mm: memcontrol: simplify detecting when the memory+swap limit is hit
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
2f7dd7a4
JW
295 /* css_online() has been completed */
296 int initialized;
297
465939a1
LZ
298 /*
299 * the counter to account for mem+swap usage.
300 */
301 struct res_counter memsw;
59927fb9 302
510fc4e1
GC
303 /*
304 * the counter to account for kernel memory usage.
305 */
306 struct res_counter kmem;
18f59ea7
BS
307 /*
308 * Should the accounting and control be hierarchical, per subtree?
309 */
310 bool use_hierarchy;
510fc4e1 311 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
312
313 bool oom_lock;
314 atomic_t under_oom;
3812c8c8 315 atomic_t oom_wakeups;
79dfdacc 316
1f4c025b 317 int swappiness;
3c11ecf4
KH
318 /* OOM-Killer disable */
319 int oom_kill_disable;
a7885eb8 320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0 359#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
2633d7a0 362 struct list_head memcg_slab_caches;
2633d7a0
GC
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365#endif
45cf7ebd
GC
366
367 int last_scanned_node;
368#if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372#endif
70ddf637 373
fba94807
TH
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
54f72fe0
JW
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
380};
381
510fc4e1
GC
382/* internal only representation about the status of kmem accounting. */
383enum {
6de64beb 384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
386};
387
510fc4e1
GC
388#ifdef CONFIG_MEMCG_KMEM
389static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390{
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392}
7de37682
GC
393
394static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395{
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397}
398
399static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400{
10d5ebf4
LZ
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
7de37682
GC
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408}
409
410static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411{
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414}
510fc4e1
GC
415#endif
416
7dc74be0
DN
417/* Stuffs for move charges at task migration. */
418/*
ee5e8472
GC
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
421 */
422enum move_type {
4ffef5fe 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
425 NR_MOVE_TYPE,
426};
427
4ffef5fe
DN
428/* "mc" and its members are protected by cgroup_mutex */
429static struct move_charge_struct {
b1dd693e 430 spinlock_t lock; /* for from, to */
4ffef5fe
DN
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
ee5e8472 433 unsigned long immigrate_flags;
4ffef5fe 434 unsigned long precharge;
854ffa8d 435 unsigned long moved_charge;
483c30b5 436 unsigned long moved_swap;
8033b97c
DN
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439} mc = {
2bd9bb20 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442};
4ffef5fe 443
90254a65
DN
444static bool move_anon(void)
445{
ee5e8472 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
447}
448
87946a72
DN
449static bool move_file(void)
450{
ee5e8472 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
452}
453
4e416953
BS
454/*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
a0db00fc 458#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 459#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 460
217bc319
KH
461enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 463 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
466 NR_CHARGE_TYPE,
467};
468
8c7c6e34 469/* for encoding cft->private value on file */
86ae53e1
GC
470enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
510fc4e1 474 _KMEM,
86ae53e1
GC
475};
476
a0db00fc
KS
477#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 479#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
480/* Used for OOM nofiier */
481#define OOM_CONTROL (0)
8c7c6e34 482
75822b44
BS
483/*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
0999821b
GC
491/*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496static DEFINE_MUTEX(memcg_create_mutex);
497
b2145145
WL
498struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499{
a7c6d554 500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
501}
502
70ddf637
AV
503/* Some nice accessors for the vmpressure. */
504struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505{
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509}
510
511struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512{
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514}
515
7ffc0edc
MH
516static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517{
518 return (memcg == root_mem_cgroup);
519}
520
4219b2da
LZ
521/*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525#define MEM_CGROUP_ID_MAX USHRT_MAX
526
34c00c31
LZ
527static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528{
15a4c835 529 return memcg->css.id;
34c00c31
LZ
530}
531
532static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533{
534 struct cgroup_subsys_state *css;
535
7d699ddb 536 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
537 return mem_cgroup_from_css(css);
538}
539
e1aab161 540/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 541#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 542
e1aab161
GC
543void sock_update_memcg(struct sock *sk)
544{
376be5ff 545 if (mem_cgroup_sockets_enabled) {
e1aab161 546 struct mem_cgroup *memcg;
3f134619 547 struct cg_proto *cg_proto;
e1aab161
GC
548
549 BUG_ON(!sk->sk_prot->proto_cgroup);
550
f3f511e1
GC
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
555 *
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
558 */
559 if (sk->sk_cgrp) {
560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 561 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
562 return;
563 }
564
e1aab161
GC
565 rcu_read_lock();
566 memcg = mem_cgroup_from_task(current);
3f134619 567 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 568 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
569 memcg_proto_active(cg_proto) &&
570 css_tryget_online(&memcg->css)) {
3f134619 571 sk->sk_cgrp = cg_proto;
e1aab161
GC
572 }
573 rcu_read_unlock();
574 }
575}
576EXPORT_SYMBOL(sock_update_memcg);
577
578void sock_release_memcg(struct sock *sk)
579{
376be5ff 580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
5347e5ae 584 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
585 }
586}
d1a4c0b3
GC
587
588struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589{
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
2e685cad 593 return &memcg->tcp_mem;
d1a4c0b3
GC
594}
595EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 596
3f134619
GC
597static void disarm_sock_keys(struct mem_cgroup *memcg)
598{
2e685cad 599 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602}
603#else
604static void disarm_sock_keys(struct mem_cgroup *memcg)
605{
606}
607#endif
608
a8964b9b 609#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
610/*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
55007d84
GC
617 *
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
621 */
622static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
623int memcg_limited_groups_array_size;
624
55007d84
GC
625/*
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
630 *
b8627835 631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
635 * increase ours as well if it increases.
636 */
637#define MEMCG_CACHES_MIN_SIZE 4
b8627835 638#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 639
d7f25f8a
GC
640/*
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
645 */
a8964b9b 646struct static_key memcg_kmem_enabled_key;
d7f25f8a 647EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 648
f3bb3043
VD
649static void memcg_free_cache_id(int id);
650
a8964b9b
GC
651static void disarm_kmem_keys(struct mem_cgroup *memcg)
652{
55007d84 653 if (memcg_kmem_is_active(memcg)) {
a8964b9b 654 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 655 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 656 }
bea207c8
GC
657 /*
658 * This check can't live in kmem destruction function,
659 * since the charges will outlive the cgroup
660 */
661 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
662}
663#else
664static void disarm_kmem_keys(struct mem_cgroup *memcg)
665{
666}
667#endif /* CONFIG_MEMCG_KMEM */
668
669static void disarm_static_keys(struct mem_cgroup *memcg)
670{
671 disarm_sock_keys(memcg);
672 disarm_kmem_keys(memcg);
673}
674
c0ff4b85 675static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 676
f64c3f54 677static struct mem_cgroup_per_zone *
e231875b 678mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 679{
e231875b
JZ
680 int nid = zone_to_nid(zone);
681 int zid = zone_idx(zone);
682
54f72fe0 683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
684}
685
c0ff4b85 686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 687{
c0ff4b85 688 return &memcg->css;
d324236b
WF
689}
690
f64c3f54 691static struct mem_cgroup_per_zone *
e231875b 692mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 693{
97a6c37b
JW
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
f64c3f54 696
e231875b 697 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
698}
699
bb4cc1a8
AM
700static struct mem_cgroup_tree_per_zone *
701soft_limit_tree_node_zone(int nid, int zid)
702{
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704}
705
706static struct mem_cgroup_tree_per_zone *
707soft_limit_tree_from_page(struct page *page)
708{
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713}
714
cf2c8127
JW
715static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
716 struct mem_cgroup_tree_per_zone *mctz,
717 unsigned long long new_usage_in_excess)
bb4cc1a8
AM
718{
719 struct rb_node **p = &mctz->rb_root.rb_node;
720 struct rb_node *parent = NULL;
721 struct mem_cgroup_per_zone *mz_node;
722
723 if (mz->on_tree)
724 return;
725
726 mz->usage_in_excess = new_usage_in_excess;
727 if (!mz->usage_in_excess)
728 return;
729 while (*p) {
730 parent = *p;
731 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
732 tree_node);
733 if (mz->usage_in_excess < mz_node->usage_in_excess)
734 p = &(*p)->rb_left;
735 /*
736 * We can't avoid mem cgroups that are over their soft
737 * limit by the same amount
738 */
739 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
740 p = &(*p)->rb_right;
741 }
742 rb_link_node(&mz->tree_node, parent, p);
743 rb_insert_color(&mz->tree_node, &mctz->rb_root);
744 mz->on_tree = true;
745}
746
cf2c8127
JW
747static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
748 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
749{
750 if (!mz->on_tree)
751 return;
752 rb_erase(&mz->tree_node, &mctz->rb_root);
753 mz->on_tree = false;
754}
755
cf2c8127
JW
756static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
757 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 758{
0a31bc97
JW
759 unsigned long flags;
760
761 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 762 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 763 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
764}
765
766
767static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
768{
769 unsigned long long excess;
770 struct mem_cgroup_per_zone *mz;
771 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 772
e231875b 773 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
774 /*
775 * Necessary to update all ancestors when hierarchy is used.
776 * because their event counter is not touched.
777 */
778 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 779 mz = mem_cgroup_page_zoneinfo(memcg, page);
bb4cc1a8
AM
780 excess = res_counter_soft_limit_excess(&memcg->res);
781 /*
782 * We have to update the tree if mz is on RB-tree or
783 * mem is over its softlimit.
784 */
785 if (excess || mz->on_tree) {
0a31bc97
JW
786 unsigned long flags;
787
788 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
789 /* if on-tree, remove it */
790 if (mz->on_tree)
cf2c8127 791 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
792 /*
793 * Insert again. mz->usage_in_excess will be updated.
794 * If excess is 0, no tree ops.
795 */
cf2c8127 796 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 797 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
798 }
799 }
800}
801
802static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
803{
bb4cc1a8 804 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
805 struct mem_cgroup_per_zone *mz;
806 int nid, zid;
bb4cc1a8 807
e231875b
JZ
808 for_each_node(nid) {
809 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
810 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
811 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 812 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
813 }
814 }
815}
816
817static struct mem_cgroup_per_zone *
818__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
819{
820 struct rb_node *rightmost = NULL;
821 struct mem_cgroup_per_zone *mz;
822
823retry:
824 mz = NULL;
825 rightmost = rb_last(&mctz->rb_root);
826 if (!rightmost)
827 goto done; /* Nothing to reclaim from */
828
829 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
830 /*
831 * Remove the node now but someone else can add it back,
832 * we will to add it back at the end of reclaim to its correct
833 * position in the tree.
834 */
cf2c8127 835 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8 836 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
ec903c0c 837 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
838 goto retry;
839done:
840 return mz;
841}
842
843static struct mem_cgroup_per_zone *
844mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
845{
846 struct mem_cgroup_per_zone *mz;
847
0a31bc97 848 spin_lock_irq(&mctz->lock);
bb4cc1a8 849 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 850 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
851 return mz;
852}
853
711d3d2c
KH
854/*
855 * Implementation Note: reading percpu statistics for memcg.
856 *
857 * Both of vmstat[] and percpu_counter has threshold and do periodic
858 * synchronization to implement "quick" read. There are trade-off between
859 * reading cost and precision of value. Then, we may have a chance to implement
860 * a periodic synchronizion of counter in memcg's counter.
861 *
862 * But this _read() function is used for user interface now. The user accounts
863 * memory usage by memory cgroup and he _always_ requires exact value because
864 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
865 * have to visit all online cpus and make sum. So, for now, unnecessary
866 * synchronization is not implemented. (just implemented for cpu hotplug)
867 *
868 * If there are kernel internal actions which can make use of some not-exact
869 * value, and reading all cpu value can be performance bottleneck in some
870 * common workload, threashold and synchonization as vmstat[] should be
871 * implemented.
872 */
c0ff4b85 873static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 874 enum mem_cgroup_stat_index idx)
c62b1a3b 875{
7a159cc9 876 long val = 0;
c62b1a3b 877 int cpu;
c62b1a3b 878
711d3d2c
KH
879 get_online_cpus();
880 for_each_online_cpu(cpu)
c0ff4b85 881 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 882#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
883 spin_lock(&memcg->pcp_counter_lock);
884 val += memcg->nocpu_base.count[idx];
885 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
886#endif
887 put_online_cpus();
c62b1a3b
KH
888 return val;
889}
890
c0ff4b85 891static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
892 enum mem_cgroup_events_index idx)
893{
894 unsigned long val = 0;
895 int cpu;
896
9c567512 897 get_online_cpus();
e9f8974f 898 for_each_online_cpu(cpu)
c0ff4b85 899 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 900#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
901 spin_lock(&memcg->pcp_counter_lock);
902 val += memcg->nocpu_base.events[idx];
903 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 904#endif
9c567512 905 put_online_cpus();
e9f8974f
JW
906 return val;
907}
908
c0ff4b85 909static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 910 struct page *page,
0a31bc97 911 int nr_pages)
d52aa412 912{
b2402857
KH
913 /*
914 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
915 * counted as CACHE even if it's on ANON LRU.
916 */
0a31bc97 917 if (PageAnon(page))
b2402857 918 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 919 nr_pages);
d52aa412 920 else
b2402857 921 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 922 nr_pages);
55e462b0 923
b070e65c
DR
924 if (PageTransHuge(page))
925 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
926 nr_pages);
927
e401f176
KH
928 /* pagein of a big page is an event. So, ignore page size */
929 if (nr_pages > 0)
c0ff4b85 930 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 931 else {
c0ff4b85 932 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
933 nr_pages = -nr_pages; /* for event */
934 }
e401f176 935
13114716 936 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
937}
938
e231875b 939unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
940{
941 struct mem_cgroup_per_zone *mz;
942
943 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
944 return mz->lru_size[lru];
945}
946
e231875b
JZ
947static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
948 int nid,
949 unsigned int lru_mask)
bb2a0de9 950{
e231875b 951 unsigned long nr = 0;
889976db
YH
952 int zid;
953
e231875b 954 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 955
e231875b
JZ
956 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
957 struct mem_cgroup_per_zone *mz;
958 enum lru_list lru;
959
960 for_each_lru(lru) {
961 if (!(BIT(lru) & lru_mask))
962 continue;
963 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
964 nr += mz->lru_size[lru];
965 }
966 }
967 return nr;
889976db 968}
bb2a0de9 969
c0ff4b85 970static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 971 unsigned int lru_mask)
6d12e2d8 972{
e231875b 973 unsigned long nr = 0;
889976db 974 int nid;
6d12e2d8 975
31aaea4a 976 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
977 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
978 return nr;
d52aa412
KH
979}
980
f53d7ce3
JW
981static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
982 enum mem_cgroup_events_target target)
7a159cc9
JW
983{
984 unsigned long val, next;
985
13114716 986 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 987 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 988 /* from time_after() in jiffies.h */
f53d7ce3
JW
989 if ((long)next - (long)val < 0) {
990 switch (target) {
991 case MEM_CGROUP_TARGET_THRESH:
992 next = val + THRESHOLDS_EVENTS_TARGET;
993 break;
bb4cc1a8
AM
994 case MEM_CGROUP_TARGET_SOFTLIMIT:
995 next = val + SOFTLIMIT_EVENTS_TARGET;
996 break;
f53d7ce3
JW
997 case MEM_CGROUP_TARGET_NUMAINFO:
998 next = val + NUMAINFO_EVENTS_TARGET;
999 break;
1000 default:
1001 break;
1002 }
1003 __this_cpu_write(memcg->stat->targets[target], next);
1004 return true;
7a159cc9 1005 }
f53d7ce3 1006 return false;
d2265e6f
KH
1007}
1008
1009/*
1010 * Check events in order.
1011 *
1012 */
c0ff4b85 1013static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
1014{
1015 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1016 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1017 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1018 bool do_softlimit;
82b3f2a7 1019 bool do_numainfo __maybe_unused;
f53d7ce3 1020
bb4cc1a8
AM
1021 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1023#if MAX_NUMNODES > 1
1024 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1025 MEM_CGROUP_TARGET_NUMAINFO);
1026#endif
c0ff4b85 1027 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1028 if (unlikely(do_softlimit))
1029 mem_cgroup_update_tree(memcg, page);
453a9bf3 1030#if MAX_NUMNODES > 1
f53d7ce3 1031 if (unlikely(do_numainfo))
c0ff4b85 1032 atomic_inc(&memcg->numainfo_events);
453a9bf3 1033#endif
0a31bc97 1034 }
d2265e6f
KH
1035}
1036
cf475ad2 1037struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1038{
31a78f23
BS
1039 /*
1040 * mm_update_next_owner() may clear mm->owner to NULL
1041 * if it races with swapoff, page migration, etc.
1042 * So this can be called with p == NULL.
1043 */
1044 if (unlikely(!p))
1045 return NULL;
1046
073219e9 1047 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1048}
1049
df381975 1050static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1051{
c0ff4b85 1052 struct mem_cgroup *memcg = NULL;
0b7f569e 1053
54595fe2
KH
1054 rcu_read_lock();
1055 do {
6f6acb00
MH
1056 /*
1057 * Page cache insertions can happen withou an
1058 * actual mm context, e.g. during disk probing
1059 * on boot, loopback IO, acct() writes etc.
1060 */
1061 if (unlikely(!mm))
df381975 1062 memcg = root_mem_cgroup;
6f6acb00
MH
1063 else {
1064 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1065 if (unlikely(!memcg))
1066 memcg = root_mem_cgroup;
1067 }
ec903c0c 1068 } while (!css_tryget_online(&memcg->css));
54595fe2 1069 rcu_read_unlock();
c0ff4b85 1070 return memcg;
54595fe2
KH
1071}
1072
16248d8f
MH
1073/*
1074 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1075 * ref. count) or NULL if the whole root's subtree has been visited.
1076 *
1077 * helper function to be used by mem_cgroup_iter
1078 */
1079static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1080 struct mem_cgroup *last_visited)
16248d8f 1081{
492eb21b 1082 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1083
bd8815a6 1084 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1085skip_node:
492eb21b 1086 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1087
1088 /*
1089 * Even if we found a group we have to make sure it is
1090 * alive. css && !memcg means that the groups should be
1091 * skipped and we should continue the tree walk.
1092 * last_visited css is safe to use because it is
1093 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1094 *
1095 * We do not take a reference on the root of the tree walk
1096 * because we might race with the root removal when it would
1097 * be the only node in the iterated hierarchy and mem_cgroup_iter
1098 * would end up in an endless loop because it expects that at
1099 * least one valid node will be returned. Root cannot disappear
1100 * because caller of the iterator should hold it already so
1101 * skipping css reference should be safe.
16248d8f 1102 */
492eb21b 1103 if (next_css) {
2f7dd7a4
JW
1104 struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);
1105
1106 if (next_css == &root->css)
1107 return memcg;
1108
1109 if (css_tryget_online(next_css)) {
1110 /*
1111 * Make sure the memcg is initialized:
1112 * mem_cgroup_css_online() orders the the
1113 * initialization against setting the flag.
1114 */
1115 if (smp_load_acquire(&memcg->initialized))
1116 return memcg;
1117 css_put(next_css);
1118 }
0eef6156
MH
1119
1120 prev_css = next_css;
1121 goto skip_node;
16248d8f
MH
1122 }
1123
1124 return NULL;
1125}
1126
519ebea3
JW
1127static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1128{
1129 /*
1130 * When a group in the hierarchy below root is destroyed, the
1131 * hierarchy iterator can no longer be trusted since it might
1132 * have pointed to the destroyed group. Invalidate it.
1133 */
1134 atomic_inc(&root->dead_count);
1135}
1136
1137static struct mem_cgroup *
1138mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1139 struct mem_cgroup *root,
1140 int *sequence)
1141{
1142 struct mem_cgroup *position = NULL;
1143 /*
1144 * A cgroup destruction happens in two stages: offlining and
1145 * release. They are separated by a RCU grace period.
1146 *
1147 * If the iterator is valid, we may still race with an
1148 * offlining. The RCU lock ensures the object won't be
1149 * released, tryget will fail if we lost the race.
1150 */
1151 *sequence = atomic_read(&root->dead_count);
1152 if (iter->last_dead_count == *sequence) {
1153 smp_rmb();
1154 position = iter->last_visited;
ecc736fc
MH
1155
1156 /*
1157 * We cannot take a reference to root because we might race
1158 * with root removal and returning NULL would end up in
1159 * an endless loop on the iterator user level when root
1160 * would be returned all the time.
1161 */
1162 if (position && position != root &&
ec903c0c 1163 !css_tryget_online(&position->css))
519ebea3
JW
1164 position = NULL;
1165 }
1166 return position;
1167}
1168
1169static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1170 struct mem_cgroup *last_visited,
1171 struct mem_cgroup *new_position,
ecc736fc 1172 struct mem_cgroup *root,
519ebea3
JW
1173 int sequence)
1174{
ecc736fc
MH
1175 /* root reference counting symmetric to mem_cgroup_iter_load */
1176 if (last_visited && last_visited != root)
519ebea3
JW
1177 css_put(&last_visited->css);
1178 /*
1179 * We store the sequence count from the time @last_visited was
1180 * loaded successfully instead of rereading it here so that we
1181 * don't lose destruction events in between. We could have
1182 * raced with the destruction of @new_position after all.
1183 */
1184 iter->last_visited = new_position;
1185 smp_wmb();
1186 iter->last_dead_count = sequence;
1187}
1188
5660048c
JW
1189/**
1190 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1191 * @root: hierarchy root
1192 * @prev: previously returned memcg, NULL on first invocation
1193 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1194 *
1195 * Returns references to children of the hierarchy below @root, or
1196 * @root itself, or %NULL after a full round-trip.
1197 *
1198 * Caller must pass the return value in @prev on subsequent
1199 * invocations for reference counting, or use mem_cgroup_iter_break()
1200 * to cancel a hierarchy walk before the round-trip is complete.
1201 *
1202 * Reclaimers can specify a zone and a priority level in @reclaim to
1203 * divide up the memcgs in the hierarchy among all concurrent
1204 * reclaimers operating on the same zone and priority.
1205 */
694fbc0f 1206struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1207 struct mem_cgroup *prev,
694fbc0f 1208 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1209{
9f3a0d09 1210 struct mem_cgroup *memcg = NULL;
542f85f9 1211 struct mem_cgroup *last_visited = NULL;
711d3d2c 1212
694fbc0f
AM
1213 if (mem_cgroup_disabled())
1214 return NULL;
5660048c 1215
9f3a0d09
JW
1216 if (!root)
1217 root = root_mem_cgroup;
7d74b06f 1218
9f3a0d09 1219 if (prev && !reclaim)
542f85f9 1220 last_visited = prev;
14067bb3 1221
9f3a0d09
JW
1222 if (!root->use_hierarchy && root != root_mem_cgroup) {
1223 if (prev)
c40046f3 1224 goto out_css_put;
694fbc0f 1225 return root;
9f3a0d09 1226 }
14067bb3 1227
542f85f9 1228 rcu_read_lock();
9f3a0d09 1229 while (!memcg) {
527a5ec9 1230 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1231 int uninitialized_var(seq);
711d3d2c 1232
527a5ec9 1233 if (reclaim) {
527a5ec9
JW
1234 struct mem_cgroup_per_zone *mz;
1235
e231875b 1236 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
527a5ec9 1237 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1238 if (prev && reclaim->generation != iter->generation) {
5f578161 1239 iter->last_visited = NULL;
542f85f9
MH
1240 goto out_unlock;
1241 }
5f578161 1242
519ebea3 1243 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1244 }
7d74b06f 1245
694fbc0f 1246 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1247
527a5ec9 1248 if (reclaim) {
ecc736fc
MH
1249 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1250 seq);
542f85f9 1251
19f39402 1252 if (!memcg)
527a5ec9
JW
1253 iter->generation++;
1254 else if (!prev && memcg)
1255 reclaim->generation = iter->generation;
1256 }
9f3a0d09 1257
694fbc0f 1258 if (prev && !memcg)
542f85f9 1259 goto out_unlock;
9f3a0d09 1260 }
542f85f9
MH
1261out_unlock:
1262 rcu_read_unlock();
c40046f3
MH
1263out_css_put:
1264 if (prev && prev != root)
1265 css_put(&prev->css);
1266
9f3a0d09 1267 return memcg;
14067bb3 1268}
7d74b06f 1269
5660048c
JW
1270/**
1271 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1272 * @root: hierarchy root
1273 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1274 */
1275void mem_cgroup_iter_break(struct mem_cgroup *root,
1276 struct mem_cgroup *prev)
9f3a0d09
JW
1277{
1278 if (!root)
1279 root = root_mem_cgroup;
1280 if (prev && prev != root)
1281 css_put(&prev->css);
1282}
7d74b06f 1283
9f3a0d09
JW
1284/*
1285 * Iteration constructs for visiting all cgroups (under a tree). If
1286 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1287 * be used for reference counting.
