memcg: reclaim when more than one page needed
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3 53#include <net/sock.h>
4bd2c1ee 54#include <net/ip.h>
d1a4c0b3 55#include <net/tcp_memcontrol.h>
8cdea7c0 56
8697d331
BS
57#include <asm/uaccess.h>
58
cc8e970c
KM
59#include <trace/events/vmscan.h>
60
a181b0e8 61struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
62EXPORT_SYMBOL(mem_cgroup_subsys);
63
a181b0e8 64#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 65static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 66
c255a458 67#ifdef CONFIG_MEMCG_SWAP
338c8431 68/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 69int do_swap_account __read_mostly;
a42c390c
MH
70
71/* for remember boot option*/
c255a458 72#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
73static int really_do_swap_account __initdata = 1;
74#else
75static int really_do_swap_account __initdata = 0;
76#endif
77
c077719b 78#else
a0db00fc 79#define do_swap_account 0
c077719b
KH
80#endif
81
82
d52aa412
KH
83/*
84 * Statistics for memory cgroup.
85 */
86enum mem_cgroup_stat_index {
87 /*
88 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
89 */
90 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 91 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 92 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 93 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
94 MEM_CGROUP_STAT_NSTATS,
95};
96
af7c4b0e
JW
97static const char * const mem_cgroup_stat_names[] = {
98 "cache",
99 "rss",
100 "mapped_file",
101 "swap",
102};
103
e9f8974f
JW
104enum mem_cgroup_events_index {
105 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
106 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
107 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
108 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
109 MEM_CGROUP_EVENTS_NSTATS,
110};
af7c4b0e
JW
111
112static const char * const mem_cgroup_events_names[] = {
113 "pgpgin",
114 "pgpgout",
115 "pgfault",
116 "pgmajfault",
117};
118
7a159cc9
JW
119/*
120 * Per memcg event counter is incremented at every pagein/pageout. With THP,
121 * it will be incremated by the number of pages. This counter is used for
122 * for trigger some periodic events. This is straightforward and better
123 * than using jiffies etc. to handle periodic memcg event.
124 */
125enum mem_cgroup_events_target {
126 MEM_CGROUP_TARGET_THRESH,
127 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 128 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
129 MEM_CGROUP_NTARGETS,
130};
a0db00fc
KS
131#define THRESHOLDS_EVENTS_TARGET 128
132#define SOFTLIMIT_EVENTS_TARGET 1024
133#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 134
d52aa412 135struct mem_cgroup_stat_cpu {
7a159cc9 136 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 137 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 138 unsigned long nr_page_events;
7a159cc9 139 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
140};
141
527a5ec9
JW
142struct mem_cgroup_reclaim_iter {
143 /* css_id of the last scanned hierarchy member */
144 int position;
145 /* scan generation, increased every round-trip */
146 unsigned int generation;
147};
148
6d12e2d8
KH
149/*
150 * per-zone information in memory controller.
151 */
6d12e2d8 152struct mem_cgroup_per_zone {
6290df54 153 struct lruvec lruvec;
1eb49272 154 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 155
527a5ec9
JW
156 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
157
f64c3f54
BS
158 struct rb_node tree_node; /* RB tree node */
159 unsigned long long usage_in_excess;/* Set to the value by which */
160 /* the soft limit is exceeded*/
161 bool on_tree;
d79154bb 162 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 163 /* use container_of */
6d12e2d8 164};
6d12e2d8
KH
165
166struct mem_cgroup_per_node {
167 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
168};
169
170struct mem_cgroup_lru_info {
171 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
172};
173
f64c3f54
BS
174/*
175 * Cgroups above their limits are maintained in a RB-Tree, independent of
176 * their hierarchy representation
177 */
178
179struct mem_cgroup_tree_per_zone {
180 struct rb_root rb_root;
181 spinlock_t lock;
182};
183
184struct mem_cgroup_tree_per_node {
185 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
186};
187
188struct mem_cgroup_tree {
189 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
190};
191
192static struct mem_cgroup_tree soft_limit_tree __read_mostly;
193
2e72b634
KS
194struct mem_cgroup_threshold {
195 struct eventfd_ctx *eventfd;
196 u64 threshold;
197};
198
9490ff27 199/* For threshold */
2e72b634 200struct mem_cgroup_threshold_ary {
748dad36 201 /* An array index points to threshold just below or equal to usage. */
5407a562 202 int current_threshold;
2e72b634
KS
203 /* Size of entries[] */
204 unsigned int size;
205 /* Array of thresholds */
206 struct mem_cgroup_threshold entries[0];
207};
2c488db2
KS
208
209struct mem_cgroup_thresholds {
210 /* Primary thresholds array */
211 struct mem_cgroup_threshold_ary *primary;
212 /*
213 * Spare threshold array.
214 * This is needed to make mem_cgroup_unregister_event() "never fail".
215 * It must be able to store at least primary->size - 1 entries.
216 */
217 struct mem_cgroup_threshold_ary *spare;
218};
219
9490ff27
KH
220/* for OOM */
221struct mem_cgroup_eventfd_list {
222 struct list_head list;
223 struct eventfd_ctx *eventfd;
224};
2e72b634 225
c0ff4b85
R
226static void mem_cgroup_threshold(struct mem_cgroup *memcg);
227static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 228
8cdea7c0
BS
229/*
230 * The memory controller data structure. The memory controller controls both
231 * page cache and RSS per cgroup. We would eventually like to provide
232 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
233 * to help the administrator determine what knobs to tune.
234 *
235 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
236 * we hit the water mark. May be even add a low water mark, such that
237 * no reclaim occurs from a cgroup at it's low water mark, this is
238 * a feature that will be implemented much later in the future.
8cdea7c0
BS
239 */
240struct mem_cgroup {
241 struct cgroup_subsys_state css;
242 /*
243 * the counter to account for memory usage
244 */
245 struct res_counter res;
59927fb9
HD
246
247 union {
248 /*
249 * the counter to account for mem+swap usage.
250 */
251 struct res_counter memsw;
252
253 /*
254 * rcu_freeing is used only when freeing struct mem_cgroup,
255 * so put it into a union to avoid wasting more memory.
256 * It must be disjoint from the css field. It could be
257 * in a union with the res field, but res plays a much
258 * larger part in mem_cgroup life than memsw, and might
259 * be of interest, even at time of free, when debugging.
260 * So share rcu_head with the less interesting memsw.
261 */
262 struct rcu_head rcu_freeing;
263 /*
3afe36b1
GC
264 * We also need some space for a worker in deferred freeing.
265 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
266 */
267 struct work_struct work_freeing;
268 };
269
78fb7466
PE
270 /*
271 * Per cgroup active and inactive list, similar to the
272 * per zone LRU lists.
78fb7466 273 */
6d12e2d8 274 struct mem_cgroup_lru_info info;
889976db
YH
275 int last_scanned_node;
276#if MAX_NUMNODES > 1
277 nodemask_t scan_nodes;
453a9bf3
KH
278 atomic_t numainfo_events;
279 atomic_t numainfo_updating;
889976db 280#endif
18f59ea7
BS
281 /*
282 * Should the accounting and control be hierarchical, per subtree?
283 */
284 bool use_hierarchy;
79dfdacc
MH
285
286 bool oom_lock;
287 atomic_t under_oom;
288
8c7c6e34 289 atomic_t refcnt;
14797e23 290
1f4c025b 291 int swappiness;
3c11ecf4
KH
292 /* OOM-Killer disable */
293 int oom_kill_disable;
a7885eb8 294
22a668d7
KH
295 /* set when res.limit == memsw.limit */
296 bool memsw_is_minimum;
297
2e72b634
KS
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds thresholds;
907860ed 303
2e72b634 304 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 305 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 306
9490ff27
KH
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
185efc0f 309
7dc74be0
DN
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
314 unsigned long move_charge_at_immigrate;
619d094b
KH
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
318 atomic_t moving_account;
312734c0
KH
319 /* taken only while moving_account > 0 */
320 spinlock_t move_lock;
d52aa412 321 /*
c62b1a3b 322 * percpu counter.
d52aa412 323 */
3a7951b4 324 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
325 /*
326 * used when a cpu is offlined or other synchronizations
327 * See mem_cgroup_read_stat().
328 */
329 struct mem_cgroup_stat_cpu nocpu_base;
330 spinlock_t pcp_counter_lock;
d1a4c0b3 331
4bd2c1ee 332#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
333 struct tcp_memcontrol tcp_mem;
334#endif
8cdea7c0
BS
335};
336
7dc74be0
DN
337/* Stuffs for move charges at task migration. */
338/*
339 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
340 * left-shifted bitmap of these types.
341 */
342enum move_type {
4ffef5fe 343 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 344 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
345 NR_MOVE_TYPE,
346};
347
4ffef5fe
DN
348/* "mc" and its members are protected by cgroup_mutex */
349static struct move_charge_struct {
b1dd693e 350 spinlock_t lock; /* for from, to */
4ffef5fe
DN
351 struct mem_cgroup *from;
352 struct mem_cgroup *to;
353 unsigned long precharge;
854ffa8d 354 unsigned long moved_charge;
483c30b5 355 unsigned long moved_swap;
8033b97c
DN
356 struct task_struct *moving_task; /* a task moving charges */
357 wait_queue_head_t waitq; /* a waitq for other context */
358} mc = {
2bd9bb20 359 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
360 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
361};
4ffef5fe 362
90254a65
DN
363static bool move_anon(void)
364{
365 return test_bit(MOVE_CHARGE_TYPE_ANON,
366 &mc.to->move_charge_at_immigrate);
367}
368
87946a72
DN
369static bool move_file(void)
370{
371 return test_bit(MOVE_CHARGE_TYPE_FILE,
372 &mc.to->move_charge_at_immigrate);
373}
374
4e416953
BS
375/*
376 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
377 * limit reclaim to prevent infinite loops, if they ever occur.
378 */
a0db00fc
KS
379#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
380#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 381
217bc319
KH
382enum charge_type {
383 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 384 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 385 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 386 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
387 NR_CHARGE_TYPE,
388};
389
8c7c6e34 390/* for encoding cft->private value on file */
65c64ce8
GC
391#define _MEM (0)
392#define _MEMSWAP (1)
393#define _OOM_TYPE (2)
a0db00fc
KS
394#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
395#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 396#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
397/* Used for OOM nofiier */
398#define OOM_CONTROL (0)
8c7c6e34 399
75822b44
BS
400/*
401 * Reclaim flags for mem_cgroup_hierarchical_reclaim
402 */
403#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
404#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
405#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
406#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
407
c0ff4b85
R
408static void mem_cgroup_get(struct mem_cgroup *memcg);
409static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 410
b2145145
WL
411static inline
412struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
413{
414 return container_of(s, struct mem_cgroup, css);
415}
416
7ffc0edc
MH
417static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
418{
419 return (memcg == root_mem_cgroup);
420}
421
e1aab161 422/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 423#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 424
e1aab161
GC
425void sock_update_memcg(struct sock *sk)
426{
376be5ff 427 if (mem_cgroup_sockets_enabled) {
e1aab161 428 struct mem_cgroup *memcg;
3f134619 429 struct cg_proto *cg_proto;
e1aab161
GC
430
431 BUG_ON(!sk->sk_prot->proto_cgroup);
432
f3f511e1
GC
433 /* Socket cloning can throw us here with sk_cgrp already
434 * filled. It won't however, necessarily happen from
435 * process context. So the test for root memcg given
436 * the current task's memcg won't help us in this case.
437 *
438 * Respecting the original socket's memcg is a better
439 * decision in this case.
440 */
441 if (sk->sk_cgrp) {
442 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
443 mem_cgroup_get(sk->sk_cgrp->memcg);
444 return;
445 }
446
e1aab161
GC
447 rcu_read_lock();
448 memcg = mem_cgroup_from_task(current);
3f134619
GC
449 cg_proto = sk->sk_prot->proto_cgroup(memcg);
450 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 451 mem_cgroup_get(memcg);
3f134619 452 sk->sk_cgrp = cg_proto;
e1aab161
GC
453 }
454 rcu_read_unlock();
455 }
456}
457EXPORT_SYMBOL(sock_update_memcg);
458
459void sock_release_memcg(struct sock *sk)
460{
376be5ff 461 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
462 struct mem_cgroup *memcg;
463 WARN_ON(!sk->sk_cgrp->memcg);
464 memcg = sk->sk_cgrp->memcg;
465 mem_cgroup_put(memcg);
466 }
467}
d1a4c0b3
GC
468
469struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
470{
471 if (!memcg || mem_cgroup_is_root(memcg))
472 return NULL;
473
474 return &memcg->tcp_mem.cg_proto;
475}
476EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 477
3f134619
GC
478static void disarm_sock_keys(struct mem_cgroup *memcg)
479{
480 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
481 return;
482 static_key_slow_dec(&memcg_socket_limit_enabled);
483}
484#else
485static void disarm_sock_keys(struct mem_cgroup *memcg)
486{
487}
488#endif
489
c0ff4b85 490static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 491
f64c3f54 492static struct mem_cgroup_per_zone *
c0ff4b85 493mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 494{
c0ff4b85 495 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
496}
497
c0ff4b85 498struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 499{
c0ff4b85 500 return &memcg->css;
d324236b
WF
501}
502
f64c3f54 503static struct mem_cgroup_per_zone *
c0ff4b85 504page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 505{
97a6c37b
JW
506 int nid = page_to_nid(page);
507 int zid = page_zonenum(page);
f64c3f54 508
c0ff4b85 509 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
510}
511
512static struct mem_cgroup_tree_per_zone *
513soft_limit_tree_node_zone(int nid, int zid)
514{
515 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
516}
517
518static struct mem_cgroup_tree_per_zone *
519soft_limit_tree_from_page(struct page *page)
520{
521 int nid = page_to_nid(page);
522 int zid = page_zonenum(page);
523
524 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
525}
526
527static void
c0ff4b85 528__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 529 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
530 struct mem_cgroup_tree_per_zone *mctz,
531 unsigned long long new_usage_in_excess)
f64c3f54
BS
532{
533 struct rb_node **p = &mctz->rb_root.rb_node;
534 struct rb_node *parent = NULL;
535 struct mem_cgroup_per_zone *mz_node;
536
537 if (mz->on_tree)
538 return;
539
ef8745c1
KH
540 mz->usage_in_excess = new_usage_in_excess;
541 if (!mz->usage_in_excess)
542 return;
f64c3f54
BS
543 while (*p) {
544 parent = *p;
545 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
546 tree_node);
547 if (mz->usage_in_excess < mz_node->usage_in_excess)
548 p = &(*p)->rb_left;
549 /*
550 * We can't avoid mem cgroups that are over their soft
551 * limit by the same amount
552 */
553 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
554 p = &(*p)->rb_right;
555 }
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
4e416953
BS
559}
560
561static void
c0ff4b85 562__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
563 struct mem_cgroup_per_zone *mz,
564 struct mem_cgroup_tree_per_zone *mctz)
565{
566 if (!mz->on_tree)
567 return;
568 rb_erase(&mz->tree_node, &mctz->rb_root);
569 mz->on_tree = false;
570}
571
f64c3f54 572static void
c0ff4b85 573mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
574 struct mem_cgroup_per_zone *mz,
575 struct mem_cgroup_tree_per_zone *mctz)
576{
577 spin_lock(&mctz->lock);
c0ff4b85 578 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
579 spin_unlock(&mctz->lock);
580}
581
f64c3f54 582
c0ff4b85 583static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 584{
ef8745c1 585 unsigned long long excess;
f64c3f54
BS
586 struct mem_cgroup_per_zone *mz;
587 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
588 int nid = page_to_nid(page);
589 int zid = page_zonenum(page);
f64c3f54
BS
590 mctz = soft_limit_tree_from_page(page);
591
592 /*
4e649152
KH
593 * Necessary to update all ancestors when hierarchy is used.
594 * because their event counter is not touched.
f64c3f54 595 */
c0ff4b85
R
596 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
597 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
598 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
599 /*
600 * We have to update the tree if mz is on RB-tree or
601 * mem is over its softlimit.
602 */
ef8745c1 603 if (excess || mz->on_tree) {
4e649152
KH
604 spin_lock(&mctz->lock);
605 /* if on-tree, remove it */
606 if (mz->on_tree)
c0ff4b85 607 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 608 /*
ef8745c1
KH
609 * Insert again. mz->usage_in_excess will be updated.
610 * If excess is 0, no tree ops.
4e649152 611 */
c0ff4b85 612 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
613 spin_unlock(&mctz->lock);
614 }
f64c3f54
BS
615 }
616}
617
c0ff4b85 618static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
619{
620 int node, zone;
621 struct mem_cgroup_per_zone *mz;
622 struct mem_cgroup_tree_per_zone *mctz;
623
3ed28fa1 624 for_each_node(node) {
f64c3f54 625 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 626 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 627 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 628 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
629 }
630 }
631}
632
4e416953
BS
633static struct mem_cgroup_per_zone *
634__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
635{
636 struct rb_node *rightmost = NULL;
26251eaf 637 struct mem_cgroup_per_zone *mz;
4e416953
BS
638
639retry:
26251eaf 640 mz = NULL;
4e416953
BS
641 rightmost = rb_last(&mctz->rb_root);
642 if (!rightmost)
643 goto done; /* Nothing to reclaim from */
644
645 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
646 /*
647 * Remove the node now but someone else can add it back,
648 * we will to add it back at the end of reclaim to its correct
649 * position in the tree.
650 */
d79154bb
HD
651 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
652 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
653 !css_tryget(&mz->memcg->css))
4e416953
BS
654 goto retry;
655done:
656 return mz;
657}
658
659static struct mem_cgroup_per_zone *
660mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
661{
662 struct mem_cgroup_per_zone *mz;
663
664 spin_lock(&mctz->lock);
665 mz = __mem_cgroup_largest_soft_limit_node(mctz);
666 spin_unlock(&mctz->lock);
667 return mz;
668}
669
711d3d2c
KH
670/*
671 * Implementation Note: reading percpu statistics for memcg.
672 *
673 * Both of vmstat[] and percpu_counter has threshold and do periodic
674 * synchronization to implement "quick" read. There are trade-off between
675 * reading cost and precision of value. Then, we may have a chance to implement
676 * a periodic synchronizion of counter in memcg's counter.
677 *
678 * But this _read() function is used for user interface now. The user accounts
679 * memory usage by memory cgroup and he _always_ requires exact value because
680 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
681 * have to visit all online cpus and make sum. So, for now, unnecessary
682 * synchronization is not implemented. (just implemented for cpu hotplug)
683 *
684 * If there are kernel internal actions which can make use of some not-exact
685 * value, and reading all cpu value can be performance bottleneck in some
686 * common workload, threashold and synchonization as vmstat[] should be
687 * implemented.
688 */
c0ff4b85 689static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 690 enum mem_cgroup_stat_index idx)
c62b1a3b 691{
7a159cc9 692 long val = 0;
c62b1a3b 693 int cpu;
c62b1a3b 694
711d3d2c
KH
695 get_online_cpus();
696 for_each_online_cpu(cpu)
c0ff4b85 697 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 698#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
699 spin_lock(&memcg->pcp_counter_lock);
700 val += memcg->nocpu_base.count[idx];
701 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
702#endif
703 put_online_cpus();
c62b1a3b
KH
704 return val;
705}
706
c0ff4b85 707static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
708 bool charge)
709{
710 int val = (charge) ? 1 : -1;
bff6bb83 711 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
712}
713
c0ff4b85 714static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
715 enum mem_cgroup_events_index idx)
716{
717 unsigned long val = 0;
718 int cpu;
719
720 for_each_online_cpu(cpu)
c0ff4b85 721 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 722#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
723 spin_lock(&memcg->pcp_counter_lock);
724 val += memcg->nocpu_base.events[idx];
725 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
726#endif
727 return val;
728}
729
c0ff4b85 730static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 731 bool anon, int nr_pages)
d52aa412 732{
c62b1a3b
KH
733 preempt_disable();
734
b2402857
KH
735 /*
736 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
737 * counted as CACHE even if it's on ANON LRU.
738 */
739 if (anon)
740 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 741 nr_pages);
d52aa412 742 else
b2402857 743 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 744 nr_pages);
55e462b0 745
e401f176
KH
746 /* pagein of a big page is an event. So, ignore page size */
747 if (nr_pages > 0)
c0ff4b85 748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 749 else {
c0ff4b85 750 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
751 nr_pages = -nr_pages; /* for event */
752 }
e401f176 753
13114716 754 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 755
c62b1a3b 756 preempt_enable();
6d12e2d8
KH
757}
758
bb2a0de9 759unsigned long
4d7dcca2 760mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
761{
762 struct mem_cgroup_per_zone *mz;
763
764 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
765 return mz->lru_size[lru];
766}
767
768static unsigned long
c0ff4b85 769mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 770 unsigned int lru_mask)
889976db
YH
771{
772 struct mem_cgroup_per_zone *mz;
f156ab93 773 enum lru_list lru;
bb2a0de9
KH
774 unsigned long ret = 0;
775
c0ff4b85 776 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 777
f156ab93
HD
778 for_each_lru(lru) {
779 if (BIT(lru) & lru_mask)
780 ret += mz->lru_size[lru];
bb2a0de9
KH
781 }
782 return ret;
783}
784
785static unsigned long
c0ff4b85 786mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
787 int nid, unsigned int lru_mask)
788{
889976db
YH
789 u64 total = 0;
790 int zid;
791
bb2a0de9 792 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
793 total += mem_cgroup_zone_nr_lru_pages(memcg,
794 nid, zid, lru_mask);
bb2a0de9 795
889976db
YH
796 return total;
797}
bb2a0de9 798
c0ff4b85 799static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 800 unsigned int lru_mask)
6d12e2d8 801{
889976db 802 int nid;
6d12e2d8
KH
803 u64 total = 0;
804
31aaea4a 805 for_each_node_state(nid, N_MEMORY)
c0ff4b85 806 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 807 return total;
d52aa412
KH
808}
809
f53d7ce3
JW
810static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
811 enum mem_cgroup_events_target target)
7a159cc9
JW
812{
813 unsigned long val, next;
814
13114716 815 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 816 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 817 /* from time_after() in jiffies.h */
f53d7ce3
JW
818 if ((long)next - (long)val < 0) {
819 switch (target) {
820 case MEM_CGROUP_TARGET_THRESH:
821 next = val + THRESHOLDS_EVENTS_TARGET;
822 break;
823 case MEM_CGROUP_TARGET_SOFTLIMIT:
824 next = val + SOFTLIMIT_EVENTS_TARGET;
825 break;
826 case MEM_CGROUP_TARGET_NUMAINFO:
827 next = val + NUMAINFO_EVENTS_TARGET;
828 break;
829 default:
830 break;
831 }
832 __this_cpu_write(memcg->stat->targets[target], next);
833 return true;
7a159cc9 834 }
f53d7ce3 835 return false;
d2265e6f
KH
836}
837
838/*
839 * Check events in order.
