077960e 2977
d13d1443 2978 if (PageSwapCache(page))
8c7c6e34 2979 return NULL;
d13d1443 2980
37c2ac78 2981 if (PageTransHuge(page)) {
7ec99d62 2982 nr_pages <<= compound_order(page);
37c2ac78
AA
2983 VM_BUG_ON(!PageTransHuge(page));
2984 }
8697d331 2985 /*
3c541e14 2986 * Check if our page_cgroup is valid
8697d331 2987 */
52d4b9ac 2988 pc = lookup_page_cgroup(page);
cfa44946 2989 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2990 return NULL;
b9c565d5 2991
52d4b9ac 2992 lock_page_cgroup(pc);
d13d1443 2993
c0ff4b85 2994 memcg = pc->mem_cgroup;
8c7c6e34 2995
d13d1443
KH
2996 if (!PageCgroupUsed(pc))
2997 goto unlock_out;
2998
b2402857
KH
2999 anon = PageAnon(page);
3000
d13d1443 3001 switch (ctype) {
41326c17 3002 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3003 /*
3004 * Generally PageAnon tells if it's the anon statistics to be
3005 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3006 * used before page reached the stage of being marked PageAnon.
3007 */
b2402857
KH
3008 anon = true;
3009 /* fallthrough */
8a9478ca 3010 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3011 /* See mem_cgroup_prepare_migration() */
3012 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
3013 goto unlock_out;
3014 break;
3015 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3016 if (!PageAnon(page)) { /* Shared memory */
3017 if (page->mapping && !page_is_file_cache(page))
3018 goto unlock_out;
3019 } else if (page_mapped(page)) /* Anon */
3020 goto unlock_out;
3021 break;
3022 default:
3023 break;
52d4b9ac 3024 }
d13d1443 3025
b2402857 3026 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3027
52d4b9ac 3028 ClearPageCgroupUsed(pc);
544122e5
KH
3029 /*
3030 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3031 * freed from LRU. This is safe because uncharged page is expected not
3032 * to be reused (freed soon). Exception is SwapCache, it's handled by
3033 * special functions.
3034 */
b9c565d5 3035
52d4b9ac 3036 unlock_page_cgroup(pc);
f75ca962 3037 /*
c0ff4b85 3038 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3039 * will never be freed.
3040 */
c0ff4b85 3041 memcg_check_events(memcg, page);
f75ca962 3042 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3043 mem_cgroup_swap_statistics(memcg, true);
3044 mem_cgroup_get(memcg);
f75ca962 3045 }
c0ff4b85
R
3046 if (!mem_cgroup_is_root(memcg))
3047 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3048
c0ff4b85 3049 return memcg;
d13d1443
KH
3050
3051unlock_out:
3052 unlock_page_cgroup(pc);
8c7c6e34 3053 return NULL;
3c541e14
BS
3054}
3055
69029cd5
KH
3056void mem_cgroup_uncharge_page(struct page *page)
3057{
52d4b9ac
KH
3058 /* early check. */
3059 if (page_mapped(page))
3060 return;
40f23a21 3061 VM_BUG_ON(page->mapping && !PageAnon(page));
41326c17 3062 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON);
69029cd5
KH
3063}
3064
3065void mem_cgroup_uncharge_cache_page(struct page *page)
3066{
3067 VM_BUG_ON(page_mapped(page));
b7abea96 3068 VM_BUG_ON(page->mapping);
69029cd5
KH
3069 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3070}
3071
569b846d
KH
3072/*
3073 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3074 * In that cases, pages are freed continuously and we can expect pages
3075 * are in the same memcg. All these calls itself limits the number of
3076 * pages freed at once, then uncharge_start/end() is called properly.
3077 * This may be called prural(2) times in a context,
3078 */
3079
3080void mem_cgroup_uncharge_start(void)
3081{
3082 current->memcg_batch.do_batch++;
3083 /* We can do nest. */
3084 if (current->memcg_batch.do_batch == 1) {
3085 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3086 current->memcg_batch.nr_pages = 0;
3087 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3088 }
3089}
3090
3091void mem_cgroup_uncharge_end(void)
3092{
3093 struct memcg_batch_info *batch = &current->memcg_batch;
3094
3095 if (!batch->do_batch)
3096 return;
3097
3098 batch->do_batch--;
3099 if (batch->do_batch) /* If stacked, do nothing. */
3100 return;
3101
3102 if (!batch->memcg)
3103 return;
3104 /*
3105 * This "batch->memcg" is valid without any css_get/put etc...
3106 * bacause we hide charges behind us.
3107 */
7ffd4ca7
JW
3108 if (batch->nr_pages)
3109 res_counter_uncharge(&batch->memcg->res,
3110 batch->nr_pages * PAGE_SIZE);
3111 if (batch->memsw_nr_pages)
3112 res_counter_uncharge(&batch->memcg->memsw,
3113 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3114 memcg_oom_recover(batch->memcg);
569b846d
KH
3115 /* forget this pointer (for sanity check) */
3116 batch->memcg = NULL;
3117}
3118
e767e056 3119#ifdef CONFIG_SWAP
8c7c6e34 3120/*
e767e056 3121 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3122 * memcg information is recorded to swap_cgroup of "ent"
3123 */
8a9478ca
KH
3124void
3125mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3126{
3127 struct mem_cgroup *memcg;
8a9478ca
KH
3128 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3129
3130 if (!swapout) /* this was a swap cache but the swap is unused ! */
3131 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3132
3133 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3134
f75ca962
KH
3135 /*
3136 * record memcg information, if swapout && memcg != NULL,
3137 * mem_cgroup_get() was called in uncharge().
3138 */
3139 if (do_swap_account && swapout && memcg)
a3b2d692 3140 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3141}
e767e056 3142#endif
8c7c6e34 3143
c255a458 3144#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3145/*
3146 * called from swap_entry_free(). remove record in swap_cgroup and
3147 * uncharge "memsw" account.
3148 */
3149void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3150{
8c7c6e34 3151 struct mem_cgroup *memcg;
a3b2d692 3152 unsigned short id;
8c7c6e34
KH
3153
3154 if (!do_swap_account)
3155 return;
3156
a3b2d692
KH
3157 id = swap_cgroup_record(ent, 0);
3158 rcu_read_lock();
3159 memcg = mem_cgroup_lookup(id);
8c7c6e34 3160 if (memcg) {
a3b2d692
KH
3161 /*
3162 * We uncharge this because swap is freed.
3163 * This memcg can be obsolete one. We avoid calling css_tryget
3164 */
0c3e73e8 3165 if (!mem_cgroup_is_root(memcg))
4e649152 3166 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3167 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3168 mem_cgroup_put(memcg);
3169 }
a3b2d692 3170 rcu_read_unlock();
d13d1443 3171}
02491447
DN
3172
3173/**
3174 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3175 * @entry: swap entry to be moved
3176 * @from: mem_cgroup which the entry is moved from
3177 * @to: mem_cgroup which the entry is moved to
3178 *
3179 * It succeeds only when the swap_cgroup's record for this entry is the same
3180 * as the mem_cgroup's id of @from.
3181 *
3182 * Returns 0 on success, -EINVAL on failure.
3183 *
3184 * The caller must have charged to @to, IOW, called res_counter_charge() about
3185 * both res and memsw, and called css_get().
3186 */
3187static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3188 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3189{
3190 unsigned short old_id, new_id;
3191
3192 old_id = css_id(&from->css);
3193 new_id = css_id(&to->css);
3194
3195 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3196 mem_cgroup_swap_statistics(from, false);
483c30b5 3197 mem_cgroup_swap_statistics(to, true);
02491447 3198 /*
483c30b5
DN
3199 * This function is only called from task migration context now.
3200 * It postpones res_counter and refcount handling till the end
3201 * of task migration(mem_cgroup_clear_mc()) for performance
3202 * improvement. But we cannot postpone mem_cgroup_get(to)
3203 * because if the process that has been moved to @to does
3204 * swap-in, the refcount of @to might be decreased to 0.
02491447 3205 */
02491447 3206 mem_cgroup_get(to);
02491447
DN
3207 return 0;
3208 }
3209 return -EINVAL;
3210}
3211#else
3212static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3213 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3214{
3215 return -EINVAL;
3216}
8c7c6e34 3217#endif
d13d1443 3218
ae41be37 3219/*
01b1ae63
KH
3220 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3221 * page belongs to.
ae41be37 3222 */
ac39cf8c 3223int mem_cgroup_prepare_migration(struct page *page,
72835c86 3224 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3225{
c0ff4b85 3226 struct mem_cgroup *memcg = NULL;
7ec99d62 3227 struct page_cgroup *pc;
ac39cf8c 3228 enum charge_type ctype;
e8589cc1 3229 int ret = 0;
8869b8f6 3230
72835c86 3231 *memcgp = NULL;
56039efa 3232
ec168510 3233 VM_BUG_ON(PageTransHuge(page));
f8d66542 3234 if (mem_cgroup_disabled())
4077960e
BS
3235 return 0;
3236
52d4b9ac
KH
3237 pc = lookup_page_cgroup(page);
3238 lock_page_cgroup(pc);
3239 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3240 memcg = pc->mem_cgroup;
3241 css_get(&memcg->css);
ac39cf8c 3242 /*
3243 * At migrating an anonymous page, its mapcount goes down
3244 * to 0 and uncharge() will be called. But, even if it's fully
3245 * unmapped, migration may fail and this page has to be
3246 * charged again. We set MIGRATION flag here and delay uncharge
3247 * until end_migration() is called
3248 *
3249 * Corner Case Thinking
3250 * A)
3251 * When the old page was mapped as Anon and it's unmap-and-freed
3252 * while migration was ongoing.
3253 * If unmap finds the old page, uncharge() of it will be delayed
3254 * until end_migration(). If unmap finds a new page, it's
3255 * uncharged when it make mapcount to be 1->0. If unmap code
3256 * finds swap_migration_entry, the new page will not be mapped
3257 * and end_migration() will find it(mapcount==0).
3258 *
3259 * B)
3260 * When the old page was mapped but migraion fails, the kernel
3261 * remaps it. A charge for it is kept by MIGRATION flag even
3262 * if mapcount goes down to 0. We can do remap successfully
3263 * without charging it again.
3264 *
3265 * C)
3266 * The "old" page is under lock_page() until the end of
3267 * migration, so, the old page itself will not be swapped-out.
3268 * If the new page is swapped out before end_migraton, our
3269 * hook to usual swap-out path will catch the event.
3270 */
3271 if (PageAnon(page))
3272 SetPageCgroupMigration(pc);
e8589cc1 3273 }
52d4b9ac 3274 unlock_page_cgroup(pc);
ac39cf8c 3275 /*
3276 * If the page is not charged at this point,
3277 * we return here.