1288 */
1289#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1290 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1291 iter != NULL; \
527a5ec9 1292 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1293
9f3a0d09 1294#define for_each_mem_cgroup(iter) \
527a5ec9 1295 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1296 iter != NULL; \
527a5ec9 1297 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1298
68ae564b 1299void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1300{
c0ff4b85 1301 struct mem_cgroup *memcg;
456f998e 1302
456f998e 1303 rcu_read_lock();
c0ff4b85
R
1304 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1305 if (unlikely(!memcg))
456f998e
YH
1306 goto out;
1307
1308 switch (idx) {
456f998e 1309 case PGFAULT:
0e574a93
JW
1310 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1311 break;
1312 case PGMAJFAULT:
1313 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1314 break;
1315 default:
1316 BUG();
1317 }
1318out:
1319 rcu_read_unlock();
1320}
68ae564b 1321EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1322
925b7673
JW
1323/**
1324 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1325 * @zone: zone of the wanted lruvec
fa9add64 1326 * @memcg: memcg of the wanted lruvec
925b7673
JW
1327 *
1328 * Returns the lru list vector holding pages for the given @zone and
1329 * @mem. This can be the global zone lruvec, if the memory controller
1330 * is disabled.
1331 */
1332struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1333 struct mem_cgroup *memcg)
1334{
1335 struct mem_cgroup_per_zone *mz;
bea8c150 1336 struct lruvec *lruvec;
925b7673 1337
bea8c150
HD
1338 if (mem_cgroup_disabled()) {
1339 lruvec = &zone->lruvec;
1340 goto out;
1341 }
925b7673 1342
e231875b 1343 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1344 lruvec = &mz->lruvec;
1345out:
1346 /*
1347 * Since a node can be onlined after the mem_cgroup was created,
1348 * we have to be prepared to initialize lruvec->zone here;
1349 * and if offlined then reonlined, we need to reinitialize it.
1350 */
1351 if (unlikely(lruvec->zone != zone))
1352 lruvec->zone = zone;
1353 return lruvec;
925b7673
JW
1354}
1355
925b7673 1356/**
fa9add64 1357 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1358 * @page: the page
fa9add64 1359 * @zone: zone of the page
925b7673 1360 */
fa9add64 1361struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1362{
08e552c6 1363 struct mem_cgroup_per_zone *mz;
925b7673
JW
1364 struct mem_cgroup *memcg;
1365 struct page_cgroup *pc;
bea8c150 1366 struct lruvec *lruvec;
6d12e2d8 1367
bea8c150
HD
1368 if (mem_cgroup_disabled()) {
1369 lruvec = &zone->lruvec;
1370 goto out;
1371 }
925b7673 1372
08e552c6 1373 pc = lookup_page_cgroup(page);
38c5d72f 1374 memcg = pc->mem_cgroup;
7512102c
HD
1375
1376 /*
fa9add64 1377 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1378 * an uncharged page off lru does nothing to secure
1379 * its former mem_cgroup from sudden removal.
1380 *
1381 * Our caller holds lru_lock, and PageCgroupUsed is updated
1382 * under page_cgroup lock: between them, they make all uses
1383 * of pc->mem_cgroup safe.
1384 */
fa9add64 1385 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1386 pc->mem_cgroup = memcg = root_mem_cgroup;
1387
e231875b 1388 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1389 lruvec = &mz->lruvec;
1390out:
1391 /*
1392 * Since a node can be onlined after the mem_cgroup was created,
1393 * we have to be prepared to initialize lruvec->zone here;
1394 * and if offlined then reonlined, we need to reinitialize it.
1395 */
1396 if (unlikely(lruvec->zone != zone))
1397 lruvec->zone = zone;
1398 return lruvec;
08e552c6 1399}
b69408e8 1400
925b7673 1401/**
fa9add64
HD
1402 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1403 * @lruvec: mem_cgroup per zone lru vector
1404 * @lru: index of lru list the page is sitting on
1405 * @nr_pages: positive when adding or negative when removing
925b7673 1406 *
fa9add64
HD
1407 * This function must be called when a page is added to or removed from an
1408 * lru list.
3f58a829 1409 */
fa9add64
HD
1410void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1411 int nr_pages)
3f58a829
MK
1412{
1413 struct mem_cgroup_per_zone *mz;
fa9add64 1414 unsigned long *lru_size;
3f58a829
MK
1415
1416 if (mem_cgroup_disabled())
1417 return;
1418
fa9add64
HD
1419 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1420 lru_size = mz->lru_size + lru;
1421 *lru_size += nr_pages;
1422 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1423}
544122e5 1424
3e92041d 1425/*
c0ff4b85 1426 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1427 * hierarchy subtree
1428 */
c3ac9a8a
JW
1429bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1430 struct mem_cgroup *memcg)
3e92041d 1431{
91c63734
JW
1432 if (root_memcg == memcg)
1433 return true;
3a981f48 1434 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1435 return false;
b47f77b5 1436 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1437}
1438
1439static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1440 struct mem_cgroup *memcg)
1441{
1442 bool ret;
1443
91c63734 1444 rcu_read_lock();
c3ac9a8a 1445 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1446 rcu_read_unlock();
1447 return ret;
3e92041d
MH
1448}
1449
ffbdccf5
DR
1450bool task_in_mem_cgroup(struct task_struct *task,
1451 const struct mem_cgroup *memcg)
4c4a2214 1452{
0b7f569e 1453 struct mem_cgroup *curr = NULL;
158e0a2d 1454 struct task_struct *p;
ffbdccf5 1455 bool ret;
4c4a2214 1456
158e0a2d 1457 p = find_lock_task_mm(task);
de077d22 1458 if (p) {
df381975 1459 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1460 task_unlock(p);
1461 } else {
1462 /*
1463 * All threads may have already detached their mm's, but the oom
1464 * killer still needs to detect if they have already been oom
1465 * killed to prevent needlessly killing additional tasks.
1466 */
ffbdccf5 1467 rcu_read_lock();
de077d22
DR
1468 curr = mem_cgroup_from_task(task);
1469 if (curr)
1470 css_get(&curr->css);
ffbdccf5 1471 rcu_read_unlock();
de077d22 1472 }
d31f56db 1473 /*
c0ff4b85 1474 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1475 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1476 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1477 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1478 */
c0ff4b85 1479 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1480 css_put(&curr->css);
4c4a2214
DR
1481 return ret;
1482}
1483
c56d5c7d 1484int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1485{
9b272977 1486 unsigned long inactive_ratio;
14797e23 1487 unsigned long inactive;
9b272977 1488 unsigned long active;
c772be93 1489 unsigned long gb;
14797e23 1490
4d7dcca2
HD
1491 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1492 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1493
c772be93
KM
1494 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1495 if (gb)
1496 inactive_ratio = int_sqrt(10 * gb);
1497 else
1498 inactive_ratio = 1;
1499
9b272977 1500 return inactive * inactive_ratio < active;
14797e23
KM
1501}
1502
6d61ef40
BS
1503#define mem_cgroup_from_res_counter(counter, member) \
1504 container_of(counter, struct mem_cgroup, member)
1505
19942822 1506/**
9d11ea9f 1507 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1508 * @memcg: the memory cgroup
19942822 1509 *
9d11ea9f 1510 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1511 * pages.
19942822 1512 */
c0ff4b85 1513static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1514{
9d11ea9f
JW
1515 unsigned long long margin;
1516
c0ff4b85 1517 margin = res_counter_margin(&memcg->res);
9d11ea9f 1518 if (do_swap_account)
c0ff4b85 1519 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1520 return margin >> PAGE_SHIFT;
19942822
JW
1521}
1522
1f4c025b 1523int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1524{
a7885eb8 1525 /* root ? */
14208b0e 1526 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1527 return vm_swappiness;
1528
bf1ff263 1529 return memcg->swappiness;
a7885eb8
KM
1530}
1531
619d094b
KH
1532/*
1533 * memcg->moving_account is used for checking possibility that some thread is
1534 * calling move_account(). When a thread on CPU-A starts moving pages under
1535 * a memcg, other threads should check memcg->moving_account under
1536 * rcu_read_lock(), like this:
1537 *
1538 * CPU-A CPU-B
1539 * rcu_read_lock()
1540 * memcg->moving_account+1 if (memcg->mocing_account)
1541 * take heavy locks.
1542 * synchronize_rcu() update something.
1543 * rcu_read_unlock()
1544 * start move here.
1545 */
4331f7d3
KH
1546
1547/* for quick checking without looking up memcg */
1548atomic_t memcg_moving __read_mostly;
1549
c0ff4b85 1550static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1551{
4331f7d3 1552 atomic_inc(&memcg_moving);
619d094b 1553 atomic_inc(&memcg->moving_account);
32047e2a
KH
1554 synchronize_rcu();
1555}
1556
c0ff4b85 1557static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1558{
619d094b
KH
1559 /*
1560 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1561 * We check NULL in callee rather than caller.
1562 */
4331f7d3
KH
1563 if (memcg) {
1564 atomic_dec(&memcg_moving);
619d094b 1565 atomic_dec(&memcg->moving_account);
4331f7d3 1566 }
32047e2a 1567}
619d094b 1568
32047e2a 1569/*
bdcbb659 1570 * A routine for checking "mem" is under move_account() or not.
32047e2a 1571 *
bdcbb659
QH
1572 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1573 * moving cgroups. This is for waiting at high-memory pressure
1574 * caused by "move".
32047e2a 1575 */
c0ff4b85 1576static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1577{
2bd9bb20
KH
1578 struct mem_cgroup *from;
1579 struct mem_cgroup *to;
4b534334 1580 bool ret = false;
2bd9bb20
KH
1581 /*
1582 * Unlike task_move routines, we access mc.to, mc.from not under
1583 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1584 */
1585 spin_lock(&mc.lock);
1586 from = mc.from;
1587 to = mc.to;
1588 if (!from)
1589 goto unlock;
3e92041d 1590
c0ff4b85
R
1591 ret = mem_cgroup_same_or_subtree(memcg, from)
1592 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1593unlock:
1594 spin_unlock(&mc.lock);
4b534334
KH
1595 return ret;
1596}
1597
c0ff4b85 1598static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1599{
1600 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1601 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1602 DEFINE_WAIT(wait);
1603 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1604 /* moving charge context might have finished. */
1605 if (mc.moving_task)
1606 schedule();
1607 finish_wait(&mc.waitq, &wait);
1608 return true;
1609 }
1610 }
1611 return false;
1612}
1613
312734c0
KH
1614/*
1615 * Take this lock when
1616 * - a code tries to modify page's memcg while it's USED.
1617 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1618 */
1619static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1620 unsigned long *flags)
1621{
1622 spin_lock_irqsave(&memcg->move_lock, *flags);
1623}
1624
1625static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1626 unsigned long *flags)
1627{
1628 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1629}
1630
58cf188e 1631#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1632/**
58cf188e 1633 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1634 * @memcg: The memory cgroup that went over limit
1635 * @p: Task that is going to be killed
1636 *
1637 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1638 * enabled
1639 */
1640void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1641{
e61734c5 1642 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1643 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1644 struct mem_cgroup *iter;
1645 unsigned int i;
e222432b 1646
58cf188e 1647 if (!p)
e222432b
BS
1648 return;
1649
08088cb9 1650 mutex_lock(&oom_info_lock);
e222432b
BS
1651 rcu_read_lock();
1652
e61734c5
TH
1653 pr_info("Task in ");
1654 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1655 pr_info(" killed as a result of limit of ");
1656 pr_cont_cgroup_path(memcg->css.cgroup);
1657 pr_info("\n");
e222432b 1658
e222432b
BS
1659 rcu_read_unlock();
1660
d045197f 1661 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1662 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1663 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1664 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1665 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1666 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1667 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1668 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1669 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1670 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1671 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1672 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1673
1674 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1675 pr_info("Memory cgroup stats for ");
1676 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1677 pr_cont(":");
1678
1679 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1680 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1681 continue;
1682 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1683 K(mem_cgroup_read_stat(iter, i)));
1684 }
1685
1686 for (i = 0; i < NR_LRU_LISTS; i++)
1687 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1688 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1689
1690 pr_cont("\n");
1691 }
08088cb9 1692 mutex_unlock(&oom_info_lock);
e222432b
BS
1693}
1694
81d39c20
KH
1695/*
1696 * This function returns the number of memcg under hierarchy tree. Returns
1697 * 1(self count) if no children.
1698 */
c0ff4b85 1699static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1700{
1701 int num = 0;
7d74b06f
KH
1702 struct mem_cgroup *iter;
1703
c0ff4b85 1704 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1705 num++;
81d39c20
KH
1706 return num;
1707}
1708
a63d83f4
DR
1709/*
1710 * Return the memory (and swap, if configured) limit for a memcg.
1711 */
9cbb78bb 1712static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1713{
1714 u64 limit;
a63d83f4 1715
f3e8eb70 1716 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1717
a63d83f4 1718 /*
9a5a8f19 1719 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1720 */
9a5a8f19
MH
1721 if (mem_cgroup_swappiness(memcg)) {
1722 u64 memsw;
1723
1724 limit += total_swap_pages << PAGE_SHIFT;
1725 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1726
1727 /*
1728 * If memsw is finite and limits the amount of swap space
1729 * available to this memcg, return that limit.
1730 */
1731 limit = min(limit, memsw);
1732 }
1733
1734 return limit;
a63d83f4
DR
1735}
1736
19965460
DR
1737static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1738 int order)
9cbb78bb
DR
1739{
1740 struct mem_cgroup *iter;
1741 unsigned long chosen_points = 0;
1742 unsigned long totalpages;
1743 unsigned int points = 0;
1744 struct task_struct *chosen = NULL;
1745
876aafbf 1746 /*
465adcf1
DR
1747 * If current has a pending SIGKILL or is exiting, then automatically
1748 * select it. The goal is to allow it to allocate so that it may
1749 * quickly exit and free its memory.
876aafbf 1750 */
465adcf1 1751 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1752 set_thread_flag(TIF_MEMDIE);
1753 return;
1754 }
1755
1756 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1757 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1758 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1759 struct css_task_iter it;
9cbb78bb
DR
1760 struct task_struct *task;
1761
72ec7029
TH
1762 css_task_iter_start(&iter->css, &it);
1763 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1764 switch (oom_scan_process_thread(task, totalpages, NULL,
1765 false)) {
1766 case OOM_SCAN_SELECT:
1767 if (chosen)
1768 put_task_struct(chosen);
1769 chosen = task;
1770 chosen_points = ULONG_MAX;
1771 get_task_struct(chosen);
1772 /* fall through */
1773 case OOM_SCAN_CONTINUE:
1774 continue;
1775 case OOM_SCAN_ABORT:
72ec7029 1776 css_task_iter_end(&it);
9cbb78bb
DR
1777 mem_cgroup_iter_break(memcg, iter);
1778 if (chosen)
1779 put_task_struct(chosen);
1780 return;
1781 case OOM_SCAN_OK:
1782 break;
1783 };
1784 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1785 if (!points || points < chosen_points)
1786 continue;
1787 /* Prefer thread group leaders for display purposes */
1788 if (points == chosen_points &&
1789 thread_group_leader(chosen))
1790 continue;
1791
1792 if (chosen)
1793 put_task_struct(chosen);
1794 chosen = task;
1795 chosen_points = points;
1796 get_task_struct(chosen);
9cbb78bb 1797 }
72ec7029 1798 css_task_iter_end(&it);
9cbb78bb
DR
1799 }
1800
1801 if (!chosen)
1802 return;
1803 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1804 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1805 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1806}
1807
5660048c
JW
1808static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1809 gfp_t gfp_mask,
1810 unsigned long flags)
1811{
1812 unsigned long total = 0;
1813 bool noswap = false;
1814 int loop;
1815
1816 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1817 noswap = true;
5660048c
JW
1818
1819 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1820 if (loop)
1821 drain_all_stock_async(memcg);
1822 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1823 /*
1824 * Allow limit shrinkers, which are triggered directly
1825 * by userspace, to catch signals and stop reclaim
1826 * after minimal progress, regardless of the margin.
1827 */
1828 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1829 break;
1830 if (mem_cgroup_margin(memcg))
1831 break;
1832 /*
1833 * If nothing was reclaimed after two attempts, there
1834 * may be no reclaimable pages in this hierarchy.
1835 */
1836 if (loop && !total)
1837 break;
1838 }
1839 return total;
1840}
1841
4d0c066d
KH
1842/**
1843 * test_mem_cgroup_node_reclaimable
dad7557e 1844 * @memcg: the target memcg
4d0c066d
KH
1845 * @nid: the node ID to be checked.
1846 * @noswap : specify true here if the user wants flle only information.
1847 *
1848 * This function returns whether the specified memcg contains any
1849 * reclaimable pages on a node. Returns true if there are any reclaimable
1850 * pages in the node.
1851 */
c0ff4b85 1852static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1853 int nid, bool noswap)
1854{
c0ff4b85 1855 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1856 return true;
1857 if (noswap || !total_swap_pages)
1858 return false;
c0ff4b85 1859 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1860 return true;
1861 return false;
1862
1863}
bb4cc1a8 1864#if MAX_NUMNODES > 1
889976db
YH
1865
1866/*
1867 * Always updating the nodemask is not very good - even if we have an empty
1868 * list or the wrong list here, we can start from some node and traverse all
1869 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1870 *
1871 */
c0ff4b85 1872static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1873{
1874 int nid;
453a9bf3
KH
1875 /*
1876 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1877 * pagein/pageout changes since the last update.
1878 */
c0ff4b85 1879 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1880 return;
c0ff4b85 1881 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1882 return;
1883
889976db 1884 /* make a nodemask where this memcg uses memory from */
31aaea4a 1885 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1886
31aaea4a 1887 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1888
c0ff4b85
R
1889 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1890 node_clear(nid, memcg->scan_nodes);
889976db 1891 }
453a9bf3 1892
c0ff4b85
R
1893 atomic_set(&memcg->numainfo_events, 0);
1894 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1895}
1896
1897/*
1898 * Selecting a node where we start reclaim from. Because what we need is just
1899 * reducing usage counter, start from anywhere is O,K. Considering
1900 * memory reclaim from current node, there are pros. and cons.
1901 *
1902 * Freeing memory from current node means freeing memory from a node which
1903 * we'll use or we've used. So, it may make LRU bad. And if several threads
1904 * hit limits, it will see a contention on a node. But freeing from remote
1905 * node means more costs for memory reclaim because of memory latency.
1906 *
1907 * Now, we use round-robin. Better algorithm is welcomed.
1908 */
c0ff4b85 1909int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1910{
1911 int node;
1912
c0ff4b85
R
1913 mem_cgroup_may_update_nodemask(memcg);
1914 node = memcg->last_scanned_node;
889976db 1915
c0ff4b85 1916 node = next_node(node, memcg->scan_nodes);
889976db 1917 if (node == MAX_NUMNODES)
c0ff4b85 1918 node = first_node(memcg->scan_nodes);
889976db
YH
1919 /*
1920 * We call this when we hit limit, not when pages are added to LRU.
1921 * No LRU may hold pages because all pages are UNEVICTABLE or
1922 * memcg is too small and all pages are not on LRU. In that case,
1923 * we use curret node.
1924 */
1925 if (unlikely(node == MAX_NUMNODES))
1926 node = numa_node_id();
1927
c0ff4b85 1928 memcg->last_scanned_node = node;
889976db
YH
1929 return node;
1930}
1931
bb4cc1a8
AM
1932/*
1933 * Check all nodes whether it contains reclaimable pages or not.
1934 * For quick scan, we make use of scan_nodes. This will allow us to skip
1935 * unused nodes. But scan_nodes is lazily updated and may not cotain
1936 * enough new information. We need to do double check.
1937 */
1938static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1939{
1940 int nid;
1941
1942 /*
1943 * quick check...making use of scan_node.
1944 * We can skip unused nodes.
1945 */
1946 if (!nodes_empty(memcg->scan_nodes)) {
1947 for (nid = first_node(memcg->scan_nodes);
1948 nid < MAX_NUMNODES;
1949 nid = next_node(nid, memcg->scan_nodes)) {
1950
1951 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1952 return true;
1953 }
1954 }
1955 /*
1956 * Check rest of nodes.
1957 */
1958 for_each_node_state(nid, N_MEMORY) {
1959 if (node_isset(nid, memcg->scan_nodes))
1960 continue;
1961 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1962 return true;
1963 }
1964 return false;
1965}
1966
889976db 1967#else
c0ff4b85 1968int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1969{
1970 return 0;
1971}
4d0c066d 1972
bb4cc1a8
AM
1973static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1974{
1975 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1976}
889976db
YH
1977#endif
1978
0608f43d
AM
1979static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1980 struct zone *zone,
1981 gfp_t gfp_mask,
1982 unsigned long *total_scanned)
1983{
1984 struct mem_cgroup *victim = NULL;
1985 int total = 0;
1986 int loop = 0;
1987 unsigned long excess;
1988 unsigned long nr_scanned;
1989 struct mem_cgroup_reclaim_cookie reclaim = {
1990 .zone = zone,
1991 .priority = 0,
1992 };
1993
1994 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1995
1996 while (1) {
1997 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1998 if (!victim) {
1999 loop++;
2000 if (loop >= 2) {
2001 /*
2002 * If we have not been able to reclaim
2003 * anything, it might because there are
2004 * no reclaimable pages under this hierarchy
2005 */
2006 if (!total)
2007 break;
2008 /*
2009 * We want to do more targeted reclaim.
2010 * excess >> 2 is not to excessive so as to
2011 * reclaim too much, nor too less that we keep
2012 * coming back to reclaim from this cgroup
2013 */
2014 if (total >= (excess >> 2) ||
2015 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2016 break;
2017 }
2018 continue;
2019 }
2020 if (!mem_cgroup_reclaimable(victim, false))
2021 continue;
2022 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2023 zone, &nr_scanned);
2024 *total_scanned += nr_scanned;
2025 if (!res_counter_soft_limit_excess(&root_memcg->res))
2026 break;
6d61ef40 2027 }
0608f43d
AM
2028 mem_cgroup_iter_break(root_memcg, victim);
2029 return total;
6d61ef40
BS
2030}
2031
0056f4e6
JW
2032#ifdef CONFIG_LOCKDEP
2033static struct lockdep_map memcg_oom_lock_dep_map = {
2034 .name = "memcg_oom_lock",
2035};
2036#endif
2037
fb2a6fc5
JW
2038static DEFINE_SPINLOCK(memcg_oom_lock);
2039
867578cb
KH
2040/*
2041 * Check OOM-Killer is already running under our hierarchy.
2042 * If someone is running, return false.
2043 */
fb2a6fc5 2044static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2045{
79dfdacc 2046 struct mem_cgroup *iter, *failed = NULL;
a636b327 2047
fb2a6fc5
JW
2048 spin_lock(&memcg_oom_lock);
2049
9f3a0d09 2050 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2051 if (iter->oom_lock) {
79dfdacc
MH
2052 /*
2053 * this subtree of our hierarchy is already locked
2054 * so we cannot give a lock.
2055 */
79dfdacc 2056 failed = iter;
9f3a0d09
JW
2057 mem_cgroup_iter_break(memcg, iter);
2058 break;
23751be0
JW
2059 } else
2060 iter->oom_lock = true;
7d74b06f 2061 }
867578cb 2062
fb2a6fc5
JW
2063 if (failed) {
2064 /*
2065 * OK, we failed to lock the whole subtree so we have
2066 * to clean up what we set up to the failing subtree
2067 */
2068 for_each_mem_cgroup_tree(iter, memcg) {
2069 if (iter == failed) {
2070 mem_cgroup_iter_break(memcg, iter);
2071 break;
2072 }
2073 iter->oom_lock = false;
79dfdacc 2074 }
0056f4e6
JW
2075 } else
2076 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2077
2078 spin_unlock(&memcg_oom_lock);
2079
2080 return !failed;
a636b327 2081}
0b7f569e 2082
fb2a6fc5 2083static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2084{
7d74b06f
KH
2085 struct mem_cgroup *iter;
2086
fb2a6fc5 2087 spin_lock(&memcg_oom_lock);
0056f4e6 2088 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2089 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2090 iter->oom_lock = false;
fb2a6fc5 2091 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2092}
2093
c0ff4b85 2094static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2095{
2096 struct mem_cgroup *iter;
2097
c0ff4b85 2098 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2099 atomic_inc(&iter->under_oom);
2100}
2101
c0ff4b85 2102static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2103{
2104 struct mem_cgroup *iter;
2105
867578cb
KH
2106 /*
2107 * When a new child is created while the hierarchy is under oom,
2108 * mem_cgroup_oom_lock() may not be called. We have to use
2109 * atomic_add_unless() here.