840 *
841 */
c0ff4b85 842static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 843{
4799401f 844 preempt_disable();
d2265e6f 845 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
846 if (unlikely(mem_cgroup_event_ratelimit(memcg,
847 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
848 bool do_softlimit;
849 bool do_numainfo __maybe_unused;
f53d7ce3
JW
850
851 do_softlimit = mem_cgroup_event_ratelimit(memcg,
852 MEM_CGROUP_TARGET_SOFTLIMIT);
853#if MAX_NUMNODES > 1
854 do_numainfo = mem_cgroup_event_ratelimit(memcg,
855 MEM_CGROUP_TARGET_NUMAINFO);
856#endif
857 preempt_enable();
858
c0ff4b85 859 mem_cgroup_threshold(memcg);
f53d7ce3 860 if (unlikely(do_softlimit))
c0ff4b85 861 mem_cgroup_update_tree(memcg, page);
453a9bf3 862#if MAX_NUMNODES > 1
f53d7ce3 863 if (unlikely(do_numainfo))
c0ff4b85 864 atomic_inc(&memcg->numainfo_events);
453a9bf3 865#endif
f53d7ce3
JW
866 } else
867 preempt_enable();
d2265e6f
KH
868}
869
d1a4c0b3 870struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 871{
b2145145
WL
872 return mem_cgroup_from_css(
873 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
874}
875
cf475ad2 876struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 877{
31a78f23
BS
878 /*
879 * mm_update_next_owner() may clear mm->owner to NULL
880 * if it races with swapoff, page migration, etc.
881 * So this can be called with p == NULL.
882 */
883 if (unlikely(!p))
884 return NULL;
885
b2145145 886 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
887}
888
a433658c 889struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 890{
c0ff4b85 891 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
892
893 if (!mm)
894 return NULL;
54595fe2
KH
895 /*
896 * Because we have no locks, mm->owner's may be being moved to other
897 * cgroup. We use css_tryget() here even if this looks
898 * pessimistic (rather than adding locks here).
899 */
900 rcu_read_lock();
901 do {
c0ff4b85
R
902 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
903 if (unlikely(!memcg))
54595fe2 904 break;
c0ff4b85 905 } while (!css_tryget(&memcg->css));
54595fe2 906 rcu_read_unlock();
c0ff4b85 907 return memcg;
54595fe2
KH
908}
909
5660048c
JW
910/**
911 * mem_cgroup_iter - iterate over memory cgroup hierarchy
912 * @root: hierarchy root
913 * @prev: previously returned memcg, NULL on first invocation
914 * @reclaim: cookie for shared reclaim walks, NULL for full walks
915 *
916 * Returns references to children of the hierarchy below @root, or
917 * @root itself, or %NULL after a full round-trip.
918 *
919 * Caller must pass the return value in @prev on subsequent
920 * invocations for reference counting, or use mem_cgroup_iter_break()
921 * to cancel a hierarchy walk before the round-trip is complete.
922 *
923 * Reclaimers can specify a zone and a priority level in @reclaim to
924 * divide up the memcgs in the hierarchy among all concurrent
925 * reclaimers operating on the same zone and priority.
926 */
927struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
928 struct mem_cgroup *prev,
929 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 930{
9f3a0d09
JW
931 struct mem_cgroup *memcg = NULL;
932 int id = 0;
711d3d2c 933
5660048c
JW
934 if (mem_cgroup_disabled())
935 return NULL;
936
9f3a0d09
JW
937 if (!root)
938 root = root_mem_cgroup;
7d74b06f 939
9f3a0d09
JW
940 if (prev && !reclaim)
941 id = css_id(&prev->css);
14067bb3 942
9f3a0d09
JW
943 if (prev && prev != root)
944 css_put(&prev->css);
14067bb3 945
9f3a0d09
JW
946 if (!root->use_hierarchy && root != root_mem_cgroup) {
947 if (prev)
948 return NULL;
949 return root;
950 }
14067bb3 951
9f3a0d09 952 while (!memcg) {
527a5ec9 953 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 954 struct cgroup_subsys_state *css;
711d3d2c 955
527a5ec9
JW
956 if (reclaim) {
957 int nid = zone_to_nid(reclaim->zone);
958 int zid = zone_idx(reclaim->zone);
959 struct mem_cgroup_per_zone *mz;
960
961 mz = mem_cgroup_zoneinfo(root, nid, zid);
962 iter = &mz->reclaim_iter[reclaim->priority];
963 if (prev && reclaim->generation != iter->generation)
964 return NULL;
965 id = iter->position;
966 }
7d74b06f 967
9f3a0d09
JW
968 rcu_read_lock();
969 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
970 if (css) {
971 if (css == &root->css || css_tryget(css))
b2145145 972 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
973 } else
974 id = 0;
14067bb3 975 rcu_read_unlock();
14067bb3 976
527a5ec9
JW
977 if (reclaim) {
978 iter->position = id;
979 if (!css)
980 iter->generation++;
981 else if (!prev && memcg)
982 reclaim->generation = iter->generation;
983 }
9f3a0d09
JW
984
985 if (prev && !css)
986 return NULL;
987 }
988 return memcg;
14067bb3 989}
7d74b06f 990
5660048c
JW
991/**
992 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
993 * @root: hierarchy root
994 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
995 */
996void mem_cgroup_iter_break(struct mem_cgroup *root,
997 struct mem_cgroup *prev)
9f3a0d09
JW
998{
999 if (!root)
1000 root = root_mem_cgroup;
1001 if (prev && prev != root)
1002 css_put(&prev->css);
1003}
7d74b06f 1004
9f3a0d09
JW
1005/*
1006 * Iteration constructs for visiting all cgroups (under a tree). If
1007 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1008 * be used for reference counting.
1009 */
1010#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1011 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1012 iter != NULL; \
527a5ec9 1013 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1014
9f3a0d09 1015#define for_each_mem_cgroup(iter) \
527a5ec9 1016 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1017 iter != NULL; \
527a5ec9 1018 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1019
68ae564b 1020void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1021{
c0ff4b85 1022 struct mem_cgroup *memcg;
456f998e 1023
456f998e 1024 rcu_read_lock();
c0ff4b85
R
1025 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1026 if (unlikely(!memcg))
456f998e
YH
1027 goto out;
1028
1029 switch (idx) {
456f998e 1030 case PGFAULT:
0e574a93
JW
1031 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1032 break;
1033 case PGMAJFAULT:
1034 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1035 break;
1036 default:
1037 BUG();
1038 }
1039out:
1040 rcu_read_unlock();
1041}
68ae564b 1042EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1043
925b7673
JW
1044/**
1045 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1046 * @zone: zone of the wanted lruvec
fa9add64 1047 * @memcg: memcg of the wanted lruvec
925b7673
JW
1048 *
1049 * Returns the lru list vector holding pages for the given @zone and
1050 * @mem. This can be the global zone lruvec, if the memory controller
1051 * is disabled.
1052 */
1053struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1054 struct mem_cgroup *memcg)
1055{
1056 struct mem_cgroup_per_zone *mz;
bea8c150 1057 struct lruvec *lruvec;
925b7673 1058
bea8c150
HD
1059 if (mem_cgroup_disabled()) {
1060 lruvec = &zone->lruvec;
1061 goto out;
1062 }
925b7673
JW
1063
1064 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1065 lruvec = &mz->lruvec;
1066out:
1067 /*
1068 * Since a node can be onlined after the mem_cgroup was created,
1069 * we have to be prepared to initialize lruvec->zone here;
1070 * and if offlined then reonlined, we need to reinitialize it.
1071 */
1072 if (unlikely(lruvec->zone != zone))
1073 lruvec->zone = zone;
1074 return lruvec;
925b7673
JW
1075}
1076
08e552c6
KH
1077/*
1078 * Following LRU functions are allowed to be used without PCG_LOCK.
1079 * Operations are called by routine of global LRU independently from memcg.
1080 * What we have to take care of here is validness of pc->mem_cgroup.
1081 *
1082 * Changes to pc->mem_cgroup happens when
1083 * 1. charge
1084 * 2. moving account
1085 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1086 * It is added to LRU before charge.
1087 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1088 * When moving account, the page is not on LRU. It's isolated.
1089 */
4f98a2fe 1090
925b7673 1091/**
fa9add64 1092 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1093 * @page: the page
fa9add64 1094 * @zone: zone of the page
925b7673 1095 */
fa9add64 1096struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1097{
08e552c6 1098 struct mem_cgroup_per_zone *mz;
925b7673
JW
1099 struct mem_cgroup *memcg;
1100 struct page_cgroup *pc;
bea8c150 1101 struct lruvec *lruvec;
6d12e2d8 1102
bea8c150
HD
1103 if (mem_cgroup_disabled()) {
1104 lruvec = &zone->lruvec;
1105 goto out;
1106 }
925b7673 1107
08e552c6 1108 pc = lookup_page_cgroup(page);
38c5d72f 1109 memcg = pc->mem_cgroup;
7512102c
HD
1110
1111 /*
fa9add64 1112 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1113 * an uncharged page off lru does nothing to secure
1114 * its former mem_cgroup from sudden removal.
1115 *
1116 * Our caller holds lru_lock, and PageCgroupUsed is updated
1117 * under page_cgroup lock: between them, they make all uses
1118 * of pc->mem_cgroup safe.
1119 */
fa9add64 1120 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1121 pc->mem_cgroup = memcg = root_mem_cgroup;
1122
925b7673 1123 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1124 lruvec = &mz->lruvec;
1125out:
1126 /*
1127 * Since a node can be onlined after the mem_cgroup was created,
1128 * we have to be prepared to initialize lruvec->zone here;
1129 * and if offlined then reonlined, we need to reinitialize it.
1130 */
1131 if (unlikely(lruvec->zone != zone))
1132 lruvec->zone = zone;
1133 return lruvec;
08e552c6 1134}
b69408e8 1135
925b7673 1136/**
fa9add64
HD
1137 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1138 * @lruvec: mem_cgroup per zone lru vector
1139 * @lru: index of lru list the page is sitting on
1140 * @nr_pages: positive when adding or negative when removing
925b7673 1141 *
fa9add64
HD
1142 * This function must be called when a page is added to or removed from an
1143 * lru list.
3f58a829 1144 */
fa9add64
HD
1145void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1146 int nr_pages)
3f58a829
MK
1147{
1148 struct mem_cgroup_per_zone *mz;
fa9add64 1149 unsigned long *lru_size;
3f58a829
MK
1150
1151 if (mem_cgroup_disabled())
1152 return;
1153
fa9add64
HD
1154 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1155 lru_size = mz->lru_size + lru;
1156 *lru_size += nr_pages;
1157 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1158}
544122e5 1159
3e92041d 1160/*
c0ff4b85 1161 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1162 * hierarchy subtree
1163 */
c3ac9a8a
JW
1164bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1165 struct mem_cgroup *memcg)
3e92041d 1166{
91c63734
JW
1167 if (root_memcg == memcg)
1168 return true;
3a981f48 1169 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1170 return false;
c3ac9a8a
JW
1171 return css_is_ancestor(&memcg->css, &root_memcg->css);
1172}
1173
1174static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1175 struct mem_cgroup *memcg)
1176{
1177 bool ret;
1178
91c63734 1179 rcu_read_lock();
c3ac9a8a 1180 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1181 rcu_read_unlock();
1182 return ret;
3e92041d
MH
1183}
1184
c0ff4b85 1185int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1186{
1187 int ret;
0b7f569e 1188 struct mem_cgroup *curr = NULL;
158e0a2d 1189 struct task_struct *p;
4c4a2214 1190
158e0a2d 1191 p = find_lock_task_mm(task);
de077d22
DR
1192 if (p) {
1193 curr = try_get_mem_cgroup_from_mm(p->mm);
1194 task_unlock(p);
1195 } else {
1196 /*
1197 * All threads may have already detached their mm's, but the oom
1198 * killer still needs to detect if they have already been oom
1199 * killed to prevent needlessly killing additional tasks.
1200 */
1201 task_lock(task);
1202 curr = mem_cgroup_from_task(task);
1203 if (curr)
1204 css_get(&curr->css);
1205 task_unlock(task);
1206 }
0b7f569e
KH
1207 if (!curr)
1208 return 0;
d31f56db 1209 /*
c0ff4b85 1210 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1211 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1212 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1213 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1214 */
c0ff4b85 1215 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1216 css_put(&curr->css);
4c4a2214
DR
1217 return ret;
1218}
1219
c56d5c7d 1220int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1221{
9b272977 1222 unsigned long inactive_ratio;
14797e23 1223 unsigned long inactive;
9b272977 1224 unsigned long active;
c772be93 1225 unsigned long gb;
14797e23 1226
4d7dcca2
HD
1227 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1228 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1229
c772be93
KM
1230 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1231 if (gb)
1232 inactive_ratio = int_sqrt(10 * gb);
1233 else
1234 inactive_ratio = 1;
1235
9b272977 1236 return inactive * inactive_ratio < active;
14797e23
KM
1237}
1238
c56d5c7d 1239int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1240{
1241 unsigned long active;
1242 unsigned long inactive;
1243
4d7dcca2
HD
1244 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1245 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1246
1247 return (active > inactive);
1248}
1249
6d61ef40
BS
1250#define mem_cgroup_from_res_counter(counter, member) \
1251 container_of(counter, struct mem_cgroup, member)
1252
19942822 1253/**
9d11ea9f 1254 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1255 * @memcg: the memory cgroup
19942822 1256 *
9d11ea9f 1257 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1258 * pages.
19942822 1259 */
c0ff4b85 1260static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1261{
9d11ea9f
JW
1262 unsigned long long margin;
1263
c0ff4b85 1264 margin = res_counter_margin(&memcg->res);
9d11ea9f 1265 if (do_swap_account)
c0ff4b85 1266 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1267 return margin >> PAGE_SHIFT;
19942822
JW
1268}
1269
1f4c025b 1270int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1271{
1272 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1273
1274 /* root ? */
1275 if (cgrp->parent == NULL)
1276 return vm_swappiness;
1277
bf1ff263 1278 return memcg->swappiness;
a7885eb8
KM
1279}
1280
619d094b
KH
1281/*
1282 * memcg->moving_account is used for checking possibility that some thread is
1283 * calling move_account(). When a thread on CPU-A starts moving pages under
1284 * a memcg, other threads should check memcg->moving_account under
1285 * rcu_read_lock(), like this:
1286 *
1287 * CPU-A CPU-B
1288 * rcu_read_lock()
1289 * memcg->moving_account+1 if (memcg->mocing_account)
1290 * take heavy locks.
1291 * synchronize_rcu() update something.
1292 * rcu_read_unlock()
1293 * start move here.
1294 */
4331f7d3
KH
1295
1296/* for quick checking without looking up memcg */
1297atomic_t memcg_moving __read_mostly;
1298
c0ff4b85 1299static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1300{
4331f7d3 1301 atomic_inc(&memcg_moving);
619d094b 1302 atomic_inc(&memcg->moving_account);
32047e2a
KH
1303 synchronize_rcu();
1304}
1305
c0ff4b85 1306static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1307{
619d094b
KH
1308 /*
1309 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1310 * We check NULL in callee rather than caller.
1311 */
4331f7d3
KH
1312 if (memcg) {
1313 atomic_dec(&memcg_moving);
619d094b 1314 atomic_dec(&memcg->moving_account);
4331f7d3 1315 }
32047e2a 1316}
619d094b 1317
32047e2a
KH
1318/*
1319 * 2 routines for checking "mem" is under move_account() or not.
1320 *
13fd1dd9
AM
1321 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1322 * is used for avoiding races in accounting. If true,
32047e2a
KH
1323 * pc->mem_cgroup may be overwritten.
1324 *
1325 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1326 * under hierarchy of moving cgroups. This is for
1327 * waiting at hith-memory prressure caused by "move".
1328 */
1329
13fd1dd9 1330static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1331{
1332 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1333 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1334}
4b534334 1335
c0ff4b85 1336static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1337{
2bd9bb20
KH
1338 struct mem_cgroup *from;
1339 struct mem_cgroup *to;
4b534334 1340 bool ret = false;
2bd9bb20
KH
1341 /*
1342 * Unlike task_move routines, we access mc.to, mc.from not under
1343 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1344 */
1345 spin_lock(&mc.lock);
1346 from = mc.from;
1347 to = mc.to;
1348 if (!from)
1349 goto unlock;
3e92041d 1350
c0ff4b85
R
1351 ret = mem_cgroup_same_or_subtree(memcg, from)
1352 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1353unlock:
1354 spin_unlock(&mc.lock);
4b534334
KH
1355 return ret;
1356}
1357
c0ff4b85 1358static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1359{
1360 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1361 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1362 DEFINE_WAIT(wait);
1363 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1364 /* moving charge context might have finished. */
1365 if (mc.moving_task)
1366 schedule();
1367 finish_wait(&mc.waitq, &wait);
1368 return true;
1369 }
1370 }
1371 return false;
1372}
1373
312734c0
KH
1374/*
1375 * Take this lock when
1376 * - a code tries to modify page's memcg while it's USED.
1377 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1378 * see mem_cgroup_stolen(), too.
312734c0
KH
1379 */
1380static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1381 unsigned long *flags)
1382{
1383 spin_lock_irqsave(&memcg->move_lock, *flags);
1384}
1385
1386static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1387 unsigned long *flags)
1388{
1389 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1390}
1391
e222432b 1392/**
6a6135b6 1393 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1394 * @memcg: The memory cgroup that went over limit
1395 * @p: Task that is going to be killed
1396 *
1397 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1398 * enabled
1399 */
1400void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1401{
1402 struct cgroup *task_cgrp;
1403 struct cgroup *mem_cgrp;
1404 /*
1405 * Need a buffer in BSS, can't rely on allocations. The code relies
1406 * on the assumption that OOM is serialized for memory controller.
1407 * If this assumption is broken, revisit this code.
1408 */
1409 static char memcg_name[PATH_MAX];
1410 int ret;
1411
d31f56db 1412 if (!memcg || !p)
e222432b
BS
1413 return;
1414
e222432b
BS
1415 rcu_read_lock();
1416
1417 mem_cgrp = memcg->css.cgroup;
1418 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1419
1420 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1421 if (ret < 0) {
1422 /*
1423 * Unfortunately, we are unable to convert to a useful name
1424 * But we'll still print out the usage information
1425 */
1426 rcu_read_unlock();
1427 goto done;
1428 }
1429 rcu_read_unlock();
1430
1431 printk(KERN_INFO "Task in %s killed", memcg_name);
1432
1433 rcu_read_lock();
1434 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1435 if (ret < 0) {
1436 rcu_read_unlock();
1437 goto done;
1438 }
1439 rcu_read_unlock();
1440
1441 /*
1442 * Continues from above, so we don't need an KERN_ level
1443 */
1444 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1445done:
1446
1447 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1448 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1449 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1450 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1451 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1452 "failcnt %llu\n",
1453 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1454 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1455 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1456}
1457
81d39c20
KH
1458/*
1459 * This function returns the number of memcg under hierarchy tree. Returns
1460 * 1(self count) if no children.
1461 */
c0ff4b85 1462static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1463{
1464 int num = 0;
7d74b06f
KH
1465 struct mem_cgroup *iter;
1466
c0ff4b85 1467 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1468 num++;
81d39c20
KH
1469 return num;
1470}
1471
a63d83f4
DR
1472/*
1473 * Return the memory (and swap, if configured) limit for a memcg.
1474 */
9cbb78bb 1475static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1476{
1477 u64 limit;
a63d83f4 1478
f3e8eb70 1479 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1480
a63d83f4 1481 /*
9a5a8f19 1482 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1483 */
9a5a8f19
MH
1484 if (mem_cgroup_swappiness(memcg)) {
1485 u64 memsw;
1486
1487 limit += total_swap_pages << PAGE_SHIFT;
1488 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1489
1490 /*
1491 * If memsw is finite and limits the amount of swap space
1492 * available to this memcg, return that limit.
1493 */
1494 limit = min(limit, memsw);
1495 }
1496
1497 return limit;
a63d83f4
DR
1498}
1499
19965460
DR
1500static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1501 int order)
9cbb78bb
DR
1502{
1503 struct mem_cgroup *iter;
1504 unsigned long chosen_points = 0;
1505 unsigned long totalpages;
1506 unsigned int points = 0;
1507 struct task_struct *chosen = NULL;
1508
876aafbf
DR
1509 /*
1510 * If current has a pending SIGKILL, then automatically select it. The
1511 * goal is to allow it to allocate so that it may quickly exit and free
1512 * its memory.
1513 */
1514 if (fatal_signal_pending(current)) {
1515 set_thread_flag(TIF_MEMDIE);
1516 return;
1517 }
1518
1519 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1520 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1521 for_each_mem_cgroup_tree(iter, memcg) {
1522 struct cgroup *cgroup = iter->css.cgroup;
1523 struct cgroup_iter it;
1524 struct task_struct *task;
1525
1526 cgroup_iter_start(cgroup, &it);
1527 while ((task = cgroup_iter_next(cgroup, &it))) {
1528 switch (oom_scan_process_thread(task, totalpages, NULL,
1529 false)) {
1530 case OOM_SCAN_SELECT:
1531 if (chosen)
1532 put_task_struct(chosen);
1533 chosen = task;
1534 chosen_points = ULONG_MAX;
1535 get_task_struct(chosen);
1536 /* fall through */
1537 case OOM_SCAN_CONTINUE:
1538 continue;
1539 case OOM_SCAN_ABORT:
1540 cgroup_iter_end(cgroup, &it);
1541 mem_cgroup_iter_break(memcg, iter);
1542 if (chosen)
1543 put_task_struct(chosen);
1544 return;
1545 case OOM_SCAN_OK:
1546 break;
1547 };
1548 points = oom_badness(task, memcg, NULL, totalpages);
1549 if (points > chosen_points) {
1550 if (chosen)
1551 put_task_struct(chosen);
1552 chosen = task;
1553 chosen_points = points;
1554 get_task_struct(chosen);
1555 }
1556 }
1557 cgroup_iter_end(cgroup, &it);
1558 }
1559
1560 if (!chosen)
1561 return;
1562 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1563 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1564 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1565}
1566
5660048c
JW
1567static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1568 gfp_t gfp_mask,
1569 unsigned long flags)
1570{
1571 unsigned long total = 0;
1572 bool noswap = false;
1573 int loop;
1574
1575 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1576 noswap = true;
1577 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1578 noswap = true;
1579
1580 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1581 if (loop)
1582 drain_all_stock_async(memcg);
1583 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1584 /*
1585 * Allow limit shrinkers, which are triggered directly
1586 * by userspace, to catch signals and stop reclaim
1587 * after minimal progress, regardless of the margin.