3278 */
c0ff4b85 3279 if (!memcg)
ac39cf8c 3280 return 0;
01b1ae63 3281
72835c86
JW
3282 *memcgp = memcg;
3283 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3284 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3285 if (ret) {
ac39cf8c 3286 if (PageAnon(page)) {
3287 lock_page_cgroup(pc);
3288 ClearPageCgroupMigration(pc);
3289 unlock_page_cgroup(pc);
3290 /*
3291 * The old page may be fully unmapped while we kept it.
3292 */
3293 mem_cgroup_uncharge_page(page);
3294 }
38c5d72f 3295 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3296 return -ENOMEM;
e8589cc1 3297 }
ac39cf8c 3298 /*
3299 * We charge new page before it's used/mapped. So, even if unlock_page()
3300 * is called before end_migration, we can catch all events on this new
3301 * page. In the case new page is migrated but not remapped, new page's
3302 * mapcount will be finally 0 and we call uncharge in end_migration().
3303 */
ac39cf8c 3304 if (PageAnon(page))
41326c17 3305 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3306 else if (page_is_file_cache(page))
3307 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3308 else
3309 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ce587e65 3310 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
e8589cc1 3311 return ret;
ae41be37 3312}
8869b8f6 3313
69029cd5 3314/* remove redundant charge if migration failed*/
c0ff4b85 3315void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3316 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3317{
ac39cf8c 3318 struct page *used, *unused;
01b1ae63 3319 struct page_cgroup *pc;
b2402857 3320 bool anon;
01b1ae63 3321
c0ff4b85 3322 if (!memcg)
01b1ae63 3323 return;
ac39cf8c 3324 /* blocks rmdir() */
c0ff4b85 3325 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3326 if (!migration_ok) {
ac39cf8c 3327 used = oldpage;
3328 unused = newpage;
01b1ae63 3329 } else {
ac39cf8c 3330 used = newpage;
01b1ae63
KH
3331 unused = oldpage;
3332 }
69029cd5 3333 /*
ac39cf8c 3334 * We disallowed uncharge of pages under migration because mapcount
3335 * of the page goes down to zero, temporarly.
3336 * Clear the flag and check the page should be charged.
01b1ae63 3337 */
ac39cf8c 3338 pc = lookup_page_cgroup(oldpage);
3339 lock_page_cgroup(pc);
3340 ClearPageCgroupMigration(pc);
3341 unlock_page_cgroup(pc);
b2402857
KH
3342 anon = PageAnon(used);
3343 __mem_cgroup_uncharge_common(unused,
41326c17 3344 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
b2402857 3345 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3346
01b1ae63 3347 /*
ac39cf8c 3348 * If a page is a file cache, radix-tree replacement is very atomic
3349 * and we can skip this check. When it was an Anon page, its mapcount
3350 * goes down to 0. But because we added MIGRATION flage, it's not
3351 * uncharged yet. There are several case but page->mapcount check
3352 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3353 * check. (see prepare_charge() also)
69029cd5 3354 */
b2402857 3355 if (anon)
ac39cf8c 3356 mem_cgroup_uncharge_page(used);
88703267 3357 /*
ac39cf8c 3358 * At migration, we may charge account against cgroup which has no
3359 * tasks.
88703267
KH
3360 * So, rmdir()->pre_destroy() can be called while we do this charge.
3361 * In that case, we need to call pre_destroy() again. check it here.
3362 */
c0ff4b85 3363 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3364}
78fb7466 3365
ab936cbc
KH
3366/*
3367 * At replace page cache, newpage is not under any memcg but it's on
3368 * LRU. So, this function doesn't touch res_counter but handles LRU
3369 * in correct way. Both pages are locked so we cannot race with uncharge.
3370 */
3371void mem_cgroup_replace_page_cache(struct page *oldpage,
3372 struct page *newpage)
3373{
bde05d1c 3374 struct mem_cgroup *memcg = NULL;
ab936cbc 3375 struct page_cgroup *pc;
ab936cbc 3376 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3377
3378 if (mem_cgroup_disabled())
3379 return;
3380
3381 pc = lookup_page_cgroup(oldpage);
3382 /* fix accounting on old pages */
3383 lock_page_cgroup(pc);
bde05d1c
HD
3384 if (PageCgroupUsed(pc)) {
3385 memcg = pc->mem_cgroup;
3386 mem_cgroup_charge_statistics(memcg, false, -1);
3387 ClearPageCgroupUsed(pc);
3388 }
ab936cbc
KH
3389 unlock_page_cgroup(pc);
3390
bde05d1c
HD
3391 /*
3392 * When called from shmem_replace_page(), in some cases the
3393 * oldpage has already been charged, and in some cases not.
3394 */
3395 if (!memcg)
3396 return;
3397
ab936cbc
KH
3398 if (PageSwapBacked(oldpage))
3399 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3400
ab936cbc
KH
3401 /*
3402 * Even if newpage->mapping was NULL before starting replacement,
3403 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3404 * LRU while we overwrite pc->mem_cgroup.
3405 */
ce587e65 3406 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3407}
3408
f212ad7c
DN
3409#ifdef CONFIG_DEBUG_VM
3410static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3411{
3412 struct page_cgroup *pc;
3413
3414 pc = lookup_page_cgroup(page);
cfa44946
JW
3415 /*
3416 * Can be NULL while feeding pages into the page allocator for
3417 * the first time, i.e. during boot or memory hotplug;
3418 * or when mem_cgroup_disabled().
3419 */
f212ad7c
DN
3420 if (likely(pc) && PageCgroupUsed(pc))
3421 return pc;
3422 return NULL;
3423}
3424
3425bool mem_cgroup_bad_page_check(struct page *page)
3426{
3427 if (mem_cgroup_disabled())
3428 return false;
3429
3430 return lookup_page_cgroup_used(page) != NULL;
3431}
3432
3433void mem_cgroup_print_bad_page(struct page *page)
3434{
3435 struct page_cgroup *pc;
3436
3437 pc = lookup_page_cgroup_used(page);
3438 if (pc) {
90b3feae 3439 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3440 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3441 }
3442}
3443#endif
3444
8c7c6e34
KH
3445static DEFINE_MUTEX(set_limit_mutex);
3446
d38d2a75 3447static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3448 unsigned long long val)
628f4235 3449{
81d39c20 3450 int retry_count;
3c11ecf4 3451 u64 memswlimit, memlimit;
628f4235 3452 int ret = 0;
81d39c20
KH
3453 int children = mem_cgroup_count_children(memcg);
3454 u64 curusage, oldusage;
3c11ecf4 3455 int enlarge;
81d39c20
KH
3456
3457 /*
3458 * For keeping hierarchical_reclaim simple, how long we should retry
3459 * is depends on callers. We set our retry-count to be function
3460 * of # of children which we should visit in this loop.
3461 */
3462 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3463
3464 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3465
3c11ecf4 3466 enlarge = 0;
8c7c6e34 3467 while (retry_count) {
628f4235
KH
3468 if (signal_pending(current)) {
3469 ret = -EINTR;
3470 break;
3471 }
8c7c6e34
KH
3472 /*
3473 * Rather than hide all in some function, I do this in
3474 * open coded manner. You see what this really does.
aaad153e 3475 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3476 */
3477 mutex_lock(&set_limit_mutex);
3478 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3479 if (memswlimit < val) {
3480 ret = -EINVAL;
3481 mutex_unlock(&set_limit_mutex);
628f4235
KH
3482 break;
3483 }
3c11ecf4
KH
3484
3485 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3486 if (memlimit < val)
3487 enlarge = 1;
3488
8c7c6e34 3489 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3490 if (!ret) {
3491 if (memswlimit == val)
3492 memcg->memsw_is_minimum = true;
3493 else
3494 memcg->memsw_is_minimum = false;
3495 }
8c7c6e34
KH
3496 mutex_unlock(&set_limit_mutex);
3497
3498 if (!ret)
3499 break;
3500
5660048c
JW
3501 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3502 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3503 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3504 /* Usage is reduced ? */
3505 if (curusage >= oldusage)
3506 retry_count--;
3507 else
3508 oldusage = curusage;
8c7c6e34 3509 }
3c11ecf4
KH
3510 if (!ret && enlarge)
3511 memcg_oom_recover(memcg);
14797e23 3512
8c7c6e34
KH
3513 return ret;
3514}
3515
338c8431
LZ
3516static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3517 unsigned long long val)
8c7c6e34 3518{
81d39c20 3519 int retry_count;
3c11ecf4 3520 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3521 int children = mem_cgroup_count_children(memcg);
3522 int ret = -EBUSY;
3c11ecf4 3523 int enlarge = 0;
8c7c6e34 3524
81d39c20
KH
3525 /* see mem_cgroup_resize_res_limit */
3526 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3527 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3528 while (retry_count) {
3529 if (signal_pending(current)) {
3530 ret = -EINTR;
3531 break;
3532 }
3533 /*
3534 * Rather than hide all in some function, I do this in
3535 * open coded manner. You see what this really does.
aaad153e 3536 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3537 */
3538 mutex_lock(&set_limit_mutex);
3539 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3540 if (memlimit > val) {
3541 ret = -EINVAL;
3542 mutex_unlock(&set_limit_mutex);
3543 break;
3544 }
3c11ecf4
KH
3545 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3546 if (memswlimit < val)
3547 enlarge = 1;
8c7c6e34 3548 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3549 if (!ret) {
3550 if (memlimit == val)
3551 memcg->memsw_is_minimum = true;
3552 else
3553 memcg->memsw_is_minimum = false;
3554 }
8c7c6e34
KH
3555 mutex_unlock(&set_limit_mutex);
3556
3557 if (!ret)
3558 break;
3559
5660048c
JW
3560 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3561 MEM_CGROUP_RECLAIM_NOSWAP |
3562 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3563 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3564 /* Usage is reduced ? */
8c7c6e34 3565 if (curusage >= oldusage)
628f4235 3566 retry_count--;
81d39c20
KH
3567 else
3568 oldusage = curusage;
628f4235 3569 }
3c11ecf4
KH
3570 if (!ret && enlarge)
3571 memcg_oom_recover(memcg);
628f4235
KH
3572 return ret;
3573}
3574
4e416953 3575unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3576 gfp_t gfp_mask,
3577 unsigned long *total_scanned)
4e416953
BS
3578{
3579 unsigned long nr_reclaimed = 0;
3580 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3581 unsigned long reclaimed;
3582 int loop = 0;
3583 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3584 unsigned long long excess;
0ae5e89c 3585 unsigned long nr_scanned;
4e416953
BS
3586
3587 if (order > 0)
3588 return 0;
3589
00918b6a 3590 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3591 /*
3592 * This loop can run a while, specially if mem_cgroup's continuously
3593 * keep exceeding their soft limit and putting the system under
3594 * pressure
3595 */
3596 do {
3597 if (next_mz)
3598 mz = next_mz;
3599 else
3600 mz = mem_cgroup_largest_soft_limit_node(mctz);
3601 if (!mz)
3602 break;
3603
0ae5e89c 3604 nr_scanned = 0;
d79154bb 3605 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3606 gfp_mask, &nr_scanned);
4e416953 3607 nr_reclaimed += reclaimed;
0ae5e89c 3608 *total_scanned += nr_scanned;
4e416953
BS
3609 spin_lock(&mctz->lock);
3610
3611 /*
3612 * If we failed to reclaim anything from this memory cgroup
3613 * it is time to move on to the next cgroup
3614 */
3615 next_mz = NULL;
3616 if (!reclaimed) {
3617 do {
3618 /*
3619 * Loop until we find yet another one.