2110 */
c0ff4b85 2111 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2112 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2113}
2114
867578cb
KH
2115static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2116
dc98df5a 2117struct oom_wait_info {
d79154bb 2118 struct mem_cgroup *memcg;
dc98df5a
KH
2119 wait_queue_t wait;
2120};
2121
2122static int memcg_oom_wake_function(wait_queue_t *wait,
2123 unsigned mode, int sync, void *arg)
2124{
d79154bb
HD
2125 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2126 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2127 struct oom_wait_info *oom_wait_info;
2128
2129 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2130 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2131
dc98df5a 2132 /*
d79154bb 2133 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2134 * Then we can use css_is_ancestor without taking care of RCU.
2135 */
c0ff4b85
R
2136 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2137 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2138 return 0;
dc98df5a
KH
2139 return autoremove_wake_function(wait, mode, sync, arg);
2140}
2141
c0ff4b85 2142static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2143{
3812c8c8 2144 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2145 /* for filtering, pass "memcg" as argument. */
2146 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2147}
2148
c0ff4b85 2149static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2150{
c0ff4b85
R
2151 if (memcg && atomic_read(&memcg->under_oom))
2152 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2153}
2154
3812c8c8 2155static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2156{
3812c8c8
JW
2157 if (!current->memcg_oom.may_oom)
2158 return;
867578cb 2159 /*
49426420
JW
2160 * We are in the middle of the charge context here, so we
2161 * don't want to block when potentially sitting on a callstack
2162 * that holds all kinds of filesystem and mm locks.
2163 *
2164 * Also, the caller may handle a failed allocation gracefully
2165 * (like optional page cache readahead) and so an OOM killer
2166 * invocation might not even be necessary.
2167 *
2168 * That's why we don't do anything here except remember the
2169 * OOM context and then deal with it at the end of the page
2170 * fault when the stack is unwound, the locks are released,
2171 * and when we know whether the fault was overall successful.
867578cb 2172 */
49426420
JW
2173 css_get(&memcg->css);
2174 current->memcg_oom.memcg = memcg;
2175 current->memcg_oom.gfp_mask = mask;
2176 current->memcg_oom.order = order;
3812c8c8
JW
2177}
2178
2179/**
2180 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2181 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2182 *
49426420
JW
2183 * This has to be called at the end of a page fault if the memcg OOM
2184 * handler was enabled.
3812c8c8 2185 *
49426420 2186 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2187 * sleep on a waitqueue until the userspace task resolves the
2188 * situation. Sleeping directly in the charge context with all kinds
2189 * of locks held is not a good idea, instead we remember an OOM state
2190 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2191 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2192 *
2193 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2194 * completed, %false otherwise.
3812c8c8 2195 */
49426420 2196bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2197{
49426420 2198 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2199 struct oom_wait_info owait;
49426420 2200 bool locked;
3812c8c8
JW
2201
2202 /* OOM is global, do not handle */
3812c8c8 2203 if (!memcg)
49426420 2204 return false;
3812c8c8 2205
49426420
JW
2206 if (!handle)
2207 goto cleanup;
3812c8c8
JW
2208
2209 owait.memcg = memcg;
2210 owait.wait.flags = 0;
2211 owait.wait.func = memcg_oom_wake_function;
2212 owait.wait.private = current;
2213 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2214
3812c8c8 2215 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2216 mem_cgroup_mark_under_oom(memcg);
2217
2218 locked = mem_cgroup_oom_trylock(memcg);
2219
2220 if (locked)
2221 mem_cgroup_oom_notify(memcg);
2222
2223 if (locked && !memcg->oom_kill_disable) {
2224 mem_cgroup_unmark_under_oom(memcg);
2225 finish_wait(&memcg_oom_waitq, &owait.wait);
2226 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2227 current->memcg_oom.order);
2228 } else {
3812c8c8 2229 schedule();
49426420
JW
2230 mem_cgroup_unmark_under_oom(memcg);
2231 finish_wait(&memcg_oom_waitq, &owait.wait);
2232 }
2233
2234 if (locked) {
fb2a6fc5
JW
2235 mem_cgroup_oom_unlock(memcg);
2236 /*
2237 * There is no guarantee that an OOM-lock contender
2238 * sees the wakeups triggered by the OOM kill
2239 * uncharges. Wake any sleepers explicitely.
2240 */
2241 memcg_oom_recover(memcg);
2242 }
49426420
JW
2243cleanup:
2244 current->memcg_oom.memcg = NULL;
3812c8c8 2245 css_put(&memcg->css);
867578cb 2246 return true;
0b7f569e
KH
2247}
2248
d69b042f 2249/*
b5ffc856 2250 * Used to update mapped file or writeback or other statistics.
32047e2a
KH
2251 *
2252 * Notes: Race condition
2253 *
0a31bc97
JW
2254 * Charging occurs during page instantiation, while the page is
2255 * unmapped and locked in page migration, or while the page table is
2256 * locked in THP migration. No race is possible.
32047e2a 2257 *
0a31bc97 2258 * Uncharge happens to pages with zero references, no race possible.
32047e2a 2259 *
0a31bc97
JW
2260 * Charge moving between groups is protected by checking mm->moving
2261 * account and taking the move_lock in the slowpath.
d69b042f 2262 */
26174efd 2263
89c06bd5
KH
2264void __mem_cgroup_begin_update_page_stat(struct page *page,
2265 bool *locked, unsigned long *flags)
2266{
2267 struct mem_cgroup *memcg;
2268 struct page_cgroup *pc;
2269
2270 pc = lookup_page_cgroup(page);
2271again:
2272 memcg = pc->mem_cgroup;
2273 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2274 return;
2275 /*
2276 * If this memory cgroup is not under account moving, we don't
da92c47d 2277 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2278 * rcu_read_lock(), any calls to move_account will be delayed until
bdcbb659 2279 * rcu_read_unlock().
89c06bd5 2280 */
bdcbb659
QH
2281 VM_BUG_ON(!rcu_read_lock_held());
2282 if (atomic_read(&memcg->moving_account) <= 0)
89c06bd5
KH
2283 return;
2284
2285 move_lock_mem_cgroup(memcg, flags);
2286 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2287 move_unlock_mem_cgroup(memcg, flags);
2288 goto again;
2289 }
2290 *locked = true;
2291}
2292
2293void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2294{
2295 struct page_cgroup *pc = lookup_page_cgroup(page);
2296
2297 /*
2298 * It's guaranteed that pc->mem_cgroup never changes while
2299 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2300 * should take move_lock_mem_cgroup().
89c06bd5
KH
2301 */
2302 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2303}
2304
2a7106f2 2305void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2306 enum mem_cgroup_stat_index idx, int val)
d69b042f 2307{
c0ff4b85 2308 struct mem_cgroup *memcg;
32047e2a 2309 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2310 unsigned long uninitialized_var(flags);
d69b042f 2311
cfa44946 2312 if (mem_cgroup_disabled())
d69b042f 2313 return;
89c06bd5 2314
658b72c5 2315 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2316 memcg = pc->mem_cgroup;
2317 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2318 return;
26174efd 2319
c0ff4b85 2320 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2321}
26174efd 2322
cdec2e42
KH
2323/*
2324 * size of first charge trial. "32" comes from vmscan.c's magic value.
2325 * TODO: maybe necessary to use big numbers in big irons.
2326 */
7ec99d62 2327#define CHARGE_BATCH 32U
cdec2e42
KH
2328struct memcg_stock_pcp {
2329 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2330 unsigned int nr_pages;
cdec2e42 2331 struct work_struct work;
26fe6168 2332 unsigned long flags;
a0db00fc 2333#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2334};
2335static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2336static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2337
a0956d54
SS
2338/**
2339 * consume_stock: Try to consume stocked charge on this cpu.
2340 * @memcg: memcg to consume from.
2341 * @nr_pages: how many pages to charge.
2342 *
2343 * The charges will only happen if @memcg matches the current cpu's memcg
2344 * stock, and at least @nr_pages are available in that stock. Failure to
2345 * service an allocation will refill the stock.
2346 *
2347 * returns true if successful, false otherwise.
cdec2e42 2348 */
a0956d54 2349static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2350{
2351 struct memcg_stock_pcp *stock;
2352 bool ret = true;
2353
a0956d54
SS
2354 if (nr_pages > CHARGE_BATCH)
2355 return false;
2356
cdec2e42 2357 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2358 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2359 stock->nr_pages -= nr_pages;
cdec2e42
KH
2360 else /* need to call res_counter_charge */
2361 ret = false;
2362 put_cpu_var(memcg_stock);
2363 return ret;
2364}
2365
2366/*
2367 * Returns stocks cached in percpu to res_counter and reset cached information.
2368 */
2369static void drain_stock(struct memcg_stock_pcp *stock)
2370{
2371 struct mem_cgroup *old = stock->cached;
2372
11c9ea4e
JW
2373 if (stock->nr_pages) {
2374 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2375
2376 res_counter_uncharge(&old->res, bytes);
cdec2e42 2377 if (do_swap_account)
11c9ea4e
JW
2378 res_counter_uncharge(&old->memsw, bytes);
2379 stock->nr_pages = 0;
cdec2e42
KH
2380 }
2381 stock->cached = NULL;
cdec2e42
KH
2382}
2383
2384/*
2385 * This must be called under preempt disabled or must be called by
2386 * a thread which is pinned to local cpu.
2387 */
2388static void drain_local_stock(struct work_struct *dummy)
2389{
7c8e0181 2390 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2391 drain_stock(stock);
26fe6168 2392 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2393}
2394
e4777496
MH
2395static void __init memcg_stock_init(void)
2396{
2397 int cpu;
2398
2399 for_each_possible_cpu(cpu) {
2400 struct memcg_stock_pcp *stock =
2401 &per_cpu(memcg_stock, cpu);
2402 INIT_WORK(&stock->work, drain_local_stock);
2403 }
2404}
2405
cdec2e42
KH
2406/*
2407 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2408 * This will be consumed by consume_stock() function, later.
cdec2e42 2409 */
c0ff4b85 2410static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2411{
2412 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2413
c0ff4b85 2414 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2415 drain_stock(stock);
c0ff4b85 2416 stock->cached = memcg;
cdec2e42 2417 }
11c9ea4e 2418 stock->nr_pages += nr_pages;
cdec2e42
KH
2419 put_cpu_var(memcg_stock);
2420}
2421
2422/*
c0ff4b85 2423 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2424 * of the hierarchy under it. sync flag says whether we should block
2425 * until the work is done.
cdec2e42 2426 */
c0ff4b85 2427static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2428{
26fe6168 2429 int cpu, curcpu;
d38144b7 2430
cdec2e42 2431 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2432 get_online_cpus();
5af12d0e 2433 curcpu = get_cpu();
cdec2e42
KH
2434 for_each_online_cpu(cpu) {
2435 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2436 struct mem_cgroup *memcg;
26fe6168 2437
c0ff4b85
R
2438 memcg = stock->cached;
2439 if (!memcg || !stock->nr_pages)
26fe6168 2440 continue;
c0ff4b85 2441 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2442 continue;
d1a05b69
MH
2443 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2444 if (cpu == curcpu)
2445 drain_local_stock(&stock->work);
2446 else
2447 schedule_work_on(cpu, &stock->work);
2448 }
cdec2e42 2449 }
5af12d0e 2450 put_cpu();
d38144b7
MH
2451
2452 if (!sync)
2453 goto out;
2454
2455 for_each_online_cpu(cpu) {
2456 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2457 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2458 flush_work(&stock->work);
2459 }
2460out:
f894ffa8 2461 put_online_cpus();
d38144b7
MH
2462}
2463
2464/*
2465 * Tries to drain stocked charges in other cpus. This function is asynchronous
2466 * and just put a work per cpu for draining localy on each cpu. Caller can
2467 * expects some charges will be back to res_counter later but cannot wait for
2468 * it.
2469 */
c0ff4b85 2470static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2471{
9f50fad6
MH
2472 /*
2473 * If someone calls draining, avoid adding more kworker runs.
2474 */
2475 if (!mutex_trylock(&percpu_charge_mutex))
2476 return;
c0ff4b85 2477 drain_all_stock(root_memcg, false);
9f50fad6 2478 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2479}
2480
2481/* This is a synchronous drain interface. */
c0ff4b85 2482static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2483{
2484 /* called when force_empty is called */
9f50fad6 2485 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2486 drain_all_stock(root_memcg, true);
9f50fad6 2487 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2488}
2489
711d3d2c
KH
2490/*
2491 * This function drains percpu counter value from DEAD cpu and
2492 * move it to local cpu. Note that this function can be preempted.
2493 */
c0ff4b85 2494static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2495{
2496 int i;
2497
c0ff4b85 2498 spin_lock(&memcg->pcp_counter_lock);
6104621d 2499 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2500 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2501
c0ff4b85
R
2502 per_cpu(memcg->stat->count[i], cpu) = 0;
2503 memcg->nocpu_base.count[i] += x;
711d3d2c 2504 }
e9f8974f 2505 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2506 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2507
c0ff4b85
R
2508 per_cpu(memcg->stat->events[i], cpu) = 0;
2509 memcg->nocpu_base.events[i] += x;
e9f8974f 2510 }
c0ff4b85 2511 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2512}
2513
0db0628d 2514static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2515 unsigned long action,
2516 void *hcpu)
2517{
2518 int cpu = (unsigned long)hcpu;
2519 struct memcg_stock_pcp *stock;
711d3d2c 2520 struct mem_cgroup *iter;
cdec2e42 2521
619d094b 2522 if (action == CPU_ONLINE)
1489ebad 2523 return NOTIFY_OK;
1489ebad 2524
d833049b 2525 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2526 return NOTIFY_OK;
711d3d2c 2527
9f3a0d09 2528 for_each_mem_cgroup(iter)
711d3d2c
KH
2529 mem_cgroup_drain_pcp_counter(iter, cpu);
2530
cdec2e42
KH
2531 stock = &per_cpu(memcg_stock, cpu);
2532 drain_stock(stock);
2533 return NOTIFY_OK;
2534}
2535
00501b53
JW
2536static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2537 unsigned int nr_pages)
8a9f3ccd 2538{
7ec99d62 2539 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2540 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05
JW
2541 struct mem_cgroup *mem_over_limit;
2542 struct res_counter *fail_res;
2543 unsigned long nr_reclaimed;
2544 unsigned long flags = 0;
2545 unsigned long long size;
05b84301 2546 int ret = 0;
a636b327 2547
ce00a967
JW
2548 if (mem_cgroup_is_root(memcg))
2549 goto done;
6539cc05 2550retry:
b6b6cc72
MH
2551 if (consume_stock(memcg, nr_pages))
2552 goto done;
8a9f3ccd 2553
6539cc05 2554 size = batch * PAGE_SIZE;
3fbe7244
JW
2555 if (!do_swap_account ||
2556 !res_counter_charge(&memcg->memsw, size, &fail_res)) {
2557 if (!res_counter_charge(&memcg->res, size, &fail_res))
6539cc05 2558 goto done_restock;
3fbe7244
JW
2559 if (do_swap_account)
2560 res_counter_uncharge(&memcg->memsw, size);
2561 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2562 } else {
6539cc05
JW
2563 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2564 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
3fbe7244 2565 }
7a81b88c 2566
6539cc05
JW
2567 if (batch > nr_pages) {
2568 batch = nr_pages;
2569 goto retry;
2570 }
6d61ef40 2571
06b078fc
JW
2572 /*
2573 * Unlike in global OOM situations, memcg is not in a physical
2574 * memory shortage. Allow dying and OOM-killed tasks to
2575 * bypass the last charges so that they can exit quickly and
2576 * free their memory.
2577 */
2578 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2579 fatal_signal_pending(current) ||
2580 current->flags & PF_EXITING))
2581 goto bypass;
2582
2583 if (unlikely(task_in_memcg_oom(current)))
2584 goto nomem;
2585
6539cc05
JW
2586 if (!(gfp_mask & __GFP_WAIT))
2587 goto nomem;
4b534334 2588
6539cc05
JW
2589 nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2590
61e02c74 2591 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2592 goto retry;
28c34c29
JW
2593
2594 if (gfp_mask & __GFP_NORETRY)
2595 goto nomem;
6539cc05
JW
2596 /*
2597 * Even though the limit is exceeded at this point, reclaim
2598 * may have been able to free some pages. Retry the charge
2599 * before killing the task.
2600 *
2601 * Only for regular pages, though: huge pages are rather
2602 * unlikely to succeed so close to the limit, and we fall back
2603 * to regular pages anyway in case of failure.
2604 */
61e02c74 2605 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2606 goto retry;
2607 /*
2608 * At task move, charge accounts can be doubly counted. So, it's
2609 * better to wait until the end of task_move if something is going on.
2610 */
2611 if (mem_cgroup_wait_acct_move(mem_over_limit))
2612 goto retry;
2613
9b130619
JW
2614 if (nr_retries--)
2615 goto retry;
2616
06b078fc
JW
2617 if (gfp_mask & __GFP_NOFAIL)
2618 goto bypass;
2619
6539cc05
JW
2620 if (fatal_signal_pending(current))
2621 goto bypass;
2622
61e02c74 2623 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2624nomem:
6d1fdc48 2625 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2626 return -ENOMEM;
867578cb 2627bypass:
ce00a967 2628 return -EINTR;
6539cc05
JW
2629
2630done_restock:
2631 if (batch > nr_pages)
2632 refill_stock(memcg, batch - nr_pages);
2633done:
05b84301 2634 return ret;
7a81b88c 2635}
8a9f3ccd 2636
00501b53 2637static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2638{
05b84301 2639 unsigned long bytes = nr_pages * PAGE_SIZE;
e7018b8d 2640
ce00a967
JW
2641 if (mem_cgroup_is_root(memcg))
2642 return;
2643
05b84301
JW
2644 res_counter_uncharge(&memcg->res, bytes);
2645 if (do_swap_account)
2646 res_counter_uncharge(&memcg->memsw, bytes);
854ffa8d
DN
2647}
2648
d01dd17f
KH
2649/*
2650 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2651 * This is useful when moving usage to parent cgroup.
2652 */
2653static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2654 unsigned int nr_pages)
2655{
2656 unsigned long bytes = nr_pages * PAGE_SIZE;
2657
ce00a967
JW
2658 if (mem_cgroup_is_root(memcg))
2659 return;
2660
d01dd17f
KH
2661 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2662 if (do_swap_account)
2663 res_counter_uncharge_until(&memcg->memsw,
2664 memcg->memsw.parent, bytes);
2665}
2666
a3b2d692
KH
2667/*
2668 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2669 * rcu_read_lock(). The caller is responsible for calling
2670 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2671 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2672 */
2673static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2674{
a3b2d692
KH
2675 /* ID 0 is unused ID */
2676 if (!id)
2677 return NULL;
34c00c31 2678 return mem_cgroup_from_id(id);
a3b2d692
KH
2679}
2680
0a31bc97
JW
2681/*
2682 * try_get_mem_cgroup_from_page - look up page's memcg association
2683 * @page: the page
2684 *
2685 * Look up, get a css reference, and return the memcg that owns @page.
2686 *
2687 * The page must be locked to prevent racing with swap-in and page
2688 * cache charges. If coming from an unlocked page table, the caller
2689 * must ensure the page is on the LRU or this can race with charging.
2690 */
e42d9d5d 2691struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2692{
c0ff4b85 2693 struct mem_cgroup *memcg = NULL;
3c776e64 2694 struct page_cgroup *pc;
a3b2d692 2695 unsigned short id;
b5a84319
KH
2696 swp_entry_t ent;
2697
309381fe 2698 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2699
3c776e64 2700 pc = lookup_page_cgroup(page);
a3b2d692 2701 if (PageCgroupUsed(pc)) {
c0ff4b85 2702 memcg = pc->mem_cgroup;
ec903c0c 2703 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2704 memcg = NULL;
e42d9d5d 2705 } else if (PageSwapCache(page)) {
3c776e64 2706 ent.val = page_private(page);
9fb4b7cc 2707 id = lookup_swap_cgroup_id(ent);
a3b2d692 2708 rcu_read_lock();
c0ff4b85 2709 memcg = mem_cgroup_lookup(id);
ec903c0c 2710 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2711 memcg = NULL;
a3b2d692 2712 rcu_read_unlock();
3c776e64 2713 }
c0ff4b85 2714 return memcg;
b5a84319
KH
2715}
2716
0a31bc97
JW
2717static void lock_page_lru(struct page *page, int *isolated)
2718{
2719 struct zone *zone = page_zone(page);
2720
2721 spin_lock_irq(&zone->lru_lock);
2722 if (PageLRU(page)) {
2723 struct lruvec *lruvec;
2724
2725 lruvec = mem_cgroup_page_lruvec(page, zone);
2726 ClearPageLRU(page);
2727 del_page_from_lru_list(page, lruvec, page_lru(page));
2728 *isolated = 1;
2729 } else
2730 *isolated = 0;
2731}
2732
2733static void unlock_page_lru(struct page *page, int isolated)
2734{
2735 struct zone *zone = page_zone(page);
2736
2737 if (isolated) {
2738 struct lruvec *lruvec;
2739
2740 lruvec = mem_cgroup_page_lruvec(page, zone);
2741 VM_BUG_ON_PAGE(PageLRU(page), page);
2742 SetPageLRU(page);
2743 add_page_to_lru_list(page, lruvec, page_lru(page));
2744 }
2745 spin_unlock_irq(&zone->lru_lock);
2746}
2747
00501b53 2748static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2749 bool lrucare)
7a81b88c 2750{
ce587e65 2751 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2752 int isolated;
9ce70c02 2753
309381fe 2754 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2755 /*
2756 * we don't need page_cgroup_lock about tail pages, becase they are not
2757 * accessed by any other context at this point.
2758 */
9ce70c02
HD
2759
2760 /*
2761 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2762 * may already be on some other mem_cgroup's LRU. Take care of it.
2763 */
0a31bc97
JW
2764 if (lrucare)
2765 lock_page_lru(page, &isolated);
9ce70c02 2766
0a31bc97
JW
2767 /*
2768 * Nobody should be changing or seriously looking at
2769 * pc->mem_cgroup and pc->flags at this point:
2770 *
2771 * - the page is uncharged
2772 *
2773 * - the page is off-LRU
2774 *
2775 * - an anonymous fault has exclusive page access, except for
2776 * a locked page table
2777 *
2778 * - a page cache insertion, a swapin fault, or a migration
2779 * have the page locked
2780 */
c0ff4b85 2781 pc->mem_cgroup = memcg;
0a31bc97 2782 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
9ce70c02 2783
0a31bc97
JW
2784 if (lrucare)
2785 unlock_page_lru(page, isolated);
7a81b88c 2786}
66e1707b 2787
7cf27982
GC
2788static DEFINE_MUTEX(set_limit_mutex);
2789
7ae1e1d0 2790#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2791/*
2792 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2793 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2794 */
2795static DEFINE_MUTEX(memcg_slab_mutex);
2796
d6441637
VD
2797static DEFINE_MUTEX(activate_kmem_mutex);
2798
7ae1e1d0
GC
2799static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2800{
2801 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2802 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2803}
2804
1f458cbf
GC
2805/*
2806 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2807 * in the memcg_cache_params struct.
