mm/page_counter: remove an incorrect call to propagate_protected_usage()
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 82
f7e1cb6e 83/* Socket memory accounting disabled? */
0f0cace3 84static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 85
04823c83 86/* Kernel memory accounting disabled? */
17c17367 87static bool cgroup_memory_nokmem __ro_after_init;
04823c83 88
21afa38e 89/* Whether the swap controller is active */
c255a458 90#ifdef CONFIG_MEMCG_SWAP
0f0cace3 91bool cgroup_memory_noswap __ro_after_init;
c077719b 92#else
eccb52e7 93#define cgroup_memory_noswap 1
2d1c4980 94#endif
c077719b 95
97b27821
TH
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
7941d214
JW
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
eccb52e7 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
104}
105
a0db00fc
KS
106#define THRESHOLDS_EVENTS_TARGET 128
107#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 108
bb4cc1a8
AM
109/*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
ef8f2327 114struct mem_cgroup_tree_per_node {
bb4cc1a8 115 struct rb_root rb_root;
fa90b2fd 116 struct rb_node *rb_rightmost;
bb4cc1a8
AM
117 spinlock_t lock;
118};
119
bb4cc1a8
AM
120struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122};
123
124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
9490ff27
KH
126/* for OOM */
127struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130};
2e72b634 131
79bd9814
TH
132/*
133 * cgroup_event represents events which userspace want to receive.
134 */
3bc942f3 135struct mem_cgroup_event {
79bd9814 136 /*
59b6f873 137 * memcg which the event belongs to.
79bd9814 138 */
59b6f873 139 struct mem_cgroup *memcg;
79bd9814
TH
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
fba94807
TH
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
59b6f873 153 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 154 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
59b6f873 160 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 161 struct eventfd_ctx *eventfd);
79bd9814
TH
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
ac6424b9 168 wait_queue_entry_t wait;
79bd9814
TH
169 struct work_struct remove;
170};
171
c0ff4b85
R
172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 174
7dc74be0
DN
175/* Stuffs for move charges at task migration. */
176/*
1dfab5ab 177 * Types of charges to be moved.
7dc74be0 178 */
1dfab5ab
JW
179#define MOVE_ANON 0x1U
180#define MOVE_FILE 0x2U
181#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 182
4ffef5fe
DN
183/* "mc" and its members are protected by cgroup_mutex */
184static struct move_charge_struct {
b1dd693e 185 spinlock_t lock; /* for from, to */
264a0ae1 186 struct mm_struct *mm;
4ffef5fe
DN
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
1dfab5ab 189 unsigned long flags;
4ffef5fe 190 unsigned long precharge;
854ffa8d 191 unsigned long moved_charge;
483c30b5 192 unsigned long moved_swap;
8033b97c
DN
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195} mc = {
2bd9bb20 196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198};
4ffef5fe 199
4e416953
BS
200/*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
a0db00fc 204#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 205#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 206
8c7c6e34 207/* for encoding cft->private value on file */
86ae53e1
GC
208enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
510fc4e1 212 _KMEM,
d55f90bf 213 _TCP,
86ae53e1
GC
214};
215
a0db00fc
KS
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 218#define MEMFILE_ATTR(val) ((val) & 0xffff)
f0953a1b 219/* Used for OOM notifier */
9490ff27 220#define OOM_CONTROL (0)
8c7c6e34 221
b05706f1
KT
222/*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227#define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232#define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
a4ebf1b6 237static inline bool task_is_dying(void)
7775face
TH
238{
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241}
242
70ddf637
AV
243/* Some nice accessors for the vmpressure. */
244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245{
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249}
250
9647875b 251struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 252{
9647875b 253 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
254}
255
84c07d11 256#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
257extern spinlock_t css_set_lock;
258
4d5c8aed
RG
259bool mem_cgroup_kmem_disabled(void)
260{
261 return cgroup_memory_nokmem;
262}
263
f1286fae
MS
264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
c1a660de 266
bf4f0599
RG
267static void obj_cgroup_release(struct percpu_ref *ref)
268{
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
bf4f0599 298 if (nr_pages)
f1286fae 299 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1
MS
300
301 spin_lock_irqsave(&css_set_lock, flags);
bf4f0599 302 list_del(&objcg->list);
bf4f0599
RG
303 spin_unlock_irqrestore(&css_set_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307}
308
309static struct obj_cgroup *obj_cgroup_alloc(void)
310{
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326}
327
328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330{
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&css_set_lock);
336
9838354e
MS
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
55007d84 350/*
9855609b 351 * This will be used as a shrinker list's index.
b8627835
LZ
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
55007d84 357 *
dbcf73e2
VD
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
55007d84 360 */
dbcf73e2
VD
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
749c5415 363
05257a1a
VD
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
55007d84
GC
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
b8627835 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
b8627835 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 391
d7f25f8a
GC
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
272911a4 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
ef12947c 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 400#endif
17cc4dfe 401
ad7fa852
TH
402/**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
ad7fa852
TH
412 */
413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414{
415 struct mem_cgroup *memcg;
416
bcfe06bf 417 memcg = page_memcg(page);
ad7fa852 418
9e10a130 419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
420 memcg = root_mem_cgroup;
421
ad7fa852
TH
422 return &memcg->css;
423}
424
2fc04524
VD
425/**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438ino_t page_cgroup_ino(struct page *page)
439{
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
bcfe06bf 444 memcg = page_memcg_check(page);
286e04b8 445
2fc04524
VD
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452}
453
ef8f2327
MG
454static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
455 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 456 unsigned long new_usage_in_excess)
bb4cc1a8
AM
457{
458 struct rb_node **p = &mctz->rb_root.rb_node;
459 struct rb_node *parent = NULL;
ef8f2327 460 struct mem_cgroup_per_node *mz_node;
fa90b2fd 461 bool rightmost = true;
bb4cc1a8
AM
462
463 if (mz->on_tree)
464 return;
465
466 mz->usage_in_excess = new_usage_in_excess;
467 if (!mz->usage_in_excess)
468 return;
469 while (*p) {
470 parent = *p;
ef8f2327 471 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 472 tree_node);
fa90b2fd 473 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 474 p = &(*p)->rb_left;
fa90b2fd 475 rightmost = false;
378876b0 476 } else {
bb4cc1a8 477 p = &(*p)->rb_right;
378876b0 478 }
bb4cc1a8 479 }
fa90b2fd
DB
480
481 if (rightmost)
482 mctz->rb_rightmost = &mz->tree_node;
483
bb4cc1a8
AM
484 rb_link_node(&mz->tree_node, parent, p);
485 rb_insert_color(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = true;
487}
488
ef8f2327
MG
489static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
490 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
491{
492 if (!mz->on_tree)
493 return;
fa90b2fd
DB
494
495 if (&mz->tree_node == mctz->rb_rightmost)
496 mctz->rb_rightmost = rb_prev(&mz->tree_node);
497
bb4cc1a8
AM
498 rb_erase(&mz->tree_node, &mctz->rb_root);
499 mz->on_tree = false;
500}
501
ef8f2327
MG
502static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
503 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 504{
0a31bc97
JW
505 unsigned long flags;
506
507 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 508 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 509 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
510}
511
3e32cb2e
JW
512static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
513{
514 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 515 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
516 unsigned long excess = 0;
517
518 if (nr_pages > soft_limit)
519 excess = nr_pages - soft_limit;
520
521 return excess;
522}
bb4cc1a8 523
658b69c9 524static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 525{
3e32cb2e 526 unsigned long excess;
ef8f2327
MG
527 struct mem_cgroup_per_node *mz;
528 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 529
2ab082ba 530 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
531 if (!mctz)
532 return;
bb4cc1a8
AM
533 /*
534 * Necessary to update all ancestors when hierarchy is used.
535 * because their event counter is not touched.
536 */
537 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 538 mz = memcg->nodeinfo[nid];
3e32cb2e 539 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
540 /*
541 * We have to update the tree if mz is on RB-tree or
542 * mem is over its softlimit.
543 */
544 if (excess || mz->on_tree) {
0a31bc97
JW
545 unsigned long flags;
546
547 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
548 /* if on-tree, remove it */
549 if (mz->on_tree)
cf2c8127 550 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
551 /*
552 * Insert again. mz->usage_in_excess will be updated.
553 * If excess is 0, no tree ops.
554 */
cf2c8127 555 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 556 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
557 }
558 }
559}
560
561static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
562{
ef8f2327
MG
563 struct mem_cgroup_tree_per_node *mctz;
564 struct mem_cgroup_per_node *mz;
565 int nid;
bb4cc1a8 566
e231875b 567 for_each_node(nid) {
a3747b53 568 mz = memcg->nodeinfo[nid];
2ab082ba 569 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
570 if (mctz)
571 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
572 }
573}
574
ef8f2327
MG
575static struct mem_cgroup_per_node *
576__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 577{
ef8f2327 578 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
579
580retry:
581 mz = NULL;
fa90b2fd 582 if (!mctz->rb_rightmost)
bb4cc1a8
AM
583 goto done; /* Nothing to reclaim from */
584
fa90b2fd
DB
585 mz = rb_entry(mctz->rb_rightmost,
586 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
587 /*
588 * Remove the node now but someone else can add it back,
589 * we will to add it back at the end of reclaim to its correct
590 * position in the tree.
591 */
cf2c8127 592 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 593 if (!soft_limit_excess(mz->memcg) ||
8965aa28 594 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
595 goto retry;
596done:
597 return mz;
598}
599
ef8f2327
MG
600static struct mem_cgroup_per_node *
601mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 602{
ef8f2327 603 struct mem_cgroup_per_node *mz;
bb4cc1a8 604
0a31bc97 605 spin_lock_irq(&mctz->lock);
bb4cc1a8 606 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 607 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
608 return mz;
609}
610
11192d9c
SB
611/*
612 * memcg and lruvec stats flushing
613 *
614 * Many codepaths leading to stats update or read are performance sensitive and
615 * adding stats flushing in such codepaths is not desirable. So, to optimize the
616 * flushing the kernel does:
617 *
618 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
619 * rstat update tree grow unbounded.
620 *
621 * 2) Flush the stats synchronously on reader side only when there are more than
622 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
623 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
624 * only for 2 seconds due to (1).
625 */
626static void flush_memcg_stats_dwork(struct work_struct *w);
627static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
628static DEFINE_SPINLOCK(stats_flush_lock);
629static DEFINE_PER_CPU(unsigned int, stats_updates);
630static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
631
632static inline void memcg_rstat_updated(struct mem_cgroup *memcg)
633{
634 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
635 if (!(__this_cpu_inc_return(stats_updates) % MEMCG_CHARGE_BATCH))
636 atomic_inc(&stats_flush_threshold);
637}
638
639static void __mem_cgroup_flush_stats(void)
640{
fd25a9e0
SB
641 unsigned long flag;
642
643 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
11192d9c
SB
644 return;
645
646 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
647 atomic_set(&stats_flush_threshold, 0);
fd25a9e0 648 spin_unlock_irqrestore(&stats_flush_lock, flag);
11192d9c
SB
649}
650
651void mem_cgroup_flush_stats(void)
652{
653 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
654 __mem_cgroup_flush_stats();
655}
656
657static void flush_memcg_stats_dwork(struct work_struct *w)
658{
659 mem_cgroup_flush_stats();
660 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
661}
662
db9adbcb
JW
663/**
664 * __mod_memcg_state - update cgroup memory statistics
665 * @memcg: the memory cgroup
666 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
667 * @val: delta to add to the counter, can be negative
668 */
669void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
670{
db9adbcb
JW
671 if (mem_cgroup_disabled())
672 return;
673
2d146aa3 674 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
11192d9c 675 memcg_rstat_updated(memcg);
db9adbcb
JW
676}
677
2d146aa3 678/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
679static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
680{
681 long x = 0;
682 int cpu;
683
684 for_each_possible_cpu(cpu)
2d146aa3 685 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
686#ifdef CONFIG_SMP
687 if (x < 0)
688 x = 0;
689#endif
690 return x;
691}
692
eedc4e5a
RG
693void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
694 int val)
db9adbcb
JW
695{
696 struct mem_cgroup_per_node *pn;
42a30035 697 struct mem_cgroup *memcg;
db9adbcb 698
db9adbcb 699 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 700 memcg = pn->memcg;
db9adbcb
JW
701
702 /* Update memcg */
11192d9c 703 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 704
b4c46484 705 /* Update lruvec */
7e1c0d6f 706 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c
SB
707
708 memcg_rstat_updated(memcg);
db9adbcb
JW
709}
710
eedc4e5a
RG
711/**
712 * __mod_lruvec_state - update lruvec memory statistics
713 * @lruvec: the lruvec
714 * @idx: the stat item
715 * @val: delta to add to the counter, can be negative
716 *
717 * The lruvec is the intersection of the NUMA node and a cgroup. This
718 * function updates the all three counters that are affected by a
719 * change of state at this level: per-node, per-cgroup, per-lruvec.
720 */
721void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
722 int val)
723{
724 /* Update node */
725 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
726
727 /* Update memcg and lruvec */
728 if (!mem_cgroup_disabled())
729 __mod_memcg_lruvec_state(lruvec, idx, val);
730}
731
c47d5032
SB
732void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
733 int val)
734{
735 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 736 struct mem_cgroup *memcg;
c47d5032
SB
737 pg_data_t *pgdat = page_pgdat(page);
738 struct lruvec *lruvec;
739
b4e0b68f
MS
740 rcu_read_lock();
741 memcg = page_memcg(head);
c47d5032 742 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 743 if (!memcg) {
b4e0b68f 744 rcu_read_unlock();
c47d5032
SB
745 __mod_node_page_state(pgdat, idx, val);
746 return;
747 }
748
d635a69d 749 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 750 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 751 rcu_read_unlock();
c47d5032 752}
f0c0c115 753EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 754
da3ceeff 755void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 756{
4f103c63 757 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
758 struct mem_cgroup *memcg;
759 struct lruvec *lruvec;
760
761 rcu_read_lock();
4f103c63 762 memcg = mem_cgroup_from_obj(p);
ec9f0238 763
8faeb1ff
MS
764 /*
765 * Untracked pages have no memcg, no lruvec. Update only the
766 * node. If we reparent the slab objects to the root memcg,
767 * when we free the slab object, we need to update the per-memcg
768 * vmstats to keep it correct for the root memcg.
769 */
770 if (!memcg) {
ec9f0238
RG
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
867e5e1d 773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777}
778
db9adbcb
JW
779/**
780 * __count_memcg_events - account VM events in a cgroup
781 * @memcg: the memory cgroup
782 * @idx: the event item
f0953a1b 783 * @count: the number of events that occurred
db9adbcb
JW
784 */
785void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
786 unsigned long count)
787{
db9adbcb
JW
788 if (mem_cgroup_disabled())
789 return;
790
2d146aa3 791 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
11192d9c 792 memcg_rstat_updated(memcg);
db9adbcb
JW
793}
794
42a30035 795static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 796{
2d146aa3 797 return READ_ONCE(memcg->vmstats.events[event]);
e9f8974f
JW
798}
799
42a30035
JW
800static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
801{
815744d7
JW
802 long x = 0;
803 int cpu;
804
805 for_each_possible_cpu(cpu)
2d146aa3 806 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
815744d7 807 return x;
42a30035
JW
808}
809
c0ff4b85 810static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 811 int nr_pages)
d52aa412 812{
e401f176
KH
813 /* pagein of a big page is an event. So, ignore page size */
814 if (nr_pages > 0)
c9019e9b 815 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 816 else {
c9019e9b 817 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
818 nr_pages = -nr_pages; /* for event */
819 }
e401f176 820
871789d4 821 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
822}
823
f53d7ce3
JW
824static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
825 enum mem_cgroup_events_target target)
7a159cc9
JW
826{
827 unsigned long val, next;
828
871789d4
CD
829 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
830 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 831 /* from time_after() in jiffies.h */
6a1a8b80 832 if ((long)(next - val) < 0) {
f53d7ce3
JW
833 switch (target) {
834 case MEM_CGROUP_TARGET_THRESH:
835 next = val + THRESHOLDS_EVENTS_TARGET;
836 break;
bb4cc1a8
AM
837 case MEM_CGROUP_TARGET_SOFTLIMIT:
838 next = val + SOFTLIMIT_EVENTS_TARGET;
839 break;
f53d7ce3
JW
840 default:
841 break;
842 }
871789d4 843 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 844 return true;
7a159cc9 845 }
f53d7ce3 846 return false;
d2265e6f
KH
847}
848
849/*
850 * Check events in order.
851 *
852 */
8e88bd2d 853static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f
KH
854{
855 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
856 if (unlikely(mem_cgroup_event_ratelimit(memcg,
857 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 858 bool do_softlimit;
f53d7ce3 859
bb4cc1a8
AM
860 do_softlimit = mem_cgroup_event_ratelimit(memcg,
861 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 862 mem_cgroup_threshold(memcg);
bb4cc1a8 863 if (unlikely(do_softlimit))
8e88bd2d 864 mem_cgroup_update_tree(memcg, nid);
0a31bc97 865 }
d2265e6f
KH
866}
867
cf475ad2 868struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 869{
31a78f23
BS
870 /*
871 * mm_update_next_owner() may clear mm->owner to NULL
872 * if it races with swapoff, page migration, etc.
873 * So this can be called with p == NULL.
874 */
875 if (unlikely(!p))
876 return NULL;
877
073219e9 878 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 879}
33398cf2 880EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 881
04f94e3f
DS
882static __always_inline struct mem_cgroup *active_memcg(void)
883{
55a68c82 884 if (!in_task())
04f94e3f
DS
885 return this_cpu_read(int_active_memcg);
886 else
887 return current->active_memcg;
888}
889
d46eb14b
SB
890/**
891 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
892 * @mm: mm from which memcg should be extracted. It can be NULL.
893 *
04f94e3f
DS
894 * Obtain a reference on mm->memcg and returns it if successful. If mm
895 * is NULL, then the memcg is chosen as follows:
896 * 1) The active memcg, if set.
897 * 2) current->mm->memcg, if available
898 * 3) root memcg
899 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
900 */
901struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 902{
d46eb14b
SB
903 struct mem_cgroup *memcg;
904
905 if (mem_cgroup_disabled())
906 return NULL;
0b7f569e 907
2884b6b7
MS
908 /*
909 * Page cache insertions can happen without an
910 * actual mm context, e.g. during disk probing
911 * on boot, loopback IO, acct() writes etc.
912 *
913 * No need to css_get on root memcg as the reference
914 * counting is disabled on the root level in the
915 * cgroup core. See CSS_NO_REF.
916 */
04f94e3f
DS
917 if (unlikely(!mm)) {
918 memcg = active_memcg();
919 if (unlikely(memcg)) {
920 /* remote memcg must hold a ref */
921 css_get(&memcg->css);
922 return memcg;
923 }
924 mm = current->mm;
925 if (unlikely(!mm))
926 return root_mem_cgroup;
927 }
2884b6b7 928
54595fe2
KH
929 rcu_read_lock();
930 do {
2884b6b7
MS
931 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
932 if (unlikely(!memcg))
df381975 933 memcg = root_mem_cgroup;
00d484f3 934 } while (!css_tryget(&memcg->css));
54595fe2 935 rcu_read_unlock();
c0ff4b85 936 return memcg;
54595fe2 937}
d46eb14b
SB
938EXPORT_SYMBOL(get_mem_cgroup_from_mm);
939
4127c650
RG
940static __always_inline bool memcg_kmem_bypass(void)
941{
942 /* Allow remote memcg charging from any context. */
943 if (unlikely(active_memcg()))
944 return false;
945
946 /* Memcg to charge can't be determined. */
6126891c 947 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
948 return true;
949
950 return false;
951}
952
5660048c
JW
953/**
954 * mem_cgroup_iter - iterate over memory cgroup hierarchy
955 * @root: hierarchy root
956 * @prev: previously returned memcg, NULL on first invocation
957 * @reclaim: cookie for shared reclaim walks, NULL for full walks
958 *
959 * Returns references to children of the hierarchy below @root, or
960 * @root itself, or %NULL after a full round-trip.
961 *
962 * Caller must pass the return value in @prev on subsequent
963 * invocations for reference counting, or use mem_cgroup_iter_break()
964 * to cancel a hierarchy walk before the round-trip is complete.
965 *
05bdc520
ML
966 * Reclaimers can specify a node in @reclaim to divide up the memcgs
967 * in the hierarchy among all concurrent reclaimers operating on the
968 * same node.
5660048c 969 */
694fbc0f 970struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 971 struct mem_cgroup *prev,
694fbc0f 972 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 973{
3f649ab7 974 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 975 struct cgroup_subsys_state *css = NULL;
9f3a0d09 976 struct mem_cgroup *memcg = NULL;
5ac8fb31 977 struct mem_cgroup *pos = NULL;
711d3d2c 978
694fbc0f
AM
979 if (mem_cgroup_disabled())
980 return NULL;
5660048c 981
9f3a0d09
JW
982 if (!root)
983 root = root_mem_cgroup;
7d74b06f 984
9f3a0d09 985 if (prev && !reclaim)
5ac8fb31 986 pos = prev;
14067bb3 987
542f85f9 988 rcu_read_lock();
5f578161 989
5ac8fb31 990 if (reclaim) {
ef8f2327 991 struct mem_cgroup_per_node *mz;
5ac8fb31 992
a3747b53 993 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 994 iter = &mz->iter;
5ac8fb31
JW
995
996 if (prev && reclaim->generation != iter->generation)
997 goto out_unlock;
998
6df38689 999 while (1) {
4db0c3c2 1000 pos = READ_ONCE(iter->position);
6df38689
VD
1001 if (!pos || css_tryget(&pos->css))
1002 break;
5ac8fb31 1003 /*
6df38689
VD
1004 * css reference reached zero, so iter->position will
1005 * be cleared by ->css_released. However, we should not
1006 * rely on this happening soon, because ->css_released
1007 * is called from a work queue, and by busy-waiting we
1008 * might block it. So we clear iter->position right
1009 * away.
5ac8fb31 1010 */
6df38689
VD
1011 (void)cmpxchg(&iter->position, pos, NULL);
1012 }
5ac8fb31
JW
1013 }
1014
1015 if (pos)
1016 css = &pos->css;
1017
1018 for (;;) {
1019 css = css_next_descendant_pre(css, &root->css);
1020 if (!css) {
1021 /*
1022 * Reclaimers share the hierarchy walk, and a
1023 * new one might jump in right at the end of
1024 * the hierarchy - make sure they see at least
1025 * one group and restart from the beginning.
1026 */
1027 if (!prev)
1028 continue;
1029 break;
527a5ec9 1030 }
7d74b06f 1031
5ac8fb31
JW
1032 /*
1033 * Verify the css and acquire a reference. The root
1034 * is provided by the caller, so we know it's alive
1035 * and kicking, and don't take an extra reference.
1036 */
1037 memcg = mem_cgroup_from_css(css);
14067bb3 1038
5ac8fb31
JW
1039 if (css == &root->css)
1040 break;
14067bb3 1041
0b8f73e1
JW
1042 if (css_tryget(css))
1043 break;
9f3a0d09 1044
5ac8fb31 1045 memcg = NULL;
9f3a0d09 1046 }
5ac8fb31
JW
1047
1048 if (reclaim) {
5ac8fb31 1049 /*
6df38689
VD
1050 * The position could have already been updated by a competing
1051 * thread, so check that the value hasn't changed since we read
1052 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1053 */
6df38689
VD
1054 (void)cmpxchg(&iter->position, pos, memcg);
1055
5ac8fb31
JW
1056 if (pos)
1057 css_put(&pos->css);
1058
1059 if (!memcg)
1060 iter->generation++;
1061 else if (!prev)
1062 reclaim->generation = iter->generation;
9f3a0d09 1063 }
5ac8fb31 1064
542f85f9
MH
1065out_unlock:
1066 rcu_read_unlock();
c40046f3
MH
1067 if (prev && prev != root)
1068 css_put(&prev->css);
1069
9f3a0d09 1070 return memcg;
14067bb3 1071}
7d74b06f 1072
5660048c
JW
1073/**
1074 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1075 * @root: hierarchy root
1076 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1077 */
1078void mem_cgroup_iter_break(struct mem_cgroup *root,
1079 struct mem_cgroup *prev)
9f3a0d09
JW
1080{
1081 if (!root)
1082 root = root_mem_cgroup;
1083 if (prev && prev != root)
1084 css_put(&prev->css);
1085}
7d74b06f 1086
54a83d6b
MC
1087static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1088 struct mem_cgroup *dead_memcg)
6df38689 1089{
6df38689 1090 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1091 struct mem_cgroup_per_node *mz;
1092 int nid;
6df38689 1093
54a83d6b 1094 for_each_node(nid) {
a3747b53 1095 mz = from->nodeinfo[nid];
9da83f3f
YS
1096 iter = &mz->iter;
1097 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1098 }
1099}
1100
54a83d6b
MC
1101static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1102{
1103 struct mem_cgroup *memcg = dead_memcg;
1104 struct mem_cgroup *last;
1105
1106 do {
1107 __invalidate_reclaim_iterators(memcg, dead_memcg);
1108 last = memcg;
1109 } while ((memcg = parent_mem_cgroup(memcg)));
1110
1111 /*
1112 * When cgruop1 non-hierarchy mode is used,
1113 * parent_mem_cgroup() does not walk all the way up to the
1114 * cgroup root (root_mem_cgroup). So we have to handle
1115 * dead_memcg from cgroup root separately.
1116 */
1117 if (last != root_mem_cgroup)
1118 __invalidate_reclaim_iterators(root_mem_cgroup,
1119 dead_memcg);
1120}
1121
7c5f64f8
VD
1122/**
1123 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1124 * @memcg: hierarchy root
1125 * @fn: function to call for each task
1126 * @arg: argument passed to @fn
1127 *
1128 * This function iterates over tasks attached to @memcg or to any of its
1129 * descendants and calls @fn for each task. If @fn returns a non-zero
1130 * value, the function breaks the iteration loop and returns the value.
1131 * Otherwise, it will iterate over all tasks and return 0.
1132 *
1133 * This function must not be called for the root memory cgroup.
1134 */
1135int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1136 int (*fn)(struct task_struct *, void *), void *arg)
1137{
1138 struct mem_cgroup *iter;
1139 int ret = 0;
1140
1141 BUG_ON(memcg == root_mem_cgroup);
1142
1143 for_each_mem_cgroup_tree(iter, memcg) {
1144 struct css_task_iter it;
1145 struct task_struct *task;
1146
f168a9a5 1147 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1148 while (!ret && (task = css_task_iter_next(&it)))
1149 ret = fn(task, arg);
1150 css_task_iter_end(&it);
1151 if (ret) {
1152 mem_cgroup_iter_break(memcg, iter);
1153 break;
1154 }
1155 }
1156 return ret;
1157}
1158
6168d0da 1159#ifdef CONFIG_DEBUG_VM
e809c3fe 1160void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1161{
1162 struct mem_cgroup *memcg;
1163
1164 if (mem_cgroup_disabled())
1165 return;
1166
e809c3fe 1167 memcg = folio_memcg(folio);
6168d0da
AS
1168
1169 if (!memcg)
e809c3fe 1170 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
6168d0da 1171 else
e809c3fe 1172 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1173}
1174#endif
1175
6168d0da 1176/**
e809c3fe
MWO
1177 * folio_lruvec_lock - Lock the lruvec for a folio.
1178 * @folio: Pointer to the folio.
6168d0da 1179 *
d7e3aba5 1180 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1181 * - folio locked
1182 * - folio_test_lru false
1183 * - folio_memcg_lock()
1184 * - folio frozen (refcount of 0)
1185 *
1186 * Return: The lruvec this folio is on with its lock held.
6168d0da 1187 */
e809c3fe 1188struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1189{
e809c3fe 1190 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1191
6168d0da 1192 spin_lock(&lruvec->lru_lock);
e809c3fe 1193 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1194
1195 return lruvec;
1196}
1197
e809c3fe
MWO
1198/**
1199 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1200 * @folio: Pointer to the folio.
