Merge tag 'ceph-for-6.8-rc1' of https://github.com/ceph/ceph-client
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
6a792697 66#include <linux/sched/isolation.h>
6011be59 67#include <linux/kmemleak.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
014bb1de 72#include "swap.h"
8cdea7c0 73
7c0f6ba6 74#include <linux/uaccess.h>
8697d331 75
cc8e970c
KM
76#include <trace/events/vmscan.h>
77
073219e9
TH
78struct cgroup_subsys memory_cgrp_subsys __read_mostly;
79EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 80
7d828602
JW
81struct mem_cgroup *root_mem_cgroup __read_mostly;
82
37d5985c
RG
83/* Active memory cgroup to use from an interrupt context */
84DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 85EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 86
f7e1cb6e 87/* Socket memory accounting disabled? */
0f0cace3 88static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 89
04823c83 90/* Kernel memory accounting disabled? */
17c17367 91static bool cgroup_memory_nokmem __ro_after_init;
04823c83 92
b6c1a8af
YS
93/* BPF memory accounting disabled? */
94static bool cgroup_memory_nobpf __ro_after_init;
95
97b27821
TH
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
7941d214
JW
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
b25806dc 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
104}
105
a0db00fc
KS
106#define THRESHOLDS_EVENTS_TARGET 128
107#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 108
bb4cc1a8
AM
109/*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
ef8f2327 114struct mem_cgroup_tree_per_node {
bb4cc1a8 115 struct rb_root rb_root;
fa90b2fd 116 struct rb_node *rb_rightmost;
bb4cc1a8
AM
117 spinlock_t lock;
118};
119
bb4cc1a8
AM
120struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122};
123
124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
9490ff27
KH
126/* for OOM */
127struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130};
2e72b634 131
79bd9814
TH
132/*
133 * cgroup_event represents events which userspace want to receive.
134 */
3bc942f3 135struct mem_cgroup_event {
79bd9814 136 /*
59b6f873 137 * memcg which the event belongs to.
79bd9814 138 */
59b6f873 139 struct mem_cgroup *memcg;
79bd9814
TH
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
fba94807
TH
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
59b6f873 153 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 154 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
59b6f873 160 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 161 struct eventfd_ctx *eventfd);
79bd9814
TH
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
ac6424b9 168 wait_queue_entry_t wait;
79bd9814
TH
169 struct work_struct remove;
170};
171
c0ff4b85
R
172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 174
7dc74be0
DN
175/* Stuffs for move charges at task migration. */
176/*
1dfab5ab 177 * Types of charges to be moved.
7dc74be0 178 */
1dfab5ab
JW
179#define MOVE_ANON 0x1U
180#define MOVE_FILE 0x2U
181#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 182
4ffef5fe
DN
183/* "mc" and its members are protected by cgroup_mutex */
184static struct move_charge_struct {
b1dd693e 185 spinlock_t lock; /* for from, to */
264a0ae1 186 struct mm_struct *mm;
4ffef5fe
DN
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
1dfab5ab 189 unsigned long flags;
4ffef5fe 190 unsigned long precharge;
854ffa8d 191 unsigned long moved_charge;
483c30b5 192 unsigned long moved_swap;
8033b97c
DN
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195} mc = {
2bd9bb20 196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198};
4ffef5fe 199
4e416953 200/*
f4d005af 201 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
4e416953
BS
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
a0db00fc 204#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 205#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 206
8c7c6e34 207/* for encoding cft->private value on file */
86ae53e1
GC
208enum res_type {
209 _MEM,
210 _MEMSWAP,
510fc4e1 211 _KMEM,
d55f90bf 212 _TCP,
86ae53e1
GC
213};
214
a0db00fc
KS
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
217#define MEMFILE_ATTR(val) ((val) & 0xffff)
218
b05706f1
KT
219/*
220 * Iteration constructs for visiting all cgroups (under a tree). If
221 * loops are exited prematurely (break), mem_cgroup_iter_break() must
222 * be used for reference counting.
223 */
224#define for_each_mem_cgroup_tree(iter, root) \
225 for (iter = mem_cgroup_iter(root, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(root, iter, NULL))
228
229#define for_each_mem_cgroup(iter) \
230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
231 iter != NULL; \
232 iter = mem_cgroup_iter(NULL, iter, NULL))
233
a4ebf1b6 234static inline bool task_is_dying(void)
7775face
TH
235{
236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237 (current->flags & PF_EXITING);
238}
239
70ddf637
AV
240/* Some nice accessors for the vmpressure. */
241struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
242{
243 if (!memcg)
244 memcg = root_mem_cgroup;
245 return &memcg->vmpressure;
246}
247
9647875b 248struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 249{
9647875b 250 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
251}
252
1aacbd35
RG
253#define CURRENT_OBJCG_UPDATE_BIT 0
254#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
255
84c07d11 256#ifdef CONFIG_MEMCG_KMEM
0764db9b 257static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 258
4d5c8aed
RG
259bool mem_cgroup_kmem_disabled(void)
260{
261 return cgroup_memory_nokmem;
262}
263
f1286fae
MS
264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
c1a660de 266
bf4f0599
RG
267static void obj_cgroup_release(struct percpu_ref *ref)
268{
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
bf4f0599 298 if (nr_pages)
f1286fae 299 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 300
0764db9b 301 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 302 list_del(&objcg->list);
0764db9b 303 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307}
308
309static struct obj_cgroup *obj_cgroup_alloc(void)
310{
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326}
327
328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330{
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
0764db9b 335 spin_lock_irq(&objcg_lock);
bf4f0599 336
9838354e
MS
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
0764db9b 345 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
d7f25f8a
GC
350/*
351 * A lot of the calls to the cache allocation functions are expected to be
272911a4 352 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
353 * conditional to this static branch, we'll have to allow modules that does
354 * kmem_cache_alloc and the such to see this symbol as well
355 */
f7a449f7
RG
356DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
357EXPORT_SYMBOL(memcg_kmem_online_key);
b6c1a8af
YS
358
359DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
360EXPORT_SYMBOL(memcg_bpf_enabled_key);
0a432dcb 361#endif
17cc4dfe 362
ad7fa852 363/**
75376c6f
MWO
364 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
365 * @folio: folio of interest
ad7fa852
TH
366 *
367 * If memcg is bound to the default hierarchy, css of the memcg associated
75376c6f 368 * with @folio is returned. The returned css remains associated with @folio
ad7fa852
TH
369 * until it is released.
370 *
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
372 * is returned.
ad7fa852 373 */
75376c6f 374struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
ad7fa852 375{
75376c6f 376 struct mem_cgroup *memcg = folio_memcg(folio);
ad7fa852 377
9e10a130 378 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
379 memcg = root_mem_cgroup;
380
ad7fa852
TH
381 return &memcg->css;
382}
383
2fc04524
VD
384/**
385 * page_cgroup_ino - return inode number of the memcg a page is charged to
386 * @page: the page
387 *
388 * Look up the closest online ancestor of the memory cgroup @page is charged to
389 * and return its inode number or 0 if @page is not charged to any cgroup. It
390 * is safe to call this function without holding a reference to @page.
391 *
392 * Note, this function is inherently racy, because there is nothing to prevent
393 * the cgroup inode from getting torn down and potentially reallocated a moment
394 * after page_cgroup_ino() returns, so it only should be used by callers that
395 * do not care (such as procfs interfaces).
396 */
397ino_t page_cgroup_ino(struct page *page)
398{
399 struct mem_cgroup *memcg;
400 unsigned long ino = 0;
401
402 rcu_read_lock();
ec342603
YA
403 /* page_folio() is racy here, but the entire function is racy anyway */
404 memcg = folio_memcg_check(page_folio(page));
286e04b8 405
2fc04524
VD
406 while (memcg && !(memcg->css.flags & CSS_ONLINE))
407 memcg = parent_mem_cgroup(memcg);
408 if (memcg)
409 ino = cgroup_ino(memcg->css.cgroup);
410 rcu_read_unlock();
411 return ino;
412}
413
ef8f2327
MG
414static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
415 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 416 unsigned long new_usage_in_excess)
bb4cc1a8
AM
417{
418 struct rb_node **p = &mctz->rb_root.rb_node;
419 struct rb_node *parent = NULL;
ef8f2327 420 struct mem_cgroup_per_node *mz_node;
fa90b2fd 421 bool rightmost = true;
bb4cc1a8
AM
422
423 if (mz->on_tree)
424 return;
425
426 mz->usage_in_excess = new_usage_in_excess;
427 if (!mz->usage_in_excess)
428 return;
429 while (*p) {
430 parent = *p;
ef8f2327 431 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 432 tree_node);
fa90b2fd 433 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 434 p = &(*p)->rb_left;
fa90b2fd 435 rightmost = false;
378876b0 436 } else {
bb4cc1a8 437 p = &(*p)->rb_right;
378876b0 438 }
bb4cc1a8 439 }
fa90b2fd
DB
440
441 if (rightmost)
442 mctz->rb_rightmost = &mz->tree_node;
443
bb4cc1a8
AM
444 rb_link_node(&mz->tree_node, parent, p);
445 rb_insert_color(&mz->tree_node, &mctz->rb_root);
446 mz->on_tree = true;
447}
448
ef8f2327
MG
449static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
450 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
451{
452 if (!mz->on_tree)
453 return;
fa90b2fd
DB
454
455 if (&mz->tree_node == mctz->rb_rightmost)
456 mctz->rb_rightmost = rb_prev(&mz->tree_node);
457
bb4cc1a8
AM
458 rb_erase(&mz->tree_node, &mctz->rb_root);
459 mz->on_tree = false;
460}
461
ef8f2327
MG
462static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
463 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 464{
0a31bc97
JW
465 unsigned long flags;
466
467 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 468 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 469 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
470}
471
3e32cb2e
JW
472static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
473{
474 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 475 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
476 unsigned long excess = 0;
477
478 if (nr_pages > soft_limit)
479 excess = nr_pages - soft_limit;
480
481 return excess;
482}
bb4cc1a8 483
658b69c9 484static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 485{
3e32cb2e 486 unsigned long excess;
ef8f2327
MG
487 struct mem_cgroup_per_node *mz;
488 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 489
e4dde56c 490 if (lru_gen_enabled()) {
36c7b4db 491 if (soft_limit_excess(memcg))
5c7e7a0d 492 lru_gen_soft_reclaim(memcg, nid);
e4dde56c
YZ
493 return;
494 }
495
2ab082ba 496 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
497 if (!mctz)
498 return;
bb4cc1a8
AM
499 /*
500 * Necessary to update all ancestors when hierarchy is used.
501 * because their event counter is not touched.
502 */
503 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 504 mz = memcg->nodeinfo[nid];
3e32cb2e 505 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
506 /*
507 * We have to update the tree if mz is on RB-tree or
508 * mem is over its softlimit.
509 */
510 if (excess || mz->on_tree) {
0a31bc97
JW
511 unsigned long flags;
512
513 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
514 /* if on-tree, remove it */
515 if (mz->on_tree)
cf2c8127 516 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
517 /*
518 * Insert again. mz->usage_in_excess will be updated.
519 * If excess is 0, no tree ops.
520 */
cf2c8127 521 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 522 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
523 }
524 }
525}
526
527static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
528{
ef8f2327
MG
529 struct mem_cgroup_tree_per_node *mctz;
530 struct mem_cgroup_per_node *mz;
531 int nid;
bb4cc1a8 532
e231875b 533 for_each_node(nid) {
a3747b53 534 mz = memcg->nodeinfo[nid];
2ab082ba 535 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
536 if (mctz)
537 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
538 }
539}
540
ef8f2327
MG
541static struct mem_cgroup_per_node *
542__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 543{
ef8f2327 544 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
545
546retry:
547 mz = NULL;
fa90b2fd 548 if (!mctz->rb_rightmost)
bb4cc1a8
AM
549 goto done; /* Nothing to reclaim from */
550
fa90b2fd
DB
551 mz = rb_entry(mctz->rb_rightmost,
552 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
553 /*
554 * Remove the node now but someone else can add it back,
555 * we will to add it back at the end of reclaim to its correct
556 * position in the tree.
557 */
cf2c8127 558 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 559 if (!soft_limit_excess(mz->memcg) ||
8965aa28 560 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
561 goto retry;
562done:
563 return mz;
564}
565
ef8f2327
MG
566static struct mem_cgroup_per_node *
567mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 568{
ef8f2327 569 struct mem_cgroup_per_node *mz;
bb4cc1a8 570
0a31bc97 571 spin_lock_irq(&mctz->lock);
bb4cc1a8 572 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 573 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
574 return mz;
575}
576
d396def5
SB
577/* Subset of vm_event_item to report for memcg event stats */
578static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
579 PGPGIN,
580 PGPGOUT,
d396def5
SB
581 PGSCAN_KSWAPD,
582 PGSCAN_DIRECT,
57e9cc50 583 PGSCAN_KHUGEPAGED,
d396def5
SB
584 PGSTEAL_KSWAPD,
585 PGSTEAL_DIRECT,
57e9cc50 586 PGSTEAL_KHUGEPAGED,
d396def5
SB
587 PGFAULT,
588 PGMAJFAULT,
589 PGREFILL,
590 PGACTIVATE,
591 PGDEACTIVATE,
592 PGLAZYFREE,
593 PGLAZYFREED,
594#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
595 ZSWPIN,
596 ZSWPOUT,
e0bf1dc8 597 ZSWPWB,
d396def5
SB
598#endif
599#ifdef CONFIG_TRANSPARENT_HUGEPAGE
600 THP_FAULT_ALLOC,
601 THP_COLLAPSE_ALLOC,
811244a5
XH
602 THP_SWPOUT,
603 THP_SWPOUT_FALLBACK,
d396def5
SB
604#endif
605};
606
8278f1c7
SB
607#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
608static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
609
610static void init_memcg_events(void)
611{
612 int i;
613
614 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
615 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
616}
617
618static inline int memcg_events_index(enum vm_event_item idx)
619{
620 return mem_cgroup_events_index[idx] - 1;
621}
622
410f8e82
SB
623struct memcg_vmstats_percpu {
624 /* Local (CPU and cgroup) page state & events */
625 long state[MEMCG_NR_STAT];
8278f1c7 626 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
627
628 /* Delta calculation for lockless upward propagation */
629 long state_prev[MEMCG_NR_STAT];
8278f1c7 630 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
631
632 /* Cgroup1: threshold notifications & softlimit tree updates */
633 unsigned long nr_page_events;
634 unsigned long targets[MEM_CGROUP_NTARGETS];
8d59d221
YA
635
636 /* Stats updates since the last flush */
637 unsigned int stats_updates;
410f8e82
SB
638};
639
640struct memcg_vmstats {
641 /* Aggregated (CPU and subtree) page state & events */
642 long state[MEMCG_NR_STAT];
8278f1c7 643 unsigned long events[NR_MEMCG_EVENTS];
410f8e82 644
f82e6bf9
YA
645 /* Non-hierarchical (CPU aggregated) page state & events */
646 long state_local[MEMCG_NR_STAT];
647 unsigned long events_local[NR_MEMCG_EVENTS];
648
410f8e82
SB
649 /* Pending child counts during tree propagation */
650 long state_pending[MEMCG_NR_STAT];
8278f1c7 651 unsigned long events_pending[NR_MEMCG_EVENTS];
8d59d221
YA
652
653 /* Stats updates since the last flush */
654 atomic64_t stats_updates;
410f8e82
SB
655};
656
11192d9c
SB
657/*
658 * memcg and lruvec stats flushing
659 *
660 * Many codepaths leading to stats update or read are performance sensitive and
661 * adding stats flushing in such codepaths is not desirable. So, to optimize the
662 * flushing the kernel does:
663 *
664 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
665 * rstat update tree grow unbounded.
666 *
667 * 2) Flush the stats synchronously on reader side only when there are more than
668 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
669 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
670 * only for 2 seconds due to (1).
671 */
672static void flush_memcg_stats_dwork(struct work_struct *w);
673static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
508bed88 674static u64 flush_last_time;
9b301615
SB
675
676#define FLUSH_TIME (2UL*HZ)
11192d9c 677
be3e67b5
SAS
678/*
679 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
680 * not rely on this as part of an acquired spinlock_t lock. These functions are
681 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
682 * is sufficient.
683 */
684static void memcg_stats_lock(void)
685{
e575d401
TG
686 preempt_disable_nested();
687 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
688}
689
690static void __memcg_stats_lock(void)
691{
e575d401 692 preempt_disable_nested();
be3e67b5
SAS
693}
694
695static void memcg_stats_unlock(void)
696{
e575d401 697 preempt_enable_nested();
be3e67b5
SAS
698}
699
8d59d221
YA
700
701static bool memcg_should_flush_stats(struct mem_cgroup *memcg)
702{
703 return atomic64_read(&memcg->vmstats->stats_updates) >
704 MEMCG_CHARGE_BATCH * num_online_cpus();
705}
706
5b3be698 707static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 708{
8d59d221 709 int cpu = smp_processor_id();
5b3be698
SB
710 unsigned int x;
711
f9d911ca
YA
712 if (!val)
713 return;
714
8d59d221
YA
715 cgroup_rstat_updated(memcg->css.cgroup, cpu);
716
717 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
718 x = __this_cpu_add_return(memcg->vmstats_percpu->stats_updates,
719 abs(val));
720
721 if (x < MEMCG_CHARGE_BATCH)
722 continue;
5b3be698 723
873f64b7 724 /*
8d59d221
YA
725 * If @memcg is already flush-able, increasing stats_updates is
726 * redundant. Avoid the overhead of the atomic update.
873f64b7 727 */
8d59d221
YA
728 if (!memcg_should_flush_stats(memcg))
729 atomic64_add(x, &memcg->vmstats->stats_updates);
730 __this_cpu_write(memcg->vmstats_percpu->stats_updates, 0);
5b3be698 731 }
11192d9c
SB
732}
733
7d7ef0a4 734static void do_flush_stats(struct mem_cgroup *memcg)
11192d9c 735{
7d7ef0a4
YA
736 if (mem_cgroup_is_root(memcg))
737 WRITE_ONCE(flush_last_time, jiffies_64);
9fad9aee 738
7d7ef0a4 739 cgroup_rstat_flush(memcg->css.cgroup);
11192d9c
SB
740}
741
7d7ef0a4
YA
742/*
743 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
744 * @memcg: root of the subtree to flush
745 *
746 * Flushing is serialized by the underlying global rstat lock. There is also a
747 * minimum amount of work to be done even if there are no stat updates to flush.
748 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
749 * avoids unnecessary work and contention on the underlying lock.
750 */
751void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
11192d9c 752{
7d7ef0a4
YA
753 if (mem_cgroup_disabled())
754 return;
755
756 if (!memcg)
757 memcg = root_mem_cgroup;
758
759 if (memcg_should_flush_stats(memcg))
760 do_flush_stats(memcg);
9fad9aee
YA
761}
762
7d7ef0a4 763void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
9b301615 764{
508bed88
YA
765 /* Only flush if the periodic flusher is one full cycle late */
766 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
7d7ef0a4 767 mem_cgroup_flush_stats(memcg);
9b301615
SB
768}
769
11192d9c
SB
770static void flush_memcg_stats_dwork(struct work_struct *w)
771{
9fad9aee 772 /*
8d59d221
YA
773 * Deliberately ignore memcg_should_flush_stats() here so that flushing
774 * in latency-sensitive paths is as cheap as possible.
9fad9aee 775 */
7d7ef0a4 776 do_flush_stats(root_mem_cgroup);
9b301615 777 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
778}
779
410f8e82
SB
780unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
781{
782 long x = READ_ONCE(memcg->vmstats->state[idx]);
783#ifdef CONFIG_SMP
784 if (x < 0)
785 x = 0;
786#endif
787 return x;
788}
789
7bd5bc3c
YA
790static int memcg_page_state_unit(int item);
791
792/*
793 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
794 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
795 */
796static int memcg_state_val_in_pages(int idx, int val)
797{
798 int unit = memcg_page_state_unit(idx);
799
800 if (!val || unit == PAGE_SIZE)
801 return val;
802 else
803 return max(val * unit / PAGE_SIZE, 1UL);
804}
805
db9adbcb
JW
806/**
807 * __mod_memcg_state - update cgroup memory statistics
808 * @memcg: the memory cgroup
809 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
810 * @val: delta to add to the counter, can be negative
811 */
812void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
813{
db9adbcb
JW
814 if (mem_cgroup_disabled())
815 return;
816
2d146aa3 817 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
7bd5bc3c 818 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
db9adbcb
JW
819}
820
2d146aa3 821/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
822static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
823{
f82e6bf9 824 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
a18e6e6e 825
a18e6e6e
JW
826#ifdef CONFIG_SMP
827 if (x < 0)
828 x = 0;
829#endif
830 return x;
831}
832
eedc4e5a
RG
833void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
834 int val)
db9adbcb
JW
835{
836 struct mem_cgroup_per_node *pn;
42a30035 837 struct mem_cgroup *memcg;
db9adbcb 838
db9adbcb 839 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 840 memcg = pn->memcg;
db9adbcb 841
be3e67b5 842 /*
be16dd76 843 * The caller from rmap relies on disabled preemption because they never
be3e67b5
SAS
844 * update their counter from in-interrupt context. For these two
845 * counters we check that the update is never performed from an
846 * interrupt context while other caller need to have disabled interrupt.
847 */
848 __memcg_stats_lock();
e575d401 849 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
850 switch (idx) {
851 case NR_ANON_MAPPED:
852 case NR_FILE_MAPPED:
853 case NR_ANON_THPS:
854 case NR_SHMEM_PMDMAPPED:
855 case NR_FILE_PMDMAPPED:
856 WARN_ON_ONCE(!in_task());
857 break;
858 default:
e575d401 859 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
860 }
861 }
862
db9adbcb 863 /* Update memcg */
11192d9c 864 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 865
b4c46484 866 /* Update lruvec */
7e1c0d6f 867 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 868
7bd5bc3c 869 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
be3e67b5 870 memcg_stats_unlock();
db9adbcb
JW
871}
872
eedc4e5a
RG
873/**
874 * __mod_lruvec_state - update lruvec memory statistics
875 * @lruvec: the lruvec
876 * @idx: the stat item
877 * @val: delta to add to the counter, can be negative
878 *
879 * The lruvec is the intersection of the NUMA node and a cgroup. This
880 * function updates the all three counters that are affected by a
881 * change of state at this level: per-node, per-cgroup, per-lruvec.
882 */
883void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
884 int val)
885{
886 /* Update node */
887 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
888
889 /* Update memcg and lruvec */
890 if (!mem_cgroup_disabled())
891 __mod_memcg_lruvec_state(lruvec, idx, val);
892}
893
c701123b 894void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
c47d5032
SB
895 int val)
896{
b4e0b68f 897 struct mem_cgroup *memcg;
c701123b 898 pg_data_t *pgdat = folio_pgdat(folio);
c47d5032
SB
899 struct lruvec *lruvec;
900
b4e0b68f 901 rcu_read_lock();
c701123b 902 memcg = folio_memcg(folio);
c47d5032 903 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 904 if (!memcg) {
b4e0b68f 905 rcu_read_unlock();
c47d5032
SB
906 __mod_node_page_state(pgdat, idx, val);
907 return;
908 }
909
d635a69d 910 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 911 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 912 rcu_read_unlock();
c47d5032 913}
c701123b 914EXPORT_SYMBOL(__lruvec_stat_mod_folio);
c47d5032 915
da3ceeff 916void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 917{
4f103c63 918 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
919 struct mem_cgroup *memcg;
920 struct lruvec *lruvec;
921
922 rcu_read_lock();
fc4db90f 923 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 924
8faeb1ff
MS
925 /*
926 * Untracked pages have no memcg, no lruvec. Update only the
927 * node. If we reparent the slab objects to the root memcg,
928 * when we free the slab object, we need to update the per-memcg
929 * vmstats to keep it correct for the root memcg.
930 */
931 if (!memcg) {
ec9f0238
RG
932 __mod_node_page_state(pgdat, idx, val);
933 } else {
867e5e1d 934 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
935 __mod_lruvec_state(lruvec, idx, val);
936 }
937 rcu_read_unlock();
938}
939
db9adbcb
JW
940/**
941 * __count_memcg_events - account VM events in a cgroup
942 * @memcg: the memory cgroup
943 * @idx: the event item
f0953a1b 944 * @count: the number of events that occurred
db9adbcb
JW
945 */
946void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
947 unsigned long count)
948{
8278f1c7
SB
949 int index = memcg_events_index(idx);
950
951 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
952 return;
953
be3e67b5 954 memcg_stats_lock();
8278f1c7 955 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 956 memcg_rstat_updated(memcg, count);
be3e67b5 957 memcg_stats_unlock();
db9adbcb
JW
958}
959
42a30035 960static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 961{
8278f1c7
SB
962 int index = memcg_events_index(event);
963
964 if (index < 0)
965 return 0;
966 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
967}
968
42a30035
JW
969static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
970{
8278f1c7
SB
971 int index = memcg_events_index(event);
972
973 if (index < 0)
974 return 0;
815744d7 975
f82e6bf9 976 return READ_ONCE(memcg->vmstats->events_local[index]);
42a30035
JW
977}
978
c0ff4b85 979static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 980 int nr_pages)
d52aa412 981{
e401f176
KH
982 /* pagein of a big page is an event. So, ignore page size */
983 if (nr_pages > 0)
c9019e9b 984 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 985 else {
c9019e9b 986 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
987 nr_pages = -nr_pages; /* for event */
988 }
e401f176 989
871789d4 990 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
991}
992
f53d7ce3
JW
993static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
994 enum mem_cgroup_events_target target)
7a159cc9
JW
995{
996 unsigned long val, next;
997
871789d4
CD
998 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
999 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 1000 /* from time_after() in jiffies.h */
6a1a8b80 1001 if ((long)(next - val) < 0) {
f53d7ce3
JW
1002 switch (target) {
1003 case MEM_CGROUP_TARGET_THRESH:
1004 next = val + THRESHOLDS_EVENTS_TARGET;
1005 break;
bb4cc1a8
AM
1006 case MEM_CGROUP_TARGET_SOFTLIMIT:
1007 next = val + SOFTLIMIT_EVENTS_TARGET;
1008 break;
f53d7ce3
JW
1009 default:
1010 break;
1011 }
871789d4 1012 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 1013 return true;
7a159cc9 1014 }
f53d7ce3 1015 return false;
d2265e6f
KH
1016}
1017
1018/*
1019 * Check events in order.
1020 *
1021 */
8e88bd2d 1022static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 1023{
2343e88d
SAS
1024 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1025 return;
1026
d2265e6f 1027 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1028 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1029 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1030 bool do_softlimit;
f53d7ce3 1031
bb4cc1a8
AM
1032 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1033 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 1034 mem_cgroup_threshold(memcg);
bb4cc1a8 1035 if (unlikely(do_softlimit))
8e88bd2d 1036 mem_cgroup_update_tree(memcg, nid);
0a31bc97 1037 }
d2265e6f
KH
1038}
1039
cf475ad2 1040struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1041{
31a78f23
BS
1042 /*
1043 * mm_update_next_owner() may clear mm->owner to NULL
1044 * if it races with swapoff, page migration, etc.
1045 * So this can be called with p == NULL.
1046 */
1047 if (unlikely(!p))
1048 return NULL;
1049
073219e9 1050 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1051}
33398cf2 1052EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1053
04f94e3f
DS
1054static __always_inline struct mem_cgroup *active_memcg(void)
1055{
55a68c82 1056 if (!in_task())
04f94e3f
DS
1057 return this_cpu_read(int_active_memcg);
1058 else
1059 return current->active_memcg;
1060}
1061
d46eb14b
SB
1062/**
1063 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1064 * @mm: mm from which memcg should be extracted. It can be NULL.
1065 *
04f94e3f
DS
1066 * Obtain a reference on mm->memcg and returns it if successful. If mm
1067 * is NULL, then the memcg is chosen as follows:
1068 * 1) The active memcg, if set.
1069 * 2) current->mm->memcg, if available
1070 * 3) root memcg
1071 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1072 */
1073struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1074{
d46eb14b
SB
1075 struct mem_cgroup *memcg;
1076
1077 if (mem_cgroup_disabled())
1078 return NULL;
0b7f569e 1079
2884b6b7
MS
1080 /*
1081 * Page cache insertions can happen without an
1082 * actual mm context, e.g. during disk probing
1083 * on boot, loopback IO, acct() writes etc.
1084 *
1085 * No need to css_get on root memcg as the reference
1086 * counting is disabled on the root level in the
1087 * cgroup core. See CSS_NO_REF.
1088 */
04f94e3f
DS
1089 if (unlikely(!mm)) {
1090 memcg = active_memcg();
1091 if (unlikely(memcg)) {
1092 /* remote memcg must hold a ref */
1093 css_get(&memcg->css);
1094 return memcg;
1095 }
1096 mm = current->mm;
1097 if (unlikely(!mm))
1098 return root_mem_cgroup;
1099 }
2884b6b7 1100
54595fe2
KH
1101 rcu_read_lock();
1102 do {
2884b6b7
MS
1103 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1104 if (unlikely(!memcg))
df381975 1105 memcg = root_mem_cgroup;
00d484f3 1106 } while (!css_tryget(&memcg->css));
54595fe2 1107 rcu_read_unlock();
c0ff4b85 1108 return memcg;
54595fe2 1109}
d46eb14b
SB
1110EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1111
4b569387
NP
1112/**
1113 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1114 */
1115struct mem_cgroup *get_mem_cgroup_from_current(void)
1116{
1117 struct mem_cgroup *memcg;
1118
1119 if (mem_cgroup_disabled())
1120 return NULL;
1121
1122again:
1123 rcu_read_lock();
1124 memcg = mem_cgroup_from_task(current);
1125 if (!css_tryget(&memcg->css)) {
1126 rcu_read_unlock();
1127 goto again;
1128 }
1129 rcu_read_unlock();
1130 return memcg;
1131}
1132
5660048c
JW
1133/**
1134 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1135 * @root: hierarchy root
1136 * @prev: previously returned memcg, NULL on first invocation
1137 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1138 *
1139 * Returns references to children of the hierarchy below @root, or
1140 * @root itself, or %NULL after a full round-trip.
1141 *
1142 * Caller must pass the return value in @prev on subsequent
1143 * invocations for reference counting, or use mem_cgroup_iter_break()
1144 * to cancel a hierarchy walk before the round-trip is complete.
1145 *
05bdc520
ML
1146 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1147 * in the hierarchy among all concurrent reclaimers operating on the
1148 * same node.
5660048c 1149 */
694fbc0f 1150struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1151 struct mem_cgroup *prev,
694fbc0f 1152 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1153{
3f649ab7 1154 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1155 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1156 struct mem_cgroup *memcg = NULL;
5ac8fb31 1157 struct mem_cgroup *pos = NULL;
711d3d2c 1158
694fbc0f
AM
1159 if (mem_cgroup_disabled())
1160 return NULL;
5660048c 1161
9f3a0d09
JW
1162 if (!root)
1163 root = root_mem_cgroup;
7d74b06f 1164
542f85f9 1165 rcu_read_lock();
5f578161 1166
5ac8fb31 1167 if (reclaim) {
ef8f2327 1168 struct mem_cgroup_per_node *mz;
5ac8fb31 1169
a3747b53 1170 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1171 iter = &mz->iter;
5ac8fb31 1172
a9320aae
WY
1173 /*
1174 * On start, join the current reclaim iteration cycle.
1175 * Exit when a concurrent walker completes it.
1176 */
1177 if (!prev)
1178 reclaim->generation = iter->generation;
1179 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1180 goto out_unlock;
1181
6df38689 1182 while (1) {
4db0c3c2 1183 pos = READ_ONCE(iter->position);
6df38689
VD
1184 if (!pos || css_tryget(&pos->css))
1185 break;
5ac8fb31 1186 /*
6df38689
VD
1187 * css reference reached zero, so iter->position will
1188 * be cleared by ->css_released. However, we should not
1189 * rely on this happening soon, because ->css_released
1190 * is called from a work queue, and by busy-waiting we
1191 * might block it. So we clear iter->position right
1192 * away.
5ac8fb31 1193 */
6df38689
VD
1194 (void)cmpxchg(&iter->position, pos, NULL);
1195 }
89d8330c
WY
1196 } else if (prev) {
1197 pos = prev;
5ac8fb31
JW
1198 }
1199
1200 if (pos)
1201 css = &pos->css;
1202
1203 for (;;) {
1204 css = css_next_descendant_pre(css, &root->css);
1205 if (!css) {
1206 /*
1207 * Reclaimers share the hierarchy walk, and a
1208 * new one might jump in right at the end of
1209 * the hierarchy - make sure they see at least
1210 * one group and restart from the beginning.
