memcg: only check memcg_kmem_skip_account in __memcg_kmem_get_cache
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
79dfdacc
MH
299
300 bool oom_lock;
301 atomic_t under_oom;
3812c8c8 302 atomic_t oom_wakeups;
79dfdacc 303
1f4c025b 304 int swappiness;
3c11ecf4
KH
305 /* OOM-Killer disable */
306 int oom_kill_disable;
a7885eb8 307
2e72b634
KS
308 /* protect arrays of thresholds */
309 struct mutex thresholds_lock;
310
311 /* thresholds for memory usage. RCU-protected */
2c488db2 312 struct mem_cgroup_thresholds thresholds;
907860ed 313
2e72b634 314 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 315 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 316
9490ff27
KH
317 /* For oom notifier event fd */
318 struct list_head oom_notify;
185efc0f 319
7dc74be0
DN
320 /*
321 * Should we move charges of a task when a task is moved into this
322 * mem_cgroup ? And what type of charges should we move ?
323 */
f894ffa8 324 unsigned long move_charge_at_immigrate;
619d094b
KH
325 /*
326 * set > 0 if pages under this cgroup are moving to other cgroup.
327 */
328 atomic_t moving_account;
312734c0
KH
329 /* taken only while moving_account > 0 */
330 spinlock_t move_lock;
d52aa412 331 /*
c62b1a3b 332 * percpu counter.
d52aa412 333 */
3a7951b4 334 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
335 /*
336 * used when a cpu is offlined or other synchronizations
337 * See mem_cgroup_read_stat().
338 */
339 struct mem_cgroup_stat_cpu nocpu_base;
340 spinlock_t pcp_counter_lock;
d1a4c0b3 341
4bd2c1ee 342#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 343 struct cg_proto tcp_mem;
d1a4c0b3 344#endif
2633d7a0 345#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
346 /* analogous to slab_common's slab_caches list, but per-memcg;
347 * protected by memcg_slab_mutex */
2633d7a0 348 struct list_head memcg_slab_caches;
2633d7a0
GC
349 /* Index in the kmem_cache->memcg_params->memcg_caches array */
350 int kmemcg_id;
351#endif
45cf7ebd
GC
352
353 int last_scanned_node;
354#if MAX_NUMNODES > 1
355 nodemask_t scan_nodes;
356 atomic_t numainfo_events;
357 atomic_t numainfo_updating;
358#endif
70ddf637 359
fba94807
TH
360 /* List of events which userspace want to receive */
361 struct list_head event_list;
362 spinlock_t event_list_lock;
363
54f72fe0
JW
364 struct mem_cgroup_per_node *nodeinfo[0];
365 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
366};
367
510fc4e1 368#ifdef CONFIG_MEMCG_KMEM
7de37682
GC
369static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
370{
900a38f0 371 return memcg->kmemcg_id >= 0;
7de37682 372}
510fc4e1
GC
373#endif
374
7dc74be0
DN
375/* Stuffs for move charges at task migration. */
376/*
ee5e8472
GC
377 * Types of charges to be moved. "move_charge_at_immitgrate" and
378 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
379 */
380enum move_type {
4ffef5fe 381 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 382 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
383 NR_MOVE_TYPE,
384};
385
4ffef5fe
DN
386/* "mc" and its members are protected by cgroup_mutex */
387static struct move_charge_struct {
b1dd693e 388 spinlock_t lock; /* for from, to */
4ffef5fe
DN
389 struct mem_cgroup *from;
390 struct mem_cgroup *to;
ee5e8472 391 unsigned long immigrate_flags;
4ffef5fe 392 unsigned long precharge;
854ffa8d 393 unsigned long moved_charge;
483c30b5 394 unsigned long moved_swap;
8033b97c
DN
395 struct task_struct *moving_task; /* a task moving charges */
396 wait_queue_head_t waitq; /* a waitq for other context */
397} mc = {
2bd9bb20 398 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
399 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
400};
4ffef5fe 401
90254a65
DN
402static bool move_anon(void)
403{
ee5e8472 404 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
405}
406
87946a72
DN
407static bool move_file(void)
408{
ee5e8472 409 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
410}
411
4e416953
BS
412/*
413 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
414 * limit reclaim to prevent infinite loops, if they ever occur.
415 */
a0db00fc 416#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 417#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 418
217bc319
KH
419enum charge_type {
420 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 421 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 422 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 423 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
424 NR_CHARGE_TYPE,
425};
426
8c7c6e34 427/* for encoding cft->private value on file */
86ae53e1
GC
428enum res_type {
429 _MEM,
430 _MEMSWAP,
431 _OOM_TYPE,
510fc4e1 432 _KMEM,
86ae53e1
GC
433};
434
a0db00fc
KS
435#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
436#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 437#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
438/* Used for OOM nofiier */
439#define OOM_CONTROL (0)
8c7c6e34 440
0999821b
GC
441/*
442 * The memcg_create_mutex will be held whenever a new cgroup is created.
443 * As a consequence, any change that needs to protect against new child cgroups
444 * appearing has to hold it as well.
445 */
446static DEFINE_MUTEX(memcg_create_mutex);
447
b2145145
WL
448struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
449{
a7c6d554 450 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
451}
452
70ddf637
AV
453/* Some nice accessors for the vmpressure. */
454struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
455{
456 if (!memcg)
457 memcg = root_mem_cgroup;
458 return &memcg->vmpressure;
459}
460
461struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
462{
463 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
464}
465
7ffc0edc
MH
466static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
467{
468 return (memcg == root_mem_cgroup);
469}
470
4219b2da
LZ
471/*
472 * We restrict the id in the range of [1, 65535], so it can fit into
473 * an unsigned short.
474 */
475#define MEM_CGROUP_ID_MAX USHRT_MAX
476
34c00c31
LZ
477static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
478{
15a4c835 479 return memcg->css.id;
34c00c31
LZ
480}
481
482static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
483{
484 struct cgroup_subsys_state *css;
485
7d699ddb 486 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
487 return mem_cgroup_from_css(css);
488}
489
e1aab161 490/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 491#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 492
e1aab161
GC
493void sock_update_memcg(struct sock *sk)
494{
376be5ff 495 if (mem_cgroup_sockets_enabled) {
e1aab161 496 struct mem_cgroup *memcg;
3f134619 497 struct cg_proto *cg_proto;
e1aab161
GC
498
499 BUG_ON(!sk->sk_prot->proto_cgroup);
500
f3f511e1
GC
501 /* Socket cloning can throw us here with sk_cgrp already
502 * filled. It won't however, necessarily happen from
503 * process context. So the test for root memcg given
504 * the current task's memcg won't help us in this case.
505 *
506 * Respecting the original socket's memcg is a better
507 * decision in this case.
508 */
509 if (sk->sk_cgrp) {
510 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 511 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
512 return;
513 }
514
e1aab161
GC
515 rcu_read_lock();
516 memcg = mem_cgroup_from_task(current);
3f134619 517 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 518 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
519 memcg_proto_active(cg_proto) &&
520 css_tryget_online(&memcg->css)) {
3f134619 521 sk->sk_cgrp = cg_proto;
e1aab161
GC
522 }
523 rcu_read_unlock();
524 }
525}
526EXPORT_SYMBOL(sock_update_memcg);
527
528void sock_release_memcg(struct sock *sk)
529{
376be5ff 530 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
531 struct mem_cgroup *memcg;
532 WARN_ON(!sk->sk_cgrp->memcg);
533 memcg = sk->sk_cgrp->memcg;
5347e5ae 534 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
535 }
536}
d1a4c0b3
GC
537
538struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
539{
540 if (!memcg || mem_cgroup_is_root(memcg))
541 return NULL;
542
2e685cad 543 return &memcg->tcp_mem;
d1a4c0b3
GC
544}
545EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 546
3f134619
GC
547static void disarm_sock_keys(struct mem_cgroup *memcg)
548{
2e685cad 549 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
550 return;
551 static_key_slow_dec(&memcg_socket_limit_enabled);
552}
553#else
554static void disarm_sock_keys(struct mem_cgroup *memcg)
555{
556}
557#endif
558
a8964b9b 559#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
560/*
561 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
562 * The main reason for not using cgroup id for this:
563 * this works better in sparse environments, where we have a lot of memcgs,
564 * but only a few kmem-limited. Or also, if we have, for instance, 200
565 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
566 * 200 entry array for that.
55007d84
GC
567 *
568 * The current size of the caches array is stored in
569 * memcg_limited_groups_array_size. It will double each time we have to
570 * increase it.
571 */
572static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
573int memcg_limited_groups_array_size;
574
55007d84
GC
575/*
576 * MIN_SIZE is different than 1, because we would like to avoid going through
577 * the alloc/free process all the time. In a small machine, 4 kmem-limited
578 * cgroups is a reasonable guess. In the future, it could be a parameter or
579 * tunable, but that is strictly not necessary.
580 *
b8627835 581 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
582 * this constant directly from cgroup, but it is understandable that this is
583 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 584 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
585 * increase ours as well if it increases.
586 */
587#define MEMCG_CACHES_MIN_SIZE 4
b8627835 588#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 589
d7f25f8a
GC
590/*
591 * A lot of the calls to the cache allocation functions are expected to be
592 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
593 * conditional to this static branch, we'll have to allow modules that does
594 * kmem_cache_alloc and the such to see this symbol as well
595 */
a8964b9b 596struct static_key memcg_kmem_enabled_key;
d7f25f8a 597EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 598
f3bb3043
VD
599static void memcg_free_cache_id(int id);
600
a8964b9b
GC
601static void disarm_kmem_keys(struct mem_cgroup *memcg)
602{
55007d84 603 if (memcg_kmem_is_active(memcg)) {
a8964b9b 604 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 605 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 606 }
bea207c8
GC
607 /*
608 * This check can't live in kmem destruction function,
609 * since the charges will outlive the cgroup
610 */
3e32cb2e 611 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
612}
613#else
614static void disarm_kmem_keys(struct mem_cgroup *memcg)
615{
616}
617#endif /* CONFIG_MEMCG_KMEM */
618
619static void disarm_static_keys(struct mem_cgroup *memcg)
620{
621 disarm_sock_keys(memcg);
622 disarm_kmem_keys(memcg);
623}
624
f64c3f54 625static struct mem_cgroup_per_zone *
e231875b 626mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 627{
e231875b
JZ
628 int nid = zone_to_nid(zone);
629 int zid = zone_idx(zone);
630
54f72fe0 631 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
632}
633
c0ff4b85 634struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 635{
c0ff4b85 636 return &memcg->css;
d324236b
WF
637}
638
f64c3f54 639static struct mem_cgroup_per_zone *
e231875b 640mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 641{
97a6c37b
JW
642 int nid = page_to_nid(page);
643 int zid = page_zonenum(page);
f64c3f54 644
e231875b 645 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
646}
647
bb4cc1a8
AM
648static struct mem_cgroup_tree_per_zone *
649soft_limit_tree_node_zone(int nid, int zid)
650{
651 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
652}
653
654static struct mem_cgroup_tree_per_zone *
655soft_limit_tree_from_page(struct page *page)
656{
657 int nid = page_to_nid(page);
658 int zid = page_zonenum(page);
659
660 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
661}
662
cf2c8127
JW
663static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
664 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 665 unsigned long new_usage_in_excess)
bb4cc1a8
AM
666{
667 struct rb_node **p = &mctz->rb_root.rb_node;
668 struct rb_node *parent = NULL;
669 struct mem_cgroup_per_zone *mz_node;
670
671 if (mz->on_tree)
672 return;
673
674 mz->usage_in_excess = new_usage_in_excess;
675 if (!mz->usage_in_excess)
676 return;
677 while (*p) {
678 parent = *p;
679 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
680 tree_node);
681 if (mz->usage_in_excess < mz_node->usage_in_excess)
682 p = &(*p)->rb_left;
683 /*
684 * We can't avoid mem cgroups that are over their soft
685 * limit by the same amount
686 */
687 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
688 p = &(*p)->rb_right;
689 }
690 rb_link_node(&mz->tree_node, parent, p);
691 rb_insert_color(&mz->tree_node, &mctz->rb_root);
692 mz->on_tree = true;
693}
694
cf2c8127
JW
695static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
696 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
697{
698 if (!mz->on_tree)
699 return;
700 rb_erase(&mz->tree_node, &mctz->rb_root);
701 mz->on_tree = false;
702}
703
cf2c8127
JW
704static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
705 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 706{
0a31bc97
JW
707 unsigned long flags;
708
709 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 710 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 711 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
712}
713
3e32cb2e
JW
714static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
715{
716 unsigned long nr_pages = page_counter_read(&memcg->memory);
717 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
718 unsigned long excess = 0;
719
720 if (nr_pages > soft_limit)
721 excess = nr_pages - soft_limit;
722
723 return excess;
724}
bb4cc1a8
AM
725
726static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
727{
3e32cb2e 728 unsigned long excess;
bb4cc1a8
AM
729 struct mem_cgroup_per_zone *mz;
730 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 731
e231875b 732 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
733 /*
734 * Necessary to update all ancestors when hierarchy is used.
735 * because their event counter is not touched.
736 */
737 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 738 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 739 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
740 /*
741 * We have to update the tree if mz is on RB-tree or
742 * mem is over its softlimit.
743 */
744 if (excess || mz->on_tree) {
0a31bc97
JW
745 unsigned long flags;
746
747 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
748 /* if on-tree, remove it */
749 if (mz->on_tree)
cf2c8127 750 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
751 /*
752 * Insert again. mz->usage_in_excess will be updated.
753 * If excess is 0, no tree ops.
754 */
cf2c8127 755 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 756 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
757 }
758 }
759}
760
761static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
762{
bb4cc1a8 763 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
764 struct mem_cgroup_per_zone *mz;
765 int nid, zid;
bb4cc1a8 766
e231875b
JZ
767 for_each_node(nid) {
768 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
769 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
770 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 771 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
772 }
773 }
774}
775
776static struct mem_cgroup_per_zone *
777__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
778{
779 struct rb_node *rightmost = NULL;
780 struct mem_cgroup_per_zone *mz;
781
782retry:
783 mz = NULL;
784 rightmost = rb_last(&mctz->rb_root);
785 if (!rightmost)
786 goto done; /* Nothing to reclaim from */
787
788 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
789 /*
790 * Remove the node now but someone else can add it back,
791 * we will to add it back at the end of reclaim to its correct
792 * position in the tree.
793 */
cf2c8127 794 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 795 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 796 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
797 goto retry;
798done:
799 return mz;
800}
801
802static struct mem_cgroup_per_zone *
803mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
804{
805 struct mem_cgroup_per_zone *mz;
806
0a31bc97 807 spin_lock_irq(&mctz->lock);
bb4cc1a8 808 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 809 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
810 return mz;
811}
812
711d3d2c
KH
813/*
814 * Implementation Note: reading percpu statistics for memcg.
815 *
816 * Both of vmstat[] and percpu_counter has threshold and do periodic
817 * synchronization to implement "quick" read. There are trade-off between
818 * reading cost and precision of value. Then, we may have a chance to implement
819 * a periodic synchronizion of counter in memcg's counter.
820 *
821 * But this _read() function is used for user interface now. The user accounts
822 * memory usage by memory cgroup and he _always_ requires exact value because
823 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
824 * have to visit all online cpus and make sum. So, for now, unnecessary
825 * synchronization is not implemented. (just implemented for cpu hotplug)
826 *
827 * If there are kernel internal actions which can make use of some not-exact
828 * value, and reading all cpu value can be performance bottleneck in some
829 * common workload, threashold and synchonization as vmstat[] should be
830 * implemented.
831 */
c0ff4b85 832static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 833 enum mem_cgroup_stat_index idx)
c62b1a3b 834{
7a159cc9 835 long val = 0;
c62b1a3b 836 int cpu;
c62b1a3b 837
711d3d2c
KH
838 get_online_cpus();
839 for_each_online_cpu(cpu)
c0ff4b85 840 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 841#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
842 spin_lock(&memcg->pcp_counter_lock);
843 val += memcg->nocpu_base.count[idx];
844 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
845#endif
846 put_online_cpus();
c62b1a3b
KH
847 return val;
848}
849
c0ff4b85 850static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
851 enum mem_cgroup_events_index idx)
852{
853 unsigned long val = 0;
854 int cpu;
855
9c567512 856 get_online_cpus();
e9f8974f 857 for_each_online_cpu(cpu)
c0ff4b85 858 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 859#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
860 spin_lock(&memcg->pcp_counter_lock);
861 val += memcg->nocpu_base.events[idx];
862 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 863#endif
9c567512 864 put_online_cpus();
e9f8974f
JW
865 return val;
866}
867
c0ff4b85 868static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 869 struct page *page,
0a31bc97 870 int nr_pages)
d52aa412 871{
b2402857
KH
872 /*
873 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
874 * counted as CACHE even if it's on ANON LRU.
875 */
0a31bc97 876 if (PageAnon(page))
b2402857 877 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 878 nr_pages);
d52aa412 879 else
b2402857 880 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 881 nr_pages);
55e462b0 882
b070e65c
DR
883 if (PageTransHuge(page))
884 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
885 nr_pages);
886
e401f176
KH
887 /* pagein of a big page is an event. So, ignore page size */
888 if (nr_pages > 0)
c0ff4b85 889 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 890 else {
c0ff4b85 891 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
892 nr_pages = -nr_pages; /* for event */
893 }
e401f176 894
13114716 895 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
896}
897
e231875b 898unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
899{
900 struct mem_cgroup_per_zone *mz;
901
902 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
903 return mz->lru_size[lru];
904}
905
e231875b
JZ
906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
907 int nid,
908 unsigned int lru_mask)
bb2a0de9 909{
e231875b 910 unsigned long nr = 0;
889976db
YH
911 int zid;
912
e231875b 913 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 914
e231875b
JZ
915 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
916 struct mem_cgroup_per_zone *mz;
917 enum lru_list lru;
918
919 for_each_lru(lru) {
920 if (!(BIT(lru) & lru_mask))
921 continue;
922 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
923 nr += mz->lru_size[lru];
924 }
925 }
926 return nr;
889976db 927}
bb2a0de9 928
c0ff4b85 929static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 930 unsigned int lru_mask)
6d12e2d8 931{
e231875b 932 unsigned long nr = 0;
889976db 933 int nid;
6d12e2d8 934
31aaea4a 935 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
936 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
937 return nr;
d52aa412
KH
938}
939
f53d7ce3
JW
940static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
941 enum mem_cgroup_events_target target)
7a159cc9
JW
942{
943 unsigned long val, next;
944
13114716 945 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 946 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 947 /* from time_after() in jiffies.h */
f53d7ce3
JW
948 if ((long)next - (long)val < 0) {
949 switch (target) {
950 case MEM_CGROUP_TARGET_THRESH:
951 next = val + THRESHOLDS_EVENTS_TARGET;
952 break;
bb4cc1a8
AM
953 case MEM_CGROUP_TARGET_SOFTLIMIT:
954 next = val + SOFTLIMIT_EVENTS_TARGET;
955 break;
f53d7ce3
JW
956 case MEM_CGROUP_TARGET_NUMAINFO:
957 next = val + NUMAINFO_EVENTS_TARGET;
958 break;
959 default:
960 break;
961 }
962 __this_cpu_write(memcg->stat->targets[target], next);
963 return true;
7a159cc9 964 }
f53d7ce3 965 return false;
d2265e6f
KH
966}
967
968/*
969 * Check events in order.
970 *
971 */
c0ff4b85 972static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
973{
974 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
975 if (unlikely(mem_cgroup_event_ratelimit(memcg,
976 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 977 bool do_softlimit;
82b3f2a7 978 bool do_numainfo __maybe_unused;
f53d7ce3 979
bb4cc1a8
AM
980 do_softlimit = mem_cgroup_event_ratelimit(memcg,
981 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
982#if MAX_NUMNODES > 1
983 do_numainfo = mem_cgroup_event_ratelimit(memcg,
984 MEM_CGROUP_TARGET_NUMAINFO);
985#endif
c0ff4b85 986 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
987 if (unlikely(do_softlimit))
988 mem_cgroup_update_tree(memcg, page);
453a9bf3 989#if MAX_NUMNODES > 1
f53d7ce3 990 if (unlikely(do_numainfo))
c0ff4b85 991 atomic_inc(&memcg->numainfo_events);
453a9bf3 992#endif
0a31bc97 993 }
d2265e6f
KH
994}
995
cf475ad2 996struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 997{
31a78f23
BS
998 /*
999 * mm_update_next_owner() may clear mm->owner to NULL
1000 * if it races with swapoff, page migration, etc.
1001 * So this can be called with p == NULL.
1002 */
1003 if (unlikely(!p))
1004 return NULL;
1005
073219e9 1006 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1007}
1008
df381975 1009static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1010{
c0ff4b85 1011 struct mem_cgroup *memcg = NULL;
0b7f569e 1012
54595fe2
KH
1013 rcu_read_lock();
1014 do {
6f6acb00
MH
1015 /*
1016 * Page cache insertions can happen withou an
1017 * actual mm context, e.g. during disk probing
1018 * on boot, loopback IO, acct() writes etc.
1019 */
1020 if (unlikely(!mm))
df381975 1021 memcg = root_mem_cgroup;
6f6acb00
MH
1022 else {
1023 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1024 if (unlikely(!memcg))
1025 memcg = root_mem_cgroup;
1026 }
ec903c0c 1027 } while (!css_tryget_online(&memcg->css));
54595fe2 1028 rcu_read_unlock();
c0ff4b85 1029 return memcg;
54595fe2
KH
1030}
1031
5660048c
JW
1032/**
1033 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1034 * @root: hierarchy root
1035 * @prev: previously returned memcg, NULL on first invocation
1036 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1037 *
1038 * Returns references to children of the hierarchy below @root, or
1039 * @root itself, or %NULL after a full round-trip.
1040 *
1041 * Caller must pass the return value in @prev on subsequent
1042 * invocations for reference counting, or use mem_cgroup_iter_break()
1043 * to cancel a hierarchy walk before the round-trip is complete.