2808 */
2809static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2810{
2811 struct kmem_cache *cachep;
2812
2813 VM_BUG_ON(p->is_root_cache);
2814 cachep = p->root_cache;
7a67d7ab 2815 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2816}
2817
749c5415 2818#ifdef CONFIG_SLABINFO
2da8ca82 2819static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2820{
2da8ca82 2821 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2822 struct memcg_cache_params *params;
2823
2824 if (!memcg_can_account_kmem(memcg))
2825 return -EIO;
2826
2827 print_slabinfo_header(m);
2828
bd673145 2829 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2830 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2831 cache_show(memcg_params_to_cache(params), m);
bd673145 2832 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2833
2834 return 0;
2835}
2836#endif
2837
c67a8a68 2838static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
7ae1e1d0
GC
2839{
2840 struct res_counter *fail_res;
7ae1e1d0 2841 int ret = 0;
7ae1e1d0
GC
2842
2843 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2844 if (ret)
2845 return ret;
2846
00501b53 2847 ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
7ae1e1d0
GC
2848 if (ret == -EINTR) {
2849 /*
00501b53
JW
2850 * try_charge() chose to bypass to root due to OOM kill or
2851 * fatal signal. Since our only options are to either fail
2852 * the allocation or charge it to this cgroup, do it as a
2853 * temporary condition. But we can't fail. From a kmem/slab
2854 * perspective, the cache has already been selected, by
2855 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2856 * our minds.
2857 *
2858 * This condition will only trigger if the task entered
00501b53
JW
2859 * memcg_charge_kmem in a sane state, but was OOM-killed
2860 * during try_charge() above. Tasks that were already dying
2861 * when the allocation triggers should have been already
7ae1e1d0
GC
2862 * directed to the root cgroup in memcontrol.h
2863 */
2864 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2865 if (do_swap_account)
2866 res_counter_charge_nofail(&memcg->memsw, size,
2867 &fail_res);
2868 ret = 0;
2869 } else if (ret)
2870 res_counter_uncharge(&memcg->kmem, size);
2871
2872 return ret;
2873}
2874
c67a8a68 2875static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
7ae1e1d0 2876{
7ae1e1d0
GC
2877 res_counter_uncharge(&memcg->res, size);
2878 if (do_swap_account)
2879 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2880
2881 /* Not down to 0 */
2882 if (res_counter_uncharge(&memcg->kmem, size))
2883 return;
2884
10d5ebf4
LZ
2885 /*
2886 * Releases a reference taken in kmem_cgroup_css_offline in case
2887 * this last uncharge is racing with the offlining code or it is
2888 * outliving the memcg existence.
2889 *
2890 * The memory barrier imposed by test&clear is paired with the
2891 * explicit one in memcg_kmem_mark_dead().
2892 */
7de37682 2893 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2894 css_put(&memcg->css);
7ae1e1d0
GC
2895}
2896
2633d7a0
GC
2897/*
2898 * helper for acessing a memcg's index. It will be used as an index in the
2899 * child cache array in kmem_cache, and also to derive its name. This function
2900 * will return -1 when this is not a kmem-limited memcg.
2901 */
2902int memcg_cache_id(struct mem_cgroup *memcg)
2903{
2904 return memcg ? memcg->kmemcg_id : -1;
2905}
2906
f3bb3043 2907static int memcg_alloc_cache_id(void)
55007d84 2908{
f3bb3043
VD
2909 int id, size;
2910 int err;
2911
2912 id = ida_simple_get(&kmem_limited_groups,
2913 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2914 if (id < 0)
2915 return id;
55007d84 2916
f3bb3043
VD
2917 if (id < memcg_limited_groups_array_size)
2918 return id;
2919
2920 /*
2921 * There's no space for the new id in memcg_caches arrays,
2922 * so we have to grow them.
2923 */
2924
2925 size = 2 * (id + 1);
55007d84
GC
2926 if (size < MEMCG_CACHES_MIN_SIZE)
2927 size = MEMCG_CACHES_MIN_SIZE;
2928 else if (size > MEMCG_CACHES_MAX_SIZE)
2929 size = MEMCG_CACHES_MAX_SIZE;
2930
f3bb3043
VD
2931 mutex_lock(&memcg_slab_mutex);
2932 err = memcg_update_all_caches(size);
2933 mutex_unlock(&memcg_slab_mutex);
2934
2935 if (err) {
2936 ida_simple_remove(&kmem_limited_groups, id);
2937 return err;
2938 }
2939 return id;
2940}
2941
2942static void memcg_free_cache_id(int id)
2943{
2944 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2945}
2946
2947/*
2948 * We should update the current array size iff all caches updates succeed. This
2949 * can only be done from the slab side. The slab mutex needs to be held when
2950 * calling this.
2951 */
2952void memcg_update_array_size(int num)
2953{
f3bb3043 2954 memcg_limited_groups_array_size = num;
55007d84
GC
2955}
2956
776ed0f0
VD
2957static void memcg_register_cache(struct mem_cgroup *memcg,
2958 struct kmem_cache *root_cache)
2633d7a0 2959{
93f39eea
VD
2960 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2961 memcg_slab_mutex */
bd673145 2962 struct kmem_cache *cachep;
d7f25f8a
GC
2963 int id;
2964
bd673145
VD
2965 lockdep_assert_held(&memcg_slab_mutex);
2966
2967 id = memcg_cache_id(memcg);
2968
2969 /*
2970 * Since per-memcg caches are created asynchronously on first
2971 * allocation (see memcg_kmem_get_cache()), several threads can try to
2972 * create the same cache, but only one of them may succeed.
2973 */
2974 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2975 return;
2976
073ee1c6 2977 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2978 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2979 /*
bd673145
VD
2980 * If we could not create a memcg cache, do not complain, because
2981 * that's not critical at all as we can always proceed with the root
2982 * cache.
2edefe11 2983 */
bd673145
VD
2984 if (!cachep)
2985 return;
2edefe11 2986
33a690c4 2987 css_get(&memcg->css);
bd673145 2988 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2989
d7f25f8a 2990 /*
959c8963
VD
2991 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2992 * barrier here to ensure nobody will see the kmem_cache partially
2993 * initialized.
d7f25f8a 2994 */
959c8963
VD
2995 smp_wmb();
2996
bd673145
VD
2997 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2998 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2999}
d7f25f8a 3000
776ed0f0 3001static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 3002{
bd673145 3003 struct kmem_cache *root_cache;
1aa13254
VD
3004 struct mem_cgroup *memcg;
3005 int id;
3006
bd673145 3007 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 3008
bd673145 3009 BUG_ON(is_root_cache(cachep));
2edefe11 3010
bd673145
VD
3011 root_cache = cachep->memcg_params->root_cache;
3012 memcg = cachep->memcg_params->memcg;
96403da2 3013 id = memcg_cache_id(memcg);
d7f25f8a 3014
bd673145
VD
3015 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3016 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 3017
bd673145
VD
3018 list_del(&cachep->memcg_params->list);
3019
3020 kmem_cache_destroy(cachep);
33a690c4
VD
3021
3022 /* drop the reference taken in memcg_register_cache */
3023 css_put(&memcg->css);
2633d7a0
GC
3024}
3025
0e9d92f2
GC
3026/*
3027 * During the creation a new cache, we need to disable our accounting mechanism
3028 * altogether. This is true even if we are not creating, but rather just
3029 * enqueing new caches to be created.
3030 *
3031 * This is because that process will trigger allocations; some visible, like
3032 * explicit kmallocs to auxiliary data structures, name strings and internal
3033 * cache structures; some well concealed, like INIT_WORK() that can allocate
3034 * objects during debug.
3035 *
3036 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3037 * to it. This may not be a bounded recursion: since the first cache creation
3038 * failed to complete (waiting on the allocation), we'll just try to create the
3039 * cache again, failing at the same point.
3040 *
3041 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3042 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3043 * inside the following two functions.
3044 */
3045static inline void memcg_stop_kmem_account(void)
3046{
3047 VM_BUG_ON(!current->mm);
3048 current->memcg_kmem_skip_account++;
3049}
3050
3051static inline void memcg_resume_kmem_account(void)
3052{
3053 VM_BUG_ON(!current->mm);
3054 current->memcg_kmem_skip_account--;
3055}
3056
776ed0f0 3057int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
3058{
3059 struct kmem_cache *c;
b8529907 3060 int i, failed = 0;
7cf27982 3061
bd673145 3062 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
3063 for_each_memcg_cache_index(i) {
3064 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3065 if (!c)
3066 continue;
3067
776ed0f0 3068 memcg_unregister_cache(c);
b8529907
VD
3069
3070 if (cache_from_memcg_idx(s, i))
3071 failed++;
7cf27982 3072 }
bd673145 3073 mutex_unlock(&memcg_slab_mutex);
b8529907 3074 return failed;
7cf27982
GC
3075}
3076
776ed0f0 3077static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3078{
3079 struct kmem_cache *cachep;
bd673145 3080 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
3081
3082 if (!memcg_kmem_is_active(memcg))
3083 return;
3084
bd673145
VD
3085 mutex_lock(&memcg_slab_mutex);
3086 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 3087 cachep = memcg_params_to_cache(params);
bd673145
VD
3088 kmem_cache_shrink(cachep);
3089 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 3090 memcg_unregister_cache(cachep);
1f458cbf 3091 }
bd673145 3092 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
3093}
3094
776ed0f0 3095struct memcg_register_cache_work {
5722d094
VD
3096 struct mem_cgroup *memcg;
3097 struct kmem_cache *cachep;
3098 struct work_struct work;
3099};
3100
776ed0f0 3101static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 3102{
776ed0f0
VD
3103 struct memcg_register_cache_work *cw =
3104 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
3105 struct mem_cgroup *memcg = cw->memcg;
3106 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3107
bd673145 3108 mutex_lock(&memcg_slab_mutex);
776ed0f0 3109 memcg_register_cache(memcg, cachep);
bd673145
VD
3110 mutex_unlock(&memcg_slab_mutex);
3111
5722d094 3112 css_put(&memcg->css);
d7f25f8a
GC
3113 kfree(cw);
3114}
3115
3116/*
3117 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3118 */
776ed0f0
VD
3119static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3120 struct kmem_cache *cachep)
d7f25f8a 3121{
776ed0f0 3122 struct memcg_register_cache_work *cw;
d7f25f8a 3123
776ed0f0 3124 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
3125 if (cw == NULL) {
3126 css_put(&memcg->css);
d7f25f8a
GC
3127 return;
3128 }
3129
3130 cw->memcg = memcg;
3131 cw->cachep = cachep;
3132
776ed0f0 3133 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
3134 schedule_work(&cw->work);
3135}
3136
776ed0f0
VD
3137static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3138 struct kmem_cache *cachep)
0e9d92f2
GC
3139{
3140 /*
3141 * We need to stop accounting when we kmalloc, because if the
3142 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 3143 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
3144 *
3145 * However, it is better to enclose the whole function. Depending on
3146 * the debugging options enabled, INIT_WORK(), for instance, can
3147 * trigger an allocation. This too, will make us recurse. Because at
3148 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3149 * the safest choice is to do it like this, wrapping the whole function.
3150 */
3151 memcg_stop_kmem_account();
776ed0f0 3152 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3153 memcg_resume_kmem_account();
3154}
c67a8a68
VD
3155
3156int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3157{
3158 int res;
3159
3160 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3161 PAGE_SIZE << order);
3162 if (!res)
3163 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3164 return res;
3165}
3166
3167void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3168{
3169 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3170 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3171}
3172
d7f25f8a
GC
3173/*
3174 * Return the kmem_cache we're supposed to use for a slab allocation.
3175 * We try to use the current memcg's version of the cache.
3176 *
3177 * If the cache does not exist yet, if we are the first user of it,
3178 * we either create it immediately, if possible, or create it asynchronously
3179 * in a workqueue.
3180 * In the latter case, we will let the current allocation go through with
3181 * the original cache.
3182 *
3183 * Can't be called in interrupt context or from kernel threads.
3184 * This function needs to be called with rcu_read_lock() held.
3185 */
3186struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3187 gfp_t gfp)
3188{
3189 struct mem_cgroup *memcg;
959c8963 3190 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3191
3192 VM_BUG_ON(!cachep->memcg_params);
3193 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3194
0e9d92f2
GC
3195 if (!current->mm || current->memcg_kmem_skip_account)
3196 return cachep;
3197
d7f25f8a
GC
3198 rcu_read_lock();
3199 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3200
3201 if (!memcg_can_account_kmem(memcg))
ca0dde97 3202 goto out;
d7f25f8a 3203
959c8963
VD
3204 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3205 if (likely(memcg_cachep)) {
3206 cachep = memcg_cachep;
ca0dde97 3207 goto out;
d7f25f8a
GC
3208 }
3209
ca0dde97 3210 /* The corresponding put will be done in the workqueue. */
ec903c0c 3211 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3212 goto out;
3213 rcu_read_unlock();
3214
3215 /*
3216 * If we are in a safe context (can wait, and not in interrupt
3217 * context), we could be be predictable and return right away.
3218 * This would guarantee that the allocation being performed
3219 * already belongs in the new cache.
3220 *
3221 * However, there are some clashes that can arrive from locking.
3222 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3223 * memcg_create_kmem_cache, this means no further allocation
3224 * could happen with the slab_mutex held. So it's better to
3225 * defer everything.
ca0dde97 3226 */
776ed0f0 3227 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3228 return cachep;
3229out:
3230 rcu_read_unlock();
3231 return cachep;
d7f25f8a 3232}
d7f25f8a 3233
7ae1e1d0
GC
3234/*
3235 * We need to verify if the allocation against current->mm->owner's memcg is
3236 * possible for the given order. But the page is not allocated yet, so we'll
3237 * need a further commit step to do the final arrangements.
3238 *
3239 * It is possible for the task to switch cgroups in this mean time, so at
3240 * commit time, we can't rely on task conversion any longer. We'll then use
3241 * the handle argument to return to the caller which cgroup we should commit
3242 * against. We could also return the memcg directly and avoid the pointer
3243 * passing, but a boolean return value gives better semantics considering
3244 * the compiled-out case as well.
3245 *
3246 * Returning true means the allocation is possible.
3247 */
3248bool
3249__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3250{
3251 struct mem_cgroup *memcg;
3252 int ret;
3253
3254 *_memcg = NULL;
6d42c232
GC
3255
3256 /*
3257 * Disabling accounting is only relevant for some specific memcg
3258 * internal allocations. Therefore we would initially not have such
52383431
VD
3259 * check here, since direct calls to the page allocator that are
3260 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3261 * outside memcg core. We are mostly concerned with cache allocations,
3262 * and by having this test at memcg_kmem_get_cache, we are already able
3263 * to relay the allocation to the root cache and bypass the memcg cache
3264 * altogether.
6d42c232
GC
3265 *
3266 * There is one exception, though: the SLUB allocator does not create
3267 * large order caches, but rather service large kmallocs directly from
3268 * the page allocator. Therefore, the following sequence when backed by
3269 * the SLUB allocator:
3270 *
f894ffa8
AM
3271 * memcg_stop_kmem_account();
3272 * kmalloc(<large_number>)
3273 * memcg_resume_kmem_account();
6d42c232
GC
3274 *
3275 * would effectively ignore the fact that we should skip accounting,
3276 * since it will drive us directly to this function without passing
3277 * through the cache selector memcg_kmem_get_cache. Such large
3278 * allocations are extremely rare but can happen, for instance, for the
3279 * cache arrays. We bring this test here.
3280 */
3281 if (!current->mm || current->memcg_kmem_skip_account)
3282 return true;
3283
df381975 3284 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3285
3286 if (!memcg_can_account_kmem(memcg)) {
3287 css_put(&memcg->css);
3288 return true;
3289 }
3290
7ae1e1d0
GC
3291 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3292 if (!ret)
3293 *_memcg = memcg;
7ae1e1d0
GC
3294
3295 css_put(&memcg->css);
3296 return (ret == 0);
3297}
3298
3299void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3300 int order)
3301{
3302 struct page_cgroup *pc;
3303
3304 VM_BUG_ON(mem_cgroup_is_root(memcg));
3305
3306 /* The page allocation failed. Revert */
3307 if (!page) {
3308 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3309 return;
3310 }
a840cda6
JW
3311 /*
3312 * The page is freshly allocated and not visible to any
3313 * outside callers yet. Set up pc non-atomically.
3314 */
7ae1e1d0 3315 pc = lookup_page_cgroup(page);
7ae1e1d0 3316 pc->mem_cgroup = memcg;
a840cda6 3317 pc->flags = PCG_USED;
7ae1e1d0
GC
3318}
3319
3320void __memcg_kmem_uncharge_pages(struct page *page, int order)
3321{
3322 struct mem_cgroup *memcg = NULL;
3323 struct page_cgroup *pc;
3324
3325
3326 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3327 if (!PageCgroupUsed(pc))
3328 return;
3329
a840cda6
JW
3330 memcg = pc->mem_cgroup;
3331 pc->flags = 0;
7ae1e1d0
GC
3332
3333 /*
3334 * We trust that only if there is a memcg associated with the page, it
3335 * is a valid allocation
3336 */
3337 if (!memcg)
3338 return;
3339
309381fe 3340 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3341 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3342}
1f458cbf 3343#else
776ed0f0 3344static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3345{
3346}
7ae1e1d0
GC
3347#endif /* CONFIG_MEMCG_KMEM */
3348
ca3e0214
KH
3349#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3350
ca3e0214
KH
3351/*
3352 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3353 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3354 * charge/uncharge will be never happen and move_account() is done under
3355 * compound_lock(), so we don't have to take care of races.
ca3e0214 3356 */
e94c8a9c 3357void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3358{
3359 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3360 struct page_cgroup *pc;
b070e65c 3361 struct mem_cgroup *memcg;
e94c8a9c 3362 int i;
ca3e0214 3363
3d37c4a9
KH
3364 if (mem_cgroup_disabled())
3365 return;
b070e65c
DR
3366
3367 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3368 for (i = 1; i < HPAGE_PMD_NR; i++) {
3369 pc = head_pc + i;
b070e65c 3370 pc->mem_cgroup = memcg;
0a31bc97 3371 pc->flags = head_pc->flags;
e94c8a9c 3372 }
b070e65c
DR
3373 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3374 HPAGE_PMD_NR);
ca3e0214 3375}
12d27107 3376#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3377
f817ed48 3378/**
de3638d9 3379 * mem_cgroup_move_account - move account of the page
5564e88b 3380 * @page: the page
7ec99d62 3381 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3382 * @pc: page_cgroup of the page.
3383 * @from: mem_cgroup which the page is moved from.
3384 * @to: mem_cgroup which the page is moved to. @from != @to.
3385 *
3386 * The caller must confirm following.
08e552c6 3387 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3388 * - compound_lock is held when nr_pages > 1
f817ed48 3389 *
2f3479b1
KH
3390 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3391 * from old cgroup.
f817ed48 3392 */
7ec99d62
JW
3393static int mem_cgroup_move_account(struct page *page,
3394 unsigned int nr_pages,
3395 struct page_cgroup *pc,
3396 struct mem_cgroup *from,
2f3479b1 3397 struct mem_cgroup *to)
f817ed48 3398{
de3638d9
JW
3399 unsigned long flags;
3400 int ret;
987eba66 3401
f817ed48 3402 VM_BUG_ON(from == to);
309381fe 3403 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3404 /*
3405 * The page is isolated from LRU. So, collapse function
3406 * will not handle this page. But page splitting can happen.
3407 * Do this check under compound_page_lock(). The caller should
3408 * hold it.
3409 */
3410 ret = -EBUSY;
7ec99d62 3411 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3412 goto out;
3413
0a31bc97
JW
3414 /*
3415 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3416 * of its source page while we change it: page migration takes
3417 * both pages off the LRU, but page cache replacement doesn't.
3418 */
3419 if (!trylock_page(page))
3420 goto out;
de3638d9
JW
3421
3422 ret = -EINVAL;
3423 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
0a31bc97 3424 goto out_unlock;
de3638d9 3425
312734c0 3426 move_lock_mem_cgroup(from, &flags);
f817ed48 3427
0a31bc97 3428 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3429 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3430 nr_pages);
3431 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3432 nr_pages);
3433 }
3ea67d06 3434
59d1d256
JW
3435 if (PageWriteback(page)) {
3436 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3437 nr_pages);
3438 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3439 nr_pages);
3440 }
3ea67d06 3441
0a31bc97
JW
3442 /*
3443 * It is safe to change pc->mem_cgroup here because the page
3444 * is referenced, charged, and isolated - we can't race with
3445 * uncharging, charging, migration, or LRU putback.
3446 */
d69b042f 3447
854ffa8d 3448 /* caller should have done css_get */
08e552c6 3449 pc->mem_cgroup = to;
312734c0 3450 move_unlock_mem_cgroup(from, &flags);
de3638d9 3451 ret = 0;
0a31bc97
JW
3452
3453 local_irq_disable();
3454 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3455 memcg_check_events(to, page);
0a31bc97 3456 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3457 memcg_check_events(from, page);
0a31bc97
JW
3458 local_irq_enable();
3459out_unlock:
3460 unlock_page(page);
de3638d9 3461out:
f817ed48
KH
3462 return ret;
3463}
3464
2ef37d3f
MH
3465/**
3466 * mem_cgroup_move_parent - moves page to the parent group
3467 * @page: the page to move
3468 * @pc: page_cgroup of the page
3469 * @child: page's cgroup
3470 *
3471 * move charges to its parent or the root cgroup if the group has no
3472 * parent (aka use_hierarchy==0).
3473 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3474 * mem_cgroup_move_account fails) the failure is always temporary and
3475 * it signals a race with a page removal/uncharge or migration. In the
3476 * first case the page is on the way out and it will vanish from the LRU
3477 * on the next attempt and the call should be retried later.
3478 * Isolation from the LRU fails only if page has been isolated from
3479 * the LRU since we looked at it and that usually means either global
3480 * reclaim or migration going on. The page will either get back to the
3481 * LRU or vanish.
3482 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3483 * (!PageCgroupUsed) or moved to a different group. The page will
3484 * disappear in the next attempt.
f817ed48 3485 */
5564e88b
JW
3486static int mem_cgroup_move_parent(struct page *page,
3487 struct page_cgroup *pc,
6068bf01 3488 struct mem_cgroup *child)
f817ed48 3489{
f817ed48 3490 struct mem_cgroup *parent;
7ec99d62 3491 unsigned int nr_pages;
4be4489f 3492 unsigned long uninitialized_var(flags);
f817ed48
KH
3493 int ret;
3494
d8423011 3495 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3496
57f9fd7d
DN
3497 ret = -EBUSY;
3498 if (!get_page_unless_zero(page))
3499 goto out;
3500 if (isolate_lru_page(page))
3501 goto put;
52dbb905 3502
7ec99d62 3503 nr_pages = hpage_nr_pages(page);
08e552c6 3504
cc926f78
KH
3505 parent = parent_mem_cgroup(child);
3506 /*
3507 * If no parent, move charges to root cgroup.
3508 */
3509 if (!parent)
3510 parent = root_mem_cgroup;
f817ed48 3511
2ef37d3f 3512 if (nr_pages > 1) {
309381fe 3513 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3514 flags = compound_lock_irqsave(page);
2ef37d3f 3515 }
987eba66 3516
cc926f78 3517 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3518 pc, child, parent);
cc926f78
KH
3519 if (!ret)
3520 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3521
7ec99d62 3522 if (nr_pages > 1)
987eba66 3523 compound_unlock_irqrestore(page, flags);
08e552c6 3524 putback_lru_page(page);
57f9fd7d 3525put:
40d58138 3526 put_page(page);
57f9fd7d 3527out:
f817ed48
KH
3528 return ret;
3529}
3530
c255a458 3531#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3532static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3533 bool charge)
d13d1443 3534{
0a31bc97
JW
3535 int val = (charge) ? 1 : -1;
3536 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3537}
02491447
DN
3538
3539/**
3540 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3541 * @entry: swap entry to be moved
3542 * @from: mem_cgroup which the entry is moved from
3543 * @to: mem_cgroup which the entry is moved to
3544 *
3545 * It succeeds only when the swap_cgroup's record for this entry is the same
3546 * as the mem_cgroup's id of @from.
3547 *
3548 * Returns 0 on success, -EINVAL on failure.
3549 *
3550 * The caller must have charged to @to, IOW, called res_counter_charge() about
3551 * both res and memsw, and called css_get().
3552 */
3553static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3554 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3555{
3556 unsigned short old_id, new_id;
3557
34c00c31
LZ
3558 old_id = mem_cgroup_id(from);
3559 new_id = mem_cgroup_id(to);
02491447
DN
3560
3561 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3562 mem_cgroup_swap_statistics(from, false);
483c30b5 3563 mem_cgroup_swap_statistics(to, true);
02491447 3564 /*
483c30b5
DN
3565 * This function is only called from task migration context now.