1211 */
1212 if (!prev)
1213 continue;
1214 break;
527a5ec9 1215 }
7d74b06f 1216
5ac8fb31
JW
1217 /*
1218 * Verify the css and acquire a reference. The root
1219 * is provided by the caller, so we know it's alive
1220 * and kicking, and don't take an extra reference.
1221 */
41555dad
WY
1222 if (css == &root->css || css_tryget(css)) {
1223 memcg = mem_cgroup_from_css(css);
0b8f73e1 1224 break;
41555dad 1225 }
9f3a0d09 1226 }
5ac8fb31
JW
1227
1228 if (reclaim) {
5ac8fb31 1229 /*
6df38689
VD
1230 * The position could have already been updated by a competing
1231 * thread, so check that the value hasn't changed since we read
1232 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1233 */
6df38689
VD
1234 (void)cmpxchg(&iter->position, pos, memcg);
1235
5ac8fb31
JW
1236 if (pos)
1237 css_put(&pos->css);
1238
1239 if (!memcg)
1240 iter->generation++;
9f3a0d09 1241 }
5ac8fb31 1242
542f85f9
MH
1243out_unlock:
1244 rcu_read_unlock();
c40046f3
MH
1245 if (prev && prev != root)
1246 css_put(&prev->css);
1247
9f3a0d09 1248 return memcg;
14067bb3 1249}
7d74b06f 1250
5660048c
JW
1251/**
1252 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1253 * @root: hierarchy root
1254 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1255 */
1256void mem_cgroup_iter_break(struct mem_cgroup *root,
1257 struct mem_cgroup *prev)
9f3a0d09
JW
1258{
1259 if (!root)
1260 root = root_mem_cgroup;
1261 if (prev && prev != root)
1262 css_put(&prev->css);
1263}
7d74b06f 1264
54a83d6b
MC
1265static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1266 struct mem_cgroup *dead_memcg)
6df38689 1267{
6df38689 1268 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1269 struct mem_cgroup_per_node *mz;
1270 int nid;
6df38689 1271
54a83d6b 1272 for_each_node(nid) {
a3747b53 1273 mz = from->nodeinfo[nid];
9da83f3f
YS
1274 iter = &mz->iter;
1275 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1276 }
1277}
1278
54a83d6b
MC
1279static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1280{
1281 struct mem_cgroup *memcg = dead_memcg;
1282 struct mem_cgroup *last;
1283
1284 do {
1285 __invalidate_reclaim_iterators(memcg, dead_memcg);
1286 last = memcg;
1287 } while ((memcg = parent_mem_cgroup(memcg)));
1288
1289 /*
b8dd3ee9 1290 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1291 * parent_mem_cgroup() does not walk all the way up to the
1292 * cgroup root (root_mem_cgroup). So we have to handle
1293 * dead_memcg from cgroup root separately.
1294 */
7848ed62 1295 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1296 __invalidate_reclaim_iterators(root_mem_cgroup,
1297 dead_memcg);
1298}
1299
7c5f64f8
VD
1300/**
1301 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1302 * @memcg: hierarchy root
1303 * @fn: function to call for each task
1304 * @arg: argument passed to @fn
1305 *
1306 * This function iterates over tasks attached to @memcg or to any of its
1307 * descendants and calls @fn for each task. If @fn returns a non-zero
025b7799
Z
1308 * value, the function breaks the iteration loop. Otherwise, it will iterate
1309 * over all tasks and return 0.
7c5f64f8
VD
1310 *
1311 * This function must not be called for the root memory cgroup.
1312 */
025b7799
Z
1313void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1314 int (*fn)(struct task_struct *, void *), void *arg)
7c5f64f8
VD
1315{
1316 struct mem_cgroup *iter;
1317 int ret = 0;
1318
7848ed62 1319 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1320
1321 for_each_mem_cgroup_tree(iter, memcg) {
1322 struct css_task_iter it;
1323 struct task_struct *task;
1324
f168a9a5 1325 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1326 while (!ret && (task = css_task_iter_next(&it)))
1327 ret = fn(task, arg);
1328 css_task_iter_end(&it);
1329 if (ret) {
1330 mem_cgroup_iter_break(memcg, iter);
1331 break;
1332 }
1333 }
7c5f64f8
VD
1334}
1335
6168d0da 1336#ifdef CONFIG_DEBUG_VM
e809c3fe 1337void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1338{
1339 struct mem_cgroup *memcg;
1340
1341 if (mem_cgroup_disabled())
1342 return;
1343
e809c3fe 1344 memcg = folio_memcg(folio);
6168d0da
AS
1345
1346 if (!memcg)
7848ed62 1347 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1348 else
e809c3fe 1349 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1350}
1351#endif
1352
6168d0da 1353/**
e809c3fe
MWO
1354 * folio_lruvec_lock - Lock the lruvec for a folio.
1355 * @folio: Pointer to the folio.
6168d0da 1356 *
d7e3aba5 1357 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1358 * - folio locked
1359 * - folio_test_lru false
1360 * - folio_memcg_lock()
1361 * - folio frozen (refcount of 0)
1362 *
1363 * Return: The lruvec this folio is on with its lock held.
6168d0da 1364 */
e809c3fe 1365struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1366{
e809c3fe 1367 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1368
6168d0da 1369 spin_lock(&lruvec->lru_lock);
e809c3fe 1370 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1371
1372 return lruvec;
1373}
1374
e809c3fe
MWO
1375/**
1376 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1377 * @folio: Pointer to the folio.
1378 *
1379 * These functions are safe to use under any of the following conditions:
1380 * - folio locked
1381 * - folio_test_lru false
1382 * - folio_memcg_lock()
1383 * - folio frozen (refcount of 0)
1384 *
1385 * Return: The lruvec this folio is on with its lock held and interrupts
1386 * disabled.
1387 */
1388struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1389{
e809c3fe 1390 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1391
6168d0da 1392 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1393 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1394
1395 return lruvec;
1396}
1397
e809c3fe
MWO
1398/**
1399 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1400 * @folio: Pointer to the folio.
1401 * @flags: Pointer to irqsave flags.
1402 *
1403 * These functions are safe to use under any of the following conditions:
1404 * - folio locked
1405 * - folio_test_lru false
1406 * - folio_memcg_lock()
1407 * - folio frozen (refcount of 0)
1408 *
1409 * Return: The lruvec this folio is on with its lock held and interrupts
1410 * disabled.
1411 */
1412struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1413 unsigned long *flags)
6168d0da 1414{
e809c3fe 1415 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1416
6168d0da 1417 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1418 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1419
1420 return lruvec;
1421}
1422
925b7673 1423/**
fa9add64
HD
1424 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1425 * @lruvec: mem_cgroup per zone lru vector
1426 * @lru: index of lru list the page is sitting on
b4536f0c 1427 * @zid: zone id of the accounted pages
fa9add64 1428 * @nr_pages: positive when adding or negative when removing
925b7673 1429 *
ca707239 1430 * This function must be called under lru_lock, just before a page is added
07ca7606 1431 * to or just after a page is removed from an lru list.
3f58a829 1432 */
fa9add64 1433void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1434 int zid, int nr_pages)
3f58a829 1435{
ef8f2327 1436 struct mem_cgroup_per_node *mz;
fa9add64 1437 unsigned long *lru_size;
ca707239 1438 long size;
3f58a829
MK
1439
1440 if (mem_cgroup_disabled())
1441 return;
1442
ef8f2327 1443 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1444 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1445
1446 if (nr_pages < 0)
1447 *lru_size += nr_pages;
1448
1449 size = *lru_size;
b4536f0c
MH
1450 if (WARN_ONCE(size < 0,
1451 "%s(%p, %d, %d): lru_size %ld\n",
1452 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1453 VM_BUG_ON(1);
1454 *lru_size = 0;
1455 }
1456
1457 if (nr_pages > 0)
1458 *lru_size += nr_pages;
08e552c6 1459}
544122e5 1460
19942822 1461/**
9d11ea9f 1462 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1463 * @memcg: the memory cgroup
19942822 1464 *
9d11ea9f 1465 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1466 * pages.
19942822 1467 */
c0ff4b85 1468static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1469{
3e32cb2e
JW
1470 unsigned long margin = 0;
1471 unsigned long count;
1472 unsigned long limit;
9d11ea9f 1473
3e32cb2e 1474 count = page_counter_read(&memcg->memory);
bbec2e15 1475 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1476 if (count < limit)
1477 margin = limit - count;
1478
7941d214 1479 if (do_memsw_account()) {
3e32cb2e 1480 count = page_counter_read(&memcg->memsw);
bbec2e15 1481 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1482 if (count < limit)
3e32cb2e 1483 margin = min(margin, limit - count);
cbedbac3
LR
1484 else
1485 margin = 0;
3e32cb2e
JW
1486 }
1487
1488 return margin;
19942822
JW
1489}
1490
32047e2a 1491/*
bdcbb659 1492 * A routine for checking "mem" is under move_account() or not.
32047e2a 1493 *
bdcbb659
QH
1494 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1495 * moving cgroups. This is for waiting at high-memory pressure
1496 * caused by "move".
32047e2a 1497 */
c0ff4b85 1498static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1499{
2bd9bb20
KH
1500 struct mem_cgroup *from;
1501 struct mem_cgroup *to;
4b534334 1502 bool ret = false;
2bd9bb20
KH
1503 /*
1504 * Unlike task_move routines, we access mc.to, mc.from not under
1505 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1506 */
1507 spin_lock(&mc.lock);
1508 from = mc.from;
1509 to = mc.to;
1510 if (!from)
1511 goto unlock;
3e92041d 1512
2314b42d
JW
1513 ret = mem_cgroup_is_descendant(from, memcg) ||
1514 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1515unlock:
1516 spin_unlock(&mc.lock);
4b534334
KH
1517 return ret;
1518}
1519
c0ff4b85 1520static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1521{
1522 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1523 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1524 DEFINE_WAIT(wait);
1525 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1526 /* moving charge context might have finished. */
1527 if (mc.moving_task)
1528 schedule();
1529 finish_wait(&mc.waitq, &wait);
1530 return true;
1531 }
1532 }
1533 return false;
1534}
1535
5f9a4f4a
MS
1536struct memory_stat {
1537 const char *name;
5f9a4f4a
MS
1538 unsigned int idx;
1539};
1540
57b2847d 1541static const struct memory_stat memory_stats[] = {
fff66b79
MS
1542 { "anon", NR_ANON_MAPPED },
1543 { "file", NR_FILE_PAGES },
a8c49af3 1544 { "kernel", MEMCG_KMEM },
fff66b79
MS
1545 { "kernel_stack", NR_KERNEL_STACK_KB },
1546 { "pagetables", NR_PAGETABLE },
ebc97a52 1547 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1548 { "percpu", MEMCG_PERCPU_B },
1549 { "sock", MEMCG_SOCK },
4e5aa1f4 1550 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1551 { "shmem", NR_SHMEM },
f4840ccf
JW
1552#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1553 { "zswap", MEMCG_ZSWAP_B },
1554 { "zswapped", MEMCG_ZSWAPPED },
1555#endif
fff66b79
MS
1556 { "file_mapped", NR_FILE_MAPPED },
1557 { "file_dirty", NR_FILE_DIRTY },
1558 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1559#ifdef CONFIG_SWAP
1560 { "swapcached", NR_SWAPCACHE },
1561#endif
5f9a4f4a 1562#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1563 { "anon_thp", NR_ANON_THPS },
1564 { "file_thp", NR_FILE_THPS },
1565 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1566#endif
fff66b79
MS
1567 { "inactive_anon", NR_INACTIVE_ANON },
1568 { "active_anon", NR_ACTIVE_ANON },
1569 { "inactive_file", NR_INACTIVE_FILE },
1570 { "active_file", NR_ACTIVE_FILE },
1571 { "unevictable", NR_UNEVICTABLE },
1572 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1573 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1574
1575 /* The memory events */
fff66b79
MS
1576 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1577 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1578 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1579 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1580 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1581 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1582 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1583};
1584
ff841a06 1585/* The actual unit of the state item, not the same as the output unit */
fff66b79
MS
1586static int memcg_page_state_unit(int item)
1587{
1588 switch (item) {
1589 case MEMCG_PERCPU_B:
f4840ccf 1590 case MEMCG_ZSWAP_B:
fff66b79
MS
1591 case NR_SLAB_RECLAIMABLE_B:
1592 case NR_SLAB_UNRECLAIMABLE_B:
ff841a06
YA
1593 return 1;
1594 case NR_KERNEL_STACK_KB:
1595 return SZ_1K;
1596 default:
1597 return PAGE_SIZE;
1598 }
1599}
1600
1601/* Translate stat items to the correct unit for memory.stat output */
1602static int memcg_page_state_output_unit(int item)
1603{
1604 /*
1605 * Workingset state is actually in pages, but we export it to userspace
1606 * as a scalar count of events, so special case it here.
1607 */
1608 switch (item) {
fff66b79
MS
1609 case WORKINGSET_REFAULT_ANON:
1610 case WORKINGSET_REFAULT_FILE:
1611 case WORKINGSET_ACTIVATE_ANON:
1612 case WORKINGSET_ACTIVATE_FILE:
1613 case WORKINGSET_RESTORE_ANON:
1614 case WORKINGSET_RESTORE_FILE:
1615 case WORKINGSET_NODERECLAIM:
1616 return 1;
fff66b79 1617 default:
ff841a06 1618 return memcg_page_state_unit(item);
fff66b79
MS
1619 }
1620}
1621
1622static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1623 int item)
1624{
ff841a06
YA
1625 return memcg_page_state(memcg, item) *
1626 memcg_page_state_output_unit(item);
1627}
1628
1629static inline unsigned long memcg_page_state_local_output(
1630 struct mem_cgroup *memcg, int item)
1631{
1632 return memcg_page_state_local(memcg, item) *
1633 memcg_page_state_output_unit(item);
fff66b79
MS
1634}
1635
dddb44ff 1636static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
c8713d0b 1637{
c8713d0b 1638 int i;
71cd3113 1639
c8713d0b
JW
1640 /*
1641 * Provide statistics on the state of the memory subsystem as
1642 * well as cumulative event counters that show past behavior.
1643 *
1644 * This list is ordered following a combination of these gradients:
1645 * 1) generic big picture -> specifics and details
1646 * 2) reflecting userspace activity -> reflecting kernel heuristics
1647 *
1648 * Current memory state:
1649 */
7d7ef0a4 1650 mem_cgroup_flush_stats(memcg);
c8713d0b 1651
5f9a4f4a
MS
1652 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1653 u64 size;
c8713d0b 1654
fff66b79 1655 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5b42360c 1656 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1657
5f9a4f4a 1658 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1659 size += memcg_page_state_output(memcg,
1660 NR_SLAB_RECLAIMABLE_B);
5b42360c 1661 seq_buf_printf(s, "slab %llu\n", size);
5f9a4f4a
MS
1662 }
1663 }
c8713d0b
JW
1664
1665 /* Accumulated memory events */
5b42360c 1666 seq_buf_printf(s, "pgscan %lu\n",
c8713d0b 1667 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1668 memcg_events(memcg, PGSCAN_DIRECT) +
1669 memcg_events(memcg, PGSCAN_KHUGEPAGED));
5b42360c 1670 seq_buf_printf(s, "pgsteal %lu\n",
c8713d0b 1671 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1672 memcg_events(memcg, PGSTEAL_DIRECT) +
1673 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1674
8278f1c7
SB
1675 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1676 if (memcg_vm_event_stat[i] == PGPGIN ||
1677 memcg_vm_event_stat[i] == PGPGOUT)
1678 continue;
1679
5b42360c 1680 seq_buf_printf(s, "%s %lu\n",
673520f8
QZ
1681 vm_event_name(memcg_vm_event_stat[i]),
1682 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1683 }
c8713d0b
JW
1684
1685 /* The above should easily fit into one page */
5b42360c 1686 WARN_ON_ONCE(seq_buf_has_overflowed(s));
c8713d0b 1687}
71cd3113 1688
dddb44ff
YA
1689static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1690
1691static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1692{
1693 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1694 memcg_stat_format(memcg, s);
1695 else
1696 memcg1_stat_format(memcg, s);
1697 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1698}
1699
e222432b 1700/**
f0c867d9 1701 * mem_cgroup_print_oom_context: Print OOM information relevant to
1702 * memory controller.
e222432b
BS
1703 * @memcg: The memory cgroup that went over limit
1704 * @p: Task that is going to be killed
1705 *
1706 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1707 * enabled
1708 */
f0c867d9 1709void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1710{
e222432b
BS
1711 rcu_read_lock();
1712
f0c867d9 1713 if (memcg) {
1714 pr_cont(",oom_memcg=");
1715 pr_cont_cgroup_path(memcg->css.cgroup);
1716 } else
1717 pr_cont(",global_oom");
2415b9f5 1718 if (p) {
f0c867d9 1719 pr_cont(",task_memcg=");
2415b9f5 1720 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1721 }
e222432b 1722 rcu_read_unlock();
f0c867d9 1723}
1724
1725/**
1726 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1727 * memory controller.
1728 * @memcg: The memory cgroup that went over limit
1729 */
1730void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1731{
68aaee14
TH
1732 /* Use static buffer, for the caller is holding oom_lock. */
1733 static char buf[PAGE_SIZE];
5b42360c 1734 struct seq_buf s;
68aaee14
TH
1735
1736 lockdep_assert_held(&oom_lock);
e222432b 1737
3e32cb2e
JW
1738 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1739 K((u64)page_counter_read(&memcg->memory)),
15b42562 1740 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1741 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1742 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1743 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1744 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1745 else {
1746 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1747 K((u64)page_counter_read(&memcg->memsw)),
1748 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1749 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1750 K((u64)page_counter_read(&memcg->kmem)),
1751 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1752 }
c8713d0b
JW
1753
1754 pr_info("Memory cgroup stats for ");
1755 pr_cont_cgroup_path(memcg->css.cgroup);
1756 pr_cont(":");
5b42360c
YA
1757 seq_buf_init(&s, buf, sizeof(buf));
1758 memory_stat_format(memcg, &s);
1759 seq_buf_do_printk(&s, KERN_INFO);
e222432b
BS
1760}
1761
a63d83f4
DR
1762/*
1763 * Return the memory (and swap, if configured) limit for a memcg.
1764 */
bbec2e15 1765unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1766{
8d387a5f
WL
1767 unsigned long max = READ_ONCE(memcg->memory.max);
1768
b94c4e94 1769 if (do_memsw_account()) {
8d387a5f
WL
1770 if (mem_cgroup_swappiness(memcg)) {
1771 /* Calculate swap excess capacity from memsw limit */
1772 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1773
1774 max += min(swap, (unsigned long)total_swap_pages);
1775 }
b94c4e94
JW
1776 } else {
1777 if (mem_cgroup_swappiness(memcg))
1778 max += min(READ_ONCE(memcg->swap.max),
1779 (unsigned long)total_swap_pages);
9a5a8f19 1780 }
bbec2e15 1781 return max;
a63d83f4
DR
1782}
1783
9783aa99
CD
1784unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1785{
1786 return page_counter_read(&memcg->memory);
1787}
1788
b6e6edcf 1789static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1790 int order)
9cbb78bb 1791{
6e0fc46d
DR
1792 struct oom_control oc = {
1793 .zonelist = NULL,
1794 .nodemask = NULL,
2a966b77 1795 .memcg = memcg,
6e0fc46d
DR
1796 .gfp_mask = gfp_mask,
1797 .order = order,
6e0fc46d 1798 };
1378b37d 1799 bool ret = true;
9cbb78bb 1800
7775face
TH
1801 if (mutex_lock_killable(&oom_lock))
1802 return true;
1378b37d
YS
1803
1804 if (mem_cgroup_margin(memcg) >= (1 << order))
1805 goto unlock;
1806
7775face
TH
1807 /*
1808 * A few threads which were not waiting at mutex_lock_killable() can
1809 * fail to bail out. Therefore, check again after holding oom_lock.
1810 */
a4ebf1b6 1811 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1812
1813unlock:
dc56401f 1814 mutex_unlock(&oom_lock);
7c5f64f8 1815 return ret;
9cbb78bb
DR
1816}
1817
0608f43d 1818static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1819 pg_data_t *pgdat,
0608f43d
AM
1820 gfp_t gfp_mask,
1821 unsigned long *total_scanned)
1822{
1823 struct mem_cgroup *victim = NULL;
1824 int total = 0;
1825 int loop = 0;
1826 unsigned long excess;
1827 unsigned long nr_scanned;
1828 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1829 .pgdat = pgdat,
0608f43d
AM
1830 };
1831
3e32cb2e 1832 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1833
1834 while (1) {
1835 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1836 if (!victim) {
1837 loop++;
1838 if (loop >= 2) {
1839 /*
1840 * If we have not been able to reclaim
1841 * anything, it might because there are
1842 * no reclaimable pages under this hierarchy
1843 */
1844 if (!total)
1845 break;
1846 /*
1847 * We want to do more targeted reclaim.
1848 * excess >> 2 is not to excessive so as to
1849 * reclaim too much, nor too less that we keep
1850 * coming back to reclaim from this cgroup
1851 */
1852 if (total >= (excess >> 2) ||
1853 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1854 break;
1855 }
1856 continue;
1857 }
a9dd0a83 1858 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1859 pgdat, &nr_scanned);
0608f43d 1860 *total_scanned += nr_scanned;
3e32cb2e 1861 if (!soft_limit_excess(root_memcg))
0608f43d 1862 break;
6d61ef40 1863 }
0608f43d
AM
1864 mem_cgroup_iter_break(root_memcg, victim);
1865 return total;
6d61ef40
BS
1866}
1867
0056f4e6
JW
1868#ifdef CONFIG_LOCKDEP
1869static struct lockdep_map memcg_oom_lock_dep_map = {
1870 .name = "memcg_oom_lock",
1871};
1872#endif
1873
fb2a6fc5
JW
1874static DEFINE_SPINLOCK(memcg_oom_lock);
1875
867578cb
KH
1876/*
1877 * Check OOM-Killer is already running under our hierarchy.
1878 * If someone is running, return false.
1879 */
fb2a6fc5 1880static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1881{
79dfdacc 1882 struct mem_cgroup *iter, *failed = NULL;
a636b327 1883
fb2a6fc5
JW
1884 spin_lock(&memcg_oom_lock);
1885
9f3a0d09 1886 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1887 if (iter->oom_lock) {
79dfdacc
MH
1888 /*
1889 * this subtree of our hierarchy is already locked
1890 * so we cannot give a lock.
1891 */
79dfdacc 1892 failed = iter;
9f3a0d09
JW
1893 mem_cgroup_iter_break(memcg, iter);
1894 break;
23751be0
JW
1895 } else
1896 iter->oom_lock = true;
7d74b06f 1897 }
867578cb 1898
fb2a6fc5
JW
1899 if (failed) {
1900 /*
1901 * OK, we failed to lock the whole subtree so we have
1902 * to clean up what we set up to the failing subtree
1903 */
1904 for_each_mem_cgroup_tree(iter, memcg) {
1905 if (iter == failed) {
1906 mem_cgroup_iter_break(memcg, iter);
1907 break;
1908 }
1909 iter->oom_lock = false;
79dfdacc 1910 }
0056f4e6
JW
1911 } else
1912 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1913
1914 spin_unlock(&memcg_oom_lock);
1915
1916 return !failed;
a636b327 1917}
0b7f569e 1918
fb2a6fc5 1919static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1920{
7d74b06f
KH
1921 struct mem_cgroup *iter;
1922
fb2a6fc5 1923 spin_lock(&memcg_oom_lock);
5facae4f 1924 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1925 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1926 iter->oom_lock = false;
fb2a6fc5 1927 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1928}
1929
c0ff4b85 1930static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1931{
1932 struct mem_cgroup *iter;
1933
c2b42d3c 1934 spin_lock(&memcg_oom_lock);
c0ff4b85 1935 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1936 iter->under_oom++;
1937 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1938}
1939
c0ff4b85 1940static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1941{
1942 struct mem_cgroup *iter;
1943
867578cb 1944 /*
f0953a1b 1945 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1946 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1947 */
c2b42d3c 1948 spin_lock(&memcg_oom_lock);
c0ff4b85 1949 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1950 if (iter->under_oom > 0)
1951 iter->under_oom--;
1952 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1953}
1954
867578cb
KH
1955static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1956
dc98df5a 1957struct oom_wait_info {
d79154bb 1958 struct mem_cgroup *memcg;
ac6424b9 1959 wait_queue_entry_t wait;
dc98df5a
KH
1960};
1961
ac6424b9 1962static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1963 unsigned mode, int sync, void *arg)
1964{
d79154bb
HD
1965 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1966 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1967 struct oom_wait_info *oom_wait_info;
1968
1969 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1970 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1971
2314b42d
JW
1972 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1973 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1974 return 0;
dc98df5a
KH
1975 return autoremove_wake_function(wait, mode, sync, arg);
1976}
1977
c0ff4b85 1978static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1979{
c2b42d3c
TH
1980 /*
1981 * For the following lockless ->under_oom test, the only required
1982 * guarantee is that it must see the state asserted by an OOM when
1983 * this function is called as a result of userland actions
1984 * triggered by the notification of the OOM. This is trivially
1985 * achieved by invoking mem_cgroup_mark_under_oom() before
1986 * triggering notification.
1987 */
1988 if (memcg && memcg->under_oom)
f4b90b70 1989 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1990}
1991
becdf89d
SB
1992/*
1993 * Returns true if successfully killed one or more processes. Though in some
1994 * corner cases it can return true even without killing any process.
1995 */
1996static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1997{
becdf89d 1998 bool locked, ret;
7056d3a3 1999
29ef680a 2000 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 2001 return false;
29ef680a 2002
7a1adfdd
RG
2003 memcg_memory_event(memcg, MEMCG_OOM);
2004
867578cb 2005 /*
49426420
JW
2006 * We are in the middle of the charge context here, so we
2007 * don't want to block when potentially sitting on a callstack
2008 * that holds all kinds of filesystem and mm locks.
2009 *
29ef680a
MH
2010 * cgroup1 allows disabling the OOM killer and waiting for outside
2011 * handling until the charge can succeed; remember the context and put
2012 * the task to sleep at the end of the page fault when all locks are
2013 * released.
49426420 2014 *
29ef680a
MH
2015 * On the other hand, in-kernel OOM killer allows for an async victim
2016 * memory reclaim (oom_reaper) and that means that we are not solely
2017 * relying on the oom victim to make a forward progress and we can
2018 * invoke the oom killer here.
2019 *
2020 * Please note that mem_cgroup_out_of_memory might fail to find a
2021 * victim and then we have to bail out from the charge path.
867578cb 2022 */
17c56de6 2023 if (READ_ONCE(memcg->oom_kill_disable)) {
becdf89d
SB
2024 if (current->in_user_fault) {
2025 css_get(&memcg->css);
2026 current->memcg_in_oom = memcg;
2027 current->memcg_oom_gfp_mask = mask;
2028 current->memcg_oom_order = order;
2029 }
2030 return false;
29ef680a
MH
2031 }
2032
7056d3a3
MH
2033 mem_cgroup_mark_under_oom(memcg);
2034
2035 locked = mem_cgroup_oom_trylock(memcg);
2036
2037 if (locked)
2038 mem_cgroup_oom_notify(memcg);
2039
2040 mem_cgroup_unmark_under_oom(memcg);
becdf89d 2041 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
2042
2043 if (locked)
2044 mem_cgroup_oom_unlock(memcg);
29ef680a 2045
7056d3a3 2046 return ret;
3812c8c8
JW
2047}
2048
2049/**
2050 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2051 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2052 *
49426420
JW
2053 * This has to be called at the end of a page fault if the memcg OOM
2054 * handler was enabled.
3812c8c8 2055 *
49426420 2056 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2057 * sleep on a waitqueue until the userspace task resolves the
2058 * situation. Sleeping directly in the charge context with all kinds
2059 * of locks held is not a good idea, instead we remember an OOM state
2060 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2061 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2062 *
2063 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2064 * completed, %false otherwise.
3812c8c8 2065 */
49426420 2066bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2067{
626ebc41 2068 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2069 struct oom_wait_info owait;
49426420 2070 bool locked;
3812c8c8
JW
2071
2072 /* OOM is global, do not handle */
3812c8c8 2073 if (!memcg)
49426420 2074 return false;
3812c8c8 2075
7c5f64f8 2076 if (!handle)
49426420 2077 goto cleanup;
3812c8c8
JW
2078
2079 owait.memcg = memcg;
2080 owait.wait.flags = 0;
2081 owait.wait.func = memcg_oom_wake_function;
2082 owait.wait.private = current;
2055da97 2083 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2084
3812c8c8 2085 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2086 mem_cgroup_mark_under_oom(memcg);
2087
2088 locked = mem_cgroup_oom_trylock(memcg);
2089
2090 if (locked)
2091 mem_cgroup_oom_notify(memcg);
2092
857f2139
HX
2093 schedule();
2094 mem_cgroup_unmark_under_oom(memcg);
2095 finish_wait(&memcg_oom_waitq, &owait.wait);
49426420 2096
18b1d18b 2097 if (locked)
fb2a6fc5 2098 mem_cgroup_oom_unlock(memcg);
49426420 2099cleanup:
626ebc41 2100 current->memcg_in_oom = NULL;
3812c8c8 2101 css_put(&memcg->css);
867578cb 2102 return true;
0b7f569e
KH
2103}
2104
3d8b38eb
RG
2105/**
2106 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2107 * @victim: task to be killed by the OOM killer
2108 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2109 *
2110 * Returns a pointer to a memory cgroup, which has to be cleaned up
2111 * by killing all belonging OOM-killable tasks.
2112 *
2113 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2114 */
2115struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2116 struct mem_cgroup *oom_domain)
2117{
2118 struct mem_cgroup *oom_group = NULL;
2119 struct mem_cgroup *memcg;
2120
2121 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2122 return NULL;
2123
2124 if (!oom_domain)
2125 oom_domain = root_mem_cgroup;
2126
2127 rcu_read_lock();
2128
2129 memcg = mem_cgroup_from_task(victim);
7848ed62 2130 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2131 goto out;
2132
48fe267c
RG
2133 /*
2134 * If the victim task has been asynchronously moved to a different
2135 * memory cgroup, we might end up killing tasks outside oom_domain.
2136 * In this case it's better to ignore memory.group.oom.
2137 */
2138 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2139 goto out;
2140
3d8b38eb
RG
2141 /*
2142 * Traverse the memory cgroup hierarchy from the victim task's
2143 * cgroup up to the OOMing cgroup (or root) to find the
2144 * highest-level memory cgroup with oom.group set.
2145 */
2146 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
eaf7b66b 2147 if (READ_ONCE(memcg->oom_group))
3d8b38eb
RG
2148 oom_group = memcg;
2149
2150 if (memcg == oom_domain)
2151 break;
2152 }
2153
2154 if (oom_group)
2155 css_get(&oom_group->css);
2156out:
2157 rcu_read_unlock();
2158
2159 return oom_group;
2160}
2161
2162void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2163{
2164 pr_info("Tasks in ");
2165 pr_cont_cgroup_path(memcg->css.cgroup);
2166 pr_cont(" are going to be killed due to memory.oom.group set\n");
2167}
2168
d7365e78 2169/**
f70ad448
MWO
2170 * folio_memcg_lock - Bind a folio to its memcg.
2171 * @folio: The folio.
32047e2a 2172 *
f70ad448 2173 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2174 * another cgroup.
2175 *
f70ad448
MWO
2176 * It ensures lifetime of the bound memcg. The caller is responsible
2177 * for the lifetime of the folio.
d69b042f 2178 */
f70ad448 2179void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2180{
2181 struct mem_cgroup *memcg;
6de22619 2182 unsigned long flags;
89c06bd5 2183
6de22619
JW
2184 /*
2185 * The RCU lock is held throughout the transaction. The fast
2186 * path can get away without acquiring the memcg->move_lock
2187 * because page moving starts with an RCU grace period.
739f79fc 2188 */
d7365e78
JW
2189 rcu_read_lock();
2190
2191 if (mem_cgroup_disabled())
1c824a68 2192 return;
89c06bd5 2193again:
f70ad448 2194 memcg = folio_memcg(folio);
29833315 2195 if (unlikely(!memcg))
1c824a68 2196 return;
d7365e78 2197
20ad50d6
AS
2198#ifdef CONFIG_PROVE_LOCKING
2199 local_irq_save(flags);
2200 might_lock(&memcg->move_lock);
2201 local_irq_restore(flags);
2202#endif
2203
bdcbb659 2204 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2205 return;
89c06bd5 2206
6de22619 2207 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2208 if (memcg != folio_memcg(folio)) {
6de22619 2209 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2210 goto again;
2211 }
6de22619
JW
2212
2213 /*
1c824a68
JW
2214 * When charge migration first begins, we can have multiple
2215 * critical sections holding the fast-path RCU lock and one
2216 * holding the slowpath move_lock. Track the task who has the
6c77b607 2217 * move_lock for folio_memcg_unlock().