1201 *
1202 * These functions are safe to use under any of the following conditions:
1203 * - folio locked
1204 * - folio_test_lru false
1205 * - folio_memcg_lock()
1206 * - folio frozen (refcount of 0)
1207 *
1208 * Return: The lruvec this folio is on with its lock held and interrupts
1209 * disabled.
1210 */
1211struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1212{
e809c3fe 1213 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1214
6168d0da 1215 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1216 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1217
1218 return lruvec;
1219}
1220
e809c3fe
MWO
1221/**
1222 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1223 * @folio: Pointer to the folio.
1224 * @flags: Pointer to irqsave flags.
1225 *
1226 * These functions are safe to use under any of the following conditions:
1227 * - folio locked
1228 * - folio_test_lru false
1229 * - folio_memcg_lock()
1230 * - folio frozen (refcount of 0)
1231 *
1232 * Return: The lruvec this folio is on with its lock held and interrupts
1233 * disabled.
1234 */
1235struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1236 unsigned long *flags)
6168d0da 1237{
e809c3fe 1238 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1239
6168d0da 1240 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1241 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1242
1243 return lruvec;
1244}
1245
925b7673 1246/**
fa9add64
HD
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
b4536f0c 1250 * @zid: zone id of the accounted pages
fa9add64 1251 * @nr_pages: positive when adding or negative when removing
925b7673 1252 *
ca707239
HD
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1256 */
fa9add64 1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1258 int zid, int nr_pages)
3f58a829 1259{
ef8f2327 1260 struct mem_cgroup_per_node *mz;
fa9add64 1261 unsigned long *lru_size;
ca707239 1262 long size;
3f58a829
MK
1263
1264 if (mem_cgroup_disabled())
1265 return;
1266
ef8f2327 1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1268 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1269
1270 if (nr_pages < 0)
1271 *lru_size += nr_pages;
1272
1273 size = *lru_size;
b4536f0c
MH
1274 if (WARN_ONCE(size < 0,
1275 "%s(%p, %d, %d): lru_size %ld\n",
1276 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1277 VM_BUG_ON(1);
1278 *lru_size = 0;
1279 }
1280
1281 if (nr_pages > 0)
1282 *lru_size += nr_pages;
08e552c6 1283}
544122e5 1284
19942822 1285/**
9d11ea9f 1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1287 * @memcg: the memory cgroup
19942822 1288 *
9d11ea9f 1289 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1290 * pages.
19942822 1291 */
c0ff4b85 1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1293{
3e32cb2e
JW
1294 unsigned long margin = 0;
1295 unsigned long count;
1296 unsigned long limit;
9d11ea9f 1297
3e32cb2e 1298 count = page_counter_read(&memcg->memory);
bbec2e15 1299 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1300 if (count < limit)
1301 margin = limit - count;
1302
7941d214 1303 if (do_memsw_account()) {
3e32cb2e 1304 count = page_counter_read(&memcg->memsw);
bbec2e15 1305 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1306 if (count < limit)
3e32cb2e 1307 margin = min(margin, limit - count);
cbedbac3
LR
1308 else
1309 margin = 0;
3e32cb2e
JW
1310 }
1311
1312 return margin;
19942822
JW
1313}
1314
32047e2a 1315/*
bdcbb659 1316 * A routine for checking "mem" is under move_account() or not.
32047e2a 1317 *
bdcbb659
QH
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
32047e2a 1321 */
c0ff4b85 1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1323{
2bd9bb20
KH
1324 struct mem_cgroup *from;
1325 struct mem_cgroup *to;
4b534334 1326 bool ret = false;
2bd9bb20
KH
1327 /*
1328 * Unlike task_move routines, we access mc.to, mc.from not under
1329 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 */
1331 spin_lock(&mc.lock);
1332 from = mc.from;
1333 to = mc.to;
1334 if (!from)
1335 goto unlock;
3e92041d 1336
2314b42d
JW
1337 ret = mem_cgroup_is_descendant(from, memcg) ||
1338 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1339unlock:
1340 spin_unlock(&mc.lock);
4b534334
KH
1341 return ret;
1342}
1343
c0ff4b85 1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1345{
1346 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1347 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1348 DEFINE_WAIT(wait);
1349 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 /* moving charge context might have finished. */
1351 if (mc.moving_task)
1352 schedule();
1353 finish_wait(&mc.waitq, &wait);
1354 return true;
1355 }
1356 }
1357 return false;
1358}
1359
5f9a4f4a
MS
1360struct memory_stat {
1361 const char *name;
5f9a4f4a
MS
1362 unsigned int idx;
1363};
1364
57b2847d 1365static const struct memory_stat memory_stats[] = {
fff66b79
MS
1366 { "anon", NR_ANON_MAPPED },
1367 { "file", NR_FILE_PAGES },
1368 { "kernel_stack", NR_KERNEL_STACK_KB },
1369 { "pagetables", NR_PAGETABLE },
1370 { "percpu", MEMCG_PERCPU_B },
1371 { "sock", MEMCG_SOCK },
1372 { "shmem", NR_SHMEM },
1373 { "file_mapped", NR_FILE_MAPPED },
1374 { "file_dirty", NR_FILE_DIRTY },
1375 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1376#ifdef CONFIG_SWAP
1377 { "swapcached", NR_SWAPCACHE },
1378#endif
5f9a4f4a 1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1380 { "anon_thp", NR_ANON_THPS },
1381 { "file_thp", NR_FILE_THPS },
1382 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1383#endif
fff66b79
MS
1384 { "inactive_anon", NR_INACTIVE_ANON },
1385 { "active_anon", NR_ACTIVE_ANON },
1386 { "inactive_file", NR_INACTIVE_FILE },
1387 { "active_file", NR_ACTIVE_FILE },
1388 { "unevictable", NR_UNEVICTABLE },
1389 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1390 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1391
1392 /* The memory events */
fff66b79
MS
1393 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1394 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1395 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1396 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1397 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1398 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1399 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1400};
1401
fff66b79
MS
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405 switch (item) {
1406 case MEMCG_PERCPU_B:
1407 case NR_SLAB_RECLAIMABLE_B:
1408 case NR_SLAB_UNRECLAIMABLE_B:
1409 case WORKINGSET_REFAULT_ANON:
1410 case WORKINGSET_REFAULT_FILE:
1411 case WORKINGSET_ACTIVATE_ANON:
1412 case WORKINGSET_ACTIVATE_FILE:
1413 case WORKINGSET_RESTORE_ANON:
1414 case WORKINGSET_RESTORE_FILE:
1415 case WORKINGSET_NODERECLAIM:
1416 return 1;
1417 case NR_KERNEL_STACK_KB:
1418 return SZ_1K;
1419 default:
1420 return PAGE_SIZE;
1421 }
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 int item)
1426{
1427 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
c8713d0b
JW
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432 struct seq_buf s;
1433 int i;
71cd3113 1434
c8713d0b
JW
1435 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 if (!s.buffer)
1437 return NULL;
1438
1439 /*
1440 * Provide statistics on the state of the memory subsystem as
1441 * well as cumulative event counters that show past behavior.
1442 *
1443 * This list is ordered following a combination of these gradients:
1444 * 1) generic big picture -> specifics and details
1445 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 *
1447 * Current memory state:
1448 */
fd25a9e0 1449 mem_cgroup_flush_stats();
c8713d0b 1450
5f9a4f4a
MS
1451 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 u64 size;
c8713d0b 1453
fff66b79 1454 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1455 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1456
5f9a4f4a 1457 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1458 size += memcg_page_state_output(memcg,
1459 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1460 seq_buf_printf(&s, "slab %llu\n", size);
1461 }
1462 }
c8713d0b
JW
1463
1464 /* Accumulated memory events */
1465
ebc5d83d
KK
1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 memcg_events(memcg, PGFAULT));
1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1470 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1471 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1472 seq_buf_printf(&s, "pgscan %lu\n",
1473 memcg_events(memcg, PGSCAN_KSWAPD) +
1474 memcg_events(memcg, PGSCAN_DIRECT));
1475 seq_buf_printf(&s, "pgsteal %lu\n",
1476 memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1478 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 memcg_events(memcg, PGACTIVATE));
1480 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 memcg_events(memcg, PGDEACTIVATE));
1482 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 memcg_events(memcg, PGLAZYFREE));
1484 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1488 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1489 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1490 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1491 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494 /* The above should easily fit into one page */
1495 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497 return s.buffer;
1498}
71cd3113 1499
58cf188e 1500#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1501/**
f0c867d9 1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
e222432b
BS
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
f0c867d9 1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1511{
e222432b
BS
1512 rcu_read_lock();
1513
f0c867d9 1514 if (memcg) {
1515 pr_cont(",oom_memcg=");
1516 pr_cont_cgroup_path(memcg->css.cgroup);
1517 } else
1518 pr_cont(",global_oom");
2415b9f5 1519 if (p) {
f0c867d9 1520 pr_cont(",task_memcg=");
2415b9f5 1521 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1522 }
e222432b 1523 rcu_read_unlock();
f0c867d9 1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
c8713d0b 1533 char *buf;
e222432b 1534
3e32cb2e
JW
1535 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->memory)),
15b42562 1537 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1538 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1541 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1542 else {
1543 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 K((u64)page_counter_read(&memcg->memsw)),
1545 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->kmem)),
1548 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1549 }
c8713d0b
JW
1550
1551 pr_info("Memory cgroup stats for ");
1552 pr_cont_cgroup_path(memcg->css.cgroup);
1553 pr_cont(":");
1554 buf = memory_stat_format(memcg);
1555 if (!buf)
1556 return;
1557 pr_info("%s", buf);
1558 kfree(buf);
e222432b
BS
1559}
1560
a63d83f4
DR
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
bbec2e15 1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1565{
8d387a5f
WL
1566 unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 if (mem_cgroup_swappiness(memcg))
1570 max += min(READ_ONCE(memcg->swap.max),
1571 (unsigned long)total_swap_pages);
1572 } else { /* v1 */
1573 if (mem_cgroup_swappiness(memcg)) {
1574 /* Calculate swap excess capacity from memsw limit */
1575 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577 max += min(swap, (unsigned long)total_swap_pages);
1578 }
9a5a8f19 1579 }
bbec2e15 1580 return max;
a63d83f4
DR
1581}
1582
9783aa99
CD
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585 return page_counter_read(&memcg->memory);
1586}
1587
b6e6edcf 1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1589 int order)
9cbb78bb 1590{
6e0fc46d
DR
1591 struct oom_control oc = {
1592 .zonelist = NULL,
1593 .nodemask = NULL,
2a966b77 1594 .memcg = memcg,
6e0fc46d
DR
1595 .gfp_mask = gfp_mask,
1596 .order = order,
6e0fc46d 1597 };
1378b37d 1598 bool ret = true;
9cbb78bb 1599
7775face
TH
1600 if (mutex_lock_killable(&oom_lock))
1601 return true;
1378b37d
YS
1602
1603 if (mem_cgroup_margin(memcg) >= (1 << order))
1604 goto unlock;
1605
7775face
TH
1606 /*
1607 * A few threads which were not waiting at mutex_lock_killable() can
1608 * fail to bail out. Therefore, check again after holding oom_lock.
1609 */
a4ebf1b6 1610 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1611
1612unlock:
dc56401f 1613 mutex_unlock(&oom_lock);
7c5f64f8 1614 return ret;
9cbb78bb
DR
1615}
1616
0608f43d 1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1618 pg_data_t *pgdat,
0608f43d
AM
1619 gfp_t gfp_mask,
1620 unsigned long *total_scanned)
1621{
1622 struct mem_cgroup *victim = NULL;
1623 int total = 0;
1624 int loop = 0;
1625 unsigned long excess;
1626 unsigned long nr_scanned;
1627 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1628 .pgdat = pgdat,
0608f43d
AM
1629 };
1630
3e32cb2e 1631 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1632
1633 while (1) {
1634 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 if (!victim) {
1636 loop++;
1637 if (loop >= 2) {
1638 /*
1639 * If we have not been able to reclaim
1640 * anything, it might because there are
1641 * no reclaimable pages under this hierarchy
1642 */
1643 if (!total)
1644 break;
1645 /*
1646 * We want to do more targeted reclaim.
1647 * excess >> 2 is not to excessive so as to
1648 * reclaim too much, nor too less that we keep
1649 * coming back to reclaim from this cgroup
1650 */
1651 if (total >= (excess >> 2) ||
1652 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 break;
1654 }
1655 continue;
1656 }
a9dd0a83 1657 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1658 pgdat, &nr_scanned);
0608f43d 1659 *total_scanned += nr_scanned;
3e32cb2e 1660 if (!soft_limit_excess(root_memcg))
0608f43d 1661 break;
6d61ef40 1662 }
0608f43d
AM
1663 mem_cgroup_iter_break(root_memcg, victim);
1664 return total;
6d61ef40
BS
1665}
1666
0056f4e6
JW
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669 .name = "memcg_oom_lock",
1670};
1671#endif
1672
fb2a6fc5
JW
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
867578cb
KH
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
fb2a6fc5 1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1680{
79dfdacc 1681 struct mem_cgroup *iter, *failed = NULL;
a636b327 1682
fb2a6fc5
JW
1683 spin_lock(&memcg_oom_lock);
1684
9f3a0d09 1685 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1686 if (iter->oom_lock) {
79dfdacc
MH
1687 /*
1688 * this subtree of our hierarchy is already locked
1689 * so we cannot give a lock.
1690 */
79dfdacc 1691 failed = iter;
9f3a0d09
JW
1692 mem_cgroup_iter_break(memcg, iter);
1693 break;
23751be0
JW
1694 } else
1695 iter->oom_lock = true;
7d74b06f 1696 }
867578cb 1697
fb2a6fc5
JW
1698 if (failed) {
1699 /*
1700 * OK, we failed to lock the whole subtree so we have
1701 * to clean up what we set up to the failing subtree
1702 */
1703 for_each_mem_cgroup_tree(iter, memcg) {
1704 if (iter == failed) {
1705 mem_cgroup_iter_break(memcg, iter);
1706 break;
1707 }
1708 iter->oom_lock = false;
79dfdacc 1709 }
0056f4e6
JW
1710 } else
1711 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1712
1713 spin_unlock(&memcg_oom_lock);
1714
1715 return !failed;
a636b327 1716}
0b7f569e 1717
fb2a6fc5 1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1719{
7d74b06f
KH
1720 struct mem_cgroup *iter;
1721
fb2a6fc5 1722 spin_lock(&memcg_oom_lock);
5facae4f 1723 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1724 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1725 iter->oom_lock = false;
fb2a6fc5 1726 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1727}
1728
c0ff4b85 1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1730{
1731 struct mem_cgroup *iter;
1732
c2b42d3c 1733 spin_lock(&memcg_oom_lock);
c0ff4b85 1734 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1735 iter->under_oom++;
1736 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1737}
1738
c0ff4b85 1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1740{
1741 struct mem_cgroup *iter;
1742
867578cb 1743 /*
f0953a1b 1744 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1745 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1746 */
c2b42d3c 1747 spin_lock(&memcg_oom_lock);
c0ff4b85 1748 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1749 if (iter->under_oom > 0)
1750 iter->under_oom--;
1751 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1752}
1753
867578cb
KH
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
dc98df5a 1756struct oom_wait_info {
d79154bb 1757 struct mem_cgroup *memcg;
ac6424b9 1758 wait_queue_entry_t wait;
dc98df5a
KH
1759};
1760
ac6424b9 1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1762 unsigned mode, int sync, void *arg)
1763{
d79154bb
HD
1764 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1766 struct oom_wait_info *oom_wait_info;
1767
1768 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1769 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1770
2314b42d
JW
1771 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1773 return 0;
dc98df5a
KH
1774 return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
c0ff4b85 1777static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1778{
c2b42d3c
TH
1779 /*
1780 * For the following lockless ->under_oom test, the only required
1781 * guarantee is that it must see the state asserted by an OOM when
1782 * this function is called as a result of userland actions
1783 * triggered by the notification of the OOM. This is trivially
1784 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 * triggering notification.
1786 */
1787 if (memcg && memcg->under_oom)
f4b90b70 1788 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1789}
1790
29ef680a
MH
1791enum oom_status {
1792 OOM_SUCCESS,
1793 OOM_FAILED,
1794 OOM_ASYNC,
1795 OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1799{
7056d3a3
MH
1800 enum oom_status ret;
1801 bool locked;
1802
29ef680a
MH
1803 if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 return OOM_SKIPPED;
1805
7a1adfdd
RG
1806 memcg_memory_event(memcg, MEMCG_OOM);
1807
867578cb 1808 /*
49426420
JW
1809 * We are in the middle of the charge context here, so we
1810 * don't want to block when potentially sitting on a callstack
1811 * that holds all kinds of filesystem and mm locks.
1812 *
29ef680a
MH
1813 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 * handling until the charge can succeed; remember the context and put
1815 * the task to sleep at the end of the page fault when all locks are
1816 * released.
49426420 1817 *
29ef680a
MH
1818 * On the other hand, in-kernel OOM killer allows for an async victim
1819 * memory reclaim (oom_reaper) and that means that we are not solely
1820 * relying on the oom victim to make a forward progress and we can
1821 * invoke the oom killer here.
1822 *
1823 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 * victim and then we have to bail out from the charge path.
867578cb 1825 */
29ef680a
MH
1826 if (memcg->oom_kill_disable) {
1827 if (!current->in_user_fault)
1828 return OOM_SKIPPED;
1829 css_get(&memcg->css);
1830 current->memcg_in_oom = memcg;
1831 current->memcg_oom_gfp_mask = mask;
1832 current->memcg_oom_order = order;
1833
1834 return OOM_ASYNC;
1835 }
1836
7056d3a3
MH
1837 mem_cgroup_mark_under_oom(memcg);
1838
1839 locked = mem_cgroup_oom_trylock(memcg);
1840
1841 if (locked)
1842 mem_cgroup_oom_notify(memcg);
1843
1844 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1845 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1846 ret = OOM_SUCCESS;
1847 else
1848 ret = OOM_FAILED;
1849
1850 if (locked)
1851 mem_cgroup_oom_unlock(memcg);
29ef680a 1852
7056d3a3 1853 return ret;
3812c8c8
JW
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1858 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1859 *
49426420
JW
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
3812c8c8 1862 *
49426420 1863 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation. Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1868 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1871 * completed, %false otherwise.
3812c8c8 1872 */
49426420 1873bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1874{
626ebc41 1875 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1876 struct oom_wait_info owait;
49426420 1877 bool locked;
3812c8c8
JW
1878
1879 /* OOM is global, do not handle */
3812c8c8 1880 if (!memcg)
49426420 1881 return false;
3812c8c8 1882
7c5f64f8 1883 if (!handle)
49426420 1884 goto cleanup;
3812c8c8
JW
1885
1886 owait.memcg = memcg;
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
2055da97 1890 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1891
3812c8c8 1892 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1893 mem_cgroup_mark_under_oom(memcg);
1894
1895 locked = mem_cgroup_oom_trylock(memcg);
1896
1897 if (locked)
1898 mem_cgroup_oom_notify(memcg);
1899
1900 if (locked && !memcg->oom_kill_disable) {
1901 mem_cgroup_unmark_under_oom(memcg);
1902 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1903 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 current->memcg_oom_order);
49426420 1905 } else {
3812c8c8 1906 schedule();
49426420
JW
1907 mem_cgroup_unmark_under_oom(memcg);
1908 finish_wait(&memcg_oom_waitq, &owait.wait);
1909 }
1910
1911 if (locked) {
fb2a6fc5
JW
1912 mem_cgroup_oom_unlock(memcg);
1913 /*
1914 * There is no guarantee that an OOM-lock contender
1915 * sees the wakeups triggered by the OOM kill
f0953a1b 1916 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
1917 */
1918 memcg_oom_recover(memcg);
1919 }
49426420 1920cleanup:
626ebc41 1921 current->memcg_in_oom = NULL;
3812c8c8 1922 css_put(&memcg->css);
867578cb 1923 return true;
0b7f569e
KH
1924}
1925
3d8b38eb
RG
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 struct mem_cgroup *oom_domain)
1938{
1939 struct mem_cgroup *oom_group = NULL;
1940 struct mem_cgroup *memcg;
1941
1942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 return NULL;
1944
1945 if (!oom_domain)
1946 oom_domain = root_mem_cgroup;
1947
1948 rcu_read_lock();
1949
1950 memcg = mem_cgroup_from_task(victim);
1951 if (memcg == root_mem_cgroup)
1952 goto out;
1953
48fe267c
RG
1954 /*
1955 * If the victim task has been asynchronously moved to a different
1956 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 * In this case it's better to ignore memory.group.oom.
1958 */
1959 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 goto out;
1961
3d8b38eb
RG
1962 /*
1963 * Traverse the memory cgroup hierarchy from the victim task's
1964 * cgroup up to the OOMing cgroup (or root) to find the
1965 * highest-level memory cgroup with oom.group set.
1966 */
1967 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 if (memcg->oom_group)
1969 oom_group = memcg;
1970
1971 if (memcg == oom_domain)
1972 break;
1973 }
1974
1975 if (oom_group)
1976 css_get(&oom_group->css);
1977out:
1978 rcu_read_unlock();
1979
1980 return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985 pr_info("Tasks in ");
1986 pr_cont_cgroup_path(memcg->css.cgroup);
1987 pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
d7365e78 1990/**
f70ad448
MWO
1991 * folio_memcg_lock - Bind a folio to its memcg.
1992 * @folio: The folio.
32047e2a 1993 *
f70ad448 1994 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
1995 * another cgroup.
1996 *
f70ad448
MWO
1997 * It ensures lifetime of the bound memcg. The caller is responsible
1998 * for the lifetime of the folio.
d69b042f 1999 */
f70ad448 2000void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2001{
2002 struct mem_cgroup *memcg;
6de22619 2003 unsigned long flags;
89c06bd5 2004
6de22619
JW
2005 /*
2006 * The RCU lock is held throughout the transaction. The fast
2007 * path can get away without acquiring the memcg->move_lock
2008 * because page moving starts with an RCU grace period.
739f79fc 2009 */
d7365e78
JW
2010 rcu_read_lock();
2011
2012 if (mem_cgroup_disabled())
1c824a68 2013 return;
89c06bd5 2014again:
f70ad448 2015 memcg = folio_memcg(folio);
29833315 2016 if (unlikely(!memcg))
1c824a68 2017 return;
d7365e78 2018
20ad50d6
AS
2019#ifdef CONFIG_PROVE_LOCKING
2020 local_irq_save(flags);
2021 might_lock(&memcg->move_lock);
2022 local_irq_restore(flags);
2023#endif
2024
bdcbb659 2025 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2026 return;
89c06bd5 2027
6de22619 2028 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2029 if (memcg != folio_memcg(folio)) {
6de22619 2030 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2031 goto again;
2032 }
6de22619
JW
2033
2034 /*
1c824a68
JW
2035 * When charge migration first begins, we can have multiple
2036 * critical sections holding the fast-path RCU lock and one
2037 * holding the slowpath move_lock. Track the task who has the
2038 * move_lock for unlock_page_memcg().
6de22619
JW
2039 */
2040 memcg->move_lock_task = current;
2041 memcg->move_lock_flags = flags;
89c06bd5 2042}
f70ad448
MWO
2043
2044void lock_page_memcg(struct page *page)
2045{
2046 folio_memcg_lock(page_folio(page));
2047}
89c06bd5 2048
f70ad448 2049static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2050{
6de22619
JW
2051 if (memcg && memcg->move_lock_task == current) {
2052 unsigned long flags = memcg->move_lock_flags;
2053
2054 memcg->move_lock_task = NULL;
2055 memcg->move_lock_flags = 0;
2056
2057 spin_unlock_irqrestore(&memcg->move_lock, flags);
2058 }
89c06bd5 2059
d7365e78 2060 rcu_read_unlock();
89c06bd5 2061}
739f79fc
JW
2062
2063/**
f70ad448
MWO
2064 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2065 * @folio: The folio.
2066 *
2067 * This releases the binding created by folio_memcg_lock(). This does
2068 * not change the accounting of this folio to its memcg, but it does
2069 * permit others to change it.
739f79fc 2070 */
f70ad448 2071void folio_memcg_unlock(struct folio *folio)
739f79fc 2072{
f70ad448
MWO
2073 __folio_memcg_unlock(folio_memcg(folio));
2074}
9da7b521 2075
f70ad448
MWO
2076void unlock_page_memcg(struct page *page)
2077{
2078 folio_memcg_unlock(page_folio(page));
739f79fc 2079}
89c06bd5 2080
55927114 2081struct obj_stock {
bf4f0599
RG
2082#ifdef CONFIG_MEMCG_KMEM
2083 struct obj_cgroup *cached_objcg;
68ac5b3c 2084 struct pglist_data *cached_pgdat;
bf4f0599 2085 unsigned int nr_bytes;
68ac5b3c
WL
2086 int nr_slab_reclaimable_b;
2087 int nr_slab_unreclaimable_b;
55927114
WL
2088#else
2089 int dummy[0];
bf4f0599 2090#endif
55927114
WL
2091};
2092
2093struct memcg_stock_pcp {
2094 struct mem_cgroup *cached; /* this never be root cgroup */
2095 unsigned int nr_pages;
2096 struct obj_stock task_obj;
2097 struct obj_stock irq_obj;
bf4f0599 2098
cdec2e42 2099 struct work_struct work;
26fe6168 2100 unsigned long flags;
a0db00fc 2101#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2102};
2103static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2104static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2105
bf4f0599 2106#ifdef CONFIG_MEMCG_KMEM
55927114 2107static void drain_obj_stock(struct obj_stock *stock);
bf4f0599
RG
2108static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2109 struct mem_cgroup *root_memcg);
2110
2111#else
55927114 2112static inline void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
2113{
2114}
2115static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2116 struct mem_cgroup *root_memcg)
2117{
2118 return false;
2119}
2120#endif
2121
a0956d54
SS
2122/**
2123 * consume_stock: Try to consume stocked charge on this cpu.
2124 * @memcg: memcg to consume from.
2125 * @nr_pages: how many pages to charge.
2126 *
2127 * The charges will only happen if @memcg matches the current cpu's memcg
2128 * stock, and at least @nr_pages are available in that stock. Failure to
2129 * service an allocation will refill the stock.
2130 *
2131 * returns true if successful, false otherwise.
cdec2e42 2132 */
a0956d54 2133static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2134{
2135 struct memcg_stock_pcp *stock;
db2ba40c 2136 unsigned long flags;
3e32cb2e 2137 bool ret = false;
cdec2e42 2138
a983b5eb 2139 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2140 return ret;
a0956d54 2141
db2ba40c
JW
2142 local_irq_save(flags);
2143
2144 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2145 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2146 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2147 ret = true;
2148 }
db2ba40c
JW
2149
2150 local_irq_restore(flags);
2151
cdec2e42
KH
2152 return ret;
2153}
2154
2155/*
3e32cb2e 2156 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2157 */
2158static void drain_stock(struct memcg_stock_pcp *stock)
2159{
2160 struct mem_cgroup *old = stock->cached;
2161
1a3e1f40
JW
2162 if (!old)
2163 return;
2164
11c9ea4e 2165 if (stock->nr_pages) {
3e32cb2e 2166 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2167 if (do_memsw_account())
3e32cb2e 2168 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2169 stock->nr_pages = 0;
cdec2e42 2170 }
1a3e1f40
JW
2171
2172 css_put(&old->css);
cdec2e42 2173 stock->cached = NULL;
cdec2e42
KH
2174}
2175
cdec2e42
KH
2176static void drain_local_stock(struct work_struct *dummy)
2177{
db2ba40c
JW
2178 struct memcg_stock_pcp *stock;
2179 unsigned long flags;
2180
72f0184c 2181 /*
5c49cf9a
MH
2182 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2183 * drain_stock races is that we always operate on local CPU stock
2184 * here with IRQ disabled
72f0184c 2185 */
db2ba40c
JW
2186 local_irq_save(flags);
2187
2188 stock = this_cpu_ptr(&memcg_stock);
55927114
WL
2189 drain_obj_stock(&stock->irq_obj);
2190 if (in_task())
2191 drain_obj_stock(&stock->task_obj);
cdec2e42 2192 drain_stock(stock);
26fe6168 2193 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2194
2195 local_irq_restore(flags);
cdec2e42
KH
2196}
2197
2198/*
3e32cb2e 2199 * Cache charges(val) to local per_cpu area.