3620 *
3621 * By the time we get the soft_limit lock
3622 * again, someone might have aded the
3623 * group back on the RB tree. Iterate to
3624 * make sure we get a different mem.
3625 * mem_cgroup_largest_soft_limit_node returns
3626 * NULL if no other cgroup is present on
3627 * the tree
3628 */
3629 next_mz =
3630 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3631 if (next_mz == mz)
d79154bb 3632 css_put(&next_mz->memcg->css);
39cc98f1 3633 else /* next_mz == NULL or other memcg */
4e416953
BS
3634 break;
3635 } while (1);
3636 }
d79154bb
HD
3637 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3638 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3639 /*
3640 * One school of thought says that we should not add
3641 * back the node to the tree if reclaim returns 0.
3642 * But our reclaim could return 0, simply because due
3643 * to priority we are exposing a smaller subset of
3644 * memory to reclaim from. Consider this as a longer
3645 * term TODO.
3646 */
ef8745c1 3647 /* If excess == 0, no tree ops */
d79154bb 3648 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3649 spin_unlock(&mctz->lock);
d79154bb 3650 css_put(&mz->memcg->css);
4e416953
BS
3651 loop++;
3652 /*
3653 * Could not reclaim anything and there are no more
3654 * mem cgroups to try or we seem to be looping without
3655 * reclaiming anything.
3656 */
3657 if (!nr_reclaimed &&
3658 (next_mz == NULL ||
3659 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3660 break;
3661 } while (!nr_reclaimed);
3662 if (next_mz)
d79154bb 3663 css_put(&next_mz->memcg->css);
4e416953
BS
3664 return nr_reclaimed;
3665}
3666
cc847582 3667/*
3c935d18
KH
3668 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3669 * reclaim the pages page themselves - it just removes the page_cgroups.
3670 * Returns true if some page_cgroups were not freed, indicating that the caller
3671 * must retry this operation.
cc847582 3672 */
3c935d18 3673static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3674 int node, int zid, enum lru_list lru)
cc847582 3675{
08e552c6 3676 struct mem_cgroup_per_zone *mz;
08e552c6 3677 unsigned long flags, loop;
072c56c1 3678 struct list_head *list;
925b7673
JW
3679 struct page *busy;
3680 struct zone *zone;
072c56c1 3681
08e552c6 3682 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3683 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3684 list = &mz->lruvec.lists[lru];
cc847582 3685
1eb49272 3686 loop = mz->lru_size[lru];
f817ed48
KH
3687 /* give some margin against EBUSY etc...*/
3688 loop += 256;
3689 busy = NULL;
3690 while (loop--) {
925b7673 3691 struct page_cgroup *pc;
5564e88b
JW
3692 struct page *page;
3693
08e552c6 3694 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3695 if (list_empty(list)) {
08e552c6 3696 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3697 break;
f817ed48 3698 }
925b7673
JW
3699 page = list_entry(list->prev, struct page, lru);
3700 if (busy == page) {
3701 list_move(&page->lru, list);
648bcc77 3702 busy = NULL;
08e552c6 3703 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3704 continue;
3705 }
08e552c6 3706 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3707
925b7673 3708 pc = lookup_page_cgroup(page);
5564e88b 3709
3c935d18 3710 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3711 /* found lock contention or "pc" is obsolete. */
925b7673 3712 busy = page;
f817ed48
KH
3713 cond_resched();
3714 } else
3715 busy = NULL;
cc847582 3716 }
3c935d18 3717 return !list_empty(list);
cc847582
KH
3718}
3719
3720/*
3721 * make mem_cgroup's charge to be 0 if there is no task.
3722 * This enables deleting this mem_cgroup.
3723 */
c0ff4b85 3724static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3725{
f817ed48
KH
3726 int ret;
3727 int node, zid, shrink;
3728 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3729 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3730
c0ff4b85 3731 css_get(&memcg->css);
f817ed48
KH
3732
3733 shrink = 0;
c1e862c1
KH
3734 /* should free all ? */
3735 if (free_all)
3736 goto try_to_free;
f817ed48 3737move_account:
fce66477 3738 do {
f817ed48 3739 ret = -EBUSY;
c1e862c1
KH
3740 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3741 goto out;
52d4b9ac
KH
3742 /* This is for making all *used* pages to be on LRU. */
3743 lru_add_drain_all();
c0ff4b85 3744 drain_all_stock_sync(memcg);
f817ed48 3745 ret = 0;
c0ff4b85 3746 mem_cgroup_start_move(memcg);
299b4eaa 3747 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3748 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3749 enum lru_list lru;
3750 for_each_lru(lru) {
c0ff4b85 3751 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3752 node, zid, lru);
f817ed48
KH
3753 if (ret)
3754 break;
3755 }
1ecaab2b 3756 }
f817ed48
KH
3757 if (ret)
3758 break;
3759 }
c0ff4b85
R
3760 mem_cgroup_end_move(memcg);
3761 memcg_oom_recover(memcg);
52d4b9ac 3762 cond_resched();
fce66477 3763 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3764 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3765out:
c0ff4b85 3766 css_put(&memcg->css);
cc847582 3767 return ret;
f817ed48
KH
3768
3769try_to_free:
c1e862c1
KH
3770 /* returns EBUSY if there is a task or if we come here twice. */
3771 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3772 ret = -EBUSY;
3773 goto out;
3774 }
c1e862c1
KH
3775 /* we call try-to-free pages for make this cgroup empty */
3776 lru_add_drain_all();
f817ed48
KH
3777 /* try to free all pages in this cgroup */
3778 shrink = 1;
569530fb 3779 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3780 int progress;
c1e862c1
KH
3781
3782 if (signal_pending(current)) {
3783 ret = -EINTR;
3784 goto out;
3785 }
c0ff4b85 3786 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3787 false);
c1e862c1 3788 if (!progress) {
f817ed48 3789 nr_retries--;
c1e862c1 3790 /* maybe some writeback is necessary */
8aa7e847 3791 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3792 }
f817ed48
KH
3793
3794 }
08e552c6 3795 lru_add_drain();
f817ed48 3796 /* try move_account...there may be some *locked* pages. */
fce66477 3797 goto move_account;
cc847582
KH
3798}
3799
6bbda35c 3800static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3801{
3802 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3803}
3804
3805
18f59ea7
BS
3806static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3807{
3808 return mem_cgroup_from_cont(cont)->use_hierarchy;
3809}
3810
3811static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3812 u64 val)
3813{
3814 int retval = 0;
c0ff4b85 3815 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3816 struct cgroup *parent = cont->parent;
c0ff4b85 3817 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3818
3819 if (parent)
c0ff4b85 3820 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3821
3822 cgroup_lock();
567fb435
GC
3823
3824 if (memcg->use_hierarchy == val)
3825 goto out;
3826
18f59ea7 3827 /*
af901ca1 3828 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3829 * in the child subtrees. If it is unset, then the change can
3830 * occur, provided the current cgroup has no children.
3831 *
3832 * For the root cgroup, parent_mem is NULL, we allow value to be
3833 * set if there are no children.
3834 */
c0ff4b85 3835 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3836 (val == 1 || val == 0)) {
3837 if (list_empty(&cont->children))
c0ff4b85 3838 memcg->use_hierarchy = val;
18f59ea7
BS
3839 else
3840 retval = -EBUSY;
3841 } else
3842 retval = -EINVAL;
567fb435
GC
3843
3844out:
18f59ea7
BS
3845 cgroup_unlock();
3846
3847 return retval;
3848}
3849
0c3e73e8 3850
c0ff4b85 3851static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3852 enum mem_cgroup_stat_index idx)
0c3e73e8 3853{
7d74b06f 3854 struct mem_cgroup *iter;
7a159cc9 3855 long val = 0;
0c3e73e8 3856
7a159cc9 3857 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3858 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3859 val += mem_cgroup_read_stat(iter, idx);
3860
3861 if (val < 0) /* race ? */
3862 val = 0;
3863 return val;
0c3e73e8
BS
3864}
3865
c0ff4b85 3866static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3867{
7d74b06f 3868 u64 val;
104f3928 3869
c0ff4b85 3870 if (!mem_cgroup_is_root(memcg)) {
104f3928 3871 if (!swap)
65c64ce8 3872 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3873 else
65c64ce8 3874 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3875 }
3876
c0ff4b85
R
3877 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3878 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3879
7d74b06f 3880 if (swap)
bff6bb83 3881 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3882
3883 return val << PAGE_SHIFT;
3884}
3885
af36f906
TH
3886static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3887 struct file *file, char __user *buf,
3888 size_t nbytes, loff_t *ppos)
8cdea7c0 3889{
c0ff4b85 3890 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3891 char str[64];
104f3928 3892 u64 val;
af36f906 3893 int type, name, len;
8c7c6e34
KH
3894
3895 type = MEMFILE_TYPE(cft->private);
3896 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3897
3898 if (!do_swap_account && type == _MEMSWAP)
3899 return -EOPNOTSUPP;
3900
8c7c6e34
KH
3901 switch (type) {
3902 case _MEM:
104f3928 3903 if (name == RES_USAGE)
c0ff4b85 3904 val = mem_cgroup_usage(memcg, false);
104f3928 3905 else
c0ff4b85 3906 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3907 break;
3908 case _MEMSWAP:
104f3928 3909 if (name == RES_USAGE)
c0ff4b85 3910 val = mem_cgroup_usage(memcg, true);
104f3928 3911 else
c0ff4b85 3912 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3913 break;
3914 default:
3915 BUG();
8c7c6e34 3916 }
af36f906
TH
3917
3918 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3919 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3920}
628f4235
KH
3921/*
3922 * The user of this function is...
3923 * RES_LIMIT.