6de22619
JW
2218 */
2219 memcg->move_lock_task = current;
2220 memcg->move_lock_flags = flags;
89c06bd5 2221}
f70ad448 2222
f70ad448 2223static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2224{
6de22619
JW
2225 if (memcg && memcg->move_lock_task == current) {
2226 unsigned long flags = memcg->move_lock_flags;
2227
2228 memcg->move_lock_task = NULL;
2229 memcg->move_lock_flags = 0;
2230
2231 spin_unlock_irqrestore(&memcg->move_lock, flags);
2232 }
89c06bd5 2233
d7365e78 2234 rcu_read_unlock();
89c06bd5 2235}
739f79fc
JW
2236
2237/**
f70ad448
MWO
2238 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2239 * @folio: The folio.
2240 *
2241 * This releases the binding created by folio_memcg_lock(). This does
2242 * not change the accounting of this folio to its memcg, but it does
2243 * permit others to change it.
739f79fc 2244 */
f70ad448 2245void folio_memcg_unlock(struct folio *folio)
739f79fc 2246{
f70ad448
MWO
2247 __folio_memcg_unlock(folio_memcg(folio));
2248}
9da7b521 2249
fead2b86 2250struct memcg_stock_pcp {
56751146 2251 local_lock_t stock_lock;
fead2b86
MH
2252 struct mem_cgroup *cached; /* this never be root cgroup */
2253 unsigned int nr_pages;
2254
bf4f0599
RG
2255#ifdef CONFIG_MEMCG_KMEM
2256 struct obj_cgroup *cached_objcg;
68ac5b3c 2257 struct pglist_data *cached_pgdat;
bf4f0599 2258 unsigned int nr_bytes;
68ac5b3c
WL
2259 int nr_slab_reclaimable_b;
2260 int nr_slab_unreclaimable_b;
bf4f0599
RG
2261#endif
2262
cdec2e42 2263 struct work_struct work;
26fe6168 2264 unsigned long flags;
a0db00fc 2265#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2266};
56751146
SAS
2267static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2268 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2269};
9f50fad6 2270static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2271
bf4f0599 2272#ifdef CONFIG_MEMCG_KMEM
56751146 2273static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2274static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2275 struct mem_cgroup *root_memcg);
a8c49af3 2276static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2277
2278#else
56751146 2279static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2280{
56751146 2281 return NULL;
bf4f0599
RG
2282}
2283static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2284 struct mem_cgroup *root_memcg)
2285{
2286 return false;
2287}
a8c49af3
YA
2288static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2289{
2290}
bf4f0599
RG
2291#endif
2292
a0956d54
SS
2293/**
2294 * consume_stock: Try to consume stocked charge on this cpu.
2295 * @memcg: memcg to consume from.
2296 * @nr_pages: how many pages to charge.
2297 *
2298 * The charges will only happen if @memcg matches the current cpu's memcg
2299 * stock, and at least @nr_pages are available in that stock. Failure to
2300 * service an allocation will refill the stock.
2301 *
2302 * returns true if successful, false otherwise.
cdec2e42 2303 */
a0956d54 2304static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2305{
2306 struct memcg_stock_pcp *stock;
db2ba40c 2307 unsigned long flags;
3e32cb2e 2308 bool ret = false;
cdec2e42 2309
a983b5eb 2310 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2311 return ret;
a0956d54 2312
56751146 2313 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2314
2315 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2316 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
a0956d54 2317 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2318 ret = true;
2319 }
db2ba40c 2320
56751146 2321 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2322
cdec2e42
KH
2323 return ret;
2324}
2325
2326/*
3e32cb2e 2327 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2328 */
2329static void drain_stock(struct memcg_stock_pcp *stock)
2330{
f785a8f2 2331 struct mem_cgroup *old = READ_ONCE(stock->cached);
cdec2e42 2332
1a3e1f40
JW
2333 if (!old)
2334 return;
2335
11c9ea4e 2336 if (stock->nr_pages) {
3e32cb2e 2337 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2338 if (do_memsw_account())
3e32cb2e 2339 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2340 stock->nr_pages = 0;
cdec2e42 2341 }
1a3e1f40
JW
2342
2343 css_put(&old->css);
f785a8f2 2344 WRITE_ONCE(stock->cached, NULL);
cdec2e42
KH
2345}
2346
cdec2e42
KH
2347static void drain_local_stock(struct work_struct *dummy)
2348{
db2ba40c 2349 struct memcg_stock_pcp *stock;
56751146 2350 struct obj_cgroup *old = NULL;
db2ba40c
JW
2351 unsigned long flags;
2352
72f0184c 2353 /*
5c49cf9a
MH
2354 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2355 * drain_stock races is that we always operate on local CPU stock
2356 * here with IRQ disabled
72f0184c 2357 */
56751146 2358 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2359
2360 stock = this_cpu_ptr(&memcg_stock);
56751146 2361 old = drain_obj_stock(stock);
cdec2e42 2362 drain_stock(stock);
26fe6168 2363 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2364
56751146
SAS
2365 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2366 if (old)
2367 obj_cgroup_put(old);
cdec2e42
KH
2368}
2369
2370/*
3e32cb2e 2371 * Cache charges(val) to local per_cpu area.
320cc51d 2372 * This will be consumed by consume_stock() function, later.
cdec2e42 2373 */
af9a3b69 2374static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2375{
db2ba40c 2376 struct memcg_stock_pcp *stock;
cdec2e42 2377
db2ba40c 2378 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2379 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
cdec2e42 2380 drain_stock(stock);
1a3e1f40 2381 css_get(&memcg->css);
f785a8f2 2382 WRITE_ONCE(stock->cached, memcg);
cdec2e42 2383 }
11c9ea4e 2384 stock->nr_pages += nr_pages;
db2ba40c 2385
a983b5eb 2386 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2387 drain_stock(stock);
af9a3b69
JW
2388}
2389
2390static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2391{
2392 unsigned long flags;
475d0487 2393
56751146 2394 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2395 __refill_stock(memcg, nr_pages);
56751146 2396 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2397}
2398
2399/*
c0ff4b85 2400 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2401 * of the hierarchy under it.
cdec2e42 2402 */
6d3d6aa2 2403static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2404{
26fe6168 2405 int cpu, curcpu;
d38144b7 2406
6d3d6aa2
JW
2407 /* If someone's already draining, avoid adding running more workers. */
2408 if (!mutex_trylock(&percpu_charge_mutex))
2409 return;
72f0184c
MH
2410 /*
2411 * Notify other cpus that system-wide "drain" is running
2412 * We do not care about races with the cpu hotplug because cpu down
2413 * as well as workers from this path always operate on the local
2414 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2415 */
0790ed62
SAS
2416 migrate_disable();
2417 curcpu = smp_processor_id();
cdec2e42
KH
2418 for_each_online_cpu(cpu) {
2419 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2420 struct mem_cgroup *memcg;
e1a366be 2421 bool flush = false;
26fe6168 2422
e1a366be 2423 rcu_read_lock();
f785a8f2 2424 memcg = READ_ONCE(stock->cached);
e1a366be
RG
2425 if (memcg && stock->nr_pages &&
2426 mem_cgroup_is_descendant(memcg, root_memcg))
2427 flush = true;
27fb0956 2428 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2429 flush = true;
e1a366be
RG
2430 rcu_read_unlock();
2431
2432 if (flush &&
2433 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2434 if (cpu == curcpu)
2435 drain_local_stock(&stock->work);
6a792697 2436 else if (!cpu_is_isolated(cpu))
d1a05b69
MH
2437 schedule_work_on(cpu, &stock->work);
2438 }
cdec2e42 2439 }
0790ed62 2440 migrate_enable();
9f50fad6 2441 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2442}
2443
2cd21c89
JW
2444static int memcg_hotplug_cpu_dead(unsigned int cpu)
2445{
2446 struct memcg_stock_pcp *stock;
a3d4c05a 2447
2cd21c89
JW
2448 stock = &per_cpu(memcg_stock, cpu);
2449 drain_stock(stock);
a3d4c05a 2450
308167fc 2451 return 0;
cdec2e42
KH
2452}
2453
b3ff9291
CD
2454static unsigned long reclaim_high(struct mem_cgroup *memcg,
2455 unsigned int nr_pages,
2456 gfp_t gfp_mask)
f7e1cb6e 2457{
b3ff9291
CD
2458 unsigned long nr_reclaimed = 0;
2459
f7e1cb6e 2460 do {
e22c6ed9
JW
2461 unsigned long pflags;
2462
d1663a90
JK
2463 if (page_counter_read(&memcg->memory) <=
2464 READ_ONCE(memcg->memory.high))
f7e1cb6e 2465 continue;
e22c6ed9 2466
e27be240 2467 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2468
2469 psi_memstall_enter(&pflags);
b3ff9291 2470 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2471 gfp_mask,
55ab834a 2472 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2473 psi_memstall_leave(&pflags);
4bf17307
CD
2474 } while ((memcg = parent_mem_cgroup(memcg)) &&
2475 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2476
2477 return nr_reclaimed;
f7e1cb6e
JW
2478}
2479
2480static void high_work_func(struct work_struct *work)
2481{
2482 struct mem_cgroup *memcg;
2483
2484 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2485 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2486}
2487
0e4b01df
CD
2488/*
2489 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2490 * enough to still cause a significant slowdown in most cases, while still
2491 * allowing diagnostics and tracing to proceed without becoming stuck.
2492 */
2493#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2494
2495/*
2496 * When calculating the delay, we use these either side of the exponentiation to
2497 * maintain precision and scale to a reasonable number of jiffies (see the table
2498 * below.
2499 *
2500 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2501 * overage ratio to a delay.
ac5ddd0f 2502 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2503 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2504 * to produce a reasonable delay curve.
2505 *
2506 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2507 * reasonable delay curve compared to precision-adjusted overage, not
2508 * penalising heavily at first, but still making sure that growth beyond the
2509 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2510 * example, with a high of 100 megabytes:
2511 *
2512 * +-------+------------------------+
2513 * | usage | time to allocate in ms |
2514 * +-------+------------------------+
2515 * | 100M | 0 |
2516 * | 101M | 6 |
2517 * | 102M | 25 |
2518 * | 103M | 57 |
2519 * | 104M | 102 |
2520 * | 105M | 159 |
2521 * | 106M | 230 |
2522 * | 107M | 313 |
2523 * | 108M | 409 |
2524 * | 109M | 518 |
2525 * | 110M | 639 |
2526 * | 111M | 774 |
2527 * | 112M | 921 |
2528 * | 113M | 1081 |
2529 * | 114M | 1254 |
2530 * | 115M | 1439 |
2531 * | 116M | 1638 |
2532 * | 117M | 1849 |
2533 * | 118M | 2000 |
2534 * | 119M | 2000 |
2535 * | 120M | 2000 |
2536 * +-------+------------------------+
2537 */
2538 #define MEMCG_DELAY_PRECISION_SHIFT 20
2539 #define MEMCG_DELAY_SCALING_SHIFT 14
2540
8a5dbc65 2541static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2542{
8a5dbc65 2543 u64 overage;
b23afb93 2544
8a5dbc65
JK
2545 if (usage <= high)
2546 return 0;
e26733e0 2547
8a5dbc65
JK
2548 /*
2549 * Prevent division by 0 in overage calculation by acting as if
2550 * it was a threshold of 1 page
2551 */
2552 high = max(high, 1UL);
9b8b1754 2553
8a5dbc65
JK
2554 overage = usage - high;
2555 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2556 return div64_u64(overage, high);
2557}
e26733e0 2558
8a5dbc65
JK
2559static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2560{
2561 u64 overage, max_overage = 0;
e26733e0 2562
8a5dbc65
JK
2563 do {
2564 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2565 READ_ONCE(memcg->memory.high));
8a5dbc65 2566 max_overage = max(overage, max_overage);
e26733e0
CD
2567 } while ((memcg = parent_mem_cgroup(memcg)) &&
2568 !mem_cgroup_is_root(memcg));
2569
8a5dbc65
JK
2570 return max_overage;
2571}
2572
4b82ab4f
JK
2573static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2574{
2575 u64 overage, max_overage = 0;
2576
2577 do {
2578 overage = calculate_overage(page_counter_read(&memcg->swap),
2579 READ_ONCE(memcg->swap.high));
2580 if (overage)
2581 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2582 max_overage = max(overage, max_overage);
2583 } while ((memcg = parent_mem_cgroup(memcg)) &&
2584 !mem_cgroup_is_root(memcg));
2585
2586 return max_overage;
2587}
2588
8a5dbc65
JK
2589/*
2590 * Get the number of jiffies that we should penalise a mischievous cgroup which
2591 * is exceeding its memory.high by checking both it and its ancestors.
2592 */
2593static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2594 unsigned int nr_pages,
2595 u64 max_overage)
2596{
2597 unsigned long penalty_jiffies;
2598
e26733e0
CD
2599 if (!max_overage)
2600 return 0;
0e4b01df
CD
2601
2602 /*
0e4b01df
CD
2603 * We use overage compared to memory.high to calculate the number of
2604 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2605 * fairly lenient on small overages, and increasingly harsh when the
2606 * memcg in question makes it clear that it has no intention of stopping
2607 * its crazy behaviour, so we exponentially increase the delay based on
2608 * overage amount.
2609 */
e26733e0
CD
2610 penalty_jiffies = max_overage * max_overage * HZ;
2611 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2612 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2613
2614 /*
2615 * Factor in the task's own contribution to the overage, such that four
2616 * N-sized allocations are throttled approximately the same as one
2617 * 4N-sized allocation.
2618 *
2619 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2620 * larger the current charge patch is than that.
2621 */
ff144e69 2622 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2623}
2624
2625/*
2626 * Scheduled by try_charge() to be executed from the userland return path
2627 * and reclaims memory over the high limit.
2628 */
9ea9cb00 2629void mem_cgroup_handle_over_high(gfp_t gfp_mask)
e26733e0
CD
2630{
2631 unsigned long penalty_jiffies;
2632 unsigned long pflags;
b3ff9291 2633 unsigned long nr_reclaimed;
e26733e0 2634 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2635 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2636 struct mem_cgroup *memcg;
b3ff9291 2637 bool in_retry = false;
e26733e0
CD
2638
2639 if (likely(!nr_pages))
2640 return;
2641
2642 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2643 current->memcg_nr_pages_over_high = 0;
2644
b3ff9291
CD
2645retry_reclaim:
2646 /*
2647 * The allocating task should reclaim at least the batch size, but for
2648 * subsequent retries we only want to do what's necessary to prevent oom
2649 * or breaching resource isolation.
2650 *
2651 * This is distinct from memory.max or page allocator behaviour because
2652 * memory.high is currently batched, whereas memory.max and the page
2653 * allocator run every time an allocation is made.
2654 */
2655 nr_reclaimed = reclaim_high(memcg,
2656 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
9ea9cb00 2657 gfp_mask);
b3ff9291 2658
e26733e0
CD
2659 /*
2660 * memory.high is breached and reclaim is unable to keep up. Throttle
2661 * allocators proactively to slow down excessive growth.
2662 */
8a5dbc65
JK
2663 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2664 mem_find_max_overage(memcg));
0e4b01df 2665
4b82ab4f
JK
2666 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2667 swap_find_max_overage(memcg));
2668
ff144e69
JK
2669 /*
2670 * Clamp the max delay per usermode return so as to still keep the
2671 * application moving forwards and also permit diagnostics, albeit
2672 * extremely slowly.
2673 */
2674 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2675
0e4b01df
CD
2676 /*
2677 * Don't sleep if the amount of jiffies this memcg owes us is so low
2678 * that it's not even worth doing, in an attempt to be nice to those who
2679 * go only a small amount over their memory.high value and maybe haven't
2680 * been aggressively reclaimed enough yet.
2681 */
2682 if (penalty_jiffies <= HZ / 100)
2683 goto out;
2684
b3ff9291
CD
2685 /*
2686 * If reclaim is making forward progress but we're still over
2687 * memory.high, we want to encourage that rather than doing allocator
2688 * throttling.
2689 */
2690 if (nr_reclaimed || nr_retries--) {
2691 in_retry = true;
2692 goto retry_reclaim;
2693 }
2694
0e4b01df
CD
2695 /*
2696 * If we exit early, we're guaranteed to die (since
2697 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2698 * need to account for any ill-begotten jiffies to pay them off later.
2699 */
2700 psi_memstall_enter(&pflags);
2701 schedule_timeout_killable(penalty_jiffies);
2702 psi_memstall_leave(&pflags);
2703
2704out:
2705 css_put(&memcg->css);
b23afb93
TH
2706}
2707
c5c8b16b
MS
2708static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2709 unsigned int nr_pages)
8a9f3ccd 2710{
a983b5eb 2711 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2712 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2713 struct mem_cgroup *mem_over_limit;
3e32cb2e 2714 struct page_counter *counter;
6539cc05 2715 unsigned long nr_reclaimed;
a4ebf1b6 2716 bool passed_oom = false;
73b73bac 2717 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2718 bool drained = false;
d6e103a7 2719 bool raised_max_event = false;
e22c6ed9 2720 unsigned long pflags;
a636b327 2721
6539cc05 2722retry:
b6b6cc72 2723 if (consume_stock(memcg, nr_pages))
10d53c74 2724 return 0;
8a9f3ccd 2725
7941d214 2726 if (!do_memsw_account() ||
6071ca52
JW
2727 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2728 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2729 goto done_restock;
7941d214 2730 if (do_memsw_account())
3e32cb2e
JW
2731 page_counter_uncharge(&memcg->memsw, batch);
2732 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2733 } else {
3e32cb2e 2734 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2735 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2736 }
7a81b88c 2737
6539cc05
JW
2738 if (batch > nr_pages) {
2739 batch = nr_pages;
2740 goto retry;
2741 }
6d61ef40 2742
89a28483
JW
2743 /*
2744 * Prevent unbounded recursion when reclaim operations need to
2745 * allocate memory. This might exceed the limits temporarily,
2746 * but we prefer facilitating memory reclaim and getting back
2747 * under the limit over triggering OOM kills in these cases.
2748 */
2749 if (unlikely(current->flags & PF_MEMALLOC))
2750 goto force;
2751
06b078fc
JW
2752 if (unlikely(task_in_memcg_oom(current)))
2753 goto nomem;
2754
d0164adc 2755 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2756 goto nomem;
4b534334 2757
e27be240 2758 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2759 raised_max_event = true;
241994ed 2760
e22c6ed9 2761 psi_memstall_enter(&pflags);
b70a2a21 2762 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
55ab834a 2763 gfp_mask, reclaim_options);
e22c6ed9 2764 psi_memstall_leave(&pflags);
6539cc05 2765
61e02c74 2766 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2767 goto retry;
28c34c29 2768
b70a2a21 2769 if (!drained) {
6d3d6aa2 2770 drain_all_stock(mem_over_limit);
b70a2a21
JW
2771 drained = true;
2772 goto retry;
2773 }
2774
28c34c29
JW
2775 if (gfp_mask & __GFP_NORETRY)
2776 goto nomem;
6539cc05
JW
2777 /*
2778 * Even though the limit is exceeded at this point, reclaim
2779 * may have been able to free some pages. Retry the charge
2780 * before killing the task.
2781 *
2782 * Only for regular pages, though: huge pages are rather
2783 * unlikely to succeed so close to the limit, and we fall back
2784 * to regular pages anyway in case of failure.
2785 */
61e02c74 2786 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2787 goto retry;
2788 /*
2789 * At task move, charge accounts can be doubly counted. So, it's
2790 * better to wait until the end of task_move if something is going on.
2791 */
2792 if (mem_cgroup_wait_acct_move(mem_over_limit))
2793 goto retry;
2794
9b130619
JW
2795 if (nr_retries--)
2796 goto retry;
2797
38d38493 2798 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2799 goto nomem;
2800
a4ebf1b6
VA
2801 /* Avoid endless loop for tasks bypassed by the oom killer */
2802 if (passed_oom && task_is_dying())
2803 goto nomem;
6539cc05 2804
29ef680a
MH
2805 /*
2806 * keep retrying as long as the memcg oom killer is able to make
2807 * a forward progress or bypass the charge if the oom killer
2808 * couldn't make any progress.
2809 */
becdf89d
SB
2810 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2811 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2812 passed_oom = true;
d977aa93 2813 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2814 goto retry;
29ef680a 2815 }
7a81b88c 2816nomem:
1461e8c2
SB
2817 /*
2818 * Memcg doesn't have a dedicated reserve for atomic
2819 * allocations. But like the global atomic pool, we need to
2820 * put the burden of reclaim on regular allocation requests
2821 * and let these go through as privileged allocations.
2822 */
2823 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2824 return -ENOMEM;
10d53c74 2825force:
d6e103a7
RG
2826 /*
2827 * If the allocation has to be enforced, don't forget to raise
2828 * a MEMCG_MAX event.
2829 */
2830 if (!raised_max_event)
2831 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2832
10d53c74
TH
2833 /*
2834 * The allocation either can't fail or will lead to more memory
2835 * being freed very soon. Allow memory usage go over the limit
2836 * temporarily by force charging it.
2837 */
2838 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2839 if (do_memsw_account())
10d53c74 2840 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2841
2842 return 0;
6539cc05
JW
2843
2844done_restock:
2845 if (batch > nr_pages)
2846 refill_stock(memcg, batch - nr_pages);
b23afb93 2847
241994ed 2848 /*
b23afb93
TH
2849 * If the hierarchy is above the normal consumption range, schedule
2850 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2851 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2852 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2853 * not recorded as it most likely matches current's and won't
2854 * change in the meantime. As high limit is checked again before
2855 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2856 */
2857 do {
4b82ab4f
JK
2858 bool mem_high, swap_high;
2859
2860 mem_high = page_counter_read(&memcg->memory) >
2861 READ_ONCE(memcg->memory.high);
2862 swap_high = page_counter_read(&memcg->swap) >
2863 READ_ONCE(memcg->swap.high);
2864
2865 /* Don't bother a random interrupted task */
086f694a 2866 if (!in_task()) {
4b82ab4f 2867 if (mem_high) {
f7e1cb6e
JW
2868 schedule_work(&memcg->high_work);
2869 break;
2870 }
4b82ab4f
JK
2871 continue;
2872 }
2873
2874 if (mem_high || swap_high) {
2875 /*
2876 * The allocating tasks in this cgroup will need to do
2877 * reclaim or be throttled to prevent further growth
2878 * of the memory or swap footprints.
2879 *
2880 * Target some best-effort fairness between the tasks,
2881 * and distribute reclaim work and delay penalties
2882 * based on how much each task is actually allocating.
2883 */
9516a18a 2884 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2885 set_notify_resume(current);
2886 break;
2887 }
241994ed 2888 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2889
c9afe31e
SB
2890 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2891 !(current->flags & PF_MEMALLOC) &&
2892 gfpflags_allow_blocking(gfp_mask)) {
9ea9cb00 2893 mem_cgroup_handle_over_high(gfp_mask);
c9afe31e 2894 }
10d53c74 2895 return 0;
7a81b88c 2896}
8a9f3ccd 2897
c5c8b16b
MS
2898static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2899 unsigned int nr_pages)
2900{
2901 if (mem_cgroup_is_root(memcg))
2902 return 0;
2903
2904 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2905}
2906
4b569387
NP
2907/**
2908 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2909 * @memcg: memcg previously charged.
2910 * @nr_pages: number of pages previously charged.
2911 */
2912void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2913{
ce00a967
JW
2914 if (mem_cgroup_is_root(memcg))
2915 return;
2916
3e32cb2e 2917 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2918 if (do_memsw_account())
3e32cb2e 2919 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2920}
2921
118f2875 2922static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2923{
118f2875 2924 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2925 /*
a5eb011a 2926 * Any of the following ensures page's memcg stability:
0a31bc97 2927 *
a0b5b414
JW
2928 * - the page lock
2929 * - LRU isolation
6c77b607 2930 * - folio_memcg_lock()
a0b5b414 2931 * - exclusive reference
018ee47f 2932 * - mem_cgroup_trylock_pages()
0a31bc97 2933 */
118f2875 2934 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2935}
66e1707b 2936
4b569387
NP
2937/**
2938 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2939 * @folio: folio to commit the charge to.
2940 * @memcg: memcg previously charged.
2941 */
2942void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2943{
2944 css_get(&memcg->css);
2945 commit_charge(folio, memcg);
2946
2947 local_irq_disable();
2948 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2949 memcg_check_events(memcg, folio_nid(folio));
2950 local_irq_enable();
2951}
2952
84c07d11 2953#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2954/*
2955 * The allocated objcg pointers array is not accounted directly.
2956 * Moreover, it should not come from DMA buffer and is not readily
2957 * reclaimable. So those GFP bits should be masked off.
2958 */
24948e3b
RG
2959#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2960 __GFP_ACCOUNT | __GFP_NOFAIL)
41eb5df1 2961
a7ebf564
WL
2962/*
2963 * mod_objcg_mlstate() may be called with irq enabled, so
2964 * mod_memcg_lruvec_state() should be used.
2965 */
2966static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2967 struct pglist_data *pgdat,
2968 enum node_stat_item idx, int nr)
2969{
2970 struct mem_cgroup *memcg;
2971 struct lruvec *lruvec;
2972
2973 rcu_read_lock();
2974 memcg = obj_cgroup_memcg(objcg);
2975 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2976 mod_memcg_lruvec_state(lruvec, idx, nr);
2977 rcu_read_unlock();
2978}
2979
4b5f8d9a
VB
2980int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2981 gfp_t gfp, bool new_slab)
10befea9 2982{
4b5f8d9a 2983 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2984 unsigned long memcg_data;
10befea9
RG
2985 void *vec;
2986
41eb5df1 2987 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2988 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2989 slab_nid(slab));
10befea9
RG
2990 if (!vec)
2991 return -ENOMEM;
2992
2e9bd483 2993 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2994 if (new_slab) {
2e9bd483 2995 /*
4b5f8d9a
VB
2996 * If the slab is brand new and nobody can yet access its
2997 * memcg_data, no synchronization is required and memcg_data can
2998 * be simply assigned.
2e9bd483 2999 */
4b5f8d9a
VB
3000 slab->memcg_data = memcg_data;
3001 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 3002 /*
4b5f8d9a
VB
3003 * If the slab is already in use, somebody can allocate and
3004 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
3005 * objcg vector should be reused.
3006 */
10befea9 3007 kfree(vec);
2e9bd483
RG
3008 return 0;
3009 }
10befea9 3010
2e9bd483 3011 kmemleak_not_leak(vec);
10befea9
RG
3012 return 0;
3013}
3014
fc4db90f
RG
3015static __always_inline
3016struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 3017{
8380ce47 3018 /*
9855609b
RG
3019 * Slab objects are accounted individually, not per-page.
3020 * Memcg membership data for each individual object is saved in
4b5f8d9a 3021 * slab->memcg_data.
8380ce47 3022 */
4b5f8d9a
VB
3023 if (folio_test_slab(folio)) {
3024 struct obj_cgroup **objcgs;
3025 struct slab *slab;
9855609b
RG
3026 unsigned int off;
3027
4b5f8d9a
VB
3028 slab = folio_slab(folio);
3029 objcgs = slab_objcgs(slab);
3030 if (!objcgs)
3031 return NULL;
3032
3033 off = obj_to_index(slab->slab_cache, slab, p);
3034 if (objcgs[off])
3035 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
3036
3037 return NULL;
9855609b 3038 }
8380ce47 3039
bcfe06bf 3040 /*
becacb04 3041 * folio_memcg_check() is used here, because in theory we can encounter
4b5f8d9a
VB
3042 * a folio where the slab flag has been cleared already, but
3043 * slab->memcg_data has not been freed yet
becacb04 3044 * folio_memcg_check() will guarantee that a proper memory
bcfe06bf
RG
3045 * cgroup pointer or NULL will be returned.
3046 */
becacb04 3047 return folio_memcg_check(folio);
8380ce47
RG
3048}
3049
fc4db90f
RG
3050/*
3051 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3052 *
3053 * A passed kernel object can be a slab object, vmalloc object or a generic
3054 * kernel page, so different mechanisms for getting the memory cgroup pointer
3055 * should be used.
3056 *
3057 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3058 * can not know for sure how the kernel object is implemented.
3059 * mem_cgroup_from_obj() can be safely used in such cases.
3060 *
3061 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3062 * cgroup_mutex, etc.
3063 */
3064struct mem_cgroup *mem_cgroup_from_obj(void *p)
3065{
3066 struct folio *folio;
3067
3068 if (mem_cgroup_disabled())
3069 return NULL;
3070
3071 if (unlikely(is_vmalloc_addr(p)))
3072 folio = page_folio(vmalloc_to_page(p));
3073 else
3074 folio = virt_to_folio(p);
3075
3076 return mem_cgroup_from_obj_folio(folio, p);
3077}
3078
3079/*
3080 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3081 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3082 * allocated using vmalloc().
3083 *
3084 * A passed kernel object must be a slab object or a generic kernel page.
3085 *
3086 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3087 * cgroup_mutex, etc.
3088 */
3089struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3090{
3091 if (mem_cgroup_disabled())
3092 return NULL;
3093
3094 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3095}
3096
f4840ccf
JW
3097static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3098{
3099 struct obj_cgroup *objcg = NULL;
3100
7848ed62 3101 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf 3102 objcg = rcu_dereference(memcg->objcg);
7d0715d0 3103 if (likely(objcg && obj_cgroup_tryget(objcg)))
f4840ccf
JW
3104 break;
3105 objcg = NULL;
3106 }
3107 return objcg;
3108}
3109
1aacbd35
RG
3110static struct obj_cgroup *current_objcg_update(void)
3111{
3112 struct mem_cgroup *memcg;
3113 struct obj_cgroup *old, *objcg = NULL;
3114
3115 do {
3116 /* Atomically drop the update bit. */
3117 old = xchg(&current->objcg, NULL);
3118 if (old) {
3119 old = (struct obj_cgroup *)
3120 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3121 if (old)
3122 obj_cgroup_put(old);
3123
3124 old = NULL;
3125 }
3126
3127 /* If new objcg is NULL, no reason for the second atomic update. */
3128 if (!current->mm || (current->flags & PF_KTHREAD))
3129 return NULL;
3130
3131 /*
3132 * Release the objcg pointer from the previous iteration,
3133 * if try_cmpxcg() below fails.
3134 */
3135 if (unlikely(objcg)) {
3136 obj_cgroup_put(objcg);
3137 objcg = NULL;
3138 }
3139
3140 /*
3141 * Obtain the new objcg pointer. The current task can be
3142 * asynchronously moved to another memcg and the previous
3143 * memcg can be offlined. So let's get the memcg pointer
3144 * and try get a reference to objcg under a rcu read lock.
3145 */
3146
3147 rcu_read_lock();
3148 memcg = mem_cgroup_from_task(current);
3149 objcg = __get_obj_cgroup_from_memcg(memcg);
3150 rcu_read_unlock();
3151
3152 /*
3153 * Try set up a new objcg pointer atomically. If it
3154 * fails, it means the update flag was set concurrently, so
3155 * the whole procedure should be repeated.
3156 */
3157 } while (!try_cmpxchg(&current->objcg, &old, objcg));
3158
3159 return objcg;
3160}
3161
e86828e5
RG
3162__always_inline struct obj_cgroup *current_obj_cgroup(void)
3163{
3164 struct mem_cgroup *memcg;
3165 struct obj_cgroup *objcg;
3166
3167 if (in_task()) {
3168 memcg = current->active_memcg;
3169 if (unlikely(memcg))
3170 goto from_memcg;
3171
3172 objcg = READ_ONCE(current->objcg);
3173 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3174 objcg = current_objcg_update();
3175 /*
3176 * Objcg reference is kept by the task, so it's safe
3177 * to use the objcg by the current task.
3178 */
3179 return objcg;
3180 }
3181
3182 memcg = this_cpu_read(int_active_memcg);
3183 if (unlikely(memcg))
3184 goto from_memcg;
3185
3186 return NULL;
3187
3188from_memcg:
5f79489a 3189 objcg = NULL;
e86828e5
RG
3190 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3191 /*
3192 * Memcg pointer is protected by scope (see set_active_memcg())
3193 * and is pinning the corresponding objcg, so objcg can't go
3194 * away and can be used within the scope without any additional
3195 * protection.