320cc51d 2200 * This will be consumed by consume_stock() function, later.
cdec2e42 2201 */
c0ff4b85 2202static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2203{
db2ba40c
JW
2204 struct memcg_stock_pcp *stock;
2205 unsigned long flags;
2206
2207 local_irq_save(flags);
cdec2e42 2208
db2ba40c 2209 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2210 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2211 drain_stock(stock);
1a3e1f40 2212 css_get(&memcg->css);
c0ff4b85 2213 stock->cached = memcg;
cdec2e42 2214 }
11c9ea4e 2215 stock->nr_pages += nr_pages;
db2ba40c 2216
a983b5eb 2217 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2218 drain_stock(stock);
2219
db2ba40c 2220 local_irq_restore(flags);
cdec2e42
KH
2221}
2222
2223/*
c0ff4b85 2224 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2225 * of the hierarchy under it.
cdec2e42 2226 */
6d3d6aa2 2227static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2228{
26fe6168 2229 int cpu, curcpu;
d38144b7 2230
6d3d6aa2
JW
2231 /* If someone's already draining, avoid adding running more workers. */
2232 if (!mutex_trylock(&percpu_charge_mutex))
2233 return;
72f0184c
MH
2234 /*
2235 * Notify other cpus that system-wide "drain" is running
2236 * We do not care about races with the cpu hotplug because cpu down
2237 * as well as workers from this path always operate on the local
2238 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2239 */
5af12d0e 2240 curcpu = get_cpu();
cdec2e42
KH
2241 for_each_online_cpu(cpu) {
2242 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2243 struct mem_cgroup *memcg;
e1a366be 2244 bool flush = false;
26fe6168 2245
e1a366be 2246 rcu_read_lock();
c0ff4b85 2247 memcg = stock->cached;
e1a366be
RG
2248 if (memcg && stock->nr_pages &&
2249 mem_cgroup_is_descendant(memcg, root_memcg))
2250 flush = true;
27fb0956 2251 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2252 flush = true;
e1a366be
RG
2253 rcu_read_unlock();
2254
2255 if (flush &&
2256 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2257 if (cpu == curcpu)
2258 drain_local_stock(&stock->work);
2259 else
2260 schedule_work_on(cpu, &stock->work);
2261 }
cdec2e42 2262 }
5af12d0e 2263 put_cpu();
9f50fad6 2264 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2265}
2266
2cd21c89
JW
2267static int memcg_hotplug_cpu_dead(unsigned int cpu)
2268{
2269 struct memcg_stock_pcp *stock;
a3d4c05a 2270
2cd21c89
JW
2271 stock = &per_cpu(memcg_stock, cpu);
2272 drain_stock(stock);
a3d4c05a 2273
308167fc 2274 return 0;
cdec2e42
KH
2275}
2276
b3ff9291
CD
2277static unsigned long reclaim_high(struct mem_cgroup *memcg,
2278 unsigned int nr_pages,
2279 gfp_t gfp_mask)
f7e1cb6e 2280{
b3ff9291
CD
2281 unsigned long nr_reclaimed = 0;
2282
f7e1cb6e 2283 do {
e22c6ed9
JW
2284 unsigned long pflags;
2285
d1663a90
JK
2286 if (page_counter_read(&memcg->memory) <=
2287 READ_ONCE(memcg->memory.high))
f7e1cb6e 2288 continue;
e22c6ed9 2289
e27be240 2290 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2291
2292 psi_memstall_enter(&pflags);
b3ff9291
CD
2293 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2294 gfp_mask, true);
e22c6ed9 2295 psi_memstall_leave(&pflags);
4bf17307
CD
2296 } while ((memcg = parent_mem_cgroup(memcg)) &&
2297 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2298
2299 return nr_reclaimed;
f7e1cb6e
JW
2300}
2301
2302static void high_work_func(struct work_struct *work)
2303{
2304 struct mem_cgroup *memcg;
2305
2306 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2307 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2308}
2309
0e4b01df
CD
2310/*
2311 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2312 * enough to still cause a significant slowdown in most cases, while still
2313 * allowing diagnostics and tracing to proceed without becoming stuck.
2314 */
2315#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2316
2317/*
2318 * When calculating the delay, we use these either side of the exponentiation to
2319 * maintain precision and scale to a reasonable number of jiffies (see the table
2320 * below.
2321 *
2322 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2323 * overage ratio to a delay.
ac5ddd0f 2324 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2325 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2326 * to produce a reasonable delay curve.
2327 *
2328 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2329 * reasonable delay curve compared to precision-adjusted overage, not
2330 * penalising heavily at first, but still making sure that growth beyond the
2331 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2332 * example, with a high of 100 megabytes:
2333 *
2334 * +-------+------------------------+
2335 * | usage | time to allocate in ms |
2336 * +-------+------------------------+
2337 * | 100M | 0 |
2338 * | 101M | 6 |
2339 * | 102M | 25 |
2340 * | 103M | 57 |
2341 * | 104M | 102 |
2342 * | 105M | 159 |
2343 * | 106M | 230 |
2344 * | 107M | 313 |
2345 * | 108M | 409 |
2346 * | 109M | 518 |
2347 * | 110M | 639 |
2348 * | 111M | 774 |
2349 * | 112M | 921 |
2350 * | 113M | 1081 |
2351 * | 114M | 1254 |
2352 * | 115M | 1439 |
2353 * | 116M | 1638 |
2354 * | 117M | 1849 |
2355 * | 118M | 2000 |
2356 * | 119M | 2000 |
2357 * | 120M | 2000 |
2358 * +-------+------------------------+
2359 */
2360 #define MEMCG_DELAY_PRECISION_SHIFT 20
2361 #define MEMCG_DELAY_SCALING_SHIFT 14
2362
8a5dbc65 2363static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2364{
8a5dbc65 2365 u64 overage;
b23afb93 2366
8a5dbc65
JK
2367 if (usage <= high)
2368 return 0;
e26733e0 2369
8a5dbc65
JK
2370 /*
2371 * Prevent division by 0 in overage calculation by acting as if
2372 * it was a threshold of 1 page
2373 */
2374 high = max(high, 1UL);
9b8b1754 2375
8a5dbc65
JK
2376 overage = usage - high;
2377 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2378 return div64_u64(overage, high);
2379}
e26733e0 2380
8a5dbc65
JK
2381static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2382{
2383 u64 overage, max_overage = 0;
e26733e0 2384
8a5dbc65
JK
2385 do {
2386 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2387 READ_ONCE(memcg->memory.high));
8a5dbc65 2388 max_overage = max(overage, max_overage);
e26733e0
CD
2389 } while ((memcg = parent_mem_cgroup(memcg)) &&
2390 !mem_cgroup_is_root(memcg));
2391
8a5dbc65
JK
2392 return max_overage;
2393}
2394
4b82ab4f
JK
2395static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2396{
2397 u64 overage, max_overage = 0;
2398
2399 do {
2400 overage = calculate_overage(page_counter_read(&memcg->swap),
2401 READ_ONCE(memcg->swap.high));
2402 if (overage)
2403 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2404 max_overage = max(overage, max_overage);
2405 } while ((memcg = parent_mem_cgroup(memcg)) &&
2406 !mem_cgroup_is_root(memcg));
2407
2408 return max_overage;
2409}
2410
8a5dbc65
JK
2411/*
2412 * Get the number of jiffies that we should penalise a mischievous cgroup which
2413 * is exceeding its memory.high by checking both it and its ancestors.
2414 */
2415static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2416 unsigned int nr_pages,
2417 u64 max_overage)
2418{
2419 unsigned long penalty_jiffies;
2420
e26733e0
CD
2421 if (!max_overage)
2422 return 0;
0e4b01df
CD
2423
2424 /*
0e4b01df
CD
2425 * We use overage compared to memory.high to calculate the number of
2426 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2427 * fairly lenient on small overages, and increasingly harsh when the
2428 * memcg in question makes it clear that it has no intention of stopping
2429 * its crazy behaviour, so we exponentially increase the delay based on
2430 * overage amount.
2431 */
e26733e0
CD
2432 penalty_jiffies = max_overage * max_overage * HZ;
2433 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2434 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2435
2436 /*
2437 * Factor in the task's own contribution to the overage, such that four
2438 * N-sized allocations are throttled approximately the same as one
2439 * 4N-sized allocation.
2440 *
2441 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2442 * larger the current charge patch is than that.
2443 */
ff144e69 2444 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2445}
2446
2447/*
2448 * Scheduled by try_charge() to be executed from the userland return path
2449 * and reclaims memory over the high limit.
2450 */
2451void mem_cgroup_handle_over_high(void)
2452{
2453 unsigned long penalty_jiffies;
2454 unsigned long pflags;
b3ff9291 2455 unsigned long nr_reclaimed;
e26733e0 2456 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2457 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2458 struct mem_cgroup *memcg;
b3ff9291 2459 bool in_retry = false;
e26733e0
CD
2460
2461 if (likely(!nr_pages))
2462 return;
2463
2464 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2465 current->memcg_nr_pages_over_high = 0;
2466
b3ff9291
CD
2467retry_reclaim:
2468 /*
2469 * The allocating task should reclaim at least the batch size, but for
2470 * subsequent retries we only want to do what's necessary to prevent oom
2471 * or breaching resource isolation.
2472 *
2473 * This is distinct from memory.max or page allocator behaviour because
2474 * memory.high is currently batched, whereas memory.max and the page
2475 * allocator run every time an allocation is made.
2476 */
2477 nr_reclaimed = reclaim_high(memcg,
2478 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2479 GFP_KERNEL);
2480
e26733e0
CD
2481 /*
2482 * memory.high is breached and reclaim is unable to keep up. Throttle
2483 * allocators proactively to slow down excessive growth.
2484 */
8a5dbc65
JK
2485 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2486 mem_find_max_overage(memcg));
0e4b01df 2487
4b82ab4f
JK
2488 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2489 swap_find_max_overage(memcg));
2490
ff144e69
JK
2491 /*
2492 * Clamp the max delay per usermode return so as to still keep the
2493 * application moving forwards and also permit diagnostics, albeit
2494 * extremely slowly.
2495 */
2496 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2497
0e4b01df
CD
2498 /*
2499 * Don't sleep if the amount of jiffies this memcg owes us is so low
2500 * that it's not even worth doing, in an attempt to be nice to those who
2501 * go only a small amount over their memory.high value and maybe haven't
2502 * been aggressively reclaimed enough yet.
2503 */
2504 if (penalty_jiffies <= HZ / 100)
2505 goto out;
2506
b3ff9291
CD
2507 /*
2508 * If reclaim is making forward progress but we're still over
2509 * memory.high, we want to encourage that rather than doing allocator
2510 * throttling.
2511 */
2512 if (nr_reclaimed || nr_retries--) {
2513 in_retry = true;
2514 goto retry_reclaim;
2515 }
2516
0e4b01df
CD
2517 /*
2518 * If we exit early, we're guaranteed to die (since
2519 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2520 * need to account for any ill-begotten jiffies to pay them off later.
2521 */
2522 psi_memstall_enter(&pflags);
2523 schedule_timeout_killable(penalty_jiffies);
2524 psi_memstall_leave(&pflags);
2525
2526out:
2527 css_put(&memcg->css);
b23afb93
TH
2528}
2529
c5c8b16b
MS
2530static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2531 unsigned int nr_pages)
8a9f3ccd 2532{
a983b5eb 2533 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2534 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2535 struct mem_cgroup *mem_over_limit;
3e32cb2e 2536 struct page_counter *counter;
e22c6ed9 2537 enum oom_status oom_status;
6539cc05 2538 unsigned long nr_reclaimed;
a4ebf1b6 2539 bool passed_oom = false;
b70a2a21
JW
2540 bool may_swap = true;
2541 bool drained = false;
e22c6ed9 2542 unsigned long pflags;
a636b327 2543
6539cc05 2544retry:
b6b6cc72 2545 if (consume_stock(memcg, nr_pages))
10d53c74 2546 return 0;
8a9f3ccd 2547
7941d214 2548 if (!do_memsw_account() ||
6071ca52
JW
2549 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2550 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2551 goto done_restock;
7941d214 2552 if (do_memsw_account())
3e32cb2e
JW
2553 page_counter_uncharge(&memcg->memsw, batch);
2554 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2555 } else {
3e32cb2e 2556 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2557 may_swap = false;
3fbe7244 2558 }
7a81b88c 2559
6539cc05
JW
2560 if (batch > nr_pages) {
2561 batch = nr_pages;
2562 goto retry;
2563 }
6d61ef40 2564
869712fd
JW
2565 /*
2566 * Memcg doesn't have a dedicated reserve for atomic
2567 * allocations. But like the global atomic pool, we need to
2568 * put the burden of reclaim on regular allocation requests
2569 * and let these go through as privileged allocations.
2570 */
2571 if (gfp_mask & __GFP_ATOMIC)
2572 goto force;
2573
89a28483
JW
2574 /*
2575 * Prevent unbounded recursion when reclaim operations need to
2576 * allocate memory. This might exceed the limits temporarily,
2577 * but we prefer facilitating memory reclaim and getting back
2578 * under the limit over triggering OOM kills in these cases.
2579 */
2580 if (unlikely(current->flags & PF_MEMALLOC))
2581 goto force;
2582
06b078fc
JW
2583 if (unlikely(task_in_memcg_oom(current)))
2584 goto nomem;
2585
d0164adc 2586 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2587 goto nomem;
4b534334 2588
e27be240 2589 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2590
e22c6ed9 2591 psi_memstall_enter(&pflags);
b70a2a21
JW
2592 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2593 gfp_mask, may_swap);
e22c6ed9 2594 psi_memstall_leave(&pflags);
6539cc05 2595
61e02c74 2596 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2597 goto retry;
28c34c29 2598
b70a2a21 2599 if (!drained) {
6d3d6aa2 2600 drain_all_stock(mem_over_limit);
b70a2a21
JW
2601 drained = true;
2602 goto retry;
2603 }
2604
28c34c29
JW
2605 if (gfp_mask & __GFP_NORETRY)
2606 goto nomem;
6539cc05
JW
2607 /*
2608 * Even though the limit is exceeded at this point, reclaim
2609 * may have been able to free some pages. Retry the charge
2610 * before killing the task.
2611 *
2612 * Only for regular pages, though: huge pages are rather
2613 * unlikely to succeed so close to the limit, and we fall back
2614 * to regular pages anyway in case of failure.
2615 */
61e02c74 2616 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2617 goto retry;
2618 /*
2619 * At task move, charge accounts can be doubly counted. So, it's
2620 * better to wait until the end of task_move if something is going on.
2621 */
2622 if (mem_cgroup_wait_acct_move(mem_over_limit))
2623 goto retry;
2624
9b130619
JW
2625 if (nr_retries--)
2626 goto retry;
2627
38d38493 2628 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2629 goto nomem;
2630
a4ebf1b6
VA
2631 /* Avoid endless loop for tasks bypassed by the oom killer */
2632 if (passed_oom && task_is_dying())
2633 goto nomem;
6539cc05 2634
29ef680a
MH
2635 /*
2636 * keep retrying as long as the memcg oom killer is able to make
2637 * a forward progress or bypass the charge if the oom killer
2638 * couldn't make any progress.
2639 */
2640 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2641 get_order(nr_pages * PAGE_SIZE));
a4ebf1b6
VA
2642 if (oom_status == OOM_SUCCESS) {
2643 passed_oom = true;
d977aa93 2644 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2645 goto retry;
29ef680a 2646 }
7a81b88c 2647nomem:
6d1fdc48 2648 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2649 return -ENOMEM;
10d53c74
TH
2650force:
2651 /*
2652 * The allocation either can't fail or will lead to more memory
2653 * being freed very soon. Allow memory usage go over the limit
2654 * temporarily by force charging it.
2655 */
2656 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2657 if (do_memsw_account())
10d53c74 2658 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2659
2660 return 0;
6539cc05
JW
2661
2662done_restock:
2663 if (batch > nr_pages)
2664 refill_stock(memcg, batch - nr_pages);
b23afb93 2665
241994ed 2666 /*
b23afb93
TH
2667 * If the hierarchy is above the normal consumption range, schedule
2668 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2669 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2670 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2671 * not recorded as it most likely matches current's and won't
2672 * change in the meantime. As high limit is checked again before
2673 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2674 */
2675 do {
4b82ab4f
JK
2676 bool mem_high, swap_high;
2677
2678 mem_high = page_counter_read(&memcg->memory) >
2679 READ_ONCE(memcg->memory.high);
2680 swap_high = page_counter_read(&memcg->swap) >
2681 READ_ONCE(memcg->swap.high);
2682
2683 /* Don't bother a random interrupted task */
2684 if (in_interrupt()) {
2685 if (mem_high) {
f7e1cb6e
JW
2686 schedule_work(&memcg->high_work);
2687 break;
2688 }
4b82ab4f
JK
2689 continue;
2690 }
2691
2692 if (mem_high || swap_high) {
2693 /*
2694 * The allocating tasks in this cgroup will need to do
2695 * reclaim or be throttled to prevent further growth
2696 * of the memory or swap footprints.
2697 *
2698 * Target some best-effort fairness between the tasks,
2699 * and distribute reclaim work and delay penalties
2700 * based on how much each task is actually allocating.
2701 */
9516a18a 2702 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2703 set_notify_resume(current);
2704 break;
2705 }
241994ed 2706 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2707
2708 return 0;
7a81b88c 2709}
8a9f3ccd 2710
c5c8b16b
MS
2711static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2712 unsigned int nr_pages)
2713{
2714 if (mem_cgroup_is_root(memcg))
2715 return 0;
2716
2717 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2718}
2719
58056f77 2720static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2721{
ce00a967
JW
2722 if (mem_cgroup_is_root(memcg))
2723 return;
2724
3e32cb2e 2725 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2726 if (do_memsw_account())
3e32cb2e 2727 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2728}
2729
118f2875 2730static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2731{
118f2875 2732 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2733 /*
a5eb011a 2734 * Any of the following ensures page's memcg stability:
0a31bc97 2735 *
a0b5b414
JW
2736 * - the page lock
2737 * - LRU isolation
2738 * - lock_page_memcg()
2739 * - exclusive reference
0a31bc97 2740 */
118f2875 2741 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2742}
66e1707b 2743
e74d2259
MS
2744static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2745{
2746 struct mem_cgroup *memcg;
2747
2748 rcu_read_lock();
2749retry:
2750 memcg = obj_cgroup_memcg(objcg);
2751 if (unlikely(!css_tryget(&memcg->css)))
2752 goto retry;
2753 rcu_read_unlock();
2754
2755 return memcg;
2756}
2757
84c07d11 2758#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2759/*
2760 * The allocated objcg pointers array is not accounted directly.
2761 * Moreover, it should not come from DMA buffer and is not readily
2762 * reclaimable. So those GFP bits should be masked off.
2763 */
2764#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2765
a7ebf564
WL
2766/*
2767 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2768 * sequence used in this case to access content from object stock is slow.
2769 * To optimize for user context access, there are now two object stocks for
2770 * task context and interrupt context access respectively.
2771 *
2772 * The task context object stock can be accessed by disabling preemption only
2773 * which is cheap in non-preempt kernel. The interrupt context object stock
2774 * can only be accessed after disabling interrupt. User context code can
2775 * access interrupt object stock, but not vice versa.
2776 */
2777static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2778{
2779 struct memcg_stock_pcp *stock;
2780
2781 if (likely(in_task())) {
2782 *pflags = 0UL;
2783 preempt_disable();
2784 stock = this_cpu_ptr(&memcg_stock);
2785 return &stock->task_obj;
2786 }
2787
2788 local_irq_save(*pflags);
2789 stock = this_cpu_ptr(&memcg_stock);
2790 return &stock->irq_obj;
2791}
2792
2793static inline void put_obj_stock(unsigned long flags)
2794{
2795 if (likely(in_task()))
2796 preempt_enable();
2797 else
2798 local_irq_restore(flags);
2799}
2800
2801/*
2802 * mod_objcg_mlstate() may be called with irq enabled, so
2803 * mod_memcg_lruvec_state() should be used.
2804 */
2805static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2806 struct pglist_data *pgdat,
2807 enum node_stat_item idx, int nr)
2808{
2809 struct mem_cgroup *memcg;
2810 struct lruvec *lruvec;
2811
2812 rcu_read_lock();
2813 memcg = obj_cgroup_memcg(objcg);
2814 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2815 mod_memcg_lruvec_state(lruvec, idx, nr);
2816 rcu_read_unlock();
2817}
2818
10befea9 2819int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2820 gfp_t gfp, bool new_page)
10befea9
RG
2821{
2822 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2823 unsigned long memcg_data;
10befea9
RG
2824 void *vec;
2825
41eb5df1 2826 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9
RG
2827 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2828 page_to_nid(page));
2829 if (!vec)
2830 return -ENOMEM;
2831
2e9bd483
RG
2832 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2833 if (new_page) {
2834 /*
2835 * If the slab page is brand new and nobody can yet access
2836 * it's memcg_data, no synchronization is required and
2837 * memcg_data can be simply assigned.
2838 */
2839 page->memcg_data = memcg_data;
2840 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2841 /*
2842 * If the slab page is already in use, somebody can allocate
2843 * and assign obj_cgroups in parallel. In this case the existing
2844 * objcg vector should be reused.
2845 */
10befea9 2846 kfree(vec);
2e9bd483
RG
2847 return 0;
2848 }
10befea9 2849
2e9bd483 2850 kmemleak_not_leak(vec);
10befea9
RG
2851 return 0;
2852}
2853
8380ce47
RG
2854/*
2855 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2856 *
bcfe06bf
RG
2857 * A passed kernel object can be a slab object or a generic kernel page, so
2858 * different mechanisms for getting the memory cgroup pointer should be used.
2859 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2860 * can not know for sure how the kernel object is implemented.
2861 * mem_cgroup_from_obj() can be safely used in such cases.
2862 *
8380ce47
RG
2863 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2864 * cgroup_mutex, etc.
2865 */
2866struct mem_cgroup *mem_cgroup_from_obj(void *p)
2867{
2868 struct page *page;
2869
2870 if (mem_cgroup_disabled())
2871 return NULL;
2872
2873 page = virt_to_head_page(p);
2874
2875 /*
9855609b
RG
2876 * Slab objects are accounted individually, not per-page.
2877 * Memcg membership data for each individual object is saved in
2878 * the page->obj_cgroups.
8380ce47 2879 */
270c6a71 2880 if (page_objcgs_check(page)) {
9855609b
RG
2881 struct obj_cgroup *objcg;
2882 unsigned int off;
2883
2884 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2885 objcg = page_objcgs(page)[off];
10befea9
RG
2886 if (objcg)
2887 return obj_cgroup_memcg(objcg);
2888
2889 return NULL;
9855609b 2890 }
8380ce47 2891
bcfe06bf
RG
2892 /*
2893 * page_memcg_check() is used here, because page_has_obj_cgroups()
2894 * check above could fail because the object cgroups vector wasn't set
2895 * at that moment, but it can be set concurrently.
2896 * page_memcg_check(page) will guarantee that a proper memory
2897 * cgroup pointer or NULL will be returned.
2898 */
2899 return page_memcg_check(page);
8380ce47
RG
2900}
2901
bf4f0599
RG
2902__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2903{
2904 struct obj_cgroup *objcg = NULL;
2905 struct mem_cgroup *memcg;
2906
279c3393
RG
2907 if (memcg_kmem_bypass())
2908 return NULL;
2909
bf4f0599 2910 rcu_read_lock();
37d5985c
RG
2911 if (unlikely(active_memcg()))
2912 memcg = active_memcg();
bf4f0599
RG
2913 else
2914 memcg = mem_cgroup_from_task(current);
2915
2916 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2917 objcg = rcu_dereference(memcg->objcg);
2918 if (objcg && obj_cgroup_tryget(objcg))
2919 break;
2f7659a3 2920 objcg = NULL;
bf4f0599
RG
2921 }
2922 rcu_read_unlock();
2923
2924 return objcg;
2925}
2926
f3bb3043 2927static int memcg_alloc_cache_id(void)
55007d84 2928{
f3bb3043
VD
2929 int id, size;
2930 int err;
2931
dbcf73e2 2932 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2933 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2934 if (id < 0)
2935 return id;
55007d84 2936
dbcf73e2 2937 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2938 return id;
2939
2940 /*
2941 * There's no space for the new id in memcg_caches arrays,
2942 * so we have to grow them.
2943 */
05257a1a 2944 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2945
2946 size = 2 * (id + 1);
55007d84
GC
2947 if (size < MEMCG_CACHES_MIN_SIZE)
2948 size = MEMCG_CACHES_MIN_SIZE;
2949 else if (size > MEMCG_CACHES_MAX_SIZE)
2950 size = MEMCG_CACHES_MAX_SIZE;
2951
9855609b 2952 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2953 if (!err)
2954 memcg_nr_cache_ids = size;
2955
2956 up_write(&memcg_cache_ids_sem);
2957
f3bb3043 2958 if (err) {
dbcf73e2 2959 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2960 return err;
2961 }
2962 return id;
2963}
2964
2965static void memcg_free_cache_id(int id)
2966{
dbcf73e2 2967 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2968}
2969
f1286fae
MS
2970/*
2971 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2972 * @objcg: object cgroup to uncharge
2973 * @nr_pages: number of pages to uncharge
2974 */
e74d2259
MS
2975static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2976 unsigned int nr_pages)
2977{
2978 struct mem_cgroup *memcg;
2979
2980 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 2981
f1286fae
MS
2982 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2983 page_counter_uncharge(&memcg->kmem, nr_pages);
2984 refill_stock(memcg, nr_pages);
e74d2259 2985
e74d2259 2986 css_put(&memcg->css);
e74d2259
MS
2987}
2988
f1286fae
MS
2989/*
2990 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2991 * @objcg: object cgroup to charge
45264778 2992 * @gfp: reclaim mode
92d0510c 2993 * @nr_pages: number of pages to charge
45264778
VD
2994 *
2995 * Returns 0 on success, an error code on failure.
2996 */
f1286fae
MS
2997static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2998 unsigned int nr_pages)
7ae1e1d0 2999{
f1286fae 3000 struct mem_cgroup *memcg;
7ae1e1d0
GC
3001 int ret;
3002
f1286fae
MS
3003 memcg = get_mem_cgroup_from_objcg(objcg);
3004
c5c8b16b 3005 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3006 if (ret)
f1286fae 3007 goto out;
52c29b04 3008
58056f77
SB
3009 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3010 page_counter_charge(&memcg->kmem, nr_pages);
f1286fae
MS
3011out:
3012 css_put(&memcg->css);
4b13f64d 3013
f1286fae 3014 return ret;
4b13f64d
RG
3015}
3016
45264778 3017/**
f4b00eab 3018 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3019 * @page: page to charge
3020 * @gfp: reclaim mode
3021 * @order: allocation order
3022 *
3023 * Returns 0 on success, an error code on failure.