1044 *
1045 * Reclaimers can specify a zone and a priority level in @reclaim to
1046 * divide up the memcgs in the hierarchy among all concurrent
1047 * reclaimers operating on the same zone and priority.
1048 */
694fbc0f 1049struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1050 struct mem_cgroup *prev,
694fbc0f 1051 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1052{
5ac8fb31
JW
1053 struct reclaim_iter *uninitialized_var(iter);
1054 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1055 struct mem_cgroup *memcg = NULL;
5ac8fb31 1056 struct mem_cgroup *pos = NULL;
711d3d2c 1057
694fbc0f
AM
1058 if (mem_cgroup_disabled())
1059 return NULL;
5660048c 1060
9f3a0d09
JW
1061 if (!root)
1062 root = root_mem_cgroup;
7d74b06f 1063
9f3a0d09 1064 if (prev && !reclaim)
5ac8fb31 1065 pos = prev;
14067bb3 1066
9f3a0d09
JW
1067 if (!root->use_hierarchy && root != root_mem_cgroup) {
1068 if (prev)
5ac8fb31 1069 goto out;
694fbc0f 1070 return root;
9f3a0d09 1071 }
14067bb3 1072
542f85f9 1073 rcu_read_lock();
5f578161 1074
5ac8fb31
JW
1075 if (reclaim) {
1076 struct mem_cgroup_per_zone *mz;
1077
1078 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1079 iter = &mz->iter[reclaim->priority];
1080
1081 if (prev && reclaim->generation != iter->generation)
1082 goto out_unlock;
1083
1084 do {
1085 pos = ACCESS_ONCE(iter->position);
1086 /*
1087 * A racing update may change the position and
1088 * put the last reference, hence css_tryget(),
1089 * or retry to see the updated position.
1090 */
1091 } while (pos && !css_tryget(&pos->css));
1092 }
1093
1094 if (pos)
1095 css = &pos->css;
1096
1097 for (;;) {
1098 css = css_next_descendant_pre(css, &root->css);
1099 if (!css) {
1100 /*
1101 * Reclaimers share the hierarchy walk, and a
1102 * new one might jump in right at the end of
1103 * the hierarchy - make sure they see at least
1104 * one group and restart from the beginning.
1105 */
1106 if (!prev)
1107 continue;
1108 break;
527a5ec9 1109 }
7d74b06f 1110
5ac8fb31
JW
1111 /*
1112 * Verify the css and acquire a reference. The root
1113 * is provided by the caller, so we know it's alive
1114 * and kicking, and don't take an extra reference.
1115 */
1116 memcg = mem_cgroup_from_css(css);
14067bb3 1117
5ac8fb31
JW
1118 if (css == &root->css)
1119 break;
14067bb3 1120
b2052564 1121 if (css_tryget(css)) {
5ac8fb31
JW
1122 /*
1123 * Make sure the memcg is initialized:
1124 * mem_cgroup_css_online() orders the the
1125 * initialization against setting the flag.
1126 */
1127 if (smp_load_acquire(&memcg->initialized))
1128 break;
542f85f9 1129
5ac8fb31 1130 css_put(css);
527a5ec9 1131 }
9f3a0d09 1132
5ac8fb31 1133 memcg = NULL;
9f3a0d09 1134 }
5ac8fb31
JW
1135
1136 if (reclaim) {
1137 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1138 if (memcg)
1139 css_get(&memcg->css);
1140 if (pos)
1141 css_put(&pos->css);
1142 }
1143
1144 /*
1145 * pairs with css_tryget when dereferencing iter->position
1146 * above.
1147 */
1148 if (pos)
1149 css_put(&pos->css);
1150
1151 if (!memcg)
1152 iter->generation++;
1153 else if (!prev)
1154 reclaim->generation = iter->generation;
9f3a0d09 1155 }
5ac8fb31 1156
542f85f9
MH
1157out_unlock:
1158 rcu_read_unlock();
5ac8fb31 1159out:
c40046f3
MH
1160 if (prev && prev != root)
1161 css_put(&prev->css);
1162
9f3a0d09 1163 return memcg;
14067bb3 1164}
7d74b06f 1165
5660048c
JW
1166/**
1167 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1168 * @root: hierarchy root
1169 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1170 */
1171void mem_cgroup_iter_break(struct mem_cgroup *root,
1172 struct mem_cgroup *prev)
9f3a0d09
JW
1173{
1174 if (!root)
1175 root = root_mem_cgroup;
1176 if (prev && prev != root)
1177 css_put(&prev->css);
1178}
7d74b06f 1179
9f3a0d09
JW
1180/*
1181 * Iteration constructs for visiting all cgroups (under a tree). If
1182 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1183 * be used for reference counting.
1184 */
1185#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1186 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1187 iter != NULL; \
527a5ec9 1188 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1189
9f3a0d09 1190#define for_each_mem_cgroup(iter) \
527a5ec9 1191 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1192 iter != NULL; \
527a5ec9 1193 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1194
68ae564b 1195void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1196{
c0ff4b85 1197 struct mem_cgroup *memcg;
456f998e 1198
456f998e 1199 rcu_read_lock();
c0ff4b85
R
1200 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1201 if (unlikely(!memcg))
456f998e
YH
1202 goto out;
1203
1204 switch (idx) {
456f998e 1205 case PGFAULT:
0e574a93
JW
1206 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1207 break;
1208 case PGMAJFAULT:
1209 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1210 break;
1211 default:
1212 BUG();
1213 }
1214out:
1215 rcu_read_unlock();
1216}
68ae564b 1217EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1218
925b7673
JW
1219/**
1220 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1221 * @zone: zone of the wanted lruvec
fa9add64 1222 * @memcg: memcg of the wanted lruvec
925b7673
JW
1223 *
1224 * Returns the lru list vector holding pages for the given @zone and
1225 * @mem. This can be the global zone lruvec, if the memory controller
1226 * is disabled.
1227 */
1228struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1229 struct mem_cgroup *memcg)
1230{
1231 struct mem_cgroup_per_zone *mz;
bea8c150 1232 struct lruvec *lruvec;
925b7673 1233
bea8c150
HD
1234 if (mem_cgroup_disabled()) {
1235 lruvec = &zone->lruvec;
1236 goto out;
1237 }
925b7673 1238
e231875b 1239 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1240 lruvec = &mz->lruvec;
1241out:
1242 /*
1243 * Since a node can be onlined after the mem_cgroup was created,
1244 * we have to be prepared to initialize lruvec->zone here;
1245 * and if offlined then reonlined, we need to reinitialize it.
1246 */
1247 if (unlikely(lruvec->zone != zone))
1248 lruvec->zone = zone;
1249 return lruvec;
925b7673
JW
1250}
1251
925b7673 1252/**
dfe0e773 1253 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1254 * @page: the page
fa9add64 1255 * @zone: zone of the page
dfe0e773
JW
1256 *
1257 * This function is only safe when following the LRU page isolation
1258 * and putback protocol: the LRU lock must be held, and the page must
1259 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1260 */
fa9add64 1261struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1262{
08e552c6 1263 struct mem_cgroup_per_zone *mz;
925b7673 1264 struct mem_cgroup *memcg;
bea8c150 1265 struct lruvec *lruvec;
6d12e2d8 1266
bea8c150
HD
1267 if (mem_cgroup_disabled()) {
1268 lruvec = &zone->lruvec;
1269 goto out;
1270 }
925b7673 1271
1306a85a 1272 memcg = page->mem_cgroup;
7512102c 1273 /*
dfe0e773 1274 * Swapcache readahead pages are added to the LRU - and
29833315 1275 * possibly migrated - before they are charged.
7512102c 1276 */
29833315
JW
1277 if (!memcg)
1278 memcg = root_mem_cgroup;
7512102c 1279
e231875b 1280 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1281 lruvec = &mz->lruvec;
1282out:
1283 /*
1284 * Since a node can be onlined after the mem_cgroup was created,
1285 * we have to be prepared to initialize lruvec->zone here;
1286 * and if offlined then reonlined, we need to reinitialize it.
1287 */
1288 if (unlikely(lruvec->zone != zone))
1289 lruvec->zone = zone;
1290 return lruvec;
08e552c6 1291}
b69408e8 1292
925b7673 1293/**
fa9add64
HD
1294 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1295 * @lruvec: mem_cgroup per zone lru vector
1296 * @lru: index of lru list the page is sitting on
1297 * @nr_pages: positive when adding or negative when removing
925b7673 1298 *
fa9add64
HD
1299 * This function must be called when a page is added to or removed from an
1300 * lru list.
3f58a829 1301 */
fa9add64
HD
1302void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1303 int nr_pages)
3f58a829
MK
1304{
1305 struct mem_cgroup_per_zone *mz;
fa9add64 1306 unsigned long *lru_size;
3f58a829
MK
1307
1308 if (mem_cgroup_disabled())
1309 return;
1310
fa9add64
HD
1311 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1312 lru_size = mz->lru_size + lru;
1313 *lru_size += nr_pages;
1314 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1315}
544122e5 1316
2314b42d 1317bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1318{
2314b42d 1319 if (root == memcg)
91c63734 1320 return true;
2314b42d 1321 if (!root->use_hierarchy)
91c63734 1322 return false;
2314b42d 1323 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1324}
1325
2314b42d 1326bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1327{
2314b42d 1328 struct mem_cgroup *task_memcg;
158e0a2d 1329 struct task_struct *p;
ffbdccf5 1330 bool ret;
4c4a2214 1331
158e0a2d 1332 p = find_lock_task_mm(task);
de077d22 1333 if (p) {
2314b42d 1334 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1335 task_unlock(p);
1336 } else {
1337 /*
1338 * All threads may have already detached their mm's, but the oom
1339 * killer still needs to detect if they have already been oom
1340 * killed to prevent needlessly killing additional tasks.
1341 */
ffbdccf5 1342 rcu_read_lock();
2314b42d
JW
1343 task_memcg = mem_cgroup_from_task(task);
1344 css_get(&task_memcg->css);
ffbdccf5 1345 rcu_read_unlock();
de077d22 1346 }
2314b42d
JW
1347 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1348 css_put(&task_memcg->css);
4c4a2214
DR
1349 return ret;
1350}
1351
c56d5c7d 1352int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1353{
9b272977 1354 unsigned long inactive_ratio;
14797e23 1355 unsigned long inactive;
9b272977 1356 unsigned long active;
c772be93 1357 unsigned long gb;
14797e23 1358
4d7dcca2
HD
1359 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1360 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1361
c772be93
KM
1362 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1363 if (gb)
1364 inactive_ratio = int_sqrt(10 * gb);
1365 else
1366 inactive_ratio = 1;
1367
9b272977 1368 return inactive * inactive_ratio < active;
14797e23
KM
1369}
1370
3e32cb2e 1371#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1372 container_of(counter, struct mem_cgroup, member)
1373
19942822 1374/**
9d11ea9f 1375 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1376 * @memcg: the memory cgroup
19942822 1377 *
9d11ea9f 1378 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1379 * pages.
19942822 1380 */
c0ff4b85 1381static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1382{
3e32cb2e
JW
1383 unsigned long margin = 0;
1384 unsigned long count;
1385 unsigned long limit;
9d11ea9f 1386
3e32cb2e
JW
1387 count = page_counter_read(&memcg->memory);
1388 limit = ACCESS_ONCE(memcg->memory.limit);
1389 if (count < limit)
1390 margin = limit - count;
1391
1392 if (do_swap_account) {
1393 count = page_counter_read(&memcg->memsw);
1394 limit = ACCESS_ONCE(memcg->memsw.limit);
1395 if (count <= limit)
1396 margin = min(margin, limit - count);
1397 }
1398
1399 return margin;
19942822
JW
1400}
1401
1f4c025b 1402int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1403{
a7885eb8 1404 /* root ? */
14208b0e 1405 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1406 return vm_swappiness;
1407
bf1ff263 1408 return memcg->swappiness;
a7885eb8
KM
1409}
1410
32047e2a 1411/*
bdcbb659 1412 * A routine for checking "mem" is under move_account() or not.
32047e2a 1413 *
bdcbb659
QH
1414 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1415 * moving cgroups. This is for waiting at high-memory pressure
1416 * caused by "move".
32047e2a 1417 */
c0ff4b85 1418static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1419{
2bd9bb20
KH
1420 struct mem_cgroup *from;
1421 struct mem_cgroup *to;
4b534334 1422 bool ret = false;
2bd9bb20
KH
1423 /*
1424 * Unlike task_move routines, we access mc.to, mc.from not under
1425 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1426 */
1427 spin_lock(&mc.lock);
1428 from = mc.from;
1429 to = mc.to;
1430 if (!from)
1431 goto unlock;
3e92041d 1432
2314b42d
JW
1433 ret = mem_cgroup_is_descendant(from, memcg) ||
1434 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1435unlock:
1436 spin_unlock(&mc.lock);
4b534334
KH
1437 return ret;
1438}
1439
c0ff4b85 1440static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1441{
1442 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1443 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1444 DEFINE_WAIT(wait);
1445 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1446 /* moving charge context might have finished. */
1447 if (mc.moving_task)
1448 schedule();
1449 finish_wait(&mc.waitq, &wait);
1450 return true;
1451 }
1452 }
1453 return false;
1454}
1455
58cf188e 1456#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1457/**
58cf188e 1458 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1459 * @memcg: The memory cgroup that went over limit
1460 * @p: Task that is going to be killed
1461 *
1462 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1463 * enabled
1464 */
1465void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1466{
e61734c5 1467 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1468 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1469 struct mem_cgroup *iter;
1470 unsigned int i;
e222432b 1471
58cf188e 1472 if (!p)
e222432b
BS
1473 return;
1474
08088cb9 1475 mutex_lock(&oom_info_lock);
e222432b
BS
1476 rcu_read_lock();
1477
e61734c5
TH
1478 pr_info("Task in ");
1479 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1480 pr_info(" killed as a result of limit of ");
1481 pr_cont_cgroup_path(memcg->css.cgroup);
1482 pr_info("\n");
e222432b 1483
e222432b
BS
1484 rcu_read_unlock();
1485
3e32cb2e
JW
1486 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memory)),
1488 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1489 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->memsw)),
1491 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1492 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1493 K((u64)page_counter_read(&memcg->kmem)),
1494 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1495
1496 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1497 pr_info("Memory cgroup stats for ");
1498 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1499 pr_cont(":");
1500
1501 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1502 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1503 continue;
1504 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1505 K(mem_cgroup_read_stat(iter, i)));
1506 }
1507
1508 for (i = 0; i < NR_LRU_LISTS; i++)
1509 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1510 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1511
1512 pr_cont("\n");
1513 }
08088cb9 1514 mutex_unlock(&oom_info_lock);
e222432b
BS
1515}
1516
81d39c20
KH
1517/*
1518 * This function returns the number of memcg under hierarchy tree. Returns
1519 * 1(self count) if no children.
1520 */
c0ff4b85 1521static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1522{
1523 int num = 0;
7d74b06f
KH
1524 struct mem_cgroup *iter;
1525
c0ff4b85 1526 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1527 num++;
81d39c20
KH
1528 return num;
1529}
1530
a63d83f4
DR
1531/*
1532 * Return the memory (and swap, if configured) limit for a memcg.
1533 */
3e32cb2e 1534static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1535{
3e32cb2e 1536 unsigned long limit;
f3e8eb70 1537
3e32cb2e 1538 limit = memcg->memory.limit;
9a5a8f19 1539 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1540 unsigned long memsw_limit;
9a5a8f19 1541
3e32cb2e
JW
1542 memsw_limit = memcg->memsw.limit;
1543 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1544 }
9a5a8f19 1545 return limit;
a63d83f4
DR
1546}
1547
19965460
DR
1548static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1549 int order)
9cbb78bb
DR
1550{
1551 struct mem_cgroup *iter;
1552 unsigned long chosen_points = 0;
1553 unsigned long totalpages;
1554 unsigned int points = 0;
1555 struct task_struct *chosen = NULL;
1556
876aafbf 1557 /*
465adcf1
DR
1558 * If current has a pending SIGKILL or is exiting, then automatically
1559 * select it. The goal is to allow it to allocate so that it may
1560 * quickly exit and free its memory.
876aafbf 1561 */
465adcf1 1562 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1563 set_thread_flag(TIF_MEMDIE);
1564 return;
1565 }
1566
1567 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1568 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1569 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1570 struct css_task_iter it;
9cbb78bb
DR
1571 struct task_struct *task;
1572
72ec7029
TH
1573 css_task_iter_start(&iter->css, &it);
1574 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1575 switch (oom_scan_process_thread(task, totalpages, NULL,
1576 false)) {
1577 case OOM_SCAN_SELECT:
1578 if (chosen)
1579 put_task_struct(chosen);
1580 chosen = task;
1581 chosen_points = ULONG_MAX;
1582 get_task_struct(chosen);
1583 /* fall through */
1584 case OOM_SCAN_CONTINUE:
1585 continue;
1586 case OOM_SCAN_ABORT:
72ec7029 1587 css_task_iter_end(&it);
9cbb78bb
DR
1588 mem_cgroup_iter_break(memcg, iter);
1589 if (chosen)
1590 put_task_struct(chosen);
1591 return;
1592 case OOM_SCAN_OK:
1593 break;
1594 };
1595 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1596 if (!points || points < chosen_points)
1597 continue;
1598 /* Prefer thread group leaders for display purposes */
1599 if (points == chosen_points &&
1600 thread_group_leader(chosen))
1601 continue;
1602
1603 if (chosen)
1604 put_task_struct(chosen);
1605 chosen = task;
1606 chosen_points = points;
1607 get_task_struct(chosen);
9cbb78bb 1608 }
72ec7029 1609 css_task_iter_end(&it);
9cbb78bb
DR
1610 }
1611
1612 if (!chosen)
1613 return;
1614 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1615 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1616 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1617}
1618
4d0c066d
KH
1619/**
1620 * test_mem_cgroup_node_reclaimable
dad7557e 1621 * @memcg: the target memcg
4d0c066d
KH
1622 * @nid: the node ID to be checked.
1623 * @noswap : specify true here if the user wants flle only information.
1624 *
1625 * This function returns whether the specified memcg contains any
1626 * reclaimable pages on a node. Returns true if there are any reclaimable
1627 * pages in the node.
1628 */
c0ff4b85 1629static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1630 int nid, bool noswap)
1631{
c0ff4b85 1632 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1633 return true;
1634 if (noswap || !total_swap_pages)
1635 return false;
c0ff4b85 1636 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1637 return true;
1638 return false;
1639
1640}
bb4cc1a8 1641#if MAX_NUMNODES > 1
889976db
YH
1642
1643/*
1644 * Always updating the nodemask is not very good - even if we have an empty
1645 * list or the wrong list here, we can start from some node and traverse all
1646 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1647 *
1648 */
c0ff4b85 1649static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1650{
1651 int nid;
453a9bf3
KH
1652 /*
1653 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1654 * pagein/pageout changes since the last update.
1655 */
c0ff4b85 1656 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1657 return;
c0ff4b85 1658 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1659 return;
1660
889976db 1661 /* make a nodemask where this memcg uses memory from */
31aaea4a 1662 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1663
31aaea4a 1664 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1665
c0ff4b85
R
1666 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1667 node_clear(nid, memcg->scan_nodes);
889976db 1668 }
453a9bf3 1669
c0ff4b85
R
1670 atomic_set(&memcg->numainfo_events, 0);
1671 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1672}
1673
1674/*
1675 * Selecting a node where we start reclaim from. Because what we need is just
1676 * reducing usage counter, start from anywhere is O,K. Considering
1677 * memory reclaim from current node, there are pros. and cons.
1678 *
1679 * Freeing memory from current node means freeing memory from a node which
1680 * we'll use or we've used. So, it may make LRU bad. And if several threads
1681 * hit limits, it will see a contention on a node. But freeing from remote
1682 * node means more costs for memory reclaim because of memory latency.
1683 *
1684 * Now, we use round-robin. Better algorithm is welcomed.
1685 */
c0ff4b85 1686int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1687{
1688 int node;
1689
c0ff4b85
R
1690 mem_cgroup_may_update_nodemask(memcg);
1691 node = memcg->last_scanned_node;
889976db 1692
c0ff4b85 1693 node = next_node(node, memcg->scan_nodes);
889976db 1694 if (node == MAX_NUMNODES)
c0ff4b85 1695 node = first_node(memcg->scan_nodes);
889976db
YH
1696 /*
1697 * We call this when we hit limit, not when pages are added to LRU.
1698 * No LRU may hold pages because all pages are UNEVICTABLE or
1699 * memcg is too small and all pages are not on LRU. In that case,
1700 * we use curret node.
1701 */
1702 if (unlikely(node == MAX_NUMNODES))
1703 node = numa_node_id();
1704
c0ff4b85 1705 memcg->last_scanned_node = node;
889976db
YH
1706 return node;
1707}
889976db 1708#else
c0ff4b85 1709int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1710{
1711 return 0;
1712}
1713#endif
1714
0608f43d
AM
1715static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1716 struct zone *zone,
1717 gfp_t gfp_mask,
1718 unsigned long *total_scanned)
1719{
1720 struct mem_cgroup *victim = NULL;
1721 int total = 0;
1722 int loop = 0;
1723 unsigned long excess;
1724 unsigned long nr_scanned;
1725 struct mem_cgroup_reclaim_cookie reclaim = {
1726 .zone = zone,
1727 .priority = 0,
1728 };
1729
3e32cb2e 1730 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1731
1732 while (1) {
1733 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1734 if (!victim) {
1735 loop++;
1736 if (loop >= 2) {
1737 /*
1738 * If we have not been able to reclaim
1739 * anything, it might because there are
1740 * no reclaimable pages under this hierarchy
1741 */
1742 if (!total)
1743 break;
1744 /*
1745 * We want to do more targeted reclaim.