3196 */
3197 objcg = rcu_dereference_check(memcg->objcg, 1);
3198 if (likely(objcg))
3199 break;
e86828e5
RG
3200 }
3201
3202 return objcg;
3203}
3204
074e3e26 3205struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
f4840ccf
JW
3206{
3207 struct obj_cgroup *objcg;
3208
f7a449f7 3209 if (!memcg_kmem_online())
f4840ccf
JW
3210 return NULL;
3211
074e3e26
MWO
3212 if (folio_memcg_kmem(folio)) {
3213 objcg = __folio_objcg(folio);
f4840ccf
JW
3214 obj_cgroup_get(objcg);
3215 } else {
3216 struct mem_cgroup *memcg;
bf4f0599 3217
f4840ccf 3218 rcu_read_lock();
074e3e26 3219 memcg = __folio_memcg(folio);
f4840ccf
JW
3220 if (memcg)
3221 objcg = __get_obj_cgroup_from_memcg(memcg);
3222 else
3223 objcg = NULL;
3224 rcu_read_unlock();
3225 }
bf4f0599
RG
3226 return objcg;
3227}
3228
a8c49af3
YA
3229static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3230{
3231 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3232 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3233 if (nr_pages > 0)
3234 page_counter_charge(&memcg->kmem, nr_pages);
3235 else
3236 page_counter_uncharge(&memcg->kmem, -nr_pages);
3237 }
3238}
3239
3240
f1286fae
MS
3241/*
3242 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3243 * @objcg: object cgroup to uncharge
3244 * @nr_pages: number of pages to uncharge
3245 */
e74d2259
MS
3246static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3247 unsigned int nr_pages)
3248{
3249 struct mem_cgroup *memcg;
3250
3251 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3252
a8c49af3 3253 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3254 refill_stock(memcg, nr_pages);
e74d2259 3255
e74d2259 3256 css_put(&memcg->css);
e74d2259
MS
3257}
3258
f1286fae
MS
3259/*
3260 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3261 * @objcg: object cgroup to charge
45264778 3262 * @gfp: reclaim mode
92d0510c 3263 * @nr_pages: number of pages to charge
45264778
VD
3264 *
3265 * Returns 0 on success, an error code on failure.
3266 */
f1286fae
MS
3267static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3268 unsigned int nr_pages)
7ae1e1d0 3269{
f1286fae 3270 struct mem_cgroup *memcg;
7ae1e1d0
GC
3271 int ret;
3272
f1286fae
MS
3273 memcg = get_mem_cgroup_from_objcg(objcg);
3274
c5c8b16b 3275 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3276 if (ret)
f1286fae 3277 goto out;
52c29b04 3278
a8c49af3 3279 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3280out:
3281 css_put(&memcg->css);
4b13f64d 3282
f1286fae 3283 return ret;
4b13f64d
RG
3284}
3285
45264778 3286/**
f4b00eab 3287 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3288 * @page: page to charge
3289 * @gfp: reclaim mode
3290 * @order: allocation order
3291 *
3292 * Returns 0 on success, an error code on failure.
3293 */
f4b00eab 3294int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3295{
b4e0b68f 3296 struct obj_cgroup *objcg;
fcff7d7e 3297 int ret = 0;
7ae1e1d0 3298
e86828e5 3299 objcg = current_obj_cgroup();
b4e0b68f
MS
3300 if (objcg) {
3301 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3302 if (!ret) {
e86828e5 3303 obj_cgroup_get(objcg);
b4e0b68f 3304 page->memcg_data = (unsigned long)objcg |
18b2db3b 3305 MEMCG_DATA_KMEM;
1a3e1f40 3306 return 0;
4d96ba35 3307 }
c4159a75 3308 }
d05e83a6 3309 return ret;
7ae1e1d0 3310}
49a18eae 3311
45264778 3312/**
f4b00eab 3313 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3314 * @page: page to uncharge
3315 * @order: allocation order
3316 */
f4b00eab 3317void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3318{
1b7e4464 3319 struct folio *folio = page_folio(page);
b4e0b68f 3320 struct obj_cgroup *objcg;
f3ccb2c4 3321 unsigned int nr_pages = 1 << order;
7ae1e1d0 3322
1b7e4464 3323 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3324 return;
3325
1b7e4464 3326 objcg = __folio_objcg(folio);
b4e0b68f 3327 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3328 folio->memcg_data = 0;
b4e0b68f 3329 obj_cgroup_put(objcg);
60d3fd32 3330}
bf4f0599 3331
68ac5b3c
WL
3332void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3333 enum node_stat_item idx, int nr)
3334{
fead2b86 3335 struct memcg_stock_pcp *stock;
56751146 3336 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3337 unsigned long flags;
3338 int *bytes;
3339
56751146 3340 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3341 stock = this_cpu_ptr(&memcg_stock);
3342
68ac5b3c
WL
3343 /*
3344 * Save vmstat data in stock and skip vmstat array update unless
3345 * accumulating over a page of vmstat data or when pgdat or idx
3346 * changes.
3347 */
3b8abb32 3348 if (READ_ONCE(stock->cached_objcg) != objcg) {
56751146 3349 old = drain_obj_stock(stock);
68ac5b3c
WL
3350 obj_cgroup_get(objcg);
3351 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3352 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3b8abb32 3353 WRITE_ONCE(stock->cached_objcg, objcg);
68ac5b3c
WL
3354 stock->cached_pgdat = pgdat;
3355 } else if (stock->cached_pgdat != pgdat) {
3356 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3357 struct pglist_data *oldpg = stock->cached_pgdat;
3358
68ac5b3c 3359 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3360 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3361 stock->nr_slab_reclaimable_b);
3362 stock->nr_slab_reclaimable_b = 0;
3363 }
3364 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3365 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3366 stock->nr_slab_unreclaimable_b);
3367 stock->nr_slab_unreclaimable_b = 0;
3368 }
3369 stock->cached_pgdat = pgdat;
3370 }
3371
3372 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3373 : &stock->nr_slab_unreclaimable_b;
3374 /*
3375 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3376 * cached locally at least once before pushing it out.
3377 */
3378 if (!*bytes) {
3379 *bytes = nr;
3380 nr = 0;
3381 } else {
3382 *bytes += nr;
3383 if (abs(*bytes) > PAGE_SIZE) {
3384 nr = *bytes;
3385 *bytes = 0;
3386 } else {
3387 nr = 0;
3388 }
3389 }
3390 if (nr)
3391 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3392
56751146
SAS
3393 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3394 if (old)
3395 obj_cgroup_put(old);
68ac5b3c
WL
3396}
3397
bf4f0599
RG
3398static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3399{
fead2b86 3400 struct memcg_stock_pcp *stock;
bf4f0599
RG
3401 unsigned long flags;
3402 bool ret = false;
3403
56751146 3404 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3405
3406 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3407 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
bf4f0599
RG
3408 stock->nr_bytes -= nr_bytes;
3409 ret = true;
3410 }
3411
56751146 3412 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3413
3414 return ret;
3415}
3416
56751146 3417static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 3418{
3b8abb32 3419 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3420
3421 if (!old)
56751146 3422 return NULL;
bf4f0599
RG
3423
3424 if (stock->nr_bytes) {
3425 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3426 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3427
af9a3b69
JW
3428 if (nr_pages) {
3429 struct mem_cgroup *memcg;
3430
3431 memcg = get_mem_cgroup_from_objcg(old);
3432
3433 memcg_account_kmem(memcg, -nr_pages);
3434 __refill_stock(memcg, nr_pages);
3435
3436 css_put(&memcg->css);
3437 }
bf4f0599
RG
3438
3439 /*
3440 * The leftover is flushed to the centralized per-memcg value.
3441 * On the next attempt to refill obj stock it will be moved
3442 * to a per-cpu stock (probably, on an other CPU), see
3443 * refill_obj_stock().
3444 *
3445 * How often it's flushed is a trade-off between the memory
3446 * limit enforcement accuracy and potential CPU contention,
3447 * so it might be changed in the future.
3448 */
3449 atomic_add(nr_bytes, &old->nr_charged_bytes);
3450 stock->nr_bytes = 0;
3451 }
3452
68ac5b3c
WL
3453 /*
3454 * Flush the vmstat data in current stock
3455 */
3456 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3457 if (stock->nr_slab_reclaimable_b) {
3458 mod_objcg_mlstate(old, stock->cached_pgdat,
3459 NR_SLAB_RECLAIMABLE_B,
3460 stock->nr_slab_reclaimable_b);
3461 stock->nr_slab_reclaimable_b = 0;
3462 }
3463 if (stock->nr_slab_unreclaimable_b) {
3464 mod_objcg_mlstate(old, stock->cached_pgdat,
3465 NR_SLAB_UNRECLAIMABLE_B,
3466 stock->nr_slab_unreclaimable_b);
3467 stock->nr_slab_unreclaimable_b = 0;
3468 }
3469 stock->cached_pgdat = NULL;
3470 }
3471
3b8abb32 3472 WRITE_ONCE(stock->cached_objcg, NULL);
56751146
SAS
3473 /*
3474 * The `old' objects needs to be released by the caller via
3475 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3476 */
3477 return old;
bf4f0599
RG
3478}
3479
3480static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3481 struct mem_cgroup *root_memcg)
3482{
3b8abb32 3483 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3484 struct mem_cgroup *memcg;
3485
3b8abb32
RG
3486 if (objcg) {
3487 memcg = obj_cgroup_memcg(objcg);
bf4f0599
RG
3488 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3489 return true;
3490 }
3491
3492 return false;
3493}
3494
5387c904
WL
3495static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3496 bool allow_uncharge)
bf4f0599 3497{
fead2b86 3498 struct memcg_stock_pcp *stock;
56751146 3499 struct obj_cgroup *old = NULL;
bf4f0599 3500 unsigned long flags;
5387c904 3501 unsigned int nr_pages = 0;
bf4f0599 3502
56751146 3503 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3504
3505 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3506 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
56751146 3507 old = drain_obj_stock(stock);
bf4f0599 3508 obj_cgroup_get(objcg);
3b8abb32 3509 WRITE_ONCE(stock->cached_objcg, objcg);
5387c904
WL
3510 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3511 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3512 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3513 }
3514 stock->nr_bytes += nr_bytes;
3515
5387c904
WL
3516 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3517 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3518 stock->nr_bytes &= (PAGE_SIZE - 1);
3519 }
bf4f0599 3520
56751146
SAS
3521 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3522 if (old)
3523 obj_cgroup_put(old);
5387c904
WL
3524
3525 if (nr_pages)
3526 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3527}
3528
3529int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3530{
bf4f0599
RG
3531 unsigned int nr_pages, nr_bytes;
3532 int ret;
3533
3534 if (consume_obj_stock(objcg, size))
3535 return 0;
3536
3537 /*
5387c904 3538 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3539 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3540 * flushing objcg->nr_charged_bytes requires two atomic
3541 * operations, and objcg->nr_charged_bytes can't be big.
3542 * The shared objcg->nr_charged_bytes can also become a
3543 * performance bottleneck if all tasks of the same memcg are
3544 * trying to update it. So it's better to ignore it and try
3545 * grab some new pages. The stock's nr_bytes will be flushed to
3546 * objcg->nr_charged_bytes later on when objcg changes.
3547 *
3548 * The stock's nr_bytes may contain enough pre-charged bytes
3549 * to allow one less page from being charged, but we can't rely
3550 * on the pre-charged bytes not being changed outside of
3551 * consume_obj_stock() or refill_obj_stock(). So ignore those
3552 * pre-charged bytes as well when charging pages. To avoid a
3553 * page uncharge right after a page charge, we set the
3554 * allow_uncharge flag to false when calling refill_obj_stock()
3555 * to temporarily allow the pre-charged bytes to exceed the page
3556 * size limit. The maximum reachable value of the pre-charged
3557 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3558 * race.
bf4f0599 3559 */
bf4f0599
RG
3560 nr_pages = size >> PAGE_SHIFT;
3561 nr_bytes = size & (PAGE_SIZE - 1);
3562
3563 if (nr_bytes)
3564 nr_pages += 1;
3565
e74d2259 3566 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3567 if (!ret && nr_bytes)
5387c904 3568 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3569
bf4f0599
RG
3570 return ret;
3571}
3572
3573void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3574{
5387c904 3575 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3576}
3577
84c07d11 3578#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3579
ca3e0214 3580/*
be6c8982 3581 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3582 */
be6c8982 3583void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3584{
1b7e4464
MWO
3585 struct folio *folio = page_folio(head);
3586 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3587 int i;
ca3e0214 3588
be6c8982 3589 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3590 return;
b070e65c 3591
be6c8982 3592 for (i = 1; i < nr; i++)
1b7e4464 3593 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3594
1b7e4464
MWO
3595 if (folio_memcg_kmem(folio))
3596 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3597 else
3598 css_get_many(&memcg->css, nr - 1);
ca3e0214 3599}
ca3e0214 3600
e55b9f96 3601#ifdef CONFIG_SWAP
02491447
DN
3602/**
3603 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3604 * @entry: swap entry to be moved
3605 * @from: mem_cgroup which the entry is moved from
3606 * @to: mem_cgroup which the entry is moved to
3607 *
3608 * It succeeds only when the swap_cgroup's record for this entry is the same
3609 * as the mem_cgroup's id of @from.
3610 *
3611 * Returns 0 on success, -EINVAL on failure.
3612 *
3e32cb2e 3613 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3614 * both res and memsw, and called css_get().
3615 */
3616static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3617 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3618{
3619 unsigned short old_id, new_id;
3620
34c00c31
LZ
3621 old_id = mem_cgroup_id(from);
3622 new_id = mem_cgroup_id(to);
02491447
DN
3623
3624 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3625 mod_memcg_state(from, MEMCG_SWAP, -1);
3626 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3627 return 0;
3628 }
3629 return -EINVAL;
3630}
3631#else
3632static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3633 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3634{
3635 return -EINVAL;
3636}
8c7c6e34 3637#endif
d13d1443 3638
bbec2e15 3639static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3640
bbec2e15
RG
3641static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3642 unsigned long max, bool memsw)
628f4235 3643{
3e32cb2e 3644 bool enlarge = false;
bb4a7ea2 3645 bool drained = false;
3e32cb2e 3646 int ret;
c054a78c
YZ
3647 bool limits_invariant;
3648 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3649
3e32cb2e 3650 do {
628f4235
KH
3651 if (signal_pending(current)) {
3652 ret = -EINTR;
3653 break;
3654 }
3e32cb2e 3655
bbec2e15 3656 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3657 /*
3658 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3659 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3660 */
15b42562 3661 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3662 max <= memcg->memsw.max;
c054a78c 3663 if (!limits_invariant) {
bbec2e15 3664 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3665 ret = -EINVAL;
8c7c6e34
KH
3666 break;
3667 }
bbec2e15 3668 if (max > counter->max)
3e32cb2e 3669 enlarge = true;
bbec2e15
RG
3670 ret = page_counter_set_max(counter, max);
3671 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3672
3673 if (!ret)
3674 break;
3675
bb4a7ea2
SB
3676 if (!drained) {
3677 drain_all_stock(memcg);
3678 drained = true;
3679 continue;
3680 }
3681
73b73bac 3682 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3683 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3684 ret = -EBUSY;
3685 break;
3686 }
3687 } while (true);
3e32cb2e 3688
3c11ecf4
KH
3689 if (!ret && enlarge)
3690 memcg_oom_recover(memcg);
3e32cb2e 3691
628f4235
KH
3692 return ret;
3693}
3694
ef8f2327 3695unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3696 gfp_t gfp_mask,
3697 unsigned long *total_scanned)
3698{
3699 unsigned long nr_reclaimed = 0;
ef8f2327 3700 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3701 unsigned long reclaimed;
3702 int loop = 0;
ef8f2327 3703 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3704 unsigned long excess;
0608f43d 3705
e4dde56c
YZ
3706 if (lru_gen_enabled())
3707 return 0;
3708
0608f43d
AM
3709 if (order > 0)
3710 return 0;
3711
2ab082ba 3712 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3713
3714 /*
3715 * Do not even bother to check the largest node if the root
3716 * is empty. Do it lockless to prevent lock bouncing. Races
3717 * are acceptable as soft limit is best effort anyway.
3718 */
bfc7228b 3719 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3720 return 0;
3721
0608f43d
AM
3722 /*
3723 * This loop can run a while, specially if mem_cgroup's continuously
3724 * keep exceeding their soft limit and putting the system under
3725 * pressure
3726 */
3727 do {
3728 if (next_mz)
3729 mz = next_mz;
3730 else
3731 mz = mem_cgroup_largest_soft_limit_node(mctz);
3732 if (!mz)
3733 break;
3734
ef8f2327 3735 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3736 gfp_mask, total_scanned);
0608f43d 3737 nr_reclaimed += reclaimed;
0a31bc97 3738 spin_lock_irq(&mctz->lock);
0608f43d
AM
3739
3740 /*
3741 * If we failed to reclaim anything from this memory cgroup
3742 * it is time to move on to the next cgroup
3743 */
3744 next_mz = NULL;
bc2f2e7f
VD
3745 if (!reclaimed)
3746 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3747
3e32cb2e 3748 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3749 /*
3750 * One school of thought says that we should not add
3751 * back the node to the tree if reclaim returns 0.
3752 * But our reclaim could return 0, simply because due
3753 * to priority we are exposing a smaller subset of
3754 * memory to reclaim from. Consider this as a longer
3755 * term TODO.
3756 */
3757 /* If excess == 0, no tree ops */
cf2c8127 3758 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3759 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3760 css_put(&mz->memcg->css);
3761 loop++;
3762 /*
3763 * Could not reclaim anything and there are no more
3764 * mem cgroups to try or we seem to be looping without
3765 * reclaiming anything.
3766 */
3767 if (!nr_reclaimed &&
3768 (next_mz == NULL ||
3769 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3770 break;
3771 } while (!nr_reclaimed);
3772 if (next_mz)
3773 css_put(&next_mz->memcg->css);
3774 return nr_reclaimed;
3775}
3776
c26251f9 3777/*
51038171 3778 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3779 *
3780 * Caller is responsible for holding css reference for memcg.
3781 */
3782static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3783{
d977aa93 3784 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3785
c1e862c1
KH
3786 /* we call try-to-free pages for make this cgroup empty */
3787 lru_add_drain_all();
d12c60f6
JS
3788
3789 drain_all_stock(memcg);
3790
f817ed48 3791 /* try to free all pages in this cgroup */
3e32cb2e 3792 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3793 if (signal_pending(current))
3794 return -EINTR;
3795
73b73bac 3796 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3797 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3798 nr_retries--;
f817ed48 3799 }
ab5196c2
MH
3800
3801 return 0;
cc847582
KH
3802}
3803
6770c64e
TH
3804static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3805 char *buf, size_t nbytes,
3806 loff_t off)
c1e862c1 3807{
6770c64e 3808 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3809
d8423011
MH
3810 if (mem_cgroup_is_root(memcg))
3811 return -EINVAL;
6770c64e 3812 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3813}
3814
182446d0
TH
3815static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3816 struct cftype *cft)
18f59ea7 3817{
bef8620c 3818 return 1;
18f59ea7
BS
3819}
3820
182446d0
TH
3821static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3822 struct cftype *cft, u64 val)
18f59ea7 3823{
bef8620c 3824 if (val == 1)
0b8f73e1 3825 return 0;
567fb435 3826
bef8620c
RG
3827 pr_warn_once("Non-hierarchical mode is deprecated. "
3828 "Please report your usecase to linux-mm@kvack.org if you "
3829 "depend on this functionality.\n");
567fb435 3830
bef8620c 3831 return -EINVAL;
18f59ea7
BS
3832}
3833
6f646156 3834static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3835{
42a30035 3836 unsigned long val;
ce00a967 3837
3e32cb2e 3838 if (mem_cgroup_is_root(memcg)) {
a2174e95 3839 /*
f82a7a86
YA
3840 * Approximate root's usage from global state. This isn't
3841 * perfect, but the root usage was always an approximation.
a2174e95 3842 */
f82a7a86
YA
3843 val = global_node_page_state(NR_FILE_PAGES) +
3844 global_node_page_state(NR_ANON_MAPPED);
42a30035 3845 if (swap)
f82a7a86 3846 val += total_swap_pages - get_nr_swap_pages();
3e32cb2e 3847 } else {
ce00a967 3848 if (!swap)
3e32cb2e 3849 val = page_counter_read(&memcg->memory);
ce00a967 3850 else
3e32cb2e 3851 val = page_counter_read(&memcg->memsw);
ce00a967 3852 }
c12176d3 3853 return val;
ce00a967
JW
3854}
3855
3e32cb2e
JW
3856enum {
3857 RES_USAGE,
3858 RES_LIMIT,
3859 RES_MAX_USAGE,
3860 RES_FAILCNT,
3861 RES_SOFT_LIMIT,
3862};
ce00a967 3863
791badbd 3864static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3865 struct cftype *cft)
8cdea7c0 3866{
182446d0 3867 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3868 struct page_counter *counter;
af36f906 3869
3e32cb2e 3870 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3871 case _MEM:
3e32cb2e
JW
3872 counter = &memcg->memory;
3873 break;
8c7c6e34 3874 case _MEMSWAP:
3e32cb2e
JW
3875 counter = &memcg->memsw;
3876 break;
510fc4e1 3877 case _KMEM:
3e32cb2e 3878 counter = &memcg->kmem;
510fc4e1 3879 break;
d55f90bf 3880 case _TCP:
0db15298 3881 counter = &memcg->tcpmem;
d55f90bf 3882 break;
8c7c6e34
KH
3883 default:
3884 BUG();
8c7c6e34 3885 }
3e32cb2e
JW
3886
3887 switch (MEMFILE_ATTR(cft->private)) {
3888 case RES_USAGE:
3889 if (counter == &memcg->memory)
c12176d3 3890 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3891 if (counter == &memcg->memsw)
c12176d3 3892 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3893 return (u64)page_counter_read(counter) * PAGE_SIZE;
3894 case RES_LIMIT:
bbec2e15 3895 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3896 case RES_MAX_USAGE:
3897 return (u64)counter->watermark * PAGE_SIZE;
3898 case RES_FAILCNT:
3899 return counter->failcnt;
3900 case RES_SOFT_LIMIT:
2178e20c 3901 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3e32cb2e
JW
3902 default:
3903 BUG();
3904 }
8cdea7c0 3905}
510fc4e1 3906
6b0ba2ab
FS
3907/*
3908 * This function doesn't do anything useful. Its only job is to provide a read
3909 * handler for a file so that cgroup_file_mode() will add read permissions.
3910 */
3911static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3912 __always_unused void *v)
3913{
3914 return -EINVAL;
3915}
3916
84c07d11 3917#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3918static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3919{
bf4f0599 3920 struct obj_cgroup *objcg;
d6441637 3921
9c94bef9 3922 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3923 return 0;
3924
da0efe30
MS
3925 if (unlikely(mem_cgroup_is_root(memcg)))
3926 return 0;
d6441637 3927
bf4f0599 3928 objcg = obj_cgroup_alloc();
f9c69d63 3929 if (!objcg)
bf4f0599 3930 return -ENOMEM;
f9c69d63 3931
bf4f0599
RG
3932 objcg->memcg = memcg;
3933 rcu_assign_pointer(memcg->objcg, objcg);
675d6c9b
RG
3934 obj_cgroup_get(objcg);
3935 memcg->orig_objcg = objcg;
bf4f0599 3936
f7a449f7 3937 static_branch_enable(&memcg_kmem_online_key);
d648bcc7 3938
f9c69d63 3939 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3940
3941 return 0;
d6441637
VD
3942}
3943
8e0a8912
JW
3944static void memcg_offline_kmem(struct mem_cgroup *memcg)
3945{
64268868 3946 struct mem_cgroup *parent;
8e0a8912 3947
9c94bef9 3948 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3949 return;
3950
3951 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3952 return;
9855609b 3953
8e0a8912
JW
3954 parent = parent_mem_cgroup(memcg);
3955 if (!parent)
3956 parent = root_mem_cgroup;
3957
bf4f0599 3958 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3959
8e0a8912 3960 /*
64268868
MS
3961 * After we have finished memcg_reparent_objcgs(), all list_lrus
3962 * corresponding to this cgroup are guaranteed to remain empty.
3963 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3964 * memcg_reparent_list_lrus().
8e0a8912 3965 */
1f391eb2 3966 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3967}
d6441637 3968#else
0b8f73e1 3969static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3970{
3971 return 0;
3972}
3973static void memcg_offline_kmem(struct mem_cgroup *memcg)
3974{
3975}
84c07d11 3976#endif /* CONFIG_MEMCG_KMEM */
127424c8 3977
bbec2e15 3978static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3979{
3980 int ret;
3981
bbec2e15 3982 mutex_lock(&memcg_max_mutex);
d55f90bf 3983
bbec2e15 3984 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3985 if (ret)
3986 goto out;
3987
0db15298 3988 if (!memcg->tcpmem_active) {
d55f90bf
VD
3989 /*
3990 * The active flag needs to be written after the static_key
3991 * update. This is what guarantees that the socket activation
2d758073
JW
3992 * function is the last one to run. See mem_cgroup_sk_alloc()
3993 * for details, and note that we don't mark any socket as
3994 * belonging to this memcg until that flag is up.
d55f90bf
VD
3995 *
3996 * We need to do this, because static_keys will span multiple
3997 * sites, but we can't control their order. If we mark a socket
3998 * as accounted, but the accounting functions are not patched in
3999 * yet, we'll lose accounting.
4000 *
2d758073 4001 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
4002 * because when this value change, the code to process it is not
4003 * patched in yet.
4004 */
4005 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 4006 memcg->tcpmem_active = true;
d55f90bf
VD
4007 }
4008out:
bbec2e15 4009 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
4010 return ret;
4011}
d55f90bf 4012
628f4235
KH
4013/*
4014 * The user of this function is...
4015 * RES_LIMIT.
4016 */
451af504
TH
4017static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4018 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4019{
451af504 4020 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4021 unsigned long nr_pages;
628f4235
KH
4022 int ret;
4023
451af504 4024 buf = strstrip(buf);
650c5e56 4025 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
4026 if (ret)
4027 return ret;
af36f906 4028
3e32cb2e 4029 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 4030 case RES_LIMIT:
4b3bde4c
BS
4031 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4032 ret = -EINVAL;
4033 break;
4034 }
3e32cb2e
JW
4035 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4036 case _MEM:
bbec2e15 4037 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 4038 break;
3e32cb2e 4039 case _MEMSWAP:
bbec2e15 4040 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 4041 break;
4597648f
MH
4042 case _KMEM:
4043 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4044 "Writing any value to this file has no effect. "
4045 "Please report your usecase to linux-mm@kvack.org if you "
4046 "depend on this functionality.\n");
4047 ret = 0;
4048 break;
d55f90bf 4049 case _TCP:
bbec2e15 4050 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 4051 break;
3e32cb2e 4052 }
296c81d8 4053 break;
3e32cb2e 4054 case RES_SOFT_LIMIT:
2343e88d
SAS
4055 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4056 ret = -EOPNOTSUPP;
4057 } else {
2178e20c 4058 WRITE_ONCE(memcg->soft_limit, nr_pages);
2343e88d
SAS
4059 ret = 0;
4060 }
628f4235
KH
4061 break;
4062 }
451af504 4063 return ret ?: nbytes;
8cdea7c0
BS
4064}
4065
6770c64e
TH
4066static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4067 size_t nbytes, loff_t off)
c84872e1 4068{
6770c64e 4069 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4070 struct page_counter *counter;
c84872e1 4071
3e32cb2e
JW
4072 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4073 case _MEM:
4074 counter = &memcg->memory;
4075 break;
4076 case _MEMSWAP:
4077 counter = &memcg->memsw;
4078 break;
4079 case _KMEM:
4080 counter = &memcg->kmem;
4081 break;
d55f90bf 4082 case _TCP:
0db15298 4083 counter = &memcg->tcpmem;
d55f90bf 4084 break;
3e32cb2e
JW
4085 default:
4086 BUG();
4087 }
af36f906 4088
3e32cb2e 4089 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 4090 case RES_MAX_USAGE:
3e32cb2e 4091 page_counter_reset_watermark(counter);
29f2a4da
PE
4092 break;
4093 case RES_FAILCNT:
3e32cb2e 4094 counter->failcnt = 0;
29f2a4da 4095 break;
3e32cb2e
JW
4096 default:
4097 BUG();
29f2a4da 4098 }
f64c3f54 4099
6770c64e 4100 return nbytes;
c84872e1
PE
4101}
4102
182446d0 4103static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4104 struct cftype *cft)
4105{
182446d0 4106 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4107}
4108
02491447 4109#ifdef CONFIG_MMU
182446d0 4110static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4111 struct cftype *cft, u64 val)
4112{
182446d0 4113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 4114
da34a848
JW
4115 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4116 "Please report your usecase to linux-mm@kvack.org if you "
4117 "depend on this functionality.\n");
4118
1dfab5ab 4119 if (val & ~MOVE_MASK)
7dc74be0 4120 return -EINVAL;
ee5e8472 4121
7dc74be0 4122 /*
ee5e8472
GC
4123 * No kind of locking is needed in here, because ->can_attach() will
4124 * check this value once in the beginning of the process, and then carry
4125 * on with stale data. This means that changes to this value will only
4126 * affect task migrations starting after the change.