1588 */
1589 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1590 break;
1591 if (mem_cgroup_margin(memcg))
1592 break;
1593 /*
1594 * If nothing was reclaimed after two attempts, there
1595 * may be no reclaimable pages in this hierarchy.
1596 */
1597 if (loop && !total)
1598 break;
1599 }
1600 return total;
1601}
1602
4d0c066d
KH
1603/**
1604 * test_mem_cgroup_node_reclaimable
dad7557e 1605 * @memcg: the target memcg
4d0c066d
KH
1606 * @nid: the node ID to be checked.
1607 * @noswap : specify true here if the user wants flle only information.
1608 *
1609 * This function returns whether the specified memcg contains any
1610 * reclaimable pages on a node. Returns true if there are any reclaimable
1611 * pages in the node.
1612 */
c0ff4b85 1613static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1614 int nid, bool noswap)
1615{
c0ff4b85 1616 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1617 return true;
1618 if (noswap || !total_swap_pages)
1619 return false;
c0ff4b85 1620 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1621 return true;
1622 return false;
1623
1624}
889976db
YH
1625#if MAX_NUMNODES > 1
1626
1627/*
1628 * Always updating the nodemask is not very good - even if we have an empty
1629 * list or the wrong list here, we can start from some node and traverse all
1630 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1631 *
1632 */
c0ff4b85 1633static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1634{
1635 int nid;
453a9bf3
KH
1636 /*
1637 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1638 * pagein/pageout changes since the last update.
1639 */
c0ff4b85 1640 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1641 return;
c0ff4b85 1642 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1643 return;
1644
889976db 1645 /* make a nodemask where this memcg uses memory from */
31aaea4a 1646 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1647
31aaea4a 1648 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1649
c0ff4b85
R
1650 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1651 node_clear(nid, memcg->scan_nodes);
889976db 1652 }
453a9bf3 1653
c0ff4b85
R
1654 atomic_set(&memcg->numainfo_events, 0);
1655 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1656}
1657
1658/*
1659 * Selecting a node where we start reclaim from. Because what we need is just
1660 * reducing usage counter, start from anywhere is O,K. Considering
1661 * memory reclaim from current node, there are pros. and cons.
1662 *
1663 * Freeing memory from current node means freeing memory from a node which
1664 * we'll use or we've used. So, it may make LRU bad. And if several threads
1665 * hit limits, it will see a contention on a node. But freeing from remote
1666 * node means more costs for memory reclaim because of memory latency.
1667 *
1668 * Now, we use round-robin. Better algorithm is welcomed.
1669 */
c0ff4b85 1670int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1671{
1672 int node;
1673
c0ff4b85
R
1674 mem_cgroup_may_update_nodemask(memcg);
1675 node = memcg->last_scanned_node;
889976db 1676
c0ff4b85 1677 node = next_node(node, memcg->scan_nodes);
889976db 1678 if (node == MAX_NUMNODES)
c0ff4b85 1679 node = first_node(memcg->scan_nodes);
889976db
YH
1680 /*
1681 * We call this when we hit limit, not when pages are added to LRU.
1682 * No LRU may hold pages because all pages are UNEVICTABLE or
1683 * memcg is too small and all pages are not on LRU. In that case,
1684 * we use curret node.
1685 */
1686 if (unlikely(node == MAX_NUMNODES))
1687 node = numa_node_id();
1688
c0ff4b85 1689 memcg->last_scanned_node = node;
889976db
YH
1690 return node;
1691}
1692
4d0c066d
KH
1693/*
1694 * Check all nodes whether it contains reclaimable pages or not.
1695 * For quick scan, we make use of scan_nodes. This will allow us to skip
1696 * unused nodes. But scan_nodes is lazily updated and may not cotain
1697 * enough new information. We need to do double check.
1698 */
6bbda35c 1699static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1700{
1701 int nid;
1702
1703 /*
1704 * quick check...making use of scan_node.
1705 * We can skip unused nodes.
1706 */
c0ff4b85
R
1707 if (!nodes_empty(memcg->scan_nodes)) {
1708 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1709 nid < MAX_NUMNODES;
c0ff4b85 1710 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1711
c0ff4b85 1712 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1713 return true;
1714 }
1715 }
1716 /*
1717 * Check rest of nodes.
1718 */
31aaea4a 1719 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1720 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1721 continue;
c0ff4b85 1722 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1723 return true;
1724 }
1725 return false;
1726}
1727
889976db 1728#else
c0ff4b85 1729int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1730{
1731 return 0;
1732}
4d0c066d 1733
6bbda35c 1734static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1735{
c0ff4b85 1736 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1737}
889976db
YH
1738#endif
1739
5660048c
JW
1740static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1741 struct zone *zone,
1742 gfp_t gfp_mask,
1743 unsigned long *total_scanned)
6d61ef40 1744{
9f3a0d09 1745 struct mem_cgroup *victim = NULL;
5660048c 1746 int total = 0;
04046e1a 1747 int loop = 0;
9d11ea9f 1748 unsigned long excess;
185efc0f 1749 unsigned long nr_scanned;
527a5ec9
JW
1750 struct mem_cgroup_reclaim_cookie reclaim = {
1751 .zone = zone,
1752 .priority = 0,
1753 };
9d11ea9f 1754
c0ff4b85 1755 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1756
4e416953 1757 while (1) {
527a5ec9 1758 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1759 if (!victim) {
04046e1a 1760 loop++;
4e416953
BS
1761 if (loop >= 2) {
1762 /*
1763 * If we have not been able to reclaim
1764 * anything, it might because there are
1765 * no reclaimable pages under this hierarchy
1766 */
5660048c 1767 if (!total)
4e416953 1768 break;
4e416953 1769 /*
25985edc 1770 * We want to do more targeted reclaim.
4e416953
BS
1771 * excess >> 2 is not to excessive so as to
1772 * reclaim too much, nor too less that we keep
1773 * coming back to reclaim from this cgroup
1774 */
1775 if (total >= (excess >> 2) ||
9f3a0d09 1776 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1777 break;
4e416953 1778 }
9f3a0d09 1779 continue;
4e416953 1780 }
5660048c 1781 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1782 continue;
5660048c
JW
1783 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1784 zone, &nr_scanned);
1785 *total_scanned += nr_scanned;
1786 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1787 break;
6d61ef40 1788 }
9f3a0d09 1789 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1790 return total;
6d61ef40
BS
1791}
1792
867578cb
KH
1793/*
1794 * Check OOM-Killer is already running under our hierarchy.
1795 * If someone is running, return false.
1af8efe9 1796 * Has to be called with memcg_oom_lock
867578cb 1797 */
c0ff4b85 1798static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1799{
79dfdacc 1800 struct mem_cgroup *iter, *failed = NULL;
a636b327 1801
9f3a0d09 1802 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1803 if (iter->oom_lock) {
79dfdacc
MH
1804 /*
1805 * this subtree of our hierarchy is already locked
1806 * so we cannot give a lock.
1807 */
79dfdacc 1808 failed = iter;
9f3a0d09
JW
1809 mem_cgroup_iter_break(memcg, iter);
1810 break;
23751be0
JW
1811 } else
1812 iter->oom_lock = true;
7d74b06f 1813 }
867578cb 1814
79dfdacc 1815 if (!failed)
23751be0 1816 return true;
79dfdacc
MH
1817
1818 /*
1819 * OK, we failed to lock the whole subtree so we have to clean up
1820 * what we set up to the failing subtree
1821 */
9f3a0d09 1822 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1823 if (iter == failed) {
9f3a0d09
JW
1824 mem_cgroup_iter_break(memcg, iter);
1825 break;
79dfdacc
MH
1826 }
1827 iter->oom_lock = false;
1828 }
23751be0 1829 return false;
a636b327 1830}
0b7f569e 1831
79dfdacc 1832/*
1af8efe9 1833 * Has to be called with memcg_oom_lock
79dfdacc 1834 */
c0ff4b85 1835static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1836{
7d74b06f
KH
1837 struct mem_cgroup *iter;
1838
c0ff4b85 1839 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1840 iter->oom_lock = false;
1841 return 0;
1842}
1843
c0ff4b85 1844static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1845{
1846 struct mem_cgroup *iter;
1847
c0ff4b85 1848 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1849 atomic_inc(&iter->under_oom);
1850}
1851
c0ff4b85 1852static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1853{
1854 struct mem_cgroup *iter;
1855
867578cb
KH
1856 /*
1857 * When a new child is created while the hierarchy is under oom,
1858 * mem_cgroup_oom_lock() may not be called. We have to use
1859 * atomic_add_unless() here.
1860 */
c0ff4b85 1861 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1862 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1863}
1864
1af8efe9 1865static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1866static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1867
dc98df5a 1868struct oom_wait_info {
d79154bb 1869 struct mem_cgroup *memcg;
dc98df5a
KH
1870 wait_queue_t wait;
1871};
1872
1873static int memcg_oom_wake_function(wait_queue_t *wait,
1874 unsigned mode, int sync, void *arg)
1875{
d79154bb
HD
1876 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1877 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1878 struct oom_wait_info *oom_wait_info;
1879
1880 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1881 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1882
dc98df5a 1883 /*
d79154bb 1884 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1885 * Then we can use css_is_ancestor without taking care of RCU.
1886 */
c0ff4b85
R
1887 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1888 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1889 return 0;
dc98df5a
KH
1890 return autoremove_wake_function(wait, mode, sync, arg);
1891}
1892
c0ff4b85 1893static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1894{
c0ff4b85
R
1895 /* for filtering, pass "memcg" as argument. */
1896 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1897}
1898
c0ff4b85 1899static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1900{
c0ff4b85
R
1901 if (memcg && atomic_read(&memcg->under_oom))
1902 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1903}
1904
867578cb
KH
1905/*
1906 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1907 */
6bbda35c
KS
1908static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1909 int order)
0b7f569e 1910{
dc98df5a 1911 struct oom_wait_info owait;
3c11ecf4 1912 bool locked, need_to_kill;
867578cb 1913
d79154bb 1914 owait.memcg = memcg;
dc98df5a
KH
1915 owait.wait.flags = 0;
1916 owait.wait.func = memcg_oom_wake_function;
1917 owait.wait.private = current;
1918 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1919 need_to_kill = true;
c0ff4b85 1920 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1921
c0ff4b85 1922 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1923 spin_lock(&memcg_oom_lock);
c0ff4b85 1924 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1925 /*
1926 * Even if signal_pending(), we can't quit charge() loop without
1927 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1928 * under OOM is always welcomed, use TASK_KILLABLE here.
1929 */
3c11ecf4 1930 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1931 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1932 need_to_kill = false;
1933 if (locked)
c0ff4b85 1934 mem_cgroup_oom_notify(memcg);
1af8efe9 1935 spin_unlock(&memcg_oom_lock);
867578cb 1936
3c11ecf4
KH
1937 if (need_to_kill) {
1938 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1939 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1940 } else {
867578cb 1941 schedule();
dc98df5a 1942 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1943 }
1af8efe9 1944 spin_lock(&memcg_oom_lock);
79dfdacc 1945 if (locked)
c0ff4b85
R
1946 mem_cgroup_oom_unlock(memcg);
1947 memcg_wakeup_oom(memcg);
1af8efe9 1948 spin_unlock(&memcg_oom_lock);
867578cb 1949
c0ff4b85 1950 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1951
867578cb
KH
1952 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1953 return false;
1954 /* Give chance to dying process */
715a5ee8 1955 schedule_timeout_uninterruptible(1);
867578cb 1956 return true;
0b7f569e
KH
1957}
1958
d69b042f
BS
1959/*
1960 * Currently used to update mapped file statistics, but the routine can be
1961 * generalized to update other statistics as well.
32047e2a
KH
1962 *
1963 * Notes: Race condition
1964 *
1965 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1966 * it tends to be costly. But considering some conditions, we doesn't need
1967 * to do so _always_.
1968 *
1969 * Considering "charge", lock_page_cgroup() is not required because all
1970 * file-stat operations happen after a page is attached to radix-tree. There
1971 * are no race with "charge".
1972 *
1973 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1974 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1975 * if there are race with "uncharge". Statistics itself is properly handled
1976 * by flags.
1977 *
1978 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1979 * small, we check mm->moving_account and detect there are possibility of race
1980 * If there is, we take a lock.
d69b042f 1981 */
26174efd 1982
89c06bd5
KH
1983void __mem_cgroup_begin_update_page_stat(struct page *page,
1984 bool *locked, unsigned long *flags)
1985{
1986 struct mem_cgroup *memcg;
1987 struct page_cgroup *pc;
1988
1989 pc = lookup_page_cgroup(page);
1990again:
1991 memcg = pc->mem_cgroup;
1992 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1993 return;
1994 /*
1995 * If this memory cgroup is not under account moving, we don't
da92c47d 1996 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 1997 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1998 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1999 */
13fd1dd9 2000 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2001 return;
2002
2003 move_lock_mem_cgroup(memcg, flags);
2004 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2005 move_unlock_mem_cgroup(memcg, flags);
2006 goto again;
2007 }
2008 *locked = true;
2009}
2010
2011void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2012{
2013 struct page_cgroup *pc = lookup_page_cgroup(page);
2014
2015 /*
2016 * It's guaranteed that pc->mem_cgroup never changes while
2017 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2018 * should take move_lock_mem_cgroup().
89c06bd5
KH
2019 */
2020 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2021}
2022
2a7106f2
GT
2023void mem_cgroup_update_page_stat(struct page *page,
2024 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2025{
c0ff4b85 2026 struct mem_cgroup *memcg;
32047e2a 2027 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2028 unsigned long uninitialized_var(flags);
d69b042f 2029
cfa44946 2030 if (mem_cgroup_disabled())
d69b042f 2031 return;
89c06bd5 2032
c0ff4b85
R
2033 memcg = pc->mem_cgroup;
2034 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2035 return;
26174efd 2036
26174efd 2037 switch (idx) {
2a7106f2 2038 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2039 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2040 break;
2041 default:
2042 BUG();
8725d541 2043 }
d69b042f 2044
c0ff4b85 2045 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2046}
26174efd 2047
cdec2e42
KH
2048/*
2049 * size of first charge trial. "32" comes from vmscan.c's magic value.
2050 * TODO: maybe necessary to use big numbers in big irons.
2051 */
7ec99d62 2052#define CHARGE_BATCH 32U
cdec2e42
KH
2053struct memcg_stock_pcp {
2054 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2055 unsigned int nr_pages;
cdec2e42 2056 struct work_struct work;
26fe6168 2057 unsigned long flags;
a0db00fc 2058#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2059};
2060static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2061static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2062
a0956d54
SS
2063/**
2064 * consume_stock: Try to consume stocked charge on this cpu.
2065 * @memcg: memcg to consume from.
2066 * @nr_pages: how many pages to charge.
2067 *
2068 * The charges will only happen if @memcg matches the current cpu's memcg
2069 * stock, and at least @nr_pages are available in that stock. Failure to
2070 * service an allocation will refill the stock.
2071 *
2072 * returns true if successful, false otherwise.
cdec2e42 2073 */
a0956d54 2074static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2075{
2076 struct memcg_stock_pcp *stock;
2077 bool ret = true;
2078
a0956d54
SS
2079 if (nr_pages > CHARGE_BATCH)
2080 return false;
2081
cdec2e42 2082 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2083 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2084 stock->nr_pages -= nr_pages;
cdec2e42
KH
2085 else /* need to call res_counter_charge */
2086 ret = false;
2087 put_cpu_var(memcg_stock);
2088 return ret;
2089}
2090
2091/*
2092 * Returns stocks cached in percpu to res_counter and reset cached information.
2093 */
2094static void drain_stock(struct memcg_stock_pcp *stock)
2095{
2096 struct mem_cgroup *old = stock->cached;
2097
11c9ea4e
JW
2098 if (stock->nr_pages) {
2099 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2100
2101 res_counter_uncharge(&old->res, bytes);
cdec2e42 2102 if (do_swap_account)
11c9ea4e
JW
2103 res_counter_uncharge(&old->memsw, bytes);
2104 stock->nr_pages = 0;
cdec2e42
KH
2105 }
2106 stock->cached = NULL;
cdec2e42
KH
2107}
2108
2109/*
2110 * This must be called under preempt disabled or must be called by
2111 * a thread which is pinned to local cpu.
2112 */
2113static void drain_local_stock(struct work_struct *dummy)
2114{
2115 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2116 drain_stock(stock);
26fe6168 2117 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2118}
2119
2120/*
2121 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2122 * This will be consumed by consume_stock() function, later.
cdec2e42 2123 */
c0ff4b85 2124static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2125{
2126 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2127
c0ff4b85 2128 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2129 drain_stock(stock);
c0ff4b85 2130 stock->cached = memcg;
cdec2e42 2131 }
11c9ea4e 2132 stock->nr_pages += nr_pages;
cdec2e42
KH
2133 put_cpu_var(memcg_stock);
2134}
2135
2136/*
c0ff4b85 2137 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2138 * of the hierarchy under it. sync flag says whether we should block
2139 * until the work is done.
cdec2e42 2140 */
c0ff4b85 2141static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2142{
26fe6168 2143 int cpu, curcpu;
d38144b7 2144
cdec2e42 2145 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2146 get_online_cpus();
5af12d0e 2147 curcpu = get_cpu();
cdec2e42
KH
2148 for_each_online_cpu(cpu) {
2149 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2150 struct mem_cgroup *memcg;
26fe6168 2151
c0ff4b85
R
2152 memcg = stock->cached;
2153 if (!memcg || !stock->nr_pages)
26fe6168 2154 continue;
c0ff4b85 2155 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2156 continue;
d1a05b69
MH
2157 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2158 if (cpu == curcpu)
2159 drain_local_stock(&stock->work);
2160 else
2161 schedule_work_on(cpu, &stock->work);
2162 }
cdec2e42 2163 }
5af12d0e 2164 put_cpu();
d38144b7
MH
2165
2166 if (!sync)
2167 goto out;
2168
2169 for_each_online_cpu(cpu) {
2170 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2171 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2172 flush_work(&stock->work);
2173 }
2174out:
cdec2e42 2175 put_online_cpus();
d38144b7
MH
2176}
2177
2178/*
2179 * Tries to drain stocked charges in other cpus. This function is asynchronous
2180 * and just put a work per cpu for draining localy on each cpu. Caller can
2181 * expects some charges will be back to res_counter later but cannot wait for
2182 * it.
2183 */
c0ff4b85 2184static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2185{
9f50fad6
MH
2186 /*
2187 * If someone calls draining, avoid adding more kworker runs.
2188 */
2189 if (!mutex_trylock(&percpu_charge_mutex))
2190 return;
c0ff4b85 2191 drain_all_stock(root_memcg, false);
9f50fad6 2192 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2193}
2194
2195/* This is a synchronous drain interface. */
c0ff4b85 2196static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2197{
2198 /* called when force_empty is called */
9f50fad6 2199 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2200 drain_all_stock(root_memcg, true);
9f50fad6 2201 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2202}
2203
711d3d2c
KH
2204/*
2205 * This function drains percpu counter value from DEAD cpu and
2206 * move it to local cpu. Note that this function can be preempted.
2207 */
c0ff4b85 2208static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2209{
2210 int i;
2211
c0ff4b85 2212 spin_lock(&memcg->pcp_counter_lock);
6104621d 2213 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2214 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2215
c0ff4b85
R
2216 per_cpu(memcg->stat->count[i], cpu) = 0;
2217 memcg->nocpu_base.count[i] += x;
711d3d2c 2218 }
e9f8974f 2219 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2220 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2221
c0ff4b85
R
2222 per_cpu(memcg->stat->events[i], cpu) = 0;
2223 memcg->nocpu_base.events[i] += x;
e9f8974f 2224 }
c0ff4b85 2225 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2226}
2227
2228static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2229 unsigned long action,
2230 void *hcpu)
2231{
2232 int cpu = (unsigned long)hcpu;
2233 struct memcg_stock_pcp *stock;
711d3d2c 2234 struct mem_cgroup *iter;
cdec2e42 2235
619d094b 2236 if (action == CPU_ONLINE)
1489ebad 2237 return NOTIFY_OK;
1489ebad 2238
d833049b 2239 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2240 return NOTIFY_OK;
711d3d2c 2241
9f3a0d09 2242 for_each_mem_cgroup(iter)
711d3d2c
KH
2243 mem_cgroup_drain_pcp_counter(iter, cpu);
2244
cdec2e42
KH
2245 stock = &per_cpu(memcg_stock, cpu);
2246 drain_stock(stock);
2247 return NOTIFY_OK;
2248}
2249
4b534334
KH
2250
2251/* See __mem_cgroup_try_charge() for details */
2252enum {
2253 CHARGE_OK, /* success */
2254 CHARGE_RETRY, /* need to retry but retry is not bad */
2255 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2256 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2257 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2258};
2259
c0ff4b85 2260static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2261 unsigned int nr_pages, unsigned int min_pages,
2262 bool oom_check)
4b534334 2263{
7ec99d62 2264 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2265 struct mem_cgroup *mem_over_limit;
2266 struct res_counter *fail_res;
2267 unsigned long flags = 0;
2268 int ret;
2269
c0ff4b85 2270 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2271
2272 if (likely(!ret)) {
2273 if (!do_swap_account)
2274 return CHARGE_OK;
c0ff4b85 2275 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2276 if (likely(!ret))
2277 return CHARGE_OK;
2278
c0ff4b85 2279 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2280 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2281 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2282 } else
2283 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2284 /*
9221edb7
JW
2285 * Never reclaim on behalf of optional batching, retry with a
2286 * single page instead.