1746 * excess >> 2 is not to excessive so as to
1747 * reclaim too much, nor too less that we keep
1748 * coming back to reclaim from this cgroup
1749 */
1750 if (total >= (excess >> 2) ||
1751 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1752 break;
1753 }
1754 continue;
1755 }
0608f43d
AM
1756 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1757 zone, &nr_scanned);
1758 *total_scanned += nr_scanned;
3e32cb2e 1759 if (!soft_limit_excess(root_memcg))
0608f43d 1760 break;
6d61ef40 1761 }
0608f43d
AM
1762 mem_cgroup_iter_break(root_memcg, victim);
1763 return total;
6d61ef40
BS
1764}
1765
0056f4e6
JW
1766#ifdef CONFIG_LOCKDEP
1767static struct lockdep_map memcg_oom_lock_dep_map = {
1768 .name = "memcg_oom_lock",
1769};
1770#endif
1771
fb2a6fc5
JW
1772static DEFINE_SPINLOCK(memcg_oom_lock);
1773
867578cb
KH
1774/*
1775 * Check OOM-Killer is already running under our hierarchy.
1776 * If someone is running, return false.
1777 */
fb2a6fc5 1778static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1779{
79dfdacc 1780 struct mem_cgroup *iter, *failed = NULL;
a636b327 1781
fb2a6fc5
JW
1782 spin_lock(&memcg_oom_lock);
1783
9f3a0d09 1784 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1785 if (iter->oom_lock) {
79dfdacc
MH
1786 /*
1787 * this subtree of our hierarchy is already locked
1788 * so we cannot give a lock.
1789 */
79dfdacc 1790 failed = iter;
9f3a0d09
JW
1791 mem_cgroup_iter_break(memcg, iter);
1792 break;
23751be0
JW
1793 } else
1794 iter->oom_lock = true;
7d74b06f 1795 }
867578cb 1796
fb2a6fc5
JW
1797 if (failed) {
1798 /*
1799 * OK, we failed to lock the whole subtree so we have
1800 * to clean up what we set up to the failing subtree
1801 */
1802 for_each_mem_cgroup_tree(iter, memcg) {
1803 if (iter == failed) {
1804 mem_cgroup_iter_break(memcg, iter);
1805 break;
1806 }
1807 iter->oom_lock = false;
79dfdacc 1808 }
0056f4e6
JW
1809 } else
1810 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1811
1812 spin_unlock(&memcg_oom_lock);
1813
1814 return !failed;
a636b327 1815}
0b7f569e 1816
fb2a6fc5 1817static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1818{
7d74b06f
KH
1819 struct mem_cgroup *iter;
1820
fb2a6fc5 1821 spin_lock(&memcg_oom_lock);
0056f4e6 1822 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1823 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1824 iter->oom_lock = false;
fb2a6fc5 1825 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1826}
1827
c0ff4b85 1828static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1829{
1830 struct mem_cgroup *iter;
1831
c0ff4b85 1832 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1833 atomic_inc(&iter->under_oom);
1834}
1835
c0ff4b85 1836static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1837{
1838 struct mem_cgroup *iter;
1839
867578cb
KH
1840 /*
1841 * When a new child is created while the hierarchy is under oom,
1842 * mem_cgroup_oom_lock() may not be called. We have to use
1843 * atomic_add_unless() here.
1844 */
c0ff4b85 1845 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1846 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1847}
1848
867578cb
KH
1849static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1850
dc98df5a 1851struct oom_wait_info {
d79154bb 1852 struct mem_cgroup *memcg;
dc98df5a
KH
1853 wait_queue_t wait;
1854};
1855
1856static int memcg_oom_wake_function(wait_queue_t *wait,
1857 unsigned mode, int sync, void *arg)
1858{
d79154bb
HD
1859 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1860 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1861 struct oom_wait_info *oom_wait_info;
1862
1863 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1864 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1865
2314b42d
JW
1866 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1867 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1868 return 0;
dc98df5a
KH
1869 return autoremove_wake_function(wait, mode, sync, arg);
1870}
1871
c0ff4b85 1872static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1873{
3812c8c8 1874 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1875 /* for filtering, pass "memcg" as argument. */
1876 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1877}
1878
c0ff4b85 1879static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1880{
c0ff4b85
R
1881 if (memcg && atomic_read(&memcg->under_oom))
1882 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1883}
1884
3812c8c8 1885static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1886{
3812c8c8
JW
1887 if (!current->memcg_oom.may_oom)
1888 return;
867578cb 1889 /*
49426420
JW
1890 * We are in the middle of the charge context here, so we
1891 * don't want to block when potentially sitting on a callstack
1892 * that holds all kinds of filesystem and mm locks.
1893 *
1894 * Also, the caller may handle a failed allocation gracefully
1895 * (like optional page cache readahead) and so an OOM killer
1896 * invocation might not even be necessary.
1897 *
1898 * That's why we don't do anything here except remember the
1899 * OOM context and then deal with it at the end of the page
1900 * fault when the stack is unwound, the locks are released,
1901 * and when we know whether the fault was overall successful.
867578cb 1902 */
49426420
JW
1903 css_get(&memcg->css);
1904 current->memcg_oom.memcg = memcg;
1905 current->memcg_oom.gfp_mask = mask;
1906 current->memcg_oom.order = order;
3812c8c8
JW
1907}
1908
1909/**
1910 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1911 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1912 *
49426420
JW
1913 * This has to be called at the end of a page fault if the memcg OOM
1914 * handler was enabled.
3812c8c8 1915 *
49426420 1916 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1917 * sleep on a waitqueue until the userspace task resolves the
1918 * situation. Sleeping directly in the charge context with all kinds
1919 * of locks held is not a good idea, instead we remember an OOM state
1920 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1921 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1922 *
1923 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1924 * completed, %false otherwise.
3812c8c8 1925 */
49426420 1926bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1927{
49426420 1928 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1929 struct oom_wait_info owait;
49426420 1930 bool locked;
3812c8c8
JW
1931
1932 /* OOM is global, do not handle */
3812c8c8 1933 if (!memcg)
49426420 1934 return false;
3812c8c8 1935
49426420
JW
1936 if (!handle)
1937 goto cleanup;
3812c8c8
JW
1938
1939 owait.memcg = memcg;
1940 owait.wait.flags = 0;
1941 owait.wait.func = memcg_oom_wake_function;
1942 owait.wait.private = current;
1943 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1944
3812c8c8 1945 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1946 mem_cgroup_mark_under_oom(memcg);
1947
1948 locked = mem_cgroup_oom_trylock(memcg);
1949
1950 if (locked)
1951 mem_cgroup_oom_notify(memcg);
1952
1953 if (locked && !memcg->oom_kill_disable) {
1954 mem_cgroup_unmark_under_oom(memcg);
1955 finish_wait(&memcg_oom_waitq, &owait.wait);
1956 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1957 current->memcg_oom.order);
1958 } else {
3812c8c8 1959 schedule();
49426420
JW
1960 mem_cgroup_unmark_under_oom(memcg);
1961 finish_wait(&memcg_oom_waitq, &owait.wait);
1962 }
1963
1964 if (locked) {
fb2a6fc5
JW
1965 mem_cgroup_oom_unlock(memcg);
1966 /*
1967 * There is no guarantee that an OOM-lock contender
1968 * sees the wakeups triggered by the OOM kill
1969 * uncharges. Wake any sleepers explicitely.
1970 */
1971 memcg_oom_recover(memcg);
1972 }
49426420
JW
1973cleanup:
1974 current->memcg_oom.memcg = NULL;
3812c8c8 1975 css_put(&memcg->css);
867578cb 1976 return true;
0b7f569e
KH
1977}
1978
d7365e78
JW
1979/**
1980 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1981 * @page: page that is going to change accounted state
1982 * @locked: &memcg->move_lock slowpath was taken
1983 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 1984 *
d7365e78
JW
1985 * This function must mark the beginning of an accounted page state
1986 * change to prevent double accounting when the page is concurrently
1987 * being moved to another memcg:
32047e2a 1988 *
d7365e78
JW
1989 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1990 * if (TestClearPageState(page))
1991 * mem_cgroup_update_page_stat(memcg, state, -1);
1992 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 1993 *
d7365e78
JW
1994 * The RCU lock is held throughout the transaction. The fast path can
1995 * get away without acquiring the memcg->move_lock (@locked is false)
1996 * because page moving starts with an RCU grace period.
32047e2a 1997 *
d7365e78
JW
1998 * The RCU lock also protects the memcg from being freed when the page
1999 * state that is going to change is the only thing preventing the page
2000 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2001 * which allows migration to go ahead and uncharge the page before the
2002 * account transaction might be complete.
d69b042f 2003 */
d7365e78
JW
2004struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2005 bool *locked,
2006 unsigned long *flags)
89c06bd5
KH
2007{
2008 struct mem_cgroup *memcg;
89c06bd5 2009
d7365e78
JW
2010 rcu_read_lock();
2011
2012 if (mem_cgroup_disabled())
2013 return NULL;
89c06bd5 2014again:
1306a85a 2015 memcg = page->mem_cgroup;
29833315 2016 if (unlikely(!memcg))
d7365e78
JW
2017 return NULL;
2018
2019 *locked = false;
bdcbb659 2020 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2021 return memcg;
89c06bd5 2022
354a4783 2023 spin_lock_irqsave(&memcg->move_lock, *flags);
1306a85a 2024 if (memcg != page->mem_cgroup) {
354a4783 2025 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5
KH
2026 goto again;
2027 }
2028 *locked = true;
d7365e78
JW
2029
2030 return memcg;
89c06bd5
KH
2031}
2032
d7365e78
JW
2033/**
2034 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2035 * @memcg: the memcg that was accounted against
2036 * @locked: value received from mem_cgroup_begin_page_stat()
2037 * @flags: value received from mem_cgroup_begin_page_stat()
2038 */
e4bd6a02
MH
2039void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
2040 unsigned long *flags)
89c06bd5 2041{
e4bd6a02
MH
2042 if (memcg && *locked)
2043 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5 2044
d7365e78 2045 rcu_read_unlock();
89c06bd5
KH
2046}
2047
d7365e78
JW
2048/**
2049 * mem_cgroup_update_page_stat - update page state statistics
2050 * @memcg: memcg to account against
2051 * @idx: page state item to account
2052 * @val: number of pages (positive or negative)
2053 *
2054 * See mem_cgroup_begin_page_stat() for locking requirements.
2055 */
2056void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2057 enum mem_cgroup_stat_index idx, int val)
d69b042f 2058{
658b72c5 2059 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2060
d7365e78
JW
2061 if (memcg)
2062 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2063}
26174efd 2064
cdec2e42
KH
2065/*
2066 * size of first charge trial. "32" comes from vmscan.c's magic value.
2067 * TODO: maybe necessary to use big numbers in big irons.
2068 */
7ec99d62 2069#define CHARGE_BATCH 32U
cdec2e42
KH
2070struct memcg_stock_pcp {
2071 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2072 unsigned int nr_pages;
cdec2e42 2073 struct work_struct work;
26fe6168 2074 unsigned long flags;
a0db00fc 2075#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2076};
2077static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2078static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2079
a0956d54
SS
2080/**
2081 * consume_stock: Try to consume stocked charge on this cpu.
2082 * @memcg: memcg to consume from.
2083 * @nr_pages: how many pages to charge.
2084 *
2085 * The charges will only happen if @memcg matches the current cpu's memcg
2086 * stock, and at least @nr_pages are available in that stock. Failure to
2087 * service an allocation will refill the stock.
2088 *
2089 * returns true if successful, false otherwise.
cdec2e42 2090 */
a0956d54 2091static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2092{
2093 struct memcg_stock_pcp *stock;
3e32cb2e 2094 bool ret = false;
cdec2e42 2095
a0956d54 2096 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2097 return ret;
a0956d54 2098
cdec2e42 2099 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2100 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2101 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2102 ret = true;
2103 }
cdec2e42
KH
2104 put_cpu_var(memcg_stock);
2105 return ret;
2106}
2107
2108/*
3e32cb2e 2109 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2110 */
2111static void drain_stock(struct memcg_stock_pcp *stock)
2112{
2113 struct mem_cgroup *old = stock->cached;
2114
11c9ea4e 2115 if (stock->nr_pages) {
3e32cb2e 2116 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2117 if (do_swap_account)
3e32cb2e 2118 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2119 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2120 stock->nr_pages = 0;
cdec2e42
KH
2121 }
2122 stock->cached = NULL;
cdec2e42
KH
2123}
2124
2125/*
2126 * This must be called under preempt disabled or must be called by
2127 * a thread which is pinned to local cpu.
2128 */
2129static void drain_local_stock(struct work_struct *dummy)
2130{
7c8e0181 2131 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2132 drain_stock(stock);
26fe6168 2133 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2134}
2135
e4777496
MH
2136static void __init memcg_stock_init(void)
2137{
2138 int cpu;
2139
2140 for_each_possible_cpu(cpu) {
2141 struct memcg_stock_pcp *stock =
2142 &per_cpu(memcg_stock, cpu);
2143 INIT_WORK(&stock->work, drain_local_stock);
2144 }
2145}
2146
cdec2e42 2147/*
3e32cb2e 2148 * Cache charges(val) to local per_cpu area.
320cc51d 2149 * This will be consumed by consume_stock() function, later.
cdec2e42 2150 */
c0ff4b85 2151static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2152{
2153 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2154
c0ff4b85 2155 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2156 drain_stock(stock);
c0ff4b85 2157 stock->cached = memcg;
cdec2e42 2158 }
11c9ea4e 2159 stock->nr_pages += nr_pages;
cdec2e42
KH
2160 put_cpu_var(memcg_stock);
2161}
2162
2163/*
c0ff4b85 2164 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2165 * of the hierarchy under it.
cdec2e42 2166 */
6d3d6aa2 2167static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2168{
26fe6168 2169 int cpu, curcpu;
d38144b7 2170
6d3d6aa2
JW
2171 /* If someone's already draining, avoid adding running more workers. */
2172 if (!mutex_trylock(&percpu_charge_mutex))
2173 return;
cdec2e42 2174 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2175 get_online_cpus();
5af12d0e 2176 curcpu = get_cpu();
cdec2e42
KH
2177 for_each_online_cpu(cpu) {
2178 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2179 struct mem_cgroup *memcg;
26fe6168 2180
c0ff4b85
R
2181 memcg = stock->cached;
2182 if (!memcg || !stock->nr_pages)
26fe6168 2183 continue;
2314b42d 2184 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2185 continue;
d1a05b69
MH
2186 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2187 if (cpu == curcpu)
2188 drain_local_stock(&stock->work);
2189 else
2190 schedule_work_on(cpu, &stock->work);
2191 }
cdec2e42 2192 }
5af12d0e 2193 put_cpu();
f894ffa8 2194 put_online_cpus();
9f50fad6 2195 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2196}
2197
711d3d2c
KH
2198/*
2199 * This function drains percpu counter value from DEAD cpu and
2200 * move it to local cpu. Note that this function can be preempted.
2201 */
c0ff4b85 2202static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2203{
2204 int i;
2205
c0ff4b85 2206 spin_lock(&memcg->pcp_counter_lock);
6104621d 2207 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2208 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2209
c0ff4b85
R
2210 per_cpu(memcg->stat->count[i], cpu) = 0;
2211 memcg->nocpu_base.count[i] += x;
711d3d2c 2212 }
e9f8974f 2213 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2214 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2215
c0ff4b85
R
2216 per_cpu(memcg->stat->events[i], cpu) = 0;
2217 memcg->nocpu_base.events[i] += x;
e9f8974f 2218 }
c0ff4b85 2219 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2220}
2221
0db0628d 2222static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2223 unsigned long action,
2224 void *hcpu)
2225{
2226 int cpu = (unsigned long)hcpu;
2227 struct memcg_stock_pcp *stock;
711d3d2c 2228 struct mem_cgroup *iter;
cdec2e42 2229
619d094b 2230 if (action == CPU_ONLINE)
1489ebad 2231 return NOTIFY_OK;
1489ebad 2232
d833049b 2233 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2234 return NOTIFY_OK;
711d3d2c 2235
9f3a0d09 2236 for_each_mem_cgroup(iter)
711d3d2c
KH
2237 mem_cgroup_drain_pcp_counter(iter, cpu);
2238
cdec2e42
KH
2239 stock = &per_cpu(memcg_stock, cpu);
2240 drain_stock(stock);
2241 return NOTIFY_OK;
2242}
2243
00501b53
JW
2244static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2245 unsigned int nr_pages)
8a9f3ccd 2246{
7ec99d62 2247 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2248 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2249 struct mem_cgroup *mem_over_limit;
3e32cb2e 2250 struct page_counter *counter;
6539cc05 2251 unsigned long nr_reclaimed;
b70a2a21
JW
2252 bool may_swap = true;
2253 bool drained = false;
05b84301 2254 int ret = 0;
a636b327 2255
ce00a967
JW
2256 if (mem_cgroup_is_root(memcg))
2257 goto done;
6539cc05 2258retry:
b6b6cc72
MH
2259 if (consume_stock(memcg, nr_pages))
2260 goto done;
8a9f3ccd 2261
3fbe7244 2262 if (!do_swap_account ||
3e32cb2e
JW
2263 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2264 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2265 goto done_restock;
3fbe7244 2266 if (do_swap_account)
3e32cb2e
JW
2267 page_counter_uncharge(&memcg->memsw, batch);
2268 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2269 } else {
3e32cb2e 2270 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2271 may_swap = false;
3fbe7244 2272 }
7a81b88c 2273
6539cc05
JW
2274 if (batch > nr_pages) {
2275 batch = nr_pages;
2276 goto retry;
2277 }
6d61ef40 2278
06b078fc
JW
2279 /*
2280 * Unlike in global OOM situations, memcg is not in a physical
2281 * memory shortage. Allow dying and OOM-killed tasks to
2282 * bypass the last charges so that they can exit quickly and
2283 * free their memory.
2284 */
2285 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2286 fatal_signal_pending(current) ||
2287 current->flags & PF_EXITING))
2288 goto bypass;
2289
2290 if (unlikely(task_in_memcg_oom(current)))
2291 goto nomem;
2292
6539cc05
JW
2293 if (!(gfp_mask & __GFP_WAIT))
2294 goto nomem;
4b534334 2295
b70a2a21
JW
2296 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2297 gfp_mask, may_swap);
6539cc05 2298
61e02c74 2299 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2300 goto retry;
28c34c29 2301
b70a2a21 2302 if (!drained) {
6d3d6aa2 2303 drain_all_stock(mem_over_limit);
b70a2a21
JW
2304 drained = true;
2305 goto retry;
2306 }
2307
28c34c29
JW
2308 if (gfp_mask & __GFP_NORETRY)
2309 goto nomem;
6539cc05
JW
2310 /*
2311 * Even though the limit is exceeded at this point, reclaim
2312 * may have been able to free some pages. Retry the charge
2313 * before killing the task.
2314 *
2315 * Only for regular pages, though: huge pages are rather
2316 * unlikely to succeed so close to the limit, and we fall back
2317 * to regular pages anyway in case of failure.
2318 */
61e02c74 2319 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2320 goto retry;
2321 /*
2322 * At task move, charge accounts can be doubly counted. So, it's
2323 * better to wait until the end of task_move if something is going on.
2324 */
2325 if (mem_cgroup_wait_acct_move(mem_over_limit))
2326 goto retry;
2327
9b130619
JW
2328 if (nr_retries--)
2329 goto retry;
2330
06b078fc
JW
2331 if (gfp_mask & __GFP_NOFAIL)
2332 goto bypass;
2333
6539cc05
JW
2334 if (fatal_signal_pending(current))
2335 goto bypass;
2336
61e02c74 2337 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2338nomem:
6d1fdc48 2339 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2340 return -ENOMEM;
867578cb 2341bypass:
ce00a967 2342 return -EINTR;
6539cc05
JW
2343
2344done_restock:
e8ea14cc 2345 css_get_many(&memcg->css, batch);
6539cc05
JW
2346 if (batch > nr_pages)
2347 refill_stock(memcg, batch - nr_pages);
2348done:
05b84301 2349 return ret;
7a81b88c 2350}
8a9f3ccd 2351
00501b53 2352static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2353{
ce00a967
JW
2354 if (mem_cgroup_is_root(memcg))
2355 return;
2356
3e32cb2e 2357 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2358 if (do_swap_account)
3e32cb2e 2359 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2360
e8ea14cc 2361 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2362}
2363
a3b2d692
KH
2364/*
2365 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2366 * rcu_read_lock(). The caller is responsible for calling
2367 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2368 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2369 */
2370static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2371{
a3b2d692
KH
2372 /* ID 0 is unused ID */
2373 if (!id)
2374 return NULL;
34c00c31 2375 return mem_cgroup_from_id(id);
a3b2d692
KH
2376}
2377
0a31bc97
JW
2378/*
2379 * try_get_mem_cgroup_from_page - look up page's memcg association
2380 * @page: the page
2381 *
2382 * Look up, get a css reference, and return the memcg that owns @page.
2383 *
2384 * The page must be locked to prevent racing with swap-in and page
2385 * cache charges. If coming from an unlocked page table, the caller
2386 * must ensure the page is on the LRU or this can race with charging.
2387 */
e42d9d5d 2388struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2389{
29833315 2390 struct mem_cgroup *memcg;
a3b2d692 2391 unsigned short id;
b5a84319
KH
2392 swp_entry_t ent;
2393
309381fe 2394 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2395
1306a85a 2396 memcg = page->mem_cgroup;
29833315
JW
2397 if (memcg) {
2398 if (!css_tryget_online(&memcg->css))
c0ff4b85 2399 memcg = NULL;
e42d9d5d 2400 } else if (PageSwapCache(page)) {
3c776e64 2401 ent.val = page_private(page);
9fb4b7cc 2402 id = lookup_swap_cgroup_id(ent);
a3b2d692 2403 rcu_read_lock();
c0ff4b85 2404 memcg = mem_cgroup_lookup(id);
ec903c0c 2405 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2406 memcg = NULL;
a3b2d692 2407 rcu_read_unlock();
3c776e64 2408 }
c0ff4b85 2409 return memcg;
b5a84319
KH
2410}
2411
0a31bc97
JW
2412static void lock_page_lru(struct page *page, int *isolated)
2413{
2414 struct zone *zone = page_zone(page);
2415
2416 spin_lock_irq(&zone->lru_lock);
2417 if (PageLRU(page)) {
2418 struct lruvec *lruvec;
2419
2420 lruvec = mem_cgroup_page_lruvec(page, zone);
2421 ClearPageLRU(page);
2422 del_page_from_lru_list(page, lruvec, page_lru(page));
2423 *isolated = 1;
2424 } else
2425 *isolated = 0;
2426}
2427
2428static void unlock_page_lru(struct page *page, int isolated)
2429{
2430 struct zone *zone = page_zone(page);
2431
2432 if (isolated) {
2433 struct lruvec *lruvec;
2434
2435 lruvec = mem_cgroup_page_lruvec(page, zone);
2436 VM_BUG_ON_PAGE(PageLRU(page), page);
2437 SetPageLRU(page);
2438 add_page_to_lru_list(page, lruvec, page_lru(page));
2439 }
2440 spin_unlock_irq(&zone->lru_lock);
2441}
2442
00501b53 2443static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2444 bool lrucare)
7a81b88c 2445{
0a31bc97 2446 int isolated;
9ce70c02 2447
1306a85a 2448 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2449
2450 /*
2451 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2452 * may already be on some other mem_cgroup's LRU. Take care of it.