3924 */
856c13aa
PM
3925static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3926 const char *buffer)
8cdea7c0 3927{
628f4235 3928 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3929 int type, name;
628f4235
KH
3930 unsigned long long val;
3931 int ret;
3932
8c7c6e34
KH
3933 type = MEMFILE_TYPE(cft->private);
3934 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3935
3936 if (!do_swap_account && type == _MEMSWAP)
3937 return -EOPNOTSUPP;
3938
8c7c6e34 3939 switch (name) {
628f4235 3940 case RES_LIMIT:
4b3bde4c
BS
3941 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3942 ret = -EINVAL;
3943 break;
3944 }
628f4235
KH
3945 /* This function does all necessary parse...reuse it */
3946 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3947 if (ret)
3948 break;
3949 if (type == _MEM)
628f4235 3950 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3951 else
3952 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3953 break;
296c81d8
BS
3954 case RES_SOFT_LIMIT:
3955 ret = res_counter_memparse_write_strategy(buffer, &val);
3956 if (ret)
3957 break;
3958 /*
3959 * For memsw, soft limits are hard to implement in terms
3960 * of semantics, for now, we support soft limits for
3961 * control without swap
3962 */
3963 if (type == _MEM)
3964 ret = res_counter_set_soft_limit(&memcg->res, val);
3965 else
3966 ret = -EINVAL;
3967 break;
628f4235
KH
3968 default:
3969 ret = -EINVAL; /* should be BUG() ? */
3970 break;
3971 }
3972 return ret;
8cdea7c0
BS
3973}
3974
fee7b548
KH
3975static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3976 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3977{
3978 struct cgroup *cgroup;
3979 unsigned long long min_limit, min_memsw_limit, tmp;
3980
3981 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3982 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3983 cgroup = memcg->css.cgroup;
3984 if (!memcg->use_hierarchy)
3985 goto out;
3986
3987 while (cgroup->parent) {
3988 cgroup = cgroup->parent;
3989 memcg = mem_cgroup_from_cont(cgroup);
3990 if (!memcg->use_hierarchy)
3991 break;
3992 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3993 min_limit = min(min_limit, tmp);
3994 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3995 min_memsw_limit = min(min_memsw_limit, tmp);
3996 }
3997out:
3998 *mem_limit = min_limit;
3999 *memsw_limit = min_memsw_limit;
fee7b548
KH
4000}
4001
29f2a4da 4002static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4003{
af36f906 4004 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4005 int type, name;
c84872e1 4006
8c7c6e34
KH
4007 type = MEMFILE_TYPE(event);
4008 name = MEMFILE_ATTR(event);
af36f906
TH
4009
4010 if (!do_swap_account && type == _MEMSWAP)
4011 return -EOPNOTSUPP;
4012
8c7c6e34 4013 switch (name) {
29f2a4da 4014 case RES_MAX_USAGE:
8c7c6e34 4015 if (type == _MEM)
c0ff4b85 4016 res_counter_reset_max(&memcg->res);
8c7c6e34 4017 else
c0ff4b85 4018 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4019 break;
4020 case RES_FAILCNT:
8c7c6e34 4021 if (type == _MEM)
c0ff4b85 4022 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4023 else
c0ff4b85 4024 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4025 break;
4026 }
f64c3f54 4027
85cc59db 4028 return 0;
c84872e1
PE
4029}
4030
7dc74be0
DN
4031static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4032 struct cftype *cft)
4033{
4034 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4035}
4036
02491447 4037#ifdef CONFIG_MMU
7dc74be0
DN
4038static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4039 struct cftype *cft, u64 val)
4040{
c0ff4b85 4041 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4042
4043 if (val >= (1 << NR_MOVE_TYPE))
4044 return -EINVAL;
4045 /*
4046 * We check this value several times in both in can_attach() and
4047 * attach(), so we need cgroup lock to prevent this value from being
4048 * inconsistent.
4049 */
4050 cgroup_lock();
c0ff4b85 4051 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4052 cgroup_unlock();
4053
4054 return 0;
4055}
02491447
DN
4056#else
4057static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4058 struct cftype *cft, u64 val)
4059{
4060 return -ENOSYS;
4061}
4062#endif
7dc74be0 4063
406eb0c9 4064#ifdef CONFIG_NUMA
ab215884 4065static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4066 struct seq_file *m)
406eb0c9
YH
4067{
4068 int nid;
4069 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4070 unsigned long node_nr;
d79154bb 4071 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4072
d79154bb 4073 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4074 seq_printf(m, "total=%lu", total_nr);
4075 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4076 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4077 seq_printf(m, " N%d=%lu", nid, node_nr);
4078 }
4079 seq_putc(m, '\n');
4080
d79154bb 4081 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4082 seq_printf(m, "file=%lu", file_nr);
4083 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4084 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4085 LRU_ALL_FILE);
406eb0c9
YH
4086 seq_printf(m, " N%d=%lu", nid, node_nr);
4087 }
4088 seq_putc(m, '\n');
4089
d79154bb 4090 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4091 seq_printf(m, "anon=%lu", anon_nr);
4092 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4093 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4094 LRU_ALL_ANON);
406eb0c9
YH
4095 seq_printf(m, " N%d=%lu", nid, node_nr);
4096 }
4097 seq_putc(m, '\n');
4098
d79154bb 4099 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4100 seq_printf(m, "unevictable=%lu", unevictable_nr);
4101 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4102 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4103 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4104 seq_printf(m, " N%d=%lu", nid, node_nr);
4105 }
4106 seq_putc(m, '\n');
4107 return 0;
4108}
4109#endif /* CONFIG_NUMA */
4110
af7c4b0e
JW
4111static const char * const mem_cgroup_lru_names[] = {
4112 "inactive_anon",
4113 "active_anon",
4114 "inactive_file",
4115 "active_file",
4116 "unevictable",
4117};
4118
4119static inline void mem_cgroup_lru_names_not_uptodate(void)
4120{
4121 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4122}
4123
ab215884 4124static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4125 struct seq_file *m)
d2ceb9b7 4126{
d79154bb 4127 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4128 struct mem_cgroup *mi;
4129 unsigned int i;
406eb0c9 4130
af7c4b0e 4131 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4132 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4133 continue;
af7c4b0e
JW
4134 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4135 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4136 }
7b854121 4137
af7c4b0e
JW
4138 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4139 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4140 mem_cgroup_read_events(memcg, i));
4141
4142 for (i = 0; i < NR_LRU_LISTS; i++)
4143 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4144 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4145
14067bb3 4146 /* Hierarchical information */
fee7b548
KH
4147 {
4148 unsigned long long limit, memsw_limit;
d79154bb 4149 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4150 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4151 if (do_swap_account)
78ccf5b5
JW
4152 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4153 memsw_limit);
fee7b548 4154 }
7f016ee8 4155
af7c4b0e
JW
4156 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4157 long long val = 0;
4158
bff6bb83 4159 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4160 continue;
af7c4b0e
JW
4161 for_each_mem_cgroup_tree(mi, memcg)
4162 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4163 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4164 }
4165
4166 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4167 unsigned long long val = 0;
4168
4169 for_each_mem_cgroup_tree(mi, memcg)
4170 val += mem_cgroup_read_events(mi, i);
4171 seq_printf(m, "total_%s %llu\n",
4172 mem_cgroup_events_names[i], val);
4173 }
4174
4175 for (i = 0; i < NR_LRU_LISTS; i++) {
4176 unsigned long long val = 0;
4177
4178 for_each_mem_cgroup_tree(mi, memcg)
4179 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4180 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4181 }
14067bb3 4182
7f016ee8 4183#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4184 {
4185 int nid, zid;
4186 struct mem_cgroup_per_zone *mz;
89abfab1 4187 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4188 unsigned long recent_rotated[2] = {0, 0};
4189 unsigned long recent_scanned[2] = {0, 0};
4190
4191 for_each_online_node(nid)
4192 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4193 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4194 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4195
89abfab1
HD
4196 recent_rotated[0] += rstat->recent_rotated[0];
4197 recent_rotated[1] += rstat->recent_rotated[1];
4198 recent_scanned[0] += rstat->recent_scanned[0];
4199 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4200 }
78ccf5b5
JW
4201 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4202 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4203 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4204 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4205 }
4206#endif
4207
d2ceb9b7
KH
4208 return 0;
4209}
4210
a7885eb8
KM
4211static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4212{
4213 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4214
1f4c025b 4215 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4216}
4217
4218static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4219 u64 val)
4220{
4221 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4222 struct mem_cgroup *parent;
068b38c1 4223
a7885eb8
KM
4224 if (val > 100)
4225 return -EINVAL;
4226
4227 if (cgrp->parent == NULL)
4228 return -EINVAL;
4229
4230 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4231
4232 cgroup_lock();
4233
a7885eb8
KM
4234 /* If under hierarchy, only empty-root can set this value */
4235 if ((parent->use_hierarchy) ||
068b38c1
LZ
4236 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4237 cgroup_unlock();
a7885eb8 4238 return -EINVAL;
068b38c1 4239 }
a7885eb8 4240
a7885eb8 4241 memcg->swappiness = val;
a7885eb8 4242
068b38c1
LZ
4243 cgroup_unlock();
4244
a7885eb8
KM
4245 return 0;
4246}
4247
2e72b634
KS
4248static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4249{
4250 struct mem_cgroup_threshold_ary *t;
4251 u64 usage;
4252 int i;
4253
4254 rcu_read_lock();
4255 if (!swap)
2c488db2 4256 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4257 else
2c488db2 4258 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4259
4260 if (!t)
4261 goto unlock;
4262
4263 usage = mem_cgroup_usage(memcg, swap);
4264
4265 /*
748dad36 4266 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4267 * If it's not true, a threshold was crossed after last
4268 * call of __mem_cgroup_threshold().
4269 */
5407a562 4270 i = t->current_threshold;
2e72b634
KS
4271
4272 /*
4273 * Iterate backward over array of thresholds starting from
4274 * current_threshold and check if a threshold is crossed.
4275 * If none of thresholds below usage is crossed, we read
4276 * only one element of the array here.
4277 */
4278 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4279 eventfd_signal(t->entries[i].eventfd, 1);
4280
4281 /* i = current_threshold + 1 */
4282 i++;
4283
4284 /*
4285 * Iterate forward over array of thresholds starting from
4286 * current_threshold+1 and check if a threshold is crossed.
4287 * If none of thresholds above usage is crossed, we read
4288 * only one element of the array here.