2287 */
4c9c5359 2288 if (nr_pages > min_pages)
4b534334
KH
2289 return CHARGE_RETRY;
2290
2291 if (!(gfp_mask & __GFP_WAIT))
2292 return CHARGE_WOULDBLOCK;
2293
4c9c5359
SS
2294 if (gfp_mask & __GFP_NORETRY)
2295 return CHARGE_NOMEM;
2296
5660048c 2297 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2298 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2299 return CHARGE_RETRY;
4b534334 2300 /*
19942822
JW
2301 * Even though the limit is exceeded at this point, reclaim
2302 * may have been able to free some pages. Retry the charge
2303 * before killing the task.
2304 *
2305 * Only for regular pages, though: huge pages are rather
2306 * unlikely to succeed so close to the limit, and we fall back
2307 * to regular pages anyway in case of failure.
4b534334 2308 */
4c9c5359 2309 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2310 return CHARGE_RETRY;
2311
2312 /*
2313 * At task move, charge accounts can be doubly counted. So, it's
2314 * better to wait until the end of task_move if something is going on.
2315 */
2316 if (mem_cgroup_wait_acct_move(mem_over_limit))
2317 return CHARGE_RETRY;
2318
2319 /* If we don't need to call oom-killer at el, return immediately */
2320 if (!oom_check)
2321 return CHARGE_NOMEM;
2322 /* check OOM */
e845e199 2323 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2324 return CHARGE_OOM_DIE;
2325
2326 return CHARGE_RETRY;
2327}
2328
f817ed48 2329/*
38c5d72f
KH
2330 * __mem_cgroup_try_charge() does
2331 * 1. detect memcg to be charged against from passed *mm and *ptr,
2332 * 2. update res_counter
2333 * 3. call memory reclaim if necessary.
2334 *
2335 * In some special case, if the task is fatal, fatal_signal_pending() or
2336 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2337 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2338 * as possible without any hazards. 2: all pages should have a valid
2339 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2340 * pointer, that is treated as a charge to root_mem_cgroup.
2341 *
2342 * So __mem_cgroup_try_charge() will return
2343 * 0 ... on success, filling *ptr with a valid memcg pointer.
2344 * -ENOMEM ... charge failure because of resource limits.
2345 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2346 *
2347 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2348 * the oom-killer can be invoked.
8a9f3ccd 2349 */
f817ed48 2350static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2351 gfp_t gfp_mask,
7ec99d62 2352 unsigned int nr_pages,
c0ff4b85 2353 struct mem_cgroup **ptr,
7ec99d62 2354 bool oom)
8a9f3ccd 2355{
7ec99d62 2356 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2357 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2358 struct mem_cgroup *memcg = NULL;
4b534334 2359 int ret;
a636b327 2360
867578cb
KH
2361 /*
2362 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2363 * in system level. So, allow to go ahead dying process in addition to
2364 * MEMDIE process.
2365 */
2366 if (unlikely(test_thread_flag(TIF_MEMDIE)
2367 || fatal_signal_pending(current)))
2368 goto bypass;
a636b327 2369
8a9f3ccd 2370 /*
3be91277
HD
2371 * We always charge the cgroup the mm_struct belongs to.
2372 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2373 * thread group leader migrates. It's possible that mm is not
24467cac 2374 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2375 */
c0ff4b85 2376 if (!*ptr && !mm)
38c5d72f 2377 *ptr = root_mem_cgroup;
f75ca962 2378again:
c0ff4b85
R
2379 if (*ptr) { /* css should be a valid one */
2380 memcg = *ptr;
c0ff4b85 2381 if (mem_cgroup_is_root(memcg))
f75ca962 2382 goto done;
a0956d54 2383 if (consume_stock(memcg, nr_pages))
f75ca962 2384 goto done;
c0ff4b85 2385 css_get(&memcg->css);
4b534334 2386 } else {
f75ca962 2387 struct task_struct *p;
54595fe2 2388
f75ca962
KH
2389 rcu_read_lock();
2390 p = rcu_dereference(mm->owner);
f75ca962 2391 /*
ebb76ce1 2392 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2393 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2394 * race with swapoff. Then, we have small risk of mis-accouning.
2395 * But such kind of mis-account by race always happens because
2396 * we don't have cgroup_mutex(). It's overkill and we allo that
2397 * small race, here.
2398 * (*) swapoff at el will charge against mm-struct not against
2399 * task-struct. So, mm->owner can be NULL.
f75ca962 2400 */
c0ff4b85 2401 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2402 if (!memcg)
2403 memcg = root_mem_cgroup;
2404 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2405 rcu_read_unlock();
2406 goto done;
2407 }
a0956d54 2408 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2409 /*
2410 * It seems dagerous to access memcg without css_get().
2411 * But considering how consume_stok works, it's not
2412 * necessary. If consume_stock success, some charges
2413 * from this memcg are cached on this cpu. So, we
2414 * don't need to call css_get()/css_tryget() before
2415 * calling consume_stock().
2416 */
2417 rcu_read_unlock();
2418 goto done;
2419 }
2420 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2421 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2422 rcu_read_unlock();
2423 goto again;
2424 }
2425 rcu_read_unlock();
2426 }
8a9f3ccd 2427
4b534334
KH
2428 do {
2429 bool oom_check;
7a81b88c 2430
4b534334 2431 /* If killed, bypass charge */
f75ca962 2432 if (fatal_signal_pending(current)) {
c0ff4b85 2433 css_put(&memcg->css);
4b534334 2434 goto bypass;
f75ca962 2435 }
6d61ef40 2436
4b534334
KH
2437 oom_check = false;
2438 if (oom && !nr_oom_retries) {
2439 oom_check = true;
2440 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2441 }
66e1707b 2442
4c9c5359
SS
2443 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2444 oom_check);
4b534334
KH
2445 switch (ret) {
2446 case CHARGE_OK:
2447 break;
2448 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2449 batch = nr_pages;
c0ff4b85
R
2450 css_put(&memcg->css);
2451 memcg = NULL;
f75ca962 2452 goto again;
4b534334 2453 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2454 css_put(&memcg->css);
4b534334
KH
2455 goto nomem;
2456 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2457 if (!oom) {
c0ff4b85 2458 css_put(&memcg->css);
867578cb 2459 goto nomem;
f75ca962 2460 }
4b534334
KH
2461 /* If oom, we never return -ENOMEM */
2462 nr_oom_retries--;
2463 break;
2464 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2465 css_put(&memcg->css);
867578cb 2466 goto bypass;
66e1707b 2467 }
4b534334
KH
2468 } while (ret != CHARGE_OK);
2469
7ec99d62 2470 if (batch > nr_pages)
c0ff4b85
R
2471 refill_stock(memcg, batch - nr_pages);
2472 css_put(&memcg->css);
0c3e73e8 2473done:
c0ff4b85 2474 *ptr = memcg;
7a81b88c
KH
2475 return 0;
2476nomem:
c0ff4b85 2477 *ptr = NULL;
7a81b88c 2478 return -ENOMEM;
867578cb 2479bypass:
38c5d72f
KH
2480 *ptr = root_mem_cgroup;
2481 return -EINTR;
7a81b88c 2482}
8a9f3ccd 2483
a3032a2c
DN
2484/*
2485 * Somemtimes we have to undo a charge we got by try_charge().
2486 * This function is for that and do uncharge, put css's refcnt.
2487 * gotten by try_charge().
2488 */
c0ff4b85 2489static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2490 unsigned int nr_pages)
a3032a2c 2491{
c0ff4b85 2492 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2493 unsigned long bytes = nr_pages * PAGE_SIZE;
2494
c0ff4b85 2495 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2496 if (do_swap_account)
c0ff4b85 2497 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2498 }
854ffa8d
DN
2499}
2500
d01dd17f
KH
2501/*
2502 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2503 * This is useful when moving usage to parent cgroup.
2504 */
2505static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2506 unsigned int nr_pages)
2507{
2508 unsigned long bytes = nr_pages * PAGE_SIZE;
2509
2510 if (mem_cgroup_is_root(memcg))
2511 return;
2512
2513 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2514 if (do_swap_account)
2515 res_counter_uncharge_until(&memcg->memsw,
2516 memcg->memsw.parent, bytes);
2517}
2518
a3b2d692
KH
2519/*
2520 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2521 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2522 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2523 * called against removed memcg.)
a3b2d692
KH
2524 */
2525static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2526{
2527 struct cgroup_subsys_state *css;
2528
2529 /* ID 0 is unused ID */
2530 if (!id)
2531 return NULL;
2532 css = css_lookup(&mem_cgroup_subsys, id);
2533 if (!css)
2534 return NULL;
b2145145 2535 return mem_cgroup_from_css(css);
a3b2d692
KH
2536}
2537
e42d9d5d 2538struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2539{
c0ff4b85 2540 struct mem_cgroup *memcg = NULL;
3c776e64 2541 struct page_cgroup *pc;
a3b2d692 2542 unsigned short id;
b5a84319
KH
2543 swp_entry_t ent;
2544
3c776e64
DN
2545 VM_BUG_ON(!PageLocked(page));
2546
3c776e64 2547 pc = lookup_page_cgroup(page);
c0bd3f63 2548 lock_page_cgroup(pc);
a3b2d692 2549 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2550 memcg = pc->mem_cgroup;
2551 if (memcg && !css_tryget(&memcg->css))
2552 memcg = NULL;
e42d9d5d 2553 } else if (PageSwapCache(page)) {
3c776e64 2554 ent.val = page_private(page);
9fb4b7cc 2555 id = lookup_swap_cgroup_id(ent);
a3b2d692 2556 rcu_read_lock();
c0ff4b85
R
2557 memcg = mem_cgroup_lookup(id);
2558 if (memcg && !css_tryget(&memcg->css))
2559 memcg = NULL;
a3b2d692 2560 rcu_read_unlock();
3c776e64 2561 }
c0bd3f63 2562 unlock_page_cgroup(pc);
c0ff4b85 2563 return memcg;
b5a84319
KH
2564}
2565
c0ff4b85 2566static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2567 struct page *page,
7ec99d62 2568 unsigned int nr_pages,
9ce70c02
HD
2569 enum charge_type ctype,
2570 bool lrucare)
7a81b88c 2571{
ce587e65 2572 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2573 struct zone *uninitialized_var(zone);
fa9add64 2574 struct lruvec *lruvec;
9ce70c02 2575 bool was_on_lru = false;
b2402857 2576 bool anon;
9ce70c02 2577
ca3e0214 2578 lock_page_cgroup(pc);
90deb788 2579 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2580 /*
2581 * we don't need page_cgroup_lock about tail pages, becase they are not
2582 * accessed by any other context at this point.
2583 */
9ce70c02
HD
2584
2585 /*
2586 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2587 * may already be on some other mem_cgroup's LRU. Take care of it.
2588 */
2589 if (lrucare) {
2590 zone = page_zone(page);
2591 spin_lock_irq(&zone->lru_lock);
2592 if (PageLRU(page)) {
fa9add64 2593 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2594 ClearPageLRU(page);
fa9add64 2595 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2596 was_on_lru = true;
2597 }
2598 }
2599
c0ff4b85 2600 pc->mem_cgroup = memcg;
261fb61a
KH
2601 /*
2602 * We access a page_cgroup asynchronously without lock_page_cgroup().
2603 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2604 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2605 * before USED bit, we need memory barrier here.
2606 * See mem_cgroup_add_lru_list(), etc.
2607 */
08e552c6 2608 smp_wmb();
b2402857 2609 SetPageCgroupUsed(pc);
3be91277 2610
9ce70c02
HD
2611 if (lrucare) {
2612 if (was_on_lru) {
fa9add64 2613 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2614 VM_BUG_ON(PageLRU(page));
2615 SetPageLRU(page);
fa9add64 2616 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2617 }
2618 spin_unlock_irq(&zone->lru_lock);
2619 }
2620
41326c17 2621 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2622 anon = true;
2623 else
2624 anon = false;
2625
2626 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2627 unlock_page_cgroup(pc);
9ce70c02 2628
430e4863
KH
2629 /*
2630 * "charge_statistics" updated event counter. Then, check it.
2631 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2632 * if they exceeds softlimit.
2633 */
c0ff4b85 2634 memcg_check_events(memcg, page);
7a81b88c 2635}
66e1707b 2636
ca3e0214
KH
2637#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2638
a0db00fc 2639#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2640/*
2641 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2642 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2643 * charge/uncharge will be never happen and move_account() is done under
2644 * compound_lock(), so we don't have to take care of races.
ca3e0214 2645 */
e94c8a9c 2646void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2647{
2648 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2649 struct page_cgroup *pc;
2650 int i;
ca3e0214 2651
3d37c4a9
KH
2652 if (mem_cgroup_disabled())
2653 return;
e94c8a9c
KH
2654 for (i = 1; i < HPAGE_PMD_NR; i++) {
2655 pc = head_pc + i;
2656 pc->mem_cgroup = head_pc->mem_cgroup;
2657 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2658 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2659 }
ca3e0214 2660}
12d27107 2661#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2662
f817ed48 2663/**
de3638d9 2664 * mem_cgroup_move_account - move account of the page
5564e88b 2665 * @page: the page
7ec99d62 2666 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2667 * @pc: page_cgroup of the page.
2668 * @from: mem_cgroup which the page is moved from.
2669 * @to: mem_cgroup which the page is moved to. @from != @to.
2670 *
2671 * The caller must confirm following.
08e552c6 2672 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2673 * - compound_lock is held when nr_pages > 1
f817ed48 2674 *
2f3479b1
KH
2675 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2676 * from old cgroup.
f817ed48 2677 */
7ec99d62
JW
2678static int mem_cgroup_move_account(struct page *page,
2679 unsigned int nr_pages,
2680 struct page_cgroup *pc,
2681 struct mem_cgroup *from,
2f3479b1 2682 struct mem_cgroup *to)
f817ed48 2683{
de3638d9
JW
2684 unsigned long flags;
2685 int ret;
b2402857 2686 bool anon = PageAnon(page);
987eba66 2687
f817ed48 2688 VM_BUG_ON(from == to);
5564e88b 2689 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2690 /*
2691 * The page is isolated from LRU. So, collapse function
2692 * will not handle this page. But page splitting can happen.
2693 * Do this check under compound_page_lock(). The caller should
2694 * hold it.
2695 */
2696 ret = -EBUSY;
7ec99d62 2697 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2698 goto out;
2699
2700 lock_page_cgroup(pc);
2701
2702 ret = -EINVAL;
2703 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2704 goto unlock;
2705
312734c0 2706 move_lock_mem_cgroup(from, &flags);
f817ed48 2707
2ff76f11 2708 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2709 /* Update mapped_file data for mem_cgroup */
2710 preempt_disable();
2711 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2712 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2713 preempt_enable();
d69b042f 2714 }
b2402857 2715 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2716
854ffa8d 2717 /* caller should have done css_get */
08e552c6 2718 pc->mem_cgroup = to;
b2402857 2719 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 2720 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2721 ret = 0;
2722unlock:
57f9fd7d 2723 unlock_page_cgroup(pc);
d2265e6f
KH
2724 /*
2725 * check events
2726 */
5564e88b
JW
2727 memcg_check_events(to, page);
2728 memcg_check_events(from, page);
de3638d9 2729out:
f817ed48
KH
2730 return ret;
2731}
2732
2ef37d3f
MH
2733/**
2734 * mem_cgroup_move_parent - moves page to the parent group
2735 * @page: the page to move
2736 * @pc: page_cgroup of the page
2737 * @child: page's cgroup
2738 *
2739 * move charges to its parent or the root cgroup if the group has no
2740 * parent (aka use_hierarchy==0).
2741 * Although this might fail (get_page_unless_zero, isolate_lru_page or
2742 * mem_cgroup_move_account fails) the failure is always temporary and
2743 * it signals a race with a page removal/uncharge or migration. In the
2744 * first case the page is on the way out and it will vanish from the LRU
2745 * on the next attempt and the call should be retried later.
2746 * Isolation from the LRU fails only if page has been isolated from
2747 * the LRU since we looked at it and that usually means either global
2748 * reclaim or migration going on. The page will either get back to the
2749 * LRU or vanish.
2750 * Finaly mem_cgroup_move_account fails only if the page got uncharged
2751 * (!PageCgroupUsed) or moved to a different group. The page will
2752 * disappear in the next attempt.
f817ed48 2753 */
5564e88b
JW
2754static int mem_cgroup_move_parent(struct page *page,
2755 struct page_cgroup *pc,
6068bf01 2756 struct mem_cgroup *child)
f817ed48 2757{
f817ed48 2758 struct mem_cgroup *parent;
7ec99d62 2759 unsigned int nr_pages;
4be4489f 2760 unsigned long uninitialized_var(flags);
f817ed48
KH
2761 int ret;
2762
d8423011 2763 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 2764
57f9fd7d
DN
2765 ret = -EBUSY;
2766 if (!get_page_unless_zero(page))
2767 goto out;
2768 if (isolate_lru_page(page))
2769 goto put;
52dbb905 2770
7ec99d62 2771 nr_pages = hpage_nr_pages(page);
08e552c6 2772
cc926f78
KH
2773 parent = parent_mem_cgroup(child);
2774 /*
2775 * If no parent, move charges to root cgroup.
2776 */
2777 if (!parent)
2778 parent = root_mem_cgroup;
f817ed48 2779
2ef37d3f
MH
2780 if (nr_pages > 1) {
2781 VM_BUG_ON(!PageTransHuge(page));
987eba66 2782 flags = compound_lock_irqsave(page);
2ef37d3f 2783 }
987eba66 2784
cc926f78 2785 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2786 pc, child, parent);
cc926f78
KH
2787 if (!ret)
2788 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2789
7ec99d62 2790 if (nr_pages > 1)
987eba66 2791 compound_unlock_irqrestore(page, flags);
08e552c6 2792 putback_lru_page(page);
57f9fd7d 2793put:
40d58138 2794 put_page(page);
57f9fd7d 2795out:
f817ed48
KH
2796 return ret;
2797}
2798
7a81b88c
KH
2799/*
2800 * Charge the memory controller for page usage.
2801 * Return
2802 * 0 if the charge was successful
2803 * < 0 if the cgroup is over its limit
2804 */
2805static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2806 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2807{
c0ff4b85 2808 struct mem_cgroup *memcg = NULL;
7ec99d62 2809 unsigned int nr_pages = 1;
8493ae43 2810 bool oom = true;
7a81b88c 2811 int ret;
ec168510 2812
37c2ac78 2813 if (PageTransHuge(page)) {
7ec99d62 2814 nr_pages <<= compound_order(page);
37c2ac78 2815 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2816 /*
2817 * Never OOM-kill a process for a huge page. The
2818 * fault handler will fall back to regular pages.
2819 */
2820 oom = false;
37c2ac78 2821 }
7a81b88c 2822
c0ff4b85 2823 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2824 if (ret == -ENOMEM)
7a81b88c 2825 return ret;
ce587e65 2826 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2827 return 0;
8a9f3ccd
BS
2828}
2829
7a81b88c
KH
2830int mem_cgroup_newpage_charge(struct page *page,
2831 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2832{
f8d66542 2833 if (mem_cgroup_disabled())
cede86ac 2834 return 0;
7a0524cf
JW
2835 VM_BUG_ON(page_mapped(page));
2836 VM_BUG_ON(page->mapping && !PageAnon(page));
2837 VM_BUG_ON(!mm);
217bc319 2838 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2839 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2840}
2841
54595fe2
KH
2842/*
2843 * While swap-in, try_charge -> commit or cancel, the page is locked.
2844 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2845 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2846 * "commit()" or removed by "cancel()"
2847 */
0435a2fd
JW
2848static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2849 struct page *page,
2850 gfp_t mask,
2851 struct mem_cgroup **memcgp)
8c7c6e34 2852{
c0ff4b85 2853 struct mem_cgroup *memcg;
90deb788 2854 struct page_cgroup *pc;
54595fe2 2855 int ret;
8c7c6e34 2856
90deb788
JW
2857 pc = lookup_page_cgroup(page);
2858 /*
2859 * Every swap fault against a single page tries to charge the
2860 * page, bail as early as possible. shmem_unuse() encounters
2861 * already charged pages, too. The USED bit is protected by
2862 * the page lock, which serializes swap cache removal, which
2863 * in turn serializes uncharging.
2864 */
2865 if (PageCgroupUsed(pc))
2866 return 0;
8c7c6e34
KH
2867 if (!do_swap_account)
2868 goto charge_cur_mm;
c0ff4b85
R
2869 memcg = try_get_mem_cgroup_from_page(page);
2870 if (!memcg)
54595fe2 2871 goto charge_cur_mm;
72835c86
JW
2872 *memcgp = memcg;
2873 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2874 css_put(&memcg->css);
38c5d72f
KH
2875 if (ret == -EINTR)
2876 ret = 0;
54595fe2 2877 return ret;
8c7c6e34 2878charge_cur_mm:
38c5d72f
KH
2879 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2880 if (ret == -EINTR)
2881 ret = 0;
2882 return ret;
8c7c6e34
KH
2883}
2884
0435a2fd
JW
2885int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2886 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2887{
2888 *memcgp = NULL;
2889 if (mem_cgroup_disabled())
2890 return 0;
bdf4f4d2
JW
2891 /*
2892 * A racing thread's fault, or swapoff, may have already
2893 * updated the pte, and even removed page from swap cache: in
2894 * those cases unuse_pte()'s pte_same() test will fail; but
2895 * there's also a KSM case which does need to charge the page.
2896 */
2897 if (!PageSwapCache(page)) {
2898 int ret;
2899
2900 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2901 if (ret == -EINTR)
2902 ret = 0;
2903 return ret;
2904 }
0435a2fd
JW
2905 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2906}
2907
827a03d2
JW
2908void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2909{
2910 if (mem_cgroup_disabled())
2911 return;
2912 if (!memcg)
2913 return;
2914 __mem_cgroup_cancel_charge(memcg, 1);
2915}
2916
83aae4c7 2917static void
72835c86 2918__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2919 enum charge_type ctype)
7a81b88c 2920{
f8d66542 2921 if (mem_cgroup_disabled())
7a81b88c 2922 return;
72835c86 2923 if (!memcg)
7a81b88c 2924 return;
5a6475a4 2925
ce587e65 2926 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2927 /*
2928 * Now swap is on-memory. This means this page may be
2929 * counted both as mem and swap....double count.