2453 */
0a31bc97
JW
2454 if (lrucare)
2455 lock_page_lru(page, &isolated);
9ce70c02 2456
0a31bc97
JW
2457 /*
2458 * Nobody should be changing or seriously looking at
1306a85a 2459 * page->mem_cgroup at this point:
0a31bc97
JW
2460 *
2461 * - the page is uncharged
2462 *
2463 * - the page is off-LRU
2464 *
2465 * - an anonymous fault has exclusive page access, except for
2466 * a locked page table
2467 *
2468 * - a page cache insertion, a swapin fault, or a migration
2469 * have the page locked
2470 */
1306a85a 2471 page->mem_cgroup = memcg;
9ce70c02 2472
0a31bc97
JW
2473 if (lrucare)
2474 unlock_page_lru(page, isolated);
7a81b88c 2475}
66e1707b 2476
7ae1e1d0 2477#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2478/*
2479 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2480 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2481 */
2482static DEFINE_MUTEX(memcg_slab_mutex);
2483
1f458cbf
GC
2484/*
2485 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2486 * in the memcg_cache_params struct.
2487 */
2488static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2489{
2490 struct kmem_cache *cachep;
2491
2492 VM_BUG_ON(p->is_root_cache);
2493 cachep = p->root_cache;
7a67d7ab 2494 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2495}
2496
3e32cb2e
JW
2497static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2498 unsigned long nr_pages)
7ae1e1d0 2499{
3e32cb2e 2500 struct page_counter *counter;
7ae1e1d0 2501 int ret = 0;
7ae1e1d0 2502
3e32cb2e
JW
2503 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2504 if (ret < 0)
7ae1e1d0
GC
2505 return ret;
2506
3e32cb2e 2507 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2508 if (ret == -EINTR) {
2509 /*
00501b53
JW
2510 * try_charge() chose to bypass to root due to OOM kill or
2511 * fatal signal. Since our only options are to either fail
2512 * the allocation or charge it to this cgroup, do it as a
2513 * temporary condition. But we can't fail. From a kmem/slab
2514 * perspective, the cache has already been selected, by
2515 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2516 * our minds.
2517 *
2518 * This condition will only trigger if the task entered
00501b53
JW
2519 * memcg_charge_kmem in a sane state, but was OOM-killed
2520 * during try_charge() above. Tasks that were already dying
2521 * when the allocation triggers should have been already
7ae1e1d0
GC
2522 * directed to the root cgroup in memcontrol.h
2523 */
3e32cb2e 2524 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2525 if (do_swap_account)
3e32cb2e 2526 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2527 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2528 ret = 0;
2529 } else if (ret)
3e32cb2e 2530 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2531
2532 return ret;
2533}
2534
3e32cb2e
JW
2535static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2536 unsigned long nr_pages)
7ae1e1d0 2537{
3e32cb2e 2538 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2539 if (do_swap_account)
3e32cb2e 2540 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2541
64f21993 2542 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2543
e8ea14cc 2544 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2545}
2546
2633d7a0
GC
2547/*
2548 * helper for acessing a memcg's index. It will be used as an index in the
2549 * child cache array in kmem_cache, and also to derive its name. This function
2550 * will return -1 when this is not a kmem-limited memcg.
2551 */
2552int memcg_cache_id(struct mem_cgroup *memcg)
2553{
2554 return memcg ? memcg->kmemcg_id : -1;
2555}
2556
f3bb3043 2557static int memcg_alloc_cache_id(void)
55007d84 2558{
f3bb3043
VD
2559 int id, size;
2560 int err;
2561
2562 id = ida_simple_get(&kmem_limited_groups,
2563 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2564 if (id < 0)
2565 return id;
55007d84 2566
f3bb3043
VD
2567 if (id < memcg_limited_groups_array_size)
2568 return id;
2569
2570 /*
2571 * There's no space for the new id in memcg_caches arrays,
2572 * so we have to grow them.
2573 */
2574
2575 size = 2 * (id + 1);
55007d84
GC
2576 if (size < MEMCG_CACHES_MIN_SIZE)
2577 size = MEMCG_CACHES_MIN_SIZE;
2578 else if (size > MEMCG_CACHES_MAX_SIZE)
2579 size = MEMCG_CACHES_MAX_SIZE;
2580
f3bb3043
VD
2581 mutex_lock(&memcg_slab_mutex);
2582 err = memcg_update_all_caches(size);
2583 mutex_unlock(&memcg_slab_mutex);
2584
2585 if (err) {
2586 ida_simple_remove(&kmem_limited_groups, id);
2587 return err;
2588 }
2589 return id;
2590}
2591
2592static void memcg_free_cache_id(int id)
2593{
2594 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2595}
2596
2597/*
2598 * We should update the current array size iff all caches updates succeed. This
2599 * can only be done from the slab side. The slab mutex needs to be held when
2600 * calling this.
2601 */
2602void memcg_update_array_size(int num)
2603{
f3bb3043 2604 memcg_limited_groups_array_size = num;
55007d84
GC
2605}
2606
776ed0f0
VD
2607static void memcg_register_cache(struct mem_cgroup *memcg,
2608 struct kmem_cache *root_cache)
2633d7a0 2609{
93f39eea
VD
2610 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2611 memcg_slab_mutex */
bd673145 2612 struct kmem_cache *cachep;
d7f25f8a
GC
2613 int id;
2614
bd673145
VD
2615 lockdep_assert_held(&memcg_slab_mutex);
2616
2617 id = memcg_cache_id(memcg);
2618
2619 /*
2620 * Since per-memcg caches are created asynchronously on first
2621 * allocation (see memcg_kmem_get_cache()), several threads can try to
2622 * create the same cache, but only one of them may succeed.
2623 */
2624 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2625 return;
2626
073ee1c6 2627 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2628 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2629 /*
bd673145
VD
2630 * If we could not create a memcg cache, do not complain, because
2631 * that's not critical at all as we can always proceed with the root
2632 * cache.
2edefe11 2633 */
bd673145
VD
2634 if (!cachep)
2635 return;
2edefe11 2636
33a690c4 2637 css_get(&memcg->css);
bd673145 2638 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2639
d7f25f8a 2640 /*
959c8963
VD
2641 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2642 * barrier here to ensure nobody will see the kmem_cache partially
2643 * initialized.
d7f25f8a 2644 */
959c8963
VD
2645 smp_wmb();
2646
bd673145
VD
2647 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2648 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2649}
d7f25f8a 2650
776ed0f0 2651static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2652{
bd673145 2653 struct kmem_cache *root_cache;
1aa13254
VD
2654 struct mem_cgroup *memcg;
2655 int id;
2656
bd673145 2657 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2658
bd673145 2659 BUG_ON(is_root_cache(cachep));
2edefe11 2660
bd673145
VD
2661 root_cache = cachep->memcg_params->root_cache;
2662 memcg = cachep->memcg_params->memcg;
96403da2 2663 id = memcg_cache_id(memcg);
d7f25f8a 2664
bd673145
VD
2665 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2666 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2667
bd673145
VD
2668 list_del(&cachep->memcg_params->list);
2669
2670 kmem_cache_destroy(cachep);
33a690c4
VD
2671
2672 /* drop the reference taken in memcg_register_cache */
2673 css_put(&memcg->css);
2633d7a0
GC
2674}
2675
0e9d92f2
GC
2676/*
2677 * During the creation a new cache, we need to disable our accounting mechanism
2678 * altogether. This is true even if we are not creating, but rather just
2679 * enqueing new caches to be created.
2680 *
2681 * This is because that process will trigger allocations; some visible, like
2682 * explicit kmallocs to auxiliary data structures, name strings and internal
2683 * cache structures; some well concealed, like INIT_WORK() that can allocate
2684 * objects during debug.
2685 *
2686 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2687 * to it. This may not be a bounded recursion: since the first cache creation
2688 * failed to complete (waiting on the allocation), we'll just try to create the
2689 * cache again, failing at the same point.
2690 *
2691 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2692 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2693 * inside the following two functions.
2694 */
2695static inline void memcg_stop_kmem_account(void)
2696{
2697 VM_BUG_ON(!current->mm);
2698 current->memcg_kmem_skip_account++;
2699}
2700
2701static inline void memcg_resume_kmem_account(void)
2702{
2703 VM_BUG_ON(!current->mm);
2704 current->memcg_kmem_skip_account--;
2705}
2706
776ed0f0 2707int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2708{
2709 struct kmem_cache *c;
b8529907 2710 int i, failed = 0;
7cf27982 2711
bd673145 2712 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2713 for_each_memcg_cache_index(i) {
2714 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2715 if (!c)
2716 continue;
2717
776ed0f0 2718 memcg_unregister_cache(c);
b8529907
VD
2719
2720 if (cache_from_memcg_idx(s, i))
2721 failed++;
7cf27982 2722 }
bd673145 2723 mutex_unlock(&memcg_slab_mutex);
b8529907 2724 return failed;
7cf27982
GC
2725}
2726
776ed0f0 2727static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2728{
2729 struct kmem_cache *cachep;
bd673145 2730 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2731
2732 if (!memcg_kmem_is_active(memcg))
2733 return;
2734
bd673145
VD
2735 mutex_lock(&memcg_slab_mutex);
2736 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2737 cachep = memcg_params_to_cache(params);
bd673145
VD
2738 kmem_cache_shrink(cachep);
2739 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2740 memcg_unregister_cache(cachep);
1f458cbf 2741 }
bd673145 2742 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2743}
2744
776ed0f0 2745struct memcg_register_cache_work {
5722d094
VD
2746 struct mem_cgroup *memcg;
2747 struct kmem_cache *cachep;
2748 struct work_struct work;
2749};
2750
776ed0f0 2751static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2752{
776ed0f0
VD
2753 struct memcg_register_cache_work *cw =
2754 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2755 struct mem_cgroup *memcg = cw->memcg;
2756 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2757
bd673145 2758 mutex_lock(&memcg_slab_mutex);
776ed0f0 2759 memcg_register_cache(memcg, cachep);
bd673145
VD
2760 mutex_unlock(&memcg_slab_mutex);
2761
5722d094 2762 css_put(&memcg->css);
d7f25f8a
GC
2763 kfree(cw);
2764}
2765
2766/*
2767 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2768 */
776ed0f0
VD
2769static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2770 struct kmem_cache *cachep)
d7f25f8a 2771{
776ed0f0 2772 struct memcg_register_cache_work *cw;
d7f25f8a 2773
776ed0f0 2774 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2775 if (cw == NULL) {
2776 css_put(&memcg->css);
d7f25f8a
GC
2777 return;
2778 }
2779
2780 cw->memcg = memcg;
2781 cw->cachep = cachep;
2782
776ed0f0 2783 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2784 schedule_work(&cw->work);
2785}
2786
776ed0f0
VD
2787static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2788 struct kmem_cache *cachep)
0e9d92f2
GC
2789{
2790 /*
2791 * We need to stop accounting when we kmalloc, because if the
2792 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2793 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2794 *
2795 * However, it is better to enclose the whole function. Depending on
2796 * the debugging options enabled, INIT_WORK(), for instance, can
2797 * trigger an allocation. This too, will make us recurse. Because at
2798 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2799 * the safest choice is to do it like this, wrapping the whole function.
2800 */
2801 memcg_stop_kmem_account();
776ed0f0 2802 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
2803 memcg_resume_kmem_account();
2804}
c67a8a68
VD
2805
2806int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2807{
3e32cb2e 2808 unsigned int nr_pages = 1 << order;
c67a8a68
VD
2809 int res;
2810
3e32cb2e 2811 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 2812 if (!res)
3e32cb2e 2813 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2814 return res;
2815}
2816
2817void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2818{
3e32cb2e
JW
2819 unsigned int nr_pages = 1 << order;
2820
2821 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2822 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2823}
2824
d7f25f8a
GC
2825/*
2826 * Return the kmem_cache we're supposed to use for a slab allocation.
2827 * We try to use the current memcg's version of the cache.
2828 *
2829 * If the cache does not exist yet, if we are the first user of it,
2830 * we either create it immediately, if possible, or create it asynchronously
2831 * in a workqueue.
2832 * In the latter case, we will let the current allocation go through with
2833 * the original cache.
2834 *
2835 * Can't be called in interrupt context or from kernel threads.
2836 * This function needs to be called with rcu_read_lock() held.
2837 */
2838struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2839 gfp_t gfp)
2840{
2841 struct mem_cgroup *memcg;
959c8963 2842 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2843
2844 VM_BUG_ON(!cachep->memcg_params);
2845 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2846
9d100c5e 2847 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2848 return cachep;
2849
d7f25f8a
GC
2850 rcu_read_lock();
2851 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 2852
cf2b8fbf 2853 if (!memcg_kmem_is_active(memcg))
ca0dde97 2854 goto out;
d7f25f8a 2855
959c8963
VD
2856 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2857 if (likely(memcg_cachep)) {
2858 cachep = memcg_cachep;
ca0dde97 2859 goto out;
d7f25f8a
GC
2860 }
2861
ca0dde97 2862 /* The corresponding put will be done in the workqueue. */
ec903c0c 2863 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
2864 goto out;
2865 rcu_read_unlock();
2866
2867 /*
2868 * If we are in a safe context (can wait, and not in interrupt
2869 * context), we could be be predictable and return right away.
2870 * This would guarantee that the allocation being performed
2871 * already belongs in the new cache.
2872 *
2873 * However, there are some clashes that can arrive from locking.
2874 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2875 * memcg_create_kmem_cache, this means no further allocation
2876 * could happen with the slab_mutex held. So it's better to
2877 * defer everything.
ca0dde97 2878 */
776ed0f0 2879 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
2880 return cachep;
2881out:
2882 rcu_read_unlock();
2883 return cachep;
d7f25f8a 2884}
d7f25f8a 2885
7ae1e1d0
GC
2886/*
2887 * We need to verify if the allocation against current->mm->owner's memcg is
2888 * possible for the given order. But the page is not allocated yet, so we'll
2889 * need a further commit step to do the final arrangements.
2890 *
2891 * It is possible for the task to switch cgroups in this mean time, so at
2892 * commit time, we can't rely on task conversion any longer. We'll then use
2893 * the handle argument to return to the caller which cgroup we should commit
2894 * against. We could also return the memcg directly and avoid the pointer
2895 * passing, but a boolean return value gives better semantics considering
2896 * the compiled-out case as well.
2897 *
2898 * Returning true means the allocation is possible.
2899 */
2900bool
2901__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2902{
2903 struct mem_cgroup *memcg;
2904 int ret;
2905
2906 *_memcg = NULL;
6d42c232 2907
df381975 2908 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2909
cf2b8fbf 2910 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2911 css_put(&memcg->css);
2912 return true;
2913 }
2914
3e32cb2e 2915 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2916 if (!ret)
2917 *_memcg = memcg;
7ae1e1d0
GC
2918
2919 css_put(&memcg->css);
2920 return (ret == 0);
2921}
2922
2923void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2924 int order)
2925{
7ae1e1d0
GC
2926 VM_BUG_ON(mem_cgroup_is_root(memcg));
2927
2928 /* The page allocation failed. Revert */
2929 if (!page) {
3e32cb2e 2930 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2931 return;
2932 }
1306a85a 2933 page->mem_cgroup = memcg;
7ae1e1d0
GC
2934}
2935
2936void __memcg_kmem_uncharge_pages(struct page *page, int order)
2937{
1306a85a 2938 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2939
7ae1e1d0
GC
2940 if (!memcg)
2941 return;
2942
309381fe 2943 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2944
3e32cb2e 2945 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2946 page->mem_cgroup = NULL;
7ae1e1d0 2947}
1f458cbf 2948#else
776ed0f0 2949static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2950{
2951}
7ae1e1d0
GC
2952#endif /* CONFIG_MEMCG_KMEM */
2953
ca3e0214
KH
2954#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2955
ca3e0214
KH
2956/*
2957 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2958 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2959 * charge/uncharge will be never happen and move_account() is done under
2960 * compound_lock(), so we don't have to take care of races.
ca3e0214 2961 */
e94c8a9c 2962void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2963{
e94c8a9c 2964 int i;
ca3e0214 2965
3d37c4a9
KH
2966 if (mem_cgroup_disabled())
2967 return;
b070e65c 2968
29833315 2969 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2970 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2971
1306a85a 2972 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2973 HPAGE_PMD_NR);
ca3e0214 2974}
12d27107 2975#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2976
f817ed48 2977/**
de3638d9 2978 * mem_cgroup_move_account - move account of the page
5564e88b 2979 * @page: the page
7ec99d62 2980 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2981 * @from: mem_cgroup which the page is moved from.
2982 * @to: mem_cgroup which the page is moved to. @from != @to.
2983 *
2984 * The caller must confirm following.
08e552c6 2985 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2986 * - compound_lock is held when nr_pages > 1
f817ed48 2987 *
2f3479b1
KH
2988 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2989 * from old cgroup.
f817ed48 2990 */
7ec99d62
JW
2991static int mem_cgroup_move_account(struct page *page,
2992 unsigned int nr_pages,
7ec99d62 2993 struct mem_cgroup *from,
2f3479b1 2994 struct mem_cgroup *to)
f817ed48 2995{
de3638d9
JW
2996 unsigned long flags;
2997 int ret;
987eba66 2998
f817ed48 2999 VM_BUG_ON(from == to);
309381fe 3000 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3001 /*
3002 * The page is isolated from LRU. So, collapse function
3003 * will not handle this page. But page splitting can happen.
3004 * Do this check under compound_page_lock(). The caller should
3005 * hold it.
3006 */
3007 ret = -EBUSY;
7ec99d62 3008 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3009 goto out;
3010
0a31bc97 3011 /*
1306a85a 3012 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
0a31bc97
JW
3013 * of its source page while we change it: page migration takes
3014 * both pages off the LRU, but page cache replacement doesn't.
3015 */
3016 if (!trylock_page(page))
3017 goto out;
de3638d9
JW
3018
3019 ret = -EINVAL;
1306a85a 3020 if (page->mem_cgroup != from)
0a31bc97 3021 goto out_unlock;
de3638d9 3022
354a4783 3023 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 3024
0a31bc97 3025 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3026 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3027 nr_pages);
3028 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3029 nr_pages);
3030 }
3ea67d06 3031
59d1d256
JW
3032 if (PageWriteback(page)) {
3033 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3034 nr_pages);
3035 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3036 nr_pages);
3037 }
3ea67d06 3038
0a31bc97 3039 /*
1306a85a 3040 * It is safe to change page->mem_cgroup here because the page
0a31bc97
JW
3041 * is referenced, charged, and isolated - we can't race with
3042 * uncharging, charging, migration, or LRU putback.
3043 */
d69b042f 3044
854ffa8d 3045 /* caller should have done css_get */
1306a85a 3046 page->mem_cgroup = to;
354a4783
JW
3047 spin_unlock_irqrestore(&from->move_lock, flags);
3048
de3638d9 3049 ret = 0;
0a31bc97
JW
3050
3051 local_irq_disable();
3052 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3053 memcg_check_events(to, page);
0a31bc97 3054 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3055 memcg_check_events(from, page);
0a31bc97
JW
3056 local_irq_enable();
3057out_unlock:
3058 unlock_page(page);
de3638d9 3059out:
f817ed48
KH
3060 return ret;
3061}
3062
c255a458 3063#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3064static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3065 bool charge)
d13d1443 3066{
0a31bc97
JW
3067 int val = (charge) ? 1 : -1;
3068 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3069}
02491447
DN
3070
3071/**
3072 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3073 * @entry: swap entry to be moved
3074 * @from: mem_cgroup which the entry is moved from
3075 * @to: mem_cgroup which the entry is moved to
3076 *
3077 * It succeeds only when the swap_cgroup's record for this entry is the same
3078 * as the mem_cgroup's id of @from.
3079 *
3080 * Returns 0 on success, -EINVAL on failure.
3081 *
3e32cb2e 3082 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3083 * both res and memsw, and called css_get().
3084 */
3085static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3086 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3087{
3088 unsigned short old_id, new_id;
3089
34c00c31
LZ
3090 old_id = mem_cgroup_id(from);
3091 new_id = mem_cgroup_id(to);
02491447
DN
3092
3093 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3094 mem_cgroup_swap_statistics(from, false);
483c30b5 3095 mem_cgroup_swap_statistics(to, true);
02491447 3096 /*
483c30b5 3097 * This function is only called from task migration context now.
3e32cb2e 3098 * It postpones page_counter and refcount handling till the end
483c30b5 3099 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3100 * improvement. But we cannot postpone css_get(to) because if
3101 * the process that has been moved to @to does swap-in, the
3102 * refcount of @to might be decreased to 0.
3103 *
3104 * We are in attach() phase, so the cgroup is guaranteed to be
3105 * alive, so we can just call css_get().