3024 */
f4b00eab 3025int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3026{
b4e0b68f 3027 struct obj_cgroup *objcg;
fcff7d7e 3028 int ret = 0;
7ae1e1d0 3029
b4e0b68f
MS
3030 objcg = get_obj_cgroup_from_current();
3031 if (objcg) {
3032 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3033 if (!ret) {
b4e0b68f 3034 page->memcg_data = (unsigned long)objcg |
18b2db3b 3035 MEMCG_DATA_KMEM;
1a3e1f40 3036 return 0;
4d96ba35 3037 }
b4e0b68f 3038 obj_cgroup_put(objcg);
c4159a75 3039 }
d05e83a6 3040 return ret;
7ae1e1d0 3041}
49a18eae 3042
45264778 3043/**
f4b00eab 3044 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3045 * @page: page to uncharge
3046 * @order: allocation order
3047 */
f4b00eab 3048void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3049{
1b7e4464 3050 struct folio *folio = page_folio(page);
b4e0b68f 3051 struct obj_cgroup *objcg;
f3ccb2c4 3052 unsigned int nr_pages = 1 << order;
7ae1e1d0 3053
1b7e4464 3054 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3055 return;
3056
1b7e4464 3057 objcg = __folio_objcg(folio);
b4e0b68f 3058 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3059 folio->memcg_data = 0;
b4e0b68f 3060 obj_cgroup_put(objcg);
60d3fd32 3061}
bf4f0599 3062
68ac5b3c
WL
3063void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3064 enum node_stat_item idx, int nr)
3065{
68ac5b3c 3066 unsigned long flags;
55927114 3067 struct obj_stock *stock = get_obj_stock(&flags);
68ac5b3c
WL
3068 int *bytes;
3069
68ac5b3c
WL
3070 /*
3071 * Save vmstat data in stock and skip vmstat array update unless
3072 * accumulating over a page of vmstat data or when pgdat or idx
3073 * changes.
3074 */
3075 if (stock->cached_objcg != objcg) {
3076 drain_obj_stock(stock);
3077 obj_cgroup_get(objcg);
3078 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3079 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3080 stock->cached_objcg = objcg;
3081 stock->cached_pgdat = pgdat;
3082 } else if (stock->cached_pgdat != pgdat) {
3083 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3084 struct pglist_data *oldpg = stock->cached_pgdat;
3085
68ac5b3c 3086 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3087 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3088 stock->nr_slab_reclaimable_b);
3089 stock->nr_slab_reclaimable_b = 0;
3090 }
3091 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3092 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3093 stock->nr_slab_unreclaimable_b);
3094 stock->nr_slab_unreclaimable_b = 0;
3095 }
3096 stock->cached_pgdat = pgdat;
3097 }
3098
3099 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3100 : &stock->nr_slab_unreclaimable_b;
3101 /*
3102 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3103 * cached locally at least once before pushing it out.
3104 */
3105 if (!*bytes) {
3106 *bytes = nr;
3107 nr = 0;
3108 } else {
3109 *bytes += nr;
3110 if (abs(*bytes) > PAGE_SIZE) {
3111 nr = *bytes;
3112 *bytes = 0;
3113 } else {
3114 nr = 0;
3115 }
3116 }
3117 if (nr)
3118 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3119
55927114 3120 put_obj_stock(flags);
68ac5b3c
WL
3121}
3122
bf4f0599
RG
3123static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3124{
bf4f0599 3125 unsigned long flags;
55927114 3126 struct obj_stock *stock = get_obj_stock(&flags);
bf4f0599
RG
3127 bool ret = false;
3128
bf4f0599
RG
3129 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3130 stock->nr_bytes -= nr_bytes;
3131 ret = true;
3132 }
3133
55927114 3134 put_obj_stock(flags);
bf4f0599
RG
3135
3136 return ret;
3137}
3138
55927114 3139static void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
3140{
3141 struct obj_cgroup *old = stock->cached_objcg;
3142
3143 if (!old)
3144 return;
3145
3146 if (stock->nr_bytes) {
3147 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3148 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3149
e74d2259
MS
3150 if (nr_pages)
3151 obj_cgroup_uncharge_pages(old, nr_pages);
bf4f0599
RG
3152
3153 /*
3154 * The leftover is flushed to the centralized per-memcg value.
3155 * On the next attempt to refill obj stock it will be moved
3156 * to a per-cpu stock (probably, on an other CPU), see
3157 * refill_obj_stock().
3158 *
3159 * How often it's flushed is a trade-off between the memory
3160 * limit enforcement accuracy and potential CPU contention,
3161 * so it might be changed in the future.
3162 */
3163 atomic_add(nr_bytes, &old->nr_charged_bytes);
3164 stock->nr_bytes = 0;
3165 }
3166
68ac5b3c
WL
3167 /*
3168 * Flush the vmstat data in current stock
3169 */
3170 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3171 if (stock->nr_slab_reclaimable_b) {
3172 mod_objcg_mlstate(old, stock->cached_pgdat,
3173 NR_SLAB_RECLAIMABLE_B,
3174 stock->nr_slab_reclaimable_b);
3175 stock->nr_slab_reclaimable_b = 0;
3176 }
3177 if (stock->nr_slab_unreclaimable_b) {
3178 mod_objcg_mlstate(old, stock->cached_pgdat,
3179 NR_SLAB_UNRECLAIMABLE_B,
3180 stock->nr_slab_unreclaimable_b);
3181 stock->nr_slab_unreclaimable_b = 0;
3182 }
3183 stock->cached_pgdat = NULL;
3184 }
3185
bf4f0599
RG
3186 obj_cgroup_put(old);
3187 stock->cached_objcg = NULL;
3188}
3189
3190static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3191 struct mem_cgroup *root_memcg)
3192{
3193 struct mem_cgroup *memcg;
3194
55927114
WL
3195 if (in_task() && stock->task_obj.cached_objcg) {
3196 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3197 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3198 return true;
3199 }
3200 if (stock->irq_obj.cached_objcg) {
3201 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
bf4f0599
RG
3202 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3203 return true;
3204 }
3205
3206 return false;
3207}
3208
5387c904
WL
3209static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3210 bool allow_uncharge)
bf4f0599 3211{
bf4f0599 3212 unsigned long flags;
55927114 3213 struct obj_stock *stock = get_obj_stock(&flags);
5387c904 3214 unsigned int nr_pages = 0;
bf4f0599 3215
bf4f0599
RG
3216 if (stock->cached_objcg != objcg) { /* reset if necessary */
3217 drain_obj_stock(stock);
3218 obj_cgroup_get(objcg);
3219 stock->cached_objcg = objcg;
5387c904
WL
3220 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3221 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3222 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3223 }
3224 stock->nr_bytes += nr_bytes;
3225
5387c904
WL
3226 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3227 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3228 stock->nr_bytes &= (PAGE_SIZE - 1);
3229 }
bf4f0599 3230
55927114 3231 put_obj_stock(flags);
5387c904
WL
3232
3233 if (nr_pages)
3234 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3235}
3236
3237int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3238{
bf4f0599
RG
3239 unsigned int nr_pages, nr_bytes;
3240 int ret;
3241
3242 if (consume_obj_stock(objcg, size))
3243 return 0;
3244
3245 /*
5387c904 3246 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3247 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3248 * flushing objcg->nr_charged_bytes requires two atomic
3249 * operations, and objcg->nr_charged_bytes can't be big.
3250 * The shared objcg->nr_charged_bytes can also become a
3251 * performance bottleneck if all tasks of the same memcg are
3252 * trying to update it. So it's better to ignore it and try
3253 * grab some new pages. The stock's nr_bytes will be flushed to
3254 * objcg->nr_charged_bytes later on when objcg changes.
3255 *
3256 * The stock's nr_bytes may contain enough pre-charged bytes
3257 * to allow one less page from being charged, but we can't rely
3258 * on the pre-charged bytes not being changed outside of
3259 * consume_obj_stock() or refill_obj_stock(). So ignore those
3260 * pre-charged bytes as well when charging pages. To avoid a
3261 * page uncharge right after a page charge, we set the
3262 * allow_uncharge flag to false when calling refill_obj_stock()
3263 * to temporarily allow the pre-charged bytes to exceed the page
3264 * size limit. The maximum reachable value of the pre-charged
3265 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3266 * race.
bf4f0599 3267 */
bf4f0599
RG
3268 nr_pages = size >> PAGE_SHIFT;
3269 nr_bytes = size & (PAGE_SIZE - 1);
3270
3271 if (nr_bytes)
3272 nr_pages += 1;
3273
e74d2259 3274 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3275 if (!ret && nr_bytes)
5387c904 3276 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3277
bf4f0599
RG
3278 return ret;
3279}
3280
3281void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3282{
5387c904 3283 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3284}
3285
84c07d11 3286#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3287
ca3e0214 3288/*
be6c8982 3289 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3290 */
be6c8982 3291void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3292{
1b7e4464
MWO
3293 struct folio *folio = page_folio(head);
3294 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3295 int i;
ca3e0214 3296
be6c8982 3297 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3298 return;
b070e65c 3299
be6c8982 3300 for (i = 1; i < nr; i++)
1b7e4464 3301 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3302
1b7e4464
MWO
3303 if (folio_memcg_kmem(folio))
3304 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3305 else
3306 css_get_many(&memcg->css, nr - 1);
ca3e0214 3307}
ca3e0214 3308
c255a458 3309#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3310/**
3311 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3312 * @entry: swap entry to be moved
3313 * @from: mem_cgroup which the entry is moved from
3314 * @to: mem_cgroup which the entry is moved to
3315 *
3316 * It succeeds only when the swap_cgroup's record for this entry is the same
3317 * as the mem_cgroup's id of @from.
3318 *
3319 * Returns 0 on success, -EINVAL on failure.
3320 *
3e32cb2e 3321 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3322 * both res and memsw, and called css_get().
3323 */
3324static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3325 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3326{
3327 unsigned short old_id, new_id;
3328
34c00c31
LZ
3329 old_id = mem_cgroup_id(from);
3330 new_id = mem_cgroup_id(to);
02491447
DN
3331
3332 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3333 mod_memcg_state(from, MEMCG_SWAP, -1);
3334 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3335 return 0;
3336 }
3337 return -EINVAL;
3338}
3339#else
3340static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3341 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3342{
3343 return -EINVAL;
3344}
8c7c6e34 3345#endif
d13d1443 3346
bbec2e15 3347static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3348
bbec2e15
RG
3349static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3350 unsigned long max, bool memsw)
628f4235 3351{
3e32cb2e 3352 bool enlarge = false;
bb4a7ea2 3353 bool drained = false;
3e32cb2e 3354 int ret;
c054a78c
YZ
3355 bool limits_invariant;
3356 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3357
3e32cb2e 3358 do {
628f4235
KH
3359 if (signal_pending(current)) {
3360 ret = -EINTR;
3361 break;
3362 }
3e32cb2e 3363
bbec2e15 3364 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3365 /*
3366 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3367 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3368 */
15b42562 3369 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3370 max <= memcg->memsw.max;
c054a78c 3371 if (!limits_invariant) {
bbec2e15 3372 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3373 ret = -EINVAL;
8c7c6e34
KH
3374 break;
3375 }
bbec2e15 3376 if (max > counter->max)
3e32cb2e 3377 enlarge = true;
bbec2e15
RG
3378 ret = page_counter_set_max(counter, max);
3379 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3380
3381 if (!ret)
3382 break;
3383
bb4a7ea2
SB
3384 if (!drained) {
3385 drain_all_stock(memcg);
3386 drained = true;
3387 continue;
3388 }
3389
1ab5c056
AR
3390 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3391 GFP_KERNEL, !memsw)) {
3392 ret = -EBUSY;
3393 break;
3394 }
3395 } while (true);
3e32cb2e 3396
3c11ecf4
KH
3397 if (!ret && enlarge)
3398 memcg_oom_recover(memcg);
3e32cb2e 3399
628f4235
KH
3400 return ret;
3401}
3402
ef8f2327 3403unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3404 gfp_t gfp_mask,
3405 unsigned long *total_scanned)
3406{
3407 unsigned long nr_reclaimed = 0;
ef8f2327 3408 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3409 unsigned long reclaimed;
3410 int loop = 0;
ef8f2327 3411 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3412 unsigned long excess;
0608f43d
AM
3413 unsigned long nr_scanned;
3414
3415 if (order > 0)
3416 return 0;
3417
2ab082ba 3418 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3419
3420 /*
3421 * Do not even bother to check the largest node if the root
3422 * is empty. Do it lockless to prevent lock bouncing. Races
3423 * are acceptable as soft limit is best effort anyway.
3424 */
bfc7228b 3425 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3426 return 0;
3427
0608f43d
AM
3428 /*
3429 * This loop can run a while, specially if mem_cgroup's continuously
3430 * keep exceeding their soft limit and putting the system under
3431 * pressure
3432 */
3433 do {
3434 if (next_mz)
3435 mz = next_mz;
3436 else
3437 mz = mem_cgroup_largest_soft_limit_node(mctz);
3438 if (!mz)
3439 break;
3440
3441 nr_scanned = 0;
ef8f2327 3442 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3443 gfp_mask, &nr_scanned);
3444 nr_reclaimed += reclaimed;
3445 *total_scanned += nr_scanned;
0a31bc97 3446 spin_lock_irq(&mctz->lock);
bc2f2e7f 3447 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3448
3449 /*
3450 * If we failed to reclaim anything from this memory cgroup
3451 * it is time to move on to the next cgroup
3452 */
3453 next_mz = NULL;
bc2f2e7f
VD
3454 if (!reclaimed)
3455 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3456
3e32cb2e 3457 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3458 /*
3459 * One school of thought says that we should not add
3460 * back the node to the tree if reclaim returns 0.
3461 * But our reclaim could return 0, simply because due
3462 * to priority we are exposing a smaller subset of
3463 * memory to reclaim from. Consider this as a longer
3464 * term TODO.
3465 */
3466 /* If excess == 0, no tree ops */
cf2c8127 3467 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3468 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3469 css_put(&mz->memcg->css);
3470 loop++;
3471 /*
3472 * Could not reclaim anything and there are no more
3473 * mem cgroups to try or we seem to be looping without
3474 * reclaiming anything.
3475 */
3476 if (!nr_reclaimed &&
3477 (next_mz == NULL ||
3478 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3479 break;
3480 } while (!nr_reclaimed);
3481 if (next_mz)
3482 css_put(&next_mz->memcg->css);
3483 return nr_reclaimed;
3484}
3485
c26251f9 3486/*
51038171 3487 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3488 *
3489 * Caller is responsible for holding css reference for memcg.
3490 */
3491static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3492{
d977aa93 3493 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3494
c1e862c1
KH
3495 /* we call try-to-free pages for make this cgroup empty */
3496 lru_add_drain_all();
d12c60f6
JS
3497
3498 drain_all_stock(memcg);
3499
f817ed48 3500 /* try to free all pages in this cgroup */
3e32cb2e 3501 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3502 if (signal_pending(current))
3503 return -EINTR;
3504
69392a40 3505 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
f817ed48 3506 nr_retries--;
f817ed48 3507 }
ab5196c2
MH
3508
3509 return 0;
cc847582
KH
3510}
3511
6770c64e
TH
3512static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3513 char *buf, size_t nbytes,
3514 loff_t off)
c1e862c1 3515{
6770c64e 3516 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3517
d8423011
MH
3518 if (mem_cgroup_is_root(memcg))
3519 return -EINVAL;
6770c64e 3520 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3521}
3522
182446d0
TH
3523static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3524 struct cftype *cft)
18f59ea7 3525{
bef8620c 3526 return 1;
18f59ea7
BS
3527}
3528
182446d0
TH
3529static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3530 struct cftype *cft, u64 val)
18f59ea7 3531{
bef8620c 3532 if (val == 1)
0b8f73e1 3533 return 0;
567fb435 3534
bef8620c
RG
3535 pr_warn_once("Non-hierarchical mode is deprecated. "
3536 "Please report your usecase to linux-mm@kvack.org if you "
3537 "depend on this functionality.\n");
567fb435 3538
bef8620c 3539 return -EINVAL;
18f59ea7
BS
3540}
3541
6f646156 3542static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3543{
42a30035 3544 unsigned long val;
ce00a967 3545
3e32cb2e 3546 if (mem_cgroup_is_root(memcg)) {
fd25a9e0 3547 mem_cgroup_flush_stats();
0d1c2072 3548 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3549 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3550 if (swap)
3551 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3552 } else {
ce00a967 3553 if (!swap)
3e32cb2e 3554 val = page_counter_read(&memcg->memory);
ce00a967 3555 else
3e32cb2e 3556 val = page_counter_read(&memcg->memsw);
ce00a967 3557 }
c12176d3 3558 return val;
ce00a967
JW
3559}
3560
3e32cb2e
JW
3561enum {
3562 RES_USAGE,
3563 RES_LIMIT,
3564 RES_MAX_USAGE,
3565 RES_FAILCNT,
3566 RES_SOFT_LIMIT,
3567};
ce00a967 3568
791badbd 3569static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3570 struct cftype *cft)
8cdea7c0 3571{
182446d0 3572 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3573 struct page_counter *counter;
af36f906 3574
3e32cb2e 3575 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3576 case _MEM:
3e32cb2e
JW
3577 counter = &memcg->memory;
3578 break;
8c7c6e34 3579 case _MEMSWAP:
3e32cb2e
JW
3580 counter = &memcg->memsw;
3581 break;
510fc4e1 3582 case _KMEM:
3e32cb2e 3583 counter = &memcg->kmem;
510fc4e1 3584 break;
d55f90bf 3585 case _TCP:
0db15298 3586 counter = &memcg->tcpmem;
d55f90bf 3587 break;
8c7c6e34
KH
3588 default:
3589 BUG();
8c7c6e34 3590 }
3e32cb2e
JW
3591
3592 switch (MEMFILE_ATTR(cft->private)) {
3593 case RES_USAGE:
3594 if (counter == &memcg->memory)
c12176d3 3595 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3596 if (counter == &memcg->memsw)
c12176d3 3597 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3598 return (u64)page_counter_read(counter) * PAGE_SIZE;
3599 case RES_LIMIT:
bbec2e15 3600 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3601 case RES_MAX_USAGE:
3602 return (u64)counter->watermark * PAGE_SIZE;
3603 case RES_FAILCNT:
3604 return counter->failcnt;
3605 case RES_SOFT_LIMIT:
3606 return (u64)memcg->soft_limit * PAGE_SIZE;
3607 default:
3608 BUG();
3609 }
8cdea7c0 3610}
510fc4e1 3611
84c07d11 3612#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3613static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3614{
bf4f0599 3615 struct obj_cgroup *objcg;
d6441637
VD
3616 int memcg_id;
3617
b313aeee
VD
3618 if (cgroup_memory_nokmem)
3619 return 0;
3620
2a4db7eb 3621 BUG_ON(memcg->kmemcg_id >= 0);
d6441637 3622
f3bb3043 3623 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3624 if (memcg_id < 0)
3625 return memcg_id;
d6441637 3626
bf4f0599
RG
3627 objcg = obj_cgroup_alloc();
3628 if (!objcg) {
3629 memcg_free_cache_id(memcg_id);
3630 return -ENOMEM;
3631 }
3632 objcg->memcg = memcg;
3633 rcu_assign_pointer(memcg->objcg, objcg);
3634
d648bcc7
RG
3635 static_branch_enable(&memcg_kmem_enabled_key);
3636
900a38f0 3637 memcg->kmemcg_id = memcg_id;
0b8f73e1
JW
3638
3639 return 0;
d6441637
VD
3640}
3641
8e0a8912
JW
3642static void memcg_offline_kmem(struct mem_cgroup *memcg)
3643{
64268868 3644 struct mem_cgroup *parent;
8e0a8912
JW
3645 int kmemcg_id;
3646
e80216d9 3647 if (memcg->kmemcg_id == -1)
8e0a8912 3648 return;
9855609b 3649
8e0a8912
JW
3650 parent = parent_mem_cgroup(memcg);
3651 if (!parent)
3652 parent = root_mem_cgroup;
3653
bf4f0599 3654 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3655
3656 kmemcg_id = memcg->kmemcg_id;
3657 BUG_ON(kmemcg_id < 0);
3658
8e0a8912 3659 /*
64268868
MS
3660 * After we have finished memcg_reparent_objcgs(), all list_lrus
3661 * corresponding to this cgroup are guaranteed to remain empty.
3662 * The ordering is imposed by list_lru_node->lock taken by
8e0a8912
JW
3663 * memcg_drain_all_list_lrus().
3664 */
9bec5c35 3665 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3666
3667 memcg_free_cache_id(kmemcg_id);
e80216d9 3668 memcg->kmemcg_id = -1;
8e0a8912 3669}
d6441637 3670#else
0b8f73e1 3671static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3672{
3673 return 0;
3674}
3675static void memcg_offline_kmem(struct mem_cgroup *memcg)
3676{
3677}
84c07d11 3678#endif /* CONFIG_MEMCG_KMEM */
127424c8 3679
bbec2e15 3680static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3681{
3682 int ret;
3683
bbec2e15 3684 mutex_lock(&memcg_max_mutex);
d55f90bf 3685
bbec2e15 3686 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3687 if (ret)
3688 goto out;
3689
0db15298 3690 if (!memcg->tcpmem_active) {
d55f90bf
VD
3691 /*
3692 * The active flag needs to be written after the static_key
3693 * update. This is what guarantees that the socket activation
2d758073
JW
3694 * function is the last one to run. See mem_cgroup_sk_alloc()
3695 * for details, and note that we don't mark any socket as
3696 * belonging to this memcg until that flag is up.
d55f90bf
VD
3697 *
3698 * We need to do this, because static_keys will span multiple
3699 * sites, but we can't control their order. If we mark a socket
3700 * as accounted, but the accounting functions are not patched in
3701 * yet, we'll lose accounting.
3702 *
2d758073 3703 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3704 * because when this value change, the code to process it is not
3705 * patched in yet.
3706 */
3707 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3708 memcg->tcpmem_active = true;
d55f90bf
VD
3709 }
3710out:
bbec2e15 3711 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3712 return ret;
3713}
d55f90bf 3714
628f4235
KH
3715/*
3716 * The user of this function is...
3717 * RES_LIMIT.
3718 */
451af504
TH
3719static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3720 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3721{
451af504 3722 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3723 unsigned long nr_pages;
628f4235
KH
3724 int ret;
3725
451af504 3726 buf = strstrip(buf);
650c5e56 3727 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3728 if (ret)
3729 return ret;
af36f906 3730
3e32cb2e 3731 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3732 case RES_LIMIT:
4b3bde4c
BS
3733 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3734 ret = -EINVAL;
3735 break;
3736 }
3e32cb2e
JW
3737 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3738 case _MEM:
bbec2e15 3739 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3740 break;
3e32cb2e 3741 case _MEMSWAP:
bbec2e15 3742 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3743 break;
3e32cb2e 3744 case _KMEM:
58056f77
SB
3745 /* kmem.limit_in_bytes is deprecated. */
3746 ret = -EOPNOTSUPP;
3e32cb2e 3747 break;
d55f90bf 3748 case _TCP:
bbec2e15 3749 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3750 break;
3e32cb2e 3751 }
296c81d8 3752 break;
3e32cb2e
JW
3753 case RES_SOFT_LIMIT:
3754 memcg->soft_limit = nr_pages;
3755 ret = 0;
628f4235
KH
3756 break;
3757 }
451af504 3758 return ret ?: nbytes;
8cdea7c0
BS
3759}
3760
6770c64e
TH
3761static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3762 size_t nbytes, loff_t off)
c84872e1 3763{
6770c64e 3764 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3765 struct page_counter *counter;
c84872e1 3766
3e32cb2e
JW
3767 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3768 case _MEM:
3769 counter = &memcg->memory;
3770 break;
3771 case _MEMSWAP:
3772 counter = &memcg->memsw;
3773 break;
3774 case _KMEM:
3775 counter = &memcg->kmem;
3776 break;
d55f90bf 3777 case _TCP:
0db15298 3778 counter = &memcg->tcpmem;
d55f90bf 3779 break;
3e32cb2e
JW
3780 default:
3781 BUG();
3782 }
af36f906 3783
3e32cb2e 3784 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3785 case RES_MAX_USAGE:
3e32cb2e 3786 page_counter_reset_watermark(counter);
29f2a4da
PE
3787 break;
3788 case RES_FAILCNT:
3e32cb2e 3789 counter->failcnt = 0;
29f2a4da 3790 break;
3e32cb2e
JW
3791 default:
3792 BUG();
29f2a4da 3793 }
f64c3f54 3794
6770c64e 3795 return nbytes;
c84872e1
PE
3796}
3797
182446d0 3798static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3799 struct cftype *cft)
3800{
182446d0 3801 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3802}
3803
02491447 3804#ifdef CONFIG_MMU
182446d0 3805static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3806 struct cftype *cft, u64 val)
3807{
182446d0 3808 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3809
1dfab5ab 3810 if (val & ~MOVE_MASK)
7dc74be0 3811 return -EINVAL;
ee5e8472 3812
7dc74be0 3813 /*
ee5e8472
GC
3814 * No kind of locking is needed in here, because ->can_attach() will
3815 * check this value once in the beginning of the process, and then carry
3816 * on with stale data. This means that changes to this value will only
3817 * affect task migrations starting after the change.