3566 * It postpones res_counter and refcount handling till the end
3567 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3568 * improvement. But we cannot postpone css_get(to) because if
3569 * the process that has been moved to @to does swap-in, the
3570 * refcount of @to might be decreased to 0.
3571 *
3572 * We are in attach() phase, so the cgroup is guaranteed to be
3573 * alive, so we can just call css_get().
02491447 3574 */
4050377b 3575 css_get(&to->css);
02491447
DN
3576 return 0;
3577 }
3578 return -EINVAL;
3579}
3580#else
3581static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3582 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3583{
3584 return -EINVAL;
3585}
8c7c6e34 3586#endif
d13d1443 3587
f212ad7c
DN
3588#ifdef CONFIG_DEBUG_VM
3589static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3590{
3591 struct page_cgroup *pc;
3592
3593 pc = lookup_page_cgroup(page);
cfa44946
JW
3594 /*
3595 * Can be NULL while feeding pages into the page allocator for
3596 * the first time, i.e. during boot or memory hotplug;
3597 * or when mem_cgroup_disabled().
3598 */
f212ad7c
DN
3599 if (likely(pc) && PageCgroupUsed(pc))
3600 return pc;
3601 return NULL;
3602}
3603
3604bool mem_cgroup_bad_page_check(struct page *page)
3605{
3606 if (mem_cgroup_disabled())
3607 return false;
3608
3609 return lookup_page_cgroup_used(page) != NULL;
3610}
3611
3612void mem_cgroup_print_bad_page(struct page *page)
3613{
3614 struct page_cgroup *pc;
3615
3616 pc = lookup_page_cgroup_used(page);
3617 if (pc) {
d045197f
AM
3618 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3619 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3620 }
3621}
3622#endif
3623
d38d2a75 3624static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3625 unsigned long long val)
628f4235 3626{
81d39c20 3627 int retry_count;
628f4235 3628 int ret = 0;
81d39c20
KH
3629 int children = mem_cgroup_count_children(memcg);
3630 u64 curusage, oldusage;
3c11ecf4 3631 int enlarge;
81d39c20
KH
3632
3633 /*
3634 * For keeping hierarchical_reclaim simple, how long we should retry
3635 * is depends on callers. We set our retry-count to be function
3636 * of # of children which we should visit in this loop.
3637 */
3638 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3639
3640 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3641
3c11ecf4 3642 enlarge = 0;
8c7c6e34 3643 while (retry_count) {
628f4235
KH
3644 if (signal_pending(current)) {
3645 ret = -EINTR;
3646 break;
3647 }
8c7c6e34
KH
3648 /*
3649 * Rather than hide all in some function, I do this in
3650 * open coded manner. You see what this really does.
aaad153e 3651 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3652 */
3653 mutex_lock(&set_limit_mutex);
3fbe7244 3654 if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val) {
8c7c6e34
KH
3655 ret = -EINVAL;
3656 mutex_unlock(&set_limit_mutex);
628f4235
KH
3657 break;
3658 }
3c11ecf4 3659
3fbe7244 3660 if (res_counter_read_u64(&memcg->res, RES_LIMIT) < val)
3c11ecf4
KH
3661 enlarge = 1;
3662
8c7c6e34
KH
3663 ret = res_counter_set_limit(&memcg->res, val);
3664 mutex_unlock(&set_limit_mutex);
3665
3666 if (!ret)
3667 break;
3668
5660048c
JW
3669 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3670 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3671 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3672 /* Usage is reduced ? */
f894ffa8 3673 if (curusage >= oldusage)
81d39c20
KH
3674 retry_count--;
3675 else
3676 oldusage = curusage;
8c7c6e34 3677 }
3c11ecf4
KH
3678 if (!ret && enlarge)
3679 memcg_oom_recover(memcg);
14797e23 3680
8c7c6e34
KH
3681 return ret;
3682}
3683
338c8431
LZ
3684static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3685 unsigned long long val)
8c7c6e34 3686{
81d39c20 3687 int retry_count;
3fbe7244 3688 u64 oldusage, curusage;
81d39c20
KH
3689 int children = mem_cgroup_count_children(memcg);
3690 int ret = -EBUSY;
3c11ecf4 3691 int enlarge = 0;
8c7c6e34 3692
81d39c20 3693 /* see mem_cgroup_resize_res_limit */
f894ffa8 3694 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 3695 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3696 while (retry_count) {
3697 if (signal_pending(current)) {
3698 ret = -EINTR;
3699 break;
3700 }
3701 /*
3702 * Rather than hide all in some function, I do this in
3703 * open coded manner. You see what this really does.
aaad153e 3704 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3705 */
3706 mutex_lock(&set_limit_mutex);
3fbe7244 3707 if (res_counter_read_u64(&memcg->res, RES_LIMIT) > val) {
8c7c6e34
KH
3708 ret = -EINVAL;
3709 mutex_unlock(&set_limit_mutex);
3710 break;
3711 }
3fbe7244 3712 if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val)
3c11ecf4 3713 enlarge = 1;
8c7c6e34
KH
3714 ret = res_counter_set_limit(&memcg->memsw, val);
3715 mutex_unlock(&set_limit_mutex);
3716
3717 if (!ret)
3718 break;
3719
5660048c
JW
3720 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3721 MEM_CGROUP_RECLAIM_NOSWAP |
3722 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3723 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3724 /* Usage is reduced ? */
8c7c6e34 3725 if (curusage >= oldusage)
628f4235 3726 retry_count--;
81d39c20
KH
3727 else
3728 oldusage = curusage;
628f4235 3729 }
3c11ecf4
KH
3730 if (!ret && enlarge)
3731 memcg_oom_recover(memcg);
628f4235
KH
3732 return ret;
3733}
3734
0608f43d
AM
3735unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3736 gfp_t gfp_mask,
3737 unsigned long *total_scanned)
3738{
3739 unsigned long nr_reclaimed = 0;
3740 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3741 unsigned long reclaimed;
3742 int loop = 0;
3743 struct mem_cgroup_tree_per_zone *mctz;
3744 unsigned long long excess;
3745 unsigned long nr_scanned;
3746
3747 if (order > 0)
3748 return 0;
3749
3750 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3751 /*
3752 * This loop can run a while, specially if mem_cgroup's continuously
3753 * keep exceeding their soft limit and putting the system under
3754 * pressure
3755 */
3756 do {
3757 if (next_mz)
3758 mz = next_mz;
3759 else
3760 mz = mem_cgroup_largest_soft_limit_node(mctz);
3761 if (!mz)
3762 break;
3763
3764 nr_scanned = 0;
3765 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3766 gfp_mask, &nr_scanned);
3767 nr_reclaimed += reclaimed;
3768 *total_scanned += nr_scanned;
0a31bc97 3769 spin_lock_irq(&mctz->lock);
0608f43d
AM
3770
3771 /*
3772 * If we failed to reclaim anything from this memory cgroup
3773 * it is time to move on to the next cgroup
3774 */
3775 next_mz = NULL;
3776 if (!reclaimed) {
3777 do {
3778 /*
3779 * Loop until we find yet another one.
3780 *
3781 * By the time we get the soft_limit lock
3782 * again, someone might have aded the
3783 * group back on the RB tree. Iterate to
3784 * make sure we get a different mem.
3785 * mem_cgroup_largest_soft_limit_node returns
3786 * NULL if no other cgroup is present on
3787 * the tree
3788 */
3789 next_mz =
3790 __mem_cgroup_largest_soft_limit_node(mctz);
3791 if (next_mz == mz)
3792 css_put(&next_mz->memcg->css);
3793 else /* next_mz == NULL or other memcg */
3794 break;
3795 } while (1);
3796 }
cf2c8127 3797 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3798 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3799 /*
3800 * One school of thought says that we should not add
3801 * back the node to the tree if reclaim returns 0.
3802 * But our reclaim could return 0, simply because due
3803 * to priority we are exposing a smaller subset of
3804 * memory to reclaim from. Consider this as a longer
3805 * term TODO.
3806 */
3807 /* If excess == 0, no tree ops */
cf2c8127 3808 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3809 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3810 css_put(&mz->memcg->css);
3811 loop++;
3812 /*
3813 * Could not reclaim anything and there are no more
3814 * mem cgroups to try or we seem to be looping without
3815 * reclaiming anything.
3816 */
3817 if (!nr_reclaimed &&
3818 (next_mz == NULL ||
3819 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3820 break;
3821 } while (!nr_reclaimed);
3822 if (next_mz)
3823 css_put(&next_mz->memcg->css);
3824 return nr_reclaimed;
3825}
3826
2ef37d3f
MH
3827/**
3828 * mem_cgroup_force_empty_list - clears LRU of a group
3829 * @memcg: group to clear
3830 * @node: NUMA node
3831 * @zid: zone id
3832 * @lru: lru to to clear
3833 *
3c935d18 3834 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3835 * reclaim the pages page themselves - pages are moved to the parent (or root)
3836 * group.
cc847582 3837 */
2ef37d3f 3838static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3839 int node, int zid, enum lru_list lru)
cc847582 3840{
bea8c150 3841 struct lruvec *lruvec;
2ef37d3f 3842 unsigned long flags;
072c56c1 3843 struct list_head *list;
925b7673
JW
3844 struct page *busy;
3845 struct zone *zone;
072c56c1 3846
08e552c6 3847 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3848 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3849 list = &lruvec->lists[lru];
cc847582 3850
f817ed48 3851 busy = NULL;
2ef37d3f 3852 do {
925b7673 3853 struct page_cgroup *pc;
5564e88b
JW
3854 struct page *page;
3855
08e552c6 3856 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3857 if (list_empty(list)) {
08e552c6 3858 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3859 break;
f817ed48 3860 }
925b7673
JW
3861 page = list_entry(list->prev, struct page, lru);
3862 if (busy == page) {
3863 list_move(&page->lru, list);
648bcc77 3864 busy = NULL;
08e552c6 3865 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3866 continue;
3867 }
08e552c6 3868 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3869
925b7673 3870 pc = lookup_page_cgroup(page);
5564e88b 3871
3c935d18 3872 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3873 /* found lock contention or "pc" is obsolete. */
925b7673 3874 busy = page;
f817ed48
KH
3875 } else
3876 busy = NULL;
2a7a0e0f 3877 cond_resched();
2ef37d3f 3878 } while (!list_empty(list));
cc847582
KH
3879}
3880
3881/*
c26251f9
MH
3882 * make mem_cgroup's charge to be 0 if there is no task by moving
3883 * all the charges and pages to the parent.
cc847582 3884 * This enables deleting this mem_cgroup.
c26251f9
MH
3885 *
3886 * Caller is responsible for holding css reference on the memcg.
cc847582 3887 */
ab5196c2 3888static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3889{
c26251f9 3890 int node, zid;
bea207c8 3891 u64 usage;
f817ed48 3892
fce66477 3893 do {
52d4b9ac
KH
3894 /* This is for making all *used* pages to be on LRU. */
3895 lru_add_drain_all();
c0ff4b85 3896 drain_all_stock_sync(memcg);
c0ff4b85 3897 mem_cgroup_start_move(memcg);
31aaea4a 3898 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3899 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3900 enum lru_list lru;
3901 for_each_lru(lru) {
2ef37d3f 3902 mem_cgroup_force_empty_list(memcg,
f156ab93 3903 node, zid, lru);
f817ed48 3904 }
1ecaab2b 3905 }
f817ed48 3906 }
c0ff4b85
R
3907 mem_cgroup_end_move(memcg);
3908 memcg_oom_recover(memcg);
52d4b9ac 3909 cond_resched();
f817ed48 3910
2ef37d3f 3911 /*
bea207c8
GC
3912 * Kernel memory may not necessarily be trackable to a specific
3913 * process. So they are not migrated, and therefore we can't
3914 * expect their value to drop to 0 here.
3915 * Having res filled up with kmem only is enough.
3916 *
2ef37d3f
MH
3917 * This is a safety check because mem_cgroup_force_empty_list
3918 * could have raced with mem_cgroup_replace_page_cache callers
3919 * so the lru seemed empty but the page could have been added
3920 * right after the check. RES_USAGE should be safe as we always
3921 * charge before adding to the LRU.
3922 */
bea207c8
GC
3923 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3924 res_counter_read_u64(&memcg->kmem, RES_USAGE);
3925 } while (usage > 0);
c26251f9
MH
3926}
3927
ea280e7b
TH
3928/*
3929 * Test whether @memcg has children, dead or alive. Note that this
3930 * function doesn't care whether @memcg has use_hierarchy enabled and
3931 * returns %true if there are child csses according to the cgroup
3932 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3933 */
b5f99b53
GC
3934static inline bool memcg_has_children(struct mem_cgroup *memcg)
3935{
ea280e7b
TH
3936 bool ret;
3937
696ac172 3938 /*
ea280e7b
TH
3939 * The lock does not prevent addition or deletion of children, but
3940 * it prevents a new child from being initialized based on this
3941 * parent in css_online(), so it's enough to decide whether
3942 * hierarchically inherited attributes can still be changed or not.
696ac172 3943 */
ea280e7b
TH
3944 lockdep_assert_held(&memcg_create_mutex);
3945
3946 rcu_read_lock();
3947 ret = css_next_child(NULL, &memcg->css);
3948 rcu_read_unlock();
3949 return ret;
b5f99b53
GC
3950}
3951
c26251f9
MH
3952/*
3953 * Reclaims as many pages from the given memcg as possible and moves
3954 * the rest to the parent.
3955 *
3956 * Caller is responsible for holding css reference for memcg.
3957 */
3958static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3959{
3960 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3961
c1e862c1
KH
3962 /* we call try-to-free pages for make this cgroup empty */
3963 lru_add_drain_all();
f817ed48 3964 /* try to free all pages in this cgroup */
569530fb 3965 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3966 int progress;
c1e862c1 3967
c26251f9
MH
3968 if (signal_pending(current))
3969 return -EINTR;
3970
c0ff4b85 3971 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3972 false);
c1e862c1 3973 if (!progress) {
f817ed48 3974 nr_retries--;
c1e862c1 3975 /* maybe some writeback is necessary */
8aa7e847 3976 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3977 }
f817ed48
KH
3978
3979 }
ab5196c2
MH
3980
3981 return 0;
cc847582
KH
3982}
3983
6770c64e
TH
3984static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3985 char *buf, size_t nbytes,
3986 loff_t off)
c1e862c1 3987{
6770c64e 3988 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3989
d8423011
MH
3990 if (mem_cgroup_is_root(memcg))
3991 return -EINVAL;
6770c64e 3992 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3993}
3994
182446d0
TH
3995static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3996 struct cftype *cft)
18f59ea7 3997{
182446d0 3998 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3999}
4000
182446d0
TH
4001static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4002 struct cftype *cft, u64 val)
18f59ea7
BS
4003{
4004 int retval = 0;
182446d0 4005 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4006 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 4007
0999821b 4008 mutex_lock(&memcg_create_mutex);
567fb435
GC
4009
4010 if (memcg->use_hierarchy == val)
4011 goto out;
4012
18f59ea7 4013 /*
af901ca1 4014 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4015 * in the child subtrees. If it is unset, then the change can
4016 * occur, provided the current cgroup has no children.
4017 *
4018 * For the root cgroup, parent_mem is NULL, we allow value to be
4019 * set if there are no children.
4020 */
c0ff4b85 4021 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4022 (val == 1 || val == 0)) {
ea280e7b 4023 if (!memcg_has_children(memcg))
c0ff4b85 4024 memcg->use_hierarchy = val;
18f59ea7
BS
4025 else
4026 retval = -EBUSY;
4027 } else
4028 retval = -EINVAL;
567fb435
GC
4029
4030out:
0999821b 4031 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4032
4033 return retval;
4034}
4035
ce00a967
JW
4036static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4037 enum mem_cgroup_stat_index idx)
4038{
4039 struct mem_cgroup *iter;
4040 long val = 0;
4041
4042 /* Per-cpu values can be negative, use a signed accumulator */
4043 for_each_mem_cgroup_tree(iter, memcg)
4044 val += mem_cgroup_read_stat(iter, idx);
4045
4046 if (val < 0) /* race ? */
4047 val = 0;
4048 return val;
4049}
4050
4051static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4052{
4053 u64 val;
4054
4055 if (!mem_cgroup_is_root(memcg)) {
4056 if (!swap)
4057 return res_counter_read_u64(&memcg->res, RES_USAGE);
4058 else
4059 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4060 }
4061
4062 /*
4063 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4064 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4065 */
4066 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4067 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4068
4069 if (swap)
4070 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4071
4072 return val << PAGE_SHIFT;
4073}
4074
4075
791badbd 4076static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 4077 struct cftype *cft)
8cdea7c0 4078{
182446d0 4079 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
05b84301
JW
4080 enum res_type type = MEMFILE_TYPE(cft->private);
4081 int name = MEMFILE_ATTR(cft->private);
af36f906 4082
8c7c6e34
KH
4083 switch (type) {
4084 case _MEM:
ce00a967
JW
4085 if (name == RES_USAGE)
4086 return mem_cgroup_usage(memcg, false);
05b84301 4087 return res_counter_read_u64(&memcg->res, name);
8c7c6e34 4088 case _MEMSWAP:
ce00a967
JW
4089 if (name == RES_USAGE)
4090 return mem_cgroup_usage(memcg, true);
05b84301 4091 return res_counter_read_u64(&memcg->memsw, name);
510fc4e1 4092 case _KMEM:
05b84301 4093 return res_counter_read_u64(&memcg->kmem, name);
510fc4e1 4094 break;
8c7c6e34
KH
4095 default:
4096 BUG();
8c7c6e34 4097 }
8cdea7c0 4098}
510fc4e1 4099
510fc4e1 4100#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4101/* should be called with activate_kmem_mutex held */
4102static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4103 unsigned long long limit)
4104{
4105 int err = 0;
4106 int memcg_id;
4107
4108 if (memcg_kmem_is_active(memcg))
4109 return 0;
4110
4111 /*
4112 * We are going to allocate memory for data shared by all memory
4113 * cgroups so let's stop accounting here.
4114 */
4115 memcg_stop_kmem_account();
4116
510fc4e1
GC
4117 /*
4118 * For simplicity, we won't allow this to be disabled. It also can't
4119 * be changed if the cgroup has children already, or if tasks had
4120 * already joined.
4121 *
4122 * If tasks join before we set the limit, a person looking at
4123 * kmem.usage_in_bytes will have no way to determine when it took
4124 * place, which makes the value quite meaningless.
4125 *
4126 * After it first became limited, changes in the value of the limit are
4127 * of course permitted.
510fc4e1 4128 */
0999821b 4129 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
4130 if (cgroup_has_tasks(memcg->css.cgroup) ||
4131 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
4132 err = -EBUSY;
4133 mutex_unlock(&memcg_create_mutex);
4134 if (err)
4135 goto out;
510fc4e1 4136
f3bb3043 4137 memcg_id = memcg_alloc_cache_id();
d6441637
VD
4138 if (memcg_id < 0) {
4139 err = memcg_id;
4140 goto out;
4141 }
4142
d6441637
VD
4143 memcg->kmemcg_id = memcg_id;
4144 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4145
4146 /*
4147 * We couldn't have accounted to this cgroup, because it hasn't got the
4148 * active bit set yet, so this should succeed.
4149 */
4150 err = res_counter_set_limit(&memcg->kmem, limit);
4151 VM_BUG_ON(err);
4152
4153 static_key_slow_inc(&memcg_kmem_enabled_key);
4154 /*
4155 * Setting the active bit after enabling static branching will
4156 * guarantee no one starts accounting before all call sites are
4157 * patched.
4158 */
4159 memcg_kmem_set_active(memcg);
510fc4e1 4160out:
d6441637
VD
4161 memcg_resume_kmem_account();
4162 return err;
d6441637
VD
4163}
4164
4165static int memcg_activate_kmem(struct mem_cgroup *memcg,
4166 unsigned long long limit)
4167{
4168 int ret;
4169
4170 mutex_lock(&activate_kmem_mutex);
4171 ret = __memcg_activate_kmem(memcg, limit);
4172 mutex_unlock(&activate_kmem_mutex);
4173 return ret;
4174}
4175
4176static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4177 unsigned long long val)
4178{
4179 int ret;
4180
4181 if (!memcg_kmem_is_active(memcg))
4182 ret = memcg_activate_kmem(memcg, val);
4183 else
4184 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
4185 return ret;
4186}
4187
55007d84 4188static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4189{
55007d84 4190 int ret = 0;
510fc4e1 4191 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 4192
d6441637
VD
4193 if (!parent)
4194 return 0;
55007d84 4195
d6441637 4196 mutex_lock(&activate_kmem_mutex);
55007d84 4197 /*
d6441637
VD
4198 * If the parent cgroup is not kmem-active now, it cannot be activated
4199 * after this point, because it has at least one child already.
55007d84 4200 */
d6441637
VD
4201 if (memcg_kmem_is_active(parent))
4202 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4203 mutex_unlock(&activate_kmem_mutex);
55007d84 4204 return ret;
510fc4e1 4205}
d6441637
VD
4206#else
4207static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4208 unsigned long long val)
4209{
4210 return -EINVAL;
4211}
6d043990 4212#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4213
628f4235
KH
4214/*
4215 * The user of this function is...
4216 * RES_LIMIT.
4217 */
451af504
TH
4218static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4219 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4220{
451af504 4221 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4222 enum res_type type;
4223 int name;
628f4235
KH
4224 unsigned long long val;
4225 int ret;
4226
451af504
TH
4227 buf = strstrip(buf);
4228 type = MEMFILE_TYPE(of_cft(of)->private);
4229 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 4230
8c7c6e34 4231 switch (name) {
628f4235 4232 case RES_LIMIT:
4b3bde4c
BS
4233 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4234 ret = -EINVAL;
4235 break;
4236 }
628f4235 4237 /* This function does all necessary parse...reuse it */
451af504 4238 ret = res_counter_memparse_write_strategy(buf, &val);
8c7c6e34
KH
4239 if (ret)
4240 break;
4241 if (type == _MEM)
628f4235 4242 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 4243 else if (type == _MEMSWAP)
8c7c6e34 4244 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 4245 else if (type == _KMEM)
d6441637 4246 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
4247 else
4248 return -EINVAL;
628f4235 4249 break;
296c81d8 4250 case RES_SOFT_LIMIT:
451af504 4251 ret = res_counter_memparse_write_strategy(buf, &val);
296c81d8
BS
4252 if (ret)
4253 break;
4254 /*
4255 * For memsw, soft limits are hard to implement in terms
4256 * of semantics, for now, we support soft limits for
4257 * control without swap
4258 */
4259 if (type == _MEM)
4260 ret = res_counter_set_soft_limit(&memcg->res, val);
4261 else
4262 ret = -EINVAL;
4263 break;
628f4235
KH
4264 default:
4265 ret = -EINVAL; /* should be BUG() ? */
4266 break;
4267 }
451af504 4268 return ret ?: nbytes;
8cdea7c0
BS
4269}
4270
fee7b548
KH
4271static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4272 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4273{
fee7b548
KH
4274 unsigned long long min_limit, min_memsw_limit, tmp;
4275
4276 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4277 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
4278 if (!memcg->use_hierarchy)
4279 goto out;
4280
5c9d535b
TH
4281 while (memcg->css.parent) {
4282 memcg = mem_cgroup_from_css(memcg->css.parent);
fee7b548
KH
4283 if (!memcg->use_hierarchy)
4284 break;
4285 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4286 min_limit = min(min_limit, tmp);
4287 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4288 min_memsw_limit = min(min_memsw_limit, tmp);
4289 }
4290out:
4291 *mem_limit = min_limit;
4292 *memsw_limit = min_memsw_limit;
fee7b548
KH
4293}
4294
6770c64e
TH
4295static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4296 size_t nbytes, loff_t off)
c84872e1 4297{
6770c64e 4298 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4299 int name;
4300 enum res_type type;
c84872e1 4301
6770c64e
TH
4302 type = MEMFILE_TYPE(of_cft(of)->private);
4303 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 4304
8c7c6e34 4305 switch (name) {
29f2a4da 4306 case RES_MAX_USAGE:
8c7c6e34 4307 if (type == _MEM)
c0ff4b85 4308 res_counter_reset_max(&memcg->res);
510fc4e1 4309 else if (type == _MEMSWAP)
c0ff4b85 4310 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
4311 else if (type == _KMEM)
4312 res_counter_reset_max(&memcg->kmem);
4313 else
4314 return -EINVAL;
29f2a4da
PE
4315 break;
4316 case RES_FAILCNT:
8c7c6e34 4317 if (type == _MEM)
c0ff4b85 4318 res_counter_reset_failcnt(&memcg->res);
510fc4e1 4319 else if (type == _MEMSWAP)
c0ff4b85 4320 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
4321 else if (type == _KMEM)
4322 res_counter_reset_failcnt(&memcg->kmem);
4323 else
4324 return -EINVAL;
29f2a4da
PE
4325 break;
4326 }
f64c3f54 4327
6770c64e 4328 return nbytes;
c84872e1
PE
4329}
4330
182446d0 4331static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4332 struct cftype *cft)
4333{
182446d0 4334 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4335}
4336
02491447 4337#ifdef CONFIG_MMU
182446d0 4338static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4339 struct cftype *cft, u64 val)
4340{
182446d0 4341 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
4342
4343 if (val >= (1 << NR_MOVE_TYPE))
4344 return -EINVAL;
ee5e8472 4345
7dc74be0 4346 /*
ee5e8472
GC
4347 * No kind of locking is needed in here, because ->can_attach() will
4348 * check this value once in the beginning of the process, and then carry
4349 * on with stale data. This means that changes to this value will only
4350 * affect task migrations starting after the change.