02491447 3106 */
4050377b 3107 css_get(&to->css);
02491447
DN
3108 return 0;
3109 }
3110 return -EINVAL;
3111}
3112#else
3113static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3114 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3115{
3116 return -EINVAL;
3117}
8c7c6e34 3118#endif
d13d1443 3119
3e32cb2e 3120static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 3121
d38d2a75 3122static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3123 unsigned long limit)
628f4235 3124{
3e32cb2e
JW
3125 unsigned long curusage;
3126 unsigned long oldusage;
3127 bool enlarge = false;
81d39c20 3128 int retry_count;
3e32cb2e 3129 int ret;
81d39c20
KH
3130
3131 /*
3132 * For keeping hierarchical_reclaim simple, how long we should retry
3133 * is depends on callers. We set our retry-count to be function
3134 * of # of children which we should visit in this loop.
3135 */
3e32cb2e
JW
3136 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3137 mem_cgroup_count_children(memcg);
81d39c20 3138
3e32cb2e 3139 oldusage = page_counter_read(&memcg->memory);
628f4235 3140
3e32cb2e 3141 do {
628f4235
KH
3142 if (signal_pending(current)) {
3143 ret = -EINTR;
3144 break;
3145 }
3e32cb2e
JW
3146
3147 mutex_lock(&memcg_limit_mutex);
3148 if (limit > memcg->memsw.limit) {
3149 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3150 ret = -EINVAL;
628f4235
KH
3151 break;
3152 }
3e32cb2e
JW
3153 if (limit > memcg->memory.limit)
3154 enlarge = true;
3155 ret = page_counter_limit(&memcg->memory, limit);
3156 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3157
3158 if (!ret)
3159 break;
3160
b70a2a21
JW
3161 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3162
3e32cb2e 3163 curusage = page_counter_read(&memcg->memory);
81d39c20 3164 /* Usage is reduced ? */
f894ffa8 3165 if (curusage >= oldusage)
81d39c20
KH
3166 retry_count--;
3167 else
3168 oldusage = curusage;
3e32cb2e
JW
3169 } while (retry_count);
3170
3c11ecf4
KH
3171 if (!ret && enlarge)
3172 memcg_oom_recover(memcg);
14797e23 3173
8c7c6e34
KH
3174 return ret;
3175}
3176
338c8431 3177static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3178 unsigned long limit)
8c7c6e34 3179{
3e32cb2e
JW
3180 unsigned long curusage;
3181 unsigned long oldusage;
3182 bool enlarge = false;
81d39c20 3183 int retry_count;
3e32cb2e 3184 int ret;
8c7c6e34 3185
81d39c20 3186 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3187 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3188 mem_cgroup_count_children(memcg);
3189
3190 oldusage = page_counter_read(&memcg->memsw);
3191
3192 do {
8c7c6e34
KH
3193 if (signal_pending(current)) {
3194 ret = -EINTR;
3195 break;
3196 }
3e32cb2e
JW
3197
3198 mutex_lock(&memcg_limit_mutex);
3199 if (limit < memcg->memory.limit) {
3200 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3201 ret = -EINVAL;
8c7c6e34
KH
3202 break;
3203 }
3e32cb2e
JW
3204 if (limit > memcg->memsw.limit)
3205 enlarge = true;
3206 ret = page_counter_limit(&memcg->memsw, limit);
3207 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3208
3209 if (!ret)
3210 break;
3211
b70a2a21
JW
3212 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3213
3e32cb2e 3214 curusage = page_counter_read(&memcg->memsw);
81d39c20 3215 /* Usage is reduced ? */
8c7c6e34 3216 if (curusage >= oldusage)
628f4235 3217 retry_count--;
81d39c20
KH
3218 else
3219 oldusage = curusage;
3e32cb2e
JW
3220 } while (retry_count);
3221
3c11ecf4
KH
3222 if (!ret && enlarge)
3223 memcg_oom_recover(memcg);
3e32cb2e 3224
628f4235
KH
3225 return ret;
3226}
3227
0608f43d
AM
3228unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3229 gfp_t gfp_mask,
3230 unsigned long *total_scanned)
3231{
3232 unsigned long nr_reclaimed = 0;
3233 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3234 unsigned long reclaimed;
3235 int loop = 0;
3236 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3237 unsigned long excess;
0608f43d
AM
3238 unsigned long nr_scanned;
3239
3240 if (order > 0)
3241 return 0;
3242
3243 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3244 /*
3245 * This loop can run a while, specially if mem_cgroup's continuously
3246 * keep exceeding their soft limit and putting the system under
3247 * pressure
3248 */
3249 do {
3250 if (next_mz)
3251 mz = next_mz;
3252 else
3253 mz = mem_cgroup_largest_soft_limit_node(mctz);
3254 if (!mz)
3255 break;
3256
3257 nr_scanned = 0;
3258 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3259 gfp_mask, &nr_scanned);
3260 nr_reclaimed += reclaimed;
3261 *total_scanned += nr_scanned;
0a31bc97 3262 spin_lock_irq(&mctz->lock);
bc2f2e7f 3263 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3264
3265 /*
3266 * If we failed to reclaim anything from this memory cgroup
3267 * it is time to move on to the next cgroup
3268 */
3269 next_mz = NULL;
bc2f2e7f
VD
3270 if (!reclaimed)
3271 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3272
3e32cb2e 3273 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3274 /*
3275 * One school of thought says that we should not add
3276 * back the node to the tree if reclaim returns 0.
3277 * But our reclaim could return 0, simply because due
3278 * to priority we are exposing a smaller subset of
3279 * memory to reclaim from. Consider this as a longer
3280 * term TODO.
3281 */
3282 /* If excess == 0, no tree ops */
cf2c8127 3283 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3284 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3285 css_put(&mz->memcg->css);
3286 loop++;
3287 /*
3288 * Could not reclaim anything and there are no more
3289 * mem cgroups to try or we seem to be looping without
3290 * reclaiming anything.
3291 */
3292 if (!nr_reclaimed &&
3293 (next_mz == NULL ||
3294 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3295 break;
3296 } while (!nr_reclaimed);
3297 if (next_mz)
3298 css_put(&next_mz->memcg->css);
3299 return nr_reclaimed;
3300}
3301
ea280e7b
TH
3302/*
3303 * Test whether @memcg has children, dead or alive. Note that this
3304 * function doesn't care whether @memcg has use_hierarchy enabled and
3305 * returns %true if there are child csses according to the cgroup
3306 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3307 */
b5f99b53
GC
3308static inline bool memcg_has_children(struct mem_cgroup *memcg)
3309{
ea280e7b
TH
3310 bool ret;
3311
696ac172 3312 /*
ea280e7b
TH
3313 * The lock does not prevent addition or deletion of children, but
3314 * it prevents a new child from being initialized based on this
3315 * parent in css_online(), so it's enough to decide whether
3316 * hierarchically inherited attributes can still be changed or not.
696ac172 3317 */
ea280e7b
TH
3318 lockdep_assert_held(&memcg_create_mutex);
3319
3320 rcu_read_lock();
3321 ret = css_next_child(NULL, &memcg->css);
3322 rcu_read_unlock();
3323 return ret;
b5f99b53
GC
3324}
3325
c26251f9
MH
3326/*
3327 * Reclaims as many pages from the given memcg as possible and moves
3328 * the rest to the parent.
3329 *
3330 * Caller is responsible for holding css reference for memcg.
3331 */
3332static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3333{
3334 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3335
c1e862c1
KH
3336 /* we call try-to-free pages for make this cgroup empty */
3337 lru_add_drain_all();
f817ed48 3338 /* try to free all pages in this cgroup */
3e32cb2e 3339 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3340 int progress;
c1e862c1 3341
c26251f9
MH
3342 if (signal_pending(current))
3343 return -EINTR;
3344
b70a2a21
JW
3345 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3346 GFP_KERNEL, true);
c1e862c1 3347 if (!progress) {
f817ed48 3348 nr_retries--;
c1e862c1 3349 /* maybe some writeback is necessary */
8aa7e847 3350 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3351 }
f817ed48
KH
3352
3353 }
ab5196c2
MH
3354
3355 return 0;
cc847582
KH
3356}
3357
6770c64e
TH
3358static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3359 char *buf, size_t nbytes,
3360 loff_t off)
c1e862c1 3361{
6770c64e 3362 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3363
d8423011
MH
3364 if (mem_cgroup_is_root(memcg))
3365 return -EINVAL;
6770c64e 3366 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3367}
3368
182446d0
TH
3369static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3370 struct cftype *cft)
18f59ea7 3371{
182446d0 3372 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3373}
3374
182446d0
TH
3375static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3376 struct cftype *cft, u64 val)
18f59ea7
BS
3377{
3378 int retval = 0;
182446d0 3379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3380 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3381
0999821b 3382 mutex_lock(&memcg_create_mutex);
567fb435
GC
3383
3384 if (memcg->use_hierarchy == val)
3385 goto out;
3386
18f59ea7 3387 /*
af901ca1 3388 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3389 * in the child subtrees. If it is unset, then the change can
3390 * occur, provided the current cgroup has no children.
3391 *
3392 * For the root cgroup, parent_mem is NULL, we allow value to be
3393 * set if there are no children.
3394 */
c0ff4b85 3395 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3396 (val == 1 || val == 0)) {
ea280e7b 3397 if (!memcg_has_children(memcg))
c0ff4b85 3398 memcg->use_hierarchy = val;
18f59ea7
BS
3399 else
3400 retval = -EBUSY;
3401 } else
3402 retval = -EINVAL;
567fb435
GC
3403
3404out:
0999821b 3405 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3406
3407 return retval;
3408}
3409
3e32cb2e
JW
3410static unsigned long tree_stat(struct mem_cgroup *memcg,
3411 enum mem_cgroup_stat_index idx)
ce00a967
JW
3412{
3413 struct mem_cgroup *iter;
3414 long val = 0;
3415
3416 /* Per-cpu values can be negative, use a signed accumulator */
3417 for_each_mem_cgroup_tree(iter, memcg)
3418 val += mem_cgroup_read_stat(iter, idx);
3419
3420 if (val < 0) /* race ? */
3421 val = 0;
3422 return val;
3423}
3424
3425static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3426{
3427 u64 val;
3428
3e32cb2e
JW
3429 if (mem_cgroup_is_root(memcg)) {
3430 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3431 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3432 if (swap)
3433 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3434 } else {
ce00a967 3435 if (!swap)
3e32cb2e 3436 val = page_counter_read(&memcg->memory);
ce00a967 3437 else
3e32cb2e 3438 val = page_counter_read(&memcg->memsw);
ce00a967 3439 }
ce00a967
JW
3440 return val << PAGE_SHIFT;
3441}
3442
3e32cb2e
JW
3443enum {
3444 RES_USAGE,
3445 RES_LIMIT,
3446 RES_MAX_USAGE,
3447 RES_FAILCNT,
3448 RES_SOFT_LIMIT,
3449};
ce00a967 3450
791badbd 3451static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3452 struct cftype *cft)
8cdea7c0 3453{
182446d0 3454 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3455 struct page_counter *counter;
af36f906 3456
3e32cb2e 3457 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3458 case _MEM:
3e32cb2e
JW
3459 counter = &memcg->memory;
3460 break;
8c7c6e34 3461 case _MEMSWAP:
3e32cb2e
JW
3462 counter = &memcg->memsw;
3463 break;
510fc4e1 3464 case _KMEM:
3e32cb2e 3465 counter = &memcg->kmem;
510fc4e1 3466 break;
8c7c6e34
KH
3467 default:
3468 BUG();
8c7c6e34 3469 }
3e32cb2e
JW
3470
3471 switch (MEMFILE_ATTR(cft->private)) {
3472 case RES_USAGE:
3473 if (counter == &memcg->memory)
3474 return mem_cgroup_usage(memcg, false);
3475 if (counter == &memcg->memsw)
3476 return mem_cgroup_usage(memcg, true);
3477 return (u64)page_counter_read(counter) * PAGE_SIZE;
3478 case RES_LIMIT:
3479 return (u64)counter->limit * PAGE_SIZE;
3480 case RES_MAX_USAGE:
3481 return (u64)counter->watermark * PAGE_SIZE;
3482 case RES_FAILCNT:
3483 return counter->failcnt;
3484 case RES_SOFT_LIMIT:
3485 return (u64)memcg->soft_limit * PAGE_SIZE;
3486 default:
3487 BUG();
3488 }
8cdea7c0 3489}
510fc4e1 3490
510fc4e1 3491#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3492static int memcg_activate_kmem(struct mem_cgroup *memcg,
3493 unsigned long nr_pages)
d6441637
VD
3494{
3495 int err = 0;
3496 int memcg_id;
3497
3498 if (memcg_kmem_is_active(memcg))
3499 return 0;
3500
510fc4e1
GC
3501 /*
3502 * For simplicity, we won't allow this to be disabled. It also can't
3503 * be changed if the cgroup has children already, or if tasks had
3504 * already joined.
3505 *
3506 * If tasks join before we set the limit, a person looking at
3507 * kmem.usage_in_bytes will have no way to determine when it took
3508 * place, which makes the value quite meaningless.
3509 *
3510 * After it first became limited, changes in the value of the limit are
3511 * of course permitted.
510fc4e1 3512 */
0999821b 3513 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3514 if (cgroup_has_tasks(memcg->css.cgroup) ||
3515 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3516 err = -EBUSY;
3517 mutex_unlock(&memcg_create_mutex);
3518 if (err)
3519 goto out;
510fc4e1 3520
f3bb3043 3521 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3522 if (memcg_id < 0) {
3523 err = memcg_id;
3524 goto out;
3525 }
3526
d6441637 3527 /*
900a38f0
VD
3528 * We couldn't have accounted to this cgroup, because it hasn't got
3529 * activated yet, so this should succeed.
d6441637 3530 */
3e32cb2e 3531 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3532 VM_BUG_ON(err);
3533
3534 static_key_slow_inc(&memcg_kmem_enabled_key);
3535 /*
900a38f0
VD
3536 * A memory cgroup is considered kmem-active as soon as it gets
3537 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3538 * guarantee no one starts accounting before all call sites are
3539 * patched.
3540 */
900a38f0 3541 memcg->kmemcg_id = memcg_id;
510fc4e1 3542out:
d6441637 3543 return err;
d6441637
VD
3544}
3545
d6441637 3546static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3547 unsigned long limit)
d6441637
VD
3548{
3549 int ret;
3550
3e32cb2e 3551 mutex_lock(&memcg_limit_mutex);
d6441637 3552 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3553 ret = memcg_activate_kmem(memcg, limit);
d6441637 3554 else
3e32cb2e
JW
3555 ret = page_counter_limit(&memcg->kmem, limit);
3556 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3557 return ret;
3558}
3559
55007d84 3560static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3561{
55007d84 3562 int ret = 0;
510fc4e1 3563 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3564
d6441637
VD
3565 if (!parent)
3566 return 0;
55007d84 3567
8c0145b6 3568 mutex_lock(&memcg_limit_mutex);
55007d84 3569 /*
d6441637
VD
3570 * If the parent cgroup is not kmem-active now, it cannot be activated
3571 * after this point, because it has at least one child already.
55007d84 3572 */
d6441637 3573 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3574 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3575 mutex_unlock(&memcg_limit_mutex);
55007d84 3576 return ret;
510fc4e1 3577}
d6441637
VD
3578#else
3579static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3580 unsigned long limit)
d6441637
VD
3581{
3582 return -EINVAL;
3583}
6d043990 3584#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3585
628f4235
KH
3586/*
3587 * The user of this function is...
3588 * RES_LIMIT.
3589 */
451af504
TH
3590static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3591 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3592{
451af504 3593 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3594 unsigned long nr_pages;
628f4235
KH
3595 int ret;
3596
451af504 3597 buf = strstrip(buf);
3e32cb2e
JW
3598 ret = page_counter_memparse(buf, &nr_pages);
3599 if (ret)
3600 return ret;
af36f906 3601
3e32cb2e 3602 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3603 case RES_LIMIT:
4b3bde4c
BS
3604 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3605 ret = -EINVAL;
3606 break;
3607 }
3e32cb2e
JW
3608 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3609 case _MEM:
3610 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3611 break;
3e32cb2e
JW
3612 case _MEMSWAP:
3613 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3614 break;
3e32cb2e
JW
3615 case _KMEM:
3616 ret = memcg_update_kmem_limit(memcg, nr_pages);
3617 break;
3618 }
296c81d8 3619 break;
3e32cb2e
JW
3620 case RES_SOFT_LIMIT:
3621 memcg->soft_limit = nr_pages;
3622 ret = 0;
628f4235
KH
3623 break;
3624 }
451af504 3625 return ret ?: nbytes;
8cdea7c0
BS
3626}
3627
6770c64e
TH
3628static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3629 size_t nbytes, loff_t off)
c84872e1 3630{
6770c64e 3631 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3632 struct page_counter *counter;
c84872e1 3633
3e32cb2e
JW
3634 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3635 case _MEM:
3636 counter = &memcg->memory;
3637 break;
3638 case _MEMSWAP:
3639 counter = &memcg->memsw;
3640 break;
3641 case _KMEM:
3642 counter = &memcg->kmem;
3643 break;
3644 default:
3645 BUG();
3646 }
af36f906 3647
3e32cb2e 3648 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3649 case RES_MAX_USAGE:
3e32cb2e 3650 page_counter_reset_watermark(counter);
29f2a4da
PE
3651 break;
3652 case RES_FAILCNT:
3e32cb2e 3653 counter->failcnt = 0;
29f2a4da 3654 break;
3e32cb2e
JW
3655 default:
3656 BUG();
29f2a4da 3657 }
f64c3f54 3658
6770c64e 3659 return nbytes;
c84872e1
PE
3660}
3661
182446d0 3662static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3663 struct cftype *cft)
3664{
182446d0 3665 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3666}
3667
02491447 3668#ifdef CONFIG_MMU
182446d0 3669static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3670 struct cftype *cft, u64 val)
3671{
182446d0 3672 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3673
3674 if (val >= (1 << NR_MOVE_TYPE))
3675 return -EINVAL;
ee5e8472 3676
7dc74be0 3677 /*
ee5e8472
GC
3678 * No kind of locking is needed in here, because ->can_attach() will
3679 * check this value once in the beginning of the process, and then carry
3680 * on with stale data. This means that changes to this value will only
3681 * affect task migrations starting after the change.
7dc74be0 3682 */
c0ff4b85 3683 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3684 return 0;
3685}
02491447 3686#else
182446d0 3687static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3688 struct cftype *cft, u64 val)
3689{
3690 return -ENOSYS;
3691}
3692#endif
7dc74be0 3693
406eb0c9 3694#ifdef CONFIG_NUMA
2da8ca82 3695static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3696{
25485de6
GT
3697 struct numa_stat {
3698 const char *name;
3699 unsigned int lru_mask;
3700 };
3701
3702 static const struct numa_stat stats[] = {
3703 { "total", LRU_ALL },
3704 { "file", LRU_ALL_FILE },
3705 { "anon", LRU_ALL_ANON },
3706 { "unevictable", BIT(LRU_UNEVICTABLE) },
3707 };
3708 const struct numa_stat *stat;
406eb0c9 3709 int nid;
25485de6 3710 unsigned long nr;
2da8ca82 3711 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3712
25485de6
GT
3713 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3714 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3715 seq_printf(m, "%s=%lu", stat->name, nr);
3716 for_each_node_state(nid, N_MEMORY) {
3717 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3718 stat->lru_mask);
3719 seq_printf(m, " N%d=%lu", nid, nr);
3720 }
3721 seq_putc(m, '\n');
406eb0c9 3722 }
406eb0c9 3723
071aee13
YH
3724 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3725 struct mem_cgroup *iter;
3726
3727 nr = 0;
3728 for_each_mem_cgroup_tree(iter, memcg)
3729 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3730 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3731 for_each_node_state(nid, N_MEMORY) {
3732 nr = 0;
3733 for_each_mem_cgroup_tree(iter, memcg)
3734 nr += mem_cgroup_node_nr_lru_pages(
3735 iter, nid, stat->lru_mask);
3736 seq_printf(m, " N%d=%lu", nid, nr);
3737 }
3738 seq_putc(m, '\n');
406eb0c9 3739 }
406eb0c9 3740
406eb0c9
YH
3741 return 0;
3742}
3743#endif /* CONFIG_NUMA */
3744
af7c4b0e
JW
3745static inline void mem_cgroup_lru_names_not_uptodate(void)
3746{
3747 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3748}
3749
2da8ca82 3750static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3751{
2da8ca82 3752 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3753 unsigned long memory, memsw;
af7c4b0e
JW
3754 struct mem_cgroup *mi;
3755 unsigned int i;
406eb0c9 3756
af7c4b0e 3757 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3758 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3759 continue;
af7c4b0e
JW
3760 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3761 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3762 }
7b854121 3763
af7c4b0e
JW
3764 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3765 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3766 mem_cgroup_read_events(memcg, i));
3767
3768 for (i = 0; i < NR_LRU_LISTS; i++)
3769 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3770 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3771
14067bb3 3772 /* Hierarchical information */
3e32cb2e
JW
3773 memory = memsw = PAGE_COUNTER_MAX;
3774 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3775 memory = min(memory, mi->memory.limit);
3776 memsw = min(memsw, mi->memsw.limit);
fee7b548 3777 }
3e32cb2e
JW
3778 seq_printf(m, "hierarchical_memory_limit %llu\n",
3779 (u64)memory * PAGE_SIZE);
3780 if (do_swap_account)
3781 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3782 (u64)memsw * PAGE_SIZE);
7f016ee8 3783
af7c4b0e
JW
3784 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3785 long long val = 0;
3786
bff6bb83 3787 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3788 continue;
af7c4b0e
JW
3789 for_each_mem_cgroup_tree(mi, memcg)
3790 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3791 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3792 }
3793
3794 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3795 unsigned long long val = 0;
3796
3797 for_each_mem_cgroup_tree(mi, memcg)
3798 val += mem_cgroup_read_events(mi, i);
3799 seq_printf(m, "total_%s %llu\n",
3800 mem_cgroup_events_names[i], val);
3801 }
3802
3803 for (i = 0; i < NR_LRU_LISTS; i++) {
3804 unsigned long long val = 0;
3805
3806 for_each_mem_cgroup_tree(mi, memcg)
3807 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3808 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3809 }
14067bb3 3810
7f016ee8 3811#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3812 {
3813 int nid, zid;
3814 struct mem_cgroup_per_zone *mz;
89abfab1 3815 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3816 unsigned long recent_rotated[2] = {0, 0};
3817 unsigned long recent_scanned[2] = {0, 0};
3818
3819 for_each_online_node(nid)
3820 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3821 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3822 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3823
89abfab1
HD
3824 recent_rotated[0] += rstat->recent_rotated[0];
3825 recent_rotated[1] += rstat->recent_rotated[1];
3826 recent_scanned[0] += rstat->recent_scanned[0];
3827 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3828 }
78ccf5b5
JW
3829 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3830 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3831 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3832 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3833 }
3834#endif
3835
d2ceb9b7
KH
3836 return 0;
3837}
3838
182446d0
TH
3839static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3840 struct cftype *cft)
a7885eb8 3841{
182446d0 3842 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3843
1f4c025b 3844 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3845}
3846
182446d0
TH
3847static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3848 struct cftype *cft, u64 val)
a7885eb8 3849{
182446d0 3850 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3851
3dae7fec 3852 if (val > 100)
a7885eb8
KM
3853 return -EINVAL;
3854
14208b0e 3855 if (css->parent)
3dae7fec
JW
3856 memcg->swappiness = val;
3857 else
3858 vm_swappiness = val;
068b38c1 3859
a7885eb8
KM
3860 return 0;
3861}
3862
2e72b634
KS
3863static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3864{
3865 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3866 unsigned long usage;
2e72b634
KS
3867 int i;
3868
3869 rcu_read_lock();
3870 if (!swap)
2c488db2 3871 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3872 else
2c488db2 3873 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3874
3875 if (!t)
3876 goto unlock;
3877
ce00a967 3878 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3879
3880 /*
748dad36 3881 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3882 * If it's not true, a threshold was crossed after last
3883 * call of __mem_cgroup_threshold().