4289 */
4290 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4291 eventfd_signal(t->entries[i].eventfd, 1);
4292
4293 /* Update current_threshold */
5407a562 4294 t->current_threshold = i - 1;
2e72b634
KS
4295unlock:
4296 rcu_read_unlock();
4297}
4298
4299static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4300{
ad4ca5f4
KS
4301 while (memcg) {
4302 __mem_cgroup_threshold(memcg, false);
4303 if (do_swap_account)
4304 __mem_cgroup_threshold(memcg, true);
4305
4306 memcg = parent_mem_cgroup(memcg);
4307 }
2e72b634
KS
4308}
4309
4310static int compare_thresholds(const void *a, const void *b)
4311{
4312 const struct mem_cgroup_threshold *_a = a;
4313 const struct mem_cgroup_threshold *_b = b;
4314
4315 return _a->threshold - _b->threshold;
4316}
4317
c0ff4b85 4318static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4319{
4320 struct mem_cgroup_eventfd_list *ev;
4321
c0ff4b85 4322 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4323 eventfd_signal(ev->eventfd, 1);
4324 return 0;
4325}
4326
c0ff4b85 4327static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4328{
7d74b06f
KH
4329 struct mem_cgroup *iter;
4330
c0ff4b85 4331 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4332 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4333}
4334
4335static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4336 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4337{
4338 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4339 struct mem_cgroup_thresholds *thresholds;
4340 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4341 int type = MEMFILE_TYPE(cft->private);
4342 u64 threshold, usage;
2c488db2 4343 int i, size, ret;
2e72b634
KS
4344
4345 ret = res_counter_memparse_write_strategy(args, &threshold);
4346 if (ret)
4347 return ret;
4348
4349 mutex_lock(&memcg->thresholds_lock);
2c488db2 4350
2e72b634 4351 if (type == _MEM)
2c488db2 4352 thresholds = &memcg->thresholds;
2e72b634 4353 else if (type == _MEMSWAP)
2c488db2 4354 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4355 else
4356 BUG();
4357
4358 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4359
4360 /* Check if a threshold crossed before adding a new one */
2c488db2 4361 if (thresholds->primary)
2e72b634
KS
4362 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4363
2c488db2 4364 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4365
4366 /* Allocate memory for new array of thresholds */
2c488db2 4367 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4368 GFP_KERNEL);
2c488db2 4369 if (!new) {
2e72b634
KS
4370 ret = -ENOMEM;
4371 goto unlock;
4372 }
2c488db2 4373 new->size = size;
2e72b634
KS
4374
4375 /* Copy thresholds (if any) to new array */
2c488db2
KS
4376 if (thresholds->primary) {
4377 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4378 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4379 }
4380
2e72b634 4381 /* Add new threshold */
2c488db2
KS
4382 new->entries[size - 1].eventfd = eventfd;
4383 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4384
4385 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4386 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4387 compare_thresholds, NULL);
4388
4389 /* Find current threshold */
2c488db2 4390 new->current_threshold = -1;
2e72b634 4391 for (i = 0; i < size; i++) {
748dad36 4392 if (new->entries[i].threshold <= usage) {
2e72b634 4393 /*
2c488db2
KS
4394 * new->current_threshold will not be used until
4395 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4396 * it here.
4397 */
2c488db2 4398 ++new->current_threshold;
748dad36
SZ
4399 } else
4400 break;
2e72b634
KS
4401 }
4402
2c488db2
KS
4403 /* Free old spare buffer and save old primary buffer as spare */
4404 kfree(thresholds->spare);
4405 thresholds->spare = thresholds->primary;
4406
4407 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4408
907860ed 4409 /* To be sure that nobody uses thresholds */
2e72b634
KS
4410 synchronize_rcu();
4411
2e72b634
KS
4412unlock:
4413 mutex_unlock(&memcg->thresholds_lock);
4414
4415 return ret;
4416}
4417
907860ed 4418static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4419 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4420{
4421 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4422 struct mem_cgroup_thresholds *thresholds;
4423 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4424 int type = MEMFILE_TYPE(cft->private);
4425 u64 usage;
2c488db2 4426 int i, j, size;
2e72b634
KS
4427
4428 mutex_lock(&memcg->thresholds_lock);
4429 if (type == _MEM)
2c488db2 4430 thresholds = &memcg->thresholds;
2e72b634 4431 else if (type == _MEMSWAP)
2c488db2 4432 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4433 else
4434 BUG();
4435
371528ca
AV
4436 if (!thresholds->primary)
4437 goto unlock;
4438
2e72b634
KS
4439 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4440
4441 /* Check if a threshold crossed before removing */
4442 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4443
4444 /* Calculate new number of threshold */
2c488db2
KS
4445 size = 0;
4446 for (i = 0; i < thresholds->primary->size; i++) {
4447 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4448 size++;
4449 }
4450
2c488db2 4451 new = thresholds->spare;
907860ed 4452
2e72b634
KS
4453 /* Set thresholds array to NULL if we don't have thresholds */
4454 if (!size) {
2c488db2
KS
4455 kfree(new);
4456 new = NULL;
907860ed 4457 goto swap_buffers;
2e72b634
KS
4458 }
4459
2c488db2 4460 new->size = size;
2e72b634
KS
4461
4462 /* Copy thresholds and find current threshold */
2c488db2
KS
4463 new->current_threshold = -1;
4464 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4465 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4466 continue;
4467
2c488db2 4468 new->entries[j] = thresholds->primary->entries[i];
748dad36 4469 if (new->entries[j].threshold <= usage) {
2e72b634 4470 /*
2c488db2 4471 * new->current_threshold will not be used
2e72b634
KS
4472 * until rcu_assign_pointer(), so it's safe to increment
4473 * it here.
4474 */
2c488db2 4475 ++new->current_threshold;
2e72b634
KS
4476 }
4477 j++;
4478 }
4479
907860ed 4480swap_buffers:
2c488db2
KS
4481 /* Swap primary and spare array */
4482 thresholds->spare = thresholds->primary;
8c757763
SZ
4483 /* If all events are unregistered, free the spare array */
4484 if (!new) {
4485 kfree(thresholds->spare);
4486 thresholds->spare = NULL;
4487 }
4488
2c488db2 4489 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4490
907860ed 4491 /* To be sure that nobody uses thresholds */
2e72b634 4492 synchronize_rcu();
371528ca 4493unlock:
2e72b634 4494 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4495}
c1e862c1 4496
9490ff27
KH
4497static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4498 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4499{
4500 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4501 struct mem_cgroup_eventfd_list *event;
4502 int type = MEMFILE_TYPE(cft->private);
4503
4504 BUG_ON(type != _OOM_TYPE);
4505 event = kmalloc(sizeof(*event), GFP_KERNEL);
4506 if (!event)
4507 return -ENOMEM;
4508
1af8efe9 4509 spin_lock(&memcg_oom_lock);
9490ff27
KH
4510
4511 event->eventfd = eventfd;
4512 list_add(&event->list, &memcg->oom_notify);
4513
4514 /* already in OOM ? */
79dfdacc 4515 if (atomic_read(&memcg->under_oom))
9490ff27 4516 eventfd_signal(eventfd, 1);
1af8efe9 4517 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4518
4519 return 0;
4520}
4521
907860ed 4522static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4523 struct cftype *cft, struct eventfd_ctx *eventfd)
4524{
c0ff4b85 4525 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4526 struct mem_cgroup_eventfd_list *ev, *tmp;
4527 int type = MEMFILE_TYPE(cft->private);
4528
4529 BUG_ON(type != _OOM_TYPE);
4530
1af8efe9 4531 spin_lock(&memcg_oom_lock);
9490ff27 4532
c0ff4b85 4533 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4534 if (ev->eventfd == eventfd) {
4535 list_del(&ev->list);
4536 kfree(ev);
4537 }
4538 }
4539
1af8efe9 4540 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4541}
4542
3c11ecf4
KH
4543static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4544 struct cftype *cft, struct cgroup_map_cb *cb)
4545{
c0ff4b85 4546 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4547
c0ff4b85 4548 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4549
c0ff4b85 4550 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4551 cb->fill(cb, "under_oom", 1);
4552 else
4553 cb->fill(cb, "under_oom", 0);
4554 return 0;
4555}
4556
3c11ecf4
KH
4557static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4558 struct cftype *cft, u64 val)
4559{
c0ff4b85 4560 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4561 struct mem_cgroup *parent;
4562
4563 /* cannot set to root cgroup and only 0 and 1 are allowed */
4564 if (!cgrp->parent || !((val == 0) || (val == 1)))
4565 return -EINVAL;
4566
4567 parent = mem_cgroup_from_cont(cgrp->parent);
4568
4569 cgroup_lock();
4570 /* oom-kill-disable is a flag for subhierarchy. */
4571 if ((parent->use_hierarchy) ||
c0ff4b85 4572 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4573 cgroup_unlock();
4574 return -EINVAL;
4575 }
c0ff4b85 4576 memcg->oom_kill_disable = val;
4d845ebf 4577 if (!val)
c0ff4b85 4578 memcg_oom_recover(memcg);
3c11ecf4
KH
4579 cgroup_unlock();
4580 return 0;
4581}
4582
c255a458 4583#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4584static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4585{
1d62e436 4586 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4587};
4588
1d62e436 4589static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4590{
1d62e436 4591 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4592}
e5671dfa 4593#else
cbe128e3 4594static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4595{
4596 return 0;
4597}
d1a4c0b3 4598
1d62e436 4599static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4600{
4601}
e5671dfa
GC
4602#endif
4603
8cdea7c0
BS
4604static struct cftype mem_cgroup_files[] = {
4605 {
0eea1030 4606 .name = "usage_in_bytes",
8c7c6e34 4607 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4608 .read = mem_cgroup_read,
9490ff27
KH
4609 .register_event = mem_cgroup_usage_register_event,
4610 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4611 },
c84872e1
PE
4612 {
4613 .name = "max_usage_in_bytes",
8c7c6e34 4614 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4615 .trigger = mem_cgroup_reset,
af36f906 4616 .read = mem_cgroup_read,
c84872e1 4617 },
8cdea7c0 4618 {
0eea1030 4619 .name = "limit_in_bytes",
8c7c6e34 4620 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4621 .write_string = mem_cgroup_write,
af36f906 4622 .read = mem_cgroup_read,
8cdea7c0 4623 },
296c81d8
BS
4624 {
4625 .name = "soft_limit_in_bytes",
4626 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4627 .write_string = mem_cgroup_write,
af36f906 4628 .read = mem_cgroup_read,
296c81d8 4629 },
8cdea7c0
BS
4630 {
4631 .name = "failcnt",
8c7c6e34 4632 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4633 .trigger = mem_cgroup_reset,
af36f906 4634 .read = mem_cgroup_read,
8cdea7c0 4635 },
d2ceb9b7
KH
4636 {
4637 .name = "stat",
ab215884 4638 .read_seq_string = memcg_stat_show,
d2ceb9b7 4639 },
c1e862c1
KH
4640 {
4641 .name = "force_empty",
4642 .trigger = mem_cgroup_force_empty_write,
4643 },
18f59ea7
BS
4644 {
4645 .name = "use_hierarchy",
4646 .write_u64 = mem_cgroup_hierarchy_write,
4647 .read_u64 = mem_cgroup_hierarchy_read,
4648 },
a7885eb8
KM
4649 {
4650 .name = "swappiness",
4651 .read_u64 = mem_cgroup_swappiness_read,
4652 .write_u64 = mem_cgroup_swappiness_write,
4653 },
7dc74be0
DN
4654 {
4655 .name = "move_charge_at_immigrate",
4656 .read_u64 = mem_cgroup_move_charge_read,
4657 .write_u64 = mem_cgroup_move_charge_write,
4658 },
9490ff27
KH
4659 {
4660 .name = "oom_control",
3c11ecf4
KH
4661 .read_map = mem_cgroup_oom_control_read,
4662 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4663 .register_event = mem_cgroup_oom_register_event,
4664 .unregister_event = mem_cgroup_oom_unregister_event,
4665 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4666 },
406eb0c9
YH
4667#ifdef CONFIG_NUMA
4668 {
4669 .name = "numa_stat",
ab215884 4670 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
4671 },
4672#endif
c255a458 4673#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4674 {
4675 .name = "memsw.usage_in_bytes",
4676 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4677 .read = mem_cgroup_read,
9490ff27
KH
4678 .register_event = mem_cgroup_usage_register_event,
4679 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4680 },
4681 {
4682 .name = "memsw.max_usage_in_bytes",
4683 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4684 .trigger = mem_cgroup_reset,
af36f906 4685 .read = mem_cgroup_read,
8c7c6e34
KH
4686 },
4687 {
4688 .name = "memsw.limit_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4690 .write_string = mem_cgroup_write,
af36f906 4691 .read = mem_cgroup_read,
8c7c6e34
KH
4692 },
4693 {
4694 .name = "memsw.failcnt",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4696 .trigger = mem_cgroup_reset,
af36f906 4697 .read = mem_cgroup_read,
8c7c6e34 4698 },
8c7c6e34 4699#endif
6bc10349 4700 { }, /* terminate */
af36f906 4701};
8c7c6e34 4702
c0ff4b85 4703static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4704{
4705 struct mem_cgroup_per_node *pn;
1ecaab2b 4706 struct mem_cgroup_per_zone *mz;
41e3355d 4707 int zone, tmp = node;
1ecaab2b
KH
4708 /*
4709 * This routine is called against possible nodes.