03f3c433
KH
2930 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2931 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2932 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2933 */
03f3c433 2934 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2935 swp_entry_t ent = {.val = page_private(page)};
86493009 2936 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2937 }
7a81b88c
KH
2938}
2939
72835c86
JW
2940void mem_cgroup_commit_charge_swapin(struct page *page,
2941 struct mem_cgroup *memcg)
83aae4c7 2942{
72835c86 2943 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2944 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2945}
2946
827a03d2
JW
2947int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2948 gfp_t gfp_mask)
7a81b88c 2949{
827a03d2
JW
2950 struct mem_cgroup *memcg = NULL;
2951 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2952 int ret;
2953
f8d66542 2954 if (mem_cgroup_disabled())
827a03d2
JW
2955 return 0;
2956 if (PageCompound(page))
2957 return 0;
2958
827a03d2
JW
2959 if (!PageSwapCache(page))
2960 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2961 else { /* page is swapcache/shmem */
0435a2fd
JW
2962 ret = __mem_cgroup_try_charge_swapin(mm, page,
2963 gfp_mask, &memcg);
827a03d2
JW
2964 if (!ret)
2965 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2966 }
2967 return ret;
7a81b88c
KH
2968}
2969
c0ff4b85 2970static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2971 unsigned int nr_pages,
2972 const enum charge_type ctype)
569b846d
KH
2973{
2974 struct memcg_batch_info *batch = NULL;
2975 bool uncharge_memsw = true;
7ec99d62 2976
569b846d
KH
2977 /* If swapout, usage of swap doesn't decrease */
2978 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2979 uncharge_memsw = false;
569b846d
KH
2980
2981 batch = &current->memcg_batch;
2982 /*
2983 * In usual, we do css_get() when we remember memcg pointer.
2984 * But in this case, we keep res->usage until end of a series of
2985 * uncharges. Then, it's ok to ignore memcg's refcnt.
2986 */
2987 if (!batch->memcg)
c0ff4b85 2988 batch->memcg = memcg;
3c11ecf4
KH
2989 /*
2990 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2991 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2992 * the same cgroup and we have chance to coalesce uncharges.
2993 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2994 * because we want to do uncharge as soon as possible.
2995 */
2996
2997 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2998 goto direct_uncharge;
2999
7ec99d62 3000 if (nr_pages > 1)
ec168510
AA
3001 goto direct_uncharge;
3002
569b846d
KH
3003 /*
3004 * In typical case, batch->memcg == mem. This means we can
3005 * merge a series of uncharges to an uncharge of res_counter.
3006 * If not, we uncharge res_counter ony by one.
3007 */
c0ff4b85 3008 if (batch->memcg != memcg)
569b846d
KH
3009 goto direct_uncharge;
3010 /* remember freed charge and uncharge it later */
7ffd4ca7 3011 batch->nr_pages++;
569b846d 3012 if (uncharge_memsw)
7ffd4ca7 3013 batch->memsw_nr_pages++;
569b846d
KH
3014 return;
3015direct_uncharge:
c0ff4b85 3016 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3017 if (uncharge_memsw)
c0ff4b85
R
3018 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3019 if (unlikely(batch->memcg != memcg))
3020 memcg_oom_recover(memcg);
569b846d 3021}
7a81b88c 3022
8a9f3ccd 3023/*
69029cd5 3024 * uncharge if !page_mapped(page)
8a9f3ccd 3025 */
8c7c6e34 3026static struct mem_cgroup *
0030f535
JW
3027__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3028 bool end_migration)
8a9f3ccd 3029{
c0ff4b85 3030 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3031 unsigned int nr_pages = 1;
3032 struct page_cgroup *pc;
b2402857 3033 bool anon;
8a9f3ccd 3034
f8d66542 3035 if (mem_cgroup_disabled())
8c7c6e34 3036 return NULL;
4077960e 3037
0c59b89c 3038 VM_BUG_ON(PageSwapCache(page));
d13d1443 3039
37c2ac78 3040 if (PageTransHuge(page)) {
7ec99d62 3041 nr_pages <<= compound_order(page);
37c2ac78
AA
3042 VM_BUG_ON(!PageTransHuge(page));
3043 }
8697d331 3044 /*
3c541e14 3045 * Check if our page_cgroup is valid
8697d331 3046 */
52d4b9ac 3047 pc = lookup_page_cgroup(page);
cfa44946 3048 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3049 return NULL;
b9c565d5 3050
52d4b9ac 3051 lock_page_cgroup(pc);
d13d1443 3052
c0ff4b85 3053 memcg = pc->mem_cgroup;
8c7c6e34 3054
d13d1443
KH
3055 if (!PageCgroupUsed(pc))
3056 goto unlock_out;
3057
b2402857
KH
3058 anon = PageAnon(page);
3059
d13d1443 3060 switch (ctype) {
41326c17 3061 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3062 /*
3063 * Generally PageAnon tells if it's the anon statistics to be
3064 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3065 * used before page reached the stage of being marked PageAnon.
3066 */
b2402857
KH
3067 anon = true;
3068 /* fallthrough */
8a9478ca 3069 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3070 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3071 if (page_mapped(page))
3072 goto unlock_out;
3073 /*
3074 * Pages under migration may not be uncharged. But
3075 * end_migration() /must/ be the one uncharging the
3076 * unused post-migration page and so it has to call
3077 * here with the migration bit still set. See the
3078 * res_counter handling below.
3079 */
3080 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3081 goto unlock_out;
3082 break;
3083 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3084 if (!PageAnon(page)) { /* Shared memory */
3085 if (page->mapping && !page_is_file_cache(page))
3086 goto unlock_out;
3087 } else if (page_mapped(page)) /* Anon */
3088 goto unlock_out;
3089 break;
3090 default:
3091 break;
52d4b9ac 3092 }
d13d1443 3093
b2402857 3094 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3095
52d4b9ac 3096 ClearPageCgroupUsed(pc);
544122e5
KH
3097 /*
3098 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3099 * freed from LRU. This is safe because uncharged page is expected not
3100 * to be reused (freed soon). Exception is SwapCache, it's handled by
3101 * special functions.
3102 */
b9c565d5 3103
52d4b9ac 3104 unlock_page_cgroup(pc);
f75ca962 3105 /*
c0ff4b85 3106 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3107 * will never be freed.
3108 */
c0ff4b85 3109 memcg_check_events(memcg, page);
f75ca962 3110 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3111 mem_cgroup_swap_statistics(memcg, true);
3112 mem_cgroup_get(memcg);
f75ca962 3113 }
0030f535
JW
3114 /*
3115 * Migration does not charge the res_counter for the
3116 * replacement page, so leave it alone when phasing out the
3117 * page that is unused after the migration.
3118 */
3119 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3120 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3121
c0ff4b85 3122 return memcg;
d13d1443
KH
3123
3124unlock_out:
3125 unlock_page_cgroup(pc);
8c7c6e34 3126 return NULL;
3c541e14
BS
3127}
3128
69029cd5
KH
3129void mem_cgroup_uncharge_page(struct page *page)
3130{
52d4b9ac
KH
3131 /* early check. */
3132 if (page_mapped(page))
3133 return;
40f23a21 3134 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3135 if (PageSwapCache(page))
3136 return;
0030f535 3137 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3138}
3139
3140void mem_cgroup_uncharge_cache_page(struct page *page)
3141{
3142 VM_BUG_ON(page_mapped(page));
b7abea96 3143 VM_BUG_ON(page->mapping);
0030f535 3144 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3145}
3146
569b846d
KH
3147/*
3148 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3149 * In that cases, pages are freed continuously and we can expect pages
3150 * are in the same memcg. All these calls itself limits the number of
3151 * pages freed at once, then uncharge_start/end() is called properly.
3152 * This may be called prural(2) times in a context,
3153 */
3154
3155void mem_cgroup_uncharge_start(void)
3156{
3157 current->memcg_batch.do_batch++;
3158 /* We can do nest. */
3159 if (current->memcg_batch.do_batch == 1) {
3160 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3161 current->memcg_batch.nr_pages = 0;
3162 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3163 }
3164}
3165
3166void mem_cgroup_uncharge_end(void)
3167{
3168 struct memcg_batch_info *batch = &current->memcg_batch;
3169
3170 if (!batch->do_batch)
3171 return;
3172
3173 batch->do_batch--;
3174 if (batch->do_batch) /* If stacked, do nothing. */
3175 return;
3176
3177 if (!batch->memcg)
3178 return;
3179 /*
3180 * This "batch->memcg" is valid without any css_get/put etc...
3181 * bacause we hide charges behind us.
3182 */
7ffd4ca7
JW
3183 if (batch->nr_pages)
3184 res_counter_uncharge(&batch->memcg->res,
3185 batch->nr_pages * PAGE_SIZE);
3186 if (batch->memsw_nr_pages)
3187 res_counter_uncharge(&batch->memcg->memsw,
3188 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3189 memcg_oom_recover(batch->memcg);
569b846d
KH
3190 /* forget this pointer (for sanity check) */
3191 batch->memcg = NULL;
3192}
3193
e767e056 3194#ifdef CONFIG_SWAP
8c7c6e34 3195/*
e767e056 3196 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3197 * memcg information is recorded to swap_cgroup of "ent"
3198 */
8a9478ca
KH
3199void
3200mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3201{
3202 struct mem_cgroup *memcg;
8a9478ca
KH
3203 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3204
3205 if (!swapout) /* this was a swap cache but the swap is unused ! */
3206 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3207
0030f535 3208 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3209
f75ca962
KH
3210 /*
3211 * record memcg information, if swapout && memcg != NULL,
3212 * mem_cgroup_get() was called in uncharge().
3213 */
3214 if (do_swap_account && swapout && memcg)
a3b2d692 3215 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3216}
e767e056 3217#endif
8c7c6e34 3218
c255a458 3219#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3220/*
3221 * called from swap_entry_free(). remove record in swap_cgroup and
3222 * uncharge "memsw" account.
3223 */
3224void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3225{
8c7c6e34 3226 struct mem_cgroup *memcg;
a3b2d692 3227 unsigned short id;
8c7c6e34
KH
3228
3229 if (!do_swap_account)
3230 return;
3231
a3b2d692
KH
3232 id = swap_cgroup_record(ent, 0);
3233 rcu_read_lock();
3234 memcg = mem_cgroup_lookup(id);
8c7c6e34 3235 if (memcg) {
a3b2d692
KH
3236 /*
3237 * We uncharge this because swap is freed.
3238 * This memcg can be obsolete one. We avoid calling css_tryget
3239 */
0c3e73e8 3240 if (!mem_cgroup_is_root(memcg))
4e649152 3241 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3242 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3243 mem_cgroup_put(memcg);
3244 }
a3b2d692 3245 rcu_read_unlock();
d13d1443 3246}
02491447
DN
3247
3248/**
3249 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3250 * @entry: swap entry to be moved
3251 * @from: mem_cgroup which the entry is moved from
3252 * @to: mem_cgroup which the entry is moved to
3253 *
3254 * It succeeds only when the swap_cgroup's record for this entry is the same
3255 * as the mem_cgroup's id of @from.
3256 *
3257 * Returns 0 on success, -EINVAL on failure.
3258 *
3259 * The caller must have charged to @to, IOW, called res_counter_charge() about
3260 * both res and memsw, and called css_get().
3261 */
3262static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3263 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3264{
3265 unsigned short old_id, new_id;
3266
3267 old_id = css_id(&from->css);
3268 new_id = css_id(&to->css);
3269
3270 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3271 mem_cgroup_swap_statistics(from, false);
483c30b5 3272 mem_cgroup_swap_statistics(to, true);
02491447 3273 /*
483c30b5
DN
3274 * This function is only called from task migration context now.
3275 * It postpones res_counter and refcount handling till the end
3276 * of task migration(mem_cgroup_clear_mc()) for performance
3277 * improvement. But we cannot postpone mem_cgroup_get(to)
3278 * because if the process that has been moved to @to does
3279 * swap-in, the refcount of @to might be decreased to 0.
02491447 3280 */
02491447 3281 mem_cgroup_get(to);
02491447
DN
3282 return 0;
3283 }
3284 return -EINVAL;
3285}
3286#else
3287static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3288 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3289{
3290 return -EINVAL;
3291}
8c7c6e34 3292#endif
d13d1443 3293
ae41be37 3294/*
01b1ae63
KH
3295 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3296 * page belongs to.
ae41be37 3297 */
0030f535
JW
3298void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3299 struct mem_cgroup **memcgp)
ae41be37 3300{
c0ff4b85 3301 struct mem_cgroup *memcg = NULL;
b32967ff 3302 unsigned int nr_pages = 1;
7ec99d62 3303 struct page_cgroup *pc;
ac39cf8c 3304 enum charge_type ctype;
8869b8f6 3305
72835c86 3306 *memcgp = NULL;
56039efa 3307
f8d66542 3308 if (mem_cgroup_disabled())
0030f535 3309 return;
4077960e 3310
b32967ff
MG
3311 if (PageTransHuge(page))
3312 nr_pages <<= compound_order(page);
3313
52d4b9ac
KH
3314 pc = lookup_page_cgroup(page);
3315 lock_page_cgroup(pc);
3316 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3317 memcg = pc->mem_cgroup;
3318 css_get(&memcg->css);
ac39cf8c 3319 /*
3320 * At migrating an anonymous page, its mapcount goes down
3321 * to 0 and uncharge() will be called. But, even if it's fully
3322 * unmapped, migration may fail and this page has to be
3323 * charged again. We set MIGRATION flag here and delay uncharge
3324 * until end_migration() is called
3325 *
3326 * Corner Case Thinking
3327 * A)
3328 * When the old page was mapped as Anon and it's unmap-and-freed
3329 * while migration was ongoing.
3330 * If unmap finds the old page, uncharge() of it will be delayed
3331 * until end_migration(). If unmap finds a new page, it's
3332 * uncharged when it make mapcount to be 1->0. If unmap code
3333 * finds swap_migration_entry, the new page will not be mapped
3334 * and end_migration() will find it(mapcount==0).
3335 *
3336 * B)
3337 * When the old page was mapped but migraion fails, the kernel
3338 * remaps it. A charge for it is kept by MIGRATION flag even
3339 * if mapcount goes down to 0. We can do remap successfully
3340 * without charging it again.
3341 *
3342 * C)
3343 * The "old" page is under lock_page() until the end of
3344 * migration, so, the old page itself will not be swapped-out.
3345 * If the new page is swapped out before end_migraton, our
3346 * hook to usual swap-out path will catch the event.
3347 */
3348 if (PageAnon(page))
3349 SetPageCgroupMigration(pc);
e8589cc1 3350 }
52d4b9ac 3351 unlock_page_cgroup(pc);
ac39cf8c 3352 /*
3353 * If the page is not charged at this point,
3354 * we return here.
3355 */
c0ff4b85 3356 if (!memcg)
0030f535 3357 return;
01b1ae63 3358
72835c86 3359 *memcgp = memcg;
ac39cf8c 3360 /*
3361 * We charge new page before it's used/mapped. So, even if unlock_page()
3362 * is called before end_migration, we can catch all events on this new
3363 * page. In the case new page is migrated but not remapped, new page's
3364 * mapcount will be finally 0 and we call uncharge in end_migration().
3365 */
ac39cf8c 3366 if (PageAnon(page))
41326c17 3367 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3368 else
62ba7442 3369 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
3370 /*
3371 * The page is committed to the memcg, but it's not actually
3372 * charged to the res_counter since we plan on replacing the
3373 * old one and only one page is going to be left afterwards.
3374 */
b32967ff 3375 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 3376}
8869b8f6 3377
69029cd5 3378/* remove redundant charge if migration failed*/
c0ff4b85 3379void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3380 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3381{
ac39cf8c 3382 struct page *used, *unused;
01b1ae63 3383 struct page_cgroup *pc;
b2402857 3384 bool anon;
01b1ae63 3385
c0ff4b85 3386 if (!memcg)
01b1ae63 3387 return;
b25ed609 3388
50de1dd9 3389 if (!migration_ok) {
ac39cf8c 3390 used = oldpage;
3391 unused = newpage;
01b1ae63 3392 } else {
ac39cf8c 3393 used = newpage;
01b1ae63
KH
3394 unused = oldpage;
3395 }
0030f535 3396 anon = PageAnon(used);
7d188958
JW
3397 __mem_cgroup_uncharge_common(unused,
3398 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3399 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3400 true);
0030f535 3401 css_put(&memcg->css);
69029cd5 3402 /*
ac39cf8c 3403 * We disallowed uncharge of pages under migration because mapcount
3404 * of the page goes down to zero, temporarly.
3405 * Clear the flag and check the page should be charged.
01b1ae63 3406 */
ac39cf8c 3407 pc = lookup_page_cgroup(oldpage);
3408 lock_page_cgroup(pc);
3409 ClearPageCgroupMigration(pc);
3410 unlock_page_cgroup(pc);
ac39cf8c 3411
01b1ae63 3412 /*
ac39cf8c 3413 * If a page is a file cache, radix-tree replacement is very atomic
3414 * and we can skip this check. When it was an Anon page, its mapcount
3415 * goes down to 0. But because we added MIGRATION flage, it's not
3416 * uncharged yet. There are several case but page->mapcount check
3417 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3418 * check. (see prepare_charge() also)
69029cd5 3419 */
b2402857 3420 if (anon)
ac39cf8c 3421 mem_cgroup_uncharge_page(used);
ae41be37 3422}
78fb7466 3423
ab936cbc
KH
3424/*
3425 * At replace page cache, newpage is not under any memcg but it's on
3426 * LRU. So, this function doesn't touch res_counter but handles LRU
3427 * in correct way. Both pages are locked so we cannot race with uncharge.
3428 */
3429void mem_cgroup_replace_page_cache(struct page *oldpage,
3430 struct page *newpage)
3431{
bde05d1c 3432 struct mem_cgroup *memcg = NULL;
ab936cbc 3433 struct page_cgroup *pc;
ab936cbc 3434 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3435
3436 if (mem_cgroup_disabled())
3437 return;
3438
3439 pc = lookup_page_cgroup(oldpage);
3440 /* fix accounting on old pages */
3441 lock_page_cgroup(pc);
bde05d1c
HD
3442 if (PageCgroupUsed(pc)) {
3443 memcg = pc->mem_cgroup;
3444 mem_cgroup_charge_statistics(memcg, false, -1);
3445 ClearPageCgroupUsed(pc);
3446 }
ab936cbc
KH
3447 unlock_page_cgroup(pc);
3448
bde05d1c
HD
3449 /*
3450 * When called from shmem_replace_page(), in some cases the
3451 * oldpage has already been charged, and in some cases not.
3452 */
3453 if (!memcg)
3454 return;
ab936cbc
KH
3455 /*
3456 * Even if newpage->mapping was NULL before starting replacement,
3457 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3458 * LRU while we overwrite pc->mem_cgroup.
3459 */
ce587e65 3460 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3461}
3462
f212ad7c
DN
3463#ifdef CONFIG_DEBUG_VM
3464static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3465{
3466 struct page_cgroup *pc;
3467
3468 pc = lookup_page_cgroup(page);
cfa44946
JW
3469 /*
3470 * Can be NULL while feeding pages into the page allocator for
3471 * the first time, i.e. during boot or memory hotplug;
3472 * or when mem_cgroup_disabled().
3473 */
f212ad7c
DN
3474 if (likely(pc) && PageCgroupUsed(pc))
3475 return pc;
3476 return NULL;
3477}
3478
3479bool mem_cgroup_bad_page_check(struct page *page)
3480{
3481 if (mem_cgroup_disabled())
3482 return false;
3483
3484 return lookup_page_cgroup_used(page) != NULL;
3485}
3486
3487void mem_cgroup_print_bad_page(struct page *page)
3488{
3489 struct page_cgroup *pc;
3490
3491 pc = lookup_page_cgroup_used(page);
3492 if (pc) {
90b3feae 3493 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3494 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3495 }
3496}
3497#endif
3498
8c7c6e34
KH
3499static DEFINE_MUTEX(set_limit_mutex);
3500
d38d2a75 3501static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3502 unsigned long long val)
628f4235 3503{
81d39c20 3504 int retry_count;
3c11ecf4 3505 u64 memswlimit, memlimit;
628f4235 3506 int ret = 0;
81d39c20
KH
3507 int children = mem_cgroup_count_children(memcg);
3508 u64 curusage, oldusage;
3c11ecf4 3509 int enlarge;
81d39c20
KH
3510
3511 /*
3512 * For keeping hierarchical_reclaim simple, how long we should retry
3513 * is depends on callers. We set our retry-count to be function
3514 * of # of children which we should visit in this loop.