7dc74be0 4127 */
c0ff4b85 4128 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4129 return 0;
4130}
02491447 4131#else
182446d0 4132static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4133 struct cftype *cft, u64 val)
4134{
4135 return -ENOSYS;
4136}
4137#endif
7dc74be0 4138
406eb0c9 4139#ifdef CONFIG_NUMA
113b7dfd
JW
4140
4141#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4142#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4143#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4144
4145static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 4146 int nid, unsigned int lru_mask, bool tree)
113b7dfd 4147{
867e5e1d 4148 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
4149 unsigned long nr = 0;
4150 enum lru_list lru;
4151
4152 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4153
4154 for_each_lru(lru) {
4155 if (!(BIT(lru) & lru_mask))
4156 continue;
dd8657b6
SB
4157 if (tree)
4158 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4159 else
4160 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
4161 }
4162 return nr;
4163}
4164
4165static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
4166 unsigned int lru_mask,
4167 bool tree)
113b7dfd
JW
4168{
4169 unsigned long nr = 0;
4170 enum lru_list lru;
4171
4172 for_each_lru(lru) {
4173 if (!(BIT(lru) & lru_mask))
4174 continue;
dd8657b6
SB
4175 if (tree)
4176 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4177 else
4178 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
4179 }
4180 return nr;
4181}
4182
2da8ca82 4183static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4184{
25485de6
GT
4185 struct numa_stat {
4186 const char *name;
4187 unsigned int lru_mask;
4188 };
4189
4190 static const struct numa_stat stats[] = {
4191 { "total", LRU_ALL },
4192 { "file", LRU_ALL_FILE },
4193 { "anon", LRU_ALL_ANON },
4194 { "unevictable", BIT(LRU_UNEVICTABLE) },
4195 };
4196 const struct numa_stat *stat;
406eb0c9 4197 int nid;
aa9694bb 4198 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4199
7d7ef0a4 4200 mem_cgroup_flush_stats(memcg);
2d146aa3 4201
25485de6 4202 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4203 seq_printf(m, "%s=%lu", stat->name,
4204 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4205 false));
4206 for_each_node_state(nid, N_MEMORY)
4207 seq_printf(m, " N%d=%lu", nid,
4208 mem_cgroup_node_nr_lru_pages(memcg, nid,
4209 stat->lru_mask, false));
25485de6 4210 seq_putc(m, '\n');
406eb0c9 4211 }
406eb0c9 4212
071aee13 4213 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4214
4215 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4216 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4217 true));
4218 for_each_node_state(nid, N_MEMORY)
4219 seq_printf(m, " N%d=%lu", nid,
4220 mem_cgroup_node_nr_lru_pages(memcg, nid,
4221 stat->lru_mask, true));
071aee13 4222 seq_putc(m, '\n');
406eb0c9 4223 }
406eb0c9 4224
406eb0c9
YH
4225 return 0;
4226}
4227#endif /* CONFIG_NUMA */
4228
c8713d0b 4229static const unsigned int memcg1_stats[] = {
0d1c2072 4230 NR_FILE_PAGES,
be5d0a74 4231 NR_ANON_MAPPED,
468c3982
JW
4232#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4233 NR_ANON_THPS,
4234#endif
c8713d0b
JW
4235 NR_SHMEM,
4236 NR_FILE_MAPPED,
4237 NR_FILE_DIRTY,
4238 NR_WRITEBACK,
e09b0b61
YS
4239 WORKINGSET_REFAULT_ANON,
4240 WORKINGSET_REFAULT_FILE,
72a14e82 4241#ifdef CONFIG_SWAP
c8713d0b 4242 MEMCG_SWAP,
72a14e82
LS
4243 NR_SWAPCACHE,
4244#endif
c8713d0b
JW
4245};
4246
4247static const char *const memcg1_stat_names[] = {
4248 "cache",
4249 "rss",
468c3982 4250#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4251 "rss_huge",
468c3982 4252#endif
c8713d0b
JW
4253 "shmem",
4254 "mapped_file",
4255 "dirty",
4256 "writeback",
e09b0b61
YS
4257 "workingset_refault_anon",
4258 "workingset_refault_file",
72a14e82 4259#ifdef CONFIG_SWAP
c8713d0b 4260 "swap",
72a14e82
LS
4261 "swapcached",
4262#endif
c8713d0b
JW
4263};
4264
df0e53d0 4265/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4266static const unsigned int memcg1_events[] = {
df0e53d0
JW
4267 PGPGIN,
4268 PGPGOUT,
4269 PGFAULT,
4270 PGMAJFAULT,
4271};
4272
dddb44ff 4273static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
d2ceb9b7 4274{
3e32cb2e 4275 unsigned long memory, memsw;
af7c4b0e
JW
4276 struct mem_cgroup *mi;
4277 unsigned int i;
406eb0c9 4278
71cd3113 4279 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4280
7d7ef0a4 4281 mem_cgroup_flush_stats(memcg);
2d146aa3 4282
71cd3113 4283 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4284 unsigned long nr;
4285
ff841a06
YA
4286 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4287 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
1dd3a273 4288 }
7b854121 4289
df0e53d0 4290 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4291 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4292 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4293
4294 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4295 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4296 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4297 PAGE_SIZE);
af7c4b0e 4298
14067bb3 4299 /* Hierarchical information */
3e32cb2e
JW
4300 memory = memsw = PAGE_COUNTER_MAX;
4301 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4302 memory = min(memory, READ_ONCE(mi->memory.max));
4303 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4304 }
dddb44ff
YA
4305 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4306 (u64)memory * PAGE_SIZE);
840ea53a
LS
4307 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4308 (u64)memsw * PAGE_SIZE);
7f016ee8 4309
8de7ecc6 4310 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4311 unsigned long nr;
4312
ff841a06 4313 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
dddb44ff 4314 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
ff841a06 4315 (u64)nr);
af7c4b0e
JW
4316 }
4317
8de7ecc6 4318 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4319 seq_buf_printf(s, "total_%s %llu\n",
4320 vm_event_name(memcg1_events[i]),
4321 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4322
8de7ecc6 4323 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4324 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4325 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4326 PAGE_SIZE);
14067bb3 4327
7f016ee8 4328#ifdef CONFIG_DEBUG_VM
7f016ee8 4329 {
ef8f2327
MG
4330 pg_data_t *pgdat;
4331 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4332 unsigned long anon_cost = 0;
4333 unsigned long file_cost = 0;
7f016ee8 4334
ef8f2327 4335 for_each_online_pgdat(pgdat) {
a3747b53 4336 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4337
1431d4d1
JW
4338 anon_cost += mz->lruvec.anon_cost;
4339 file_cost += mz->lruvec.file_cost;
ef8f2327 4340 }
dddb44ff
YA
4341 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4342 seq_buf_printf(s, "file_cost %lu\n", file_cost);
7f016ee8
KM
4343 }
4344#endif
d2ceb9b7
KH
4345}
4346
182446d0
TH
4347static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4348 struct cftype *cft)
a7885eb8 4349{
182446d0 4350 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4351
1f4c025b 4352 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4353}
4354
182446d0
TH
4355static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4356 struct cftype *cft, u64 val)
a7885eb8 4357{
182446d0 4358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4359
37bc3cb9 4360 if (val > 200)
a7885eb8
KM
4361 return -EINVAL;
4362
a4792030 4363 if (!mem_cgroup_is_root(memcg))
82b3aa26 4364 WRITE_ONCE(memcg->swappiness, val);
3dae7fec 4365 else
82b3aa26 4366 WRITE_ONCE(vm_swappiness, val);
068b38c1 4367
a7885eb8
KM
4368 return 0;
4369}
4370
2e72b634
KS
4371static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4372{
4373 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4374 unsigned long usage;
2e72b634
KS
4375 int i;
4376
4377 rcu_read_lock();
4378 if (!swap)
2c488db2 4379 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4380 else
2c488db2 4381 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4382
4383 if (!t)
4384 goto unlock;
4385
ce00a967 4386 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4387
4388 /*
748dad36 4389 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4390 * If it's not true, a threshold was crossed after last
4391 * call of __mem_cgroup_threshold().
4392 */
5407a562 4393 i = t->current_threshold;
2e72b634
KS
4394
4395 /*
4396 * Iterate backward over array of thresholds starting from
4397 * current_threshold and check if a threshold is crossed.
4398 * If none of thresholds below usage is crossed, we read
4399 * only one element of the array here.
4400 */
4401 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3652117f 4402 eventfd_signal(t->entries[i].eventfd);
2e72b634
KS
4403
4404 /* i = current_threshold + 1 */
4405 i++;
4406
4407 /*
4408 * Iterate forward over array of thresholds starting from
4409 * current_threshold+1 and check if a threshold is crossed.
4410 * If none of thresholds above usage is crossed, we read
4411 * only one element of the array here.
4412 */
4413 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3652117f 4414 eventfd_signal(t->entries[i].eventfd);
2e72b634
KS
4415
4416 /* Update current_threshold */
5407a562 4417 t->current_threshold = i - 1;
2e72b634
KS
4418unlock:
4419 rcu_read_unlock();
4420}
4421
4422static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4423{
ad4ca5f4
KS
4424 while (memcg) {
4425 __mem_cgroup_threshold(memcg, false);
7941d214 4426 if (do_memsw_account())
ad4ca5f4
KS
4427 __mem_cgroup_threshold(memcg, true);
4428
4429 memcg = parent_mem_cgroup(memcg);
4430 }
2e72b634
KS
4431}
4432
4433static int compare_thresholds(const void *a, const void *b)
4434{
4435 const struct mem_cgroup_threshold *_a = a;
4436 const struct mem_cgroup_threshold *_b = b;
4437
2bff24a3
GT
4438 if (_a->threshold > _b->threshold)
4439 return 1;
4440
4441 if (_a->threshold < _b->threshold)
4442 return -1;
4443
4444 return 0;
2e72b634
KS
4445}
4446
c0ff4b85 4447static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4448{
4449 struct mem_cgroup_eventfd_list *ev;
4450
2bcf2e92
MH
4451 spin_lock(&memcg_oom_lock);
4452
c0ff4b85 4453 list_for_each_entry(ev, &memcg->oom_notify, list)
3652117f 4454 eventfd_signal(ev->eventfd);
2bcf2e92
MH
4455
4456 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4457 return 0;
4458}
4459
c0ff4b85 4460static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4461{
7d74b06f
KH
4462 struct mem_cgroup *iter;
4463
c0ff4b85 4464 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4465 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4466}
4467
59b6f873 4468static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4469 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4470{
2c488db2
KS
4471 struct mem_cgroup_thresholds *thresholds;
4472 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4473 unsigned long threshold;
4474 unsigned long usage;
2c488db2 4475 int i, size, ret;
2e72b634 4476
650c5e56 4477 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4478 if (ret)
4479 return ret;
4480
4481 mutex_lock(&memcg->thresholds_lock);
2c488db2 4482
05b84301 4483 if (type == _MEM) {
2c488db2 4484 thresholds = &memcg->thresholds;
ce00a967 4485 usage = mem_cgroup_usage(memcg, false);
05b84301 4486 } else if (type == _MEMSWAP) {
2c488db2 4487 thresholds = &memcg->memsw_thresholds;
ce00a967 4488 usage = mem_cgroup_usage(memcg, true);
05b84301 4489 } else
2e72b634
KS
4490 BUG();
4491
2e72b634 4492 /* Check if a threshold crossed before adding a new one */
2c488db2 4493 if (thresholds->primary)
2e72b634
KS
4494 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4495
2c488db2 4496 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4497
4498 /* Allocate memory for new array of thresholds */
67b8046f 4499 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4500 if (!new) {
2e72b634
KS
4501 ret = -ENOMEM;
4502 goto unlock;
4503 }
2c488db2 4504 new->size = size;
2e72b634
KS
4505
4506 /* Copy thresholds (if any) to new array */
e90342e6
GS
4507 if (thresholds->primary)
4508 memcpy(new->entries, thresholds->primary->entries,
4509 flex_array_size(new, entries, size - 1));
2c488db2 4510
2e72b634 4511 /* Add new threshold */
2c488db2
KS
4512 new->entries[size - 1].eventfd = eventfd;
4513 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4514
4515 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4516 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4517 compare_thresholds, NULL);
4518
4519 /* Find current threshold */
2c488db2 4520 new->current_threshold = -1;
2e72b634 4521 for (i = 0; i < size; i++) {
748dad36 4522 if (new->entries[i].threshold <= usage) {
2e72b634 4523 /*
2c488db2
KS
4524 * new->current_threshold will not be used until
4525 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4526 * it here.
4527 */
2c488db2 4528 ++new->current_threshold;
748dad36
SZ
4529 } else
4530 break;
2e72b634
KS
4531 }
4532
2c488db2
KS
4533 /* Free old spare buffer and save old primary buffer as spare */
4534 kfree(thresholds->spare);
4535 thresholds->spare = thresholds->primary;
4536
4537 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4538
907860ed 4539 /* To be sure that nobody uses thresholds */
2e72b634
KS
4540 synchronize_rcu();
4541
2e72b634
KS
4542unlock:
4543 mutex_unlock(&memcg->thresholds_lock);
4544
4545 return ret;
4546}
4547
59b6f873 4548static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4549 struct eventfd_ctx *eventfd, const char *args)
4550{
59b6f873 4551 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4552}
4553
59b6f873 4554static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4555 struct eventfd_ctx *eventfd, const char *args)
4556{
59b6f873 4557 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4558}
4559
59b6f873 4560static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4561 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4562{
2c488db2
KS
4563 struct mem_cgroup_thresholds *thresholds;
4564 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4565 unsigned long usage;
7d36665a 4566 int i, j, size, entries;
2e72b634
KS
4567
4568 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4569
4570 if (type == _MEM) {
2c488db2 4571 thresholds = &memcg->thresholds;
ce00a967 4572 usage = mem_cgroup_usage(memcg, false);
05b84301 4573 } else if (type == _MEMSWAP) {
2c488db2 4574 thresholds = &memcg->memsw_thresholds;
ce00a967 4575 usage = mem_cgroup_usage(memcg, true);
05b84301 4576 } else
2e72b634
KS
4577 BUG();
4578
371528ca
AV
4579 if (!thresholds->primary)
4580 goto unlock;
4581
2e72b634
KS
4582 /* Check if a threshold crossed before removing */
4583 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4584
4585 /* Calculate new number of threshold */
7d36665a 4586 size = entries = 0;
2c488db2
KS
4587 for (i = 0; i < thresholds->primary->size; i++) {
4588 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4589 size++;
7d36665a
CX
4590 else
4591 entries++;
2e72b634
KS
4592 }
4593
2c488db2 4594 new = thresholds->spare;
907860ed 4595
7d36665a
CX
4596 /* If no items related to eventfd have been cleared, nothing to do */
4597 if (!entries)
4598 goto unlock;
4599
2e72b634
KS
4600 /* Set thresholds array to NULL if we don't have thresholds */
4601 if (!size) {
2c488db2
KS
4602 kfree(new);
4603 new = NULL;
907860ed 4604 goto swap_buffers;
2e72b634
KS
4605 }
4606
2c488db2 4607 new->size = size;
2e72b634
KS
4608
4609 /* Copy thresholds and find current threshold */
2c488db2
KS
4610 new->current_threshold = -1;
4611 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4612 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4613 continue;
4614
2c488db2 4615 new->entries[j] = thresholds->primary->entries[i];
748dad36 4616 if (new->entries[j].threshold <= usage) {
2e72b634 4617 /*
2c488db2 4618 * new->current_threshold will not be used
2e72b634
KS
4619 * until rcu_assign_pointer(), so it's safe to increment
4620 * it here.
4621 */
2c488db2 4622 ++new->current_threshold;
2e72b634
KS
4623 }
4624 j++;
4625 }
4626
907860ed 4627swap_buffers:
2c488db2
KS
4628 /* Swap primary and spare array */
4629 thresholds->spare = thresholds->primary;
8c757763 4630
2c488db2 4631 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4632
907860ed 4633 /* To be sure that nobody uses thresholds */
2e72b634 4634 synchronize_rcu();
6611d8d7
MC
4635
4636 /* If all events are unregistered, free the spare array */
4637 if (!new) {
4638 kfree(thresholds->spare);
4639 thresholds->spare = NULL;
4640 }
371528ca 4641unlock:
2e72b634 4642 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4643}
c1e862c1 4644
59b6f873 4645static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4646 struct eventfd_ctx *eventfd)
4647{
59b6f873 4648 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4649}
4650
59b6f873 4651static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4652 struct eventfd_ctx *eventfd)
4653{
59b6f873 4654 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4655}
4656
59b6f873 4657static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4658 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4659{
9490ff27 4660 struct mem_cgroup_eventfd_list *event;
9490ff27 4661
9490ff27
KH
4662 event = kmalloc(sizeof(*event), GFP_KERNEL);
4663 if (!event)
4664 return -ENOMEM;
4665
1af8efe9 4666 spin_lock(&memcg_oom_lock);
9490ff27
KH
4667
4668 event->eventfd = eventfd;
4669 list_add(&event->list, &memcg->oom_notify);
4670
4671 /* already in OOM ? */
c2b42d3c 4672 if (memcg->under_oom)
3652117f 4673 eventfd_signal(eventfd);
1af8efe9 4674 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4675
4676 return 0;
4677}
4678
59b6f873 4679static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4680 struct eventfd_ctx *eventfd)
9490ff27 4681{
9490ff27 4682 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4683
1af8efe9 4684 spin_lock(&memcg_oom_lock);
9490ff27 4685
c0ff4b85 4686 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4687 if (ev->eventfd == eventfd) {
4688 list_del(&ev->list);
4689 kfree(ev);
4690 }
4691 }
4692
1af8efe9 4693 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4694}
4695
2da8ca82 4696static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4697{
aa9694bb 4698 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4699
17c56de6 4700 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
c2b42d3c 4701 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4702 seq_printf(sf, "oom_kill %lu\n",
4703 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4704 return 0;
4705}
4706
182446d0 4707static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4708 struct cftype *cft, u64 val)
4709{
182446d0 4710 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4711
4712 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4713 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4714 return -EINVAL;
4715
17c56de6 4716 WRITE_ONCE(memcg->oom_kill_disable, val);
4d845ebf 4717 if (!val)
c0ff4b85 4718 memcg_oom_recover(memcg);
3dae7fec 4719
3c11ecf4
KH
4720 return 0;
4721}
4722
52ebea74
TH
4723#ifdef CONFIG_CGROUP_WRITEBACK
4724
3a8e9ac8
TH
4725#include <trace/events/writeback.h>
4726
841710aa
TH
4727static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4728{
4729 return wb_domain_init(&memcg->cgwb_domain, gfp);
4730}
4731
4732static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4733{
4734 wb_domain_exit(&memcg->cgwb_domain);
4735}
4736
2529bb3a
TH
4737static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4738{
4739 wb_domain_size_changed(&memcg->cgwb_domain);
4740}
4741
841710aa
TH
4742struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4743{
4744 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4745
4746 if (!memcg->css.parent)
4747 return NULL;
4748
4749 return &memcg->cgwb_domain;
4750}
4751
c2aa723a
TH
4752/**
4753 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4754 * @wb: bdi_writeback in question
c5edf9cd
TH
4755 * @pfilepages: out parameter for number of file pages
4756 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4757 * @pdirty: out parameter for number of dirty pages
4758 * @pwriteback: out parameter for number of pages under writeback
4759 *
c5edf9cd
TH
4760 * Determine the numbers of file, headroom, dirty, and writeback pages in
4761 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4762 * is a bit more involved.
c2aa723a 4763 *
c5edf9cd
TH
4764 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4765 * headroom is calculated as the lowest headroom of itself and the
4766 * ancestors. Note that this doesn't consider the actual amount of
4767 * available memory in the system. The caller should further cap
4768 * *@pheadroom accordingly.
c2aa723a 4769 */
c5edf9cd
TH
4770void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4771 unsigned long *pheadroom, unsigned long *pdirty,
4772 unsigned long *pwriteback)
c2aa723a
TH
4773{
4774 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4775 struct mem_cgroup *parent;
c2aa723a 4776
7d7ef0a4 4777 mem_cgroup_flush_stats(memcg);
c2aa723a 4778
2d146aa3
JW
4779 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4780 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4781 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4782 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4783
2d146aa3 4784 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4785 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4786 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4787 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4788 unsigned long used = page_counter_read(&memcg->memory);
4789
c5edf9cd 4790 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4791 memcg = parent;
4792 }
c2aa723a
TH
4793}
4794
97b27821
TH
4795/*
4796 * Foreign dirty flushing
4797 *
4798 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4799 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4800 * deliberate design decision because honoring per-page ownership in the
4801 * writeback path is complicated, may lead to higher CPU and IO overheads
4802 * and deemed unnecessary given that write-sharing an inode across
4803 * different cgroups isn't a common use-case.
4804 *
4805 * Combined with inode majority-writer ownership switching, this works well
4806 * enough in most cases but there are some pathological cases. For
4807 * example, let's say there are two cgroups A and B which keep writing to
4808 * different but confined parts of the same inode. B owns the inode and
4809 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4810 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4811 * triggering background writeback. A will be slowed down without a way to
4812 * make writeback of the dirty pages happen.
4813 *
f0953a1b 4814 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4815 * severely throttled after making some progress after each
f0953a1b 4816 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4817 * completely idle.
4818 *
4819 * Solving this problem completely requires matching the ownership tracking
4820 * granularities between memcg and writeback in either direction. However,
4821 * the more egregious behaviors can be avoided by simply remembering the
4822 * most recent foreign dirtying events and initiating remote flushes on
4823 * them when local writeback isn't enough to keep the memory clean enough.
4824 *
4825 * The following two functions implement such mechanism. When a foreign
4826 * page - a page whose memcg and writeback ownerships don't match - is
4827 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4828 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4829 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4830 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4831 * foreign bdi_writebacks which haven't expired. Both the numbers of
4832 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4833 * limited to MEMCG_CGWB_FRN_CNT.
4834 *
4835 * The mechanism only remembers IDs and doesn't hold any object references.
4836 * As being wrong occasionally doesn't matter, updates and accesses to the
4837 * records are lockless and racy.
4838 */
9d8053fc 4839void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4840 struct bdi_writeback *wb)
4841{
9d8053fc 4842 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4843 struct memcg_cgwb_frn *frn;
4844 u64 now = get_jiffies_64();
4845 u64 oldest_at = now;
4846 int oldest = -1;
4847 int i;
4848
9d8053fc 4849 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4850
97b27821
TH
4851 /*
4852 * Pick the slot to use. If there is already a slot for @wb, keep
4853 * using it. If not replace the oldest one which isn't being
4854 * written out.
4855 */
4856 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4857 frn = &memcg->cgwb_frn[i];
4858 if (frn->bdi_id == wb->bdi->id &&
4859 frn->memcg_id == wb->memcg_css->id)
4860 break;
4861 if (time_before64(frn->at, oldest_at) &&
4862 atomic_read(&frn->done.cnt) == 1) {
4863 oldest = i;
4864 oldest_at = frn->at;
4865 }
4866 }
4867
4868 if (i < MEMCG_CGWB_FRN_CNT) {
4869 /*
4870 * Re-using an existing one. Update timestamp lazily to
4871 * avoid making the cacheline hot. We want them to be
4872 * reasonably up-to-date and significantly shorter than
4873 * dirty_expire_interval as that's what expires the record.
4874 * Use the shorter of 1s and dirty_expire_interval / 8.
4875 */
4876 unsigned long update_intv =
4877 min_t(unsigned long, HZ,
4878 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4879
4880 if (time_before64(frn->at, now - update_intv))
4881 frn->at = now;
4882 } else if (oldest >= 0) {
4883 /* replace the oldest free one */
4884 frn = &memcg->cgwb_frn[oldest];
4885 frn->bdi_id = wb->bdi->id;
4886 frn->memcg_id = wb->memcg_css->id;
4887 frn->at = now;
4888 }
4889}
4890
4891/* issue foreign writeback flushes for recorded foreign dirtying events */
4892void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4893{
4894 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4895 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4896 u64 now = jiffies_64;
4897 int i;
4898
4899 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4900 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4901
4902 /*
4903 * If the record is older than dirty_expire_interval,
4904 * writeback on it has already started. No need to kick it
4905 * off again. Also, don't start a new one if there's
4906 * already one in flight.
4907 */
4908 if (time_after64(frn->at, now - intv) &&
4909 atomic_read(&frn->done.cnt) == 1) {
4910 frn->at = 0;
3a8e9ac8 4911 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4912 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4913 WB_REASON_FOREIGN_FLUSH,
4914 &frn->done);
4915 }
4916 }
4917}
4918
841710aa
TH
4919#else /* CONFIG_CGROUP_WRITEBACK */
4920
4921static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4922{
4923 return 0;
4924}
4925
4926static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4927{
4928}
4929
2529bb3a
TH
4930static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4931{
4932}
4933
52ebea74
TH
4934#endif /* CONFIG_CGROUP_WRITEBACK */
4935
3bc942f3
TH
4936/*
4937 * DO NOT USE IN NEW FILES.
4938 *
4939 * "cgroup.event_control" implementation.
4940 *
4941 * This is way over-engineered. It tries to support fully configurable
4942 * events for each user. Such level of flexibility is completely
4943 * unnecessary especially in the light of the planned unified hierarchy.
4944 *
4945 * Please deprecate this and replace with something simpler if at all
4946 * possible.
4947 */
4948
79bd9814
TH
4949/*
4950 * Unregister event and free resources.
4951 *
4952 * Gets called from workqueue.
4953 */
3bc942f3 4954static void memcg_event_remove(struct work_struct *work)
79bd9814 4955{
3bc942f3
TH
4956 struct mem_cgroup_event *event =
4957 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4958 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4959
4960 remove_wait_queue(event->wqh, &event->wait);
4961
59b6f873 4962 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4963
4964 /* Notify userspace the event is going away. */
3652117f 4965 eventfd_signal(event->eventfd);
79bd9814
TH
4966
4967 eventfd_ctx_put(event->eventfd);
4968 kfree(event);
59b6f873 4969 css_put(&memcg->css);
79bd9814
TH
4970}
4971
4972/*
a9a08845 4973 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4974 *
4975 * Called with wqh->lock held and interrupts disabled.
4976 */
ac6424b9 4977static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4978 int sync, void *key)
79bd9814 4979{
3bc942f3
TH
4980 struct mem_cgroup_event *event =
4981 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4982 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4983 __poll_t flags = key_to_poll(key);
79bd9814 4984
a9a08845 4985 if (flags & EPOLLHUP) {
79bd9814
TH
4986 /*
4987 * If the event has been detached at cgroup removal, we
4988 * can simply return knowing the other side will cleanup
4989 * for us.
4990 *
4991 * We can't race against event freeing since the other
4992 * side will require wqh->lock via remove_wait_queue(),
4993 * which we hold.
4994 */
fba94807 4995 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4996 if (!list_empty(&event->list)) {
4997 list_del_init(&event->list);
4998 /*
4999 * We are in atomic context, but cgroup_event_remove()
5000 * may sleep, so we have to call it in workqueue.
5001 */
5002 schedule_work(&event->remove);
5003 }
fba94807 5004 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5005 }
5006
5007 return 0;
5008}
5009
3bc942f3 5010static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5011 wait_queue_head_t *wqh, poll_table *pt)
5012{
3bc942f3
TH
5013 struct mem_cgroup_event *event =
5014 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5015
5016 event->wqh = wqh;
5017 add_wait_queue(wqh, &event->wait);
5018}
5019
5020/*
3bc942f3
TH
5021 * DO NOT USE IN NEW FILES.
5022 *
79bd9814
TH
5023 * Parse input and register new cgroup event handler.
5024 *
5025 * Input must be in format '<event_fd> <control_fd> <args>'.
5026 * Interpretation of args is defined by control file implementation.
5027 */
451af504
TH
5028static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5029 char *buf, size_t nbytes, loff_t off)
79bd9814 5030{
451af504 5031 struct cgroup_subsys_state *css = of_css(of);
fba94807 5032 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5033 struct mem_cgroup_event *event;
79bd9814
TH
5034 struct cgroup_subsys_state *cfile_css;
5035 unsigned int efd, cfd;
5036 struct fd efile;
5037 struct fd cfile;
4a7ba45b 5038 struct dentry *cdentry;
fba94807 5039 const char *name;
79bd9814
TH
5040 char *endp;
5041 int ret;
5042
2343e88d
SAS
5043 if (IS_ENABLED(CONFIG_PREEMPT_RT))
5044 return -EOPNOTSUPP;
5045
451af504
TH
5046 buf = strstrip(buf);
5047
5048 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5049 if (*endp != ' ')
5050 return -EINVAL;
451af504 5051 buf = endp + 1;
79bd9814 5052
451af504 5053 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5054 if ((*endp != ' ') && (*endp != '\0'))
5055 return -EINVAL;
451af504 5056 buf = endp + 1;
79bd9814
TH
5057
5058 event = kzalloc(sizeof(*event), GFP_KERNEL);
5059 if (!event)
5060 return -ENOMEM;
5061
59b6f873 5062 event->memcg = memcg;
79bd9814 5063 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5064 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5065 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5066 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5067
5068 efile = fdget(efd);
5069 if (!efile.file) {
5070 ret = -EBADF;
5071 goto out_kfree;
5072 }
5073
5074 event->eventfd = eventfd_ctx_fileget(efile.file);
5075 if (IS_ERR(event->eventfd)) {
5076 ret = PTR_ERR(event->eventfd);
5077 goto out_put_efile;
5078 }
5079
5080 cfile = fdget(cfd);
5081 if (!cfile.file) {
5082 ret = -EBADF;
5083 goto out_put_eventfd;
5084 }
5085
5086 /* the process need read permission on control file */
5087 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 5088 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
5089 if (ret < 0)
5090 goto out_put_cfile;
5091
4a7ba45b
TH
5092 /*
5093 * The control file must be a regular cgroup1 file. As a regular cgroup
5094 * file can't be renamed, it's safe to access its name afterwards.
5095 */
5096 cdentry = cfile.file->f_path.dentry;
5097 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5098 ret = -EINVAL;
5099 goto out_put_cfile;
5100 }
5101
fba94807
TH
5102 /*
5103 * Determine the event callbacks and set them in @event. This used
5104 * to be done via struct cftype but cgroup core no longer knows
5105 * about these events. The following is crude but the whole thing
5106 * is for compatibility anyway.
3bc942f3
TH
5107 *
5108 * DO NOT ADD NEW FILES.
fba94807 5109 */
4a7ba45b 5110 name = cdentry->d_name.name;
fba94807
TH
5111
5112 if (!strcmp(name, "memory.usage_in_bytes")) {
5113 event->register_event = mem_cgroup_usage_register_event;
5114 event->unregister_event = mem_cgroup_usage_unregister_event;
5115 } else if (!strcmp(name, "memory.oom_control")) {
5116 event->register_event = mem_cgroup_oom_register_event;
5117 event->unregister_event = mem_cgroup_oom_unregister_event;
5118 } else if (!strcmp(name, "memory.pressure_level")) {
5119 event->register_event = vmpressure_register_event;
5120 event->unregister_event = vmpressure_unregister_event;
5121 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5122 event->register_event = memsw_cgroup_usage_register_event;
5123 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5124 } else {
5125 ret = -EINVAL;
5126 goto out_put_cfile;
5127 }
5128
79bd9814 5129 /*
b5557c4c
TH
5130 * Verify @cfile should belong to @css. Also, remaining events are
5131 * automatically removed on cgroup destruction but the removal is
5132 * asynchronous, so take an extra ref on @css.
79bd9814 5133 */
4a7ba45b 5134 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 5135 &memory_cgrp_subsys);
79bd9814 5136 ret = -EINVAL;
5a17f543 5137 if (IS_ERR(cfile_css))
79bd9814 5138 goto out_put_cfile;
5a17f543
TH
5139 if (cfile_css != css) {
5140 css_put(cfile_css);
79bd9814 5141 goto out_put_cfile;
5a17f543 5142 }
79bd9814 5143
451af504 5144 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5145 if (ret)
5146 goto out_put_css;
5147
9965ed17 5148 vfs_poll(efile.file, &event->pt);
79bd9814 5149
4ba9515d 5150 spin_lock_irq(&memcg->event_list_lock);
fba94807 5151 list_add(&event->list, &memcg->event_list);
4ba9515d 5152 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
5153
5154 fdput(cfile);
5155 fdput(efile);
5156
451af504 5157 return nbytes;
79bd9814
TH
5158
5159out_put_css:
b5557c4c 5160 css_put(css);
79bd9814
TH
5161out_put_cfile:
5162 fdput(cfile);
5163out_put_eventfd:
5164 eventfd_ctx_put(event->eventfd);
5165out_put_efile:
5166 fdput(efile);
5167out_kfree:
5168 kfree(event);
5169
5170 return ret;
5171}
5172
bc3dcb85 5173#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
c29b5b3d
MS
5174static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5175{
5176 /*
5177 * Deprecated.
df4ae285 5178 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
5179 */
5180 return 0;
5181}
5182#endif
5183
dddb44ff
YA
5184static int memory_stat_show(struct seq_file *m, void *v);
5185
241994ed 5186static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 5187 {
0eea1030 5188 .name = "usage_in_bytes",
8c7c6e34 5189 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5190 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5191 },
c84872e1
PE
5192 {
5193 .name = "max_usage_in_bytes",
8c7c6e34 5194 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5195 .write = mem_cgroup_reset,
791badbd 5196 .read_u64 = mem_cgroup_read_u64,
c84872e1 5197 },
8cdea7c0 5198 {
0eea1030 5199 .name = "limit_in_bytes",
8c7c6e34 5200 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5201 .write = mem_cgroup_write,
791badbd 5202 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5203 },
296c81d8
BS
5204 {
5205 .name = "soft_limit_in_bytes",
5206 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5207 .write = mem_cgroup_write,
791badbd 5208 .read_u64 = mem_cgroup_read_u64,
296c81d8 5209 },
8cdea7c0
BS
5210 {
5211 .name = "failcnt",
8c7c6e34 5212 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5213 .write = mem_cgroup_reset,
791badbd 5214 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5215 },
d2ceb9b7
KH
5216 {
5217 .name = "stat",
dddb44ff 5218 .seq_show = memory_stat_show,
d2ceb9b7 5219 },
c1e862c1
KH
5220 {
5221 .name = "force_empty",
6770c64e 5222 .write = mem_cgroup_force_empty_write,
c1e862c1 5223 },
18f59ea7
BS
5224 {
5225 .name = "use_hierarchy",
5226 .write_u64 = mem_cgroup_hierarchy_write,
5227 .read_u64 = mem_cgroup_hierarchy_read,
5228 },
79bd9814 5229 {
3bc942f3 5230 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5231 .write = memcg_write_event_control,
7dbdb199 5232 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5233 },
a7885eb8
KM
5234 {
5235 .name = "swappiness",
5236 .read_u64 = mem_cgroup_swappiness_read,
5237 .write_u64 = mem_cgroup_swappiness_write,
5238 },
7dc74be0
DN
5239 {
5240 .name = "move_charge_at_immigrate",
5241 .read_u64 = mem_cgroup_move_charge_read,
5242 .write_u64 = mem_cgroup_move_charge_write,
5243 },
9490ff27
KH
5244 {
5245 .name = "oom_control",
2da8ca82 5246 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5247 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5248 },
70ddf637
AV
5249 {
5250 .name = "pressure_level",
6b0ba2ab 5251 .seq_show = mem_cgroup_dummy_seq_show,
70ddf637 5252 },
406eb0c9
YH
5253#ifdef CONFIG_NUMA
5254 {
5255 .name = "numa_stat",
2da8ca82 5256 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5257 },
5258#endif
4597648f
MH
5259 {
5260 .name = "kmem.limit_in_bytes",
5261 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5262 .write = mem_cgroup_write,
5263 .read_u64 = mem_cgroup_read_u64,
5264 },
510fc4e1
GC
5265 {
5266 .name = "kmem.usage_in_bytes",
5267 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5268 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5269 },
5270 {
5271 .name = "kmem.failcnt",
5272 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5273 .write = mem_cgroup_reset,
791badbd 5274 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5275 },
5276 {
5277 .name = "kmem.max_usage_in_bytes",
5278 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5279 .write = mem_cgroup_reset,
791badbd 5280 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5281 },
bc3dcb85 5282#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
749c5415
GC
5283 {
5284 .name = "kmem.slabinfo",
c29b5b3d 5285 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5286 },
5287#endif
d55f90bf
VD
5288 {
5289 .name = "kmem.tcp.limit_in_bytes",
5290 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5291 .write = mem_cgroup_write,
5292 .read_u64 = mem_cgroup_read_u64,
5293 },
5294 {
5295 .name = "kmem.tcp.usage_in_bytes",
5296 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5297 .read_u64 = mem_cgroup_read_u64,
5298 },
5299 {
5300 .name = "kmem.tcp.failcnt",
5301 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5302 .write = mem_cgroup_reset,
5303 .read_u64 = mem_cgroup_read_u64,
5304 },
5305 {
5306 .name = "kmem.tcp.max_usage_in_bytes",
5307 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5308 .write = mem_cgroup_reset,
5309 .read_u64 = mem_cgroup_read_u64,
5310 },
6bc10349 5311 { }, /* terminate */
af36f906 5312};
8c7c6e34 5313
73f576c0
JW
5314/*
5315 * Private memory cgroup IDR
5316 *
5317 * Swap-out records and page cache shadow entries need to store memcg
5318 * references in constrained space, so we maintain an ID space that is
5319 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5320 * memory-controlled cgroups to 64k.