4710 * But it's BUG to call kmalloc() against offline node.
4711 *
4712 * TODO: this routine can waste much memory for nodes which will
4713 * never be onlined. It's better to use memory hotplug callback
4714 * function.
4715 */
41e3355d
KH
4716 if (!node_state(node, N_NORMAL_MEMORY))
4717 tmp = -1;
17295c88 4718 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4719 if (!pn)
4720 return 1;
1ecaab2b 4721
1ecaab2b
KH
4722 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4723 mz = &pn->zoneinfo[zone];
7f5e86c2 4724 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
f64c3f54 4725 mz->usage_in_excess = 0;
4e416953 4726 mz->on_tree = false;
d79154bb 4727 mz->memcg = memcg;
1ecaab2b 4728 }
0a619e58 4729 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4730 return 0;
4731}
4732
c0ff4b85 4733static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4734{
c0ff4b85 4735 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4736}
4737
33327948
KH
4738static struct mem_cgroup *mem_cgroup_alloc(void)
4739{
d79154bb 4740 struct mem_cgroup *memcg;
c62b1a3b 4741 int size = sizeof(struct mem_cgroup);
33327948 4742
c62b1a3b 4743 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4744 if (size < PAGE_SIZE)
d79154bb 4745 memcg = kzalloc(size, GFP_KERNEL);
33327948 4746 else
d79154bb 4747 memcg = vzalloc(size);
33327948 4748
d79154bb 4749 if (!memcg)
e7bbcdf3
DC
4750 return NULL;
4751
d79154bb
HD
4752 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4753 if (!memcg->stat)
d2e61b8d 4754 goto out_free;
d79154bb
HD
4755 spin_lock_init(&memcg->pcp_counter_lock);
4756 return memcg;
d2e61b8d
DC
4757
4758out_free:
4759 if (size < PAGE_SIZE)
d79154bb 4760 kfree(memcg);
d2e61b8d 4761 else
d79154bb 4762 vfree(memcg);
d2e61b8d 4763 return NULL;
33327948
KH
4764}
4765
59927fb9 4766/*
3afe36b1 4767 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4768 * but in process context. The work_freeing structure is overlaid
4769 * on the rcu_freeing structure, which itself is overlaid on memsw.
4770 */
3afe36b1 4771static void free_work(struct work_struct *work)
59927fb9
HD
4772{
4773 struct mem_cgroup *memcg;
3afe36b1 4774 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4775
4776 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4777 /*
4778 * We need to make sure that (at least for now), the jump label
4779 * destruction code runs outside of the cgroup lock. This is because
4780 * get_online_cpus(), which is called from the static_branch update,
4781 * can't be called inside the cgroup_lock. cpusets are the ones
4782 * enforcing this dependency, so if they ever change, we might as well.
4783 *
4784 * schedule_work() will guarantee this happens. Be careful if you need
4785 * to move this code around, and make sure it is outside
4786 * the cgroup_lock.
4787 */
4788 disarm_sock_keys(memcg);
3afe36b1
GC
4789 if (size < PAGE_SIZE)
4790 kfree(memcg);
4791 else
4792 vfree(memcg);
59927fb9 4793}
3afe36b1
GC
4794
4795static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4796{
4797 struct mem_cgroup *memcg;
4798
4799 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4800 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4801 schedule_work(&memcg->work_freeing);
4802}
4803
8c7c6e34
KH
4804/*
4805 * At destroying mem_cgroup, references from swap_cgroup can remain.
4806 * (scanning all at force_empty is too costly...)
4807 *
4808 * Instead of clearing all references at force_empty, we remember
4809 * the number of reference from swap_cgroup and free mem_cgroup when
4810 * it goes down to 0.
4811 *
8c7c6e34
KH
4812 * Removal of cgroup itself succeeds regardless of refs from swap.
4813 */
4814
c0ff4b85 4815static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4816{
08e552c6
KH
4817 int node;
4818
c0ff4b85
R
4819 mem_cgroup_remove_from_trees(memcg);
4820 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4821
3ed28fa1 4822 for_each_node(node)
c0ff4b85 4823 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4824
c0ff4b85 4825 free_percpu(memcg->stat);
3afe36b1 4826 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4827}
4828
c0ff4b85 4829static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4830{
c0ff4b85 4831 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4832}
4833
c0ff4b85 4834static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4835{
c0ff4b85
R
4836 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4837 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4838 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4839 if (parent)
4840 mem_cgroup_put(parent);
4841 }
8c7c6e34
KH
4842}
4843
c0ff4b85 4844static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4845{
c0ff4b85 4846 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4847}
4848
7bcc1bb1
DN
4849/*
4850 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4851 */
e1aab161 4852struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4853{
c0ff4b85 4854 if (!memcg->res.parent)
7bcc1bb1 4855 return NULL;
c0ff4b85 4856 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4857}
e1aab161 4858EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4859
c255a458 4860#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
4861static void __init enable_swap_cgroup(void)
4862{
f8d66542 4863 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4864 do_swap_account = 1;
4865}
4866#else
4867static void __init enable_swap_cgroup(void)
4868{
4869}
4870#endif
4871
f64c3f54
BS
4872static int mem_cgroup_soft_limit_tree_init(void)
4873{
4874 struct mem_cgroup_tree_per_node *rtpn;
4875 struct mem_cgroup_tree_per_zone *rtpz;
4876 int tmp, node, zone;
4877
3ed28fa1 4878 for_each_node(node) {
f64c3f54
BS
4879 tmp = node;
4880 if (!node_state(node, N_NORMAL_MEMORY))
4881 tmp = -1;
4882 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4883 if (!rtpn)
c3cecc68 4884 goto err_cleanup;
f64c3f54
BS
4885
4886 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4887
4888 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4889 rtpz = &rtpn->rb_tree_per_zone[zone];
4890 rtpz->rb_root = RB_ROOT;
4891 spin_lock_init(&rtpz->lock);
4892 }
4893 }
4894 return 0;
c3cecc68
MH
4895
4896err_cleanup:
3ed28fa1 4897 for_each_node(node) {
c3cecc68
MH
4898 if (!soft_limit_tree.rb_tree_per_node[node])
4899 break;
4900 kfree(soft_limit_tree.rb_tree_per_node[node]);
4901 soft_limit_tree.rb_tree_per_node[node] = NULL;
4902 }
4903 return 1;
4904
f64c3f54
BS
4905}
4906
0eb253e2 4907static struct cgroup_subsys_state * __ref
761b3ef5 4908mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4909{
c0ff4b85 4910 struct mem_cgroup *memcg, *parent;
04046e1a 4911 long error = -ENOMEM;
6d12e2d8 4912 int node;
8cdea7c0 4913
c0ff4b85
R
4914 memcg = mem_cgroup_alloc();
4915 if (!memcg)
04046e1a 4916 return ERR_PTR(error);
78fb7466 4917
3ed28fa1 4918 for_each_node(node)
c0ff4b85 4919 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4920 goto free_out;
f64c3f54 4921
c077719b 4922 /* root ? */
28dbc4b6 4923 if (cont->parent == NULL) {
cdec2e42 4924 int cpu;
c077719b 4925 enable_swap_cgroup();
28dbc4b6 4926 parent = NULL;
f64c3f54
BS
4927 if (mem_cgroup_soft_limit_tree_init())
4928 goto free_out;
a41c58a6 4929 root_mem_cgroup = memcg;
cdec2e42
KH
4930 for_each_possible_cpu(cpu) {
4931 struct memcg_stock_pcp *stock =
4932 &per_cpu(memcg_stock, cpu);
4933 INIT_WORK(&stock->work, drain_local_stock);
4934 }
711d3d2c 4935 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4936 } else {
28dbc4b6 4937 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4938 memcg->use_hierarchy = parent->use_hierarchy;
4939 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4940 }
28dbc4b6 4941
18f59ea7 4942 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4943 res_counter_init(&memcg->res, &parent->res);
4944 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4945 /*
4946 * We increment refcnt of the parent to ensure that we can
4947 * safely access it on res_counter_charge/uncharge.
4948 * This refcnt will be decremented when freeing this
4949 * mem_cgroup(see mem_cgroup_put).