3884 */
5407a562 3885 i = t->current_threshold;
2e72b634
KS
3886
3887 /*
3888 * Iterate backward over array of thresholds starting from
3889 * current_threshold and check if a threshold is crossed.
3890 * If none of thresholds below usage is crossed, we read
3891 * only one element of the array here.
3892 */
3893 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3894 eventfd_signal(t->entries[i].eventfd, 1);
3895
3896 /* i = current_threshold + 1 */
3897 i++;
3898
3899 /*
3900 * Iterate forward over array of thresholds starting from
3901 * current_threshold+1 and check if a threshold is crossed.
3902 * If none of thresholds above usage is crossed, we read
3903 * only one element of the array here.
3904 */
3905 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3906 eventfd_signal(t->entries[i].eventfd, 1);
3907
3908 /* Update current_threshold */
5407a562 3909 t->current_threshold = i - 1;
2e72b634
KS
3910unlock:
3911 rcu_read_unlock();
3912}
3913
3914static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3915{
ad4ca5f4
KS
3916 while (memcg) {
3917 __mem_cgroup_threshold(memcg, false);
3918 if (do_swap_account)
3919 __mem_cgroup_threshold(memcg, true);
3920
3921 memcg = parent_mem_cgroup(memcg);
3922 }
2e72b634
KS
3923}
3924
3925static int compare_thresholds(const void *a, const void *b)
3926{
3927 const struct mem_cgroup_threshold *_a = a;
3928 const struct mem_cgroup_threshold *_b = b;
3929
2bff24a3
GT
3930 if (_a->threshold > _b->threshold)
3931 return 1;
3932
3933 if (_a->threshold < _b->threshold)
3934 return -1;
3935
3936 return 0;
2e72b634
KS
3937}
3938
c0ff4b85 3939static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3940{
3941 struct mem_cgroup_eventfd_list *ev;
3942
2bcf2e92
MH
3943 spin_lock(&memcg_oom_lock);
3944
c0ff4b85 3945 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3946 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3947
3948 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3949 return 0;
3950}
3951
c0ff4b85 3952static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3953{
7d74b06f
KH
3954 struct mem_cgroup *iter;
3955
c0ff4b85 3956 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3957 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3958}
3959
59b6f873 3960static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3961 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3962{
2c488db2
KS
3963 struct mem_cgroup_thresholds *thresholds;
3964 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3965 unsigned long threshold;
3966 unsigned long usage;
2c488db2 3967 int i, size, ret;
2e72b634 3968
3e32cb2e 3969 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
3970 if (ret)
3971 return ret;
3972
3973 mutex_lock(&memcg->thresholds_lock);
2c488db2 3974
05b84301 3975 if (type == _MEM) {
2c488db2 3976 thresholds = &memcg->thresholds;
ce00a967 3977 usage = mem_cgroup_usage(memcg, false);
05b84301 3978 } else if (type == _MEMSWAP) {
2c488db2 3979 thresholds = &memcg->memsw_thresholds;
ce00a967 3980 usage = mem_cgroup_usage(memcg, true);
05b84301 3981 } else
2e72b634
KS
3982 BUG();
3983
2e72b634 3984 /* Check if a threshold crossed before adding a new one */
2c488db2 3985 if (thresholds->primary)
2e72b634
KS
3986 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3987
2c488db2 3988 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3989
3990 /* Allocate memory for new array of thresholds */
2c488db2 3991 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3992 GFP_KERNEL);
2c488db2 3993 if (!new) {
2e72b634
KS
3994 ret = -ENOMEM;
3995 goto unlock;
3996 }
2c488db2 3997 new->size = size;
2e72b634
KS
3998
3999 /* Copy thresholds (if any) to new array */
2c488db2
KS
4000 if (thresholds->primary) {
4001 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4002 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4003 }
4004
2e72b634 4005 /* Add new threshold */
2c488db2
KS
4006 new->entries[size - 1].eventfd = eventfd;
4007 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4008
4009 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4010 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4011 compare_thresholds, NULL);
4012
4013 /* Find current threshold */
2c488db2 4014 new->current_threshold = -1;
2e72b634 4015 for (i = 0; i < size; i++) {
748dad36 4016 if (new->entries[i].threshold <= usage) {
2e72b634 4017 /*
2c488db2
KS
4018 * new->current_threshold will not be used until
4019 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4020 * it here.
4021 */
2c488db2 4022 ++new->current_threshold;
748dad36
SZ
4023 } else
4024 break;
2e72b634
KS
4025 }
4026
2c488db2
KS
4027 /* Free old spare buffer and save old primary buffer as spare */
4028 kfree(thresholds->spare);
4029 thresholds->spare = thresholds->primary;
4030
4031 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4032
907860ed 4033 /* To be sure that nobody uses thresholds */
2e72b634
KS
4034 synchronize_rcu();
4035
2e72b634
KS
4036unlock:
4037 mutex_unlock(&memcg->thresholds_lock);
4038
4039 return ret;
4040}
4041
59b6f873 4042static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4043 struct eventfd_ctx *eventfd, const char *args)
4044{
59b6f873 4045 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4046}
4047
59b6f873 4048static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4049 struct eventfd_ctx *eventfd, const char *args)
4050{
59b6f873 4051 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4052}
4053
59b6f873 4054static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4055 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4056{
2c488db2
KS
4057 struct mem_cgroup_thresholds *thresholds;
4058 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4059 unsigned long usage;
2c488db2 4060 int i, j, size;
2e72b634
KS
4061
4062 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4063
4064 if (type == _MEM) {
2c488db2 4065 thresholds = &memcg->thresholds;
ce00a967 4066 usage = mem_cgroup_usage(memcg, false);
05b84301 4067 } else if (type == _MEMSWAP) {
2c488db2 4068 thresholds = &memcg->memsw_thresholds;
ce00a967 4069 usage = mem_cgroup_usage(memcg, true);
05b84301 4070 } else
2e72b634
KS
4071 BUG();
4072
371528ca
AV
4073 if (!thresholds->primary)
4074 goto unlock;
4075
2e72b634
KS
4076 /* Check if a threshold crossed before removing */
4077 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4078
4079 /* Calculate new number of threshold */
2c488db2
KS
4080 size = 0;
4081 for (i = 0; i < thresholds->primary->size; i++) {
4082 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4083 size++;
4084 }
4085
2c488db2 4086 new = thresholds->spare;
907860ed 4087
2e72b634
KS
4088 /* Set thresholds array to NULL if we don't have thresholds */
4089 if (!size) {
2c488db2
KS
4090 kfree(new);
4091 new = NULL;
907860ed 4092 goto swap_buffers;
2e72b634
KS
4093 }
4094
2c488db2 4095 new->size = size;
2e72b634
KS
4096
4097 /* Copy thresholds and find current threshold */
2c488db2
KS
4098 new->current_threshold = -1;
4099 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4100 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4101 continue;
4102
2c488db2 4103 new->entries[j] = thresholds->primary->entries[i];
748dad36 4104 if (new->entries[j].threshold <= usage) {
2e72b634 4105 /*
2c488db2 4106 * new->current_threshold will not be used
2e72b634
KS
4107 * until rcu_assign_pointer(), so it's safe to increment
4108 * it here.
4109 */
2c488db2 4110 ++new->current_threshold;
2e72b634
KS
4111 }
4112 j++;
4113 }
4114
907860ed 4115swap_buffers:
2c488db2
KS
4116 /* Swap primary and spare array */
4117 thresholds->spare = thresholds->primary;
8c757763
SZ
4118 /* If all events are unregistered, free the spare array */
4119 if (!new) {
4120 kfree(thresholds->spare);
4121 thresholds->spare = NULL;
4122 }
4123
2c488db2 4124 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4125
907860ed 4126 /* To be sure that nobody uses thresholds */
2e72b634 4127 synchronize_rcu();
371528ca 4128unlock:
2e72b634 4129 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4130}
c1e862c1 4131
59b6f873 4132static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4133 struct eventfd_ctx *eventfd)
4134{
59b6f873 4135 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4136}
4137
59b6f873 4138static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4139 struct eventfd_ctx *eventfd)
4140{
59b6f873 4141 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4142}
4143
59b6f873 4144static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4145 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4146{
9490ff27 4147 struct mem_cgroup_eventfd_list *event;
9490ff27 4148
9490ff27
KH
4149 event = kmalloc(sizeof(*event), GFP_KERNEL);
4150 if (!event)
4151 return -ENOMEM;
4152
1af8efe9 4153 spin_lock(&memcg_oom_lock);
9490ff27
KH
4154
4155 event->eventfd = eventfd;
4156 list_add(&event->list, &memcg->oom_notify);
4157
4158 /* already in OOM ? */
79dfdacc 4159 if (atomic_read(&memcg->under_oom))
9490ff27 4160 eventfd_signal(eventfd, 1);
1af8efe9 4161 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4162
4163 return 0;
4164}
4165
59b6f873 4166static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4167 struct eventfd_ctx *eventfd)
9490ff27 4168{
9490ff27 4169 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4170
1af8efe9 4171 spin_lock(&memcg_oom_lock);
9490ff27 4172
c0ff4b85 4173 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4174 if (ev->eventfd == eventfd) {
4175 list_del(&ev->list);
4176 kfree(ev);
4177 }
4178 }
4179
1af8efe9 4180 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4181}
4182
2da8ca82 4183static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4184{
2da8ca82 4185 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4186
791badbd
TH
4187 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4188 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4189 return 0;
4190}
4191
182446d0 4192static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4193 struct cftype *cft, u64 val)
4194{
182446d0 4195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4196
4197 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4198 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4199 return -EINVAL;
4200
c0ff4b85 4201 memcg->oom_kill_disable = val;
4d845ebf 4202 if (!val)
c0ff4b85 4203 memcg_oom_recover(memcg);
3dae7fec 4204
3c11ecf4
KH
4205 return 0;
4206}
4207
c255a458 4208#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4209static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4210{
55007d84
GC
4211 int ret;
4212
55007d84
GC
4213 ret = memcg_propagate_kmem(memcg);
4214 if (ret)
4215 return ret;
2633d7a0 4216
1d62e436 4217 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4218}
e5671dfa 4219
10d5ebf4 4220static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4221{
1d62e436 4222 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4223}
e5671dfa 4224#else
cbe128e3 4225static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4226{
4227 return 0;
4228}
d1a4c0b3 4229
10d5ebf4
LZ
4230static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4231{
4232}
e5671dfa
GC
4233#endif
4234
3bc942f3
TH
4235/*
4236 * DO NOT USE IN NEW FILES.
4237 *
4238 * "cgroup.event_control" implementation.
4239 *
4240 * This is way over-engineered. It tries to support fully configurable
4241 * events for each user. Such level of flexibility is completely
4242 * unnecessary especially in the light of the planned unified hierarchy.
4243 *
4244 * Please deprecate this and replace with something simpler if at all
4245 * possible.
4246 */
4247
79bd9814
TH
4248/*
4249 * Unregister event and free resources.
4250 *
4251 * Gets called from workqueue.
4252 */
3bc942f3 4253static void memcg_event_remove(struct work_struct *work)
79bd9814 4254{
3bc942f3
TH
4255 struct mem_cgroup_event *event =
4256 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4257 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4258
4259 remove_wait_queue(event->wqh, &event->wait);
4260
59b6f873 4261 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4262
4263 /* Notify userspace the event is going away. */
4264 eventfd_signal(event->eventfd, 1);
4265
4266 eventfd_ctx_put(event->eventfd);
4267 kfree(event);
59b6f873 4268 css_put(&memcg->css);
79bd9814
TH
4269}
4270
4271/*
4272 * Gets called on POLLHUP on eventfd when user closes it.
4273 *
4274 * Called with wqh->lock held and interrupts disabled.
4275 */
3bc942f3
TH
4276static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4277 int sync, void *key)
79bd9814 4278{
3bc942f3
TH
4279 struct mem_cgroup_event *event =
4280 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4281 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4282 unsigned long flags = (unsigned long)key;
4283
4284 if (flags & POLLHUP) {
4285 /*
4286 * If the event has been detached at cgroup removal, we
4287 * can simply return knowing the other side will cleanup
4288 * for us.
4289 *
4290 * We can't race against event freeing since the other
4291 * side will require wqh->lock via remove_wait_queue(),
4292 * which we hold.
4293 */
fba94807 4294 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4295 if (!list_empty(&event->list)) {
4296 list_del_init(&event->list);
4297 /*
4298 * We are in atomic context, but cgroup_event_remove()
4299 * may sleep, so we have to call it in workqueue.
4300 */
4301 schedule_work(&event->remove);
4302 }
fba94807 4303 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4304 }
4305
4306 return 0;
4307}
4308
3bc942f3 4309static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4310 wait_queue_head_t *wqh, poll_table *pt)
4311{
3bc942f3
TH
4312 struct mem_cgroup_event *event =
4313 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4314
4315 event->wqh = wqh;
4316 add_wait_queue(wqh, &event->wait);
4317}
4318
4319/*
3bc942f3
TH
4320 * DO NOT USE IN NEW FILES.
4321 *
79bd9814
TH
4322 * Parse input and register new cgroup event handler.
4323 *
4324 * Input must be in format '<event_fd> <control_fd> <args>'.
4325 * Interpretation of args is defined by control file implementation.
4326 */
451af504
TH
4327static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4328 char *buf, size_t nbytes, loff_t off)
79bd9814 4329{
451af504 4330 struct cgroup_subsys_state *css = of_css(of);
fba94807 4331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4332 struct mem_cgroup_event *event;
79bd9814
TH
4333 struct cgroup_subsys_state *cfile_css;
4334 unsigned int efd, cfd;
4335 struct fd efile;
4336 struct fd cfile;
fba94807 4337 const char *name;
79bd9814
TH
4338 char *endp;
4339 int ret;
4340
451af504
TH
4341 buf = strstrip(buf);
4342
4343 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4344 if (*endp != ' ')
4345 return -EINVAL;
451af504 4346 buf = endp + 1;
79bd9814 4347
451af504 4348 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4349 if ((*endp != ' ') && (*endp != '\0'))
4350 return -EINVAL;
451af504 4351 buf = endp + 1;
79bd9814
TH
4352
4353 event = kzalloc(sizeof(*event), GFP_KERNEL);
4354 if (!event)
4355 return -ENOMEM;
4356
59b6f873 4357 event->memcg = memcg;
79bd9814 4358 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4359 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4360 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4361 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4362
4363 efile = fdget(efd);
4364 if (!efile.file) {
4365 ret = -EBADF;
4366 goto out_kfree;
4367 }
4368
4369 event->eventfd = eventfd_ctx_fileget(efile.file);
4370 if (IS_ERR(event->eventfd)) {
4371 ret = PTR_ERR(event->eventfd);
4372 goto out_put_efile;
4373 }
4374
4375 cfile = fdget(cfd);
4376 if (!cfile.file) {
4377 ret = -EBADF;
4378 goto out_put_eventfd;
4379 }
4380
4381 /* the process need read permission on control file */
4382 /* AV: shouldn't we check that it's been opened for read instead? */
4383 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4384 if (ret < 0)
4385 goto out_put_cfile;
4386
fba94807
TH
4387 /*
4388 * Determine the event callbacks and set them in @event. This used
4389 * to be done via struct cftype but cgroup core no longer knows
4390 * about these events. The following is crude but the whole thing
4391 * is for compatibility anyway.
3bc942f3
TH
4392 *
4393 * DO NOT ADD NEW FILES.
fba94807 4394 */
b583043e 4395 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4396
4397 if (!strcmp(name, "memory.usage_in_bytes")) {
4398 event->register_event = mem_cgroup_usage_register_event;
4399 event->unregister_event = mem_cgroup_usage_unregister_event;
4400 } else if (!strcmp(name, "memory.oom_control")) {
4401 event->register_event = mem_cgroup_oom_register_event;
4402 event->unregister_event = mem_cgroup_oom_unregister_event;
4403 } else if (!strcmp(name, "memory.pressure_level")) {
4404 event->register_event = vmpressure_register_event;
4405 event->unregister_event = vmpressure_unregister_event;
4406 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4407 event->register_event = memsw_cgroup_usage_register_event;
4408 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4409 } else {
4410 ret = -EINVAL;
4411 goto out_put_cfile;
4412 }
4413
79bd9814 4414 /*
b5557c4c
TH
4415 * Verify @cfile should belong to @css. Also, remaining events are
4416 * automatically removed on cgroup destruction but the removal is
4417 * asynchronous, so take an extra ref on @css.
79bd9814 4418 */
b583043e 4419 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4420 &memory_cgrp_subsys);
79bd9814 4421 ret = -EINVAL;
5a17f543 4422 if (IS_ERR(cfile_css))
79bd9814 4423 goto out_put_cfile;
5a17f543
TH
4424 if (cfile_css != css) {
4425 css_put(cfile_css);
79bd9814 4426 goto out_put_cfile;
5a17f543 4427 }
79bd9814 4428
451af504 4429 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4430 if (ret)
4431 goto out_put_css;
4432
4433 efile.file->f_op->poll(efile.file, &event->pt);
4434
fba94807
TH
4435 spin_lock(&memcg->event_list_lock);
4436 list_add(&event->list, &memcg->event_list);
4437 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4438
4439 fdput(cfile);
4440 fdput(efile);
4441
451af504 4442 return nbytes;
79bd9814
TH
4443
4444out_put_css:
b5557c4c 4445 css_put(css);
79bd9814
TH
4446out_put_cfile:
4447 fdput(cfile);
4448out_put_eventfd:
4449 eventfd_ctx_put(event->eventfd);
4450out_put_efile:
4451 fdput(efile);
4452out_kfree:
4453 kfree(event);
4454
4455 return ret;
4456}
4457
8cdea7c0
BS
4458static struct cftype mem_cgroup_files[] = {
4459 {
0eea1030 4460 .name = "usage_in_bytes",
8c7c6e34 4461 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4462 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4463 },
c84872e1
PE
4464 {
4465 .name = "max_usage_in_bytes",
8c7c6e34 4466 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4467 .write = mem_cgroup_reset,
791badbd 4468 .read_u64 = mem_cgroup_read_u64,
c84872e1 4469 },
8cdea7c0 4470 {
0eea1030 4471 .name = "limit_in_bytes",
8c7c6e34 4472 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4473 .write = mem_cgroup_write,
791badbd 4474 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4475 },
296c81d8
BS
4476 {
4477 .name = "soft_limit_in_bytes",
4478 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4479 .write = mem_cgroup_write,
791badbd 4480 .read_u64 = mem_cgroup_read_u64,
296c81d8 4481 },
8cdea7c0
BS
4482 {
4483 .name = "failcnt",
8c7c6e34 4484 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4485 .write = mem_cgroup_reset,
791badbd 4486 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4487 },
d2ceb9b7
KH
4488 {
4489 .name = "stat",
2da8ca82 4490 .seq_show = memcg_stat_show,
d2ceb9b7 4491 },
c1e862c1
KH
4492 {
4493 .name = "force_empty",
6770c64e 4494 .write = mem_cgroup_force_empty_write,
c1e862c1 4495 },
18f59ea7
BS
4496 {
4497 .name = "use_hierarchy",
4498 .write_u64 = mem_cgroup_hierarchy_write,
4499 .read_u64 = mem_cgroup_hierarchy_read,
4500 },
79bd9814 4501 {
3bc942f3 4502 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4503 .write = memcg_write_event_control,
79bd9814
TH
4504 .flags = CFTYPE_NO_PREFIX,
4505 .mode = S_IWUGO,
4506 },
a7885eb8
KM
4507 {
4508 .name = "swappiness",
4509 .read_u64 = mem_cgroup_swappiness_read,
4510 .write_u64 = mem_cgroup_swappiness_write,
4511 },
7dc74be0
DN
4512 {
4513 .name = "move_charge_at_immigrate",
4514 .read_u64 = mem_cgroup_move_charge_read,
4515 .write_u64 = mem_cgroup_move_charge_write,
4516 },
9490ff27
KH
4517 {
4518 .name = "oom_control",
2da8ca82 4519 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4520 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4521 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4522 },
70ddf637
AV
4523 {
4524 .name = "pressure_level",
70ddf637 4525 },
406eb0c9
YH
4526#ifdef CONFIG_NUMA
4527 {
4528 .name = "numa_stat",
2da8ca82 4529 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4530 },
4531#endif
510fc4e1
GC
4532#ifdef CONFIG_MEMCG_KMEM
4533 {
4534 .name = "kmem.limit_in_bytes",
4535 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4536 .write = mem_cgroup_write,
791badbd 4537 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4538 },
4539 {
4540 .name = "kmem.usage_in_bytes",
4541 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4542 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4543 },
4544 {
4545 .name = "kmem.failcnt",
4546 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4547 .write = mem_cgroup_reset,
791badbd 4548 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4549 },
4550 {
4551 .name = "kmem.max_usage_in_bytes",
4552 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4553 .write = mem_cgroup_reset,
791badbd 4554 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4555 },
749c5415
GC
4556#ifdef CONFIG_SLABINFO
4557 {
4558 .name = "kmem.slabinfo",
b047501c
VD
4559 .seq_start = slab_start,
4560 .seq_next = slab_next,
4561 .seq_stop = slab_stop,
4562 .seq_show = memcg_slab_show,
749c5415
GC
4563 },
4564#endif
8c7c6e34 4565#endif
6bc10349 4566 { }, /* terminate */
af36f906 4567};
8c7c6e34 4568
2d11085e
MH
4569#ifdef CONFIG_MEMCG_SWAP
4570static struct cftype memsw_cgroup_files[] = {
4571 {
4572 .name = "memsw.usage_in_bytes",
4573 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4574 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4575 },
4576 {
4577 .name = "memsw.max_usage_in_bytes",
4578 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4579 .write = mem_cgroup_reset,
791badbd 4580 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4581 },
4582 {
4583 .name = "memsw.limit_in_bytes",
4584 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4585 .write = mem_cgroup_write,
791badbd 4586 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4587 },
4588 {
4589 .name = "memsw.failcnt",
4590 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4591 .write = mem_cgroup_reset,
791badbd 4592 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4593 },
4594 { }, /* terminate */
4595};
4596#endif
c0ff4b85 4597static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4598{
4599 struct mem_cgroup_per_node *pn;
1ecaab2b 4600 struct mem_cgroup_per_zone *mz;
41e3355d 4601 int zone, tmp = node;
1ecaab2b
KH
4602 /*
4603 * This routine is called against possible nodes.