7dc74be0 3818 */
c0ff4b85 3819 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3820 return 0;
3821}
02491447 3822#else
182446d0 3823static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3824 struct cftype *cft, u64 val)
3825{
3826 return -ENOSYS;
3827}
3828#endif
7dc74be0 3829
406eb0c9 3830#ifdef CONFIG_NUMA
113b7dfd
JW
3831
3832#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3833#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3834#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3835
3836static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3837 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3838{
867e5e1d 3839 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3840 unsigned long nr = 0;
3841 enum lru_list lru;
3842
3843 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3844
3845 for_each_lru(lru) {
3846 if (!(BIT(lru) & lru_mask))
3847 continue;
dd8657b6
SB
3848 if (tree)
3849 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3850 else
3851 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3852 }
3853 return nr;
3854}
3855
3856static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3857 unsigned int lru_mask,
3858 bool tree)
113b7dfd
JW
3859{
3860 unsigned long nr = 0;
3861 enum lru_list lru;
3862
3863 for_each_lru(lru) {
3864 if (!(BIT(lru) & lru_mask))
3865 continue;
dd8657b6
SB
3866 if (tree)
3867 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3868 else
3869 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3870 }
3871 return nr;
3872}
3873
2da8ca82 3874static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3875{
25485de6
GT
3876 struct numa_stat {
3877 const char *name;
3878 unsigned int lru_mask;
3879 };
3880
3881 static const struct numa_stat stats[] = {
3882 { "total", LRU_ALL },
3883 { "file", LRU_ALL_FILE },
3884 { "anon", LRU_ALL_ANON },
3885 { "unevictable", BIT(LRU_UNEVICTABLE) },
3886 };
3887 const struct numa_stat *stat;
406eb0c9 3888 int nid;
aa9694bb 3889 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3890
fd25a9e0 3891 mem_cgroup_flush_stats();
2d146aa3 3892
25485de6 3893 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3894 seq_printf(m, "%s=%lu", stat->name,
3895 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3896 false));
3897 for_each_node_state(nid, N_MEMORY)
3898 seq_printf(m, " N%d=%lu", nid,
3899 mem_cgroup_node_nr_lru_pages(memcg, nid,
3900 stat->lru_mask, false));
25485de6 3901 seq_putc(m, '\n');
406eb0c9 3902 }
406eb0c9 3903
071aee13 3904 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3905
3906 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3907 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3908 true));
3909 for_each_node_state(nid, N_MEMORY)
3910 seq_printf(m, " N%d=%lu", nid,
3911 mem_cgroup_node_nr_lru_pages(memcg, nid,
3912 stat->lru_mask, true));
071aee13 3913 seq_putc(m, '\n');
406eb0c9 3914 }
406eb0c9 3915
406eb0c9
YH
3916 return 0;
3917}
3918#endif /* CONFIG_NUMA */
3919
c8713d0b 3920static const unsigned int memcg1_stats[] = {
0d1c2072 3921 NR_FILE_PAGES,
be5d0a74 3922 NR_ANON_MAPPED,
468c3982
JW
3923#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3924 NR_ANON_THPS,
3925#endif
c8713d0b
JW
3926 NR_SHMEM,
3927 NR_FILE_MAPPED,
3928 NR_FILE_DIRTY,
3929 NR_WRITEBACK,
3930 MEMCG_SWAP,
3931};
3932
3933static const char *const memcg1_stat_names[] = {
3934 "cache",
3935 "rss",
468c3982 3936#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3937 "rss_huge",
468c3982 3938#endif
c8713d0b
JW
3939 "shmem",
3940 "mapped_file",
3941 "dirty",
3942 "writeback",
3943 "swap",
3944};
3945
df0e53d0 3946/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3947static const unsigned int memcg1_events[] = {
df0e53d0
JW
3948 PGPGIN,
3949 PGPGOUT,
3950 PGFAULT,
3951 PGMAJFAULT,
3952};
3953
2da8ca82 3954static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3955{
aa9694bb 3956 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3957 unsigned long memory, memsw;
af7c4b0e
JW
3958 struct mem_cgroup *mi;
3959 unsigned int i;
406eb0c9 3960
71cd3113 3961 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3962
fd25a9e0 3963 mem_cgroup_flush_stats();
2d146aa3 3964
71cd3113 3965 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
3966 unsigned long nr;
3967
71cd3113 3968 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3969 continue;
468c3982 3970 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 3971 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 3972 }
7b854121 3973
df0e53d0 3974 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3975 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3976 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3977
3978 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3979 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3980 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3981 PAGE_SIZE);
af7c4b0e 3982
14067bb3 3983 /* Hierarchical information */
3e32cb2e
JW
3984 memory = memsw = PAGE_COUNTER_MAX;
3985 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3986 memory = min(memory, READ_ONCE(mi->memory.max));
3987 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 3988 }
3e32cb2e
JW
3989 seq_printf(m, "hierarchical_memory_limit %llu\n",
3990 (u64)memory * PAGE_SIZE);
7941d214 3991 if (do_memsw_account())
3e32cb2e
JW
3992 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3993 (u64)memsw * PAGE_SIZE);
7f016ee8 3994
8de7ecc6 3995 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 3996 unsigned long nr;
3997
71cd3113 3998 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3999 continue;
7de2e9f1 4000 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4001 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4002 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4003 }
4004
8de7ecc6 4005 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4006 seq_printf(m, "total_%s %llu\n",
4007 vm_event_name(memcg1_events[i]),
dd923990 4008 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4009
8de7ecc6 4010 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4011 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4012 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4013 PAGE_SIZE);
14067bb3 4014
7f016ee8 4015#ifdef CONFIG_DEBUG_VM
7f016ee8 4016 {
ef8f2327
MG
4017 pg_data_t *pgdat;
4018 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4019 unsigned long anon_cost = 0;
4020 unsigned long file_cost = 0;
7f016ee8 4021
ef8f2327 4022 for_each_online_pgdat(pgdat) {
a3747b53 4023 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4024
1431d4d1
JW
4025 anon_cost += mz->lruvec.anon_cost;
4026 file_cost += mz->lruvec.file_cost;
ef8f2327 4027 }
1431d4d1
JW
4028 seq_printf(m, "anon_cost %lu\n", anon_cost);
4029 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4030 }
4031#endif
4032
d2ceb9b7
KH
4033 return 0;
4034}
4035
182446d0
TH
4036static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4037 struct cftype *cft)
a7885eb8 4038{
182446d0 4039 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4040
1f4c025b 4041 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4042}
4043
182446d0
TH
4044static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4045 struct cftype *cft, u64 val)
a7885eb8 4046{
182446d0 4047 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4048
37bc3cb9 4049 if (val > 200)
a7885eb8
KM
4050 return -EINVAL;
4051
a4792030 4052 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4053 memcg->swappiness = val;
4054 else
4055 vm_swappiness = val;
068b38c1 4056
a7885eb8
KM
4057 return 0;
4058}
4059
2e72b634
KS
4060static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4061{
4062 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4063 unsigned long usage;
2e72b634
KS
4064 int i;
4065
4066 rcu_read_lock();
4067 if (!swap)
2c488db2 4068 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4069 else
2c488db2 4070 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4071
4072 if (!t)
4073 goto unlock;
4074
ce00a967 4075 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4076
4077 /*
748dad36 4078 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4079 * If it's not true, a threshold was crossed after last
4080 * call of __mem_cgroup_threshold().
4081 */
5407a562 4082 i = t->current_threshold;
2e72b634
KS
4083
4084 /*
4085 * Iterate backward over array of thresholds starting from
4086 * current_threshold and check if a threshold is crossed.
4087 * If none of thresholds below usage is crossed, we read
4088 * only one element of the array here.
4089 */
4090 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4091 eventfd_signal(t->entries[i].eventfd, 1);
4092
4093 /* i = current_threshold + 1 */
4094 i++;
4095
4096 /*
4097 * Iterate forward over array of thresholds starting from
4098 * current_threshold+1 and check if a threshold is crossed.
4099 * If none of thresholds above usage is crossed, we read
4100 * only one element of the array here.
4101 */
4102 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4103 eventfd_signal(t->entries[i].eventfd, 1);
4104
4105 /* Update current_threshold */
5407a562 4106 t->current_threshold = i - 1;
2e72b634
KS
4107unlock:
4108 rcu_read_unlock();
4109}
4110
4111static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4112{
ad4ca5f4
KS
4113 while (memcg) {
4114 __mem_cgroup_threshold(memcg, false);
7941d214 4115 if (do_memsw_account())
ad4ca5f4
KS
4116 __mem_cgroup_threshold(memcg, true);
4117
4118 memcg = parent_mem_cgroup(memcg);
4119 }
2e72b634
KS
4120}
4121
4122static int compare_thresholds(const void *a, const void *b)
4123{
4124 const struct mem_cgroup_threshold *_a = a;
4125 const struct mem_cgroup_threshold *_b = b;
4126
2bff24a3
GT
4127 if (_a->threshold > _b->threshold)
4128 return 1;
4129
4130 if (_a->threshold < _b->threshold)
4131 return -1;
4132
4133 return 0;
2e72b634
KS
4134}
4135
c0ff4b85 4136static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4137{
4138 struct mem_cgroup_eventfd_list *ev;
4139
2bcf2e92
MH
4140 spin_lock(&memcg_oom_lock);
4141
c0ff4b85 4142 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4143 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4144
4145 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4146 return 0;
4147}
4148
c0ff4b85 4149static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4150{
7d74b06f
KH
4151 struct mem_cgroup *iter;
4152
c0ff4b85 4153 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4154 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4155}
4156
59b6f873 4157static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4158 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4159{
2c488db2
KS
4160 struct mem_cgroup_thresholds *thresholds;
4161 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4162 unsigned long threshold;
4163 unsigned long usage;
2c488db2 4164 int i, size, ret;
2e72b634 4165
650c5e56 4166 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4167 if (ret)
4168 return ret;
4169
4170 mutex_lock(&memcg->thresholds_lock);
2c488db2 4171
05b84301 4172 if (type == _MEM) {
2c488db2 4173 thresholds = &memcg->thresholds;
ce00a967 4174 usage = mem_cgroup_usage(memcg, false);
05b84301 4175 } else if (type == _MEMSWAP) {
2c488db2 4176 thresholds = &memcg->memsw_thresholds;
ce00a967 4177 usage = mem_cgroup_usage(memcg, true);
05b84301 4178 } else
2e72b634
KS
4179 BUG();
4180
2e72b634 4181 /* Check if a threshold crossed before adding a new one */
2c488db2 4182 if (thresholds->primary)
2e72b634
KS
4183 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4184
2c488db2 4185 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4186
4187 /* Allocate memory for new array of thresholds */
67b8046f 4188 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4189 if (!new) {
2e72b634
KS
4190 ret = -ENOMEM;
4191 goto unlock;
4192 }
2c488db2 4193 new->size = size;
2e72b634
KS
4194
4195 /* Copy thresholds (if any) to new array */
e90342e6
GS
4196 if (thresholds->primary)
4197 memcpy(new->entries, thresholds->primary->entries,
4198 flex_array_size(new, entries, size - 1));
2c488db2 4199
2e72b634 4200 /* Add new threshold */
2c488db2
KS
4201 new->entries[size - 1].eventfd = eventfd;
4202 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4203
4204 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4205 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4206 compare_thresholds, NULL);
4207
4208 /* Find current threshold */
2c488db2 4209 new->current_threshold = -1;
2e72b634 4210 for (i = 0; i < size; i++) {
748dad36 4211 if (new->entries[i].threshold <= usage) {
2e72b634 4212 /*
2c488db2
KS
4213 * new->current_threshold will not be used until
4214 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4215 * it here.
4216 */
2c488db2 4217 ++new->current_threshold;
748dad36
SZ
4218 } else
4219 break;
2e72b634
KS
4220 }
4221
2c488db2
KS
4222 /* Free old spare buffer and save old primary buffer as spare */
4223 kfree(thresholds->spare);
4224 thresholds->spare = thresholds->primary;
4225
4226 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4227
907860ed 4228 /* To be sure that nobody uses thresholds */
2e72b634
KS
4229 synchronize_rcu();
4230
2e72b634
KS
4231unlock:
4232 mutex_unlock(&memcg->thresholds_lock);
4233
4234 return ret;
4235}
4236
59b6f873 4237static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4238 struct eventfd_ctx *eventfd, const char *args)
4239{
59b6f873 4240 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4241}
4242
59b6f873 4243static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4244 struct eventfd_ctx *eventfd, const char *args)
4245{
59b6f873 4246 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4247}
4248
59b6f873 4249static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4250 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4251{
2c488db2
KS
4252 struct mem_cgroup_thresholds *thresholds;
4253 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4254 unsigned long usage;
7d36665a 4255 int i, j, size, entries;
2e72b634
KS
4256
4257 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4258
4259 if (type == _MEM) {
2c488db2 4260 thresholds = &memcg->thresholds;
ce00a967 4261 usage = mem_cgroup_usage(memcg, false);
05b84301 4262 } else if (type == _MEMSWAP) {
2c488db2 4263 thresholds = &memcg->memsw_thresholds;
ce00a967 4264 usage = mem_cgroup_usage(memcg, true);
05b84301 4265 } else
2e72b634
KS
4266 BUG();
4267
371528ca
AV
4268 if (!thresholds->primary)
4269 goto unlock;
4270
2e72b634
KS
4271 /* Check if a threshold crossed before removing */
4272 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4273
4274 /* Calculate new number of threshold */
7d36665a 4275 size = entries = 0;
2c488db2
KS
4276 for (i = 0; i < thresholds->primary->size; i++) {
4277 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4278 size++;
7d36665a
CX
4279 else
4280 entries++;
2e72b634
KS
4281 }
4282
2c488db2 4283 new = thresholds->spare;
907860ed 4284
7d36665a
CX
4285 /* If no items related to eventfd have been cleared, nothing to do */
4286 if (!entries)
4287 goto unlock;
4288
2e72b634
KS
4289 /* Set thresholds array to NULL if we don't have thresholds */
4290 if (!size) {
2c488db2
KS
4291 kfree(new);
4292 new = NULL;
907860ed 4293 goto swap_buffers;
2e72b634
KS
4294 }
4295
2c488db2 4296 new->size = size;
2e72b634
KS
4297
4298 /* Copy thresholds and find current threshold */
2c488db2
KS
4299 new->current_threshold = -1;
4300 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4301 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4302 continue;
4303
2c488db2 4304 new->entries[j] = thresholds->primary->entries[i];
748dad36 4305 if (new->entries[j].threshold <= usage) {
2e72b634 4306 /*
2c488db2 4307 * new->current_threshold will not be used
2e72b634
KS
4308 * until rcu_assign_pointer(), so it's safe to increment
4309 * it here.
4310 */
2c488db2 4311 ++new->current_threshold;
2e72b634
KS
4312 }
4313 j++;
4314 }
4315
907860ed 4316swap_buffers:
2c488db2
KS
4317 /* Swap primary and spare array */
4318 thresholds->spare = thresholds->primary;
8c757763 4319
2c488db2 4320 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4321
907860ed 4322 /* To be sure that nobody uses thresholds */
2e72b634 4323 synchronize_rcu();
6611d8d7
MC
4324
4325 /* If all events are unregistered, free the spare array */
4326 if (!new) {
4327 kfree(thresholds->spare);
4328 thresholds->spare = NULL;
4329 }
371528ca 4330unlock:
2e72b634 4331 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4332}
c1e862c1 4333
59b6f873 4334static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4335 struct eventfd_ctx *eventfd)
4336{
59b6f873 4337 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4338}
4339
59b6f873 4340static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4341 struct eventfd_ctx *eventfd)
4342{
59b6f873 4343 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4344}
4345
59b6f873 4346static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4347 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4348{
9490ff27 4349 struct mem_cgroup_eventfd_list *event;
9490ff27 4350
9490ff27
KH
4351 event = kmalloc(sizeof(*event), GFP_KERNEL);
4352 if (!event)
4353 return -ENOMEM;
4354
1af8efe9 4355 spin_lock(&memcg_oom_lock);
9490ff27
KH
4356
4357 event->eventfd = eventfd;
4358 list_add(&event->list, &memcg->oom_notify);
4359
4360 /* already in OOM ? */
c2b42d3c 4361 if (memcg->under_oom)
9490ff27 4362 eventfd_signal(eventfd, 1);
1af8efe9 4363 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4364
4365 return 0;
4366}
4367
59b6f873 4368static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4369 struct eventfd_ctx *eventfd)
9490ff27 4370{
9490ff27 4371 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4372
1af8efe9 4373 spin_lock(&memcg_oom_lock);
9490ff27 4374
c0ff4b85 4375 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4376 if (ev->eventfd == eventfd) {
4377 list_del(&ev->list);
4378 kfree(ev);
4379 }
4380 }
4381
1af8efe9 4382 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4383}
4384
2da8ca82 4385static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4386{
aa9694bb 4387 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4388
791badbd 4389 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4390 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4391 seq_printf(sf, "oom_kill %lu\n",
4392 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4393 return 0;
4394}
4395
182446d0 4396static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4397 struct cftype *cft, u64 val)
4398{
182446d0 4399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4400
4401 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4402 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4403 return -EINVAL;
4404
c0ff4b85 4405 memcg->oom_kill_disable = val;
4d845ebf 4406 if (!val)
c0ff4b85 4407 memcg_oom_recover(memcg);
3dae7fec 4408
3c11ecf4
KH
4409 return 0;
4410}
4411
52ebea74
TH
4412#ifdef CONFIG_CGROUP_WRITEBACK
4413
3a8e9ac8
TH
4414#include <trace/events/writeback.h>
4415
841710aa
TH
4416static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4417{
4418 return wb_domain_init(&memcg->cgwb_domain, gfp);
4419}
4420
4421static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4422{
4423 wb_domain_exit(&memcg->cgwb_domain);
4424}
4425
2529bb3a
TH
4426static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4427{
4428 wb_domain_size_changed(&memcg->cgwb_domain);
4429}
4430
841710aa
TH
4431struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4432{
4433 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4434
4435 if (!memcg->css.parent)
4436 return NULL;
4437
4438 return &memcg->cgwb_domain;
4439}
4440
c2aa723a
TH
4441/**
4442 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4443 * @wb: bdi_writeback in question
c5edf9cd
TH
4444 * @pfilepages: out parameter for number of file pages
4445 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4446 * @pdirty: out parameter for number of dirty pages
4447 * @pwriteback: out parameter for number of pages under writeback
4448 *
c5edf9cd
TH
4449 * Determine the numbers of file, headroom, dirty, and writeback pages in
4450 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4451 * is a bit more involved.
c2aa723a 4452 *
c5edf9cd
TH
4453 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4454 * headroom is calculated as the lowest headroom of itself and the
4455 * ancestors. Note that this doesn't consider the actual amount of
4456 * available memory in the system. The caller should further cap
4457 * *@pheadroom accordingly.
c2aa723a 4458 */
c5edf9cd
TH
4459void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4460 unsigned long *pheadroom, unsigned long *pdirty,
4461 unsigned long *pwriteback)
c2aa723a
TH
4462{
4463 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4464 struct mem_cgroup *parent;
c2aa723a 4465
fd25a9e0 4466 mem_cgroup_flush_stats();
c2aa723a 4467
2d146aa3
JW
4468 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4469 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4470 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4471 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4472
2d146aa3 4473 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4474 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4475 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4476 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4477 unsigned long used = page_counter_read(&memcg->memory);
4478
c5edf9cd 4479 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4480 memcg = parent;
4481 }
c2aa723a
TH
4482}
4483
97b27821
TH
4484/*
4485 * Foreign dirty flushing
4486 *
4487 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4488 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4489 * deliberate design decision because honoring per-page ownership in the
4490 * writeback path is complicated, may lead to higher CPU and IO overheads
4491 * and deemed unnecessary given that write-sharing an inode across
4492 * different cgroups isn't a common use-case.
4493 *
4494 * Combined with inode majority-writer ownership switching, this works well
4495 * enough in most cases but there are some pathological cases. For
4496 * example, let's say there are two cgroups A and B which keep writing to
4497 * different but confined parts of the same inode. B owns the inode and
4498 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4499 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4500 * triggering background writeback. A will be slowed down without a way to
4501 * make writeback of the dirty pages happen.
4502 *
f0953a1b 4503 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4504 * severely throttled after making some progress after each
f0953a1b 4505 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4506 * completely idle.
4507 *
4508 * Solving this problem completely requires matching the ownership tracking
4509 * granularities between memcg and writeback in either direction. However,
4510 * the more egregious behaviors can be avoided by simply remembering the
4511 * most recent foreign dirtying events and initiating remote flushes on
4512 * them when local writeback isn't enough to keep the memory clean enough.
4513 *
4514 * The following two functions implement such mechanism. When a foreign
4515 * page - a page whose memcg and writeback ownerships don't match - is
4516 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4517 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4518 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4519 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4520 * foreign bdi_writebacks which haven't expired. Both the numbers of
4521 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4522 * limited to MEMCG_CGWB_FRN_CNT.
4523 *
4524 * The mechanism only remembers IDs and doesn't hold any object references.
4525 * As being wrong occasionally doesn't matter, updates and accesses to the
4526 * records are lockless and racy.
4527 */
9d8053fc 4528void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4529 struct bdi_writeback *wb)
4530{
9d8053fc 4531 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4532 struct memcg_cgwb_frn *frn;
4533 u64 now = get_jiffies_64();
4534 u64 oldest_at = now;
4535 int oldest = -1;
4536 int i;
4537
9d8053fc 4538 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4539
97b27821
TH
4540 /*
4541 * Pick the slot to use. If there is already a slot for @wb, keep
4542 * using it. If not replace the oldest one which isn't being
4543 * written out.
4544 */
4545 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4546 frn = &memcg->cgwb_frn[i];
4547 if (frn->bdi_id == wb->bdi->id &&
4548 frn->memcg_id == wb->memcg_css->id)
4549 break;
4550 if (time_before64(frn->at, oldest_at) &&
4551 atomic_read(&frn->done.cnt) == 1) {
4552 oldest = i;
4553 oldest_at = frn->at;
4554 }
4555 }
4556
4557 if (i < MEMCG_CGWB_FRN_CNT) {
4558 /*
4559 * Re-using an existing one. Update timestamp lazily to
4560 * avoid making the cacheline hot. We want them to be
4561 * reasonably up-to-date and significantly shorter than
4562 * dirty_expire_interval as that's what expires the record.
4563 * Use the shorter of 1s and dirty_expire_interval / 8.
4564 */
4565 unsigned long update_intv =
4566 min_t(unsigned long, HZ,
4567 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4568
4569 if (time_before64(frn->at, now - update_intv))
4570 frn->at = now;
4571 } else if (oldest >= 0) {
4572 /* replace the oldest free one */
4573 frn = &memcg->cgwb_frn[oldest];
4574 frn->bdi_id = wb->bdi->id;
4575 frn->memcg_id = wb->memcg_css->id;
4576 frn->at = now;
4577 }
4578}
4579
4580/* issue foreign writeback flushes for recorded foreign dirtying events */
4581void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4582{
4583 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4584 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4585 u64 now = jiffies_64;
4586 int i;
4587
4588 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4589 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4590
4591 /*
4592 * If the record is older than dirty_expire_interval,
4593 * writeback on it has already started. No need to kick it
4594 * off again. Also, don't start a new one if there's
4595 * already one in flight.
4596 */
4597 if (time_after64(frn->at, now - intv) &&
4598 atomic_read(&frn->done.cnt) == 1) {
4599 frn->at = 0;
3a8e9ac8 4600 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4601 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4602 WB_REASON_FOREIGN_FLUSH,
4603 &frn->done);
4604 }
4605 }
4606}
4607
841710aa
TH
4608#else /* CONFIG_CGROUP_WRITEBACK */
4609
4610static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4611{
4612 return 0;
4613}
4614
4615static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4616{
4617}
4618
2529bb3a
TH
4619static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4620{
4621}
4622
52ebea74
TH
4623#endif /* CONFIG_CGROUP_WRITEBACK */
4624
3bc942f3
TH
4625/*
4626 * DO NOT USE IN NEW FILES.
4627 *
4628 * "cgroup.event_control" implementation.
4629 *
4630 * This is way over-engineered. It tries to support fully configurable
4631 * events for each user. Such level of flexibility is completely
4632 * unnecessary especially in the light of the planned unified hierarchy.
4633 *
4634 * Please deprecate this and replace with something simpler if at all
4635 * possible.
4636 */
4637
79bd9814
TH
4638/*
4639 * Unregister event and free resources.
4640 *
4641 * Gets called from workqueue.
4642 */
3bc942f3 4643static void memcg_event_remove(struct work_struct *work)
79bd9814 4644{
3bc942f3
TH
4645 struct mem_cgroup_event *event =
4646 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4647 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4648
4649 remove_wait_queue(event->wqh, &event->wait);
4650
59b6f873 4651 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4652
4653 /* Notify userspace the event is going away. */
4654 eventfd_signal(event->eventfd, 1);
4655
4656 eventfd_ctx_put(event->eventfd);
4657 kfree(event);
59b6f873 4658 css_put(&memcg->css);
79bd9814
TH
4659}
4660
4661/*
a9a08845 4662 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4663 *
4664 * Called with wqh->lock held and interrupts disabled.
4665 */
ac6424b9 4666static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4667 int sync, void *key)
79bd9814 4668{
3bc942f3
TH
4669 struct mem_cgroup_event *event =
4670 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4671 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4672 __poll_t flags = key_to_poll(key);
79bd9814 4673
a9a08845 4674 if (flags & EPOLLHUP) {
79bd9814
TH
4675 /*
4676 * If the event has been detached at cgroup removal, we
4677 * can simply return knowing the other side will cleanup
4678 * for us.
4679 *
4680 * We can't race against event freeing since the other
4681 * side will require wqh->lock via remove_wait_queue(),
4682 * which we hold.
4683 */
fba94807 4684 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4685 if (!list_empty(&event->list)) {
4686 list_del_init(&event->list);
4687 /*
4688 * We are in atomic context, but cgroup_event_remove()
4689 * may sleep, so we have to call it in workqueue.
4690 */
4691 schedule_work(&event->remove);
4692 }
fba94807 4693 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4694 }
4695
4696 return 0;
4697}
4698
3bc942f3 4699static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4700 wait_queue_head_t *wqh, poll_table *pt)
4701{
3bc942f3
TH
4702 struct mem_cgroup_event *event =
4703 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4704
4705 event->wqh = wqh;
4706 add_wait_queue(wqh, &event->wait);
4707}
4708
4709/*
3bc942f3
TH
4710 * DO NOT USE IN NEW FILES.
4711 *
79bd9814
TH
4712 * Parse input and register new cgroup event handler.
4713 *
4714 * Input must be in format '<event_fd> <control_fd> <args>'.
4715 * Interpretation of args is defined by control file implementation.
4716 */
451af504
TH
4717static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4718 char *buf, size_t nbytes, loff_t off)
79bd9814 4719{
451af504 4720 struct cgroup_subsys_state *css = of_css(of);
fba94807 4721 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4722 struct mem_cgroup_event *event;
79bd9814
TH
4723 struct cgroup_subsys_state *cfile_css;
4724 unsigned int efd, cfd;
4725 struct fd efile;
4726 struct fd cfile;
fba94807 4727 const char *name;
79bd9814
TH
4728 char *endp;
4729 int ret;
4730
451af504
TH
4731 buf = strstrip(buf);
4732
4733 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4734 if (*endp != ' ')
4735 return -EINVAL;
451af504 4736 buf = endp + 1;
79bd9814 4737
451af504 4738 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4739 if ((*endp != ' ') && (*endp != '\0'))
4740 return -EINVAL;
451af504 4741 buf = endp + 1;
79bd9814
TH
4742
4743 event = kzalloc(sizeof(*event), GFP_KERNEL);
4744 if (!event)
4745 return -ENOMEM;
4746
59b6f873 4747 event->memcg = memcg;
79bd9814 4748 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4749 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4750 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4751 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4752
4753 efile = fdget(efd);
4754 if (!efile.file) {
4755 ret = -EBADF;
4756 goto out_kfree;
4757 }
4758
4759 event->eventfd = eventfd_ctx_fileget(efile.file);
4760 if (IS_ERR(event->eventfd)) {
4761 ret = PTR_ERR(event->eventfd);
4762 goto out_put_efile;
4763 }
4764
4765 cfile = fdget(cfd);
4766 if (!cfile.file) {
4767 ret = -EBADF;
4768 goto out_put_eventfd;
4769 }
4770
4771 /* the process need read permission on control file */
4772 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4773 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4774 if (ret < 0)
4775 goto out_put_cfile;
4776
fba94807
TH
4777 /*
4778 * Determine the event callbacks and set them in @event. This used
4779 * to be done via struct cftype but cgroup core no longer knows
4780 * about these events. The following is crude but the whole thing
4781 * is for compatibility anyway.
3bc942f3
TH
4782 *
4783 * DO NOT ADD NEW FILES.
fba94807 4784 */
b583043e 4785 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4786
4787 if (!strcmp(name, "memory.usage_in_bytes")) {
4788 event->register_event = mem_cgroup_usage_register_event;
4789 event->unregister_event = mem_cgroup_usage_unregister_event;
4790 } else if (!strcmp(name, "memory.oom_control")) {
4791 event->register_event = mem_cgroup_oom_register_event;
4792 event->unregister_event = mem_cgroup_oom_unregister_event;
4793 } else if (!strcmp(name, "memory.pressure_level")) {
4794 event->register_event = vmpressure_register_event;
4795 event->unregister_event = vmpressure_unregister_event;
4796 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4797 event->register_event = memsw_cgroup_usage_register_event;
4798 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4799 } else {
4800 ret = -EINVAL;
4801 goto out_put_cfile;
4802 }
4803
79bd9814 4804 /*
b5557c4c
TH
4805 * Verify @cfile should belong to @css. Also, remaining events are
4806 * automatically removed on cgroup destruction but the removal is
4807 * asynchronous, so take an extra ref on @css.