4950 */
4951 mem_cgroup_get(parent);
18f59ea7 4952 } else {
c0ff4b85
R
4953 res_counter_init(&memcg->res, NULL);
4954 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4955 }
c0ff4b85
R
4956 memcg->last_scanned_node = MAX_NUMNODES;
4957 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4958
a7885eb8 4959 if (parent)
c0ff4b85
R
4960 memcg->swappiness = mem_cgroup_swappiness(parent);
4961 atomic_set(&memcg->refcnt, 1);
4962 memcg->move_charge_at_immigrate = 0;
4963 mutex_init(&memcg->thresholds_lock);
312734c0 4964 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4965
4966 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4967 if (error) {
4968 /*
4969 * We call put now because our (and parent's) refcnts
4970 * are already in place. mem_cgroup_put() will internally
4971 * call __mem_cgroup_free, so return directly
4972 */
4973 mem_cgroup_put(memcg);
4974 return ERR_PTR(error);
4975 }
c0ff4b85 4976 return &memcg->css;
6d12e2d8 4977free_out:
c0ff4b85 4978 __mem_cgroup_free(memcg);
04046e1a 4979 return ERR_PTR(error);
8cdea7c0
BS
4980}
4981
761b3ef5 4982static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 4983{
c0ff4b85 4984 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4985
c0ff4b85 4986 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
4987}
4988
761b3ef5 4989static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 4990{
c0ff4b85 4991 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 4992
1d62e436 4993 kmem_cgroup_destroy(memcg);
d1a4c0b3 4994
c0ff4b85 4995 mem_cgroup_put(memcg);
8cdea7c0
BS
4996}
4997
02491447 4998#ifdef CONFIG_MMU
7dc74be0 4999/* Handlers for move charge at task migration. */
854ffa8d
DN
5000#define PRECHARGE_COUNT_AT_ONCE 256
5001static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5002{
854ffa8d
DN
5003 int ret = 0;
5004 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5005 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5006
c0ff4b85 5007 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5008 mc.precharge += count;
5009 /* we don't need css_get for root */
5010 return ret;
5011 }
5012 /* try to charge at once */
5013 if (count > 1) {
5014 struct res_counter *dummy;
5015 /*
c0ff4b85 5016 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5017 * by cgroup_lock_live_cgroup() that it is not removed and we
5018 * are still under the same cgroup_mutex. So we can postpone
5019 * css_get().
5020 */
c0ff4b85 5021 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5022 goto one_by_one;
c0ff4b85 5023 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5024 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5025 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5026 goto one_by_one;
5027 }
5028 mc.precharge += count;
854ffa8d
DN
5029 return ret;
5030 }
5031one_by_one:
5032 /* fall back to one by one charge */
5033 while (count--) {
5034 if (signal_pending(current)) {
5035 ret = -EINTR;
5036 break;
5037 }
5038 if (!batch_count--) {
5039 batch_count = PRECHARGE_COUNT_AT_ONCE;
5040 cond_resched();
5041 }
c0ff4b85
R
5042 ret = __mem_cgroup_try_charge(NULL,
5043 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5044 if (ret)
854ffa8d 5045 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5046 return ret;
854ffa8d
DN
5047 mc.precharge++;
5048 }
4ffef5fe
DN
5049 return ret;
5050}
5051
5052/**
8d32ff84 5053 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5054 * @vma: the vma the pte to be checked belongs
5055 * @addr: the address corresponding to the pte to be checked
5056 * @ptent: the pte to be checked
02491447 5057 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5058 *
5059 * Returns
5060 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5061 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5062 * move charge. if @target is not NULL, the page is stored in target->page
5063 * with extra refcnt got(Callers should handle it).
02491447
DN
5064 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5065 * target for charge migration. if @target is not NULL, the entry is stored
5066 * in target->ent.
4ffef5fe
DN
5067 *
5068 * Called with pte lock held.
5069 */
4ffef5fe
DN
5070union mc_target {
5071 struct page *page;
02491447 5072 swp_entry_t ent;
4ffef5fe
DN
5073};
5074
4ffef5fe 5075enum mc_target_type {
8d32ff84 5076 MC_TARGET_NONE = 0,
4ffef5fe 5077 MC_TARGET_PAGE,
02491447 5078 MC_TARGET_SWAP,
4ffef5fe
DN
5079};
5080
90254a65
DN
5081static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5082 unsigned long addr, pte_t ptent)
4ffef5fe 5083{
90254a65 5084 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5085
90254a65
DN
5086 if (!page || !page_mapped(page))
5087 return NULL;
5088 if (PageAnon(page)) {
5089 /* we don't move shared anon */
4b91355e 5090 if (!move_anon())
90254a65 5091 return NULL;
87946a72
DN
5092 } else if (!move_file())
5093 /* we ignore mapcount for file pages */
90254a65
DN
5094 return NULL;
5095 if (!get_page_unless_zero(page))
5096 return NULL;
5097
5098 return page;
5099}
5100
4b91355e 5101#ifdef CONFIG_SWAP
90254a65
DN
5102static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5103 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5104{
90254a65
DN
5105 struct page *page = NULL;
5106 swp_entry_t ent = pte_to_swp_entry(ptent);
5107
5108 if (!move_anon() || non_swap_entry(ent))
5109 return NULL;
4b91355e
KH
5110 /*
5111 * Because lookup_swap_cache() updates some statistics counter,
5112 * we call find_get_page() with swapper_space directly.
5113 */
5114 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5115 if (do_swap_account)
5116 entry->val = ent.val;
5117
5118 return page;
5119}
4b91355e
KH
5120#else
5121static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5122 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5123{
5124 return NULL;
5125}
5126#endif
90254a65 5127
87946a72
DN
5128static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5129 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5130{
5131 struct page *page = NULL;
87946a72
DN
5132 struct address_space *mapping;
5133 pgoff_t pgoff;
5134
5135 if (!vma->vm_file) /* anonymous vma */
5136 return NULL;
5137 if (!move_file())
5138 return NULL;
5139
87946a72
DN
5140 mapping = vma->vm_file->f_mapping;
5141 if (pte_none(ptent))
5142 pgoff = linear_page_index(vma, addr);
5143 else /* pte_file(ptent) is true */
5144 pgoff = pte_to_pgoff(ptent);
5145
5146 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5147 page = find_get_page(mapping, pgoff);
5148
5149#ifdef CONFIG_SWAP
5150 /* shmem/tmpfs may report page out on swap: account for that too. */
5151 if (radix_tree_exceptional_entry(page)) {
5152 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5153 if (do_swap_account)
aa3b1895
HD
5154 *entry = swap;
5155 page = find_get_page(&swapper_space, swap.val);
87946a72 5156 }
aa3b1895 5157#endif
87946a72
DN
5158 return page;
5159}
5160
8d32ff84 5161static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5162 unsigned long addr, pte_t ptent, union mc_target *target)
5163{
5164 struct page *page = NULL;
5165 struct page_cgroup *pc;
8d32ff84 5166 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5167 swp_entry_t ent = { .val = 0 };
5168
5169 if (pte_present(ptent))
5170 page = mc_handle_present_pte(vma, addr, ptent);
5171 else if (is_swap_pte(ptent))
5172 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5173 else if (pte_none(ptent) || pte_file(ptent))
5174 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5175
5176 if (!page && !ent.val)
8d32ff84 5177 return ret;
02491447
DN
5178 if (page) {
5179 pc = lookup_page_cgroup(page);
5180 /*
5181 * Do only loose check w/o page_cgroup lock.
5182 * mem_cgroup_move_account() checks the pc is valid or not under
5183 * the lock.
5184 */
5185 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5186 ret = MC_TARGET_PAGE;
5187 if (target)
5188 target->page = page;
5189 }
5190 if (!ret || !target)
5191 put_page(page);
5192 }
90254a65
DN
5193 /* There is a swap entry and a page doesn't exist or isn't charged */
5194 if (ent.val && !ret &&
9fb4b7cc 5195 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5196 ret = MC_TARGET_SWAP;
5197 if (target)
5198 target->ent = ent;
4ffef5fe 5199 }
4ffef5fe
DN
5200 return ret;
5201}
5202
12724850
NH
5203#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5204/*
5205 * We don't consider swapping or file mapped pages because THP does not
5206 * support them for now.
5207 * Caller should make sure that pmd_trans_huge(pmd) is true.
5208 */
5209static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5210 unsigned long addr, pmd_t pmd, union mc_target *target)
5211{
5212 struct page *page = NULL;
5213 struct page_cgroup *pc;
5214 enum mc_target_type ret = MC_TARGET_NONE;
5215
5216 page = pmd_page(pmd);
5217 VM_BUG_ON(!page || !PageHead(page));
5218 if (!move_anon())
5219 return ret;
5220 pc = lookup_page_cgroup(page);
5221 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5222 ret = MC_TARGET_PAGE;
5223 if (target) {
5224 get_page(page);
5225 target->page = page;
5226 }
5227 }
5228 return ret;
5229}
5230#else
5231static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5232 unsigned long addr, pmd_t pmd, union mc_target *target)
5233{
5234 return MC_TARGET_NONE;
5235}
5236#endif
5237
4ffef5fe
DN
5238static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5239 unsigned long addr, unsigned long end,
5240 struct mm_walk *walk)
5241{
5242 struct vm_area_struct *vma = walk->private;
5243 pte_t *pte;
5244 spinlock_t *ptl;
5245
12724850
NH
5246 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5247 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5248 mc.precharge += HPAGE_PMD_NR;
5249 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5250 return 0;
12724850 5251 }
03319327 5252
45f83cef
AA
5253 if (pmd_trans_unstable(pmd))
5254 return 0;
4ffef5fe
DN
5255 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5256 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5257 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5258 mc.precharge++; /* increment precharge temporarily */
5259 pte_unmap_unlock(pte - 1, ptl);
5260 cond_resched();
5261
7dc74be0
DN
5262 return 0;
5263}
5264
4ffef5fe
DN
5265static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5266{
5267 unsigned long precharge;
5268 struct vm_area_struct *vma;
5269
dfe076b0 5270 down_read(&mm->mmap_sem);
4ffef5fe
DN
5271 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5272 struct mm_walk mem_cgroup_count_precharge_walk = {
5273 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5274 .mm = mm,
5275 .private = vma,
5276 };
5277 if (is_vm_hugetlb_page(vma))
5278 continue;
4ffef5fe
DN
5279 walk_page_range(vma->vm_start, vma->vm_end,
5280 &mem_cgroup_count_precharge_walk);
5281 }
dfe076b0 5282 up_read(&mm->mmap_sem);
4ffef5fe
DN
5283
5284 precharge = mc.precharge;
5285 mc.precharge = 0;
5286
5287 return precharge;
5288}
5289
4ffef5fe
DN
5290static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5291{
dfe076b0
DN
5292 unsigned long precharge = mem_cgroup_count_precharge(mm);
5293
5294 VM_BUG_ON(mc.moving_task);
5295 mc.moving_task = current;
5296 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5297}
5298
dfe076b0
DN
5299/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5300static void __mem_cgroup_clear_mc(void)
4ffef5fe 5301{
2bd9bb20
KH
5302 struct mem_cgroup *from = mc.from;
5303 struct mem_cgroup *to = mc.to;
5304
4ffef5fe 5305 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5306 if (mc.precharge) {
5307 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5308 mc.precharge = 0;
5309 }
5310 /*
5311 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5312 * we must uncharge here.