4604 * But it's BUG to call kmalloc() against offline node.
4605 *
4606 * TODO: this routine can waste much memory for nodes which will
4607 * never be onlined. It's better to use memory hotplug callback
4608 * function.
4609 */
41e3355d
KH
4610 if (!node_state(node, N_NORMAL_MEMORY))
4611 tmp = -1;
17295c88 4612 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4613 if (!pn)
4614 return 1;
1ecaab2b 4615
1ecaab2b
KH
4616 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4617 mz = &pn->zoneinfo[zone];
bea8c150 4618 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4619 mz->usage_in_excess = 0;
4620 mz->on_tree = false;
d79154bb 4621 mz->memcg = memcg;
1ecaab2b 4622 }
54f72fe0 4623 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4624 return 0;
4625}
4626
c0ff4b85 4627static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4628{
54f72fe0 4629 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4630}
4631
33327948
KH
4632static struct mem_cgroup *mem_cgroup_alloc(void)
4633{
d79154bb 4634 struct mem_cgroup *memcg;
8ff69e2c 4635 size_t size;
33327948 4636
8ff69e2c
VD
4637 size = sizeof(struct mem_cgroup);
4638 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4639
8ff69e2c 4640 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4641 if (!memcg)
e7bbcdf3
DC
4642 return NULL;
4643
d79154bb
HD
4644 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4645 if (!memcg->stat)
d2e61b8d 4646 goto out_free;
d79154bb
HD
4647 spin_lock_init(&memcg->pcp_counter_lock);
4648 return memcg;
d2e61b8d
DC
4649
4650out_free:
8ff69e2c 4651 kfree(memcg);
d2e61b8d 4652 return NULL;
33327948
KH
4653}
4654
59927fb9 4655/*
c8b2a36f
GC
4656 * At destroying mem_cgroup, references from swap_cgroup can remain.
4657 * (scanning all at force_empty is too costly...)
4658 *
4659 * Instead of clearing all references at force_empty, we remember
4660 * the number of reference from swap_cgroup and free mem_cgroup when
4661 * it goes down to 0.
4662 *
4663 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4664 */
c8b2a36f
GC
4665
4666static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4667{
c8b2a36f 4668 int node;
59927fb9 4669
bb4cc1a8 4670 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4671
4672 for_each_node(node)
4673 free_mem_cgroup_per_zone_info(memcg, node);
4674
4675 free_percpu(memcg->stat);
4676
a8964b9b 4677 disarm_static_keys(memcg);
8ff69e2c 4678 kfree(memcg);
59927fb9 4679}
3afe36b1 4680
7bcc1bb1
DN
4681/*
4682 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4683 */
e1aab161 4684struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4685{
3e32cb2e 4686 if (!memcg->memory.parent)
7bcc1bb1 4687 return NULL;
3e32cb2e 4688 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4689}
e1aab161 4690EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4691
bb4cc1a8
AM
4692static void __init mem_cgroup_soft_limit_tree_init(void)
4693{
4694 struct mem_cgroup_tree_per_node *rtpn;
4695 struct mem_cgroup_tree_per_zone *rtpz;
4696 int tmp, node, zone;
4697
4698 for_each_node(node) {
4699 tmp = node;
4700 if (!node_state(node, N_NORMAL_MEMORY))
4701 tmp = -1;
4702 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4703 BUG_ON(!rtpn);
4704
4705 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4706
4707 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4708 rtpz = &rtpn->rb_tree_per_zone[zone];
4709 rtpz->rb_root = RB_ROOT;
4710 spin_lock_init(&rtpz->lock);
4711 }
4712 }
4713}
4714
0eb253e2 4715static struct cgroup_subsys_state * __ref
eb95419b 4716mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4717{
d142e3e6 4718 struct mem_cgroup *memcg;
04046e1a 4719 long error = -ENOMEM;
6d12e2d8 4720 int node;
8cdea7c0 4721
c0ff4b85
R
4722 memcg = mem_cgroup_alloc();
4723 if (!memcg)
04046e1a 4724 return ERR_PTR(error);
78fb7466 4725
3ed28fa1 4726 for_each_node(node)
c0ff4b85 4727 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4728 goto free_out;
f64c3f54 4729
c077719b 4730 /* root ? */
eb95419b 4731 if (parent_css == NULL) {
a41c58a6 4732 root_mem_cgroup = memcg;
3e32cb2e
JW
4733 page_counter_init(&memcg->memory, NULL);
4734 page_counter_init(&memcg->memsw, NULL);
4735 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4736 }
28dbc4b6 4737
d142e3e6
GC
4738 memcg->last_scanned_node = MAX_NUMNODES;
4739 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4740 memcg->move_charge_at_immigrate = 0;
4741 mutex_init(&memcg->thresholds_lock);
4742 spin_lock_init(&memcg->move_lock);
70ddf637 4743 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4744 INIT_LIST_HEAD(&memcg->event_list);
4745 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4746#ifdef CONFIG_MEMCG_KMEM
4747 memcg->kmemcg_id = -1;
4748 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4749#endif
d142e3e6
GC
4750
4751 return &memcg->css;
4752
4753free_out:
4754 __mem_cgroup_free(memcg);
4755 return ERR_PTR(error);
4756}
4757
4758static int
eb95419b 4759mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4760{
eb95419b 4761 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4762 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4763 int ret;
d142e3e6 4764
15a4c835 4765 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4766 return -ENOSPC;
4767
63876986 4768 if (!parent)
d142e3e6
GC
4769 return 0;
4770
0999821b 4771 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4772
4773 memcg->use_hierarchy = parent->use_hierarchy;
4774 memcg->oom_kill_disable = parent->oom_kill_disable;
4775 memcg->swappiness = mem_cgroup_swappiness(parent);
4776
4777 if (parent->use_hierarchy) {
3e32cb2e
JW
4778 page_counter_init(&memcg->memory, &parent->memory);
4779 page_counter_init(&memcg->memsw, &parent->memsw);
4780 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4781
7bcc1bb1 4782 /*
8d76a979
LZ
4783 * No need to take a reference to the parent because cgroup
4784 * core guarantees its existence.
7bcc1bb1 4785 */
18f59ea7 4786 } else {
3e32cb2e
JW
4787 page_counter_init(&memcg->memory, NULL);
4788 page_counter_init(&memcg->memsw, NULL);
4789 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4790 /*
4791 * Deeper hierachy with use_hierarchy == false doesn't make
4792 * much sense so let cgroup subsystem know about this
4793 * unfortunate state in our controller.
4794 */
d142e3e6 4795 if (parent != root_mem_cgroup)
073219e9 4796 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4797 }
0999821b 4798 mutex_unlock(&memcg_create_mutex);
d6441637 4799
2f7dd7a4
JW
4800 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4801 if (ret)
4802 return ret;
4803
4804 /*
4805 * Make sure the memcg is initialized: mem_cgroup_iter()
4806 * orders reading memcg->initialized against its callers
4807 * reading the memcg members.
4808 */
4809 smp_store_release(&memcg->initialized, 1);
4810
4811 return 0;
8cdea7c0
BS
4812}
4813
eb95419b 4814static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4815{
eb95419b 4816 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4817 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4818
4819 /*
4820 * Unregister events and notify userspace.
4821 * Notify userspace about cgroup removing only after rmdir of cgroup
4822 * directory to avoid race between userspace and kernelspace.
4823 */
fba94807
TH
4824 spin_lock(&memcg->event_list_lock);
4825 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4826 list_del_init(&event->list);
4827 schedule_work(&event->remove);
4828 }
fba94807 4829 spin_unlock(&memcg->event_list_lock);
ec64f515 4830
776ed0f0 4831 memcg_unregister_all_caches(memcg);
33cb876e 4832 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4833}
4834
eb95419b 4835static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4836{
eb95419b 4837 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4838
10d5ebf4 4839 memcg_destroy_kmem(memcg);
465939a1 4840 __mem_cgroup_free(memcg);
8cdea7c0
BS
4841}
4842
1ced953b
TH
4843/**
4844 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4845 * @css: the target css
4846 *
4847 * Reset the states of the mem_cgroup associated with @css. This is
4848 * invoked when the userland requests disabling on the default hierarchy
4849 * but the memcg is pinned through dependency. The memcg should stop
4850 * applying policies and should revert to the vanilla state as it may be
4851 * made visible again.
4852 *
4853 * The current implementation only resets the essential configurations.
4854 * This needs to be expanded to cover all the visible parts.
4855 */
4856static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4857{
4858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4859
3e32cb2e
JW
4860 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4861 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4862 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4863 memcg->soft_limit = 0;
1ced953b
TH
4864}
4865
02491447 4866#ifdef CONFIG_MMU
7dc74be0 4867/* Handlers for move charge at task migration. */
854ffa8d 4868static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4869{
05b84301 4870 int ret;
9476db97
JW
4871
4872 /* Try a single bulk charge without reclaim first */
00501b53 4873 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4874 if (!ret) {
854ffa8d 4875 mc.precharge += count;
854ffa8d
DN
4876 return ret;
4877 }
692e7c45 4878 if (ret == -EINTR) {
00501b53 4879 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4880 return ret;
4881 }
9476db97
JW
4882
4883 /* Try charges one by one with reclaim */
854ffa8d 4884 while (count--) {
00501b53 4885 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4886 /*
4887 * In case of failure, any residual charges against
4888 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4889 * later on. However, cancel any charges that are
4890 * bypassed to root right away or they'll be lost.
9476db97 4891 */
692e7c45 4892 if (ret == -EINTR)
00501b53 4893 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4894 if (ret)
38c5d72f 4895 return ret;
854ffa8d 4896 mc.precharge++;
9476db97 4897 cond_resched();
854ffa8d 4898 }
9476db97 4899 return 0;
4ffef5fe
DN
4900}
4901
4902/**
8d32ff84 4903 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4904 * @vma: the vma the pte to be checked belongs
4905 * @addr: the address corresponding to the pte to be checked
4906 * @ptent: the pte to be checked
02491447 4907 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4908 *
4909 * Returns
4910 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4911 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4912 * move charge. if @target is not NULL, the page is stored in target->page
4913 * with extra refcnt got(Callers should handle it).
02491447
DN
4914 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4915 * target for charge migration. if @target is not NULL, the entry is stored
4916 * in target->ent.
4ffef5fe
DN
4917 *
4918 * Called with pte lock held.
4919 */
4ffef5fe
DN
4920union mc_target {
4921 struct page *page;
02491447 4922 swp_entry_t ent;
4ffef5fe
DN
4923};
4924
4ffef5fe 4925enum mc_target_type {
8d32ff84 4926 MC_TARGET_NONE = 0,
4ffef5fe 4927 MC_TARGET_PAGE,
02491447 4928 MC_TARGET_SWAP,
4ffef5fe
DN
4929};
4930
90254a65
DN
4931static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4932 unsigned long addr, pte_t ptent)
4ffef5fe 4933{
90254a65 4934 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4935
90254a65
DN
4936 if (!page || !page_mapped(page))
4937 return NULL;
4938 if (PageAnon(page)) {
4939 /* we don't move shared anon */
4b91355e 4940 if (!move_anon())
90254a65 4941 return NULL;
87946a72
DN
4942 } else if (!move_file())
4943 /* we ignore mapcount for file pages */
90254a65
DN
4944 return NULL;
4945 if (!get_page_unless_zero(page))
4946 return NULL;
4947
4948 return page;
4949}
4950
4b91355e 4951#ifdef CONFIG_SWAP
90254a65
DN
4952static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4953 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4954{
90254a65
DN
4955 struct page *page = NULL;
4956 swp_entry_t ent = pte_to_swp_entry(ptent);
4957
4958 if (!move_anon() || non_swap_entry(ent))
4959 return NULL;
4b91355e
KH
4960 /*
4961 * Because lookup_swap_cache() updates some statistics counter,
4962 * we call find_get_page() with swapper_space directly.
4963 */
33806f06 4964 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4965 if (do_swap_account)
4966 entry->val = ent.val;
4967
4968 return page;
4969}
4b91355e
KH
4970#else
4971static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4972 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4973{
4974 return NULL;
4975}
4976#endif
90254a65 4977
87946a72
DN
4978static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4979 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4980{
4981 struct page *page = NULL;
87946a72
DN
4982 struct address_space *mapping;
4983 pgoff_t pgoff;
4984
4985 if (!vma->vm_file) /* anonymous vma */
4986 return NULL;
4987 if (!move_file())
4988 return NULL;
4989
87946a72
DN
4990 mapping = vma->vm_file->f_mapping;
4991 if (pte_none(ptent))
4992 pgoff = linear_page_index(vma, addr);
4993 else /* pte_file(ptent) is true */
4994 pgoff = pte_to_pgoff(ptent);
4995
4996 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4997#ifdef CONFIG_SWAP
4998 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4999 if (shmem_mapping(mapping)) {
5000 page = find_get_entry(mapping, pgoff);
5001 if (radix_tree_exceptional_entry(page)) {
5002 swp_entry_t swp = radix_to_swp_entry(page);
5003 if (do_swap_account)
5004 *entry = swp;
5005 page = find_get_page(swap_address_space(swp), swp.val);
5006 }
5007 } else
5008 page = find_get_page(mapping, pgoff);
5009#else
5010 page = find_get_page(mapping, pgoff);
aa3b1895 5011#endif
87946a72
DN
5012 return page;
5013}
5014
8d32ff84 5015static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5016 unsigned long addr, pte_t ptent, union mc_target *target)
5017{
5018 struct page *page = NULL;
8d32ff84 5019 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5020 swp_entry_t ent = { .val = 0 };
5021
5022 if (pte_present(ptent))
5023 page = mc_handle_present_pte(vma, addr, ptent);
5024 else if (is_swap_pte(ptent))
5025 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5026 else if (pte_none(ptent) || pte_file(ptent))
5027 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5028
5029 if (!page && !ent.val)
8d32ff84 5030 return ret;
02491447 5031 if (page) {
02491447 5032 /*
0a31bc97 5033 * Do only loose check w/o serialization.
1306a85a 5034 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5035 * not under LRU exclusion.
02491447 5036 */
1306a85a 5037 if (page->mem_cgroup == mc.from) {
02491447
DN
5038 ret = MC_TARGET_PAGE;
5039 if (target)
5040 target->page = page;
5041 }
5042 if (!ret || !target)
5043 put_page(page);
5044 }
90254a65
DN
5045 /* There is a swap entry and a page doesn't exist or isn't charged */
5046 if (ent.val && !ret &&
34c00c31 5047 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5048 ret = MC_TARGET_SWAP;
5049 if (target)
5050 target->ent = ent;
4ffef5fe 5051 }
4ffef5fe
DN
5052 return ret;
5053}
5054
12724850
NH
5055#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5056/*
5057 * We don't consider swapping or file mapped pages because THP does not
5058 * support them for now.
5059 * Caller should make sure that pmd_trans_huge(pmd) is true.
5060 */
5061static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5062 unsigned long addr, pmd_t pmd, union mc_target *target)
5063{
5064 struct page *page = NULL;
12724850
NH
5065 enum mc_target_type ret = MC_TARGET_NONE;
5066
5067 page = pmd_page(pmd);
309381fe 5068 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5069 if (!move_anon())
5070 return ret;
1306a85a 5071 if (page->mem_cgroup == mc.from) {
12724850
NH
5072 ret = MC_TARGET_PAGE;
5073 if (target) {
5074 get_page(page);
5075 target->page = page;
5076 }
5077 }
5078 return ret;
5079}
5080#else
5081static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5082 unsigned long addr, pmd_t pmd, union mc_target *target)
5083{
5084 return MC_TARGET_NONE;
5085}
5086#endif
5087
4ffef5fe
DN
5088static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5089 unsigned long addr, unsigned long end,
5090 struct mm_walk *walk)
5091{
5092 struct vm_area_struct *vma = walk->private;
5093 pte_t *pte;
5094 spinlock_t *ptl;
5095
bf929152 5096 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5097 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5098 mc.precharge += HPAGE_PMD_NR;
bf929152 5099 spin_unlock(ptl);
1a5a9906 5100 return 0;
12724850 5101 }
03319327 5102
45f83cef
AA
5103 if (pmd_trans_unstable(pmd))
5104 return 0;
4ffef5fe
DN
5105 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5106 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5107 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5108 mc.precharge++; /* increment precharge temporarily */
5109 pte_unmap_unlock(pte - 1, ptl);
5110 cond_resched();
5111
7dc74be0
DN
5112 return 0;
5113}
5114
4ffef5fe
DN
5115static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5116{
5117 unsigned long precharge;
5118 struct vm_area_struct *vma;
5119
dfe076b0 5120 down_read(&mm->mmap_sem);
4ffef5fe
DN
5121 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5122 struct mm_walk mem_cgroup_count_precharge_walk = {
5123 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5124 .mm = mm,
5125 .private = vma,
5126 };
5127 if (is_vm_hugetlb_page(vma))
5128 continue;
4ffef5fe
DN
5129 walk_page_range(vma->vm_start, vma->vm_end,
5130 &mem_cgroup_count_precharge_walk);
5131 }
dfe076b0 5132 up_read(&mm->mmap_sem);
4ffef5fe
DN
5133
5134 precharge = mc.precharge;
5135 mc.precharge = 0;
5136
5137 return precharge;
5138}
5139
4ffef5fe
DN
5140static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5141{
dfe076b0
DN
5142 unsigned long precharge = mem_cgroup_count_precharge(mm);
5143
5144 VM_BUG_ON(mc.moving_task);
5145 mc.moving_task = current;
5146 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5147}
5148
dfe076b0
DN
5149/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5150static void __mem_cgroup_clear_mc(void)
4ffef5fe 5151{
2bd9bb20
KH
5152 struct mem_cgroup *from = mc.from;
5153 struct mem_cgroup *to = mc.to;
5154
4ffef5fe 5155 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5156 if (mc.precharge) {
00501b53 5157 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5158 mc.precharge = 0;
5159 }
5160 /*
5161 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5162 * we must uncharge here.
5163 */
5164 if (mc.moved_charge) {
00501b53 5165 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5166 mc.moved_charge = 0;
4ffef5fe 5167 }
483c30b5
DN
5168 /* we must fixup refcnts and charges */
5169 if (mc.moved_swap) {
483c30b5 5170 /* uncharge swap account from the old cgroup */
ce00a967 5171 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5172 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5173
05b84301 5174 /*
3e32cb2e
JW
5175 * we charged both to->memory and to->memsw, so we
5176 * should uncharge to->memory.
05b84301 5177 */
ce00a967 5178 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5179 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5180
e8ea14cc 5181 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5182
4050377b 5183 /* we've already done css_get(mc.to) */
483c30b5
DN
5184 mc.moved_swap = 0;
5185 }
dfe076b0
DN
5186 memcg_oom_recover(from);
5187 memcg_oom_recover(to);
5188 wake_up_all(&mc.waitq);
5189}
5190
5191static void mem_cgroup_clear_mc(void)
5192{
dfe076b0
DN
5193 /*
5194 * we must clear moving_task before waking up waiters at the end of
5195 * task migration.
5196 */
5197 mc.moving_task = NULL;
5198 __mem_cgroup_clear_mc();
2bd9bb20 5199 spin_lock(&mc.lock);
4ffef5fe
DN
5200 mc.from = NULL;
5201 mc.to = NULL;
2bd9bb20 5202 spin_unlock(&mc.lock);
4ffef5fe
DN
5203}
5204
eb95419b 5205static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5206 struct cgroup_taskset *tset)
7dc74be0 5207{
2f7ee569 5208 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5209 int ret = 0;
eb95419b 5210 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5211 unsigned long move_charge_at_immigrate;
7dc74be0 5212
ee5e8472
GC
5213 /*
5214 * We are now commited to this value whatever it is. Changes in this
5215 * tunable will only affect upcoming migrations, not the current one.
5216 * So we need to save it, and keep it going.