79bd9814 4808 */
b583043e 4809 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4810 &memory_cgrp_subsys);
79bd9814 4811 ret = -EINVAL;
5a17f543 4812 if (IS_ERR(cfile_css))
79bd9814 4813 goto out_put_cfile;
5a17f543
TH
4814 if (cfile_css != css) {
4815 css_put(cfile_css);
79bd9814 4816 goto out_put_cfile;
5a17f543 4817 }
79bd9814 4818
451af504 4819 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4820 if (ret)
4821 goto out_put_css;
4822
9965ed17 4823 vfs_poll(efile.file, &event->pt);
79bd9814 4824
4ba9515d 4825 spin_lock_irq(&memcg->event_list_lock);
fba94807 4826 list_add(&event->list, &memcg->event_list);
4ba9515d 4827 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4828
4829 fdput(cfile);
4830 fdput(efile);
4831
451af504 4832 return nbytes;
79bd9814
TH
4833
4834out_put_css:
b5557c4c 4835 css_put(css);
79bd9814
TH
4836out_put_cfile:
4837 fdput(cfile);
4838out_put_eventfd:
4839 eventfd_ctx_put(event->eventfd);
4840out_put_efile:
4841 fdput(efile);
4842out_kfree:
4843 kfree(event);
4844
4845 return ret;
4846}
4847
c29b5b3d
MS
4848#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4849static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4850{
4851 /*
4852 * Deprecated.
4853 * Please, take a look at tools/cgroup/slabinfo.py .
4854 */
4855 return 0;
4856}
4857#endif
4858
241994ed 4859static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4860 {
0eea1030 4861 .name = "usage_in_bytes",
8c7c6e34 4862 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4863 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4864 },
c84872e1
PE
4865 {
4866 .name = "max_usage_in_bytes",
8c7c6e34 4867 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4868 .write = mem_cgroup_reset,
791badbd 4869 .read_u64 = mem_cgroup_read_u64,
c84872e1 4870 },
8cdea7c0 4871 {
0eea1030 4872 .name = "limit_in_bytes",
8c7c6e34 4873 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4874 .write = mem_cgroup_write,
791badbd 4875 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4876 },
296c81d8
BS
4877 {
4878 .name = "soft_limit_in_bytes",
4879 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4880 .write = mem_cgroup_write,
791badbd 4881 .read_u64 = mem_cgroup_read_u64,
296c81d8 4882 },
8cdea7c0
BS
4883 {
4884 .name = "failcnt",
8c7c6e34 4885 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4886 .write = mem_cgroup_reset,
791badbd 4887 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4888 },
d2ceb9b7
KH
4889 {
4890 .name = "stat",
2da8ca82 4891 .seq_show = memcg_stat_show,
d2ceb9b7 4892 },
c1e862c1
KH
4893 {
4894 .name = "force_empty",
6770c64e 4895 .write = mem_cgroup_force_empty_write,
c1e862c1 4896 },
18f59ea7
BS
4897 {
4898 .name = "use_hierarchy",
4899 .write_u64 = mem_cgroup_hierarchy_write,
4900 .read_u64 = mem_cgroup_hierarchy_read,
4901 },
79bd9814 4902 {
3bc942f3 4903 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4904 .write = memcg_write_event_control,
7dbdb199 4905 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4906 },
a7885eb8
KM
4907 {
4908 .name = "swappiness",
4909 .read_u64 = mem_cgroup_swappiness_read,
4910 .write_u64 = mem_cgroup_swappiness_write,
4911 },
7dc74be0
DN
4912 {
4913 .name = "move_charge_at_immigrate",
4914 .read_u64 = mem_cgroup_move_charge_read,
4915 .write_u64 = mem_cgroup_move_charge_write,
4916 },
9490ff27
KH
4917 {
4918 .name = "oom_control",
2da8ca82 4919 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4920 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4921 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4922 },
70ddf637
AV
4923 {
4924 .name = "pressure_level",
70ddf637 4925 },
406eb0c9
YH
4926#ifdef CONFIG_NUMA
4927 {
4928 .name = "numa_stat",
2da8ca82 4929 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4930 },
4931#endif
510fc4e1
GC
4932 {
4933 .name = "kmem.limit_in_bytes",
4934 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4935 .write = mem_cgroup_write,
791badbd 4936 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4937 },
4938 {
4939 .name = "kmem.usage_in_bytes",
4940 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4941 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4942 },
4943 {
4944 .name = "kmem.failcnt",
4945 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4946 .write = mem_cgroup_reset,
791badbd 4947 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4948 },
4949 {
4950 .name = "kmem.max_usage_in_bytes",
4951 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4952 .write = mem_cgroup_reset,
791badbd 4953 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4954 },
a87425a3
YS
4955#if defined(CONFIG_MEMCG_KMEM) && \
4956 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4957 {
4958 .name = "kmem.slabinfo",
c29b5b3d 4959 .seq_show = mem_cgroup_slab_show,
749c5415
GC
4960 },
4961#endif
d55f90bf
VD
4962 {
4963 .name = "kmem.tcp.limit_in_bytes",
4964 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4965 .write = mem_cgroup_write,
4966 .read_u64 = mem_cgroup_read_u64,
4967 },
4968 {
4969 .name = "kmem.tcp.usage_in_bytes",
4970 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4971 .read_u64 = mem_cgroup_read_u64,
4972 },
4973 {
4974 .name = "kmem.tcp.failcnt",
4975 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4976 .write = mem_cgroup_reset,
4977 .read_u64 = mem_cgroup_read_u64,
4978 },
4979 {
4980 .name = "kmem.tcp.max_usage_in_bytes",
4981 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4982 .write = mem_cgroup_reset,
4983 .read_u64 = mem_cgroup_read_u64,
4984 },
6bc10349 4985 { }, /* terminate */
af36f906 4986};
8c7c6e34 4987
73f576c0
JW
4988/*
4989 * Private memory cgroup IDR
4990 *
4991 * Swap-out records and page cache shadow entries need to store memcg
4992 * references in constrained space, so we maintain an ID space that is
4993 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4994 * memory-controlled cgroups to 64k.
4995 *
b8f2935f 4996 * However, there usually are many references to the offline CSS after
73f576c0
JW
4997 * the cgroup has been destroyed, such as page cache or reclaimable
4998 * slab objects, that don't need to hang on to the ID. We want to keep
4999 * those dead CSS from occupying IDs, or we might quickly exhaust the
5000 * relatively small ID space and prevent the creation of new cgroups
5001 * even when there are much fewer than 64k cgroups - possibly none.
5002 *
5003 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5004 * be freed and recycled when it's no longer needed, which is usually
5005 * when the CSS is offlined.
5006 *
5007 * The only exception to that are records of swapped out tmpfs/shmem
5008 * pages that need to be attributed to live ancestors on swapin. But
5009 * those references are manageable from userspace.
5010 */
5011
5012static DEFINE_IDR(mem_cgroup_idr);
5013
7e97de0b
KT
5014static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5015{
5016 if (memcg->id.id > 0) {
5017 idr_remove(&mem_cgroup_idr, memcg->id.id);
5018 memcg->id.id = 0;
5019 }
5020}
5021
c1514c0a
VF
5022static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5023 unsigned int n)
73f576c0 5024{
1c2d479a 5025 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5026}
5027
615d66c3 5028static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5029{
1c2d479a 5030 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5031 mem_cgroup_id_remove(memcg);
73f576c0
JW
5032
5033 /* Memcg ID pins CSS */
5034 css_put(&memcg->css);
5035 }
5036}
5037
615d66c3
VD
5038static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5039{
5040 mem_cgroup_id_put_many(memcg, 1);
5041}
5042
73f576c0
JW
5043/**
5044 * mem_cgroup_from_id - look up a memcg from a memcg id
5045 * @id: the memcg id to look up
5046 *
5047 * Caller must hold rcu_read_lock().
5048 */
5049struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5050{
5051 WARN_ON_ONCE(!rcu_read_lock_held());
5052 return idr_find(&mem_cgroup_idr, id);
5053}
5054
ef8f2327 5055static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5056{
5057 struct mem_cgroup_per_node *pn;
ef8f2327 5058 int tmp = node;
1ecaab2b
KH
5059 /*
5060 * This routine is called against possible nodes.
5061 * But it's BUG to call kmalloc() against offline node.
5062 *
5063 * TODO: this routine can waste much memory for nodes which will
5064 * never be onlined. It's better to use memory hotplug callback
5065 * function.
5066 */
41e3355d
KH
5067 if (!node_state(node, N_NORMAL_MEMORY))
5068 tmp = -1;
17295c88 5069 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5070 if (!pn)
5071 return 1;
1ecaab2b 5072
7e1c0d6f
SB
5073 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5074 GFP_KERNEL_ACCOUNT);
5075 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5076 kfree(pn);
5077 return 1;
5078 }
5079
ef8f2327
MG
5080 lruvec_init(&pn->lruvec);
5081 pn->usage_in_excess = 0;
5082 pn->on_tree = false;
5083 pn->memcg = memcg;
5084
54f72fe0 5085 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5086 return 0;
5087}
5088
ef8f2327 5089static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5090{
00f3ca2c
JW
5091 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5092
4eaf431f
MH
5093 if (!pn)
5094 return;
5095
7e1c0d6f 5096 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5097 kfree(pn);
1ecaab2b
KH
5098}
5099
40e952f9 5100static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5101{
c8b2a36f 5102 int node;
59927fb9 5103
c8b2a36f 5104 for_each_node(node)
ef8f2327 5105 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5106 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5107 kfree(memcg);
59927fb9 5108}
3afe36b1 5109
40e952f9
TE
5110static void mem_cgroup_free(struct mem_cgroup *memcg)
5111{
5112 memcg_wb_domain_exit(memcg);
5113 __mem_cgroup_free(memcg);
5114}
5115
0b8f73e1 5116static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5117{
d142e3e6 5118 struct mem_cgroup *memcg;
b9726c26 5119 unsigned int size;
6d12e2d8 5120 int node;
97b27821 5121 int __maybe_unused i;
11d67612 5122 long error = -ENOMEM;
8cdea7c0 5123
0b8f73e1
JW
5124 size = sizeof(struct mem_cgroup);
5125 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5126
5127 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5128 if (!memcg)
11d67612 5129 return ERR_PTR(error);
0b8f73e1 5130
73f576c0
JW
5131 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5132 1, MEM_CGROUP_ID_MAX,
5133 GFP_KERNEL);
11d67612
YS
5134 if (memcg->id.id < 0) {
5135 error = memcg->id.id;
73f576c0 5136 goto fail;
11d67612 5137 }
73f576c0 5138
3e38e0aa
RG
5139 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5140 GFP_KERNEL_ACCOUNT);
871789d4 5141 if (!memcg->vmstats_percpu)
0b8f73e1 5142 goto fail;
78fb7466 5143
3ed28fa1 5144 for_each_node(node)
ef8f2327 5145 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5146 goto fail;
f64c3f54 5147
0b8f73e1
JW
5148 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5149 goto fail;
28dbc4b6 5150
f7e1cb6e 5151 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5152 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5153 mutex_init(&memcg->thresholds_lock);
5154 spin_lock_init(&memcg->move_lock);
70ddf637 5155 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5156 INIT_LIST_HEAD(&memcg->event_list);
5157 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5158 memcg->socket_pressure = jiffies;
84c07d11 5159#ifdef CONFIG_MEMCG_KMEM
900a38f0 5160 memcg->kmemcg_id = -1;
bf4f0599 5161 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5162#endif
52ebea74
TH
5163#ifdef CONFIG_CGROUP_WRITEBACK
5164 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5165 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5166 memcg->cgwb_frn[i].done =
5167 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5168#endif
5169#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5170 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5171 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5172 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5173#endif
73f576c0 5174 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5175 return memcg;
5176fail:
7e97de0b 5177 mem_cgroup_id_remove(memcg);
40e952f9 5178 __mem_cgroup_free(memcg);
11d67612 5179 return ERR_PTR(error);
d142e3e6
GC
5180}
5181
0b8f73e1
JW
5182static struct cgroup_subsys_state * __ref
5183mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5184{
0b8f73e1 5185 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5186 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5187 long error = -ENOMEM;
d142e3e6 5188
b87d8cef 5189 old_memcg = set_active_memcg(parent);
0b8f73e1 5190 memcg = mem_cgroup_alloc();
b87d8cef 5191 set_active_memcg(old_memcg);
11d67612
YS
5192 if (IS_ERR(memcg))
5193 return ERR_CAST(memcg);
d142e3e6 5194
d1663a90 5195 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5196 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5197 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5198 if (parent) {
5199 memcg->swappiness = mem_cgroup_swappiness(parent);
5200 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5201
3e32cb2e 5202 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5203 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5204 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5205 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5206 } else {
bef8620c
RG
5207 page_counter_init(&memcg->memory, NULL);
5208 page_counter_init(&memcg->swap, NULL);
5209 page_counter_init(&memcg->kmem, NULL);
5210 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5211
0b8f73e1
JW
5212 root_mem_cgroup = memcg;
5213 return &memcg->css;
5214 }
5215
bef8620c 5216 /* The following stuff does not apply to the root */
b313aeee 5217 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5218 if (error)
5219 goto fail;
127424c8 5220
f7e1cb6e 5221 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5222 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5223
0b8f73e1
JW
5224 return &memcg->css;
5225fail:
7e97de0b 5226 mem_cgroup_id_remove(memcg);
0b8f73e1 5227 mem_cgroup_free(memcg);
11d67612 5228 return ERR_PTR(error);
0b8f73e1
JW
5229}
5230
73f576c0 5231static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5232{
58fa2a55
VD
5233 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5234
0a4465d3 5235 /*
e4262c4f 5236 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5237 * by the time the maps are allocated. So, we allocate maps
5238 * here, when for_each_mem_cgroup() can't skip it.
5239 */
e4262c4f 5240 if (alloc_shrinker_info(memcg)) {
0a4465d3
KT
5241 mem_cgroup_id_remove(memcg);
5242 return -ENOMEM;
5243 }
5244
73f576c0 5245 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5246 refcount_set(&memcg->id.ref, 1);
73f576c0 5247 css_get(css);
aa48e47e
SB
5248
5249 if (unlikely(mem_cgroup_is_root(memcg)))
5250 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5251 2UL*HZ);
2f7dd7a4 5252 return 0;
8cdea7c0
BS
5253}
5254
eb95419b 5255static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5256{
eb95419b 5257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5258 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5259
5260 /*
5261 * Unregister events and notify userspace.
5262 * Notify userspace about cgroup removing only after rmdir of cgroup
5263 * directory to avoid race between userspace and kernelspace.
5264 */
4ba9515d 5265 spin_lock_irq(&memcg->event_list_lock);
fba94807 5266 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5267 list_del_init(&event->list);
5268 schedule_work(&event->remove);
5269 }
4ba9515d 5270 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5271
bf8d5d52 5272 page_counter_set_min(&memcg->memory, 0);
23067153 5273 page_counter_set_low(&memcg->memory, 0);
63677c74 5274
567e9ab2 5275 memcg_offline_kmem(memcg);
a178015c 5276 reparent_shrinker_deferred(memcg);
52ebea74 5277 wb_memcg_offline(memcg);
73f576c0 5278
591edfb1
RG
5279 drain_all_stock(memcg);
5280
73f576c0 5281 mem_cgroup_id_put(memcg);
df878fb0
KH
5282}
5283
6df38689
VD
5284static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5285{
5286 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5287
5288 invalidate_reclaim_iterators(memcg);
5289}
5290
eb95419b 5291static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5292{
eb95419b 5293 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5294 int __maybe_unused i;
c268e994 5295
97b27821
TH
5296#ifdef CONFIG_CGROUP_WRITEBACK
5297 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5298 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5299#endif
f7e1cb6e 5300 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5301 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5302
0db15298 5303 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5304 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5305
0b8f73e1
JW
5306 vmpressure_cleanup(&memcg->vmpressure);
5307 cancel_work_sync(&memcg->high_work);
5308 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5309 free_shrinker_info(memcg);
38d4ef44
WL
5310
5311 /* Need to offline kmem if online_css() fails */
5312 memcg_offline_kmem(memcg);
0b8f73e1 5313 mem_cgroup_free(memcg);
8cdea7c0
BS
5314}
5315
1ced953b
TH
5316/**
5317 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5318 * @css: the target css
5319 *
5320 * Reset the states of the mem_cgroup associated with @css. This is
5321 * invoked when the userland requests disabling on the default hierarchy
5322 * but the memcg is pinned through dependency. The memcg should stop
5323 * applying policies and should revert to the vanilla state as it may be
5324 * made visible again.
5325 *
5326 * The current implementation only resets the essential configurations.
5327 * This needs to be expanded to cover all the visible parts.
5328 */
5329static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5330{
5331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5332
bbec2e15
RG
5333 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5334 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5335 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5336 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5337 page_counter_set_min(&memcg->memory, 0);
23067153 5338 page_counter_set_low(&memcg->memory, 0);
d1663a90 5339 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5340 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5341 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5342 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5343}
5344
2d146aa3
JW
5345static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5346{
5347 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5348 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5349 struct memcg_vmstats_percpu *statc;
5350 long delta, v;
7e1c0d6f 5351 int i, nid;
2d146aa3
JW
5352
5353 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5354
5355 for (i = 0; i < MEMCG_NR_STAT; i++) {
5356 /*
5357 * Collect the aggregated propagation counts of groups
5358 * below us. We're in a per-cpu loop here and this is
5359 * a global counter, so the first cycle will get them.
5360 */
5361 delta = memcg->vmstats.state_pending[i];
5362 if (delta)
5363 memcg->vmstats.state_pending[i] = 0;
5364
5365 /* Add CPU changes on this level since the last flush */
5366 v = READ_ONCE(statc->state[i]);
5367 if (v != statc->state_prev[i]) {
5368 delta += v - statc->state_prev[i];
5369 statc->state_prev[i] = v;
5370 }
5371
5372 if (!delta)
5373 continue;
5374
5375 /* Aggregate counts on this level and propagate upwards */
5376 memcg->vmstats.state[i] += delta;
5377 if (parent)
5378 parent->vmstats.state_pending[i] += delta;
5379 }
5380
5381 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5382 delta = memcg->vmstats.events_pending[i];
5383 if (delta)
5384 memcg->vmstats.events_pending[i] = 0;
5385
5386 v = READ_ONCE(statc->events[i]);
5387 if (v != statc->events_prev[i]) {
5388 delta += v - statc->events_prev[i];
5389 statc->events_prev[i] = v;
5390 }
5391
5392 if (!delta)
5393 continue;
5394
5395 memcg->vmstats.events[i] += delta;
5396 if (parent)
5397 parent->vmstats.events_pending[i] += delta;
5398 }
7e1c0d6f
SB
5399
5400 for_each_node_state(nid, N_MEMORY) {
5401 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5402 struct mem_cgroup_per_node *ppn = NULL;
5403 struct lruvec_stats_percpu *lstatc;
5404
5405 if (parent)
5406 ppn = parent->nodeinfo[nid];
5407
5408 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5409
5410 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5411 delta = pn->lruvec_stats.state_pending[i];
5412 if (delta)
5413 pn->lruvec_stats.state_pending[i] = 0;
5414
5415 v = READ_ONCE(lstatc->state[i]);
5416 if (v != lstatc->state_prev[i]) {
5417 delta += v - lstatc->state_prev[i];
5418 lstatc->state_prev[i] = v;
5419 }
5420
5421 if (!delta)
5422 continue;
5423
5424 pn->lruvec_stats.state[i] += delta;
5425 if (ppn)
5426 ppn->lruvec_stats.state_pending[i] += delta;
5427 }
5428 }
2d146aa3
JW
5429}
5430
02491447 5431#ifdef CONFIG_MMU
7dc74be0 5432/* Handlers for move charge at task migration. */
854ffa8d 5433static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5434{
05b84301 5435 int ret;
9476db97 5436
d0164adc
MG
5437 /* Try a single bulk charge without reclaim first, kswapd may wake */
5438 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5439 if (!ret) {
854ffa8d 5440 mc.precharge += count;
854ffa8d
DN
5441 return ret;
5442 }
9476db97 5443
3674534b 5444 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5445 while (count--) {
3674534b 5446 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5447 if (ret)
38c5d72f 5448 return ret;
854ffa8d 5449 mc.precharge++;
9476db97 5450 cond_resched();
854ffa8d 5451 }
9476db97 5452 return 0;
4ffef5fe
DN
5453}
5454
4ffef5fe
DN
5455union mc_target {
5456 struct page *page;
02491447 5457 swp_entry_t ent;
4ffef5fe
DN
5458};
5459
4ffef5fe 5460enum mc_target_type {
8d32ff84 5461 MC_TARGET_NONE = 0,
4ffef5fe 5462 MC_TARGET_PAGE,
02491447 5463 MC_TARGET_SWAP,
c733a828 5464 MC_TARGET_DEVICE,
4ffef5fe
DN
5465};
5466
90254a65
DN
5467static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5468 unsigned long addr, pte_t ptent)
4ffef5fe 5469{
25b2995a 5470 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5471
90254a65
DN
5472 if (!page || !page_mapped(page))
5473 return NULL;
5474 if (PageAnon(page)) {
1dfab5ab 5475 if (!(mc.flags & MOVE_ANON))
90254a65 5476 return NULL;
1dfab5ab
JW
5477 } else {
5478 if (!(mc.flags & MOVE_FILE))
5479 return NULL;
5480 }
90254a65
DN
5481 if (!get_page_unless_zero(page))
5482 return NULL;
5483
5484 return page;
5485}
5486
c733a828 5487#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5488static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5489 pte_t ptent, swp_entry_t *entry)
90254a65 5490{
90254a65
DN
5491 struct page *page = NULL;
5492 swp_entry_t ent = pte_to_swp_entry(ptent);
5493
9a137153 5494 if (!(mc.flags & MOVE_ANON))
90254a65 5495 return NULL;
c733a828
JG
5496
5497 /*
5498 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5499 * a device and because they are not accessible by CPU they are store
5500 * as special swap entry in the CPU page table.
5501 */
5502 if (is_device_private_entry(ent)) {
af5cdaf8 5503 page = pfn_swap_entry_to_page(ent);
c733a828
JG
5504 /*
5505 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5506 * a refcount of 1 when free (unlike normal page)
5507 */
5508 if (!page_ref_add_unless(page, 1, 1))
5509 return NULL;
5510 return page;
5511 }
5512
9a137153
RC
5513 if (non_swap_entry(ent))
5514 return NULL;
5515
4b91355e
KH
5516 /*
5517 * Because lookup_swap_cache() updates some statistics counter,
5518 * we call find_get_page() with swapper_space directly.
5519 */
f6ab1f7f 5520 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5521 entry->val = ent.val;
90254a65
DN
5522
5523 return page;
5524}
4b91355e
KH
5525#else
5526static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5527 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5528{
5529 return NULL;
5530}
5531#endif
90254a65 5532
87946a72 5533static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5534 unsigned long addr, pte_t ptent)
87946a72 5535{
87946a72
DN
5536 if (!vma->vm_file) /* anonymous vma */
5537 return NULL;
1dfab5ab 5538 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5539 return NULL;
5540
87946a72 5541 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5542 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5543 return find_get_incore_page(vma->vm_file->f_mapping,
5544 linear_page_index(vma, addr));
87946a72
DN
5545}
5546
b1b0deab
CG
5547/**
5548 * mem_cgroup_move_account - move account of the page
5549 * @page: the page
25843c2b 5550 * @compound: charge the page as compound or small page
b1b0deab
CG
5551 * @from: mem_cgroup which the page is moved from.
5552 * @to: mem_cgroup which the page is moved to. @from != @to.
5553 *
3ac808fd 5554 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5555 *
5556 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5557 * from old cgroup.
5558 */
5559static int mem_cgroup_move_account(struct page *page,
f627c2f5 5560 bool compound,
b1b0deab
CG
5561 struct mem_cgroup *from,
5562 struct mem_cgroup *to)
5563{
fcce4672 5564 struct folio *folio = page_folio(page);
ae8af438
KK
5565 struct lruvec *from_vec, *to_vec;
5566 struct pglist_data *pgdat;
fcce4672 5567 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5568 int nid, ret;
b1b0deab
CG
5569
5570 VM_BUG_ON(from == to);
fcce4672 5571 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5572 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab
CG
5573
5574 /*
6a93ca8f 5575 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5576 * page's memory cgroup of its source page while we change it.
b1b0deab 5577 */
f627c2f5 5578 ret = -EBUSY;
fcce4672 5579 if (!folio_trylock(folio))
b1b0deab
CG
5580 goto out;
5581
5582 ret = -EINVAL;
fcce4672 5583 if (folio_memcg(folio) != from)
b1b0deab
CG
5584 goto out_unlock;
5585
fcce4672 5586 pgdat = folio_pgdat(folio);
867e5e1d
JW
5587 from_vec = mem_cgroup_lruvec(from, pgdat);
5588 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5589
fcce4672 5590 folio_memcg_lock(folio);
b1b0deab 5591
fcce4672
MWO
5592 if (folio_test_anon(folio)) {
5593 if (folio_mapped(folio)) {
be5d0a74
JW
5594 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5595 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5596 if (folio_test_transhuge(folio)) {
69473e5d
MS
5597 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5598 -nr_pages);
5599 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5600 nr_pages);
468c3982 5601 }
be5d0a74
JW
5602 }
5603 } else {
0d1c2072
JW
5604 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5605 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5606
fcce4672 5607 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5608 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5609 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5610 }
5611
fcce4672 5612 if (folio_mapped(folio)) {
49e50d27
JW
5613 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5614 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5615 }
b1b0deab 5616
fcce4672
MWO
5617 if (folio_test_dirty(folio)) {
5618 struct address_space *mapping = folio_mapping(folio);
c4843a75 5619
f56753ac 5620 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5621 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5622 -nr_pages);
5623 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5624 nr_pages);
5625 }
c4843a75
GT
5626 }
5627 }
5628
fcce4672 5629 if (folio_test_writeback(folio)) {
ae8af438
KK
5630 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5631 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5632 }
5633
5634 /*
abb242f5
JW
5635 * All state has been migrated, let's switch to the new memcg.
5636 *
bcfe06bf 5637 * It is safe to change page's memcg here because the page
abb242f5
JW
5638 * is referenced, charged, isolated, and locked: we can't race
5639 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5640 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5641 *
5642 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5643 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5644 * new memcg that isn't locked, the above state can change
5645 * concurrently again. Make sure we're truly done with it.
b1b0deab 5646 */
abb242f5 5647 smp_mb();
b1b0deab 5648
1a3e1f40
JW
5649 css_get(&to->css);
5650 css_put(&from->css);
5651
fcce4672 5652 folio->memcg_data = (unsigned long)to;
87eaceb3 5653
f70ad448 5654 __folio_memcg_unlock(from);
b1b0deab
CG
5655
5656 ret = 0;
fcce4672 5657 nid = folio_nid(folio);
b1b0deab
CG
5658
5659 local_irq_disable();
6e0110c2 5660 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5661 memcg_check_events(to, nid);
6e0110c2 5662 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5663 memcg_check_events(from, nid);
b1b0deab
CG
5664 local_irq_enable();
5665out_unlock:
fcce4672 5666 folio_unlock(folio);
b1b0deab
CG
5667out:
5668 return ret;
5669}
5670
7cf7806c
LR
5671/**
5672 * get_mctgt_type - get target type of moving charge
5673 * @vma: the vma the pte to be checked belongs
5674 * @addr: the address corresponding to the pte to be checked
5675 * @ptent: the pte to be checked
5676 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5677 *
5678 * Returns
5679 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5680 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5681 * move charge. if @target is not NULL, the page is stored in target->page
5682 * with extra refcnt got(Callers should handle it).
5683 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5684 * target for charge migration. if @target is not NULL, the entry is stored
5685 * in target->ent.
25b2995a
CH
5686 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5687 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5688 * For now we such page is charge like a regular page would be as for all
5689 * intent and purposes it is just special memory taking the place of a
5690 * regular page.
c733a828
JG
5691 *
5692 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5693 *
5694 * Called with pte lock held.
5695 */
5696
8d32ff84 5697static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5698 unsigned long addr, pte_t ptent, union mc_target *target)
5699{
5700 struct page *page = NULL;
8d32ff84 5701 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5702 swp_entry_t ent = { .val = 0 };
5703
5704 if (pte_present(ptent))
5705 page = mc_handle_present_pte(vma, addr, ptent);
5706 else if (is_swap_pte(ptent))
48406ef8 5707 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5708 else if (pte_none(ptent))
48384b0b 5709 page = mc_handle_file_pte(vma, addr, ptent);
90254a65
DN
5710
5711 if (!page && !ent.val)
8d32ff84 5712 return ret;
02491447 5713 if (page) {
02491447 5714 /*
0a31bc97 5715 * Do only loose check w/o serialization.