5321 *
b8f2935f 5322 * However, there usually are many references to the offline CSS after
73f576c0
JW
5323 * the cgroup has been destroyed, such as page cache or reclaimable
5324 * slab objects, that don't need to hang on to the ID. We want to keep
5325 * those dead CSS from occupying IDs, or we might quickly exhaust the
5326 * relatively small ID space and prevent the creation of new cgroups
5327 * even when there are much fewer than 64k cgroups - possibly none.
5328 *
5329 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5330 * be freed and recycled when it's no longer needed, which is usually
5331 * when the CSS is offlined.
5332 *
5333 * The only exception to that are records of swapped out tmpfs/shmem
5334 * pages that need to be attributed to live ancestors on swapin. But
5335 * those references are manageable from userspace.
5336 */
5337
60b1e24c 5338#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
73f576c0
JW
5339static DEFINE_IDR(mem_cgroup_idr);
5340
7e97de0b
KT
5341static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5342{
5343 if (memcg->id.id > 0) {
5344 idr_remove(&mem_cgroup_idr, memcg->id.id);
5345 memcg->id.id = 0;
5346 }
5347}
5348
c1514c0a
VF
5349static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5350 unsigned int n)
73f576c0 5351{
1c2d479a 5352 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5353}
5354
615d66c3 5355static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5356{
1c2d479a 5357 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5358 mem_cgroup_id_remove(memcg);
73f576c0
JW
5359
5360 /* Memcg ID pins CSS */
5361 css_put(&memcg->css);
5362 }
5363}
5364
615d66c3
VD
5365static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5366{
5367 mem_cgroup_id_put_many(memcg, 1);
5368}
5369
73f576c0
JW
5370/**
5371 * mem_cgroup_from_id - look up a memcg from a memcg id
5372 * @id: the memcg id to look up
5373 *
5374 * Caller must hold rcu_read_lock().
5375 */
5376struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5377{
5378 WARN_ON_ONCE(!rcu_read_lock_held());
5379 return idr_find(&mem_cgroup_idr, id);
5380}
5381
c15187a4
RG
5382#ifdef CONFIG_SHRINKER_DEBUG
5383struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5384{
5385 struct cgroup *cgrp;
5386 struct cgroup_subsys_state *css;
5387 struct mem_cgroup *memcg;
5388
5389 cgrp = cgroup_get_from_id(ino);
fa7e439c 5390 if (IS_ERR(cgrp))
c0f2df49 5391 return ERR_CAST(cgrp);
c15187a4
RG
5392
5393 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5394 if (css)
5395 memcg = container_of(css, struct mem_cgroup, css);
5396 else
5397 memcg = ERR_PTR(-ENOENT);
5398
5399 cgroup_put(cgrp);
5400
5401 return memcg;
5402}
5403#endif
5404
ef8f2327 5405static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5406{
5407 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5408
5409 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5410 if (!pn)
5411 return 1;
1ecaab2b 5412
7e1c0d6f
SB
5413 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5414 GFP_KERNEL_ACCOUNT);
5415 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5416 kfree(pn);
5417 return 1;
5418 }
5419
ef8f2327 5420 lruvec_init(&pn->lruvec);
ef8f2327
MG
5421 pn->memcg = memcg;
5422
54f72fe0 5423 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5424 return 0;
5425}
5426
ef8f2327 5427static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5428{
00f3ca2c
JW
5429 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5430
4eaf431f
MH
5431 if (!pn)
5432 return;
5433
7e1c0d6f 5434 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5435 kfree(pn);
1ecaab2b
KH
5436}
5437
40e952f9 5438static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5439{
c8b2a36f 5440 int node;
59927fb9 5441
675d6c9b
RG
5442 if (memcg->orig_objcg)
5443 obj_cgroup_put(memcg->orig_objcg);
5444
c8b2a36f 5445 for_each_node(node)
ef8f2327 5446 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5447 kfree(memcg->vmstats);
871789d4 5448 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5449 kfree(memcg);
59927fb9 5450}
3afe36b1 5451
40e952f9
TE
5452static void mem_cgroup_free(struct mem_cgroup *memcg)
5453{
ec1c86b2 5454 lru_gen_exit_memcg(memcg);
40e952f9
TE
5455 memcg_wb_domain_exit(memcg);
5456 __mem_cgroup_free(memcg);
5457}
5458
0b8f73e1 5459static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5460{
d142e3e6 5461 struct mem_cgroup *memcg;
6d12e2d8 5462 int node;
97b27821 5463 int __maybe_unused i;
11d67612 5464 long error = -ENOMEM;
8cdea7c0 5465
06b2c3b0 5466 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5467 if (!memcg)
11d67612 5468 return ERR_PTR(error);
0b8f73e1 5469
73f576c0 5470 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5471 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5472 if (memcg->id.id < 0) {
5473 error = memcg->id.id;
73f576c0 5474 goto fail;
11d67612 5475 }
73f576c0 5476
410f8e82
SB
5477 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5478 if (!memcg->vmstats)
5479 goto fail;
5480
3e38e0aa
RG
5481 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5482 GFP_KERNEL_ACCOUNT);
871789d4 5483 if (!memcg->vmstats_percpu)
0b8f73e1 5484 goto fail;
78fb7466 5485
3ed28fa1 5486 for_each_node(node)
ef8f2327 5487 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5488 goto fail;
f64c3f54 5489
0b8f73e1
JW
5490 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5491 goto fail;
28dbc4b6 5492
f7e1cb6e 5493 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5494 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5495 mutex_init(&memcg->thresholds_lock);
5496 spin_lock_init(&memcg->move_lock);
70ddf637 5497 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5498 INIT_LIST_HEAD(&memcg->event_list);
5499 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5500 memcg->socket_pressure = jiffies;
84c07d11 5501#ifdef CONFIG_MEMCG_KMEM
900a38f0 5502 memcg->kmemcg_id = -1;
bf4f0599 5503 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5504#endif
52ebea74
TH
5505#ifdef CONFIG_CGROUP_WRITEBACK
5506 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5507 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5508 memcg->cgwb_frn[i].done =
5509 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5510#endif
5511#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5512 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5513 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5514 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5515#endif
ec1c86b2 5516 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5517 return memcg;
5518fail:
7e97de0b 5519 mem_cgroup_id_remove(memcg);
40e952f9 5520 __mem_cgroup_free(memcg);
11d67612 5521 return ERR_PTR(error);
d142e3e6
GC
5522}
5523
0b8f73e1
JW
5524static struct cgroup_subsys_state * __ref
5525mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5526{
0b8f73e1 5527 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5528 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5529
b87d8cef 5530 old_memcg = set_active_memcg(parent);
0b8f73e1 5531 memcg = mem_cgroup_alloc();
b87d8cef 5532 set_active_memcg(old_memcg);
11d67612
YS
5533 if (IS_ERR(memcg))
5534 return ERR_CAST(memcg);
d142e3e6 5535
d1663a90 5536 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5537 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
f4840ccf
JW
5538#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5539 memcg->zswap_max = PAGE_COUNTER_MAX;
501a06fe
NP
5540 WRITE_ONCE(memcg->zswap_writeback,
5541 !parent || READ_ONCE(parent->zswap_writeback));
f4840ccf 5542#endif
4b82ab4f 5543 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1 5544 if (parent) {
82b3aa26 5545 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
17c56de6 5546 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
bef8620c 5547
3e32cb2e 5548 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5549 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5550 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5551 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5552 } else {
8278f1c7 5553 init_memcg_events();
bef8620c
RG
5554 page_counter_init(&memcg->memory, NULL);
5555 page_counter_init(&memcg->swap, NULL);
5556 page_counter_init(&memcg->kmem, NULL);
5557 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5558
0b8f73e1
JW
5559 root_mem_cgroup = memcg;
5560 return &memcg->css;
5561 }
5562
f7e1cb6e 5563 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5564 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5565
b6c1a8af
YS
5566#if defined(CONFIG_MEMCG_KMEM)
5567 if (!cgroup_memory_nobpf)
5568 static_branch_inc(&memcg_bpf_enabled_key);
5569#endif
5570
0b8f73e1 5571 return &memcg->css;
0b8f73e1
JW
5572}
5573
73f576c0 5574static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5575{
58fa2a55
VD
5576 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5577
da0efe30
MS
5578 if (memcg_online_kmem(memcg))
5579 goto remove_id;
5580
0a4465d3 5581 /*
e4262c4f 5582 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5583 * by the time the maps are allocated. So, we allocate maps
5584 * here, when for_each_mem_cgroup() can't skip it.
5585 */
da0efe30
MS
5586 if (alloc_shrinker_info(memcg))
5587 goto offline_kmem;
0a4465d3 5588
aa48e47e
SB
5589 if (unlikely(mem_cgroup_is_root(memcg)))
5590 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
396faf88 5591 FLUSH_TIME);
e4dde56c 5592 lru_gen_online_memcg(memcg);
6f0df8e1
JW
5593
5594 /* Online state pins memcg ID, memcg ID pins CSS */
5595 refcount_set(&memcg->id.ref, 1);
5596 css_get(css);
5597
5598 /*
5599 * Ensure mem_cgroup_from_id() works once we're fully online.
5600 *
5601 * We could do this earlier and require callers to filter with
5602 * css_tryget_online(). But right now there are no users that
5603 * need earlier access, and the workingset code relies on the
5604 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5605 * publish it here at the end of onlining. This matches the
5606 * regular ID destruction during offlining.
5607 */
5608 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5609
2f7dd7a4 5610 return 0;
da0efe30
MS
5611offline_kmem:
5612 memcg_offline_kmem(memcg);
5613remove_id:
5614 mem_cgroup_id_remove(memcg);
5615 return -ENOMEM;
8cdea7c0
BS
5616}
5617
eb95419b 5618static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5619{
eb95419b 5620 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5621 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5622
5623 /*
5624 * Unregister events and notify userspace.
5625 * Notify userspace about cgroup removing only after rmdir of cgroup
5626 * directory to avoid race between userspace and kernelspace.
5627 */
4ba9515d 5628 spin_lock_irq(&memcg->event_list_lock);
fba94807 5629 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5630 list_del_init(&event->list);
5631 schedule_work(&event->remove);
5632 }
4ba9515d 5633 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5634
bf8d5d52 5635 page_counter_set_min(&memcg->memory, 0);
23067153 5636 page_counter_set_low(&memcg->memory, 0);
63677c74 5637
a65b0e76
DC
5638 zswap_memcg_offline_cleanup(memcg);
5639
567e9ab2 5640 memcg_offline_kmem(memcg);
a178015c 5641 reparent_shrinker_deferred(memcg);
52ebea74 5642 wb_memcg_offline(memcg);
e4dde56c 5643 lru_gen_offline_memcg(memcg);
73f576c0 5644
591edfb1
RG
5645 drain_all_stock(memcg);
5646
73f576c0 5647 mem_cgroup_id_put(memcg);
df878fb0
KH
5648}
5649
6df38689
VD
5650static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5651{
5652 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5653
5654 invalidate_reclaim_iterators(memcg);
e4dde56c 5655 lru_gen_release_memcg(memcg);
6df38689
VD
5656}
5657
eb95419b 5658static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5659{
eb95419b 5660 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5661 int __maybe_unused i;
c268e994 5662
97b27821
TH
5663#ifdef CONFIG_CGROUP_WRITEBACK
5664 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5665 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5666#endif
f7e1cb6e 5667 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5668 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5669
0db15298 5670 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5671 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5672
b6c1a8af
YS
5673#if defined(CONFIG_MEMCG_KMEM)
5674 if (!cgroup_memory_nobpf)
5675 static_branch_dec(&memcg_bpf_enabled_key);
5676#endif
5677
0b8f73e1
JW
5678 vmpressure_cleanup(&memcg->vmpressure);
5679 cancel_work_sync(&memcg->high_work);
5680 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5681 free_shrinker_info(memcg);
0b8f73e1 5682 mem_cgroup_free(memcg);
8cdea7c0
BS
5683}
5684
1ced953b
TH
5685/**
5686 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5687 * @css: the target css
5688 *
5689 * Reset the states of the mem_cgroup associated with @css. This is
5690 * invoked when the userland requests disabling on the default hierarchy
5691 * but the memcg is pinned through dependency. The memcg should stop
5692 * applying policies and should revert to the vanilla state as it may be
5693 * made visible again.
5694 *
5695 * The current implementation only resets the essential configurations.
5696 * This needs to be expanded to cover all the visible parts.
5697 */
5698static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5699{
5700 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5701
bbec2e15
RG
5702 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5703 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5704 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5705 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5706 page_counter_set_min(&memcg->memory, 0);
23067153 5707 page_counter_set_low(&memcg->memory, 0);
d1663a90 5708 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5709 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
4b82ab4f 5710 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5711 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5712}
5713
2d146aa3
JW
5714static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5715{
5716 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5717 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5718 struct memcg_vmstats_percpu *statc;
f82e6bf9 5719 long delta, delta_cpu, v;
7e1c0d6f 5720 int i, nid;
2d146aa3
JW
5721
5722 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5723
5724 for (i = 0; i < MEMCG_NR_STAT; i++) {
5725 /*
5726 * Collect the aggregated propagation counts of groups
5727 * below us. We're in a per-cpu loop here and this is
5728 * a global counter, so the first cycle will get them.
5729 */
410f8e82 5730 delta = memcg->vmstats->state_pending[i];
2d146aa3 5731 if (delta)
410f8e82 5732 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5733
5734 /* Add CPU changes on this level since the last flush */
f82e6bf9 5735 delta_cpu = 0;
2d146aa3
JW
5736 v = READ_ONCE(statc->state[i]);
5737 if (v != statc->state_prev[i]) {
f82e6bf9
YA
5738 delta_cpu = v - statc->state_prev[i];
5739 delta += delta_cpu;
2d146aa3
JW
5740 statc->state_prev[i] = v;
5741 }
5742
2d146aa3 5743 /* Aggregate counts on this level and propagate upwards */
f82e6bf9
YA
5744 if (delta_cpu)
5745 memcg->vmstats->state_local[i] += delta_cpu;
5746
5747 if (delta) {
5748 memcg->vmstats->state[i] += delta;
5749 if (parent)
5750 parent->vmstats->state_pending[i] += delta;
5751 }
2d146aa3
JW
5752 }
5753
8278f1c7 5754 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5755 delta = memcg->vmstats->events_pending[i];
2d146aa3 5756 if (delta)
410f8e82 5757 memcg->vmstats->events_pending[i] = 0;
2d146aa3 5758
f82e6bf9 5759 delta_cpu = 0;
2d146aa3
JW
5760 v = READ_ONCE(statc->events[i]);
5761 if (v != statc->events_prev[i]) {
f82e6bf9
YA
5762 delta_cpu = v - statc->events_prev[i];
5763 delta += delta_cpu;
2d146aa3
JW
5764 statc->events_prev[i] = v;
5765 }
5766
f82e6bf9
YA
5767 if (delta_cpu)
5768 memcg->vmstats->events_local[i] += delta_cpu;
2d146aa3 5769
f82e6bf9
YA
5770 if (delta) {
5771 memcg->vmstats->events[i] += delta;
5772 if (parent)
5773 parent->vmstats->events_pending[i] += delta;
5774 }
2d146aa3 5775 }
7e1c0d6f
SB
5776
5777 for_each_node_state(nid, N_MEMORY) {
5778 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5779 struct mem_cgroup_per_node *ppn = NULL;
5780 struct lruvec_stats_percpu *lstatc;
5781
5782 if (parent)
5783 ppn = parent->nodeinfo[nid];
5784
5785 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5786
5787 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5788 delta = pn->lruvec_stats.state_pending[i];
5789 if (delta)
5790 pn->lruvec_stats.state_pending[i] = 0;
5791
f82e6bf9 5792 delta_cpu = 0;
7e1c0d6f
SB
5793 v = READ_ONCE(lstatc->state[i]);
5794 if (v != lstatc->state_prev[i]) {
f82e6bf9
YA
5795 delta_cpu = v - lstatc->state_prev[i];
5796 delta += delta_cpu;
7e1c0d6f
SB
5797 lstatc->state_prev[i] = v;
5798 }
5799
f82e6bf9
YA
5800 if (delta_cpu)
5801 pn->lruvec_stats.state_local[i] += delta_cpu;
7e1c0d6f 5802
f82e6bf9
YA
5803 if (delta) {
5804 pn->lruvec_stats.state[i] += delta;
5805 if (ppn)
5806 ppn->lruvec_stats.state_pending[i] += delta;
5807 }
7e1c0d6f
SB
5808 }
5809 }
8d59d221
YA
5810 statc->stats_updates = 0;
5811 /* We are in a per-cpu loop here, only do the atomic write once */
5812 if (atomic64_read(&memcg->vmstats->stats_updates))
5813 atomic64_set(&memcg->vmstats->stats_updates, 0);
2d146aa3
JW
5814}
5815
02491447 5816#ifdef CONFIG_MMU
7dc74be0 5817/* Handlers for move charge at task migration. */
854ffa8d 5818static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5819{
05b84301 5820 int ret;
9476db97 5821
d0164adc
MG
5822 /* Try a single bulk charge without reclaim first, kswapd may wake */
5823 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5824 if (!ret) {
854ffa8d 5825 mc.precharge += count;
854ffa8d
DN
5826 return ret;
5827 }
9476db97 5828
3674534b 5829 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5830 while (count--) {
3674534b 5831 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5832 if (ret)
38c5d72f 5833 return ret;
854ffa8d 5834 mc.precharge++;
9476db97 5835 cond_resched();
854ffa8d 5836 }
9476db97 5837 return 0;
4ffef5fe
DN
5838}
5839
4ffef5fe
DN
5840union mc_target {
5841 struct page *page;
02491447 5842 swp_entry_t ent;
4ffef5fe
DN
5843};
5844
4ffef5fe 5845enum mc_target_type {
8d32ff84 5846 MC_TARGET_NONE = 0,
4ffef5fe 5847 MC_TARGET_PAGE,
02491447 5848 MC_TARGET_SWAP,
c733a828 5849 MC_TARGET_DEVICE,
4ffef5fe
DN
5850};
5851
90254a65
DN
5852static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5853 unsigned long addr, pte_t ptent)
4ffef5fe 5854{
25b2995a 5855 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5856
58f341f7 5857 if (!page)
90254a65
DN
5858 return NULL;
5859 if (PageAnon(page)) {
1dfab5ab 5860 if (!(mc.flags & MOVE_ANON))
90254a65 5861 return NULL;
1dfab5ab
JW
5862 } else {
5863 if (!(mc.flags & MOVE_FILE))
5864 return NULL;
5865 }
58f341f7 5866 get_page(page);
90254a65
DN
5867
5868 return page;
5869}
5870
c733a828 5871#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5872static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5873 pte_t ptent, swp_entry_t *entry)
90254a65 5874{
90254a65
DN
5875 struct page *page = NULL;
5876 swp_entry_t ent = pte_to_swp_entry(ptent);
5877
9a137153 5878 if (!(mc.flags & MOVE_ANON))
90254a65 5879 return NULL;
c733a828
JG
5880
5881 /*
27674ef6
CH
5882 * Handle device private pages that are not accessible by the CPU, but
5883 * stored as special swap entries in the page table.
c733a828
JG
5884 */
5885 if (is_device_private_entry(ent)) {
af5cdaf8 5886 page = pfn_swap_entry_to_page(ent);
27674ef6 5887 if (!get_page_unless_zero(page))
c733a828
JG
5888 return NULL;
5889 return page;
5890 }
5891
9a137153
RC
5892 if (non_swap_entry(ent))
5893 return NULL;
5894
4b91355e 5895 /*
cb691e2f 5896 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5897 * we call find_get_page() with swapper_space directly.
5898 */
f6ab1f7f 5899 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5900 entry->val = ent.val;
90254a65
DN
5901
5902 return page;
5903}
4b91355e
KH
5904#else
5905static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5906 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5907{
5908 return NULL;
5909}
5910#endif
90254a65 5911
87946a72 5912static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5913 unsigned long addr, pte_t ptent)
87946a72 5914{
524984ff
MWO
5915 unsigned long index;
5916 struct folio *folio;
5917
87946a72
DN
5918 if (!vma->vm_file) /* anonymous vma */
5919 return NULL;
1dfab5ab 5920 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5921 return NULL;
5922
524984ff 5923 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5924 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
5925 index = linear_page_index(vma, addr);
5926 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
66dabbb6 5927 if (IS_ERR(folio))
524984ff
MWO
5928 return NULL;
5929 return folio_file_page(folio, index);
87946a72
DN
5930}
5931
b1b0deab
CG
5932/**
5933 * mem_cgroup_move_account - move account of the page
5934 * @page: the page
25843c2b 5935 * @compound: charge the page as compound or small page
b1b0deab
CG
5936 * @from: mem_cgroup which the page is moved from.
5937 * @to: mem_cgroup which the page is moved to. @from != @to.
5938 *
4e0cf05f 5939 * The page must be locked and not on the LRU.
b1b0deab
CG
5940 *
5941 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5942 * from old cgroup.
5943 */
5944static int mem_cgroup_move_account(struct page *page,
f627c2f5 5945 bool compound,
b1b0deab
CG
5946 struct mem_cgroup *from,
5947 struct mem_cgroup *to)
5948{
fcce4672 5949 struct folio *folio = page_folio(page);
ae8af438
KK
5950 struct lruvec *from_vec, *to_vec;
5951 struct pglist_data *pgdat;
fcce4672 5952 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5953 int nid, ret;
b1b0deab
CG
5954
5955 VM_BUG_ON(from == to);
4e0cf05f 5956 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fcce4672 5957 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5958 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab 5959
b1b0deab 5960 ret = -EINVAL;
fcce4672 5961 if (folio_memcg(folio) != from)
4e0cf05f 5962 goto out;
b1b0deab 5963
fcce4672 5964 pgdat = folio_pgdat(folio);
867e5e1d
JW
5965 from_vec = mem_cgroup_lruvec(from, pgdat);
5966 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5967
fcce4672 5968 folio_memcg_lock(folio);
b1b0deab 5969
fcce4672
MWO
5970 if (folio_test_anon(folio)) {
5971 if (folio_mapped(folio)) {
be5d0a74
JW
5972 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5973 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6199277b 5974 if (folio_test_pmd_mappable(folio)) {
69473e5d
MS
5975 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5976 -nr_pages);
5977 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5978 nr_pages);
468c3982 5979 }
be5d0a74
JW
5980 }
5981 } else {
0d1c2072
JW
5982 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5983 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5984
fcce4672 5985 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5986 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5987 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5988 }
5989
fcce4672 5990 if (folio_mapped(folio)) {
49e50d27
JW
5991 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5992 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5993 }
b1b0deab 5994
fcce4672
MWO
5995 if (folio_test_dirty(folio)) {
5996 struct address_space *mapping = folio_mapping(folio);
c4843a75 5997
f56753ac 5998 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5999 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
6000 -nr_pages);
6001 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
6002 nr_pages);
6003 }
c4843a75
GT
6004 }
6005 }
6006
c449deb2
HD
6007#ifdef CONFIG_SWAP
6008 if (folio_test_swapcache(folio)) {
6009 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
6010 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
6011 }
6012#endif
fcce4672 6013 if (folio_test_writeback(folio)) {
ae8af438
KK
6014 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
6015 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
6016 }
6017
6018 /*
abb242f5
JW
6019 * All state has been migrated, let's switch to the new memcg.
6020 *
bcfe06bf 6021 * It is safe to change page's memcg here because the page
abb242f5
JW
6022 * is referenced, charged, isolated, and locked: we can't race
6023 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 6024 * that would rely on a stable page's memory cgroup.
abb242f5 6025 *
6c77b607 6026 * Note that folio_memcg_lock is a memcg lock, not a page lock,
bcfe06bf 6027 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
6028 * new memcg that isn't locked, the above state can change
6029 * concurrently again. Make sure we're truly done with it.
b1b0deab 6030 */
abb242f5 6031 smp_mb();
b1b0deab 6032
1a3e1f40
JW
6033 css_get(&to->css);
6034 css_put(&from->css);
6035
fcce4672 6036 folio->memcg_data = (unsigned long)to;
87eaceb3 6037
f70ad448 6038 __folio_memcg_unlock(from);
b1b0deab
CG
6039
6040 ret = 0;
fcce4672 6041 nid = folio_nid(folio);
b1b0deab
CG
6042
6043 local_irq_disable();
6e0110c2 6044 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 6045 memcg_check_events(to, nid);
6e0110c2 6046 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 6047 memcg_check_events(from, nid);
b1b0deab 6048 local_irq_enable();
b1b0deab
CG
6049out:
6050 return ret;
6051}
6052
7cf7806c
LR
6053/**
6054 * get_mctgt_type - get target type of moving charge
6055 * @vma: the vma the pte to be checked belongs
6056 * @addr: the address corresponding to the pte to be checked
6057 * @ptent: the pte to be checked
6058 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6059 *
853f62a3
MWO
6060 * Context: Called with pte lock held.
6061 * Return:
6062 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6063 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6064 * move charge. If @target is not NULL, the page is stored in target->page
6065 * with extra refcnt taken (Caller should release it).
6066 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6067 * target for charge migration. If @target is not NULL, the entry is
6068 * stored in target->ent.
6069 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6070 * thus not on the lru. For now such page is charged like a regular page
6071 * would be as it is just special memory taking the place of a regular page.
6072 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c 6073 */
8d32ff84 6074static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6075 unsigned long addr, pte_t ptent, union mc_target *target)
6076{
6077 struct page *page = NULL;
8d32ff84 6078 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6079 swp_entry_t ent = { .val = 0 };
6080
6081 if (pte_present(ptent))
6082 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
6083 else if (pte_none_mostly(ptent))
6084 /*
6085 * PTE markers should be treated as a none pte here, separated
6086 * from other swap handling below.
6087 */
6088 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 6089 else if (is_swap_pte(ptent))
48406ef8 6090 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65 6091
4e0cf05f
JW
6092 if (target && page) {
6093 if (!trylock_page(page)) {
6094 put_page(page);
6095 return ret;
6096 }
6097 /*
6098 * page_mapped() must be stable during the move. This
6099 * pte is locked, so if it's present, the page cannot
6100 * become unmapped. If it isn't, we have only partial
6101 * control over the mapped state: the page lock will
6102 * prevent new faults against pagecache and swapcache,
6103 * so an unmapped page cannot become mapped. However,
6104 * if the page is already mapped elsewhere, it can
6105 * unmap, and there is nothing we can do about it.
6106 * Alas, skip moving the page in this case.
6107 */
6108 if (!pte_present(ptent) && page_mapped(page)) {
6109 unlock_page(page);
6110 put_page(page);
6111 return ret;
6112 }
6113 }
6114
90254a65 6115 if (!page && !ent.val)
8d32ff84 6116 return ret;
02491447 6117 if (page) {
02491447 6118 /*
0a31bc97 6119 * Do only loose check w/o serialization.
1306a85a 6120 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 6121 * not under LRU exclusion.
02491447 6122 */
bcfe06bf 6123 if (page_memcg(page) == mc.from) {
02491447 6124 ret = MC_TARGET_PAGE;
f25cbb7a
AS
6125 if (is_device_private_page(page) ||
6126 is_device_coherent_page(page))
c733a828 6127 ret = MC_TARGET_DEVICE;
02491447
DN
6128 if (target)
6129 target->page = page;
6130 }
4e0cf05f
JW
6131 if (!ret || !target) {
6132 if (target)
6133 unlock_page(page);
02491447 6134 put_page(page);
4e0cf05f 6135 }
02491447 6136 }
3e14a57b
HY
6137 /*
6138 * There is a swap entry and a page doesn't exist or isn't charged.
6139 * But we cannot move a tail-page in a THP.
6140 */
6141 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 6142 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6143 ret = MC_TARGET_SWAP;
6144 if (target)
6145 target->ent = ent;
4ffef5fe 6146 }
4ffef5fe
DN
6147 return ret;
6148}
6149
12724850
NH
6150#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6151/*
d6810d73
HY
6152 * We don't consider PMD mapped swapping or file mapped pages because THP does
6153 * not support them for now.
12724850
NH
6154 * Caller should make sure that pmd_trans_huge(pmd) is true.
6155 */
6156static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6157 unsigned long addr, pmd_t pmd, union mc_target *target)
6158{
6159 struct page *page = NULL;
12724850
NH
6160 enum mc_target_type ret = MC_TARGET_NONE;
6161
84c3fc4e
ZY
6162 if (unlikely(is_swap_pmd(pmd))) {
6163 VM_BUG_ON(thp_migration_supported() &&
6164 !is_pmd_migration_entry(pmd));
6165 return ret;
6166 }
12724850 6167 page = pmd_page(pmd);
309381fe 6168 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 6169 if (!(mc.flags & MOVE_ANON))
12724850 6170 return ret;
bcfe06bf 6171 if (page_memcg(page) == mc.from) {
12724850
NH
6172 ret = MC_TARGET_PAGE;
6173 if (target) {
6174 get_page(page);
4e0cf05f
JW
6175 if (!trylock_page(page)) {
6176 put_page(page);
6177 return MC_TARGET_NONE;
6178 }
12724850
NH
6179 target->page = page;
6180 }
6181 }
6182 return ret;
6183}
6184#else
6185static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6186 unsigned long addr, pmd_t pmd, union mc_target *target)
6187{
6188 return MC_TARGET_NONE;
6189}
6190#endif
6191
4ffef5fe
DN
6192static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6193 unsigned long addr, unsigned long end,
6194 struct mm_walk *walk)
6195{
26bcd64a 6196 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6197 pte_t *pte;
6198 spinlock_t *ptl;
6199
b6ec57f4
KS
6200 ptl = pmd_trans_huge_lock(pmd, vma);
6201 if (ptl) {
c733a828
JG
6202 /*
6203 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
6204 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6205 * this might change.
c733a828 6206 */
12724850
NH
6207 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6208 mc.precharge += HPAGE_PMD_NR;
bf929152 6209 spin_unlock(ptl);
1a5a9906 6210 return 0;
12724850 6211 }
03319327 6212
4ffef5fe 6213 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
04dee9e8
HD
6214 if (!pte)
6215 return 0;
4ffef5fe 6216 for (; addr != end; pte++, addr += PAGE_SIZE)
c33c7948 6217 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
4ffef5fe
DN
6218 mc.precharge++; /* increment precharge temporarily */
6219 pte_unmap_unlock(pte - 1, ptl);
6220 cond_resched();
6221
7dc74be0
DN
6222 return 0;
6223}
6224
7b86ac33
CH
6225static const struct mm_walk_ops precharge_walk_ops = {
6226 .pmd_entry = mem_cgroup_count_precharge_pte_range,
49b06385 6227 .walk_lock = PGWALK_RDLOCK,
7b86ac33
CH
6228};
6229
4ffef5fe
DN
6230static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6231{
6232 unsigned long precharge;
4ffef5fe 6233
d8ed45c5 6234 mmap_read_lock(mm);
ba0aff8e 6235 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 6236 mmap_read_unlock(mm);
4ffef5fe
DN
6237
6238 precharge = mc.precharge;
6239 mc.precharge = 0;
6240
6241 return precharge;
6242}
6243
4ffef5fe
DN
6244static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6245{
dfe076b0
DN
6246 unsigned long precharge = mem_cgroup_count_precharge(mm);
6247
6248 VM_BUG_ON(mc.moving_task);
6249 mc.moving_task = current;
6250 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6251}
6252
dfe076b0
DN
6253/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6254static void __mem_cgroup_clear_mc(void)
4ffef5fe 6255{
2bd9bb20
KH
6256 struct mem_cgroup *from = mc.from;
6257 struct mem_cgroup *to = mc.to;
6258
4ffef5fe 6259 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6260 if (mc.precharge) {
4b569387 6261 mem_cgroup_cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6262 mc.precharge = 0;
6263 }
6264 /*
6265 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6266 * we must uncharge here.