3515 */
3516 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3517
3518 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3519
3c11ecf4 3520 enlarge = 0;
8c7c6e34 3521 while (retry_count) {
628f4235
KH
3522 if (signal_pending(current)) {
3523 ret = -EINTR;
3524 break;
3525 }
8c7c6e34
KH
3526 /*
3527 * Rather than hide all in some function, I do this in
3528 * open coded manner. You see what this really does.
aaad153e 3529 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3530 */
3531 mutex_lock(&set_limit_mutex);
3532 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3533 if (memswlimit < val) {
3534 ret = -EINVAL;
3535 mutex_unlock(&set_limit_mutex);
628f4235
KH
3536 break;
3537 }
3c11ecf4
KH
3538
3539 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3540 if (memlimit < val)
3541 enlarge = 1;
3542
8c7c6e34 3543 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3544 if (!ret) {
3545 if (memswlimit == val)
3546 memcg->memsw_is_minimum = true;
3547 else
3548 memcg->memsw_is_minimum = false;
3549 }
8c7c6e34
KH
3550 mutex_unlock(&set_limit_mutex);
3551
3552 if (!ret)
3553 break;
3554
5660048c
JW
3555 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3556 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3557 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3558 /* Usage is reduced ? */
3559 if (curusage >= oldusage)
3560 retry_count--;
3561 else
3562 oldusage = curusage;
8c7c6e34 3563 }
3c11ecf4
KH
3564 if (!ret && enlarge)
3565 memcg_oom_recover(memcg);
14797e23 3566
8c7c6e34
KH
3567 return ret;
3568}
3569
338c8431
LZ
3570static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3571 unsigned long long val)
8c7c6e34 3572{
81d39c20 3573 int retry_count;
3c11ecf4 3574 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3575 int children = mem_cgroup_count_children(memcg);
3576 int ret = -EBUSY;
3c11ecf4 3577 int enlarge = 0;
8c7c6e34 3578
81d39c20
KH
3579 /* see mem_cgroup_resize_res_limit */
3580 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3581 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3582 while (retry_count) {
3583 if (signal_pending(current)) {
3584 ret = -EINTR;
3585 break;
3586 }
3587 /*
3588 * Rather than hide all in some function, I do this in
3589 * open coded manner. You see what this really does.
aaad153e 3590 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3591 */
3592 mutex_lock(&set_limit_mutex);
3593 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3594 if (memlimit > val) {
3595 ret = -EINVAL;
3596 mutex_unlock(&set_limit_mutex);
3597 break;
3598 }
3c11ecf4
KH
3599 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3600 if (memswlimit < val)
3601 enlarge = 1;
8c7c6e34 3602 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3603 if (!ret) {
3604 if (memlimit == val)
3605 memcg->memsw_is_minimum = true;
3606 else
3607 memcg->memsw_is_minimum = false;
3608 }
8c7c6e34
KH
3609 mutex_unlock(&set_limit_mutex);
3610
3611 if (!ret)
3612 break;
3613
5660048c
JW
3614 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3615 MEM_CGROUP_RECLAIM_NOSWAP |
3616 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3617 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3618 /* Usage is reduced ? */
8c7c6e34 3619 if (curusage >= oldusage)
628f4235 3620 retry_count--;
81d39c20
KH
3621 else
3622 oldusage = curusage;
628f4235 3623 }
3c11ecf4
KH
3624 if (!ret && enlarge)
3625 memcg_oom_recover(memcg);
628f4235
KH
3626 return ret;
3627}
3628
4e416953 3629unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3630 gfp_t gfp_mask,
3631 unsigned long *total_scanned)
4e416953
BS
3632{
3633 unsigned long nr_reclaimed = 0;
3634 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3635 unsigned long reclaimed;
3636 int loop = 0;
3637 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3638 unsigned long long excess;
0ae5e89c 3639 unsigned long nr_scanned;
4e416953
BS
3640
3641 if (order > 0)
3642 return 0;
3643
00918b6a 3644 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3645 /*
3646 * This loop can run a while, specially if mem_cgroup's continuously
3647 * keep exceeding their soft limit and putting the system under
3648 * pressure
3649 */
3650 do {
3651 if (next_mz)
3652 mz = next_mz;
3653 else
3654 mz = mem_cgroup_largest_soft_limit_node(mctz);
3655 if (!mz)
3656 break;
3657
0ae5e89c 3658 nr_scanned = 0;
d79154bb 3659 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3660 gfp_mask, &nr_scanned);
4e416953 3661 nr_reclaimed += reclaimed;
0ae5e89c 3662 *total_scanned += nr_scanned;
4e416953
BS
3663 spin_lock(&mctz->lock);
3664
3665 /*
3666 * If we failed to reclaim anything from this memory cgroup
3667 * it is time to move on to the next cgroup
3668 */
3669 next_mz = NULL;
3670 if (!reclaimed) {
3671 do {
3672 /*
3673 * Loop until we find yet another one.
3674 *
3675 * By the time we get the soft_limit lock
3676 * again, someone might have aded the
3677 * group back on the RB tree. Iterate to
3678 * make sure we get a different mem.
3679 * mem_cgroup_largest_soft_limit_node returns
3680 * NULL if no other cgroup is present on
3681 * the tree
3682 */
3683 next_mz =
3684 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3685 if (next_mz == mz)
d79154bb 3686 css_put(&next_mz->memcg->css);
39cc98f1 3687 else /* next_mz == NULL or other memcg */
4e416953
BS
3688 break;
3689 } while (1);
3690 }
d79154bb
HD
3691 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3692 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3693 /*
3694 * One school of thought says that we should not add
3695 * back the node to the tree if reclaim returns 0.
3696 * But our reclaim could return 0, simply because due
3697 * to priority we are exposing a smaller subset of
3698 * memory to reclaim from. Consider this as a longer
3699 * term TODO.
3700 */
ef8745c1 3701 /* If excess == 0, no tree ops */
d79154bb 3702 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3703 spin_unlock(&mctz->lock);
d79154bb 3704 css_put(&mz->memcg->css);
4e416953
BS
3705 loop++;
3706 /*
3707 * Could not reclaim anything and there are no more
3708 * mem cgroups to try or we seem to be looping without
3709 * reclaiming anything.
3710 */
3711 if (!nr_reclaimed &&
3712 (next_mz == NULL ||
3713 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3714 break;
3715 } while (!nr_reclaimed);
3716 if (next_mz)
d79154bb 3717 css_put(&next_mz->memcg->css);
4e416953
BS
3718 return nr_reclaimed;
3719}
3720
2ef37d3f
MH
3721/**
3722 * mem_cgroup_force_empty_list - clears LRU of a group
3723 * @memcg: group to clear
3724 * @node: NUMA node
3725 * @zid: zone id
3726 * @lru: lru to to clear
3727 *
3c935d18 3728 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3729 * reclaim the pages page themselves - pages are moved to the parent (or root)
3730 * group.
cc847582 3731 */
2ef37d3f 3732static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3733 int node, int zid, enum lru_list lru)
cc847582 3734{
bea8c150 3735 struct lruvec *lruvec;
2ef37d3f 3736 unsigned long flags;
072c56c1 3737 struct list_head *list;
925b7673
JW
3738 struct page *busy;
3739 struct zone *zone;
072c56c1 3740
08e552c6 3741 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3742 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3743 list = &lruvec->lists[lru];
cc847582 3744
f817ed48 3745 busy = NULL;
2ef37d3f 3746 do {
925b7673 3747 struct page_cgroup *pc;
5564e88b
JW
3748 struct page *page;
3749
08e552c6 3750 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3751 if (list_empty(list)) {
08e552c6 3752 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3753 break;
f817ed48 3754 }
925b7673
JW
3755 page = list_entry(list->prev, struct page, lru);
3756 if (busy == page) {
3757 list_move(&page->lru, list);
648bcc77 3758 busy = NULL;
08e552c6 3759 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3760 continue;
3761 }
08e552c6 3762 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3763
925b7673 3764 pc = lookup_page_cgroup(page);
5564e88b 3765
3c935d18 3766 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3767 /* found lock contention or "pc" is obsolete. */
925b7673 3768 busy = page;
f817ed48
KH
3769 cond_resched();
3770 } else
3771 busy = NULL;
2ef37d3f 3772 } while (!list_empty(list));
cc847582
KH
3773}
3774
3775/*
c26251f9
MH
3776 * make mem_cgroup's charge to be 0 if there is no task by moving
3777 * all the charges and pages to the parent.
cc847582 3778 * This enables deleting this mem_cgroup.
c26251f9
MH
3779 *
3780 * Caller is responsible for holding css reference on the memcg.
cc847582 3781 */
ab5196c2 3782static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3783{
c26251f9 3784 int node, zid;
f817ed48 3785
fce66477 3786 do {
52d4b9ac
KH
3787 /* This is for making all *used* pages to be on LRU. */
3788 lru_add_drain_all();
c0ff4b85 3789 drain_all_stock_sync(memcg);
c0ff4b85 3790 mem_cgroup_start_move(memcg);
31aaea4a 3791 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3792 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3793 enum lru_list lru;
3794 for_each_lru(lru) {
2ef37d3f 3795 mem_cgroup_force_empty_list(memcg,
f156ab93 3796 node, zid, lru);
f817ed48 3797 }
1ecaab2b 3798 }
f817ed48 3799 }
c0ff4b85
R
3800 mem_cgroup_end_move(memcg);
3801 memcg_oom_recover(memcg);
52d4b9ac 3802 cond_resched();
f817ed48 3803
2ef37d3f
MH
3804 /*
3805 * This is a safety check because mem_cgroup_force_empty_list
3806 * could have raced with mem_cgroup_replace_page_cache callers
3807 * so the lru seemed empty but the page could have been added
3808 * right after the check. RES_USAGE should be safe as we always
3809 * charge before adding to the LRU.
3810 */
3811 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
c26251f9
MH
3812}
3813
3814/*
3815 * Reclaims as many pages from the given memcg as possible and moves
3816 * the rest to the parent.
3817 *
3818 * Caller is responsible for holding css reference for memcg.
3819 */
3820static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3821{
3822 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3823 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 3824
c1e862c1 3825 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
3826 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3827 return -EBUSY;
3828
c1e862c1
KH
3829 /* we call try-to-free pages for make this cgroup empty */
3830 lru_add_drain_all();
f817ed48 3831 /* try to free all pages in this cgroup */
569530fb 3832 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3833 int progress;
c1e862c1 3834
c26251f9
MH
3835 if (signal_pending(current))
3836 return -EINTR;
3837
c0ff4b85 3838 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3839 false);
c1e862c1 3840 if (!progress) {
f817ed48 3841 nr_retries--;
c1e862c1 3842 /* maybe some writeback is necessary */
8aa7e847 3843 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3844 }
f817ed48
KH
3845
3846 }
08e552c6 3847 lru_add_drain();
ab5196c2
MH
3848 mem_cgroup_reparent_charges(memcg);
3849
3850 return 0;
cc847582
KH
3851}
3852
6bbda35c 3853static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 3854{
c26251f9
MH
3855 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3856 int ret;
3857
d8423011
MH
3858 if (mem_cgroup_is_root(memcg))
3859 return -EINVAL;
c26251f9
MH
3860 css_get(&memcg->css);
3861 ret = mem_cgroup_force_empty(memcg);
3862 css_put(&memcg->css);
3863
3864 return ret;
c1e862c1
KH
3865}
3866
3867
18f59ea7
BS
3868static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3869{
3870 return mem_cgroup_from_cont(cont)->use_hierarchy;
3871}
3872
3873static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3874 u64 val)
3875{
3876 int retval = 0;
c0ff4b85 3877 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3878 struct cgroup *parent = cont->parent;
c0ff4b85 3879 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3880
3881 if (parent)
c0ff4b85 3882 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3883
3884 cgroup_lock();
567fb435
GC
3885
3886 if (memcg->use_hierarchy == val)
3887 goto out;
3888
18f59ea7 3889 /*
af901ca1 3890 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3891 * in the child subtrees. If it is unset, then the change can
3892 * occur, provided the current cgroup has no children.
3893 *
3894 * For the root cgroup, parent_mem is NULL, we allow value to be
3895 * set if there are no children.
3896 */
c0ff4b85 3897 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3898 (val == 1 || val == 0)) {
3899 if (list_empty(&cont->children))
c0ff4b85 3900 memcg->use_hierarchy = val;
18f59ea7
BS
3901 else
3902 retval = -EBUSY;
3903 } else
3904 retval = -EINVAL;
567fb435
GC
3905
3906out:
18f59ea7
BS
3907 cgroup_unlock();
3908
3909 return retval;
3910}
3911
0c3e73e8 3912
c0ff4b85 3913static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3914 enum mem_cgroup_stat_index idx)
0c3e73e8 3915{
7d74b06f 3916 struct mem_cgroup *iter;
7a159cc9 3917 long val = 0;
0c3e73e8 3918
7a159cc9 3919 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3920 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3921 val += mem_cgroup_read_stat(iter, idx);
3922
3923 if (val < 0) /* race ? */
3924 val = 0;
3925 return val;
0c3e73e8
BS
3926}
3927
c0ff4b85 3928static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3929{
7d74b06f 3930 u64 val;
104f3928 3931
c0ff4b85 3932 if (!mem_cgroup_is_root(memcg)) {
104f3928 3933 if (!swap)
65c64ce8 3934 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3935 else
65c64ce8 3936 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3937 }
3938
c0ff4b85
R
3939 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3940 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3941
7d74b06f 3942 if (swap)
bff6bb83 3943 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3944
3945 return val << PAGE_SHIFT;
3946}
3947
af36f906
TH
3948static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3949 struct file *file, char __user *buf,
3950 size_t nbytes, loff_t *ppos)
8cdea7c0 3951{
c0ff4b85 3952 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3953 char str[64];
104f3928 3954 u64 val;
af36f906 3955 int type, name, len;
8c7c6e34
KH
3956
3957 type = MEMFILE_TYPE(cft->private);
3958 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3959
3960 if (!do_swap_account && type == _MEMSWAP)
3961 return -EOPNOTSUPP;
3962
8c7c6e34
KH
3963 switch (type) {
3964 case _MEM:
104f3928 3965 if (name == RES_USAGE)
c0ff4b85 3966 val = mem_cgroup_usage(memcg, false);
104f3928 3967 else
c0ff4b85 3968 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3969 break;
3970 case _MEMSWAP:
104f3928 3971 if (name == RES_USAGE)
c0ff4b85 3972 val = mem_cgroup_usage(memcg, true);
104f3928 3973 else
c0ff4b85 3974 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3975 break;
3976 default:
3977 BUG();
8c7c6e34 3978 }
af36f906
TH
3979
3980 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3981 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3982}
628f4235
KH
3983/*
3984 * The user of this function is...
3985 * RES_LIMIT.
3986 */
856c13aa
PM
3987static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3988 const char *buffer)
8cdea7c0 3989{
628f4235 3990 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3991 int type, name;
628f4235
KH
3992 unsigned long long val;
3993 int ret;
3994
8c7c6e34
KH
3995 type = MEMFILE_TYPE(cft->private);
3996 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3997
3998 if (!do_swap_account && type == _MEMSWAP)
3999 return -EOPNOTSUPP;
4000
8c7c6e34 4001 switch (name) {
628f4235 4002 case RES_LIMIT:
4b3bde4c
BS
4003 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4004 ret = -EINVAL;
4005 break;
4006 }
628f4235
KH
4007 /* This function does all necessary parse...reuse it */
4008 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4009 if (ret)
4010 break;
4011 if (type == _MEM)
628f4235 4012 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
4013 else
4014 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 4015 break;
296c81d8
BS
4016 case RES_SOFT_LIMIT:
4017 ret = res_counter_memparse_write_strategy(buffer, &val);
4018 if (ret)
4019 break;
4020 /*
4021 * For memsw, soft limits are hard to implement in terms
4022 * of semantics, for now, we support soft limits for
4023 * control without swap
4024 */
4025 if (type == _MEM)
4026 ret = res_counter_set_soft_limit(&memcg->res, val);
4027 else
4028 ret = -EINVAL;
4029 break;
628f4235
KH
4030 default:
4031 ret = -EINVAL; /* should be BUG() ? */
4032 break;
4033 }
4034 return ret;
8cdea7c0
BS
4035}
4036
fee7b548
KH
4037static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4038 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4039{
4040 struct cgroup *cgroup;
4041 unsigned long long min_limit, min_memsw_limit, tmp;
4042
4043 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4044 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4045 cgroup = memcg->css.cgroup;
4046 if (!memcg->use_hierarchy)
4047 goto out;
4048
4049 while (cgroup->parent) {
4050 cgroup = cgroup->parent;
4051 memcg = mem_cgroup_from_cont(cgroup);
4052 if (!memcg->use_hierarchy)
4053 break;
4054 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4055 min_limit = min(min_limit, tmp);
4056 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4057 min_memsw_limit = min(min_memsw_limit, tmp);
4058 }
4059out:
4060 *mem_limit = min_limit;
4061 *memsw_limit = min_memsw_limit;
fee7b548
KH
4062}
4063
29f2a4da 4064static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4065{
af36f906 4066 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4067 int type, name;
c84872e1 4068
8c7c6e34
KH
4069 type = MEMFILE_TYPE(event);
4070 name = MEMFILE_ATTR(event);
af36f906
TH
4071
4072 if (!do_swap_account && type == _MEMSWAP)
4073 return -EOPNOTSUPP;
4074
8c7c6e34 4075 switch (name) {
29f2a4da 4076 case RES_MAX_USAGE:
8c7c6e34 4077 if (type == _MEM)
c0ff4b85 4078 res_counter_reset_max(&memcg->res);
8c7c6e34 4079 else
c0ff4b85 4080 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4081 break;
4082 case RES_FAILCNT:
8c7c6e34 4083 if (type == _MEM)
c0ff4b85 4084 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4085 else
c0ff4b85 4086 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4087 break;
4088 }
f64c3f54 4089
85cc59db 4090 return 0;
c84872e1
PE
4091}
4092
7dc74be0
DN
4093static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4094 struct cftype *cft)
4095{
4096 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4097}
4098
02491447 4099#ifdef CONFIG_MMU
7dc74be0
DN
4100static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4101 struct cftype *cft, u64 val)
4102{
c0ff4b85 4103 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4104
4105 if (val >= (1 << NR_MOVE_TYPE))
4106 return -EINVAL;
4107 /*
4108 * We check this value several times in both in can_attach() and
4109 * attach(), so we need cgroup lock to prevent this value from being
4110 * inconsistent.
4111 */
4112 cgroup_lock();
c0ff4b85 4113 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4114 cgroup_unlock();
4115
4116 return 0;
4117}
02491447
DN
4118#else
4119static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4120 struct cftype *cft, u64 val)
4121{
4122 return -ENOSYS;
4123}
4124#endif
7dc74be0 4125
406eb0c9 4126#ifdef CONFIG_NUMA
ab215884 4127static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4128 struct seq_file *m)
406eb0c9
YH
4129{
4130 int nid;
4131 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4132 unsigned long node_nr;
d79154bb 4133 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4134
d79154bb 4135 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 4136 seq_printf(m, "total=%lu", total_nr);
31aaea4a 4137 for_each_node_state(nid, N_MEMORY) {
d79154bb 4138 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4139 seq_printf(m, " N%d=%lu", nid, node_nr);
4140 }
4141 seq_putc(m, '\n');
4142
d79154bb 4143 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 4144 seq_printf(m, "file=%lu", file_nr);
31aaea4a 4145 for_each_node_state(nid, N_MEMORY) {
d79154bb 4146 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4147 LRU_ALL_FILE);
406eb0c9
YH
4148 seq_printf(m, " N%d=%lu", nid, node_nr);
4149 }
4150 seq_putc(m, '\n');
4151
d79154bb 4152 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 4153 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 4154 for_each_node_state(nid, N_MEMORY) {
d79154bb 4155 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4156 LRU_ALL_ANON);
406eb0c9
YH
4157 seq_printf(m, " N%d=%lu", nid, node_nr);
4158 }
4159 seq_putc(m, '\n');
4160
d79154bb 4161 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 4162 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 4163 for_each_node_state(nid, N_MEMORY) {
d79154bb 4164 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4165 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4166 seq_printf(m, " N%d=%lu", nid, node_nr);
4167 }
4168 seq_putc(m, '\n');
4169 return 0;
4170}
4171#endif /* CONFIG_NUMA */
4172
af7c4b0e
JW
4173static const char * const mem_cgroup_lru_names[] = {
4174 "inactive_anon",
4175 "active_anon",
4176 "inactive_file",
4177 "active_file",
4178 "unevictable",
4179};
4180
4181static inline void mem_cgroup_lru_names_not_uptodate(void)
4182{
4183 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4184}
4185
ab215884 4186static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4187 struct seq_file *m)
d2ceb9b7 4188{
d79154bb 4189 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4190 struct mem_cgroup *mi;
4191 unsigned int i;
406eb0c9 4192
af7c4b0e 4193 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4194 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4195 continue;
af7c4b0e
JW
4196 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4197 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4198 }
7b854121 4199
af7c4b0e
JW
4200 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4201 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4202 mem_cgroup_read_events(memcg, i));
4203
4204 for (i = 0; i < NR_LRU_LISTS; i++)
4205 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4206 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4207
14067bb3 4208 /* Hierarchical information */
fee7b548
KH
4209 {
4210 unsigned long long limit, memsw_limit;
d79154bb 4211 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4212 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4213 if (do_swap_account)
78ccf5b5
JW
4214 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4215 memsw_limit);
fee7b548 4216 }
7f016ee8 4217
af7c4b0e
JW
4218 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4219 long long val = 0;
4220
bff6bb83 4221 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4222 continue;
af7c4b0e
JW
4223 for_each_mem_cgroup_tree(mi, memcg)
4224 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4225 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4226 }
4227
4228 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4229 unsigned long long val = 0;
4230
4231 for_each_mem_cgroup_tree(mi, memcg)
4232 val += mem_cgroup_read_events(mi, i);
4233 seq_printf(m, "total_%s %llu\n",
4234 mem_cgroup_events_names[i], val);
4235 }
4236
4237 for (i = 0; i < NR_LRU_LISTS; i++) {
4238 unsigned long long val = 0;
4239
4240 for_each_mem_cgroup_tree(mi, memcg)
4241 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4242 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4243 }
14067bb3 4244
7f016ee8 4245#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4246 {
4247 int nid, zid;
4248 struct mem_cgroup_per_zone *mz;
89abfab1 4249 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4250 unsigned long recent_rotated[2] = {0, 0};
4251 unsigned long recent_scanned[2] = {0, 0};
4252
4253 for_each_online_node(nid)
4254 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4255 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4256 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4257
89abfab1
HD
4258 recent_rotated[0] += rstat->recent_rotated[0];
4259 recent_rotated[1] += rstat->recent_rotated[1];
4260 recent_scanned[0] += rstat->recent_scanned[0];
4261 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4262 }
78ccf5b5
JW
4263 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4264 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4265 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4266 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4267 }
4268#endif
4269
d2ceb9b7
KH
4270 return 0;
4271}
4272
a7885eb8
KM
4273static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4274{
4275 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4276
1f4c025b 4277 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4278}
4279
4280static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4281 u64 val)
4282{
4283 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4284 struct mem_cgroup *parent;
068b38c1 4285
a7885eb8
KM
4286 if (val > 100)
4287 return -EINVAL;
4288
4289 if (cgrp->parent == NULL)
4290 return -EINVAL;
4291
4292 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4293
4294 cgroup_lock();
4295
a7885eb8
KM
4296 /* If under hierarchy, only empty-root can set this value */
4297 if ((parent->use_hierarchy) ||
068b38c1
LZ
4298 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4299 cgroup_unlock();
a7885eb8 4300 return -EINVAL;
068b38c1 4301 }
a7885eb8 4302
a7885eb8 4303 memcg->swappiness = val;
a7885eb8 4304
068b38c1
LZ
4305 cgroup_unlock();
4306
a7885eb8
KM
4307 return 0;
4308}
4309
2e72b634
KS
4310static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4311{
4312 struct mem_cgroup_threshold_ary *t;
4313 u64 usage;
4314 int i;
4315
4316 rcu_read_lock();
4317 if (!swap)
2c488db2 4318 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4319 else
2c488db2 4320 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4321
4322 if (!t)
4323 goto unlock;
4324
4325 usage = mem_cgroup_usage(memcg, swap);
4326
4327 /*
748dad36 4328 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4329 * If it's not true, a threshold was crossed after last
4330 * call of __mem_cgroup_threshold().