5217 */
5218 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5219 if (move_charge_at_immigrate) {
7dc74be0
DN
5220 struct mm_struct *mm;
5221 struct mem_cgroup *from = mem_cgroup_from_task(p);
5222
c0ff4b85 5223 VM_BUG_ON(from == memcg);
7dc74be0
DN
5224
5225 mm = get_task_mm(p);
5226 if (!mm)
5227 return 0;
7dc74be0 5228 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5229 if (mm->owner == p) {
5230 VM_BUG_ON(mc.from);
5231 VM_BUG_ON(mc.to);
5232 VM_BUG_ON(mc.precharge);
854ffa8d 5233 VM_BUG_ON(mc.moved_charge);
483c30b5 5234 VM_BUG_ON(mc.moved_swap);
247b1447 5235
2bd9bb20 5236 spin_lock(&mc.lock);
4ffef5fe 5237 mc.from = from;
c0ff4b85 5238 mc.to = memcg;
ee5e8472 5239 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5240 spin_unlock(&mc.lock);
dfe076b0 5241 /* We set mc.moving_task later */
4ffef5fe
DN
5242
5243 ret = mem_cgroup_precharge_mc(mm);
5244 if (ret)
5245 mem_cgroup_clear_mc();
dfe076b0
DN
5246 }
5247 mmput(mm);
7dc74be0
DN
5248 }
5249 return ret;
5250}
5251
eb95419b 5252static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5253 struct cgroup_taskset *tset)
7dc74be0 5254{
4e2f245d
JW
5255 if (mc.to)
5256 mem_cgroup_clear_mc();
7dc74be0
DN
5257}
5258
4ffef5fe
DN
5259static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5260 unsigned long addr, unsigned long end,
5261 struct mm_walk *walk)
7dc74be0 5262{
4ffef5fe
DN
5263 int ret = 0;
5264 struct vm_area_struct *vma = walk->private;
5265 pte_t *pte;
5266 spinlock_t *ptl;
12724850
NH
5267 enum mc_target_type target_type;
5268 union mc_target target;
5269 struct page *page;
4ffef5fe 5270
12724850
NH
5271 /*
5272 * We don't take compound_lock() here but no race with splitting thp
5273 * happens because:
5274 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5275 * under splitting, which means there's no concurrent thp split,
5276 * - if another thread runs into split_huge_page() just after we
5277 * entered this if-block, the thread must wait for page table lock
5278 * to be unlocked in __split_huge_page_splitting(), where the main
5279 * part of thp split is not executed yet.
5280 */
bf929152 5281 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5282 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5283 spin_unlock(ptl);
12724850
NH
5284 return 0;
5285 }
5286 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5287 if (target_type == MC_TARGET_PAGE) {
5288 page = target.page;
5289 if (!isolate_lru_page(page)) {
12724850 5290 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5291 mc.from, mc.to)) {
12724850
NH
5292 mc.precharge -= HPAGE_PMD_NR;
5293 mc.moved_charge += HPAGE_PMD_NR;
5294 }
5295 putback_lru_page(page);
5296 }
5297 put_page(page);
5298 }
bf929152 5299 spin_unlock(ptl);
1a5a9906 5300 return 0;
12724850
NH
5301 }
5302
45f83cef
AA
5303 if (pmd_trans_unstable(pmd))
5304 return 0;
4ffef5fe
DN
5305retry:
5306 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5307 for (; addr != end; addr += PAGE_SIZE) {
5308 pte_t ptent = *(pte++);
02491447 5309 swp_entry_t ent;
4ffef5fe
DN
5310
5311 if (!mc.precharge)
5312 break;
5313
8d32ff84 5314 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5315 case MC_TARGET_PAGE:
5316 page = target.page;
5317 if (isolate_lru_page(page))
5318 goto put;
1306a85a 5319 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5320 mc.precharge--;
854ffa8d
DN
5321 /* we uncharge from mc.from later. */
5322 mc.moved_charge++;
4ffef5fe
DN
5323 }
5324 putback_lru_page(page);
8d32ff84 5325put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5326 put_page(page);
5327 break;
02491447
DN
5328 case MC_TARGET_SWAP:
5329 ent = target.ent;
e91cbb42 5330 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5331 mc.precharge--;
483c30b5
DN
5332 /* we fixup refcnts and charges later. */
5333 mc.moved_swap++;
5334 }
02491447 5335 break;
4ffef5fe
DN
5336 default:
5337 break;
5338 }
5339 }
5340 pte_unmap_unlock(pte - 1, ptl);
5341 cond_resched();
5342
5343 if (addr != end) {
5344 /*
5345 * We have consumed all precharges we got in can_attach().
5346 * We try charge one by one, but don't do any additional
5347 * charges to mc.to if we have failed in charge once in attach()
5348 * phase.
5349 */
854ffa8d 5350 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5351 if (!ret)
5352 goto retry;
5353 }
5354
5355 return ret;
5356}
5357
5358static void mem_cgroup_move_charge(struct mm_struct *mm)
5359{
5360 struct vm_area_struct *vma;
5361
5362 lru_add_drain_all();
312722cb
JW
5363 /*
5364 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5365 * move_lock while we're moving its pages to another memcg.
5366 * Then wait for already started RCU-only updates to finish.
5367 */
5368 atomic_inc(&mc.from->moving_account);
5369 synchronize_rcu();
dfe076b0
DN
5370retry:
5371 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5372 /*
5373 * Someone who are holding the mmap_sem might be waiting in
5374 * waitq. So we cancel all extra charges, wake up all waiters,
5375 * and retry. Because we cancel precharges, we might not be able
5376 * to move enough charges, but moving charge is a best-effort
5377 * feature anyway, so it wouldn't be a big problem.
5378 */
5379 __mem_cgroup_clear_mc();
5380 cond_resched();
5381 goto retry;
5382 }
4ffef5fe
DN
5383 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5384 int ret;
5385 struct mm_walk mem_cgroup_move_charge_walk = {
5386 .pmd_entry = mem_cgroup_move_charge_pte_range,
5387 .mm = mm,
5388 .private = vma,
5389 };
5390 if (is_vm_hugetlb_page(vma))
5391 continue;
4ffef5fe
DN
5392 ret = walk_page_range(vma->vm_start, vma->vm_end,
5393 &mem_cgroup_move_charge_walk);
5394 if (ret)
5395 /*
5396 * means we have consumed all precharges and failed in
5397 * doing additional charge. Just abandon here.
5398 */
5399 break;
5400 }
dfe076b0 5401 up_read(&mm->mmap_sem);
312722cb 5402 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5403}
5404
eb95419b 5405static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5406 struct cgroup_taskset *tset)
67e465a7 5407{
2f7ee569 5408 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5409 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5410
dfe076b0 5411 if (mm) {
a433658c
KM
5412 if (mc.to)
5413 mem_cgroup_move_charge(mm);
dfe076b0
DN
5414 mmput(mm);
5415 }
a433658c
KM
5416 if (mc.to)
5417 mem_cgroup_clear_mc();
67e465a7 5418}
5cfb80a7 5419#else /* !CONFIG_MMU */
eb95419b 5420static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5421 struct cgroup_taskset *tset)
5cfb80a7
DN
5422{
5423 return 0;
5424}
eb95419b 5425static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5426 struct cgroup_taskset *tset)
5cfb80a7
DN
5427{
5428}
eb95419b 5429static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5430 struct cgroup_taskset *tset)
5cfb80a7
DN
5431{
5432}
5433#endif
67e465a7 5434
f00baae7
TH
5435/*
5436 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5437 * to verify whether we're attached to the default hierarchy on each mount
5438 * attempt.
f00baae7 5439 */
eb95419b 5440static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5441{
5442 /*
aa6ec29b 5443 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5444 * guarantees that @root doesn't have any children, so turning it
5445 * on for the root memcg is enough.
5446 */
aa6ec29b 5447 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5448 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5449}
5450
073219e9 5451struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5452 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5453 .css_online = mem_cgroup_css_online,
92fb9748
TH
5454 .css_offline = mem_cgroup_css_offline,
5455 .css_free = mem_cgroup_css_free,
1ced953b 5456 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5457 .can_attach = mem_cgroup_can_attach,
5458 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5459 .attach = mem_cgroup_move_task,
f00baae7 5460 .bind = mem_cgroup_bind,
5577964e 5461 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5462 .early_init = 0,
8cdea7c0 5463};
c077719b 5464
c255a458 5465#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5466static int __init enable_swap_account(char *s)
5467{
a2c8990a 5468 if (!strcmp(s, "1"))
a42c390c 5469 really_do_swap_account = 1;
a2c8990a 5470 else if (!strcmp(s, "0"))
a42c390c
MH
5471 really_do_swap_account = 0;
5472 return 1;
5473}
a2c8990a 5474__setup("swapaccount=", enable_swap_account);
c077719b 5475
2d11085e
MH
5476static void __init memsw_file_init(void)
5477{
2cf669a5
TH
5478 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5479 memsw_cgroup_files));
6acc8b02
MH
5480}
5481
5482static void __init enable_swap_cgroup(void)
5483{
5484 if (!mem_cgroup_disabled() && really_do_swap_account) {
5485 do_swap_account = 1;
5486 memsw_file_init();
5487 }
2d11085e 5488}
6acc8b02 5489
2d11085e 5490#else
6acc8b02 5491static void __init enable_swap_cgroup(void)
2d11085e
MH
5492{
5493}
c077719b 5494#endif
2d11085e 5495
0a31bc97
JW
5496#ifdef CONFIG_MEMCG_SWAP
5497/**
5498 * mem_cgroup_swapout - transfer a memsw charge to swap
5499 * @page: page whose memsw charge to transfer
5500 * @entry: swap entry to move the charge to
5501 *
5502 * Transfer the memsw charge of @page to @entry.
5503 */
5504void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5505{
7bdd143c 5506 struct mem_cgroup *memcg;
0a31bc97
JW
5507 unsigned short oldid;
5508
5509 VM_BUG_ON_PAGE(PageLRU(page), page);
5510 VM_BUG_ON_PAGE(page_count(page), page);
5511
5512 if (!do_swap_account)
5513 return;
5514
1306a85a 5515 memcg = page->mem_cgroup;
0a31bc97
JW
5516
5517 /* Readahead page, never charged */
29833315 5518 if (!memcg)
0a31bc97
JW
5519 return;
5520
7bdd143c 5521 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5522 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5523 mem_cgroup_swap_statistics(memcg, true);
5524
1306a85a 5525 page->mem_cgroup = NULL;
0a31bc97 5526
7bdd143c
JW
5527 if (!mem_cgroup_is_root(memcg))
5528 page_counter_uncharge(&memcg->memory, 1);
5529
5530 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5531 VM_BUG_ON(!irqs_disabled());
0a31bc97 5532
7bdd143c
JW
5533 mem_cgroup_charge_statistics(memcg, page, -1);
5534 memcg_check_events(memcg, page);
0a31bc97
JW
5535}
5536
5537/**
5538 * mem_cgroup_uncharge_swap - uncharge a swap entry
5539 * @entry: swap entry to uncharge
5540 *
5541 * Drop the memsw charge associated with @entry.
5542 */
5543void mem_cgroup_uncharge_swap(swp_entry_t entry)
5544{
5545 struct mem_cgroup *memcg;
5546 unsigned short id;
5547
5548 if (!do_swap_account)
5549 return;
5550
5551 id = swap_cgroup_record(entry, 0);
5552 rcu_read_lock();
5553 memcg = mem_cgroup_lookup(id);
5554 if (memcg) {
ce00a967 5555 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5556 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5557 mem_cgroup_swap_statistics(memcg, false);
5558 css_put(&memcg->css);
5559 }
5560 rcu_read_unlock();
5561}
5562#endif
5563
00501b53
JW
5564/**
5565 * mem_cgroup_try_charge - try charging a page
5566 * @page: page to charge
5567 * @mm: mm context of the victim
5568 * @gfp_mask: reclaim mode
5569 * @memcgp: charged memcg return
5570 *
5571 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5572 * pages according to @gfp_mask if necessary.
5573 *
5574 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5575 * Otherwise, an error code is returned.
5576 *
5577 * After page->mapping has been set up, the caller must finalize the
5578 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5579 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5580 */
5581int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5582 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5583{
5584 struct mem_cgroup *memcg = NULL;
5585 unsigned int nr_pages = 1;
5586 int ret = 0;
5587
5588 if (mem_cgroup_disabled())
5589 goto out;
5590
5591 if (PageSwapCache(page)) {
00501b53
JW
5592 /*
5593 * Every swap fault against a single page tries to charge the
5594 * page, bail as early as possible. shmem_unuse() encounters
5595 * already charged pages, too. The USED bit is protected by
5596 * the page lock, which serializes swap cache removal, which
5597 * in turn serializes uncharging.
5598 */
1306a85a 5599 if (page->mem_cgroup)
00501b53
JW
5600 goto out;
5601 }
5602
5603 if (PageTransHuge(page)) {
5604 nr_pages <<= compound_order(page);
5605 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5606 }
5607
5608 if (do_swap_account && PageSwapCache(page))
5609 memcg = try_get_mem_cgroup_from_page(page);
5610 if (!memcg)
5611 memcg = get_mem_cgroup_from_mm(mm);
5612
5613 ret = try_charge(memcg, gfp_mask, nr_pages);
5614
5615 css_put(&memcg->css);
5616
5617 if (ret == -EINTR) {
5618 memcg = root_mem_cgroup;
5619 ret = 0;
5620 }
5621out:
5622 *memcgp = memcg;
5623 return ret;
5624}
5625
5626/**
5627 * mem_cgroup_commit_charge - commit a page charge
5628 * @page: page to charge
5629 * @memcg: memcg to charge the page to
5630 * @lrucare: page might be on LRU already
5631 *
5632 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5633 * after page->mapping has been set up. This must happen atomically
5634 * as part of the page instantiation, i.e. under the page table lock
5635 * for anonymous pages, under the page lock for page and swap cache.
5636 *
5637 * In addition, the page must not be on the LRU during the commit, to
5638 * prevent racing with task migration. If it might be, use @lrucare.
5639 *
5640 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5641 */
5642void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5643 bool lrucare)
5644{
5645 unsigned int nr_pages = 1;
5646
5647 VM_BUG_ON_PAGE(!page->mapping, page);
5648 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5649
5650 if (mem_cgroup_disabled())
5651 return;
5652 /*
5653 * Swap faults will attempt to charge the same page multiple
5654 * times. But reuse_swap_page() might have removed the page
5655 * from swapcache already, so we can't check PageSwapCache().
5656 */
5657 if (!memcg)
5658 return;
5659
6abb5a86
JW
5660 commit_charge(page, memcg, lrucare);
5661
00501b53
JW
5662 if (PageTransHuge(page)) {
5663 nr_pages <<= compound_order(page);
5664 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5665 }
5666
6abb5a86
JW
5667 local_irq_disable();
5668 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5669 memcg_check_events(memcg, page);
5670 local_irq_enable();
00501b53
JW
5671
5672 if (do_swap_account && PageSwapCache(page)) {
5673 swp_entry_t entry = { .val = page_private(page) };
5674 /*
5675 * The swap entry might not get freed for a long time,
5676 * let's not wait for it. The page already received a
5677 * memory+swap charge, drop the swap entry duplicate.
5678 */
5679 mem_cgroup_uncharge_swap(entry);
5680 }
5681}
5682
5683/**
5684 * mem_cgroup_cancel_charge - cancel a page charge
5685 * @page: page to charge
5686 * @memcg: memcg to charge the page to
5687 *
5688 * Cancel a charge transaction started by mem_cgroup_try_charge().
5689 */
5690void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5691{
5692 unsigned int nr_pages = 1;
5693
5694 if (mem_cgroup_disabled())
5695 return;
5696 /*
5697 * Swap faults will attempt to charge the same page multiple
5698 * times. But reuse_swap_page() might have removed the page
5699 * from swapcache already, so we can't check PageSwapCache().
5700 */
5701 if (!memcg)
5702 return;
5703
5704 if (PageTransHuge(page)) {
5705 nr_pages <<= compound_order(page);
5706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5707 }
5708
5709 cancel_charge(memcg, nr_pages);
5710}
5711
747db954 5712static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5713 unsigned long nr_anon, unsigned long nr_file,
5714 unsigned long nr_huge, struct page *dummy_page)
5715{
18eca2e6 5716 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5717 unsigned long flags;
5718
ce00a967 5719 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5720 page_counter_uncharge(&memcg->memory, nr_pages);
5721 if (do_swap_account)
5722 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5723 memcg_oom_recover(memcg);
5724 }
747db954
JW
5725
5726 local_irq_save(flags);
5727 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5728 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5729 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5730 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5731 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5732 memcg_check_events(memcg, dummy_page);
5733 local_irq_restore(flags);
e8ea14cc
JW
5734
5735 if (!mem_cgroup_is_root(memcg))
18eca2e6 5736 css_put_many(&memcg->css, nr_pages);
747db954
JW
5737}
5738
5739static void uncharge_list(struct list_head *page_list)
5740{
5741 struct mem_cgroup *memcg = NULL;
747db954
JW
5742 unsigned long nr_anon = 0;
5743 unsigned long nr_file = 0;
5744 unsigned long nr_huge = 0;
5745 unsigned long pgpgout = 0;
747db954
JW
5746 struct list_head *next;
5747 struct page *page;
5748
5749 next = page_list->next;
5750 do {
5751 unsigned int nr_pages = 1;
747db954
JW
5752
5753 page = list_entry(next, struct page, lru);
5754 next = page->lru.next;
5755
5756 VM_BUG_ON_PAGE(PageLRU(page), page);
5757 VM_BUG_ON_PAGE(page_count(page), page);
5758
1306a85a 5759 if (!page->mem_cgroup)
747db954
JW
5760 continue;
5761
5762 /*
5763 * Nobody should be changing or seriously looking at
1306a85a 5764 * page->mem_cgroup at this point, we have fully
29833315 5765 * exclusive access to the page.
747db954
JW
5766 */
5767
1306a85a 5768 if (memcg != page->mem_cgroup) {
747db954 5769 if (memcg) {
18eca2e6
JW
5770 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5771 nr_huge, page);
5772 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5773 }
1306a85a 5774 memcg = page->mem_cgroup;
747db954
JW
5775 }
5776
5777 if (PageTransHuge(page)) {
5778 nr_pages <<= compound_order(page);
5779 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5780 nr_huge += nr_pages;
5781 }
5782
5783 if (PageAnon(page))
5784 nr_anon += nr_pages;
5785 else
5786 nr_file += nr_pages;
5787
1306a85a 5788 page->mem_cgroup = NULL;
747db954
JW
5789
5790 pgpgout++;
5791 } while (next != page_list);
5792
5793 if (memcg)
18eca2e6
JW
5794 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5795 nr_huge, page);
747db954
JW
5796}
5797
0a31bc97
JW
5798/**
5799 * mem_cgroup_uncharge - uncharge a page
5800 * @page: page to uncharge
5801 *
5802 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5803 * mem_cgroup_commit_charge().
5804 */
5805void mem_cgroup_uncharge(struct page *page)
5806{
0a31bc97
JW
5807 if (mem_cgroup_disabled())
5808 return;
5809
747db954 5810 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5811 if (!page->mem_cgroup)
0a31bc97
JW
5812 return;
5813
747db954
JW
5814 INIT_LIST_HEAD(&page->lru);
5815 uncharge_list(&page->lru);
5816}
0a31bc97 5817
747db954
JW
5818/**
5819 * mem_cgroup_uncharge_list - uncharge a list of page
5820 * @page_list: list of pages to uncharge
5821 *
5822 * Uncharge a list of pages previously charged with
5823 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5824 */
5825void mem_cgroup_uncharge_list(struct list_head *page_list)
5826{
5827 if (mem_cgroup_disabled())
5828 return;
0a31bc97 5829
747db954
JW
5830 if (!list_empty(page_list))
5831 uncharge_list(page_list);
0a31bc97
JW
5832}
5833
5834/**
5835 * mem_cgroup_migrate - migrate a charge to another page
5836 * @oldpage: currently charged page
5837 * @newpage: page to transfer the charge to
5838 * @lrucare: both pages might be on the LRU already
5839 *
5840 * Migrate the charge from @oldpage to @newpage.
5841 *
5842 * Both pages must be locked, @newpage->mapping must be set up.
5843 */
5844void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5845 bool lrucare)
5846{
29833315 5847 struct mem_cgroup *memcg;
0a31bc97
JW
5848 int isolated;
5849
5850 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5851 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5852 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5853 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5854 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5855 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5856 newpage);
0a31bc97
JW
5857
5858 if (mem_cgroup_disabled())
5859 return;
5860
5861 /* Page cache replacement: new page already charged? */
1306a85a 5862 if (newpage->mem_cgroup)
0a31bc97
JW
5863 return;
5864
7d5e3245
JW
5865 /*
5866 * Swapcache readahead pages can get migrated before being
5867 * charged, and migration from compaction can happen to an
5868 * uncharged page when the PFN walker finds a page that
5869 * reclaim just put back on the LRU but has not released yet.
5870 */
1306a85a 5871 memcg = oldpage->mem_cgroup;
29833315 5872 if (!memcg)
0a31bc97
JW
5873 return;
5874
0a31bc97
JW
5875 if (lrucare)
5876 lock_page_lru(oldpage, &isolated);
5877
1306a85a 5878 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5879
5880 if (lrucare)
5881 unlock_page_lru(oldpage, isolated);
5882
29833315 5883 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5884}
5885
2d11085e 5886/*
1081312f
MH
5887 * subsys_initcall() for memory controller.
5888 *
5889 * Some parts like hotcpu_notifier() have to be initialized from this context
5890 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5891 * everything that doesn't depend on a specific mem_cgroup structure should
5892 * be initialized from here.
2d11085e
MH
5893 */
5894static int __init mem_cgroup_init(void)
5895{
5896 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 5897 enable_swap_cgroup();
bb4cc1a8 5898 mem_cgroup_soft_limit_tree_init();
e4777496 5899 memcg_stock_init();
2d11085e
MH
5900 return 0;
5901}
5902subsys_initcall(mem_cgroup_init);