6267 */
6268 if (mc.moved_charge) {
4b569387 6269 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6270 mc.moved_charge = 0;
4ffef5fe 6271 }
483c30b5
DN
6272 /* we must fixup refcnts and charges */
6273 if (mc.moved_swap) {
483c30b5 6274 /* uncharge swap account from the old cgroup */
ce00a967 6275 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6276 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6277
615d66c3
VD
6278 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6279
05b84301 6280 /*
3e32cb2e
JW
6281 * we charged both to->memory and to->memsw, so we
6282 * should uncharge to->memory.
05b84301 6283 */
ce00a967 6284 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6285 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6286
483c30b5
DN
6287 mc.moved_swap = 0;
6288 }
dfe076b0
DN
6289 memcg_oom_recover(from);
6290 memcg_oom_recover(to);
6291 wake_up_all(&mc.waitq);
6292}
6293
6294static void mem_cgroup_clear_mc(void)
6295{
264a0ae1
TH
6296 struct mm_struct *mm = mc.mm;
6297
dfe076b0
DN
6298 /*
6299 * we must clear moving_task before waking up waiters at the end of
6300 * task migration.
6301 */
6302 mc.moving_task = NULL;
6303 __mem_cgroup_clear_mc();
2bd9bb20 6304 spin_lock(&mc.lock);
4ffef5fe
DN
6305 mc.from = NULL;
6306 mc.to = NULL;
264a0ae1 6307 mc.mm = NULL;
2bd9bb20 6308 spin_unlock(&mc.lock);
264a0ae1
TH
6309
6310 mmput(mm);
4ffef5fe
DN
6311}
6312
1f7dd3e5 6313static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6314{
1f7dd3e5 6315 struct cgroup_subsys_state *css;
eed67d75 6316 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6317 struct mem_cgroup *from;
4530eddb 6318 struct task_struct *leader, *p;
9f2115f9 6319 struct mm_struct *mm;
1dfab5ab 6320 unsigned long move_flags;
9f2115f9 6321 int ret = 0;
7dc74be0 6322
1f7dd3e5
TH
6323 /* charge immigration isn't supported on the default hierarchy */
6324 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6325 return 0;
6326
4530eddb
TH
6327 /*
6328 * Multi-process migrations only happen on the default hierarchy
6329 * where charge immigration is not used. Perform charge
6330 * immigration if @tset contains a leader and whine if there are
6331 * multiple.
6332 */
6333 p = NULL;
1f7dd3e5 6334 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6335 WARN_ON_ONCE(p);
6336 p = leader;
1f7dd3e5 6337 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6338 }
6339 if (!p)
6340 return 0;
6341
1f7dd3e5 6342 /*
f0953a1b 6343 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6344 * tunable will only affect upcoming migrations, not the current one.
6345 * So we need to save it, and keep it going.
6346 */
6347 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6348 if (!move_flags)
6349 return 0;
6350
9f2115f9
TH
6351 from = mem_cgroup_from_task(p);
6352
6353 VM_BUG_ON(from == memcg);
6354
6355 mm = get_task_mm(p);
6356 if (!mm)
6357 return 0;
6358 /* We move charges only when we move a owner of the mm */
6359 if (mm->owner == p) {
6360 VM_BUG_ON(mc.from);
6361 VM_BUG_ON(mc.to);
6362 VM_BUG_ON(mc.precharge);
6363 VM_BUG_ON(mc.moved_charge);
6364 VM_BUG_ON(mc.moved_swap);
6365
6366 spin_lock(&mc.lock);
264a0ae1 6367 mc.mm = mm;
9f2115f9
TH
6368 mc.from = from;
6369 mc.to = memcg;
6370 mc.flags = move_flags;
6371 spin_unlock(&mc.lock);
6372 /* We set mc.moving_task later */
6373
6374 ret = mem_cgroup_precharge_mc(mm);
6375 if (ret)
6376 mem_cgroup_clear_mc();
264a0ae1
TH
6377 } else {
6378 mmput(mm);
7dc74be0
DN
6379 }
6380 return ret;
6381}
6382
1f7dd3e5 6383static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6384{
4e2f245d
JW
6385 if (mc.to)
6386 mem_cgroup_clear_mc();
7dc74be0
DN
6387}
6388
4ffef5fe
DN
6389static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6390 unsigned long addr, unsigned long end,
6391 struct mm_walk *walk)
7dc74be0 6392{
4ffef5fe 6393 int ret = 0;
26bcd64a 6394 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6395 pte_t *pte;
6396 spinlock_t *ptl;
12724850
NH
6397 enum mc_target_type target_type;
6398 union mc_target target;
6399 struct page *page;
4ffef5fe 6400
b6ec57f4
KS
6401 ptl = pmd_trans_huge_lock(pmd, vma);
6402 if (ptl) {
62ade86a 6403 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6404 spin_unlock(ptl);
12724850
NH
6405 return 0;
6406 }
6407 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6408 if (target_type == MC_TARGET_PAGE) {
6409 page = target.page;
f7f9c00d 6410 if (isolate_lru_page(page)) {
f627c2f5 6411 if (!mem_cgroup_move_account(page, true,
1306a85a 6412 mc.from, mc.to)) {
12724850
NH
6413 mc.precharge -= HPAGE_PMD_NR;
6414 mc.moved_charge += HPAGE_PMD_NR;
6415 }
6416 putback_lru_page(page);
6417 }
4e0cf05f 6418 unlock_page(page);
12724850 6419 put_page(page);
c733a828
JG
6420 } else if (target_type == MC_TARGET_DEVICE) {
6421 page = target.page;
6422 if (!mem_cgroup_move_account(page, true,
6423 mc.from, mc.to)) {
6424 mc.precharge -= HPAGE_PMD_NR;
6425 mc.moved_charge += HPAGE_PMD_NR;
6426 }
4e0cf05f 6427 unlock_page(page);
c733a828 6428 put_page(page);
12724850 6429 }
bf929152 6430 spin_unlock(ptl);
1a5a9906 6431 return 0;
12724850
NH
6432 }
6433
4ffef5fe
DN
6434retry:
6435 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
04dee9e8
HD
6436 if (!pte)
6437 return 0;
4ffef5fe 6438 for (; addr != end; addr += PAGE_SIZE) {
c33c7948 6439 pte_t ptent = ptep_get(pte++);
c733a828 6440 bool device = false;
02491447 6441 swp_entry_t ent;
4ffef5fe
DN
6442
6443 if (!mc.precharge)
6444 break;
6445
8d32ff84 6446 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6447 case MC_TARGET_DEVICE:
6448 device = true;
e4a9bc58 6449 fallthrough;
4ffef5fe
DN
6450 case MC_TARGET_PAGE:
6451 page = target.page;
53f9263b
KS
6452 /*
6453 * We can have a part of the split pmd here. Moving it
6454 * can be done but it would be too convoluted so simply
6455 * ignore such a partial THP and keep it in original
6456 * memcg. There should be somebody mapping the head.
6457 */
6458 if (PageTransCompound(page))
6459 goto put;
f7f9c00d 6460 if (!device && !isolate_lru_page(page))
4ffef5fe 6461 goto put;
f627c2f5
KS
6462 if (!mem_cgroup_move_account(page, false,
6463 mc.from, mc.to)) {
4ffef5fe 6464 mc.precharge--;
854ffa8d
DN
6465 /* we uncharge from mc.from later. */
6466 mc.moved_charge++;
4ffef5fe 6467 }
c733a828
JG
6468 if (!device)
6469 putback_lru_page(page);
4e0cf05f
JW
6470put: /* get_mctgt_type() gets & locks the page */
6471 unlock_page(page);
4ffef5fe
DN
6472 put_page(page);
6473 break;
02491447
DN
6474 case MC_TARGET_SWAP:
6475 ent = target.ent;
e91cbb42 6476 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6477 mc.precharge--;
8d22a935
HD
6478 mem_cgroup_id_get_many(mc.to, 1);
6479 /* we fixup other refcnts and charges later. */
483c30b5
DN
6480 mc.moved_swap++;
6481 }
02491447 6482 break;
4ffef5fe
DN
6483 default:
6484 break;
6485 }
6486 }
6487 pte_unmap_unlock(pte - 1, ptl);
6488 cond_resched();
6489
6490 if (addr != end) {
6491 /*
6492 * We have consumed all precharges we got in can_attach().
6493 * We try charge one by one, but don't do any additional
6494 * charges to mc.to if we have failed in charge once in attach()
6495 * phase.
6496 */
854ffa8d 6497 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6498 if (!ret)
6499 goto retry;
6500 }
6501
6502 return ret;
6503}
6504
7b86ac33
CH
6505static const struct mm_walk_ops charge_walk_ops = {
6506 .pmd_entry = mem_cgroup_move_charge_pte_range,
49b06385 6507 .walk_lock = PGWALK_RDLOCK,
7b86ac33
CH
6508};
6509
264a0ae1 6510static void mem_cgroup_move_charge(void)
4ffef5fe 6511{
4ffef5fe 6512 lru_add_drain_all();
312722cb 6513 /*
6c77b607 6514 * Signal folio_memcg_lock() to take the memcg's move_lock
81f8c3a4
JW
6515 * while we're moving its pages to another memcg. Then wait
6516 * for already started RCU-only updates to finish.
312722cb
JW
6517 */
6518 atomic_inc(&mc.from->moving_account);
6519 synchronize_rcu();
dfe076b0 6520retry:
d8ed45c5 6521 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6522 /*
c1e8d7c6 6523 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6524 * waitq. So we cancel all extra charges, wake up all waiters,
6525 * and retry. Because we cancel precharges, we might not be able
6526 * to move enough charges, but moving charge is a best-effort
6527 * feature anyway, so it wouldn't be a big problem.
6528 */
6529 __mem_cgroup_clear_mc();
6530 cond_resched();
6531 goto retry;
6532 }
26bcd64a
NH
6533 /*
6534 * When we have consumed all precharges and failed in doing
6535 * additional charge, the page walk just aborts.
6536 */
ba0aff8e 6537 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6538 mmap_read_unlock(mc.mm);
312722cb 6539 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6540}
6541
264a0ae1 6542static void mem_cgroup_move_task(void)
67e465a7 6543{
264a0ae1
TH
6544 if (mc.to) {
6545 mem_cgroup_move_charge();
a433658c 6546 mem_cgroup_clear_mc();
264a0ae1 6547 }
67e465a7 6548}
1aacbd35 6549
5cfb80a7 6550#else /* !CONFIG_MMU */
1f7dd3e5 6551static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6552{
6553 return 0;
6554}
1f7dd3e5 6555static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6556{
6557}
264a0ae1 6558static void mem_cgroup_move_task(void)
5cfb80a7
DN
6559{
6560}
6561#endif
67e465a7 6562
1aacbd35
RG
6563#ifdef CONFIG_MEMCG_KMEM
6564static void mem_cgroup_fork(struct task_struct *task)
6565{
6566 /*
6567 * Set the update flag to cause task->objcg to be initialized lazily
6568 * on the first allocation. It can be done without any synchronization
6569 * because it's always performed on the current task, so does
6570 * current_objcg_update().
6571 */
6572 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6573}
6574
6575static void mem_cgroup_exit(struct task_struct *task)
6576{
6577 struct obj_cgroup *objcg = task->objcg;
6578
6579 objcg = (struct obj_cgroup *)
6580 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6581 if (objcg)
6582 obj_cgroup_put(objcg);
6583
6584 /*
6585 * Some kernel allocations can happen after this point,
6586 * but let's ignore them. It can be done without any synchronization
6587 * because it's always performed on the current task, so does
6588 * current_objcg_update().
6589 */
6590 task->objcg = NULL;
6591}
6592#endif
6593
bd74fdae 6594#ifdef CONFIG_LRU_GEN
1aacbd35 6595static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
bd74fdae
YZ
6596{
6597 struct task_struct *task;
6598 struct cgroup_subsys_state *css;
6599
6600 /* find the first leader if there is any */
6601 cgroup_taskset_for_each_leader(task, css, tset)
6602 break;
6603
6604 if (!task)
6605 return;
6606
6607 task_lock(task);
6608 if (task->mm && READ_ONCE(task->mm->owner) == task)
6609 lru_gen_migrate_mm(task->mm);
6610 task_unlock(task);
6611}
6612#else
1aacbd35
RG
6613static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6614#endif /* CONFIG_LRU_GEN */
6615
6616#ifdef CONFIG_MEMCG_KMEM
6617static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6618{
6619 struct task_struct *task;
6620 struct cgroup_subsys_state *css;
6621
6622 cgroup_taskset_for_each(task, css, tset) {
6623 /* atomically set the update bit */
6624 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6625 }
6626}
6627#else
6628static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6629#endif /* CONFIG_MEMCG_KMEM */
6630
6631#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
bd74fdae
YZ
6632static void mem_cgroup_attach(struct cgroup_taskset *tset)
6633{
1aacbd35
RG
6634 mem_cgroup_lru_gen_attach(tset);
6635 mem_cgroup_kmem_attach(tset);
bd74fdae 6636}
1aacbd35 6637#endif
bd74fdae 6638
677dc973
CD
6639static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6640{
6641 if (value == PAGE_COUNTER_MAX)
6642 seq_puts(m, "max\n");
6643 else
6644 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6645
6646 return 0;
6647}
6648
241994ed
JW
6649static u64 memory_current_read(struct cgroup_subsys_state *css,
6650 struct cftype *cft)
6651{
f5fc3c5d
JW
6652 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6653
6654 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6655}
6656
8e20d4b3
GR
6657static u64 memory_peak_read(struct cgroup_subsys_state *css,
6658 struct cftype *cft)
6659{
6660 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6661
6662 return (u64)memcg->memory.watermark * PAGE_SIZE;
6663}
6664
bf8d5d52
RG
6665static int memory_min_show(struct seq_file *m, void *v)
6666{
677dc973
CD
6667 return seq_puts_memcg_tunable(m,
6668 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6669}
6670
6671static ssize_t memory_min_write(struct kernfs_open_file *of,
6672 char *buf, size_t nbytes, loff_t off)
6673{
6674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6675 unsigned long min;
6676 int err;
6677
6678 buf = strstrip(buf);
6679 err = page_counter_memparse(buf, "max", &min);
6680 if (err)
6681 return err;
6682
6683 page_counter_set_min(&memcg->memory, min);
6684
6685 return nbytes;
6686}
6687
241994ed
JW
6688static int memory_low_show(struct seq_file *m, void *v)
6689{
677dc973
CD
6690 return seq_puts_memcg_tunable(m,
6691 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6692}
6693
6694static ssize_t memory_low_write(struct kernfs_open_file *of,
6695 char *buf, size_t nbytes, loff_t off)
6696{
6697 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6698 unsigned long low;
6699 int err;
6700
6701 buf = strstrip(buf);
d2973697 6702 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6703 if (err)
6704 return err;
6705
23067153 6706 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6707
6708 return nbytes;
6709}
6710
6711static int memory_high_show(struct seq_file *m, void *v)
6712{
d1663a90
JK
6713 return seq_puts_memcg_tunable(m,
6714 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6715}
6716
6717static ssize_t memory_high_write(struct kernfs_open_file *of,
6718 char *buf, size_t nbytes, loff_t off)
6719{
6720 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6721 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6722 bool drained = false;
241994ed
JW
6723 unsigned long high;
6724 int err;
6725
6726 buf = strstrip(buf);
d2973697 6727 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6728 if (err)
6729 return err;
6730
e82553c1
JW
6731 page_counter_set_high(&memcg->memory, high);
6732
8c8c383c
JW
6733 for (;;) {
6734 unsigned long nr_pages = page_counter_read(&memcg->memory);
6735 unsigned long reclaimed;
6736
6737 if (nr_pages <= high)
6738 break;
6739
6740 if (signal_pending(current))
6741 break;
6742
6743 if (!drained) {
6744 drain_all_stock(memcg);
6745 drained = true;
6746 continue;
6747 }
6748
6749 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
55ab834a 6750 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6751
6752 if (!reclaimed && !nr_retries--)
6753 break;
6754 }
588083bb 6755
19ce33ac 6756 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6757 return nbytes;
6758}
6759
6760static int memory_max_show(struct seq_file *m, void *v)
6761{
677dc973
CD
6762 return seq_puts_memcg_tunable(m,
6763 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6764}
6765
6766static ssize_t memory_max_write(struct kernfs_open_file *of,
6767 char *buf, size_t nbytes, loff_t off)
6768{
6769 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6770 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6771 bool drained = false;
241994ed
JW
6772 unsigned long max;
6773 int err;
6774
6775 buf = strstrip(buf);
d2973697 6776 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6777 if (err)
6778 return err;
6779
bbec2e15 6780 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6781
6782 for (;;) {
6783 unsigned long nr_pages = page_counter_read(&memcg->memory);
6784
6785 if (nr_pages <= max)
6786 break;
6787
7249c9f0 6788 if (signal_pending(current))
b6e6edcf 6789 break;
b6e6edcf
JW
6790
6791 if (!drained) {
6792 drain_all_stock(memcg);
6793 drained = true;
6794 continue;
6795 }
6796
6797 if (nr_reclaims) {
6798 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
55ab834a 6799 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6800 nr_reclaims--;
6801 continue;
6802 }
6803
e27be240 6804 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6805 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6806 break;
6807 }
241994ed 6808
2529bb3a 6809 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6810 return nbytes;
6811}
6812
664dc218
DR
6813/*
6814 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
6815 * if any new events become available.
6816 */
1e577f97
SB
6817static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6818{
6819 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6820 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6821 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6822 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6823 seq_printf(m, "oom_kill %lu\n",
6824 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6825 seq_printf(m, "oom_group_kill %lu\n",
6826 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6827}
6828
241994ed
JW
6829static int memory_events_show(struct seq_file *m, void *v)
6830{
aa9694bb 6831 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6832
1e577f97
SB
6833 __memory_events_show(m, memcg->memory_events);
6834 return 0;
6835}
6836
6837static int memory_events_local_show(struct seq_file *m, void *v)
6838{
6839 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6840
1e577f97 6841 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6842 return 0;
6843}
6844
587d9f72
JW
6845static int memory_stat_show(struct seq_file *m, void *v)
6846{
aa9694bb 6847 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6848 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5b42360c 6849 struct seq_buf s;
1ff9e6e1 6850
c8713d0b
JW
6851 if (!buf)
6852 return -ENOMEM;
5b42360c
YA
6853 seq_buf_init(&s, buf, PAGE_SIZE);
6854 memory_stat_format(memcg, &s);
c8713d0b
JW
6855 seq_puts(m, buf);
6856 kfree(buf);
587d9f72
JW
6857 return 0;
6858}
6859
5f9a4f4a 6860#ifdef CONFIG_NUMA
fff66b79
MS
6861static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6862 int item)
6863{
ff841a06
YA
6864 return lruvec_page_state(lruvec, item) *
6865 memcg_page_state_output_unit(item);
fff66b79
MS
6866}
6867
5f9a4f4a
MS
6868static int memory_numa_stat_show(struct seq_file *m, void *v)
6869{
6870 int i;
6871 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6872
7d7ef0a4 6873 mem_cgroup_flush_stats(memcg);
7e1c0d6f 6874
5f9a4f4a
MS
6875 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6876 int nid;
6877
6878 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6879 continue;
6880
6881 seq_printf(m, "%s", memory_stats[i].name);
6882 for_each_node_state(nid, N_MEMORY) {
6883 u64 size;
6884 struct lruvec *lruvec;
6885
6886 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6887 size = lruvec_page_state_output(lruvec,
6888 memory_stats[i].idx);
5f9a4f4a
MS
6889 seq_printf(m, " N%d=%llu", nid, size);
6890 }
6891 seq_putc(m, '\n');
6892 }
6893
6894 return 0;
6895}
6896#endif
6897
3d8b38eb
RG
6898static int memory_oom_group_show(struct seq_file *m, void *v)
6899{
aa9694bb 6900 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb 6901
eaf7b66b 6902 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
3d8b38eb
RG
6903
6904 return 0;
6905}
6906
6907static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6908 char *buf, size_t nbytes, loff_t off)
6909{
6910 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6911 int ret, oom_group;
6912
6913 buf = strstrip(buf);
6914 if (!buf)
6915 return -EINVAL;
6916
6917 ret = kstrtoint(buf, 0, &oom_group);
6918 if (ret)
6919 return ret;
6920
6921 if (oom_group != 0 && oom_group != 1)
6922 return -EINVAL;
6923
eaf7b66b 6924 WRITE_ONCE(memcg->oom_group, oom_group);
3d8b38eb
RG
6925
6926 return nbytes;
6927}
6928
94968384
SB
6929static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6930 size_t nbytes, loff_t off)
6931{
6932 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6933 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6934 unsigned long nr_to_reclaim, nr_reclaimed = 0;
55ab834a
MH
6935 unsigned int reclaim_options;
6936 int err;
12a5d395
MA
6937
6938 buf = strstrip(buf);
55ab834a
MH
6939 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6940 if (err)
6941 return err;
12a5d395 6942
55ab834a 6943 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6944 while (nr_reclaimed < nr_to_reclaim) {
6945 unsigned long reclaimed;
6946
6947 if (signal_pending(current))
6948 return -EINTR;
6949
6950 /*
6951 * This is the final attempt, drain percpu lru caches in the
6952 * hope of introducing more evictable pages for
6953 * try_to_free_mem_cgroup_pages().
6954 */
6955 if (!nr_retries)
6956 lru_add_drain_all();
6957
6958 reclaimed = try_to_free_mem_cgroup_pages(memcg,
0388536a
EY
6959 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6960 GFP_KERNEL, reclaim_options);
94968384
SB
6961
6962 if (!reclaimed && !nr_retries--)
6963 return -EAGAIN;
6964
6965 nr_reclaimed += reclaimed;
6966 }
6967
6968 return nbytes;
6969}
6970
241994ed
JW
6971static struct cftype memory_files[] = {
6972 {
6973 .name = "current",
f5fc3c5d 6974 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6975 .read_u64 = memory_current_read,
6976 },
8e20d4b3
GR
6977 {
6978 .name = "peak",
6979 .flags = CFTYPE_NOT_ON_ROOT,
6980 .read_u64 = memory_peak_read,
6981 },
bf8d5d52
RG
6982 {
6983 .name = "min",
6984 .flags = CFTYPE_NOT_ON_ROOT,
6985 .seq_show = memory_min_show,
6986 .write = memory_min_write,
6987 },
241994ed
JW
6988 {
6989 .name = "low",
6990 .flags = CFTYPE_NOT_ON_ROOT,
6991 .seq_show = memory_low_show,
6992 .write = memory_low_write,
6993 },
6994 {
6995 .name = "high",
6996 .flags = CFTYPE_NOT_ON_ROOT,
6997 .seq_show = memory_high_show,
6998 .write = memory_high_write,
6999 },
7000 {
7001 .name = "max",
7002 .flags = CFTYPE_NOT_ON_ROOT,
7003 .seq_show = memory_max_show,
7004 .write = memory_max_write,
7005 },
7006 {
7007 .name = "events",
7008 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 7009 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
7010 .seq_show = memory_events_show,
7011 },
1e577f97
SB
7012 {
7013 .name = "events.local",
7014 .flags = CFTYPE_NOT_ON_ROOT,
7015 .file_offset = offsetof(struct mem_cgroup, events_local_file),
7016 .seq_show = memory_events_local_show,
7017 },
587d9f72
JW
7018 {
7019 .name = "stat",
587d9f72
JW
7020 .seq_show = memory_stat_show,
7021 },
5f9a4f4a
MS
7022#ifdef CONFIG_NUMA
7023 {
7024 .name = "numa_stat",
7025 .seq_show = memory_numa_stat_show,
7026 },
7027#endif
3d8b38eb
RG
7028 {
7029 .name = "oom.group",
7030 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7031 .seq_show = memory_oom_group_show,
7032 .write = memory_oom_group_write,
7033 },
94968384
SB
7034 {
7035 .name = "reclaim",
7036 .flags = CFTYPE_NS_DELEGATABLE,
7037 .write = memory_reclaim,
7038 },
241994ed
JW
7039 { } /* terminate */
7040};
7041
073219e9 7042struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7043 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7044 .css_online = mem_cgroup_css_online,
92fb9748 7045 .css_offline = mem_cgroup_css_offline,
6df38689 7046 .css_released = mem_cgroup_css_released,
92fb9748 7047 .css_free = mem_cgroup_css_free,
1ced953b 7048 .css_reset = mem_cgroup_css_reset,
2d146aa3 7049 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 7050 .can_attach = mem_cgroup_can_attach,
1aacbd35 7051#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
bd74fdae 7052 .attach = mem_cgroup_attach,
1aacbd35 7053#endif
7dc74be0 7054 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 7055 .post_attach = mem_cgroup_move_task,
1aacbd35
RG
7056#ifdef CONFIG_MEMCG_KMEM
7057 .fork = mem_cgroup_fork,
7058 .exit = mem_cgroup_exit,
7059#endif
241994ed
JW
7060 .dfl_cftypes = memory_files,
7061 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 7062 .early_init = 0,
8cdea7c0 7063};
c077719b 7064
bc50bcc6
JW
7065/*
7066 * This function calculates an individual cgroup's effective
7067 * protection which is derived from its own memory.min/low, its
7068 * parent's and siblings' settings, as well as the actual memory
7069 * distribution in the tree.
7070 *
7071 * The following rules apply to the effective protection values:
7072 *
7073 * 1. At the first level of reclaim, effective protection is equal to
7074 * the declared protection in memory.min and memory.low.
7075 *
7076 * 2. To enable safe delegation of the protection configuration, at
7077 * subsequent levels the effective protection is capped to the
7078 * parent's effective protection.
7079 *
7080 * 3. To make complex and dynamic subtrees easier to configure, the
7081 * user is allowed to overcommit the declared protection at a given
7082 * level. If that is the case, the parent's effective protection is
7083 * distributed to the children in proportion to how much protection
7084 * they have declared and how much of it they are utilizing.
7085 *
7086 * This makes distribution proportional, but also work-conserving:
7087 * if one cgroup claims much more protection than it uses memory,
7088 * the unused remainder is available to its siblings.
7089 *
7090 * 4. Conversely, when the declared protection is undercommitted at a
7091 * given level, the distribution of the larger parental protection
7092 * budget is NOT proportional. A cgroup's protection from a sibling
7093 * is capped to its own memory.min/low setting.
7094 *
8a931f80
JW
7095 * 5. However, to allow protecting recursive subtrees from each other
7096 * without having to declare each individual cgroup's fixed share
7097 * of the ancestor's claim to protection, any unutilized -
7098 * "floating" - protection from up the tree is distributed in
7099 * proportion to each cgroup's *usage*. This makes the protection
7100 * neutral wrt sibling cgroups and lets them compete freely over
7101 * the shared parental protection budget, but it protects the
7102 * subtree as a whole from neighboring subtrees.
7103 *
7104 * Note that 4. and 5. are not in conflict: 4. is about protecting
7105 * against immediate siblings whereas 5. is about protecting against
7106 * neighboring subtrees.
bc50bcc6
JW
7107 */
7108static unsigned long effective_protection(unsigned long usage,
8a931f80 7109 unsigned long parent_usage,
bc50bcc6
JW
7110 unsigned long setting,
7111 unsigned long parent_effective,
7112 unsigned long siblings_protected)
7113{
7114 unsigned long protected;
8a931f80 7115 unsigned long ep;
bc50bcc6
JW
7116
7117 protected = min(usage, setting);
7118 /*
7119 * If all cgroups at this level combined claim and use more
08e0f49e 7120 * protection than what the parent affords them, distribute
bc50bcc6
JW
7121 * shares in proportion to utilization.
7122 *
7123 * We are using actual utilization rather than the statically
7124 * claimed protection in order to be work-conserving: claimed
7125 * but unused protection is available to siblings that would
7126 * otherwise get a smaller chunk than what they claimed.
7127 */
7128 if (siblings_protected > parent_effective)
7129 return protected * parent_effective / siblings_protected;
7130
7131 /*
7132 * Ok, utilized protection of all children is within what the
7133 * parent affords them, so we know whatever this child claims
7134 * and utilizes is effectively protected.
7135 *
7136 * If there is unprotected usage beyond this value, reclaim
7137 * will apply pressure in proportion to that amount.
7138 *
7139 * If there is unutilized protection, the cgroup will be fully
7140 * shielded from reclaim, but we do return a smaller value for
7141 * protection than what the group could enjoy in theory. This
7142 * is okay. With the overcommit distribution above, effective
7143 * protection is always dependent on how memory is actually
7144 * consumed among the siblings anyway.
7145 */
8a931f80
JW
7146 ep = protected;
7147
7148 /*
7149 * If the children aren't claiming (all of) the protection
7150 * afforded to them by the parent, distribute the remainder in
7151 * proportion to the (unprotected) memory of each cgroup. That
7152 * way, cgroups that aren't explicitly prioritized wrt each
7153 * other compete freely over the allowance, but they are
7154 * collectively protected from neighboring trees.
7155 *
7156 * We're using unprotected memory for the weight so that if
7157 * some cgroups DO claim explicit protection, we don't protect
7158 * the same bytes twice.
cd324edc
JW
7159 *
7160 * Check both usage and parent_usage against the respective
7161 * protected values. One should imply the other, but they
7162 * aren't read atomically - make sure the division is sane.
8a931f80
JW
7163 */
7164 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7165 return ep;
cd324edc
JW
7166 if (parent_effective > siblings_protected &&
7167 parent_usage > siblings_protected &&
7168 usage > protected) {
8a931f80
JW
7169 unsigned long unclaimed;
7170
7171 unclaimed = parent_effective - siblings_protected;
7172 unclaimed *= usage - protected;
7173 unclaimed /= parent_usage - siblings_protected;
7174
7175 ep += unclaimed;
7176 }
7177
7178 return ep;
bc50bcc6
JW
7179}
7180
241994ed 7181/**
05395718 7182 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 7183 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
7184 * @memcg: the memory cgroup to check
7185 *
23067153
RG
7186 * WARNING: This function is not stateless! It can only be used as part
7187 * of a top-down tree iteration, not for isolated queries.
241994ed 7188 */
45c7f7e1
CD
7189void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7190 struct mem_cgroup *memcg)
241994ed 7191{
8a931f80 7192 unsigned long usage, parent_usage;
23067153
RG
7193 struct mem_cgroup *parent;
7194
241994ed 7195 if (mem_cgroup_disabled())
45c7f7e1 7196 return;
241994ed 7197
34c81057
SC
7198 if (!root)
7199 root = root_mem_cgroup;
22f7496f
YS
7200
7201 /*
7202 * Effective values of the reclaim targets are ignored so they
7203 * can be stale. Have a look at mem_cgroup_protection for more
7204 * details.
7205 * TODO: calculation should be more robust so that we do not need
7206 * that special casing.
7207 */
34c81057 7208 if (memcg == root)
45c7f7e1 7209 return;
241994ed 7210
23067153 7211 usage = page_counter_read(&memcg->memory);
bf8d5d52 7212 if (!usage)
45c7f7e1 7213 return;
bf8d5d52 7214
bf8d5d52 7215 parent = parent_mem_cgroup(memcg);
df2a4196 7216
bc50bcc6 7217 if (parent == root) {
c3d53200 7218 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 7219 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 7220 return;
bf8d5d52
RG
7221 }
7222
8a931f80
JW
7223 parent_usage = page_counter_read(&parent->memory);
7224
b3a7822e 7225 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
7226 READ_ONCE(memcg->memory.min),
7227 READ_ONCE(parent->memory.emin),
b3a7822e 7228 atomic_long_read(&parent->memory.children_min_usage)));
23067153 7229
b3a7822e 7230 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
7231 READ_ONCE(memcg->memory.low),
7232 READ_ONCE(parent->memory.elow),
b3a7822e 7233 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
7234}
7235
8f425e4e
MWO
7236static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7237 gfp_t gfp)
0add0c77 7238{
0add0c77
SB
7239 int ret;
7240
4b569387 7241 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
0add0c77
SB
7242 if (ret)
7243 goto out;
7244
4b569387 7245 mem_cgroup_commit_charge(folio, memcg);
0add0c77
SB
7246out:
7247 return ret;
7248}
7249
8f425e4e 7250int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 7251{
0add0c77
SB
7252 struct mem_cgroup *memcg;
7253 int ret;
00501b53 7254
0add0c77 7255 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 7256 ret = charge_memcg(folio, memcg, gfp);
0add0c77 7257 css_put(&memcg->css);
2d1c4980 7258
0add0c77
SB
7259 return ret;
7260}
e993d905 7261
8cba9576
NP
7262/**
7263 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7264 * @memcg: memcg to charge.