4331 */
5407a562 4332 i = t->current_threshold;
2e72b634
KS
4333
4334 /*
4335 * Iterate backward over array of thresholds starting from
4336 * current_threshold and check if a threshold is crossed.
4337 * If none of thresholds below usage is crossed, we read
4338 * only one element of the array here.
4339 */
4340 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4341 eventfd_signal(t->entries[i].eventfd, 1);
4342
4343 /* i = current_threshold + 1 */
4344 i++;
4345
4346 /*
4347 * Iterate forward over array of thresholds starting from
4348 * current_threshold+1 and check if a threshold is crossed.
4349 * If none of thresholds above usage is crossed, we read
4350 * only one element of the array here.
4351 */
4352 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4353 eventfd_signal(t->entries[i].eventfd, 1);
4354
4355 /* Update current_threshold */
5407a562 4356 t->current_threshold = i - 1;
2e72b634
KS
4357unlock:
4358 rcu_read_unlock();
4359}
4360
4361static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4362{
ad4ca5f4
KS
4363 while (memcg) {
4364 __mem_cgroup_threshold(memcg, false);
4365 if (do_swap_account)
4366 __mem_cgroup_threshold(memcg, true);
4367
4368 memcg = parent_mem_cgroup(memcg);
4369 }
2e72b634
KS
4370}
4371
4372static int compare_thresholds(const void *a, const void *b)
4373{
4374 const struct mem_cgroup_threshold *_a = a;
4375 const struct mem_cgroup_threshold *_b = b;
4376
4377 return _a->threshold - _b->threshold;
4378}
4379
c0ff4b85 4380static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4381{
4382 struct mem_cgroup_eventfd_list *ev;
4383
c0ff4b85 4384 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4385 eventfd_signal(ev->eventfd, 1);
4386 return 0;
4387}
4388
c0ff4b85 4389static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4390{
7d74b06f
KH
4391 struct mem_cgroup *iter;
4392
c0ff4b85 4393 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4394 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4395}
4396
4397static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4398 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4399{
4400 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4401 struct mem_cgroup_thresholds *thresholds;
4402 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4403 int type = MEMFILE_TYPE(cft->private);
4404 u64 threshold, usage;
2c488db2 4405 int i, size, ret;
2e72b634
KS
4406
4407 ret = res_counter_memparse_write_strategy(args, &threshold);
4408 if (ret)
4409 return ret;
4410
4411 mutex_lock(&memcg->thresholds_lock);
2c488db2 4412
2e72b634 4413 if (type == _MEM)
2c488db2 4414 thresholds = &memcg->thresholds;
2e72b634 4415 else if (type == _MEMSWAP)
2c488db2 4416 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4417 else
4418 BUG();
4419
4420 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4421
4422 /* Check if a threshold crossed before adding a new one */
2c488db2 4423 if (thresholds->primary)
2e72b634
KS
4424 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4425
2c488db2 4426 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4427
4428 /* Allocate memory for new array of thresholds */
2c488db2 4429 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4430 GFP_KERNEL);
2c488db2 4431 if (!new) {
2e72b634
KS
4432 ret = -ENOMEM;
4433 goto unlock;
4434 }
2c488db2 4435 new->size = size;
2e72b634
KS
4436
4437 /* Copy thresholds (if any) to new array */
2c488db2
KS
4438 if (thresholds->primary) {
4439 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4440 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4441 }
4442
2e72b634 4443 /* Add new threshold */
2c488db2
KS
4444 new->entries[size - 1].eventfd = eventfd;
4445 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4446
4447 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4448 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4449 compare_thresholds, NULL);
4450
4451 /* Find current threshold */
2c488db2 4452 new->current_threshold = -1;
2e72b634 4453 for (i = 0; i < size; i++) {
748dad36 4454 if (new->entries[i].threshold <= usage) {
2e72b634 4455 /*
2c488db2
KS
4456 * new->current_threshold will not be used until
4457 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4458 * it here.
4459 */
2c488db2 4460 ++new->current_threshold;
748dad36
SZ
4461 } else
4462 break;
2e72b634
KS
4463 }
4464
2c488db2
KS
4465 /* Free old spare buffer and save old primary buffer as spare */
4466 kfree(thresholds->spare);
4467 thresholds->spare = thresholds->primary;
4468
4469 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4470
907860ed 4471 /* To be sure that nobody uses thresholds */
2e72b634
KS
4472 synchronize_rcu();
4473
2e72b634
KS
4474unlock:
4475 mutex_unlock(&memcg->thresholds_lock);
4476
4477 return ret;
4478}
4479
907860ed 4480static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4481 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4482{
4483 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4484 struct mem_cgroup_thresholds *thresholds;
4485 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4486 int type = MEMFILE_TYPE(cft->private);
4487 u64 usage;
2c488db2 4488 int i, j, size;
2e72b634
KS
4489
4490 mutex_lock(&memcg->thresholds_lock);
4491 if (type == _MEM)
2c488db2 4492 thresholds = &memcg->thresholds;
2e72b634 4493 else if (type == _MEMSWAP)
2c488db2 4494 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4495 else
4496 BUG();
4497
371528ca
AV
4498 if (!thresholds->primary)
4499 goto unlock;
4500
2e72b634
KS
4501 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4502
4503 /* Check if a threshold crossed before removing */
4504 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4505
4506 /* Calculate new number of threshold */
2c488db2
KS
4507 size = 0;
4508 for (i = 0; i < thresholds->primary->size; i++) {
4509 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4510 size++;
4511 }
4512
2c488db2 4513 new = thresholds->spare;
907860ed 4514
2e72b634
KS
4515 /* Set thresholds array to NULL if we don't have thresholds */
4516 if (!size) {
2c488db2
KS
4517 kfree(new);
4518 new = NULL;
907860ed 4519 goto swap_buffers;
2e72b634
KS
4520 }
4521
2c488db2 4522 new->size = size;
2e72b634
KS
4523
4524 /* Copy thresholds and find current threshold */
2c488db2
KS
4525 new->current_threshold = -1;
4526 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4527 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4528 continue;
4529
2c488db2 4530 new->entries[j] = thresholds->primary->entries[i];
748dad36 4531 if (new->entries[j].threshold <= usage) {
2e72b634 4532 /*
2c488db2 4533 * new->current_threshold will not be used
2e72b634
KS
4534 * until rcu_assign_pointer(), so it's safe to increment
4535 * it here.
4536 */
2c488db2 4537 ++new->current_threshold;
2e72b634
KS
4538 }
4539 j++;
4540 }
4541
907860ed 4542swap_buffers:
2c488db2
KS
4543 /* Swap primary and spare array */
4544 thresholds->spare = thresholds->primary;
8c757763
SZ
4545 /* If all events are unregistered, free the spare array */
4546 if (!new) {
4547 kfree(thresholds->spare);
4548 thresholds->spare = NULL;
4549 }
4550
2c488db2 4551 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4552
907860ed 4553 /* To be sure that nobody uses thresholds */
2e72b634 4554 synchronize_rcu();
371528ca 4555unlock:
2e72b634 4556 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4557}
c1e862c1 4558
9490ff27
KH
4559static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4560 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4561{
4562 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4563 struct mem_cgroup_eventfd_list *event;
4564 int type = MEMFILE_TYPE(cft->private);
4565
4566 BUG_ON(type != _OOM_TYPE);
4567 event = kmalloc(sizeof(*event), GFP_KERNEL);
4568 if (!event)
4569 return -ENOMEM;
4570
1af8efe9 4571 spin_lock(&memcg_oom_lock);
9490ff27
KH
4572
4573 event->eventfd = eventfd;
4574 list_add(&event->list, &memcg->oom_notify);
4575
4576 /* already in OOM ? */
79dfdacc 4577 if (atomic_read(&memcg->under_oom))
9490ff27 4578 eventfd_signal(eventfd, 1);
1af8efe9 4579 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4580
4581 return 0;
4582}
4583
907860ed 4584static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4585 struct cftype *cft, struct eventfd_ctx *eventfd)
4586{
c0ff4b85 4587 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4588 struct mem_cgroup_eventfd_list *ev, *tmp;
4589 int type = MEMFILE_TYPE(cft->private);
4590
4591 BUG_ON(type != _OOM_TYPE);
4592
1af8efe9 4593 spin_lock(&memcg_oom_lock);
9490ff27 4594
c0ff4b85 4595 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4596 if (ev->eventfd == eventfd) {
4597 list_del(&ev->list);
4598 kfree(ev);
4599 }
4600 }
4601
1af8efe9 4602 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4603}
4604
3c11ecf4
KH
4605static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4606 struct cftype *cft, struct cgroup_map_cb *cb)
4607{
c0ff4b85 4608 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4609
c0ff4b85 4610 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4611
c0ff4b85 4612 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4613 cb->fill(cb, "under_oom", 1);
4614 else
4615 cb->fill(cb, "under_oom", 0);
4616 return 0;
4617}
4618
3c11ecf4
KH
4619static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4620 struct cftype *cft, u64 val)
4621{
c0ff4b85 4622 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4623 struct mem_cgroup *parent;
4624
4625 /* cannot set to root cgroup and only 0 and 1 are allowed */
4626 if (!cgrp->parent || !((val == 0) || (val == 1)))
4627 return -EINVAL;
4628
4629 parent = mem_cgroup_from_cont(cgrp->parent);
4630
4631 cgroup_lock();
4632 /* oom-kill-disable is a flag for subhierarchy. */
4633 if ((parent->use_hierarchy) ||
c0ff4b85 4634 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4635 cgroup_unlock();
4636 return -EINVAL;
4637 }
c0ff4b85 4638 memcg->oom_kill_disable = val;
4d845ebf 4639 if (!val)
c0ff4b85 4640 memcg_oom_recover(memcg);
3c11ecf4
KH
4641 cgroup_unlock();
4642 return 0;
4643}
4644
c255a458 4645#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4646static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4647{
1d62e436 4648 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4649};
4650
1d62e436 4651static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4652{
1d62e436 4653 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4654}
e5671dfa 4655#else
cbe128e3 4656static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4657{
4658 return 0;
4659}
d1a4c0b3 4660
1d62e436 4661static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4662{
4663}
e5671dfa
GC
4664#endif
4665
8cdea7c0
BS
4666static struct cftype mem_cgroup_files[] = {
4667 {
0eea1030 4668 .name = "usage_in_bytes",
8c7c6e34 4669 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4670 .read = mem_cgroup_read,
9490ff27
KH
4671 .register_event = mem_cgroup_usage_register_event,
4672 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4673 },
c84872e1
PE
4674 {
4675 .name = "max_usage_in_bytes",
8c7c6e34 4676 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4677 .trigger = mem_cgroup_reset,
af36f906 4678 .read = mem_cgroup_read,
c84872e1 4679 },
8cdea7c0 4680 {
0eea1030 4681 .name = "limit_in_bytes",
8c7c6e34 4682 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4683 .write_string = mem_cgroup_write,
af36f906 4684 .read = mem_cgroup_read,
8cdea7c0 4685 },
296c81d8
BS
4686 {
4687 .name = "soft_limit_in_bytes",
4688 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4689 .write_string = mem_cgroup_write,
af36f906 4690 .read = mem_cgroup_read,
296c81d8 4691 },
8cdea7c0
BS
4692 {
4693 .name = "failcnt",
8c7c6e34 4694 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4695 .trigger = mem_cgroup_reset,
af36f906 4696 .read = mem_cgroup_read,
8cdea7c0 4697 },
d2ceb9b7
KH
4698 {
4699 .name = "stat",
ab215884 4700 .read_seq_string = memcg_stat_show,
d2ceb9b7 4701 },
c1e862c1
KH
4702 {
4703 .name = "force_empty",
4704 .trigger = mem_cgroup_force_empty_write,
4705 },
18f59ea7
BS
4706 {
4707 .name = "use_hierarchy",
4708 .write_u64 = mem_cgroup_hierarchy_write,
4709 .read_u64 = mem_cgroup_hierarchy_read,
4710 },
a7885eb8
KM
4711 {
4712 .name = "swappiness",
4713 .read_u64 = mem_cgroup_swappiness_read,
4714 .write_u64 = mem_cgroup_swappiness_write,
4715 },
7dc74be0
DN
4716 {
4717 .name = "move_charge_at_immigrate",
4718 .read_u64 = mem_cgroup_move_charge_read,
4719 .write_u64 = mem_cgroup_move_charge_write,
4720 },
9490ff27
KH
4721 {
4722 .name = "oom_control",
3c11ecf4
KH
4723 .read_map = mem_cgroup_oom_control_read,
4724 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4725 .register_event = mem_cgroup_oom_register_event,
4726 .unregister_event = mem_cgroup_oom_unregister_event,
4727 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4728 },
406eb0c9
YH
4729#ifdef CONFIG_NUMA
4730 {
4731 .name = "numa_stat",
ab215884 4732 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
4733 },
4734#endif
c255a458 4735#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4736 {
4737 .name = "memsw.usage_in_bytes",
4738 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4739 .read = mem_cgroup_read,
9490ff27
KH
4740 .register_event = mem_cgroup_usage_register_event,
4741 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4742 },
4743 {
4744 .name = "memsw.max_usage_in_bytes",
4745 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4746 .trigger = mem_cgroup_reset,
af36f906 4747 .read = mem_cgroup_read,
8c7c6e34
KH
4748 },
4749 {
4750 .name = "memsw.limit_in_bytes",
4751 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4752 .write_string = mem_cgroup_write,
af36f906 4753 .read = mem_cgroup_read,
8c7c6e34
KH
4754 },
4755 {
4756 .name = "memsw.failcnt",
4757 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4758 .trigger = mem_cgroup_reset,
af36f906 4759 .read = mem_cgroup_read,
8c7c6e34 4760 },
8c7c6e34 4761#endif
6bc10349 4762 { }, /* terminate */
af36f906 4763};
8c7c6e34 4764
c0ff4b85 4765static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4766{
4767 struct mem_cgroup_per_node *pn;
1ecaab2b 4768 struct mem_cgroup_per_zone *mz;
41e3355d 4769 int zone, tmp = node;
1ecaab2b
KH
4770 /*
4771 * This routine is called against possible nodes.
4772 * But it's BUG to call kmalloc() against offline node.
4773 *
4774 * TODO: this routine can waste much memory for nodes which will
4775 * never be onlined. It's better to use memory hotplug callback
4776 * function.
4777 */
41e3355d
KH
4778 if (!node_state(node, N_NORMAL_MEMORY))
4779 tmp = -1;
17295c88 4780 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4781 if (!pn)
4782 return 1;
1ecaab2b 4783
1ecaab2b
KH
4784 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4785 mz = &pn->zoneinfo[zone];
bea8c150 4786 lruvec_init(&mz->lruvec);
f64c3f54 4787 mz->usage_in_excess = 0;
4e416953 4788 mz->on_tree = false;
d79154bb 4789 mz->memcg = memcg;
1ecaab2b 4790 }
0a619e58 4791 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4792 return 0;
4793}
4794
c0ff4b85 4795static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4796{
c0ff4b85 4797 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4798}
4799
33327948
KH
4800static struct mem_cgroup *mem_cgroup_alloc(void)
4801{
d79154bb 4802 struct mem_cgroup *memcg;
c62b1a3b 4803 int size = sizeof(struct mem_cgroup);
33327948 4804
c62b1a3b 4805 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4806 if (size < PAGE_SIZE)
d79154bb 4807 memcg = kzalloc(size, GFP_KERNEL);
33327948 4808 else
d79154bb 4809 memcg = vzalloc(size);
33327948 4810
d79154bb 4811 if (!memcg)
e7bbcdf3
DC
4812 return NULL;
4813
d79154bb
HD
4814 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4815 if (!memcg->stat)
d2e61b8d 4816 goto out_free;
d79154bb
HD
4817 spin_lock_init(&memcg->pcp_counter_lock);
4818 return memcg;
d2e61b8d
DC
4819
4820out_free:
4821 if (size < PAGE_SIZE)
d79154bb 4822 kfree(memcg);
d2e61b8d 4823 else
d79154bb 4824 vfree(memcg);
d2e61b8d 4825 return NULL;
33327948
KH
4826}
4827
59927fb9 4828/*
3afe36b1 4829 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4830 * but in process context. The work_freeing structure is overlaid
4831 * on the rcu_freeing structure, which itself is overlaid on memsw.
4832 */
3afe36b1 4833static void free_work(struct work_struct *work)
59927fb9
HD
4834{
4835 struct mem_cgroup *memcg;
3afe36b1 4836 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4837
4838 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4839 /*
4840 * We need to make sure that (at least for now), the jump label
4841 * destruction code runs outside of the cgroup lock. This is because
4842 * get_online_cpus(), which is called from the static_branch update,
4843 * can't be called inside the cgroup_lock. cpusets are the ones
4844 * enforcing this dependency, so if they ever change, we might as well.
4845 *
4846 * schedule_work() will guarantee this happens. Be careful if you need
4847 * to move this code around, and make sure it is outside
4848 * the cgroup_lock.
4849 */
4850 disarm_sock_keys(memcg);
3afe36b1
GC
4851 if (size < PAGE_SIZE)
4852 kfree(memcg);
4853 else
4854 vfree(memcg);
59927fb9 4855}
3afe36b1
GC
4856
4857static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4858{
4859 struct mem_cgroup *memcg;
4860
4861 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4862 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4863 schedule_work(&memcg->work_freeing);
4864}
4865
8c7c6e34
KH
4866/*
4867 * At destroying mem_cgroup, references from swap_cgroup can remain.
4868 * (scanning all at force_empty is too costly...)
4869 *
4870 * Instead of clearing all references at force_empty, we remember
4871 * the number of reference from swap_cgroup and free mem_cgroup when
4872 * it goes down to 0.
4873 *
8c7c6e34
KH
4874 * Removal of cgroup itself succeeds regardless of refs from swap.
4875 */
4876
c0ff4b85 4877static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4878{
08e552c6
KH
4879 int node;
4880
c0ff4b85
R
4881 mem_cgroup_remove_from_trees(memcg);
4882 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4883
3ed28fa1 4884 for_each_node(node)
c0ff4b85 4885 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4886
c0ff4b85 4887 free_percpu(memcg->stat);
3afe36b1 4888 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4889}
4890
c0ff4b85 4891static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4892{
c0ff4b85 4893 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4894}
4895
c0ff4b85 4896static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4897{
c0ff4b85
R
4898 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4899 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4900 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4901 if (parent)
4902 mem_cgroup_put(parent);
4903 }
8c7c6e34
KH
4904}
4905
c0ff4b85 4906static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4907{
c0ff4b85 4908 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4909}
4910
7bcc1bb1
DN
4911/*
4912 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4913 */
e1aab161 4914struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4915{
c0ff4b85 4916 if (!memcg->res.parent)
7bcc1bb1 4917 return NULL;
c0ff4b85 4918 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4919}
e1aab161 4920EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4921
c255a458 4922#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
4923static void __init enable_swap_cgroup(void)
4924{
f8d66542 4925 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4926 do_swap_account = 1;
4927}
4928#else
4929static void __init enable_swap_cgroup(void)
4930{
4931}
4932#endif
4933
f64c3f54
BS
4934static int mem_cgroup_soft_limit_tree_init(void)
4935{
4936 struct mem_cgroup_tree_per_node *rtpn;
4937 struct mem_cgroup_tree_per_zone *rtpz;
4938 int tmp, node, zone;
4939
3ed28fa1 4940 for_each_node(node) {
f64c3f54
BS
4941 tmp = node;
4942 if (!node_state(node, N_NORMAL_MEMORY))
4943 tmp = -1;
4944 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4945 if (!rtpn)
c3cecc68 4946 goto err_cleanup;
f64c3f54
BS
4947
4948 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4949
4950 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4951 rtpz = &rtpn->rb_tree_per_zone[zone];
4952 rtpz->rb_root = RB_ROOT;
4953 spin_lock_init(&rtpz->lock);
4954 }
4955 }
4956 return 0;
c3cecc68
MH
4957
4958err_cleanup:
3ed28fa1 4959 for_each_node(node) {
c3cecc68
MH
4960 if (!soft_limit_tree.rb_tree_per_node[node])
4961 break;
4962 kfree(soft_limit_tree.rb_tree_per_node[node]);
4963 soft_limit_tree.rb_tree_per_node[node] = NULL;
4964 }
4965 return 1;
4966
f64c3f54
BS
4967}
4968
0eb253e2 4969static struct cgroup_subsys_state * __ref
92fb9748 4970mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 4971{
c0ff4b85 4972 struct mem_cgroup *memcg, *parent;
04046e1a 4973 long error = -ENOMEM;
6d12e2d8 4974 int node;
8cdea7c0 4975
c0ff4b85
R
4976 memcg = mem_cgroup_alloc();
4977 if (!memcg)
04046e1a 4978 return ERR_PTR(error);
78fb7466 4979
3ed28fa1 4980 for_each_node(node)
c0ff4b85 4981 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4982 goto free_out;
f64c3f54 4983
c077719b 4984 /* root ? */
28dbc4b6 4985 if (cont->parent == NULL) {
cdec2e42 4986 int cpu;
c077719b 4987 enable_swap_cgroup();
28dbc4b6 4988 parent = NULL;
f64c3f54
BS
4989 if (mem_cgroup_soft_limit_tree_init())
4990 goto free_out;
a41c58a6 4991 root_mem_cgroup = memcg;
cdec2e42
KH
4992 for_each_possible_cpu(cpu) {
4993 struct memcg_stock_pcp *stock =
4994 &per_cpu(memcg_stock, cpu);
4995 INIT_WORK(&stock->work, drain_local_stock);
4996 }
711d3d2c 4997 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4998 } else {
28dbc4b6 4999 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
5000 memcg->use_hierarchy = parent->use_hierarchy;
5001 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5002 }
28dbc4b6 5003
18f59ea7 5004 if (parent && parent->use_hierarchy) {
c0ff4b85
R
5005 res_counter_init(&memcg->res, &parent->res);
5006 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
5007 /*
5008 * We increment refcnt of the parent to ensure that we can
5009 * safely access it on res_counter_charge/uncharge.