7dc74be0 4351 */
c0ff4b85 4352 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4353 return 0;
4354}
02491447 4355#else
182446d0 4356static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4357 struct cftype *cft, u64 val)
4358{
4359 return -ENOSYS;
4360}
4361#endif
7dc74be0 4362
406eb0c9 4363#ifdef CONFIG_NUMA
2da8ca82 4364static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4365{
25485de6
GT
4366 struct numa_stat {
4367 const char *name;
4368 unsigned int lru_mask;
4369 };
4370
4371 static const struct numa_stat stats[] = {
4372 { "total", LRU_ALL },
4373 { "file", LRU_ALL_FILE },
4374 { "anon", LRU_ALL_ANON },
4375 { "unevictable", BIT(LRU_UNEVICTABLE) },
4376 };
4377 const struct numa_stat *stat;
406eb0c9 4378 int nid;
25485de6 4379 unsigned long nr;
2da8ca82 4380 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 4381
25485de6
GT
4382 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4383 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4384 seq_printf(m, "%s=%lu", stat->name, nr);
4385 for_each_node_state(nid, N_MEMORY) {
4386 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4387 stat->lru_mask);
4388 seq_printf(m, " N%d=%lu", nid, nr);
4389 }
4390 seq_putc(m, '\n');
406eb0c9 4391 }
406eb0c9 4392
071aee13
YH
4393 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4394 struct mem_cgroup *iter;
4395
4396 nr = 0;
4397 for_each_mem_cgroup_tree(iter, memcg)
4398 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4399 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4400 for_each_node_state(nid, N_MEMORY) {
4401 nr = 0;
4402 for_each_mem_cgroup_tree(iter, memcg)
4403 nr += mem_cgroup_node_nr_lru_pages(
4404 iter, nid, stat->lru_mask);
4405 seq_printf(m, " N%d=%lu", nid, nr);
4406 }
4407 seq_putc(m, '\n');
406eb0c9 4408 }
406eb0c9 4409
406eb0c9
YH
4410 return 0;
4411}
4412#endif /* CONFIG_NUMA */
4413
af7c4b0e
JW
4414static inline void mem_cgroup_lru_names_not_uptodate(void)
4415{
4416 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4417}
4418
2da8ca82 4419static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4420{
2da8ca82 4421 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
4422 struct mem_cgroup *mi;
4423 unsigned int i;
406eb0c9 4424
af7c4b0e 4425 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4426 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4427 continue;
af7c4b0e
JW
4428 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4429 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4430 }
7b854121 4431
af7c4b0e
JW
4432 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4433 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4434 mem_cgroup_read_events(memcg, i));
4435
4436 for (i = 0; i < NR_LRU_LISTS; i++)
4437 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4438 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4439
14067bb3 4440 /* Hierarchical information */
fee7b548
KH
4441 {
4442 unsigned long long limit, memsw_limit;
d79154bb 4443 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4444 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4445 if (do_swap_account)
78ccf5b5
JW
4446 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4447 memsw_limit);
fee7b548 4448 }
7f016ee8 4449
af7c4b0e
JW
4450 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4451 long long val = 0;
4452
bff6bb83 4453 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4454 continue;
af7c4b0e
JW
4455 for_each_mem_cgroup_tree(mi, memcg)
4456 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4457 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4458 }
4459
4460 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4461 unsigned long long val = 0;
4462
4463 for_each_mem_cgroup_tree(mi, memcg)
4464 val += mem_cgroup_read_events(mi, i);
4465 seq_printf(m, "total_%s %llu\n",
4466 mem_cgroup_events_names[i], val);
4467 }
4468
4469 for (i = 0; i < NR_LRU_LISTS; i++) {
4470 unsigned long long val = 0;
4471
4472 for_each_mem_cgroup_tree(mi, memcg)
4473 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4474 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4475 }
14067bb3 4476
7f016ee8 4477#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4478 {
4479 int nid, zid;
4480 struct mem_cgroup_per_zone *mz;
89abfab1 4481 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4482 unsigned long recent_rotated[2] = {0, 0};
4483 unsigned long recent_scanned[2] = {0, 0};
4484
4485 for_each_online_node(nid)
4486 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4487 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4488 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4489
89abfab1
HD
4490 recent_rotated[0] += rstat->recent_rotated[0];
4491 recent_rotated[1] += rstat->recent_rotated[1];
4492 recent_scanned[0] += rstat->recent_scanned[0];
4493 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4494 }
78ccf5b5
JW
4495 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4496 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4497 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4498 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4499 }
4500#endif
4501
d2ceb9b7
KH
4502 return 0;
4503}
4504
182446d0
TH
4505static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4506 struct cftype *cft)
a7885eb8 4507{
182446d0 4508 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4509
1f4c025b 4510 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4511}
4512
182446d0
TH
4513static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4514 struct cftype *cft, u64 val)
a7885eb8 4515{
182446d0 4516 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4517
3dae7fec 4518 if (val > 100)
a7885eb8
KM
4519 return -EINVAL;
4520
14208b0e 4521 if (css->parent)
3dae7fec
JW
4522 memcg->swappiness = val;
4523 else
4524 vm_swappiness = val;
068b38c1 4525
a7885eb8
KM
4526 return 0;
4527}
4528
2e72b634
KS
4529static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4530{
4531 struct mem_cgroup_threshold_ary *t;
4532 u64 usage;
4533 int i;
4534
4535 rcu_read_lock();
4536 if (!swap)
2c488db2 4537 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4538 else
2c488db2 4539 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4540
4541 if (!t)
4542 goto unlock;
4543
ce00a967 4544 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4545
4546 /*
748dad36 4547 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4548 * If it's not true, a threshold was crossed after last
4549 * call of __mem_cgroup_threshold().
4550 */
5407a562 4551 i = t->current_threshold;
2e72b634
KS
4552
4553 /*
4554 * Iterate backward over array of thresholds starting from
4555 * current_threshold and check if a threshold is crossed.
4556 * If none of thresholds below usage is crossed, we read
4557 * only one element of the array here.
4558 */
4559 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4560 eventfd_signal(t->entries[i].eventfd, 1);
4561
4562 /* i = current_threshold + 1 */
4563 i++;
4564
4565 /*
4566 * Iterate forward over array of thresholds starting from
4567 * current_threshold+1 and check if a threshold is crossed.
4568 * If none of thresholds above usage is crossed, we read
4569 * only one element of the array here.
4570 */
4571 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4572 eventfd_signal(t->entries[i].eventfd, 1);
4573
4574 /* Update current_threshold */
5407a562 4575 t->current_threshold = i - 1;
2e72b634
KS
4576unlock:
4577 rcu_read_unlock();
4578}
4579
4580static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4581{
ad4ca5f4
KS
4582 while (memcg) {
4583 __mem_cgroup_threshold(memcg, false);
4584 if (do_swap_account)
4585 __mem_cgroup_threshold(memcg, true);
4586
4587 memcg = parent_mem_cgroup(memcg);
4588 }
2e72b634
KS
4589}
4590
4591static int compare_thresholds(const void *a, const void *b)
4592{
4593 const struct mem_cgroup_threshold *_a = a;
4594 const struct mem_cgroup_threshold *_b = b;
4595
2bff24a3
GT
4596 if (_a->threshold > _b->threshold)
4597 return 1;
4598
4599 if (_a->threshold < _b->threshold)
4600 return -1;
4601
4602 return 0;
2e72b634
KS
4603}
4604
c0ff4b85 4605static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4606{
4607 struct mem_cgroup_eventfd_list *ev;
4608
2bcf2e92
MH
4609 spin_lock(&memcg_oom_lock);
4610
c0ff4b85 4611 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4612 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4613
4614 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4615 return 0;
4616}
4617
c0ff4b85 4618static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4619{
7d74b06f
KH
4620 struct mem_cgroup *iter;
4621
c0ff4b85 4622 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4623 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4624}
4625
59b6f873 4626static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4627 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4628{
2c488db2
KS
4629 struct mem_cgroup_thresholds *thresholds;
4630 struct mem_cgroup_threshold_ary *new;
2e72b634 4631 u64 threshold, usage;
2c488db2 4632 int i, size, ret;
2e72b634
KS
4633
4634 ret = res_counter_memparse_write_strategy(args, &threshold);
4635 if (ret)
4636 return ret;
4637
4638 mutex_lock(&memcg->thresholds_lock);
2c488db2 4639
05b84301 4640 if (type == _MEM) {
2c488db2 4641 thresholds = &memcg->thresholds;
ce00a967 4642 usage = mem_cgroup_usage(memcg, false);
05b84301 4643 } else if (type == _MEMSWAP) {
2c488db2 4644 thresholds = &memcg->memsw_thresholds;
ce00a967 4645 usage = mem_cgroup_usage(memcg, true);
05b84301 4646 } else
2e72b634
KS
4647 BUG();
4648
2e72b634 4649 /* Check if a threshold crossed before adding a new one */
2c488db2 4650 if (thresholds->primary)
2e72b634
KS
4651 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4652
2c488db2 4653 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4654
4655 /* Allocate memory for new array of thresholds */
2c488db2 4656 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4657 GFP_KERNEL);
2c488db2 4658 if (!new) {
2e72b634
KS
4659 ret = -ENOMEM;
4660 goto unlock;
4661 }
2c488db2 4662 new->size = size;
2e72b634
KS
4663
4664 /* Copy thresholds (if any) to new array */
2c488db2
KS
4665 if (thresholds->primary) {
4666 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4667 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4668 }
4669
2e72b634 4670 /* Add new threshold */
2c488db2
KS
4671 new->entries[size - 1].eventfd = eventfd;
4672 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4673
4674 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4675 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4676 compare_thresholds, NULL);
4677
4678 /* Find current threshold */
2c488db2 4679 new->current_threshold = -1;
2e72b634 4680 for (i = 0; i < size; i++) {
748dad36 4681 if (new->entries[i].threshold <= usage) {
2e72b634 4682 /*
2c488db2
KS
4683 * new->current_threshold will not be used until
4684 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4685 * it here.
4686 */
2c488db2 4687 ++new->current_threshold;
748dad36
SZ
4688 } else
4689 break;
2e72b634
KS
4690 }
4691
2c488db2
KS
4692 /* Free old spare buffer and save old primary buffer as spare */
4693 kfree(thresholds->spare);
4694 thresholds->spare = thresholds->primary;
4695
4696 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4697
907860ed 4698 /* To be sure that nobody uses thresholds */
2e72b634
KS
4699 synchronize_rcu();
4700
2e72b634
KS
4701unlock:
4702 mutex_unlock(&memcg->thresholds_lock);
4703
4704 return ret;
4705}
4706
59b6f873 4707static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4708 struct eventfd_ctx *eventfd, const char *args)
4709{
59b6f873 4710 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4711}
4712
59b6f873 4713static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4714 struct eventfd_ctx *eventfd, const char *args)
4715{
59b6f873 4716 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4717}
4718
59b6f873 4719static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4720 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4721{
2c488db2
KS
4722 struct mem_cgroup_thresholds *thresholds;
4723 struct mem_cgroup_threshold_ary *new;
2e72b634 4724 u64 usage;
2c488db2 4725 int i, j, size;
2e72b634
KS
4726
4727 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4728
4729 if (type == _MEM) {
2c488db2 4730 thresholds = &memcg->thresholds;
ce00a967 4731 usage = mem_cgroup_usage(memcg, false);
05b84301 4732 } else if (type == _MEMSWAP) {
2c488db2 4733 thresholds = &memcg->memsw_thresholds;
ce00a967 4734 usage = mem_cgroup_usage(memcg, true);
05b84301 4735 } else
2e72b634
KS
4736 BUG();
4737
371528ca
AV
4738 if (!thresholds->primary)
4739 goto unlock;
4740
2e72b634
KS
4741 /* Check if a threshold crossed before removing */
4742 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4743
4744 /* Calculate new number of threshold */
2c488db2
KS
4745 size = 0;
4746 for (i = 0; i < thresholds->primary->size; i++) {
4747 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4748 size++;
4749 }
4750
2c488db2 4751 new = thresholds->spare;
907860ed 4752
2e72b634
KS
4753 /* Set thresholds array to NULL if we don't have thresholds */
4754 if (!size) {
2c488db2
KS
4755 kfree(new);
4756 new = NULL;
907860ed 4757 goto swap_buffers;
2e72b634
KS
4758 }
4759
2c488db2 4760 new->size = size;
2e72b634
KS
4761
4762 /* Copy thresholds and find current threshold */
2c488db2
KS
4763 new->current_threshold = -1;
4764 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4765 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4766 continue;
4767
2c488db2 4768 new->entries[j] = thresholds->primary->entries[i];
748dad36 4769 if (new->entries[j].threshold <= usage) {
2e72b634 4770 /*
2c488db2 4771 * new->current_threshold will not be used
2e72b634
KS
4772 * until rcu_assign_pointer(), so it's safe to increment
4773 * it here.
4774 */
2c488db2 4775 ++new->current_threshold;
2e72b634
KS
4776 }
4777 j++;
4778 }
4779
907860ed 4780swap_buffers:
2c488db2
KS
4781 /* Swap primary and spare array */
4782 thresholds->spare = thresholds->primary;
8c757763
SZ
4783 /* If all events are unregistered, free the spare array */
4784 if (!new) {
4785 kfree(thresholds->spare);
4786 thresholds->spare = NULL;
4787 }
4788
2c488db2 4789 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4790
907860ed 4791 /* To be sure that nobody uses thresholds */
2e72b634 4792 synchronize_rcu();
371528ca 4793unlock:
2e72b634 4794 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4795}
c1e862c1 4796
59b6f873 4797static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4798 struct eventfd_ctx *eventfd)
4799{
59b6f873 4800 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4801}
4802
59b6f873 4803static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4804 struct eventfd_ctx *eventfd)
4805{
59b6f873 4806 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4807}
4808
59b6f873 4809static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4810 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4811{
9490ff27 4812 struct mem_cgroup_eventfd_list *event;
9490ff27 4813
9490ff27
KH
4814 event = kmalloc(sizeof(*event), GFP_KERNEL);
4815 if (!event)
4816 return -ENOMEM;
4817
1af8efe9 4818 spin_lock(&memcg_oom_lock);
9490ff27
KH
4819
4820 event->eventfd = eventfd;
4821 list_add(&event->list, &memcg->oom_notify);
4822
4823 /* already in OOM ? */
79dfdacc 4824 if (atomic_read(&memcg->under_oom))
9490ff27 4825 eventfd_signal(eventfd, 1);
1af8efe9 4826 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4827
4828 return 0;
4829}
4830
59b6f873 4831static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4832 struct eventfd_ctx *eventfd)
9490ff27 4833{
9490ff27 4834 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4835
1af8efe9 4836 spin_lock(&memcg_oom_lock);
9490ff27 4837
c0ff4b85 4838 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4839 if (ev->eventfd == eventfd) {
4840 list_del(&ev->list);
4841 kfree(ev);
4842 }
4843 }
4844
1af8efe9 4845 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4846}
4847
2da8ca82 4848static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4849{
2da8ca82 4850 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4851
791badbd
TH
4852 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4853 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4854 return 0;
4855}
4856
182446d0 4857static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4858 struct cftype *cft, u64 val)
4859{
182446d0 4860 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4861
4862 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4863 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4864 return -EINVAL;
4865
c0ff4b85 4866 memcg->oom_kill_disable = val;
4d845ebf 4867 if (!val)
c0ff4b85 4868 memcg_oom_recover(memcg);
3dae7fec 4869
3c11ecf4
KH
4870 return 0;
4871}
4872
c255a458 4873#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4874static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4875{
55007d84
GC
4876 int ret;
4877
2633d7a0 4878 memcg->kmemcg_id = -1;
55007d84
GC
4879 ret = memcg_propagate_kmem(memcg);
4880 if (ret)
4881 return ret;
2633d7a0 4882
1d62e436 4883 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4884}
e5671dfa 4885
10d5ebf4 4886static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4887{
1d62e436 4888 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
4889}
4890
4891static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4892{
4893 if (!memcg_kmem_is_active(memcg))
4894 return;
4895
4896 /*
4897 * kmem charges can outlive the cgroup. In the case of slab
4898 * pages, for instance, a page contain objects from various
4899 * processes. As we prevent from taking a reference for every
4900 * such allocation we have to be careful when doing uncharge
4901 * (see memcg_uncharge_kmem) and here during offlining.
4902 *
4903 * The idea is that that only the _last_ uncharge which sees
4904 * the dead memcg will drop the last reference. An additional
4905 * reference is taken here before the group is marked dead
4906 * which is then paired with css_put during uncharge resp. here.
4907 *
4908 * Although this might sound strange as this path is called from
ec903c0c
TH
4909 * css_offline() when the referencemight have dropped down to 0 and
4910 * shouldn't be incremented anymore (css_tryget_online() would
4911 * fail) we do not have other options because of the kmem
4912 * allocations lifetime.
10d5ebf4
LZ
4913 */
4914 css_get(&memcg->css);
7de37682
GC
4915
4916 memcg_kmem_mark_dead(memcg);
4917
4918 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
4919 return;
4920
7de37682 4921 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 4922 css_put(&memcg->css);
d1a4c0b3 4923}
e5671dfa 4924#else
cbe128e3 4925static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4926{
4927 return 0;
4928}
d1a4c0b3 4929
10d5ebf4
LZ
4930static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4931{
4932}
4933
4934static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
4935{
4936}
e5671dfa
GC
4937#endif
4938
3bc942f3
TH
4939/*
4940 * DO NOT USE IN NEW FILES.
4941 *
4942 * "cgroup.event_control" implementation.
4943 *
4944 * This is way over-engineered. It tries to support fully configurable
4945 * events for each user. Such level of flexibility is completely
4946 * unnecessary especially in the light of the planned unified hierarchy.
4947 *
4948 * Please deprecate this and replace with something simpler if at all
4949 * possible.
4950 */
4951
79bd9814
TH
4952/*
4953 * Unregister event and free resources.
4954 *
4955 * Gets called from workqueue.
4956 */
3bc942f3 4957static void memcg_event_remove(struct work_struct *work)
79bd9814 4958{
3bc942f3
TH
4959 struct mem_cgroup_event *event =
4960 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4961 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4962
4963 remove_wait_queue(event->wqh, &event->wait);
4964
59b6f873 4965 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4966
4967 /* Notify userspace the event is going away. */
4968 eventfd_signal(event->eventfd, 1);
4969
4970 eventfd_ctx_put(event->eventfd);
4971 kfree(event);
59b6f873 4972 css_put(&memcg->css);
79bd9814
TH
4973}
4974
4975/*
4976 * Gets called on POLLHUP on eventfd when user closes it.
4977 *
4978 * Called with wqh->lock held and interrupts disabled.
4979 */
3bc942f3
TH
4980static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4981 int sync, void *key)
79bd9814 4982{
3bc942f3
TH
4983 struct mem_cgroup_event *event =
4984 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4985 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4986 unsigned long flags = (unsigned long)key;
4987
4988 if (flags & POLLHUP) {
4989 /*
4990 * If the event has been detached at cgroup removal, we
4991 * can simply return knowing the other side will cleanup
4992 * for us.
4993 *
4994 * We can't race against event freeing since the other
4995 * side will require wqh->lock via remove_wait_queue(),
4996 * which we hold.
4997 */
fba94807 4998 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4999 if (!list_empty(&event->list)) {
5000 list_del_init(&event->list);
5001 /*
5002 * We are in atomic context, but cgroup_event_remove()
5003 * may sleep, so we have to call it in workqueue.
5004 */
5005 schedule_work(&event->remove);
5006 }
fba94807 5007 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5008 }
5009
5010 return 0;
5011}
5012
3bc942f3 5013static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5014 wait_queue_head_t *wqh, poll_table *pt)
5015{
3bc942f3
TH
5016 struct mem_cgroup_event *event =
5017 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5018
5019 event->wqh = wqh;
5020 add_wait_queue(wqh, &event->wait);
5021}
5022
5023/*
3bc942f3
TH
5024 * DO NOT USE IN NEW FILES.
5025 *
79bd9814
TH
5026 * Parse input and register new cgroup event handler.
5027 *
5028 * Input must be in format '<event_fd> <control_fd> <args>'.
5029 * Interpretation of args is defined by control file implementation.
5030 */
451af504
TH
5031static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5032 char *buf, size_t nbytes, loff_t off)
79bd9814 5033{
451af504 5034 struct cgroup_subsys_state *css = of_css(of);
fba94807 5035 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5036 struct mem_cgroup_event *event;
79bd9814
TH
5037 struct cgroup_subsys_state *cfile_css;
5038 unsigned int efd, cfd;
5039 struct fd efile;
5040 struct fd cfile;
fba94807 5041 const char *name;
79bd9814
TH
5042 char *endp;
5043 int ret;
5044
451af504
TH
5045 buf = strstrip(buf);
5046
5047 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5048 if (*endp != ' ')
5049 return -EINVAL;
451af504 5050 buf = endp + 1;
79bd9814 5051
451af504 5052 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5053 if ((*endp != ' ') && (*endp != '\0'))
5054 return -EINVAL;
451af504 5055 buf = endp + 1;
79bd9814
TH
5056
5057 event = kzalloc(sizeof(*event), GFP_KERNEL);
5058 if (!event)
5059 return -ENOMEM;
5060
59b6f873 5061 event->memcg = memcg;
79bd9814 5062 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5063 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5064 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5065 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5066
5067 efile = fdget(efd);
5068 if (!efile.file) {
5069 ret = -EBADF;
5070 goto out_kfree;
5071 }
5072
5073 event->eventfd = eventfd_ctx_fileget(efile.file);
5074 if (IS_ERR(event->eventfd)) {
5075 ret = PTR_ERR(event->eventfd);
5076 goto out_put_efile;
5077 }
5078
5079 cfile = fdget(cfd);
5080 if (!cfile.file) {
5081 ret = -EBADF;
5082 goto out_put_eventfd;
5083 }
5084
5085 /* the process need read permission on control file */
5086 /* AV: shouldn't we check that it's been opened for read instead? */
5087 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5088 if (ret < 0)
5089 goto out_put_cfile;
5090
fba94807
TH
5091 /*
5092 * Determine the event callbacks and set them in @event. This used
5093 * to be done via struct cftype but cgroup core no longer knows
5094 * about these events. The following is crude but the whole thing
5095 * is for compatibility anyway.
3bc942f3
TH
5096 *
5097 * DO NOT ADD NEW FILES.
fba94807
TH
5098 */
5099 name = cfile.file->f_dentry->d_name.name;
5100
5101 if (!strcmp(name, "memory.usage_in_bytes")) {
5102 event->register_event = mem_cgroup_usage_register_event;
5103 event->unregister_event = mem_cgroup_usage_unregister_event;
5104 } else if (!strcmp(name, "memory.oom_control")) {
5105 event->register_event = mem_cgroup_oom_register_event;
5106 event->unregister_event = mem_cgroup_oom_unregister_event;
5107 } else if (!strcmp(name, "memory.pressure_level")) {
5108 event->register_event = vmpressure_register_event;
5109 event->unregister_event = vmpressure_unregister_event;
5110 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5111 event->register_event = memsw_cgroup_usage_register_event;
5112 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5113 } else {
5114 ret = -EINVAL;
5115 goto out_put_cfile;
5116 }
5117
79bd9814 5118 /*
b5557c4c
TH
5119 * Verify @cfile should belong to @css. Also, remaining events are
5120 * automatically removed on cgroup destruction but the removal is
5121 * asynchronous, so take an extra ref on @css.