7265 * @gfp: reclaim mode.
7266 * @nr_pages: number of pages to charge.
7267 *
7268 * This function is called when allocating a huge page folio to determine if
7269 * the memcg has the capacity for it. It does not commit the charge yet,
7270 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7271 *
7272 * Once we have obtained the hugetlb folio, we can call
7273 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7274 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7275 * of try_charge().
7276 *
7277 * Returns 0 on success. Otherwise, an error code is returned.
7278 */
7279int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7280 long nr_pages)
7281{
7282 /*
7283 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7284 * but do not attempt to commit charge later (or cancel on error) either.
7285 */
7286 if (mem_cgroup_disabled() || !memcg ||
7287 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7288 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7289 return -EOPNOTSUPP;
7290
7291 if (try_charge(memcg, gfp, nr_pages))
7292 return -ENOMEM;
7293
7294 return 0;
7295}
7296
0add0c77 7297/**
65995918
MWO
7298 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7299 * @folio: folio to charge.
0add0c77
SB
7300 * @mm: mm context of the victim
7301 * @gfp: reclaim mode
65995918 7302 * @entry: swap entry for which the folio is allocated
0add0c77 7303 *
65995918
MWO
7304 * This function charges a folio allocated for swapin. Please call this before
7305 * adding the folio to the swapcache.
0add0c77
SB
7306 *
7307 * Returns 0 on success. Otherwise, an error code is returned.
7308 */
65995918 7309int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
7310 gfp_t gfp, swp_entry_t entry)
7311{
7312 struct mem_cgroup *memcg;
7313 unsigned short id;
7314 int ret;
00501b53 7315
0add0c77
SB
7316 if (mem_cgroup_disabled())
7317 return 0;
00501b53 7318
0add0c77
SB
7319 id = lookup_swap_cgroup_id(entry);
7320 rcu_read_lock();
7321 memcg = mem_cgroup_from_id(id);
7322 if (!memcg || !css_tryget_online(&memcg->css))
7323 memcg = get_mem_cgroup_from_mm(mm);
7324 rcu_read_unlock();
00501b53 7325
8f425e4e 7326 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 7327
0add0c77
SB
7328 css_put(&memcg->css);
7329 return ret;
7330}
00501b53 7331
0add0c77
SB
7332/*
7333 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7334 * @entry: swap entry for which the page is charged
7335 *
7336 * Call this function after successfully adding the charged page to swapcache.
7337 *
7338 * Note: This function assumes the page for which swap slot is being uncharged
7339 * is order 0 page.
7340 */
7341void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7342{
cae3af62
MS
7343 /*
7344 * Cgroup1's unified memory+swap counter has been charged with the
7345 * new swapcache page, finish the transfer by uncharging the swap
7346 * slot. The swap slot would also get uncharged when it dies, but
7347 * it can stick around indefinitely and we'd count the page twice
7348 * the entire time.
7349 *
7350 * Cgroup2 has separate resource counters for memory and swap,
7351 * so this is a non-issue here. Memory and swap charge lifetimes
7352 * correspond 1:1 to page and swap slot lifetimes: we charge the
7353 * page to memory here, and uncharge swap when the slot is freed.
7354 */
0add0c77 7355 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
7356 /*
7357 * The swap entry might not get freed for a long time,
7358 * let's not wait for it. The page already received a
7359 * memory+swap charge, drop the swap entry duplicate.
7360 */
0add0c77 7361 mem_cgroup_uncharge_swap(entry, 1);
00501b53 7362 }
3fea5a49
JW
7363}
7364
a9d5adee
JG
7365struct uncharge_gather {
7366 struct mem_cgroup *memcg;
b4e0b68f 7367 unsigned long nr_memory;
a9d5adee 7368 unsigned long pgpgout;
a9d5adee 7369 unsigned long nr_kmem;
8e88bd2d 7370 int nid;
a9d5adee
JG
7371};
7372
7373static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7374{
a9d5adee
JG
7375 memset(ug, 0, sizeof(*ug));
7376}
7377
7378static void uncharge_batch(const struct uncharge_gather *ug)
7379{
747db954
JW
7380 unsigned long flags;
7381
b4e0b68f
MS
7382 if (ug->nr_memory) {
7383 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7384 if (do_memsw_account())
b4e0b68f 7385 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7386 if (ug->nr_kmem)
7387 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7388 memcg_oom_recover(ug->memcg);
ce00a967 7389 }
747db954
JW
7390
7391 local_irq_save(flags);
c9019e9b 7392 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7393 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7394 memcg_check_events(ug->memcg, ug->nid);
747db954 7395 local_irq_restore(flags);
f1796544 7396
c4ed6ebf 7397 /* drop reference from uncharge_folio */
f1796544 7398 css_put(&ug->memcg->css);
a9d5adee
JG
7399}
7400
c4ed6ebf 7401static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7402{
c4ed6ebf 7403 long nr_pages;
b4e0b68f
MS
7404 struct mem_cgroup *memcg;
7405 struct obj_cgroup *objcg;
9f762dbe 7406
c4ed6ebf 7407 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7408
a9d5adee
JG
7409 /*
7410 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7411 * folio memcg or objcg at this point, we have fully
7412 * exclusive access to the folio.
a9d5adee 7413 */
fead2b86 7414 if (folio_memcg_kmem(folio)) {
1b7e4464 7415 objcg = __folio_objcg(folio);
b4e0b68f
MS
7416 /*
7417 * This get matches the put at the end of the function and
7418 * kmem pages do not hold memcg references anymore.
7419 */
7420 memcg = get_mem_cgroup_from_objcg(objcg);
7421 } else {
1b7e4464 7422 memcg = __folio_memcg(folio);
b4e0b68f 7423 }
a9d5adee 7424
b4e0b68f
MS
7425 if (!memcg)
7426 return;
7427
7428 if (ug->memcg != memcg) {
a9d5adee
JG
7429 if (ug->memcg) {
7430 uncharge_batch(ug);
7431 uncharge_gather_clear(ug);
7432 }
b4e0b68f 7433 ug->memcg = memcg;
c4ed6ebf 7434 ug->nid = folio_nid(folio);
f1796544
MH
7435
7436 /* pairs with css_put in uncharge_batch */
b4e0b68f 7437 css_get(&memcg->css);
a9d5adee
JG
7438 }
7439
c4ed6ebf 7440 nr_pages = folio_nr_pages(folio);
a9d5adee 7441
fead2b86 7442 if (folio_memcg_kmem(folio)) {
b4e0b68f 7443 ug->nr_memory += nr_pages;
9f762dbe 7444 ug->nr_kmem += nr_pages;
b4e0b68f 7445
c4ed6ebf 7446 folio->memcg_data = 0;
b4e0b68f
MS
7447 obj_cgroup_put(objcg);
7448 } else {
7449 /* LRU pages aren't accounted at the root level */
7450 if (!mem_cgroup_is_root(memcg))
7451 ug->nr_memory += nr_pages;
18b2db3b 7452 ug->pgpgout++;
a9d5adee 7453
c4ed6ebf 7454 folio->memcg_data = 0;
b4e0b68f
MS
7455 }
7456
7457 css_put(&memcg->css);
747db954
JW
7458}
7459
bbc6b703 7460void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7461{
a9d5adee
JG
7462 struct uncharge_gather ug;
7463
bbc6b703
MWO
7464 /* Don't touch folio->lru of any random page, pre-check: */
7465 if (!folio_memcg(folio))
0a31bc97
JW
7466 return;
7467
a9d5adee 7468 uncharge_gather_clear(&ug);
bbc6b703 7469 uncharge_folio(folio, &ug);
a9d5adee 7470 uncharge_batch(&ug);
747db954 7471}
0a31bc97 7472
747db954 7473/**
2c8d8f97 7474 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7475 * @page_list: list of pages to uncharge
7476 *
7477 * Uncharge a list of pages previously charged with
2c8d8f97 7478 * __mem_cgroup_charge().
747db954 7479 */
2c8d8f97 7480void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7481{
c41a40b6 7482 struct uncharge_gather ug;
c4ed6ebf 7483 struct folio *folio;
c41a40b6 7484
c41a40b6 7485 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7486 list_for_each_entry(folio, page_list, lru)
7487 uncharge_folio(folio, &ug);
c41a40b6
MS
7488 if (ug.memcg)
7489 uncharge_batch(&ug);
0a31bc97
JW
7490}
7491
7492/**
85ce2c51 7493 * mem_cgroup_replace_folio - Charge a folio's replacement.
d21bba2b
MWO
7494 * @old: Currently circulating folio.
7495 * @new: Replacement folio.
0a31bc97 7496 *
d21bba2b 7497 * Charge @new as a replacement folio for @old. @old will
85ce2c51
NP
7498 * be uncharged upon free. This is only used by the page cache
7499 * (in replace_page_cache_folio()).
0a31bc97 7500 *
d21bba2b 7501 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7502 */
85ce2c51 7503void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
0a31bc97 7504{
29833315 7505 struct mem_cgroup *memcg;
d21bba2b 7506 long nr_pages = folio_nr_pages(new);
d93c4130 7507 unsigned long flags;
0a31bc97 7508
d21bba2b
MWO
7509 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7510 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7511 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7512 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7513
7514 if (mem_cgroup_disabled())
7515 return;
7516
d21bba2b
MWO
7517 /* Page cache replacement: new folio already charged? */
7518 if (folio_memcg(new))
0a31bc97
JW
7519 return;
7520
d21bba2b
MWO
7521 memcg = folio_memcg(old);
7522 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7523 if (!memcg)
0a31bc97
JW
7524 return;
7525
44b7a8d3 7526 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7527 if (!mem_cgroup_is_root(memcg)) {
7528 page_counter_charge(&memcg->memory, nr_pages);
7529 if (do_memsw_account())
7530 page_counter_charge(&memcg->memsw, nr_pages);
7531 }
0a31bc97 7532
1a3e1f40 7533 css_get(&memcg->css);
d21bba2b 7534 commit_charge(new, memcg);
44b7a8d3 7535
d93c4130 7536 local_irq_save(flags);
6e0110c2 7537 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7538 memcg_check_events(memcg, folio_nid(new));
d93c4130 7539 local_irq_restore(flags);
0a31bc97
JW
7540}
7541
85ce2c51
NP
7542/**
7543 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7544 * @old: Currently circulating folio.
7545 * @new: Replacement folio.
7546 *
7547 * Transfer the memcg data from the old folio to the new folio for migration.
7548 * The old folio's data info will be cleared. Note that the memory counters
7549 * will remain unchanged throughout the process.
7550 *
7551 * Both folios must be locked, @new->mapping must be set up.
7552 */
7553void mem_cgroup_migrate(struct folio *old, struct folio *new)
7554{
7555 struct mem_cgroup *memcg;
7556
7557 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7558 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7559 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7560 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7561
7562 if (mem_cgroup_disabled())
7563 return;
7564
7565 memcg = folio_memcg(old);
8cba9576
NP
7566 /*
7567 * Note that it is normal to see !memcg for a hugetlb folio.
7568 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7569 * was not selected.
7570 */
7571 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
85ce2c51
NP
7572 if (!memcg)
7573 return;
7574
7575 /* Transfer the charge and the css ref */
7576 commit_charge(new, memcg);
9bcef597
BW
7577 /*
7578 * If the old folio is a large folio and is in the split queue, it needs
7579 * to be removed from the split queue now, in case getting an incorrect
7580 * split queue in destroy_large_folio() after the memcg of the old folio
7581 * is cleared.
7582 *
7583 * In addition, the old folio is about to be freed after migration, so
7584 * removing from the split queue a bit earlier seems reasonable.
7585 */
7586 if (folio_test_large(old) && folio_test_large_rmappable(old))
7587 folio_undo_large_rmappable(old);
85ce2c51
NP
7588 old->memcg_data = 0;
7589}
7590
ef12947c 7591DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7592EXPORT_SYMBOL(memcg_sockets_enabled_key);
7593
2d758073 7594void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7595{
7596 struct mem_cgroup *memcg;
7597
2d758073
JW
7598 if (!mem_cgroup_sockets_enabled)
7599 return;
7600
e876ecc6 7601 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7602 if (!in_task())
e876ecc6
SB
7603 return;
7604
11092087
JW
7605 rcu_read_lock();
7606 memcg = mem_cgroup_from_task(current);
7848ed62 7607 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7608 goto out;
0db15298 7609 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7610 goto out;
8965aa28 7611 if (css_tryget(&memcg->css))
11092087 7612 sk->sk_memcg = memcg;
f7e1cb6e 7613out:
11092087
JW
7614 rcu_read_unlock();
7615}
11092087 7616
2d758073 7617void mem_cgroup_sk_free(struct sock *sk)
11092087 7618{
2d758073
JW
7619 if (sk->sk_memcg)
7620 css_put(&sk->sk_memcg->css);
11092087
JW
7621}
7622
7623/**
7624 * mem_cgroup_charge_skmem - charge socket memory
7625 * @memcg: memcg to charge
7626 * @nr_pages: number of pages to charge
4b1327be 7627 * @gfp_mask: reclaim mode
11092087
JW
7628 *
7629 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7630 * @memcg's configured limit, %false if it doesn't.
11092087 7631 */
4b1327be
WW
7632bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7633 gfp_t gfp_mask)
11092087 7634{
f7e1cb6e 7635 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7636 struct page_counter *fail;
f7e1cb6e 7637
0db15298
JW
7638 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7639 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7640 return true;
7641 }
0db15298 7642 memcg->tcpmem_pressure = 1;
4b1327be
WW
7643 if (gfp_mask & __GFP_NOFAIL) {
7644 page_counter_charge(&memcg->tcpmem, nr_pages);
7645 return true;
7646 }
f7e1cb6e 7647 return false;
11092087 7648 }
d886f4e4 7649
4b1327be
WW
7650 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7651 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7652 return true;
4b1327be 7653 }
f7e1cb6e 7654
11092087
JW
7655 return false;
7656}
7657
7658/**
7659 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7660 * @memcg: memcg to uncharge
7661 * @nr_pages: number of pages to uncharge
11092087
JW
7662 */
7663void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7664{
f7e1cb6e 7665 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7666 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7667 return;
7668 }
d886f4e4 7669
c9019e9b 7670 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7671
475d0487 7672 refill_stock(memcg, nr_pages);
11092087
JW
7673}
7674
f7e1cb6e
JW
7675static int __init cgroup_memory(char *s)
7676{
7677 char *token;
7678
7679 while ((token = strsep(&s, ",")) != NULL) {
7680 if (!*token)
7681 continue;
7682 if (!strcmp(token, "nosocket"))
7683 cgroup_memory_nosocket = true;
04823c83
VD
7684 if (!strcmp(token, "nokmem"))
7685 cgroup_memory_nokmem = true;
b6c1a8af
YS
7686 if (!strcmp(token, "nobpf"))
7687 cgroup_memory_nobpf = true;
f7e1cb6e 7688 }
460a79e1 7689 return 1;
f7e1cb6e
JW
7690}
7691__setup("cgroup.memory=", cgroup_memory);
11092087 7692
2d11085e 7693/*
1081312f
MH
7694 * subsys_initcall() for memory controller.
7695 *
308167fc
SAS
7696 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7697 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7698 * basically everything that doesn't depend on a specific mem_cgroup structure
7699 * should be initialized from here.
2d11085e
MH
7700 */
7701static int __init mem_cgroup_init(void)
7702{
95a045f6
JW
7703 int cpu, node;
7704
f3344adf
MS
7705 /*
7706 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7707 * used for per-memcg-per-cpu caching of per-node statistics. In order
7708 * to work fine, we should make sure that the overfill threshold can't
7709 * exceed S32_MAX / PAGE_SIZE.
7710 */
7711 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7712
308167fc
SAS
7713 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7714 memcg_hotplug_cpu_dead);
95a045f6
JW
7715
7716 for_each_possible_cpu(cpu)
7717 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7718 drain_local_stock);
7719
7720 for_each_node(node) {
7721 struct mem_cgroup_tree_per_node *rtpn;
95a045f6 7722
91f0dcce 7723 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
95a045f6 7724
ef8f2327 7725 rtpn->rb_root = RB_ROOT;
fa90b2fd 7726 rtpn->rb_rightmost = NULL;
ef8f2327 7727 spin_lock_init(&rtpn->lock);
95a045f6
JW
7728 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7729 }
7730
2d11085e
MH
7731 return 0;
7732}
7733subsys_initcall(mem_cgroup_init);
21afa38e 7734
e55b9f96 7735#ifdef CONFIG_SWAP
358c07fc
AB
7736static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7737{
1c2d479a 7738 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7739 /*
7740 * The root cgroup cannot be destroyed, so it's refcount must
7741 * always be >= 1.
7742 */
7848ed62 7743 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7744 VM_BUG_ON(1);
7745 break;
7746 }
7747 memcg = parent_mem_cgroup(memcg);
7748 if (!memcg)
7749 memcg = root_mem_cgroup;
7750 }
7751 return memcg;
7752}
7753
21afa38e
JW
7754/**
7755 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7756 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7757 * @entry: swap entry to move the charge to
7758 *
3ecb0087 7759 * Transfer the memsw charge of @folio to @entry.
21afa38e 7760 */
3ecb0087 7761void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7762{
1f47b61f 7763 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7764 unsigned int nr_entries;
21afa38e
JW
7765 unsigned short oldid;
7766
3ecb0087
MWO
7767 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7768 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7769
76358ab5
AS
7770 if (mem_cgroup_disabled())
7771 return;
7772
b94c4e94 7773 if (!do_memsw_account())
21afa38e
JW
7774 return;
7775
3ecb0087 7776 memcg = folio_memcg(folio);
21afa38e 7777
3ecb0087 7778 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7779 if (!memcg)
7780 return;
7781
1f47b61f
VD
7782 /*
7783 * In case the memcg owning these pages has been offlined and doesn't
7784 * have an ID allocated to it anymore, charge the closest online
7785 * ancestor for the swap instead and transfer the memory+swap charge.
7786 */
7787 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7788 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7789 /* Get references for the tail pages, too */
7790 if (nr_entries > 1)
7791 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7792 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7793 nr_entries);
3ecb0087 7794 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7795 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7796
3ecb0087 7797 folio->memcg_data = 0;
21afa38e
JW
7798
7799 if (!mem_cgroup_is_root(memcg))
d6810d73 7800 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7801
b25806dc 7802 if (memcg != swap_memcg) {
1f47b61f 7803 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7804 page_counter_charge(&swap_memcg->memsw, nr_entries);
7805 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7806 }
7807
ce9ce665
SAS
7808 /*
7809 * Interrupts should be disabled here because the caller holds the
b93b0163 7810 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7811 * important here to have the interrupts disabled because it is the
b93b0163 7812 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7813 */
be3e67b5 7814 memcg_stats_lock();
6e0110c2 7815 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7816 memcg_stats_unlock();
3ecb0087 7817 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7818
1a3e1f40 7819 css_put(&memcg->css);
21afa38e
JW
7820}
7821
38d8b4e6 7822/**
e2e3fdc7
MWO
7823 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7824 * @folio: folio being added to swap
37e84351
VD
7825 * @entry: swap entry to charge
7826 *
e2e3fdc7 7827 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7828 *
7829 * Returns 0 on success, -ENOMEM on failure.
7830 */
e2e3fdc7 7831int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7832{
e2e3fdc7 7833 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7834 struct page_counter *counter;
38d8b4e6 7835 struct mem_cgroup *memcg;
37e84351
VD
7836 unsigned short oldid;
7837
b94c4e94 7838 if (do_memsw_account())
37e84351
VD
7839 return 0;
7840
e2e3fdc7 7841 memcg = folio_memcg(folio);
37e84351 7842
e2e3fdc7 7843 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7844 if (!memcg)
7845 return 0;
7846
f3a53a3a
TH
7847 if (!entry.val) {
7848 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7849 return 0;
f3a53a3a 7850 }
bb98f2c5 7851
1f47b61f
VD
7852 memcg = mem_cgroup_id_get_online(memcg);
7853
b25806dc 7854 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7855 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7856 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7857 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7858 mem_cgroup_id_put(memcg);
37e84351 7859 return -ENOMEM;
1f47b61f 7860 }
37e84351 7861
38d8b4e6
HY
7862 /* Get references for the tail pages, too */
7863 if (nr_pages > 1)
7864 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7865 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7866 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7867 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7868
37e84351
VD
7869 return 0;
7870}
7871
21afa38e 7872/**
01c4b28c 7873 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7874 * @entry: swap entry to uncharge
38d8b4e6 7875 * @nr_pages: the amount of swap space to uncharge
21afa38e 7876 */
01c4b28c 7877void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7878{
7879 struct mem_cgroup *memcg;
7880 unsigned short id;
7881
38d8b4e6 7882 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7883 rcu_read_lock();
adbe427b 7884 memcg = mem_cgroup_from_id(id);
21afa38e 7885 if (memcg) {
b25806dc 7886 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7887 if (do_memsw_account())
38d8b4e6 7888 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7889 else
7890 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7891 }
c9019e9b 7892 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7893 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7894 }
7895 rcu_read_unlock();
7896}
7897
d8b38438
VD
7898long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7899{
7900 long nr_swap_pages = get_nr_swap_pages();
7901
b25806dc 7902 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 7903 return nr_swap_pages;
7848ed62 7904 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 7905 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7906 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7907 page_counter_read(&memcg->swap));
7908 return nr_swap_pages;
7909}
7910
9202d527 7911bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7912{
7913 struct mem_cgroup *memcg;
7914
9202d527 7915 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7916
7917 if (vm_swap_full())
7918 return true;
b25806dc 7919 if (do_memsw_account())
5ccc5aba
VD
7920 return false;
7921
9202d527 7922 memcg = folio_memcg(folio);
5ccc5aba
VD
7923 if (!memcg)
7924 return false;
7925
7848ed62 7926 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
7927 unsigned long usage = page_counter_read(&memcg->swap);
7928
7929 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7930 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7931 return true;
4b82ab4f 7932 }
5ccc5aba
VD
7933
7934 return false;
7935}
7936
eccb52e7 7937static int __init setup_swap_account(char *s)
21afa38e 7938{
b25806dc
JW
7939 pr_warn_once("The swapaccount= commandline option is deprecated. "
7940 "Please report your usecase to linux-mm@kvack.org if you "
7941 "depend on this functionality.\n");
21afa38e
JW
7942 return 1;
7943}
eccb52e7 7944__setup("swapaccount=", setup_swap_account);
21afa38e 7945
37e84351
VD
7946static u64 swap_current_read(struct cgroup_subsys_state *css,
7947 struct cftype *cft)
7948{
7949 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7950
7951 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7952}
7953
e0e0b412
LD
7954static u64 swap_peak_read(struct cgroup_subsys_state *css,
7955 struct cftype *cft)
7956{
7957 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7958
7959 return (u64)memcg->swap.watermark * PAGE_SIZE;
7960}
7961
4b82ab4f
JK
7962static int swap_high_show(struct seq_file *m, void *v)
7963{
7964 return seq_puts_memcg_tunable(m,
7965 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7966}
7967
7968static ssize_t swap_high_write(struct kernfs_open_file *of,
7969 char *buf, size_t nbytes, loff_t off)
7970{
7971 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7972 unsigned long high;
7973 int err;
7974
7975 buf = strstrip(buf);
7976 err = page_counter_memparse(buf, "max", &high);
7977 if (err)
7978 return err;
7979
7980 page_counter_set_high(&memcg->swap, high);
7981
7982 return nbytes;
7983}
7984
37e84351
VD
7985static int swap_max_show(struct seq_file *m, void *v)
7986{
677dc973
CD
7987 return seq_puts_memcg_tunable(m,
7988 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7989}
7990
7991static ssize_t swap_max_write(struct kernfs_open_file *of,
7992 char *buf, size_t nbytes, loff_t off)
7993{
7994 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7995 unsigned long max;
7996 int err;
7997
7998 buf = strstrip(buf);
7999 err = page_counter_memparse(buf, "max", &max);
8000 if (err)
8001 return err;
8002
be09102b 8003 xchg(&memcg->swap.max, max);
37e84351
VD
8004
8005 return nbytes;
8006}
8007
f3a53a3a
TH
8008static int swap_events_show(struct seq_file *m, void *v)
8009{
aa9694bb 8010 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 8011
4b82ab4f
JK
8012 seq_printf(m, "high %lu\n",
8013 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
8014 seq_printf(m, "max %lu\n",
8015 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
8016 seq_printf(m, "fail %lu\n",
8017 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
8018
8019 return 0;
8020}
8021
37e84351
VD
8022static struct cftype swap_files[] = {
8023 {
8024 .name = "swap.current",
8025 .flags = CFTYPE_NOT_ON_ROOT,
8026 .read_u64 = swap_current_read,
8027 },
4b82ab4f
JK
8028 {
8029 .name = "swap.high",
8030 .flags = CFTYPE_NOT_ON_ROOT,
8031 .seq_show = swap_high_show,
8032 .write = swap_high_write,
8033 },
37e84351
VD
8034 {
8035 .name = "swap.max",
8036 .flags = CFTYPE_NOT_ON_ROOT,
8037 .seq_show = swap_max_show,
8038 .write = swap_max_write,
8039 },
e0e0b412
LD
8040 {
8041 .name = "swap.peak",
8042 .flags = CFTYPE_NOT_ON_ROOT,
8043 .read_u64 = swap_peak_read,
8044 },
f3a53a3a
TH
8045 {
8046 .name = "swap.events",
8047 .flags = CFTYPE_NOT_ON_ROOT,
8048 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
8049 .seq_show = swap_events_show,
8050 },
37e84351
VD
8051 { } /* terminate */
8052};
8053
eccb52e7 8054static struct cftype memsw_files[] = {
21afa38e
JW
8055 {
8056 .name = "memsw.usage_in_bytes",
8057 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8058 .read_u64 = mem_cgroup_read_u64,
8059 },
8060 {
8061 .name = "memsw.max_usage_in_bytes",
8062 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8063 .write = mem_cgroup_reset,
8064 .read_u64 = mem_cgroup_read_u64,
8065 },
8066 {
8067 .name = "memsw.limit_in_bytes",
8068 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8069 .write = mem_cgroup_write,
8070 .read_u64 = mem_cgroup_read_u64,
8071 },
8072 {
8073 .name = "memsw.failcnt",
8074 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8075 .write = mem_cgroup_reset,
8076 .read_u64 = mem_cgroup_read_u64,
8077 },
8078 { }, /* terminate */
8079};
8080
f4840ccf
JW
8081#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8082/**
8083 * obj_cgroup_may_zswap - check if this cgroup can zswap
8084 * @objcg: the object cgroup
8085 *
8086 * Check if the hierarchical zswap limit has been reached.
8087 *
8088 * This doesn't check for specific headroom, and it is not atomic
8089 * either. But with zswap, the size of the allocation is only known
be16dd76 8090 * once compression has occurred, and this optimistic pre-check avoids
f4840ccf
JW
8091 * spending cycles on compression when there is already no room left
8092 * or zswap is disabled altogether somewhere in the hierarchy.
8093 */
8094bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8095{
8096 struct mem_cgroup *memcg, *original_memcg;
8097 bool ret = true;
8098
8099 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8100 return true;
8101
8102 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 8103 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
8104 memcg = parent_mem_cgroup(memcg)) {
8105 unsigned long max = READ_ONCE(memcg->zswap_max);
8106 unsigned long pages;
8107
8108 if (max == PAGE_COUNTER_MAX)
8109 continue;
8110 if (max == 0) {
8111 ret = false;
8112 break;
8113 }
8114
7d7ef0a4
YA
8115 /*
8116 * mem_cgroup_flush_stats() ignores small changes. Use
8117 * do_flush_stats() directly to get accurate stats for charging.
8118 */
8119 do_flush_stats(memcg);
f4840ccf
JW
8120 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8121 if (pages < max)
8122 continue;
8123 ret = false;
8124 break;
8125 }
8126 mem_cgroup_put(original_memcg);
8127 return ret;
8128}
8129
8130/**
8131 * obj_cgroup_charge_zswap - charge compression backend memory
8132 * @objcg: the object cgroup
8133 * @size: size of compressed object
8134 *
3a1060c2 8135 * This forces the charge after obj_cgroup_may_zswap() allowed
f4840ccf
JW
8136 * compression and storage in zwap for this cgroup to go ahead.
8137 */
8138void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8139{
8140 struct mem_cgroup *memcg;
8141
8142 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8143 return;
8144
8145 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8146
8147 /* PF_MEMALLOC context, charging must succeed */
8148 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8149 VM_WARN_ON_ONCE(1);
8150
8151 rcu_read_lock();
8152 memcg = obj_cgroup_memcg(objcg);
8153 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8154 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8155 rcu_read_unlock();
8156}
8157
8158/**
8159 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8160 * @objcg: the object cgroup
8161 * @size: size of compressed object
8162 *
8163 * Uncharges zswap memory on page in.
8164 */
8165void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8166{
8167 struct mem_cgroup *memcg;
8168
8169 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8170 return;
8171
8172 obj_cgroup_uncharge(objcg, size);
8173
8174 rcu_read_lock();
8175 memcg = obj_cgroup_memcg(objcg);
8176 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8177 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8178 rcu_read_unlock();
8179}
8180
501a06fe
NP
8181bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
8182{
8183 /* if zswap is disabled, do not block pages going to the swapping device */
8184 return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
8185}
8186
f4840ccf
JW
8187static u64 zswap_current_read(struct cgroup_subsys_state *css,
8188 struct cftype *cft)
8189{
7d7ef0a4
YA
8190 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8191
8192 mem_cgroup_flush_stats(memcg);
8193 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
f4840ccf
JW
8194}
8195
8196static int zswap_max_show(struct seq_file *m, void *v)
8197{
8198 return seq_puts_memcg_tunable(m,
8199 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8200}
8201
8202static ssize_t zswap_max_write(struct kernfs_open_file *of,
8203 char *buf, size_t nbytes, loff_t off)
8204{
8205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8206 unsigned long max;
8207 int err;
8208
8209 buf = strstrip(buf);
8210 err = page_counter_memparse(buf, "max", &max);
8211 if (err)
8212 return err;
8213
8214 xchg(&memcg->zswap_max, max);
8215
8216 return nbytes;
8217}
8218
501a06fe
NP
8219static int zswap_writeback_show(struct seq_file *m, void *v)
8220{
8221 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8222
8223 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
8224 return 0;
8225}
8226
8227static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
8228 char *buf, size_t nbytes, loff_t off)
8229{
8230 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8231 int zswap_writeback;
8232 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
8233
8234 if (parse_ret)
8235 return parse_ret;
8236
8237 if (zswap_writeback != 0 && zswap_writeback != 1)
8238 return -EINVAL;
8239
8240 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
8241 return nbytes;
8242}
8243
f4840ccf
JW
8244static struct cftype zswap_files[] = {
8245 {
8246 .name = "zswap.current",
8247 .flags = CFTYPE_NOT_ON_ROOT,
8248 .read_u64 = zswap_current_read,
8249 },
8250 {
8251 .name = "zswap.max",
8252 .flags = CFTYPE_NOT_ON_ROOT,
8253 .seq_show = zswap_max_show,
8254 .write = zswap_max_write,
8255 },
501a06fe
NP
8256 {
8257 .name = "zswap.writeback",
8258 .seq_show = zswap_writeback_show,
8259 .write = zswap_writeback_write,
8260 },
f4840ccf
JW
8261 { } /* terminate */
8262};
8263#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8264
21afa38e
JW
8265static int __init mem_cgroup_swap_init(void)
8266{
2d1c4980 8267 if (mem_cgroup_disabled())
eccb52e7
JW
8268 return 0;
8269
8270 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8271 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
8272#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8273 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8274#endif
21afa38e
JW
8275 return 0;
8276}
b25806dc 8277subsys_initcall(mem_cgroup_swap_init);
21afa38e 8278
e55b9f96 8279#endif /* CONFIG_SWAP */