1306a85a 5716 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5717 * not under LRU exclusion.
02491447 5718 */
bcfe06bf 5719 if (page_memcg(page) == mc.from) {
02491447 5720 ret = MC_TARGET_PAGE;
25b2995a 5721 if (is_device_private_page(page))
c733a828 5722 ret = MC_TARGET_DEVICE;
02491447
DN
5723 if (target)
5724 target->page = page;
5725 }
5726 if (!ret || !target)
5727 put_page(page);
5728 }
3e14a57b
HY
5729 /*
5730 * There is a swap entry and a page doesn't exist or isn't charged.
5731 * But we cannot move a tail-page in a THP.
5732 */
5733 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5734 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5735 ret = MC_TARGET_SWAP;
5736 if (target)
5737 target->ent = ent;
4ffef5fe 5738 }
4ffef5fe
DN
5739 return ret;
5740}
5741
12724850
NH
5742#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5743/*
d6810d73
HY
5744 * We don't consider PMD mapped swapping or file mapped pages because THP does
5745 * not support them for now.
12724850
NH
5746 * Caller should make sure that pmd_trans_huge(pmd) is true.
5747 */
5748static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5749 unsigned long addr, pmd_t pmd, union mc_target *target)
5750{
5751 struct page *page = NULL;
12724850
NH
5752 enum mc_target_type ret = MC_TARGET_NONE;
5753
84c3fc4e
ZY
5754 if (unlikely(is_swap_pmd(pmd))) {
5755 VM_BUG_ON(thp_migration_supported() &&
5756 !is_pmd_migration_entry(pmd));
5757 return ret;
5758 }
12724850 5759 page = pmd_page(pmd);
309381fe 5760 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5761 if (!(mc.flags & MOVE_ANON))
12724850 5762 return ret;
bcfe06bf 5763 if (page_memcg(page) == mc.from) {
12724850
NH
5764 ret = MC_TARGET_PAGE;
5765 if (target) {
5766 get_page(page);
5767 target->page = page;
5768 }
5769 }
5770 return ret;
5771}
5772#else
5773static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5774 unsigned long addr, pmd_t pmd, union mc_target *target)
5775{
5776 return MC_TARGET_NONE;
5777}
5778#endif
5779
4ffef5fe
DN
5780static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5781 unsigned long addr, unsigned long end,
5782 struct mm_walk *walk)
5783{
26bcd64a 5784 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5785 pte_t *pte;
5786 spinlock_t *ptl;
5787
b6ec57f4
KS
5788 ptl = pmd_trans_huge_lock(pmd, vma);
5789 if (ptl) {
c733a828
JG
5790 /*
5791 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5792 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5793 * this might change.
c733a828 5794 */
12724850
NH
5795 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5796 mc.precharge += HPAGE_PMD_NR;
bf929152 5797 spin_unlock(ptl);
1a5a9906 5798 return 0;
12724850 5799 }
03319327 5800
45f83cef
AA
5801 if (pmd_trans_unstable(pmd))
5802 return 0;
4ffef5fe
DN
5803 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5804 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5805 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5806 mc.precharge++; /* increment precharge temporarily */
5807 pte_unmap_unlock(pte - 1, ptl);
5808 cond_resched();
5809
7dc74be0
DN
5810 return 0;
5811}
5812
7b86ac33
CH
5813static const struct mm_walk_ops precharge_walk_ops = {
5814 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5815};
5816
4ffef5fe
DN
5817static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5818{
5819 unsigned long precharge;
4ffef5fe 5820
d8ed45c5 5821 mmap_read_lock(mm);
7b86ac33 5822 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5823 mmap_read_unlock(mm);
4ffef5fe
DN
5824
5825 precharge = mc.precharge;
5826 mc.precharge = 0;
5827
5828 return precharge;
5829}
5830
4ffef5fe
DN
5831static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5832{
dfe076b0
DN
5833 unsigned long precharge = mem_cgroup_count_precharge(mm);
5834
5835 VM_BUG_ON(mc.moving_task);
5836 mc.moving_task = current;
5837 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5838}
5839
dfe076b0
DN
5840/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5841static void __mem_cgroup_clear_mc(void)
4ffef5fe 5842{
2bd9bb20
KH
5843 struct mem_cgroup *from = mc.from;
5844 struct mem_cgroup *to = mc.to;
5845
4ffef5fe 5846 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5847 if (mc.precharge) {
00501b53 5848 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5849 mc.precharge = 0;
5850 }
5851 /*
5852 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5853 * we must uncharge here.
5854 */
5855 if (mc.moved_charge) {
00501b53 5856 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5857 mc.moved_charge = 0;
4ffef5fe 5858 }
483c30b5
DN
5859 /* we must fixup refcnts and charges */
5860 if (mc.moved_swap) {
483c30b5 5861 /* uncharge swap account from the old cgroup */
ce00a967 5862 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5863 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5864
615d66c3
VD
5865 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5866
05b84301 5867 /*
3e32cb2e
JW
5868 * we charged both to->memory and to->memsw, so we
5869 * should uncharge to->memory.
05b84301 5870 */
ce00a967 5871 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5872 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5873
483c30b5
DN
5874 mc.moved_swap = 0;
5875 }
dfe076b0
DN
5876 memcg_oom_recover(from);
5877 memcg_oom_recover(to);
5878 wake_up_all(&mc.waitq);
5879}
5880
5881static void mem_cgroup_clear_mc(void)
5882{
264a0ae1
TH
5883 struct mm_struct *mm = mc.mm;
5884
dfe076b0
DN
5885 /*
5886 * we must clear moving_task before waking up waiters at the end of
5887 * task migration.
5888 */
5889 mc.moving_task = NULL;
5890 __mem_cgroup_clear_mc();
2bd9bb20 5891 spin_lock(&mc.lock);
4ffef5fe
DN
5892 mc.from = NULL;
5893 mc.to = NULL;
264a0ae1 5894 mc.mm = NULL;
2bd9bb20 5895 spin_unlock(&mc.lock);
264a0ae1
TH
5896
5897 mmput(mm);
4ffef5fe
DN
5898}
5899
1f7dd3e5 5900static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5901{
1f7dd3e5 5902 struct cgroup_subsys_state *css;
eed67d75 5903 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5904 struct mem_cgroup *from;
4530eddb 5905 struct task_struct *leader, *p;
9f2115f9 5906 struct mm_struct *mm;
1dfab5ab 5907 unsigned long move_flags;
9f2115f9 5908 int ret = 0;
7dc74be0 5909
1f7dd3e5
TH
5910 /* charge immigration isn't supported on the default hierarchy */
5911 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5912 return 0;
5913
4530eddb
TH
5914 /*
5915 * Multi-process migrations only happen on the default hierarchy
5916 * where charge immigration is not used. Perform charge
5917 * immigration if @tset contains a leader and whine if there are
5918 * multiple.
5919 */
5920 p = NULL;
1f7dd3e5 5921 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5922 WARN_ON_ONCE(p);
5923 p = leader;
1f7dd3e5 5924 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5925 }
5926 if (!p)
5927 return 0;
5928
1f7dd3e5 5929 /*
f0953a1b 5930 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
5931 * tunable will only affect upcoming migrations, not the current one.
5932 * So we need to save it, and keep it going.
5933 */
5934 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5935 if (!move_flags)
5936 return 0;
5937
9f2115f9
TH
5938 from = mem_cgroup_from_task(p);
5939
5940 VM_BUG_ON(from == memcg);
5941
5942 mm = get_task_mm(p);
5943 if (!mm)
5944 return 0;
5945 /* We move charges only when we move a owner of the mm */
5946 if (mm->owner == p) {
5947 VM_BUG_ON(mc.from);
5948 VM_BUG_ON(mc.to);
5949 VM_BUG_ON(mc.precharge);
5950 VM_BUG_ON(mc.moved_charge);
5951 VM_BUG_ON(mc.moved_swap);
5952
5953 spin_lock(&mc.lock);
264a0ae1 5954 mc.mm = mm;
9f2115f9
TH
5955 mc.from = from;
5956 mc.to = memcg;
5957 mc.flags = move_flags;
5958 spin_unlock(&mc.lock);
5959 /* We set mc.moving_task later */
5960
5961 ret = mem_cgroup_precharge_mc(mm);
5962 if (ret)
5963 mem_cgroup_clear_mc();
264a0ae1
TH
5964 } else {
5965 mmput(mm);
7dc74be0
DN
5966 }
5967 return ret;
5968}
5969
1f7dd3e5 5970static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5971{
4e2f245d
JW
5972 if (mc.to)
5973 mem_cgroup_clear_mc();
7dc74be0
DN
5974}
5975
4ffef5fe
DN
5976static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5977 unsigned long addr, unsigned long end,
5978 struct mm_walk *walk)
7dc74be0 5979{
4ffef5fe 5980 int ret = 0;
26bcd64a 5981 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5982 pte_t *pte;
5983 spinlock_t *ptl;
12724850
NH
5984 enum mc_target_type target_type;
5985 union mc_target target;
5986 struct page *page;
4ffef5fe 5987
b6ec57f4
KS
5988 ptl = pmd_trans_huge_lock(pmd, vma);
5989 if (ptl) {
62ade86a 5990 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5991 spin_unlock(ptl);
12724850
NH
5992 return 0;
5993 }
5994 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5995 if (target_type == MC_TARGET_PAGE) {
5996 page = target.page;
5997 if (!isolate_lru_page(page)) {
f627c2f5 5998 if (!mem_cgroup_move_account(page, true,
1306a85a 5999 mc.from, mc.to)) {
12724850
NH
6000 mc.precharge -= HPAGE_PMD_NR;
6001 mc.moved_charge += HPAGE_PMD_NR;
6002 }
6003 putback_lru_page(page);
6004 }
6005 put_page(page);
c733a828
JG
6006 } else if (target_type == MC_TARGET_DEVICE) {
6007 page = target.page;
6008 if (!mem_cgroup_move_account(page, true,
6009 mc.from, mc.to)) {
6010 mc.precharge -= HPAGE_PMD_NR;
6011 mc.moved_charge += HPAGE_PMD_NR;
6012 }
6013 put_page(page);
12724850 6014 }
bf929152 6015 spin_unlock(ptl);
1a5a9906 6016 return 0;
12724850
NH
6017 }
6018
45f83cef
AA
6019 if (pmd_trans_unstable(pmd))
6020 return 0;
4ffef5fe
DN
6021retry:
6022 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6023 for (; addr != end; addr += PAGE_SIZE) {
6024 pte_t ptent = *(pte++);
c733a828 6025 bool device = false;
02491447 6026 swp_entry_t ent;
4ffef5fe
DN
6027
6028 if (!mc.precharge)
6029 break;
6030
8d32ff84 6031 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6032 case MC_TARGET_DEVICE:
6033 device = true;
e4a9bc58 6034 fallthrough;
4ffef5fe
DN
6035 case MC_TARGET_PAGE:
6036 page = target.page;
53f9263b
KS
6037 /*
6038 * We can have a part of the split pmd here. Moving it
6039 * can be done but it would be too convoluted so simply
6040 * ignore such a partial THP and keep it in original
6041 * memcg. There should be somebody mapping the head.
6042 */
6043 if (PageTransCompound(page))
6044 goto put;
c733a828 6045 if (!device && isolate_lru_page(page))
4ffef5fe 6046 goto put;
f627c2f5
KS
6047 if (!mem_cgroup_move_account(page, false,
6048 mc.from, mc.to)) {
4ffef5fe 6049 mc.precharge--;
854ffa8d
DN
6050 /* we uncharge from mc.from later. */
6051 mc.moved_charge++;
4ffef5fe 6052 }
c733a828
JG
6053 if (!device)
6054 putback_lru_page(page);
8d32ff84 6055put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6056 put_page(page);
6057 break;
02491447
DN
6058 case MC_TARGET_SWAP:
6059 ent = target.ent;
e91cbb42 6060 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6061 mc.precharge--;
8d22a935
HD
6062 mem_cgroup_id_get_many(mc.to, 1);
6063 /* we fixup other refcnts and charges later. */
483c30b5
DN
6064 mc.moved_swap++;
6065 }
02491447 6066 break;
4ffef5fe
DN
6067 default:
6068 break;
6069 }
6070 }
6071 pte_unmap_unlock(pte - 1, ptl);
6072 cond_resched();
6073
6074 if (addr != end) {
6075 /*
6076 * We have consumed all precharges we got in can_attach().
6077 * We try charge one by one, but don't do any additional
6078 * charges to mc.to if we have failed in charge once in attach()
6079 * phase.
6080 */
854ffa8d 6081 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6082 if (!ret)
6083 goto retry;
6084 }
6085
6086 return ret;
6087}
6088
7b86ac33
CH
6089static const struct mm_walk_ops charge_walk_ops = {
6090 .pmd_entry = mem_cgroup_move_charge_pte_range,
6091};
6092
264a0ae1 6093static void mem_cgroup_move_charge(void)
4ffef5fe 6094{
4ffef5fe 6095 lru_add_drain_all();
312722cb 6096 /*
81f8c3a4
JW
6097 * Signal lock_page_memcg() to take the memcg's move_lock
6098 * while we're moving its pages to another memcg. Then wait
6099 * for already started RCU-only updates to finish.
312722cb
JW
6100 */
6101 atomic_inc(&mc.from->moving_account);
6102 synchronize_rcu();
dfe076b0 6103retry:
d8ed45c5 6104 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6105 /*
c1e8d7c6 6106 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6107 * waitq. So we cancel all extra charges, wake up all waiters,
6108 * and retry. Because we cancel precharges, we might not be able
6109 * to move enough charges, but moving charge is a best-effort
6110 * feature anyway, so it wouldn't be a big problem.
6111 */
6112 __mem_cgroup_clear_mc();
6113 cond_resched();
6114 goto retry;
6115 }
26bcd64a
NH
6116 /*
6117 * When we have consumed all precharges and failed in doing
6118 * additional charge, the page walk just aborts.
6119 */
7b86ac33
CH
6120 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6121 NULL);
0247f3f4 6122
d8ed45c5 6123 mmap_read_unlock(mc.mm);
312722cb 6124 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6125}
6126
264a0ae1 6127static void mem_cgroup_move_task(void)
67e465a7 6128{
264a0ae1
TH
6129 if (mc.to) {
6130 mem_cgroup_move_charge();
a433658c 6131 mem_cgroup_clear_mc();
264a0ae1 6132 }
67e465a7 6133}
5cfb80a7 6134#else /* !CONFIG_MMU */
1f7dd3e5 6135static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6136{
6137 return 0;
6138}
1f7dd3e5 6139static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6140{
6141}
264a0ae1 6142static void mem_cgroup_move_task(void)
5cfb80a7
DN
6143{
6144}
6145#endif
67e465a7 6146
677dc973
CD
6147static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6148{
6149 if (value == PAGE_COUNTER_MAX)
6150 seq_puts(m, "max\n");
6151 else
6152 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6153
6154 return 0;
6155}
6156
241994ed
JW
6157static u64 memory_current_read(struct cgroup_subsys_state *css,
6158 struct cftype *cft)
6159{
f5fc3c5d
JW
6160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6161
6162 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6163}
6164
bf8d5d52
RG
6165static int memory_min_show(struct seq_file *m, void *v)
6166{
677dc973
CD
6167 return seq_puts_memcg_tunable(m,
6168 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6169}
6170
6171static ssize_t memory_min_write(struct kernfs_open_file *of,
6172 char *buf, size_t nbytes, loff_t off)
6173{
6174 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6175 unsigned long min;
6176 int err;
6177
6178 buf = strstrip(buf);
6179 err = page_counter_memparse(buf, "max", &min);
6180 if (err)
6181 return err;
6182
6183 page_counter_set_min(&memcg->memory, min);
6184
6185 return nbytes;
6186}
6187
241994ed
JW
6188static int memory_low_show(struct seq_file *m, void *v)
6189{
677dc973
CD
6190 return seq_puts_memcg_tunable(m,
6191 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6192}
6193
6194static ssize_t memory_low_write(struct kernfs_open_file *of,
6195 char *buf, size_t nbytes, loff_t off)
6196{
6197 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6198 unsigned long low;
6199 int err;
6200
6201 buf = strstrip(buf);
d2973697 6202 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6203 if (err)
6204 return err;
6205
23067153 6206 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6207
6208 return nbytes;
6209}
6210
6211static int memory_high_show(struct seq_file *m, void *v)
6212{
d1663a90
JK
6213 return seq_puts_memcg_tunable(m,
6214 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6215}
6216
6217static ssize_t memory_high_write(struct kernfs_open_file *of,
6218 char *buf, size_t nbytes, loff_t off)
6219{
6220 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6221 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6222 bool drained = false;
241994ed
JW
6223 unsigned long high;
6224 int err;
6225
6226 buf = strstrip(buf);
d2973697 6227 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6228 if (err)
6229 return err;
6230
e82553c1
JW
6231 page_counter_set_high(&memcg->memory, high);
6232
8c8c383c
JW
6233 for (;;) {
6234 unsigned long nr_pages = page_counter_read(&memcg->memory);
6235 unsigned long reclaimed;
6236
6237 if (nr_pages <= high)
6238 break;
6239
6240 if (signal_pending(current))
6241 break;
6242
6243 if (!drained) {
6244 drain_all_stock(memcg);
6245 drained = true;
6246 continue;
6247 }
6248
6249 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6250 GFP_KERNEL, true);
6251
6252 if (!reclaimed && !nr_retries--)
6253 break;
6254 }
588083bb 6255
19ce33ac 6256 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6257 return nbytes;
6258}
6259
6260static int memory_max_show(struct seq_file *m, void *v)
6261{
677dc973
CD
6262 return seq_puts_memcg_tunable(m,
6263 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6264}
6265
6266static ssize_t memory_max_write(struct kernfs_open_file *of,
6267 char *buf, size_t nbytes, loff_t off)
6268{
6269 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6270 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6271 bool drained = false;
241994ed
JW
6272 unsigned long max;
6273 int err;
6274
6275 buf = strstrip(buf);
d2973697 6276 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6277 if (err)
6278 return err;
6279
bbec2e15 6280 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6281
6282 for (;;) {
6283 unsigned long nr_pages = page_counter_read(&memcg->memory);
6284
6285 if (nr_pages <= max)
6286 break;
6287
7249c9f0 6288 if (signal_pending(current))
b6e6edcf 6289 break;
b6e6edcf
JW
6290
6291 if (!drained) {
6292 drain_all_stock(memcg);
6293 drained = true;
6294 continue;
6295 }
6296
6297 if (nr_reclaims) {
6298 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6299 GFP_KERNEL, true))
6300 nr_reclaims--;
6301 continue;
6302 }
6303
e27be240 6304 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6305 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6306 break;
6307 }
241994ed 6308
2529bb3a 6309 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6310 return nbytes;
6311}
6312
1e577f97
SB
6313static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6314{
6315 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6316 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6317 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6318 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6319 seq_printf(m, "oom_kill %lu\n",
6320 atomic_long_read(&events[MEMCG_OOM_KILL]));
6321}
6322
241994ed
JW
6323static int memory_events_show(struct seq_file *m, void *v)
6324{
aa9694bb 6325 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6326
1e577f97
SB
6327 __memory_events_show(m, memcg->memory_events);
6328 return 0;
6329}
6330
6331static int memory_events_local_show(struct seq_file *m, void *v)
6332{
6333 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6334
1e577f97 6335 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6336 return 0;
6337}
6338
587d9f72
JW
6339static int memory_stat_show(struct seq_file *m, void *v)
6340{
aa9694bb 6341 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6342 char *buf;
1ff9e6e1 6343
c8713d0b
JW
6344 buf = memory_stat_format(memcg);
6345 if (!buf)
6346 return -ENOMEM;
6347 seq_puts(m, buf);
6348 kfree(buf);
587d9f72
JW
6349 return 0;
6350}
6351
5f9a4f4a 6352#ifdef CONFIG_NUMA
fff66b79
MS
6353static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6354 int item)
6355{
6356 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6357}
6358
5f9a4f4a
MS
6359static int memory_numa_stat_show(struct seq_file *m, void *v)
6360{
6361 int i;
6362 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6363
fd25a9e0 6364 mem_cgroup_flush_stats();
7e1c0d6f 6365
5f9a4f4a
MS
6366 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6367 int nid;
6368
6369 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6370 continue;
6371
6372 seq_printf(m, "%s", memory_stats[i].name);
6373 for_each_node_state(nid, N_MEMORY) {
6374 u64 size;
6375 struct lruvec *lruvec;
6376
6377 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6378 size = lruvec_page_state_output(lruvec,
6379 memory_stats[i].idx);
5f9a4f4a
MS
6380 seq_printf(m, " N%d=%llu", nid, size);
6381 }
6382 seq_putc(m, '\n');
6383 }
6384
6385 return 0;
6386}
6387#endif
6388
3d8b38eb
RG
6389static int memory_oom_group_show(struct seq_file *m, void *v)
6390{
aa9694bb 6391 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6392
6393 seq_printf(m, "%d\n", memcg->oom_group);
6394
6395 return 0;
6396}
6397
6398static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6399 char *buf, size_t nbytes, loff_t off)
6400{
6401 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6402 int ret, oom_group;
6403
6404 buf = strstrip(buf);
6405 if (!buf)
6406 return -EINVAL;
6407
6408 ret = kstrtoint(buf, 0, &oom_group);
6409 if (ret)
6410 return ret;
6411
6412 if (oom_group != 0 && oom_group != 1)
6413 return -EINVAL;
6414
6415 memcg->oom_group = oom_group;
6416
6417 return nbytes;
6418}
6419
241994ed
JW
6420static struct cftype memory_files[] = {
6421 {
6422 .name = "current",
f5fc3c5d 6423 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6424 .read_u64 = memory_current_read,
6425 },
bf8d5d52
RG
6426 {
6427 .name = "min",
6428 .flags = CFTYPE_NOT_ON_ROOT,
6429 .seq_show = memory_min_show,
6430 .write = memory_min_write,
6431 },
241994ed
JW
6432 {
6433 .name = "low",
6434 .flags = CFTYPE_NOT_ON_ROOT,
6435 .seq_show = memory_low_show,
6436 .write = memory_low_write,
6437 },
6438 {
6439 .name = "high",
6440 .flags = CFTYPE_NOT_ON_ROOT,
6441 .seq_show = memory_high_show,
6442 .write = memory_high_write,
6443 },
6444 {
6445 .name = "max",
6446 .flags = CFTYPE_NOT_ON_ROOT,
6447 .seq_show = memory_max_show,
6448 .write = memory_max_write,
6449 },
6450 {
6451 .name = "events",
6452 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6453 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6454 .seq_show = memory_events_show,
6455 },
1e577f97
SB
6456 {
6457 .name = "events.local",
6458 .flags = CFTYPE_NOT_ON_ROOT,
6459 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6460 .seq_show = memory_events_local_show,
6461 },
587d9f72
JW
6462 {
6463 .name = "stat",
587d9f72
JW
6464 .seq_show = memory_stat_show,
6465 },
5f9a4f4a
MS
6466#ifdef CONFIG_NUMA
6467 {
6468 .name = "numa_stat",
6469 .seq_show = memory_numa_stat_show,
6470 },
6471#endif
3d8b38eb
RG
6472 {
6473 .name = "oom.group",
6474 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6475 .seq_show = memory_oom_group_show,
6476 .write = memory_oom_group_write,
6477 },
241994ed
JW
6478 { } /* terminate */
6479};
6480
073219e9 6481struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6482 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6483 .css_online = mem_cgroup_css_online,
92fb9748 6484 .css_offline = mem_cgroup_css_offline,
6df38689 6485 .css_released = mem_cgroup_css_released,
92fb9748 6486 .css_free = mem_cgroup_css_free,
1ced953b 6487 .css_reset = mem_cgroup_css_reset,
2d146aa3 6488 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0
DN
6489 .can_attach = mem_cgroup_can_attach,
6490 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6491 .post_attach = mem_cgroup_move_task,
241994ed
JW
6492 .dfl_cftypes = memory_files,
6493 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6494 .early_init = 0,
8cdea7c0 6495};
c077719b 6496
bc50bcc6
JW
6497/*
6498 * This function calculates an individual cgroup's effective
6499 * protection which is derived from its own memory.min/low, its
6500 * parent's and siblings' settings, as well as the actual memory
6501 * distribution in the tree.
6502 *
6503 * The following rules apply to the effective protection values:
6504 *
6505 * 1. At the first level of reclaim, effective protection is equal to
6506 * the declared protection in memory.min and memory.low.
6507 *
6508 * 2. To enable safe delegation of the protection configuration, at
6509 * subsequent levels the effective protection is capped to the
6510 * parent's effective protection.
6511 *
6512 * 3. To make complex and dynamic subtrees easier to configure, the
6513 * user is allowed to overcommit the declared protection at a given
6514 * level. If that is the case, the parent's effective protection is
6515 * distributed to the children in proportion to how much protection
6516 * they have declared and how much of it they are utilizing.
6517 *
6518 * This makes distribution proportional, but also work-conserving:
6519 * if one cgroup claims much more protection than it uses memory,
6520 * the unused remainder is available to its siblings.
6521 *
6522 * 4. Conversely, when the declared protection is undercommitted at a
6523 * given level, the distribution of the larger parental protection
6524 * budget is NOT proportional. A cgroup's protection from a sibling
6525 * is capped to its own memory.min/low setting.
6526 *
8a931f80
JW
6527 * 5. However, to allow protecting recursive subtrees from each other
6528 * without having to declare each individual cgroup's fixed share
6529 * of the ancestor's claim to protection, any unutilized -
6530 * "floating" - protection from up the tree is distributed in
6531 * proportion to each cgroup's *usage*. This makes the protection
6532 * neutral wrt sibling cgroups and lets them compete freely over
6533 * the shared parental protection budget, but it protects the
6534 * subtree as a whole from neighboring subtrees.
6535 *
6536 * Note that 4. and 5. are not in conflict: 4. is about protecting
6537 * against immediate siblings whereas 5. is about protecting against
6538 * neighboring subtrees.
bc50bcc6
JW
6539 */
6540static unsigned long effective_protection(unsigned long usage,
8a931f80 6541 unsigned long parent_usage,
bc50bcc6
JW
6542 unsigned long setting,
6543 unsigned long parent_effective,
6544 unsigned long siblings_protected)
6545{
6546 unsigned long protected;
8a931f80 6547 unsigned long ep;
bc50bcc6
JW
6548
6549 protected = min(usage, setting);
6550 /*
6551 * If all cgroups at this level combined claim and use more
6552 * protection then what the parent affords them, distribute
6553 * shares in proportion to utilization.
6554 *
6555 * We are using actual utilization rather than the statically
6556 * claimed protection in order to be work-conserving: claimed
6557 * but unused protection is available to siblings that would
6558 * otherwise get a smaller chunk than what they claimed.
6559 */
6560 if (siblings_protected > parent_effective)
6561 return protected * parent_effective / siblings_protected;
6562
6563 /*
6564 * Ok, utilized protection of all children is within what the
6565 * parent affords them, so we know whatever this child claims
6566 * and utilizes is effectively protected.
6567 *
6568 * If there is unprotected usage beyond this value, reclaim
6569 * will apply pressure in proportion to that amount.
6570 *
6571 * If there is unutilized protection, the cgroup will be fully
6572 * shielded from reclaim, but we do return a smaller value for
6573 * protection than what the group could enjoy in theory. This
6574 * is okay. With the overcommit distribution above, effective
6575 * protection is always dependent on how memory is actually
6576 * consumed among the siblings anyway.