79bd9814 5122 */
ec903c0c
TH
5123 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5124 &memory_cgrp_subsys);
79bd9814 5125 ret = -EINVAL;
5a17f543 5126 if (IS_ERR(cfile_css))
79bd9814 5127 goto out_put_cfile;
5a17f543
TH
5128 if (cfile_css != css) {
5129 css_put(cfile_css);
79bd9814 5130 goto out_put_cfile;
5a17f543 5131 }
79bd9814 5132
451af504 5133 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5134 if (ret)
5135 goto out_put_css;
5136
5137 efile.file->f_op->poll(efile.file, &event->pt);
5138
fba94807
TH
5139 spin_lock(&memcg->event_list_lock);
5140 list_add(&event->list, &memcg->event_list);
5141 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5142
5143 fdput(cfile);
5144 fdput(efile);
5145
451af504 5146 return nbytes;
79bd9814
TH
5147
5148out_put_css:
b5557c4c 5149 css_put(css);
79bd9814
TH
5150out_put_cfile:
5151 fdput(cfile);
5152out_put_eventfd:
5153 eventfd_ctx_put(event->eventfd);
5154out_put_efile:
5155 fdput(efile);
5156out_kfree:
5157 kfree(event);
5158
5159 return ret;
5160}
5161
8cdea7c0
BS
5162static struct cftype mem_cgroup_files[] = {
5163 {
0eea1030 5164 .name = "usage_in_bytes",
8c7c6e34 5165 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5166 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5167 },
c84872e1
PE
5168 {
5169 .name = "max_usage_in_bytes",
8c7c6e34 5170 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5171 .write = mem_cgroup_reset,
791badbd 5172 .read_u64 = mem_cgroup_read_u64,
c84872e1 5173 },
8cdea7c0 5174 {
0eea1030 5175 .name = "limit_in_bytes",
8c7c6e34 5176 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5177 .write = mem_cgroup_write,
791badbd 5178 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5179 },
296c81d8
BS
5180 {
5181 .name = "soft_limit_in_bytes",
5182 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5183 .write = mem_cgroup_write,
791badbd 5184 .read_u64 = mem_cgroup_read_u64,
296c81d8 5185 },
8cdea7c0
BS
5186 {
5187 .name = "failcnt",
8c7c6e34 5188 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5189 .write = mem_cgroup_reset,
791badbd 5190 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5191 },
d2ceb9b7
KH
5192 {
5193 .name = "stat",
2da8ca82 5194 .seq_show = memcg_stat_show,
d2ceb9b7 5195 },
c1e862c1
KH
5196 {
5197 .name = "force_empty",
6770c64e 5198 .write = mem_cgroup_force_empty_write,
c1e862c1 5199 },
18f59ea7
BS
5200 {
5201 .name = "use_hierarchy",
5202 .write_u64 = mem_cgroup_hierarchy_write,
5203 .read_u64 = mem_cgroup_hierarchy_read,
5204 },
79bd9814 5205 {
3bc942f3 5206 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5207 .write = memcg_write_event_control,
79bd9814
TH
5208 .flags = CFTYPE_NO_PREFIX,
5209 .mode = S_IWUGO,
5210 },
a7885eb8
KM
5211 {
5212 .name = "swappiness",
5213 .read_u64 = mem_cgroup_swappiness_read,
5214 .write_u64 = mem_cgroup_swappiness_write,
5215 },
7dc74be0
DN
5216 {
5217 .name = "move_charge_at_immigrate",
5218 .read_u64 = mem_cgroup_move_charge_read,
5219 .write_u64 = mem_cgroup_move_charge_write,
5220 },
9490ff27
KH
5221 {
5222 .name = "oom_control",
2da8ca82 5223 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5224 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5225 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5226 },
70ddf637
AV
5227 {
5228 .name = "pressure_level",
70ddf637 5229 },
406eb0c9
YH
5230#ifdef CONFIG_NUMA
5231 {
5232 .name = "numa_stat",
2da8ca82 5233 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5234 },
5235#endif
510fc4e1
GC
5236#ifdef CONFIG_MEMCG_KMEM
5237 {
5238 .name = "kmem.limit_in_bytes",
5239 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5240 .write = mem_cgroup_write,
791badbd 5241 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5242 },
5243 {
5244 .name = "kmem.usage_in_bytes",
5245 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5246 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5247 },
5248 {
5249 .name = "kmem.failcnt",
5250 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5251 .write = mem_cgroup_reset,
791badbd 5252 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5253 },
5254 {
5255 .name = "kmem.max_usage_in_bytes",
5256 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5257 .write = mem_cgroup_reset,
791badbd 5258 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5259 },
749c5415
GC
5260#ifdef CONFIG_SLABINFO
5261 {
5262 .name = "kmem.slabinfo",
2da8ca82 5263 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
5264 },
5265#endif
8c7c6e34 5266#endif
6bc10349 5267 { }, /* terminate */
af36f906 5268};
8c7c6e34 5269
2d11085e
MH
5270#ifdef CONFIG_MEMCG_SWAP
5271static struct cftype memsw_cgroup_files[] = {
5272 {
5273 .name = "memsw.usage_in_bytes",
5274 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 5275 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5276 },
5277 {
5278 .name = "memsw.max_usage_in_bytes",
5279 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 5280 .write = mem_cgroup_reset,
791badbd 5281 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5282 },
5283 {
5284 .name = "memsw.limit_in_bytes",
5285 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 5286 .write = mem_cgroup_write,
791badbd 5287 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5288 },
5289 {
5290 .name = "memsw.failcnt",
5291 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 5292 .write = mem_cgroup_reset,
791badbd 5293 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5294 },
5295 { }, /* terminate */
5296};
5297#endif
c0ff4b85 5298static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5299{
5300 struct mem_cgroup_per_node *pn;
1ecaab2b 5301 struct mem_cgroup_per_zone *mz;
41e3355d 5302 int zone, tmp = node;
1ecaab2b
KH
5303 /*
5304 * This routine is called against possible nodes.
5305 * But it's BUG to call kmalloc() against offline node.
5306 *
5307 * TODO: this routine can waste much memory for nodes which will
5308 * never be onlined. It's better to use memory hotplug callback
5309 * function.
5310 */
41e3355d
KH
5311 if (!node_state(node, N_NORMAL_MEMORY))
5312 tmp = -1;
17295c88 5313 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5314 if (!pn)
5315 return 1;
1ecaab2b 5316
1ecaab2b
KH
5317 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5318 mz = &pn->zoneinfo[zone];
bea8c150 5319 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
5320 mz->usage_in_excess = 0;
5321 mz->on_tree = false;
d79154bb 5322 mz->memcg = memcg;
1ecaab2b 5323 }
54f72fe0 5324 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5325 return 0;
5326}
5327
c0ff4b85 5328static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5329{
54f72fe0 5330 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5331}
5332
33327948
KH
5333static struct mem_cgroup *mem_cgroup_alloc(void)
5334{
d79154bb 5335 struct mem_cgroup *memcg;
8ff69e2c 5336 size_t size;
33327948 5337
8ff69e2c
VD
5338 size = sizeof(struct mem_cgroup);
5339 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 5340
8ff69e2c 5341 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 5342 if (!memcg)
e7bbcdf3
DC
5343 return NULL;
5344
d79154bb
HD
5345 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5346 if (!memcg->stat)
d2e61b8d 5347 goto out_free;
d79154bb
HD
5348 spin_lock_init(&memcg->pcp_counter_lock);
5349 return memcg;
d2e61b8d
DC
5350
5351out_free:
8ff69e2c 5352 kfree(memcg);
d2e61b8d 5353 return NULL;
33327948
KH
5354}
5355
59927fb9 5356/*
c8b2a36f
GC
5357 * At destroying mem_cgroup, references from swap_cgroup can remain.
5358 * (scanning all at force_empty is too costly...)
5359 *
5360 * Instead of clearing all references at force_empty, we remember
5361 * the number of reference from swap_cgroup and free mem_cgroup when
5362 * it goes down to 0.
5363 *
5364 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5365 */
c8b2a36f
GC
5366
5367static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5368{
c8b2a36f 5369 int node;
59927fb9 5370
bb4cc1a8 5371 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
5372
5373 for_each_node(node)
5374 free_mem_cgroup_per_zone_info(memcg, node);
5375
5376 free_percpu(memcg->stat);
5377
3f134619
GC
5378 /*
5379 * We need to make sure that (at least for now), the jump label
5380 * destruction code runs outside of the cgroup lock. This is because
5381 * get_online_cpus(), which is called from the static_branch update,
5382 * can't be called inside the cgroup_lock. cpusets are the ones
5383 * enforcing this dependency, so if they ever change, we might as well.
5384 *
5385 * schedule_work() will guarantee this happens. Be careful if you need
5386 * to move this code around, and make sure it is outside
5387 * the cgroup_lock.
5388 */
a8964b9b 5389 disarm_static_keys(memcg);
8ff69e2c 5390 kfree(memcg);
59927fb9 5391}
3afe36b1 5392
7bcc1bb1
DN
5393/*
5394 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5395 */
e1aab161 5396struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5397{
c0ff4b85 5398 if (!memcg->res.parent)
7bcc1bb1 5399 return NULL;
c0ff4b85 5400 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 5401}
e1aab161 5402EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5403
bb4cc1a8
AM
5404static void __init mem_cgroup_soft_limit_tree_init(void)
5405{
5406 struct mem_cgroup_tree_per_node *rtpn;
5407 struct mem_cgroup_tree_per_zone *rtpz;
5408 int tmp, node, zone;
5409
5410 for_each_node(node) {
5411 tmp = node;
5412 if (!node_state(node, N_NORMAL_MEMORY))
5413 tmp = -1;
5414 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5415 BUG_ON(!rtpn);
5416
5417 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5418
5419 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5420 rtpz = &rtpn->rb_tree_per_zone[zone];
5421 rtpz->rb_root = RB_ROOT;
5422 spin_lock_init(&rtpz->lock);
5423 }
5424 }
5425}
5426
0eb253e2 5427static struct cgroup_subsys_state * __ref
eb95419b 5428mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5429{
d142e3e6 5430 struct mem_cgroup *memcg;
04046e1a 5431 long error = -ENOMEM;
6d12e2d8 5432 int node;
8cdea7c0 5433
c0ff4b85
R
5434 memcg = mem_cgroup_alloc();
5435 if (!memcg)
04046e1a 5436 return ERR_PTR(error);
78fb7466 5437
3ed28fa1 5438 for_each_node(node)
c0ff4b85 5439 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5440 goto free_out;
f64c3f54 5441
c077719b 5442 /* root ? */
eb95419b 5443 if (parent_css == NULL) {
a41c58a6 5444 root_mem_cgroup = memcg;
d142e3e6
GC
5445 res_counter_init(&memcg->res, NULL);
5446 res_counter_init(&memcg->memsw, NULL);
5447 res_counter_init(&memcg->kmem, NULL);
18f59ea7 5448 }
28dbc4b6 5449
d142e3e6
GC
5450 memcg->last_scanned_node = MAX_NUMNODES;
5451 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5452 memcg->move_charge_at_immigrate = 0;
5453 mutex_init(&memcg->thresholds_lock);
5454 spin_lock_init(&memcg->move_lock);
70ddf637 5455 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5456 INIT_LIST_HEAD(&memcg->event_list);
5457 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5458
5459 return &memcg->css;
5460
5461free_out:
5462 __mem_cgroup_free(memcg);
5463 return ERR_PTR(error);
5464}
5465
5466static int
eb95419b 5467mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5468{
eb95419b 5469 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5470 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 5471 int ret;
d142e3e6 5472
15a4c835 5473 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5474 return -ENOSPC;
5475
63876986 5476 if (!parent)
d142e3e6
GC
5477 return 0;
5478
0999821b 5479 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5480
5481 memcg->use_hierarchy = parent->use_hierarchy;
5482 memcg->oom_kill_disable = parent->oom_kill_disable;
5483 memcg->swappiness = mem_cgroup_swappiness(parent);
5484
5485 if (parent->use_hierarchy) {
c0ff4b85
R
5486 res_counter_init(&memcg->res, &parent->res);
5487 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 5488 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5489
7bcc1bb1 5490 /*
8d76a979
LZ
5491 * No need to take a reference to the parent because cgroup
5492 * core guarantees its existence.
7bcc1bb1 5493 */
18f59ea7 5494 } else {
ce00a967
JW
5495 res_counter_init(&memcg->res, NULL);
5496 res_counter_init(&memcg->memsw, NULL);
5497 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5498 /*
5499 * Deeper hierachy with use_hierarchy == false doesn't make
5500 * much sense so let cgroup subsystem know about this
5501 * unfortunate state in our controller.
5502 */
d142e3e6 5503 if (parent != root_mem_cgroup)
073219e9 5504 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5505 }
0999821b 5506 mutex_unlock(&memcg_create_mutex);
d6441637 5507
2f7dd7a4
JW
5508 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5509 if (ret)
5510 return ret;
5511
5512 /*
5513 * Make sure the memcg is initialized: mem_cgroup_iter()
5514 * orders reading memcg->initialized against its callers
5515 * reading the memcg members.
5516 */
5517 smp_store_release(&memcg->initialized, 1);
5518
5519 return 0;
8cdea7c0
BS
5520}
5521
5f578161
MH
5522/*
5523 * Announce all parents that a group from their hierarchy is gone.
5524 */
5525static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5526{
5527 struct mem_cgroup *parent = memcg;
5528
5529 while ((parent = parent_mem_cgroup(parent)))
519ebea3 5530 mem_cgroup_iter_invalidate(parent);
5f578161
MH
5531
5532 /*
5533 * if the root memcg is not hierarchical we have to check it
5534 * explicitely.
5535 */
5536 if (!root_mem_cgroup->use_hierarchy)
519ebea3 5537 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
5538}
5539
eb95419b 5540static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5541{
eb95419b 5542 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5543 struct mem_cgroup_event *event, *tmp;
4fb1a86f 5544 struct cgroup_subsys_state *iter;
79bd9814
TH
5545
5546 /*
5547 * Unregister events and notify userspace.
5548 * Notify userspace about cgroup removing only after rmdir of cgroup
5549 * directory to avoid race between userspace and kernelspace.
5550 */
fba94807
TH
5551 spin_lock(&memcg->event_list_lock);
5552 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5553 list_del_init(&event->list);
5554 schedule_work(&event->remove);
5555 }
fba94807 5556 spin_unlock(&memcg->event_list_lock);
ec64f515 5557
10d5ebf4
LZ
5558 kmem_cgroup_css_offline(memcg);
5559
5f578161 5560 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
5561
5562 /*
5563 * This requires that offlining is serialized. Right now that is
5564 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5565 */
5566 css_for_each_descendant_post(iter, css)
5567 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5568
776ed0f0 5569 memcg_unregister_all_caches(memcg);
33cb876e 5570 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5571}
5572
eb95419b 5573static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5574{
eb95419b 5575 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
5576 /*
5577 * XXX: css_offline() would be where we should reparent all
5578 * memory to prepare the cgroup for destruction. However,
ec903c0c 5579 * memcg does not do css_tryget_online() and res_counter charging
96f1c58d
JW
5580 * under the same RCU lock region, which means that charging
5581 * could race with offlining. Offlining only happens to
5582 * cgroups with no tasks in them but charges can show up
5583 * without any tasks from the swapin path when the target
5584 * memcg is looked up from the swapout record and not from the
5585 * current task as it usually is. A race like this can leak
5586 * charges and put pages with stale cgroup pointers into
5587 * circulation:
5588 *
5589 * #0 #1
5590 * lookup_swap_cgroup_id()
5591 * rcu_read_lock()
5592 * mem_cgroup_lookup()
ec903c0c 5593 * css_tryget_online()
96f1c58d 5594 * rcu_read_unlock()
ec903c0c 5595 * disable css_tryget_online()
96f1c58d
JW
5596 * call_rcu()
5597 * offline_css()
5598 * reparent_charges()
5599 * res_counter_charge()
5600 * css_put()
5601 * css_free()
5602 * pc->mem_cgroup = dead memcg
5603 * add page to lru
5604 *
5605 * The bulk of the charges are still moved in offline_css() to
5606 * avoid pinning a lot of pages in case a long-term reference
5607 * like a swapout record is deferring the css_free() to long
5608 * after offlining. But this makes sure we catch any charges
5609 * made after offlining:
5610 */
5611 mem_cgroup_reparent_charges(memcg);
c268e994 5612
10d5ebf4 5613 memcg_destroy_kmem(memcg);
465939a1 5614 __mem_cgroup_free(memcg);
8cdea7c0
BS
5615}
5616
1ced953b
TH
5617/**
5618 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5619 * @css: the target css
5620 *
5621 * Reset the states of the mem_cgroup associated with @css. This is
5622 * invoked when the userland requests disabling on the default hierarchy
5623 * but the memcg is pinned through dependency. The memcg should stop
5624 * applying policies and should revert to the vanilla state as it may be
5625 * made visible again.
5626 *
5627 * The current implementation only resets the essential configurations.
5628 * This needs to be expanded to cover all the visible parts.
5629 */
5630static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5631{
5632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5633
5634 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5635 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5636 memcg_update_kmem_limit(memcg, ULLONG_MAX);
5637 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5638}
5639
02491447 5640#ifdef CONFIG_MMU
7dc74be0 5641/* Handlers for move charge at task migration. */
854ffa8d 5642static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5643{
05b84301 5644 int ret;
9476db97
JW
5645
5646 /* Try a single bulk charge without reclaim first */
00501b53 5647 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5648 if (!ret) {
854ffa8d 5649 mc.precharge += count;
854ffa8d
DN
5650 return ret;
5651 }
692e7c45 5652 if (ret == -EINTR) {
00501b53 5653 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5654 return ret;
5655 }
9476db97
JW
5656
5657 /* Try charges one by one with reclaim */
854ffa8d 5658 while (count--) {
00501b53 5659 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5660 /*
5661 * In case of failure, any residual charges against
5662 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5663 * later on. However, cancel any charges that are
5664 * bypassed to root right away or they'll be lost.
9476db97 5665 */
692e7c45 5666 if (ret == -EINTR)
00501b53 5667 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5668 if (ret)
38c5d72f 5669 return ret;
854ffa8d 5670 mc.precharge++;
9476db97 5671 cond_resched();
854ffa8d 5672 }
9476db97 5673 return 0;
4ffef5fe
DN
5674}
5675
5676/**
8d32ff84 5677 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5678 * @vma: the vma the pte to be checked belongs
5679 * @addr: the address corresponding to the pte to be checked
5680 * @ptent: the pte to be checked
02491447 5681 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5682 *
5683 * Returns
5684 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5685 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5686 * move charge. if @target is not NULL, the page is stored in target->page
5687 * with extra refcnt got(Callers should handle it).
02491447
DN
5688 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5689 * target for charge migration. if @target is not NULL, the entry is stored
5690 * in target->ent.
4ffef5fe
DN
5691 *
5692 * Called with pte lock held.
5693 */
4ffef5fe
DN
5694union mc_target {
5695 struct page *page;
02491447 5696 swp_entry_t ent;
4ffef5fe
DN
5697};
5698
4ffef5fe 5699enum mc_target_type {
8d32ff84 5700 MC_TARGET_NONE = 0,
4ffef5fe 5701 MC_TARGET_PAGE,
02491447 5702 MC_TARGET_SWAP,
4ffef5fe
DN
5703};
5704
90254a65
DN
5705static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5706 unsigned long addr, pte_t ptent)
4ffef5fe 5707{
90254a65 5708 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5709
90254a65
DN
5710 if (!page || !page_mapped(page))
5711 return NULL;
5712 if (PageAnon(page)) {
5713 /* we don't move shared anon */
4b91355e 5714 if (!move_anon())
90254a65 5715 return NULL;
87946a72
DN
5716 } else if (!move_file())
5717 /* we ignore mapcount for file pages */
90254a65
DN
5718 return NULL;
5719 if (!get_page_unless_zero(page))
5720 return NULL;
5721
5722 return page;
5723}
5724
4b91355e 5725#ifdef CONFIG_SWAP
90254a65
DN
5726static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5727 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5728{
90254a65
DN
5729 struct page *page = NULL;
5730 swp_entry_t ent = pte_to_swp_entry(ptent);
5731
5732 if (!move_anon() || non_swap_entry(ent))
5733 return NULL;
4b91355e
KH
5734 /*
5735 * Because lookup_swap_cache() updates some statistics counter,
5736 * we call find_get_page() with swapper_space directly.
5737 */
33806f06 5738 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5739 if (do_swap_account)
5740 entry->val = ent.val;
5741
5742 return page;
5743}
4b91355e
KH
5744#else
5745static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5746 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5747{
5748 return NULL;
5749}
5750#endif
90254a65 5751
87946a72
DN
5752static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5753 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5754{
5755 struct page *page = NULL;
87946a72
DN
5756 struct address_space *mapping;
5757 pgoff_t pgoff;
5758
5759 if (!vma->vm_file) /* anonymous vma */
5760 return NULL;
5761 if (!move_file())
5762 return NULL;
5763
87946a72
DN
5764 mapping = vma->vm_file->f_mapping;
5765 if (pte_none(ptent))
5766 pgoff = linear_page_index(vma, addr);
5767 else /* pte_file(ptent) is true */
5768 pgoff = pte_to_pgoff(ptent);
5769
5770 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5771#ifdef CONFIG_SWAP
5772 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5773 if (shmem_mapping(mapping)) {
5774 page = find_get_entry(mapping, pgoff);
5775 if (radix_tree_exceptional_entry(page)) {
5776 swp_entry_t swp = radix_to_swp_entry(page);
5777 if (do_swap_account)
5778 *entry = swp;
5779 page = find_get_page(swap_address_space(swp), swp.val);
5780 }
5781 } else
5782 page = find_get_page(mapping, pgoff);
5783#else
5784 page = find_get_page(mapping, pgoff);
aa3b1895 5785#endif
87946a72
DN
5786 return page;
5787}
5788
8d32ff84 5789static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5790 unsigned long addr, pte_t ptent, union mc_target *target)
5791{
5792 struct page *page = NULL;
5793 struct page_cgroup *pc;
8d32ff84 5794 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5795 swp_entry_t ent = { .val = 0 };
5796
5797 if (pte_present(ptent))
5798 page = mc_handle_present_pte(vma, addr, ptent);
5799 else if (is_swap_pte(ptent))
5800 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5801 else if (pte_none(ptent) || pte_file(ptent))
5802 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5803
5804 if (!page && !ent.val)
8d32ff84 5805 return ret;
02491447
DN
5806 if (page) {
5807 pc = lookup_page_cgroup(page);
5808 /*
0a31bc97
JW
5809 * Do only loose check w/o serialization.
5810 * mem_cgroup_move_account() checks the pc is valid or
5811 * not under LRU exclusion.
02491447
DN
5812 */
5813 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5814 ret = MC_TARGET_PAGE;
5815 if (target)
5816 target->page = page;
5817 }
5818 if (!ret || !target)
5819 put_page(page);
5820 }
90254a65
DN
5821 /* There is a swap entry and a page doesn't exist or isn't charged */
5822 if (ent.val && !ret &&
34c00c31 5823 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5824 ret = MC_TARGET_SWAP;
5825 if (target)
5826 target->ent = ent;
4ffef5fe 5827 }
4ffef5fe
DN
5828 return ret;
5829}
5830
12724850
NH
5831#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5832/*
5833 * We don't consider swapping or file mapped pages because THP does not
5834 * support them for now.
5835 * Caller should make sure that pmd_trans_huge(pmd) is true.