5313 */
5314 if (mc.moved_charge) {
5315 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5316 mc.moved_charge = 0;
4ffef5fe 5317 }
483c30b5
DN
5318 /* we must fixup refcnts and charges */
5319 if (mc.moved_swap) {
483c30b5
DN
5320 /* uncharge swap account from the old cgroup */
5321 if (!mem_cgroup_is_root(mc.from))
5322 res_counter_uncharge(&mc.from->memsw,
5323 PAGE_SIZE * mc.moved_swap);
5324 __mem_cgroup_put(mc.from, mc.moved_swap);
5325
5326 if (!mem_cgroup_is_root(mc.to)) {
5327 /*
5328 * we charged both to->res and to->memsw, so we should
5329 * uncharge to->res.
5330 */
5331 res_counter_uncharge(&mc.to->res,
5332 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5333 }
5334 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5335 mc.moved_swap = 0;
5336 }
dfe076b0
DN
5337 memcg_oom_recover(from);
5338 memcg_oom_recover(to);
5339 wake_up_all(&mc.waitq);
5340}
5341
5342static void mem_cgroup_clear_mc(void)
5343{
5344 struct mem_cgroup *from = mc.from;
5345
5346 /*
5347 * we must clear moving_task before waking up waiters at the end of
5348 * task migration.
5349 */
5350 mc.moving_task = NULL;
5351 __mem_cgroup_clear_mc();
2bd9bb20 5352 spin_lock(&mc.lock);
4ffef5fe
DN
5353 mc.from = NULL;
5354 mc.to = NULL;
2bd9bb20 5355 spin_unlock(&mc.lock);
32047e2a 5356 mem_cgroup_end_move(from);
4ffef5fe
DN
5357}
5358
761b3ef5
LZ
5359static int mem_cgroup_can_attach(struct cgroup *cgroup,
5360 struct cgroup_taskset *tset)
7dc74be0 5361{
2f7ee569 5362 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5363 int ret = 0;
c0ff4b85 5364 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5365
c0ff4b85 5366 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5367 struct mm_struct *mm;
5368 struct mem_cgroup *from = mem_cgroup_from_task(p);
5369
c0ff4b85 5370 VM_BUG_ON(from == memcg);
7dc74be0
DN
5371
5372 mm = get_task_mm(p);
5373 if (!mm)
5374 return 0;
7dc74be0 5375 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5376 if (mm->owner == p) {
5377 VM_BUG_ON(mc.from);
5378 VM_BUG_ON(mc.to);
5379 VM_BUG_ON(mc.precharge);
854ffa8d 5380 VM_BUG_ON(mc.moved_charge);
483c30b5 5381 VM_BUG_ON(mc.moved_swap);
32047e2a 5382 mem_cgroup_start_move(from);
2bd9bb20 5383 spin_lock(&mc.lock);
4ffef5fe 5384 mc.from = from;
c0ff4b85 5385 mc.to = memcg;
2bd9bb20 5386 spin_unlock(&mc.lock);
dfe076b0 5387 /* We set mc.moving_task later */
4ffef5fe
DN
5388
5389 ret = mem_cgroup_precharge_mc(mm);
5390 if (ret)
5391 mem_cgroup_clear_mc();
dfe076b0
DN
5392 }
5393 mmput(mm);
7dc74be0
DN
5394 }
5395 return ret;
5396}
5397
761b3ef5
LZ
5398static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5399 struct cgroup_taskset *tset)
7dc74be0 5400{
4ffef5fe 5401 mem_cgroup_clear_mc();
7dc74be0
DN
5402}
5403
4ffef5fe
DN
5404static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5405 unsigned long addr, unsigned long end,
5406 struct mm_walk *walk)
7dc74be0 5407{
4ffef5fe
DN
5408 int ret = 0;
5409 struct vm_area_struct *vma = walk->private;
5410 pte_t *pte;
5411 spinlock_t *ptl;
12724850
NH
5412 enum mc_target_type target_type;
5413 union mc_target target;
5414 struct page *page;
5415 struct page_cgroup *pc;
4ffef5fe 5416
12724850
NH
5417 /*
5418 * We don't take compound_lock() here but no race with splitting thp
5419 * happens because:
5420 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5421 * under splitting, which means there's no concurrent thp split,
5422 * - if another thread runs into split_huge_page() just after we
5423 * entered this if-block, the thread must wait for page table lock
5424 * to be unlocked in __split_huge_page_splitting(), where the main
5425 * part of thp split is not executed yet.
5426 */
5427 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5428 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5429 spin_unlock(&vma->vm_mm->page_table_lock);
5430 return 0;
5431 }
5432 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5433 if (target_type == MC_TARGET_PAGE) {
5434 page = target.page;
5435 if (!isolate_lru_page(page)) {
5436 pc = lookup_page_cgroup(page);
5437 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5438 pc, mc.from, mc.to)) {
12724850
NH
5439 mc.precharge -= HPAGE_PMD_NR;
5440 mc.moved_charge += HPAGE_PMD_NR;
5441 }
5442 putback_lru_page(page);
5443 }
5444 put_page(page);
5445 }
5446 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5447 return 0;
12724850
NH
5448 }
5449
45f83cef
AA
5450 if (pmd_trans_unstable(pmd))
5451 return 0;
4ffef5fe
DN
5452retry:
5453 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5454 for (; addr != end; addr += PAGE_SIZE) {
5455 pte_t ptent = *(pte++);
02491447 5456 swp_entry_t ent;
4ffef5fe
DN
5457
5458 if (!mc.precharge)
5459 break;
5460
8d32ff84 5461 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5462 case MC_TARGET_PAGE:
5463 page = target.page;
5464 if (isolate_lru_page(page))
5465 goto put;
5466 pc = lookup_page_cgroup(page);
7ec99d62 5467 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5468 mc.from, mc.to)) {
4ffef5fe 5469 mc.precharge--;
854ffa8d
DN
5470 /* we uncharge from mc.from later. */
5471 mc.moved_charge++;
4ffef5fe
DN
5472 }
5473 putback_lru_page(page);
8d32ff84 5474put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5475 put_page(page);
5476 break;
02491447
DN
5477 case MC_TARGET_SWAP:
5478 ent = target.ent;
e91cbb42 5479 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5480 mc.precharge--;
483c30b5
DN
5481 /* we fixup refcnts and charges later. */
5482 mc.moved_swap++;
5483 }
02491447 5484 break;
4ffef5fe
DN
5485 default:
5486 break;
5487 }
5488 }
5489 pte_unmap_unlock(pte - 1, ptl);
5490 cond_resched();
5491
5492 if (addr != end) {
5493 /*
5494 * We have consumed all precharges we got in can_attach().
5495 * We try charge one by one, but don't do any additional
5496 * charges to mc.to if we have failed in charge once in attach()
5497 * phase.
5498 */
854ffa8d 5499 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5500 if (!ret)
5501 goto retry;
5502 }
5503
5504 return ret;
5505}
5506
5507static void mem_cgroup_move_charge(struct mm_struct *mm)
5508{
5509 struct vm_area_struct *vma;
5510
5511 lru_add_drain_all();
dfe076b0
DN
5512retry:
5513 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5514 /*
5515 * Someone who are holding the mmap_sem might be waiting in
5516 * waitq. So we cancel all extra charges, wake up all waiters,
5517 * and retry. Because we cancel precharges, we might not be able
5518 * to move enough charges, but moving charge is a best-effort
5519 * feature anyway, so it wouldn't be a big problem.
5520 */
5521 __mem_cgroup_clear_mc();
5522 cond_resched();
5523 goto retry;
5524 }
4ffef5fe
DN
5525 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5526 int ret;
5527 struct mm_walk mem_cgroup_move_charge_walk = {
5528 .pmd_entry = mem_cgroup_move_charge_pte_range,
5529 .mm = mm,
5530 .private = vma,
5531 };
5532 if (is_vm_hugetlb_page(vma))
5533 continue;
4ffef5fe
DN
5534 ret = walk_page_range(vma->vm_start, vma->vm_end,
5535 &mem_cgroup_move_charge_walk);
5536 if (ret)
5537 /*
5538 * means we have consumed all precharges and failed in
5539 * doing additional charge. Just abandon here.
5540 */
5541 break;
5542 }
dfe076b0 5543 up_read(&mm->mmap_sem);
7dc74be0
DN
5544}
5545
761b3ef5
LZ
5546static void mem_cgroup_move_task(struct cgroup *cont,
5547 struct cgroup_taskset *tset)
67e465a7 5548{
2f7ee569 5549 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5550 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5551
dfe076b0 5552 if (mm) {
a433658c
KM
5553 if (mc.to)
5554 mem_cgroup_move_charge(mm);
dfe076b0
DN
5555 mmput(mm);
5556 }
a433658c
KM
5557 if (mc.to)
5558 mem_cgroup_clear_mc();
67e465a7 5559}
5cfb80a7 5560#else /* !CONFIG_MMU */
761b3ef5
LZ
5561static int mem_cgroup_can_attach(struct cgroup *cgroup,
5562 struct cgroup_taskset *tset)
5cfb80a7
DN
5563{
5564 return 0;
5565}
761b3ef5
LZ
5566static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5567 struct cgroup_taskset *tset)
5cfb80a7
DN
5568{
5569}
761b3ef5
LZ
5570static void mem_cgroup_move_task(struct cgroup *cont,
5571 struct cgroup_taskset *tset)
5cfb80a7
DN
5572{
5573}
5574#endif
67e465a7 5575
8cdea7c0
BS
5576struct cgroup_subsys mem_cgroup_subsys = {
5577 .name = "memory",
5578 .subsys_id = mem_cgroup_subsys_id,
5579 .create = mem_cgroup_create,
df878fb0 5580 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5581 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5582 .can_attach = mem_cgroup_can_attach,
5583 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5584 .attach = mem_cgroup_move_task,
6bc10349 5585 .base_cftypes = mem_cgroup_files,
6d12e2d8 5586 .early_init = 0,
04046e1a 5587 .use_id = 1,
48ddbe19 5588 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5589};
c077719b 5590
c255a458 5591#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5592static int __init enable_swap_account(char *s)
5593{
5594 /* consider enabled if no parameter or 1 is given */
a2c8990a 5595 if (!strcmp(s, "1"))
a42c390c 5596 really_do_swap_account = 1;
a2c8990a 5597 else if (!strcmp(s, "0"))
a42c390c
MH
5598 really_do_swap_account = 0;
5599 return 1;
5600}
a2c8990a 5601__setup("swapaccount=", enable_swap_account);
c077719b 5602
c077719b 5603#endif