6577 */
8a931f80
JW
6578 ep = protected;
6579
6580 /*
6581 * If the children aren't claiming (all of) the protection
6582 * afforded to them by the parent, distribute the remainder in
6583 * proportion to the (unprotected) memory of each cgroup. That
6584 * way, cgroups that aren't explicitly prioritized wrt each
6585 * other compete freely over the allowance, but they are
6586 * collectively protected from neighboring trees.
6587 *
6588 * We're using unprotected memory for the weight so that if
6589 * some cgroups DO claim explicit protection, we don't protect
6590 * the same bytes twice.
cd324edc
JW
6591 *
6592 * Check both usage and parent_usage against the respective
6593 * protected values. One should imply the other, but they
6594 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6595 */
6596 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6597 return ep;
cd324edc
JW
6598 if (parent_effective > siblings_protected &&
6599 parent_usage > siblings_protected &&
6600 usage > protected) {
8a931f80
JW
6601 unsigned long unclaimed;
6602
6603 unclaimed = parent_effective - siblings_protected;
6604 unclaimed *= usage - protected;
6605 unclaimed /= parent_usage - siblings_protected;
6606
6607 ep += unclaimed;
6608 }
6609
6610 return ep;
bc50bcc6
JW
6611}
6612
241994ed 6613/**
05395718 6614 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6615 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6616 * @memcg: the memory cgroup to check
6617 *
23067153
RG
6618 * WARNING: This function is not stateless! It can only be used as part
6619 * of a top-down tree iteration, not for isolated queries.
241994ed 6620 */
45c7f7e1
CD
6621void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6622 struct mem_cgroup *memcg)
241994ed 6623{
8a931f80 6624 unsigned long usage, parent_usage;
23067153
RG
6625 struct mem_cgroup *parent;
6626
241994ed 6627 if (mem_cgroup_disabled())
45c7f7e1 6628 return;
241994ed 6629
34c81057
SC
6630 if (!root)
6631 root = root_mem_cgroup;
22f7496f
YS
6632
6633 /*
6634 * Effective values of the reclaim targets are ignored so they
6635 * can be stale. Have a look at mem_cgroup_protection for more
6636 * details.
6637 * TODO: calculation should be more robust so that we do not need
6638 * that special casing.
6639 */
34c81057 6640 if (memcg == root)
45c7f7e1 6641 return;
241994ed 6642
23067153 6643 usage = page_counter_read(&memcg->memory);
bf8d5d52 6644 if (!usage)
45c7f7e1 6645 return;
bf8d5d52 6646
bf8d5d52 6647 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6648 /* No parent means a non-hierarchical mode on v1 memcg */
6649 if (!parent)
45c7f7e1 6650 return;
df2a4196 6651
bc50bcc6 6652 if (parent == root) {
c3d53200 6653 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6654 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6655 return;
bf8d5d52
RG
6656 }
6657
8a931f80
JW
6658 parent_usage = page_counter_read(&parent->memory);
6659
b3a7822e 6660 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6661 READ_ONCE(memcg->memory.min),
6662 READ_ONCE(parent->memory.emin),
b3a7822e 6663 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6664
b3a7822e 6665 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6666 READ_ONCE(memcg->memory.low),
6667 READ_ONCE(parent->memory.elow),
b3a7822e 6668 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6669}
6670
8f425e4e
MWO
6671static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6672 gfp_t gfp)
0add0c77 6673{
118f2875 6674 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
6675 int ret;
6676
6677 ret = try_charge(memcg, gfp, nr_pages);
6678 if (ret)
6679 goto out;
6680
6681 css_get(&memcg->css);
118f2875 6682 commit_charge(folio, memcg);
0add0c77
SB
6683
6684 local_irq_disable();
6e0110c2 6685 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 6686 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
6687 local_irq_enable();
6688out:
6689 return ret;
6690}
6691
8f425e4e 6692int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 6693{
0add0c77
SB
6694 struct mem_cgroup *memcg;
6695 int ret;
00501b53 6696
0add0c77 6697 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 6698 ret = charge_memcg(folio, memcg, gfp);
0add0c77 6699 css_put(&memcg->css);
2d1c4980 6700
0add0c77
SB
6701 return ret;
6702}
e993d905 6703
0add0c77
SB
6704/**
6705 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6706 * @page: page to charge
6707 * @mm: mm context of the victim
6708 * @gfp: reclaim mode
6709 * @entry: swap entry for which the page is allocated
6710 *
6711 * This function charges a page allocated for swapin. Please call this before
6712 * adding the page to the swapcache.
6713 *
6714 * Returns 0 on success. Otherwise, an error code is returned.
6715 */
6716int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6717 gfp_t gfp, swp_entry_t entry)
6718{
8f425e4e 6719 struct folio *folio = page_folio(page);
0add0c77
SB
6720 struct mem_cgroup *memcg;
6721 unsigned short id;
6722 int ret;
00501b53 6723
0add0c77
SB
6724 if (mem_cgroup_disabled())
6725 return 0;
00501b53 6726
0add0c77
SB
6727 id = lookup_swap_cgroup_id(entry);
6728 rcu_read_lock();
6729 memcg = mem_cgroup_from_id(id);
6730 if (!memcg || !css_tryget_online(&memcg->css))
6731 memcg = get_mem_cgroup_from_mm(mm);
6732 rcu_read_unlock();
00501b53 6733
8f425e4e 6734 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 6735
0add0c77
SB
6736 css_put(&memcg->css);
6737 return ret;
6738}
00501b53 6739
0add0c77
SB
6740/*
6741 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6742 * @entry: swap entry for which the page is charged
6743 *
6744 * Call this function after successfully adding the charged page to swapcache.
6745 *
6746 * Note: This function assumes the page for which swap slot is being uncharged
6747 * is order 0 page.
6748 */
6749void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6750{
cae3af62
MS
6751 /*
6752 * Cgroup1's unified memory+swap counter has been charged with the
6753 * new swapcache page, finish the transfer by uncharging the swap
6754 * slot. The swap slot would also get uncharged when it dies, but
6755 * it can stick around indefinitely and we'd count the page twice
6756 * the entire time.
6757 *
6758 * Cgroup2 has separate resource counters for memory and swap,
6759 * so this is a non-issue here. Memory and swap charge lifetimes
6760 * correspond 1:1 to page and swap slot lifetimes: we charge the
6761 * page to memory here, and uncharge swap when the slot is freed.
6762 */
0add0c77 6763 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6764 /*
6765 * The swap entry might not get freed for a long time,
6766 * let's not wait for it. The page already received a
6767 * memory+swap charge, drop the swap entry duplicate.
6768 */
0add0c77 6769 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6770 }
3fea5a49
JW
6771}
6772
a9d5adee
JG
6773struct uncharge_gather {
6774 struct mem_cgroup *memcg;
b4e0b68f 6775 unsigned long nr_memory;
a9d5adee 6776 unsigned long pgpgout;
a9d5adee 6777 unsigned long nr_kmem;
8e88bd2d 6778 int nid;
a9d5adee
JG
6779};
6780
6781static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6782{
a9d5adee
JG
6783 memset(ug, 0, sizeof(*ug));
6784}
6785
6786static void uncharge_batch(const struct uncharge_gather *ug)
6787{
747db954
JW
6788 unsigned long flags;
6789
b4e0b68f
MS
6790 if (ug->nr_memory) {
6791 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 6792 if (do_memsw_account())
b4e0b68f 6793 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a9d5adee
JG
6794 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6795 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6796 memcg_oom_recover(ug->memcg);
ce00a967 6797 }
747db954
JW
6798
6799 local_irq_save(flags);
c9019e9b 6800 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 6801 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 6802 memcg_check_events(ug->memcg, ug->nid);
747db954 6803 local_irq_restore(flags);
f1796544 6804
c4ed6ebf 6805 /* drop reference from uncharge_folio */
f1796544 6806 css_put(&ug->memcg->css);
a9d5adee
JG
6807}
6808
c4ed6ebf 6809static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 6810{
c4ed6ebf 6811 long nr_pages;
b4e0b68f
MS
6812 struct mem_cgroup *memcg;
6813 struct obj_cgroup *objcg;
c4ed6ebf 6814 bool use_objcg = folio_memcg_kmem(folio);
9f762dbe 6815
c4ed6ebf 6816 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 6817
a9d5adee
JG
6818 /*
6819 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
6820 * folio memcg or objcg at this point, we have fully
6821 * exclusive access to the folio.
a9d5adee 6822 */
55927114 6823 if (use_objcg) {
1b7e4464 6824 objcg = __folio_objcg(folio);
b4e0b68f
MS
6825 /*
6826 * This get matches the put at the end of the function and
6827 * kmem pages do not hold memcg references anymore.
6828 */
6829 memcg = get_mem_cgroup_from_objcg(objcg);
6830 } else {
1b7e4464 6831 memcg = __folio_memcg(folio);
b4e0b68f 6832 }
a9d5adee 6833
b4e0b68f
MS
6834 if (!memcg)
6835 return;
6836
6837 if (ug->memcg != memcg) {
a9d5adee
JG
6838 if (ug->memcg) {
6839 uncharge_batch(ug);
6840 uncharge_gather_clear(ug);
6841 }
b4e0b68f 6842 ug->memcg = memcg;
c4ed6ebf 6843 ug->nid = folio_nid(folio);
f1796544
MH
6844
6845 /* pairs with css_put in uncharge_batch */
b4e0b68f 6846 css_get(&memcg->css);
a9d5adee
JG
6847 }
6848
c4ed6ebf 6849 nr_pages = folio_nr_pages(folio);
a9d5adee 6850
55927114 6851 if (use_objcg) {
b4e0b68f 6852 ug->nr_memory += nr_pages;
9f762dbe 6853 ug->nr_kmem += nr_pages;
b4e0b68f 6854
c4ed6ebf 6855 folio->memcg_data = 0;
b4e0b68f
MS
6856 obj_cgroup_put(objcg);
6857 } else {
6858 /* LRU pages aren't accounted at the root level */
6859 if (!mem_cgroup_is_root(memcg))
6860 ug->nr_memory += nr_pages;
18b2db3b 6861 ug->pgpgout++;
a9d5adee 6862
c4ed6ebf 6863 folio->memcg_data = 0;
b4e0b68f
MS
6864 }
6865
6866 css_put(&memcg->css);
747db954
JW
6867}
6868
bbc6b703 6869void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 6870{
a9d5adee
JG
6871 struct uncharge_gather ug;
6872
bbc6b703
MWO
6873 /* Don't touch folio->lru of any random page, pre-check: */
6874 if (!folio_memcg(folio))
0a31bc97
JW
6875 return;
6876
a9d5adee 6877 uncharge_gather_clear(&ug);
bbc6b703 6878 uncharge_folio(folio, &ug);
a9d5adee 6879 uncharge_batch(&ug);
747db954 6880}
0a31bc97 6881
747db954 6882/**
2c8d8f97 6883 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
6884 * @page_list: list of pages to uncharge
6885 *
6886 * Uncharge a list of pages previously charged with
2c8d8f97 6887 * __mem_cgroup_charge().
747db954 6888 */
2c8d8f97 6889void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 6890{
c41a40b6 6891 struct uncharge_gather ug;
c4ed6ebf 6892 struct folio *folio;
c41a40b6 6893
c41a40b6 6894 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
6895 list_for_each_entry(folio, page_list, lru)
6896 uncharge_folio(folio, &ug);
c41a40b6
MS
6897 if (ug.memcg)
6898 uncharge_batch(&ug);
0a31bc97
JW
6899}
6900
6901/**
d21bba2b
MWO
6902 * mem_cgroup_migrate - Charge a folio's replacement.
6903 * @old: Currently circulating folio.
6904 * @new: Replacement folio.
0a31bc97 6905 *
d21bba2b 6906 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 6907 * be uncharged upon free.
0a31bc97 6908 *
d21bba2b 6909 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 6910 */
d21bba2b 6911void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 6912{
29833315 6913 struct mem_cgroup *memcg;
d21bba2b 6914 long nr_pages = folio_nr_pages(new);
d93c4130 6915 unsigned long flags;
0a31bc97 6916
d21bba2b
MWO
6917 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6918 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6919 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6920 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
6921
6922 if (mem_cgroup_disabled())
6923 return;
6924
d21bba2b
MWO
6925 /* Page cache replacement: new folio already charged? */
6926 if (folio_memcg(new))
0a31bc97
JW
6927 return;
6928
d21bba2b
MWO
6929 memcg = folio_memcg(old);
6930 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 6931 if (!memcg)
0a31bc97
JW
6932 return;
6933
44b7a8d3 6934 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
6935 if (!mem_cgroup_is_root(memcg)) {
6936 page_counter_charge(&memcg->memory, nr_pages);
6937 if (do_memsw_account())
6938 page_counter_charge(&memcg->memsw, nr_pages);
6939 }
0a31bc97 6940
1a3e1f40 6941 css_get(&memcg->css);
d21bba2b 6942 commit_charge(new, memcg);
44b7a8d3 6943
d93c4130 6944 local_irq_save(flags);
6e0110c2 6945 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 6946 memcg_check_events(memcg, folio_nid(new));
d93c4130 6947 local_irq_restore(flags);
0a31bc97
JW
6948}
6949
ef12947c 6950DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6951EXPORT_SYMBOL(memcg_sockets_enabled_key);
6952
2d758073 6953void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6954{
6955 struct mem_cgroup *memcg;
6956
2d758073
JW
6957 if (!mem_cgroup_sockets_enabled)
6958 return;
6959
e876ecc6
SB
6960 /* Do not associate the sock with unrelated interrupted task's memcg. */
6961 if (in_interrupt())
6962 return;
6963
11092087
JW
6964 rcu_read_lock();
6965 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6966 if (memcg == root_mem_cgroup)
6967 goto out;
0db15298 6968 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6969 goto out;
8965aa28 6970 if (css_tryget(&memcg->css))
11092087 6971 sk->sk_memcg = memcg;
f7e1cb6e 6972out:
11092087
JW
6973 rcu_read_unlock();
6974}
11092087 6975
2d758073 6976void mem_cgroup_sk_free(struct sock *sk)
11092087 6977{
2d758073
JW
6978 if (sk->sk_memcg)
6979 css_put(&sk->sk_memcg->css);
11092087
JW
6980}
6981
6982/**
6983 * mem_cgroup_charge_skmem - charge socket memory
6984 * @memcg: memcg to charge
6985 * @nr_pages: number of pages to charge
4b1327be 6986 * @gfp_mask: reclaim mode
11092087
JW
6987 *
6988 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 6989 * @memcg's configured limit, %false if it doesn't.
11092087 6990 */
4b1327be
WW
6991bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6992 gfp_t gfp_mask)
11092087 6993{
f7e1cb6e 6994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6995 struct page_counter *fail;
f7e1cb6e 6996
0db15298
JW
6997 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6998 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6999 return true;
7000 }
0db15298 7001 memcg->tcpmem_pressure = 1;
4b1327be
WW
7002 if (gfp_mask & __GFP_NOFAIL) {
7003 page_counter_charge(&memcg->tcpmem, nr_pages);
7004 return true;
7005 }
f7e1cb6e 7006 return false;
11092087 7007 }
d886f4e4 7008
4b1327be
WW
7009 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7010 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7011 return true;
4b1327be 7012 }
f7e1cb6e 7013
11092087
JW
7014 return false;
7015}
7016
7017/**
7018 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7019 * @memcg: memcg to uncharge
7020 * @nr_pages: number of pages to uncharge
11092087
JW
7021 */
7022void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7023{
f7e1cb6e 7024 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7025 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7026 return;
7027 }
d886f4e4 7028
c9019e9b 7029 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7030
475d0487 7031 refill_stock(memcg, nr_pages);
11092087
JW
7032}
7033
f7e1cb6e
JW
7034static int __init cgroup_memory(char *s)
7035{
7036 char *token;
7037
7038 while ((token = strsep(&s, ",")) != NULL) {
7039 if (!*token)
7040 continue;
7041 if (!strcmp(token, "nosocket"))
7042 cgroup_memory_nosocket = true;
04823c83
VD
7043 if (!strcmp(token, "nokmem"))
7044 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7045 }
7046 return 0;
7047}
7048__setup("cgroup.memory=", cgroup_memory);
11092087 7049
2d11085e 7050/*
1081312f
MH
7051 * subsys_initcall() for memory controller.
7052 *
308167fc
SAS
7053 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7054 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7055 * basically everything that doesn't depend on a specific mem_cgroup structure
7056 * should be initialized from here.
2d11085e
MH
7057 */
7058static int __init mem_cgroup_init(void)
7059{
95a045f6
JW
7060 int cpu, node;
7061
f3344adf
MS
7062 /*
7063 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7064 * used for per-memcg-per-cpu caching of per-node statistics. In order
7065 * to work fine, we should make sure that the overfill threshold can't
7066 * exceed S32_MAX / PAGE_SIZE.
7067 */
7068 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7069
308167fc
SAS
7070 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7071 memcg_hotplug_cpu_dead);
95a045f6
JW
7072
7073 for_each_possible_cpu(cpu)
7074 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7075 drain_local_stock);
7076
7077 for_each_node(node) {
7078 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7079
7080 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7081 node_online(node) ? node : NUMA_NO_NODE);
7082
ef8f2327 7083 rtpn->rb_root = RB_ROOT;
fa90b2fd 7084 rtpn->rb_rightmost = NULL;
ef8f2327 7085 spin_lock_init(&rtpn->lock);
95a045f6
JW
7086 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7087 }
7088
2d11085e
MH
7089 return 0;
7090}
7091subsys_initcall(mem_cgroup_init);
21afa38e
JW
7092
7093#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7094static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7095{
1c2d479a 7096 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7097 /*
7098 * The root cgroup cannot be destroyed, so it's refcount must
7099 * always be >= 1.
7100 */
7101 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7102 VM_BUG_ON(1);
7103 break;
7104 }
7105 memcg = parent_mem_cgroup(memcg);
7106 if (!memcg)
7107 memcg = root_mem_cgroup;
7108 }
7109 return memcg;
7110}
7111
21afa38e
JW
7112/**
7113 * mem_cgroup_swapout - transfer a memsw charge to swap
7114 * @page: page whose memsw charge to transfer
7115 * @entry: swap entry to move the charge to
7116 *
7117 * Transfer the memsw charge of @page to @entry.
7118 */
7119void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7120{
1f47b61f 7121 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7122 unsigned int nr_entries;
21afa38e
JW
7123 unsigned short oldid;
7124
7125 VM_BUG_ON_PAGE(PageLRU(page), page);
7126 VM_BUG_ON_PAGE(page_count(page), page);
7127
76358ab5
AS
7128 if (mem_cgroup_disabled())
7129 return;
7130
2d1c4980 7131 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7132 return;
7133
bcfe06bf 7134 memcg = page_memcg(page);
21afa38e 7135
a4055888 7136 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7137 if (!memcg)
7138 return;
7139
1f47b61f
VD
7140 /*
7141 * In case the memcg owning these pages has been offlined and doesn't
7142 * have an ID allocated to it anymore, charge the closest online
7143 * ancestor for the swap instead and transfer the memory+swap charge.
7144 */
7145 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7146 nr_entries = thp_nr_pages(page);
d6810d73
HY
7147 /* Get references for the tail pages, too */
7148 if (nr_entries > 1)
7149 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7150 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7151 nr_entries);
21afa38e 7152 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7153 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7154
bcfe06bf 7155 page->memcg_data = 0;
21afa38e
JW
7156
7157 if (!mem_cgroup_is_root(memcg))
d6810d73 7158 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7159
2d1c4980 7160 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7161 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7162 page_counter_charge(&swap_memcg->memsw, nr_entries);
7163 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7164 }
7165
ce9ce665
SAS
7166 /*
7167 * Interrupts should be disabled here because the caller holds the
b93b0163 7168 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7169 * important here to have the interrupts disabled because it is the
b93b0163 7170 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7171 */
7172 VM_BUG_ON(!irqs_disabled());
6e0110c2 7173 mem_cgroup_charge_statistics(memcg, -nr_entries);
8e88bd2d 7174 memcg_check_events(memcg, page_to_nid(page));
73f576c0 7175
1a3e1f40 7176 css_put(&memcg->css);
21afa38e
JW
7177}
7178
38d8b4e6 7179/**
01c4b28c 7180 * __mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7181 * @page: page being added to swap
7182 * @entry: swap entry to charge
7183 *
38d8b4e6 7184 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7185 *
7186 * Returns 0 on success, -ENOMEM on failure.
7187 */
01c4b28c 7188int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
37e84351 7189{
6c357848 7190 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7191 struct page_counter *counter;
38d8b4e6 7192 struct mem_cgroup *memcg;
37e84351
VD
7193 unsigned short oldid;
7194
2d1c4980 7195 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7196 return 0;
7197
bcfe06bf 7198 memcg = page_memcg(page);
37e84351 7199
a4055888 7200 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7201 if (!memcg)
7202 return 0;
7203
f3a53a3a
TH
7204 if (!entry.val) {
7205 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7206 return 0;
f3a53a3a 7207 }
bb98f2c5 7208
1f47b61f
VD
7209 memcg = mem_cgroup_id_get_online(memcg);
7210
2d1c4980 7211 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7212 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7213 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7214 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7215 mem_cgroup_id_put(memcg);
37e84351 7216 return -ENOMEM;
1f47b61f 7217 }
37e84351 7218
38d8b4e6
HY
7219 /* Get references for the tail pages, too */
7220 if (nr_pages > 1)
7221 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7222 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7223 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7224 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7225
37e84351
VD
7226 return 0;
7227}
7228
21afa38e 7229/**
01c4b28c 7230 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7231 * @entry: swap entry to uncharge
38d8b4e6 7232 * @nr_pages: the amount of swap space to uncharge
21afa38e 7233 */
01c4b28c 7234void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7235{
7236 struct mem_cgroup *memcg;
7237 unsigned short id;
7238
38d8b4e6 7239 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7240 rcu_read_lock();
adbe427b 7241 memcg = mem_cgroup_from_id(id);
21afa38e 7242 if (memcg) {
2d1c4980 7243 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7244 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7245 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7246 else
38d8b4e6 7247 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7248 }
c9019e9b 7249 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7250 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7251 }
7252 rcu_read_unlock();
7253}
7254
d8b38438
VD
7255long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7256{
7257 long nr_swap_pages = get_nr_swap_pages();
7258
eccb52e7 7259 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7260 return nr_swap_pages;
7261 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7262 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7263 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7264 page_counter_read(&memcg->swap));
7265 return nr_swap_pages;
7266}
7267
5ccc5aba
VD
7268bool mem_cgroup_swap_full(struct page *page)
7269{
7270 struct mem_cgroup *memcg;
7271
7272 VM_BUG_ON_PAGE(!PageLocked(page), page);
7273
7274 if (vm_swap_full())
7275 return true;
eccb52e7 7276 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7277 return false;
7278
bcfe06bf 7279 memcg = page_memcg(page);
5ccc5aba
VD
7280 if (!memcg)
7281 return false;
7282
4b82ab4f
JK
7283 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7284 unsigned long usage = page_counter_read(&memcg->swap);
7285
7286 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7287 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7288 return true;
4b82ab4f 7289 }
5ccc5aba
VD
7290
7291 return false;
7292}
7293
eccb52e7 7294static int __init setup_swap_account(char *s)
21afa38e
JW
7295{
7296 if (!strcmp(s, "1"))
5ab92901 7297 cgroup_memory_noswap = false;
21afa38e 7298 else if (!strcmp(s, "0"))
5ab92901 7299 cgroup_memory_noswap = true;
21afa38e
JW
7300 return 1;
7301}
eccb52e7 7302__setup("swapaccount=", setup_swap_account);
21afa38e 7303
37e84351
VD
7304static u64 swap_current_read(struct cgroup_subsys_state *css,
7305 struct cftype *cft)
7306{
7307 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7308
7309 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7310}
7311
4b82ab4f
JK
7312static int swap_high_show(struct seq_file *m, void *v)
7313{
7314 return seq_puts_memcg_tunable(m,
7315 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7316}
7317
7318static ssize_t swap_high_write(struct kernfs_open_file *of,
7319 char *buf, size_t nbytes, loff_t off)
7320{
7321 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7322 unsigned long high;
7323 int err;
7324
7325 buf = strstrip(buf);
7326 err = page_counter_memparse(buf, "max", &high);
7327 if (err)
7328 return err;
7329
7330 page_counter_set_high(&memcg->swap, high);
7331
7332 return nbytes;
7333}
7334
37e84351
VD
7335static int swap_max_show(struct seq_file *m, void *v)
7336{
677dc973
CD
7337 return seq_puts_memcg_tunable(m,
7338 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7339}
7340
7341static ssize_t swap_max_write(struct kernfs_open_file *of,
7342 char *buf, size_t nbytes, loff_t off)
7343{
7344 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7345 unsigned long max;
7346 int err;
7347
7348 buf = strstrip(buf);
7349 err = page_counter_memparse(buf, "max", &max);
7350 if (err)
7351 return err;
7352
be09102b 7353 xchg(&memcg->swap.max, max);
37e84351
VD
7354
7355 return nbytes;
7356}
7357
f3a53a3a
TH
7358static int swap_events_show(struct seq_file *m, void *v)
7359{
aa9694bb 7360 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7361
4b82ab4f
JK
7362 seq_printf(m, "high %lu\n",
7363 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7364 seq_printf(m, "max %lu\n",
7365 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7366 seq_printf(m, "fail %lu\n",
7367 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7368
7369 return 0;
7370}
7371
37e84351
VD
7372static struct cftype swap_files[] = {
7373 {
7374 .name = "swap.current",
7375 .flags = CFTYPE_NOT_ON_ROOT,
7376 .read_u64 = swap_current_read,
7377 },
4b82ab4f
JK
7378 {
7379 .name = "swap.high",
7380 .flags = CFTYPE_NOT_ON_ROOT,
7381 .seq_show = swap_high_show,
7382 .write = swap_high_write,
7383 },
37e84351
VD
7384 {
7385 .name = "swap.max",
7386 .flags = CFTYPE_NOT_ON_ROOT,
7387 .seq_show = swap_max_show,
7388 .write = swap_max_write,
7389 },
f3a53a3a
TH
7390 {
7391 .name = "swap.events",
7392 .flags = CFTYPE_NOT_ON_ROOT,
7393 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7394 .seq_show = swap_events_show,
7395 },
37e84351
VD
7396 { } /* terminate */
7397};
7398
eccb52e7 7399static struct cftype memsw_files[] = {
21afa38e
JW
7400 {
7401 .name = "memsw.usage_in_bytes",
7402 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7403 .read_u64 = mem_cgroup_read_u64,
7404 },
7405 {
7406 .name = "memsw.max_usage_in_bytes",
7407 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7408 .write = mem_cgroup_reset,
7409 .read_u64 = mem_cgroup_read_u64,
7410 },
7411 {
7412 .name = "memsw.limit_in_bytes",
7413 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7414 .write = mem_cgroup_write,
7415 .read_u64 = mem_cgroup_read_u64,
7416 },
7417 {
7418 .name = "memsw.failcnt",
7419 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7420 .write = mem_cgroup_reset,
7421 .read_u64 = mem_cgroup_read_u64,
7422 },
7423 { }, /* terminate */
7424};
7425
82ff165c
BS
7426/*
7427 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7428 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7429 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7430 * boot parameter. This may result in premature OOPS inside
7431 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7432 */
21afa38e
JW
7433static int __init mem_cgroup_swap_init(void)
7434{
2d1c4980
JW
7435 /* No memory control -> no swap control */
7436 if (mem_cgroup_disabled())
7437 cgroup_memory_noswap = true;
7438
7439 if (cgroup_memory_noswap)
eccb52e7
JW
7440 return 0;
7441
7442 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7443 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7444
21afa38e
JW
7445 return 0;
7446}
82ff165c 7447core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7448
7449#endif /* CONFIG_MEMCG_SWAP */