5010 * This refcnt will be decremented when freeing this
5011 * mem_cgroup(see mem_cgroup_put).
5012 */
5013 mem_cgroup_get(parent);
18f59ea7 5014 } else {
c0ff4b85
R
5015 res_counter_init(&memcg->res, NULL);
5016 res_counter_init(&memcg->memsw, NULL);
8c7f6edb
TH
5017 /*
5018 * Deeper hierachy with use_hierarchy == false doesn't make
5019 * much sense so let cgroup subsystem know about this
5020 * unfortunate state in our controller.
5021 */
5022 if (parent && parent != root_mem_cgroup)
5023 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 5024 }
c0ff4b85
R
5025 memcg->last_scanned_node = MAX_NUMNODES;
5026 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5027
a7885eb8 5028 if (parent)
c0ff4b85
R
5029 memcg->swappiness = mem_cgroup_swappiness(parent);
5030 atomic_set(&memcg->refcnt, 1);
5031 memcg->move_charge_at_immigrate = 0;
5032 mutex_init(&memcg->thresholds_lock);
312734c0 5033 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
5034
5035 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5036 if (error) {
5037 /*
5038 * We call put now because our (and parent's) refcnts
5039 * are already in place. mem_cgroup_put() will internally
5040 * call __mem_cgroup_free, so return directly
5041 */
5042 mem_cgroup_put(memcg);
5043 return ERR_PTR(error);
5044 }
c0ff4b85 5045 return &memcg->css;
6d12e2d8 5046free_out:
c0ff4b85 5047 __mem_cgroup_free(memcg);
04046e1a 5048 return ERR_PTR(error);
8cdea7c0
BS
5049}
5050
92fb9748 5051static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 5052{
c0ff4b85 5053 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5054
ab5196c2 5055 mem_cgroup_reparent_charges(memcg);
df878fb0
KH
5056}
5057
92fb9748 5058static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 5059{
c0ff4b85 5060 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5061
1d62e436 5062 kmem_cgroup_destroy(memcg);
d1a4c0b3 5063
c0ff4b85 5064 mem_cgroup_put(memcg);
8cdea7c0
BS
5065}
5066
02491447 5067#ifdef CONFIG_MMU
7dc74be0 5068/* Handlers for move charge at task migration. */
854ffa8d
DN
5069#define PRECHARGE_COUNT_AT_ONCE 256
5070static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5071{
854ffa8d
DN
5072 int ret = 0;
5073 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5074 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5075
c0ff4b85 5076 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5077 mc.precharge += count;
5078 /* we don't need css_get for root */
5079 return ret;
5080 }
5081 /* try to charge at once */
5082 if (count > 1) {
5083 struct res_counter *dummy;
5084 /*
c0ff4b85 5085 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5086 * by cgroup_lock_live_cgroup() that it is not removed and we
5087 * are still under the same cgroup_mutex. So we can postpone
5088 * css_get().
5089 */
c0ff4b85 5090 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5091 goto one_by_one;
c0ff4b85 5092 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5093 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5094 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5095 goto one_by_one;
5096 }
5097 mc.precharge += count;
854ffa8d
DN
5098 return ret;
5099 }
5100one_by_one:
5101 /* fall back to one by one charge */
5102 while (count--) {
5103 if (signal_pending(current)) {
5104 ret = -EINTR;
5105 break;
5106 }
5107 if (!batch_count--) {
5108 batch_count = PRECHARGE_COUNT_AT_ONCE;
5109 cond_resched();
5110 }
c0ff4b85
R
5111 ret = __mem_cgroup_try_charge(NULL,
5112 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5113 if (ret)
854ffa8d 5114 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5115 return ret;
854ffa8d
DN
5116 mc.precharge++;
5117 }
4ffef5fe
DN
5118 return ret;
5119}
5120
5121/**
8d32ff84 5122 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5123 * @vma: the vma the pte to be checked belongs
5124 * @addr: the address corresponding to the pte to be checked
5125 * @ptent: the pte to be checked
02491447 5126 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5127 *
5128 * Returns
5129 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5130 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5131 * move charge. if @target is not NULL, the page is stored in target->page
5132 * with extra refcnt got(Callers should handle it).
02491447
DN
5133 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5134 * target for charge migration. if @target is not NULL, the entry is stored
5135 * in target->ent.
4ffef5fe
DN
5136 *
5137 * Called with pte lock held.
5138 */
4ffef5fe
DN
5139union mc_target {
5140 struct page *page;
02491447 5141 swp_entry_t ent;
4ffef5fe
DN
5142};
5143
4ffef5fe 5144enum mc_target_type {
8d32ff84 5145 MC_TARGET_NONE = 0,
4ffef5fe 5146 MC_TARGET_PAGE,
02491447 5147 MC_TARGET_SWAP,
4ffef5fe
DN
5148};
5149
90254a65
DN
5150static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5151 unsigned long addr, pte_t ptent)
4ffef5fe 5152{
90254a65 5153 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5154
90254a65
DN
5155 if (!page || !page_mapped(page))
5156 return NULL;
5157 if (PageAnon(page)) {
5158 /* we don't move shared anon */
4b91355e 5159 if (!move_anon())
90254a65 5160 return NULL;
87946a72
DN
5161 } else if (!move_file())
5162 /* we ignore mapcount for file pages */
90254a65
DN
5163 return NULL;
5164 if (!get_page_unless_zero(page))
5165 return NULL;
5166
5167 return page;
5168}
5169
4b91355e 5170#ifdef CONFIG_SWAP
90254a65
DN
5171static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5172 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5173{
90254a65
DN
5174 struct page *page = NULL;
5175 swp_entry_t ent = pte_to_swp_entry(ptent);
5176
5177 if (!move_anon() || non_swap_entry(ent))
5178 return NULL;
4b91355e
KH
5179 /*
5180 * Because lookup_swap_cache() updates some statistics counter,
5181 * we call find_get_page() with swapper_space directly.
5182 */
5183 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5184 if (do_swap_account)
5185 entry->val = ent.val;
5186
5187 return page;
5188}
4b91355e
KH
5189#else
5190static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5191 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5192{
5193 return NULL;
5194}
5195#endif
90254a65 5196
87946a72
DN
5197static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5198 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5199{
5200 struct page *page = NULL;
87946a72
DN
5201 struct address_space *mapping;
5202 pgoff_t pgoff;
5203
5204 if (!vma->vm_file) /* anonymous vma */
5205 return NULL;
5206 if (!move_file())
5207 return NULL;
5208
87946a72
DN
5209 mapping = vma->vm_file->f_mapping;
5210 if (pte_none(ptent))
5211 pgoff = linear_page_index(vma, addr);
5212 else /* pte_file(ptent) is true */
5213 pgoff = pte_to_pgoff(ptent);
5214
5215 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5216 page = find_get_page(mapping, pgoff);
5217
5218#ifdef CONFIG_SWAP
5219 /* shmem/tmpfs may report page out on swap: account for that too. */
5220 if (radix_tree_exceptional_entry(page)) {
5221 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5222 if (do_swap_account)
aa3b1895
HD
5223 *entry = swap;
5224 page = find_get_page(&swapper_space, swap.val);
87946a72 5225 }
aa3b1895 5226#endif
87946a72
DN
5227 return page;
5228}
5229
8d32ff84 5230static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5231 unsigned long addr, pte_t ptent, union mc_target *target)
5232{
5233 struct page *page = NULL;
5234 struct page_cgroup *pc;
8d32ff84 5235 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5236 swp_entry_t ent = { .val = 0 };
5237
5238 if (pte_present(ptent))
5239 page = mc_handle_present_pte(vma, addr, ptent);
5240 else if (is_swap_pte(ptent))
5241 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5242 else if (pte_none(ptent) || pte_file(ptent))
5243 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5244
5245 if (!page && !ent.val)
8d32ff84 5246 return ret;
02491447
DN
5247 if (page) {
5248 pc = lookup_page_cgroup(page);
5249 /*
5250 * Do only loose check w/o page_cgroup lock.
5251 * mem_cgroup_move_account() checks the pc is valid or not under
5252 * the lock.
5253 */
5254 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5255 ret = MC_TARGET_PAGE;
5256 if (target)
5257 target->page = page;
5258 }
5259 if (!ret || !target)
5260 put_page(page);
5261 }
90254a65
DN
5262 /* There is a swap entry and a page doesn't exist or isn't charged */
5263 if (ent.val && !ret &&
9fb4b7cc 5264 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5265 ret = MC_TARGET_SWAP;
5266 if (target)
5267 target->ent = ent;
4ffef5fe 5268 }
4ffef5fe
DN
5269 return ret;
5270}
5271
12724850
NH
5272#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5273/*
5274 * We don't consider swapping or file mapped pages because THP does not
5275 * support them for now.
5276 * Caller should make sure that pmd_trans_huge(pmd) is true.
5277 */
5278static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5279 unsigned long addr, pmd_t pmd, union mc_target *target)
5280{
5281 struct page *page = NULL;
5282 struct page_cgroup *pc;
5283 enum mc_target_type ret = MC_TARGET_NONE;
5284
5285 page = pmd_page(pmd);
5286 VM_BUG_ON(!page || !PageHead(page));
5287 if (!move_anon())
5288 return ret;
5289 pc = lookup_page_cgroup(page);
5290 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5291 ret = MC_TARGET_PAGE;
5292 if (target) {
5293 get_page(page);
5294 target->page = page;
5295 }
5296 }
5297 return ret;
5298}
5299#else
5300static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5301 unsigned long addr, pmd_t pmd, union mc_target *target)
5302{
5303 return MC_TARGET_NONE;
5304}
5305#endif
5306
4ffef5fe
DN
5307static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5308 unsigned long addr, unsigned long end,
5309 struct mm_walk *walk)
5310{
5311 struct vm_area_struct *vma = walk->private;
5312 pte_t *pte;
5313 spinlock_t *ptl;
5314
12724850
NH
5315 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5316 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5317 mc.precharge += HPAGE_PMD_NR;
5318 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5319 return 0;
12724850 5320 }
03319327 5321
45f83cef
AA
5322 if (pmd_trans_unstable(pmd))
5323 return 0;
4ffef5fe
DN
5324 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5325 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5326 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5327 mc.precharge++; /* increment precharge temporarily */
5328 pte_unmap_unlock(pte - 1, ptl);
5329 cond_resched();
5330
7dc74be0
DN
5331 return 0;
5332}
5333
4ffef5fe
DN
5334static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5335{
5336 unsigned long precharge;
5337 struct vm_area_struct *vma;
5338
dfe076b0 5339 down_read(&mm->mmap_sem);
4ffef5fe
DN
5340 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5341 struct mm_walk mem_cgroup_count_precharge_walk = {
5342 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5343 .mm = mm,
5344 .private = vma,
5345 };
5346 if (is_vm_hugetlb_page(vma))
5347 continue;
4ffef5fe
DN
5348 walk_page_range(vma->vm_start, vma->vm_end,
5349 &mem_cgroup_count_precharge_walk);
5350 }
dfe076b0 5351 up_read(&mm->mmap_sem);
4ffef5fe
DN
5352
5353 precharge = mc.precharge;
5354 mc.precharge = 0;
5355
5356 return precharge;
5357}
5358
4ffef5fe
DN
5359static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5360{
dfe076b0
DN
5361 unsigned long precharge = mem_cgroup_count_precharge(mm);
5362
5363 VM_BUG_ON(mc.moving_task);
5364 mc.moving_task = current;
5365 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5366}
5367
dfe076b0
DN
5368/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5369static void __mem_cgroup_clear_mc(void)
4ffef5fe 5370{
2bd9bb20
KH
5371 struct mem_cgroup *from = mc.from;
5372 struct mem_cgroup *to = mc.to;
5373
4ffef5fe 5374 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5375 if (mc.precharge) {
5376 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5377 mc.precharge = 0;
5378 }
5379 /*
5380 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5381 * we must uncharge here.
5382 */
5383 if (mc.moved_charge) {
5384 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5385 mc.moved_charge = 0;
4ffef5fe 5386 }
483c30b5
DN
5387 /* we must fixup refcnts and charges */
5388 if (mc.moved_swap) {
483c30b5
DN
5389 /* uncharge swap account from the old cgroup */
5390 if (!mem_cgroup_is_root(mc.from))
5391 res_counter_uncharge(&mc.from->memsw,
5392 PAGE_SIZE * mc.moved_swap);
5393 __mem_cgroup_put(mc.from, mc.moved_swap);
5394
5395 if (!mem_cgroup_is_root(mc.to)) {
5396 /*
5397 * we charged both to->res and to->memsw, so we should
5398 * uncharge to->res.
5399 */
5400 res_counter_uncharge(&mc.to->res,
5401 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5402 }
5403 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5404 mc.moved_swap = 0;
5405 }
dfe076b0
DN
5406 memcg_oom_recover(from);
5407 memcg_oom_recover(to);
5408 wake_up_all(&mc.waitq);
5409}
5410
5411static void mem_cgroup_clear_mc(void)
5412{
5413 struct mem_cgroup *from = mc.from;
5414
5415 /*
5416 * we must clear moving_task before waking up waiters at the end of
5417 * task migration.
5418 */
5419 mc.moving_task = NULL;
5420 __mem_cgroup_clear_mc();
2bd9bb20 5421 spin_lock(&mc.lock);
4ffef5fe
DN
5422 mc.from = NULL;
5423 mc.to = NULL;
2bd9bb20 5424 spin_unlock(&mc.lock);
32047e2a 5425 mem_cgroup_end_move(from);
4ffef5fe
DN
5426}
5427
761b3ef5
LZ
5428static int mem_cgroup_can_attach(struct cgroup *cgroup,
5429 struct cgroup_taskset *tset)
7dc74be0 5430{
2f7ee569 5431 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5432 int ret = 0;
c0ff4b85 5433 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5434
c0ff4b85 5435 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5436 struct mm_struct *mm;
5437 struct mem_cgroup *from = mem_cgroup_from_task(p);
5438
c0ff4b85 5439 VM_BUG_ON(from == memcg);
7dc74be0
DN
5440
5441 mm = get_task_mm(p);
5442 if (!mm)
5443 return 0;
7dc74be0 5444 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5445 if (mm->owner == p) {
5446 VM_BUG_ON(mc.from);
5447 VM_BUG_ON(mc.to);
5448 VM_BUG_ON(mc.precharge);
854ffa8d 5449 VM_BUG_ON(mc.moved_charge);
483c30b5 5450 VM_BUG_ON(mc.moved_swap);
32047e2a 5451 mem_cgroup_start_move(from);
2bd9bb20 5452 spin_lock(&mc.lock);
4ffef5fe 5453 mc.from = from;
c0ff4b85 5454 mc.to = memcg;
2bd9bb20 5455 spin_unlock(&mc.lock);
dfe076b0 5456 /* We set mc.moving_task later */
4ffef5fe
DN
5457
5458 ret = mem_cgroup_precharge_mc(mm);
5459 if (ret)
5460 mem_cgroup_clear_mc();
dfe076b0
DN
5461 }
5462 mmput(mm);
7dc74be0
DN
5463 }
5464 return ret;
5465}
5466
761b3ef5
LZ
5467static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5468 struct cgroup_taskset *tset)
7dc74be0 5469{
4ffef5fe 5470 mem_cgroup_clear_mc();
7dc74be0
DN
5471}
5472
4ffef5fe
DN
5473static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5474 unsigned long addr, unsigned long end,
5475 struct mm_walk *walk)
7dc74be0 5476{
4ffef5fe
DN
5477 int ret = 0;
5478 struct vm_area_struct *vma = walk->private;
5479 pte_t *pte;
5480 spinlock_t *ptl;
12724850
NH
5481 enum mc_target_type target_type;
5482 union mc_target target;
5483 struct page *page;
5484 struct page_cgroup *pc;
4ffef5fe 5485
12724850
NH
5486 /*
5487 * We don't take compound_lock() here but no race with splitting thp
5488 * happens because:
5489 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5490 * under splitting, which means there's no concurrent thp split,
5491 * - if another thread runs into split_huge_page() just after we
5492 * entered this if-block, the thread must wait for page table lock
5493 * to be unlocked in __split_huge_page_splitting(), where the main
5494 * part of thp split is not executed yet.
5495 */
5496 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5497 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5498 spin_unlock(&vma->vm_mm->page_table_lock);
5499 return 0;
5500 }
5501 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5502 if (target_type == MC_TARGET_PAGE) {
5503 page = target.page;
5504 if (!isolate_lru_page(page)) {
5505 pc = lookup_page_cgroup(page);
5506 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5507 pc, mc.from, mc.to)) {
12724850
NH
5508 mc.precharge -= HPAGE_PMD_NR;
5509 mc.moved_charge += HPAGE_PMD_NR;
5510 }
5511 putback_lru_page(page);
5512 }
5513 put_page(page);
5514 }
5515 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5516 return 0;
12724850
NH
5517 }
5518
45f83cef
AA
5519 if (pmd_trans_unstable(pmd))
5520 return 0;
4ffef5fe
DN
5521retry:
5522 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5523 for (; addr != end; addr += PAGE_SIZE) {
5524 pte_t ptent = *(pte++);
02491447 5525 swp_entry_t ent;
4ffef5fe
DN
5526
5527 if (!mc.precharge)
5528 break;
5529
8d32ff84 5530 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5531 case MC_TARGET_PAGE:
5532 page = target.page;
5533 if (isolate_lru_page(page))
5534 goto put;
5535 pc = lookup_page_cgroup(page);
7ec99d62 5536 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5537 mc.from, mc.to)) {
4ffef5fe 5538 mc.precharge--;
854ffa8d
DN
5539 /* we uncharge from mc.from later. */
5540 mc.moved_charge++;
4ffef5fe
DN
5541 }
5542 putback_lru_page(page);
8d32ff84 5543put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5544 put_page(page);
5545 break;
02491447
DN
5546 case MC_TARGET_SWAP:
5547 ent = target.ent;
e91cbb42 5548 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5549 mc.precharge--;
483c30b5
DN
5550 /* we fixup refcnts and charges later. */
5551 mc.moved_swap++;
5552 }
02491447 5553 break;
4ffef5fe
DN
5554 default:
5555 break;
5556 }
5557 }
5558 pte_unmap_unlock(pte - 1, ptl);
5559 cond_resched();
5560
5561 if (addr != end) {
5562 /*
5563 * We have consumed all precharges we got in can_attach().
5564 * We try charge one by one, but don't do any additional
5565 * charges to mc.to if we have failed in charge once in attach()
5566 * phase.
5567 */
854ffa8d 5568 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5569 if (!ret)
5570 goto retry;
5571 }
5572
5573 return ret;
5574}
5575
5576static void mem_cgroup_move_charge(struct mm_struct *mm)
5577{
5578 struct vm_area_struct *vma;
5579
5580 lru_add_drain_all();
dfe076b0
DN
5581retry:
5582 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5583 /*
5584 * Someone who are holding the mmap_sem might be waiting in
5585 * waitq. So we cancel all extra charges, wake up all waiters,
5586 * and retry. Because we cancel precharges, we might not be able
5587 * to move enough charges, but moving charge is a best-effort
5588 * feature anyway, so it wouldn't be a big problem.
5589 */
5590 __mem_cgroup_clear_mc();
5591 cond_resched();
5592 goto retry;
5593 }
4ffef5fe
DN
5594 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5595 int ret;
5596 struct mm_walk mem_cgroup_move_charge_walk = {
5597 .pmd_entry = mem_cgroup_move_charge_pte_range,
5598 .mm = mm,
5599 .private = vma,
5600 };
5601 if (is_vm_hugetlb_page(vma))
5602 continue;
4ffef5fe
DN
5603 ret = walk_page_range(vma->vm_start, vma->vm_end,
5604 &mem_cgroup_move_charge_walk);
5605 if (ret)
5606 /*
5607 * means we have consumed all precharges and failed in
5608 * doing additional charge. Just abandon here.
5609 */
5610 break;
5611 }
dfe076b0 5612 up_read(&mm->mmap_sem);
7dc74be0
DN
5613}
5614
761b3ef5
LZ
5615static void mem_cgroup_move_task(struct cgroup *cont,
5616 struct cgroup_taskset *tset)
67e465a7 5617{
2f7ee569 5618 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5619 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5620
dfe076b0 5621 if (mm) {
a433658c
KM
5622 if (mc.to)
5623 mem_cgroup_move_charge(mm);
dfe076b0
DN
5624 mmput(mm);
5625 }
a433658c
KM
5626 if (mc.to)
5627 mem_cgroup_clear_mc();
67e465a7 5628}
5cfb80a7 5629#else /* !CONFIG_MMU */
761b3ef5
LZ
5630static int mem_cgroup_can_attach(struct cgroup *cgroup,
5631 struct cgroup_taskset *tset)
5cfb80a7
DN
5632{
5633 return 0;
5634}
761b3ef5
LZ
5635static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5636 struct cgroup_taskset *tset)
5cfb80a7
DN
5637{
5638}
761b3ef5
LZ
5639static void mem_cgroup_move_task(struct cgroup *cont,
5640 struct cgroup_taskset *tset)
5cfb80a7
DN
5641{
5642}
5643#endif
67e465a7 5644
8cdea7c0
BS
5645struct cgroup_subsys mem_cgroup_subsys = {
5646 .name = "memory",
5647 .subsys_id = mem_cgroup_subsys_id,
92fb9748
TH
5648 .css_alloc = mem_cgroup_css_alloc,
5649 .css_offline = mem_cgroup_css_offline,
5650 .css_free = mem_cgroup_css_free,
7dc74be0
DN
5651 .can_attach = mem_cgroup_can_attach,
5652 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5653 .attach = mem_cgroup_move_task,
6bc10349 5654 .base_cftypes = mem_cgroup_files,
6d12e2d8 5655 .early_init = 0,
04046e1a 5656 .use_id = 1,
8cdea7c0 5657};
c077719b 5658
c255a458 5659#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5660static int __init enable_swap_account(char *s)
5661{
5662 /* consider enabled if no parameter or 1 is given */
a2c8990a 5663 if (!strcmp(s, "1"))
a42c390c 5664 really_do_swap_account = 1;
a2c8990a 5665 else if (!strcmp(s, "0"))
a42c390c
MH
5666 really_do_swap_account = 0;
5667 return 1;
5668}
a2c8990a 5669__setup("swapaccount=", enable_swap_account);
c077719b 5670
c077719b 5671#endif