5836 */
5837static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5838 unsigned long addr, pmd_t pmd, union mc_target *target)
5839{
5840 struct page *page = NULL;
5841 struct page_cgroup *pc;
5842 enum mc_target_type ret = MC_TARGET_NONE;
5843
5844 page = pmd_page(pmd);
309381fe 5845 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5846 if (!move_anon())
5847 return ret;
5848 pc = lookup_page_cgroup(page);
5849 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5850 ret = MC_TARGET_PAGE;
5851 if (target) {
5852 get_page(page);
5853 target->page = page;
5854 }
5855 }
5856 return ret;
5857}
5858#else
5859static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5860 unsigned long addr, pmd_t pmd, union mc_target *target)
5861{
5862 return MC_TARGET_NONE;
5863}
5864#endif
5865
4ffef5fe
DN
5866static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5867 unsigned long addr, unsigned long end,
5868 struct mm_walk *walk)
5869{
5870 struct vm_area_struct *vma = walk->private;
5871 pte_t *pte;
5872 spinlock_t *ptl;
5873
bf929152 5874 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5875 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5876 mc.precharge += HPAGE_PMD_NR;
bf929152 5877 spin_unlock(ptl);
1a5a9906 5878 return 0;
12724850 5879 }
03319327 5880
45f83cef
AA
5881 if (pmd_trans_unstable(pmd))
5882 return 0;
4ffef5fe
DN
5883 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5884 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5885 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5886 mc.precharge++; /* increment precharge temporarily */
5887 pte_unmap_unlock(pte - 1, ptl);
5888 cond_resched();
5889
7dc74be0
DN
5890 return 0;
5891}
5892
4ffef5fe
DN
5893static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5894{
5895 unsigned long precharge;
5896 struct vm_area_struct *vma;
5897
dfe076b0 5898 down_read(&mm->mmap_sem);
4ffef5fe
DN
5899 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5900 struct mm_walk mem_cgroup_count_precharge_walk = {
5901 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5902 .mm = mm,
5903 .private = vma,
5904 };
5905 if (is_vm_hugetlb_page(vma))
5906 continue;
4ffef5fe
DN
5907 walk_page_range(vma->vm_start, vma->vm_end,
5908 &mem_cgroup_count_precharge_walk);
5909 }
dfe076b0 5910 up_read(&mm->mmap_sem);
4ffef5fe
DN
5911
5912 precharge = mc.precharge;
5913 mc.precharge = 0;
5914
5915 return precharge;
5916}
5917
4ffef5fe
DN
5918static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5919{
dfe076b0
DN
5920 unsigned long precharge = mem_cgroup_count_precharge(mm);
5921
5922 VM_BUG_ON(mc.moving_task);
5923 mc.moving_task = current;
5924 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5925}
5926
dfe076b0
DN
5927/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5928static void __mem_cgroup_clear_mc(void)
4ffef5fe 5929{
2bd9bb20
KH
5930 struct mem_cgroup *from = mc.from;
5931 struct mem_cgroup *to = mc.to;
4050377b 5932 int i;
2bd9bb20 5933
4ffef5fe 5934 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5935 if (mc.precharge) {
00501b53 5936 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5937 mc.precharge = 0;
5938 }
5939 /*
5940 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5941 * we must uncharge here.
5942 */
5943 if (mc.moved_charge) {
00501b53 5944 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5945 mc.moved_charge = 0;
4ffef5fe 5946 }
483c30b5
DN
5947 /* we must fixup refcnts and charges */
5948 if (mc.moved_swap) {
483c30b5 5949 /* uncharge swap account from the old cgroup */
ce00a967
JW
5950 if (!mem_cgroup_is_root(mc.from))
5951 res_counter_uncharge(&mc.from->memsw,
5952 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
5953
5954 for (i = 0; i < mc.moved_swap; i++)
5955 css_put(&mc.from->css);
483c30b5 5956
05b84301
JW
5957 /*
5958 * we charged both to->res and to->memsw, so we should
5959 * uncharge to->res.
5960 */
ce00a967
JW
5961 if (!mem_cgroup_is_root(mc.to))
5962 res_counter_uncharge(&mc.to->res,
5963 PAGE_SIZE * mc.moved_swap);
4050377b 5964 /* we've already done css_get(mc.to) */
483c30b5
DN
5965 mc.moved_swap = 0;
5966 }
dfe076b0
DN
5967 memcg_oom_recover(from);
5968 memcg_oom_recover(to);
5969 wake_up_all(&mc.waitq);
5970}
5971
5972static void mem_cgroup_clear_mc(void)
5973{
5974 struct mem_cgroup *from = mc.from;
5975
5976 /*
5977 * we must clear moving_task before waking up waiters at the end of
5978 * task migration.
5979 */
5980 mc.moving_task = NULL;
5981 __mem_cgroup_clear_mc();
2bd9bb20 5982 spin_lock(&mc.lock);
4ffef5fe
DN
5983 mc.from = NULL;
5984 mc.to = NULL;
2bd9bb20 5985 spin_unlock(&mc.lock);
32047e2a 5986 mem_cgroup_end_move(from);
4ffef5fe
DN
5987}
5988
eb95419b 5989static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5990 struct cgroup_taskset *tset)
7dc74be0 5991{
2f7ee569 5992 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5993 int ret = 0;
eb95419b 5994 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5995 unsigned long move_charge_at_immigrate;
7dc74be0 5996
ee5e8472
GC
5997 /*
5998 * We are now commited to this value whatever it is. Changes in this
5999 * tunable will only affect upcoming migrations, not the current one.
6000 * So we need to save it, and keep it going.
6001 */
6002 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6003 if (move_charge_at_immigrate) {
7dc74be0
DN
6004 struct mm_struct *mm;
6005 struct mem_cgroup *from = mem_cgroup_from_task(p);
6006
c0ff4b85 6007 VM_BUG_ON(from == memcg);
7dc74be0
DN
6008
6009 mm = get_task_mm(p);
6010 if (!mm)
6011 return 0;
7dc74be0 6012 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6013 if (mm->owner == p) {
6014 VM_BUG_ON(mc.from);
6015 VM_BUG_ON(mc.to);
6016 VM_BUG_ON(mc.precharge);
854ffa8d 6017 VM_BUG_ON(mc.moved_charge);
483c30b5 6018 VM_BUG_ON(mc.moved_swap);
32047e2a 6019 mem_cgroup_start_move(from);
2bd9bb20 6020 spin_lock(&mc.lock);
4ffef5fe 6021 mc.from = from;
c0ff4b85 6022 mc.to = memcg;
ee5e8472 6023 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6024 spin_unlock(&mc.lock);
dfe076b0 6025 /* We set mc.moving_task later */
4ffef5fe
DN
6026
6027 ret = mem_cgroup_precharge_mc(mm);
6028 if (ret)
6029 mem_cgroup_clear_mc();
dfe076b0
DN
6030 }
6031 mmput(mm);
7dc74be0
DN
6032 }
6033 return ret;
6034}
6035
eb95419b 6036static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6037 struct cgroup_taskset *tset)
7dc74be0 6038{
4ffef5fe 6039 mem_cgroup_clear_mc();
7dc74be0
DN
6040}
6041
4ffef5fe
DN
6042static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6043 unsigned long addr, unsigned long end,
6044 struct mm_walk *walk)
7dc74be0 6045{
4ffef5fe
DN
6046 int ret = 0;
6047 struct vm_area_struct *vma = walk->private;
6048 pte_t *pte;
6049 spinlock_t *ptl;
12724850
NH
6050 enum mc_target_type target_type;
6051 union mc_target target;
6052 struct page *page;
6053 struct page_cgroup *pc;
4ffef5fe 6054
12724850
NH
6055 /*
6056 * We don't take compound_lock() here but no race with splitting thp
6057 * happens because:
6058 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6059 * under splitting, which means there's no concurrent thp split,
6060 * - if another thread runs into split_huge_page() just after we
6061 * entered this if-block, the thread must wait for page table lock
6062 * to be unlocked in __split_huge_page_splitting(), where the main
6063 * part of thp split is not executed yet.
6064 */
bf929152 6065 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6066 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6067 spin_unlock(ptl);
12724850
NH
6068 return 0;
6069 }
6070 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6071 if (target_type == MC_TARGET_PAGE) {
6072 page = target.page;
6073 if (!isolate_lru_page(page)) {
6074 pc = lookup_page_cgroup(page);
6075 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6076 pc, mc.from, mc.to)) {
12724850
NH
6077 mc.precharge -= HPAGE_PMD_NR;
6078 mc.moved_charge += HPAGE_PMD_NR;
6079 }
6080 putback_lru_page(page);
6081 }
6082 put_page(page);
6083 }
bf929152 6084 spin_unlock(ptl);
1a5a9906 6085 return 0;
12724850
NH
6086 }
6087
45f83cef
AA
6088 if (pmd_trans_unstable(pmd))
6089 return 0;
4ffef5fe
DN
6090retry:
6091 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6092 for (; addr != end; addr += PAGE_SIZE) {
6093 pte_t ptent = *(pte++);
02491447 6094 swp_entry_t ent;
4ffef5fe
DN
6095
6096 if (!mc.precharge)
6097 break;
6098
8d32ff84 6099 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6100 case MC_TARGET_PAGE:
6101 page = target.page;
6102 if (isolate_lru_page(page))
6103 goto put;
6104 pc = lookup_page_cgroup(page);
7ec99d62 6105 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6106 mc.from, mc.to)) {
4ffef5fe 6107 mc.precharge--;
854ffa8d
DN
6108 /* we uncharge from mc.from later. */
6109 mc.moved_charge++;
4ffef5fe
DN
6110 }
6111 putback_lru_page(page);
8d32ff84 6112put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6113 put_page(page);
6114 break;
02491447
DN
6115 case MC_TARGET_SWAP:
6116 ent = target.ent;
e91cbb42 6117 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6118 mc.precharge--;
483c30b5
DN
6119 /* we fixup refcnts and charges later. */
6120 mc.moved_swap++;
6121 }
02491447 6122 break;
4ffef5fe
DN
6123 default:
6124 break;
6125 }
6126 }
6127 pte_unmap_unlock(pte - 1, ptl);
6128 cond_resched();
6129
6130 if (addr != end) {
6131 /*
6132 * We have consumed all precharges we got in can_attach().
6133 * We try charge one by one, but don't do any additional
6134 * charges to mc.to if we have failed in charge once in attach()
6135 * phase.
6136 */
854ffa8d 6137 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6138 if (!ret)
6139 goto retry;
6140 }
6141
6142 return ret;
6143}
6144
6145static void mem_cgroup_move_charge(struct mm_struct *mm)
6146{
6147 struct vm_area_struct *vma;
6148
6149 lru_add_drain_all();
dfe076b0
DN
6150retry:
6151 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6152 /*
6153 * Someone who are holding the mmap_sem might be waiting in
6154 * waitq. So we cancel all extra charges, wake up all waiters,
6155 * and retry. Because we cancel precharges, we might not be able
6156 * to move enough charges, but moving charge is a best-effort
6157 * feature anyway, so it wouldn't be a big problem.
6158 */
6159 __mem_cgroup_clear_mc();
6160 cond_resched();
6161 goto retry;
6162 }
4ffef5fe
DN
6163 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6164 int ret;
6165 struct mm_walk mem_cgroup_move_charge_walk = {
6166 .pmd_entry = mem_cgroup_move_charge_pte_range,
6167 .mm = mm,
6168 .private = vma,
6169 };
6170 if (is_vm_hugetlb_page(vma))
6171 continue;
4ffef5fe
DN
6172 ret = walk_page_range(vma->vm_start, vma->vm_end,
6173 &mem_cgroup_move_charge_walk);
6174 if (ret)
6175 /*
6176 * means we have consumed all precharges and failed in
6177 * doing additional charge. Just abandon here.
6178 */
6179 break;
6180 }
dfe076b0 6181 up_read(&mm->mmap_sem);
7dc74be0
DN
6182}
6183
eb95419b 6184static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6185 struct cgroup_taskset *tset)
67e465a7 6186{
2f7ee569 6187 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6188 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6189
dfe076b0 6190 if (mm) {
a433658c
KM
6191 if (mc.to)
6192 mem_cgroup_move_charge(mm);
dfe076b0
DN
6193 mmput(mm);
6194 }
a433658c
KM
6195 if (mc.to)
6196 mem_cgroup_clear_mc();
67e465a7 6197}
5cfb80a7 6198#else /* !CONFIG_MMU */
eb95419b 6199static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6200 struct cgroup_taskset *tset)
5cfb80a7
DN
6201{
6202 return 0;
6203}
eb95419b 6204static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6205 struct cgroup_taskset *tset)
5cfb80a7
DN
6206{
6207}
eb95419b 6208static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6209 struct cgroup_taskset *tset)
5cfb80a7
DN
6210{
6211}
6212#endif
67e465a7 6213
f00baae7
TH
6214/*
6215 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6216 * to verify whether we're attached to the default hierarchy on each mount
6217 * attempt.
f00baae7 6218 */
eb95419b 6219static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6220{
6221 /*
aa6ec29b 6222 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6223 * guarantees that @root doesn't have any children, so turning it
6224 * on for the root memcg is enough.
6225 */
aa6ec29b 6226 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 6227 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6228}
6229
073219e9 6230struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6231 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6232 .css_online = mem_cgroup_css_online,
92fb9748
TH
6233 .css_offline = mem_cgroup_css_offline,
6234 .css_free = mem_cgroup_css_free,
1ced953b 6235 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6236 .can_attach = mem_cgroup_can_attach,
6237 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6238 .attach = mem_cgroup_move_task,
f00baae7 6239 .bind = mem_cgroup_bind,
5577964e 6240 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 6241 .early_init = 0,
8cdea7c0 6242};
c077719b 6243
c255a458 6244#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6245static int __init enable_swap_account(char *s)
6246{
a2c8990a 6247 if (!strcmp(s, "1"))
a42c390c 6248 really_do_swap_account = 1;
a2c8990a 6249 else if (!strcmp(s, "0"))
a42c390c
MH
6250 really_do_swap_account = 0;
6251 return 1;
6252}
a2c8990a 6253__setup("swapaccount=", enable_swap_account);
c077719b 6254
2d11085e
MH
6255static void __init memsw_file_init(void)
6256{
2cf669a5
TH
6257 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6258 memsw_cgroup_files));
6acc8b02
MH
6259}
6260
6261static void __init enable_swap_cgroup(void)
6262{
6263 if (!mem_cgroup_disabled() && really_do_swap_account) {
6264 do_swap_account = 1;
6265 memsw_file_init();
6266 }
2d11085e 6267}
6acc8b02 6268
2d11085e 6269#else
6acc8b02 6270static void __init enable_swap_cgroup(void)
2d11085e
MH
6271{
6272}
c077719b 6273#endif
2d11085e 6274
0a31bc97
JW
6275#ifdef CONFIG_MEMCG_SWAP
6276/**
6277 * mem_cgroup_swapout - transfer a memsw charge to swap
6278 * @page: page whose memsw charge to transfer
6279 * @entry: swap entry to move the charge to
6280 *
6281 * Transfer the memsw charge of @page to @entry.
6282 */
6283void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6284{
6285 struct page_cgroup *pc;
6286 unsigned short oldid;
6287
6288 VM_BUG_ON_PAGE(PageLRU(page), page);
6289 VM_BUG_ON_PAGE(page_count(page), page);
6290
6291 if (!do_swap_account)
6292 return;
6293
6294 pc = lookup_page_cgroup(page);
6295
6296 /* Readahead page, never charged */
6297 if (!PageCgroupUsed(pc))
6298 return;
6299
6300 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6301
6302 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6303 VM_BUG_ON_PAGE(oldid, page);
6304
6305 pc->flags &= ~PCG_MEMSW;
6306 css_get(&pc->mem_cgroup->css);
6307 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6308}
6309
6310/**
6311 * mem_cgroup_uncharge_swap - uncharge a swap entry
6312 * @entry: swap entry to uncharge
6313 *
6314 * Drop the memsw charge associated with @entry.
6315 */
6316void mem_cgroup_uncharge_swap(swp_entry_t entry)
6317{
6318 struct mem_cgroup *memcg;
6319 unsigned short id;
6320
6321 if (!do_swap_account)
6322 return;
6323
6324 id = swap_cgroup_record(entry, 0);
6325 rcu_read_lock();
6326 memcg = mem_cgroup_lookup(id);
6327 if (memcg) {
ce00a967
JW
6328 if (!mem_cgroup_is_root(memcg))
6329 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0a31bc97
JW
6330 mem_cgroup_swap_statistics(memcg, false);
6331 css_put(&memcg->css);
6332 }
6333 rcu_read_unlock();
6334}
6335#endif
6336
00501b53
JW
6337/**
6338 * mem_cgroup_try_charge - try charging a page
6339 * @page: page to charge
6340 * @mm: mm context of the victim
6341 * @gfp_mask: reclaim mode
6342 * @memcgp: charged memcg return
6343 *
6344 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6345 * pages according to @gfp_mask if necessary.
6346 *
6347 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6348 * Otherwise, an error code is returned.
6349 *
6350 * After page->mapping has been set up, the caller must finalize the
6351 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6352 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6353 */
6354int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6355 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6356{
6357 struct mem_cgroup *memcg = NULL;
6358 unsigned int nr_pages = 1;
6359 int ret = 0;
6360
6361 if (mem_cgroup_disabled())
6362 goto out;
6363
6364 if (PageSwapCache(page)) {
6365 struct page_cgroup *pc = lookup_page_cgroup(page);
6366 /*
6367 * Every swap fault against a single page tries to charge the
6368 * page, bail as early as possible. shmem_unuse() encounters
6369 * already charged pages, too. The USED bit is protected by
6370 * the page lock, which serializes swap cache removal, which
6371 * in turn serializes uncharging.
6372 */
6373 if (PageCgroupUsed(pc))
6374 goto out;
6375 }
6376
6377 if (PageTransHuge(page)) {
6378 nr_pages <<= compound_order(page);
6379 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6380 }
6381
6382 if (do_swap_account && PageSwapCache(page))
6383 memcg = try_get_mem_cgroup_from_page(page);
6384 if (!memcg)
6385 memcg = get_mem_cgroup_from_mm(mm);
6386
6387 ret = try_charge(memcg, gfp_mask, nr_pages);
6388
6389 css_put(&memcg->css);
6390
6391 if (ret == -EINTR) {
6392 memcg = root_mem_cgroup;
6393 ret = 0;
6394 }
6395out:
6396 *memcgp = memcg;
6397 return ret;
6398}
6399
6400/**
6401 * mem_cgroup_commit_charge - commit a page charge
6402 * @page: page to charge
6403 * @memcg: memcg to charge the page to
6404 * @lrucare: page might be on LRU already
6405 *
6406 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6407 * after page->mapping has been set up. This must happen atomically
6408 * as part of the page instantiation, i.e. under the page table lock
6409 * for anonymous pages, under the page lock for page and swap cache.
6410 *
6411 * In addition, the page must not be on the LRU during the commit, to
6412 * prevent racing with task migration. If it might be, use @lrucare.
6413 *
6414 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6415 */
6416void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6417 bool lrucare)
6418{
6419 unsigned int nr_pages = 1;
6420
6421 VM_BUG_ON_PAGE(!page->mapping, page);
6422 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6423
6424 if (mem_cgroup_disabled())
6425 return;
6426 /*
6427 * Swap faults will attempt to charge the same page multiple
6428 * times. But reuse_swap_page() might have removed the page
6429 * from swapcache already, so we can't check PageSwapCache().
6430 */
6431 if (!memcg)
6432 return;
6433
6abb5a86
JW
6434 commit_charge(page, memcg, lrucare);
6435
00501b53
JW
6436 if (PageTransHuge(page)) {
6437 nr_pages <<= compound_order(page);
6438 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6439 }
6440
6abb5a86
JW
6441 local_irq_disable();
6442 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6443 memcg_check_events(memcg, page);
6444 local_irq_enable();
00501b53
JW
6445
6446 if (do_swap_account && PageSwapCache(page)) {
6447 swp_entry_t entry = { .val = page_private(page) };
6448 /*
6449 * The swap entry might not get freed for a long time,
6450 * let's not wait for it. The page already received a
6451 * memory+swap charge, drop the swap entry duplicate.
6452 */
6453 mem_cgroup_uncharge_swap(entry);
6454 }
6455}
6456
6457/**
6458 * mem_cgroup_cancel_charge - cancel a page charge
6459 * @page: page to charge
6460 * @memcg: memcg to charge the page to
6461 *
6462 * Cancel a charge transaction started by mem_cgroup_try_charge().
6463 */
6464void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6465{
6466 unsigned int nr_pages = 1;
6467
6468 if (mem_cgroup_disabled())
6469 return;
6470 /*
6471 * Swap faults will attempt to charge the same page multiple
6472 * times. But reuse_swap_page() might have removed the page
6473 * from swapcache already, so we can't check PageSwapCache().
6474 */
6475 if (!memcg)
6476 return;
6477
6478 if (PageTransHuge(page)) {
6479 nr_pages <<= compound_order(page);
6480 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6481 }
6482
6483 cancel_charge(memcg, nr_pages);
6484}
6485
747db954
JW
6486static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6487 unsigned long nr_mem, unsigned long nr_memsw,
6488 unsigned long nr_anon, unsigned long nr_file,
6489 unsigned long nr_huge, struct page *dummy_page)
6490{
6491 unsigned long flags;
6492
ce00a967
JW
6493 if (!mem_cgroup_is_root(memcg)) {
6494 if (nr_mem)
6495 res_counter_uncharge(&memcg->res,
6496 nr_mem * PAGE_SIZE);
6497 if (nr_memsw)
6498 res_counter_uncharge(&memcg->memsw,
6499 nr_memsw * PAGE_SIZE);
6500 memcg_oom_recover(memcg);
6501 }
747db954
JW
6502
6503 local_irq_save(flags);
6504 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6505 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6506 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6507 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6508 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6509 memcg_check_events(memcg, dummy_page);
6510 local_irq_restore(flags);
6511}
6512
6513static void uncharge_list(struct list_head *page_list)
6514{
6515 struct mem_cgroup *memcg = NULL;
6516 unsigned long nr_memsw = 0;
6517 unsigned long nr_anon = 0;
6518 unsigned long nr_file = 0;
6519 unsigned long nr_huge = 0;
6520 unsigned long pgpgout = 0;
6521 unsigned long nr_mem = 0;
6522 struct list_head *next;
6523 struct page *page;
6524
6525 next = page_list->next;
6526 do {
6527 unsigned int nr_pages = 1;
6528 struct page_cgroup *pc;
6529
6530 page = list_entry(next, struct page, lru);
6531 next = page->lru.next;
6532
6533 VM_BUG_ON_PAGE(PageLRU(page), page);
6534 VM_BUG_ON_PAGE(page_count(page), page);
6535
6536 pc = lookup_page_cgroup(page);
6537 if (!PageCgroupUsed(pc))
6538 continue;
6539
6540 /*
6541 * Nobody should be changing or seriously looking at
6542 * pc->mem_cgroup and pc->flags at this point, we have
6543 * fully exclusive access to the page.
6544 */
6545
6546 if (memcg != pc->mem_cgroup) {
6547 if (memcg) {
6548 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6549 nr_anon, nr_file, nr_huge, page);
6550 pgpgout = nr_mem = nr_memsw = 0;
6551 nr_anon = nr_file = nr_huge = 0;
6552 }
6553 memcg = pc->mem_cgroup;
6554 }
6555
6556 if (PageTransHuge(page)) {
6557 nr_pages <<= compound_order(page);
6558 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6559 nr_huge += nr_pages;
6560 }
6561
6562 if (PageAnon(page))
6563 nr_anon += nr_pages;
6564 else
6565 nr_file += nr_pages;
6566
6567 if (pc->flags & PCG_MEM)
6568 nr_mem += nr_pages;
6569 if (pc->flags & PCG_MEMSW)
6570 nr_memsw += nr_pages;
6571 pc->flags = 0;
6572
6573 pgpgout++;
6574 } while (next != page_list);
6575
6576 if (memcg)
6577 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6578 nr_anon, nr_file, nr_huge, page);
6579}
6580
0a31bc97
JW
6581/**
6582 * mem_cgroup_uncharge - uncharge a page
6583 * @page: page to uncharge
6584 *
6585 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6586 * mem_cgroup_commit_charge().
6587 */
6588void mem_cgroup_uncharge(struct page *page)
6589{
0a31bc97 6590 struct page_cgroup *pc;
0a31bc97
JW
6591
6592 if (mem_cgroup_disabled())
6593 return;
6594
747db954 6595 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6596 pc = lookup_page_cgroup(page);
0a31bc97
JW
6597 if (!PageCgroupUsed(pc))
6598 return;
6599
747db954
JW
6600 INIT_LIST_HEAD(&page->lru);
6601 uncharge_list(&page->lru);
6602}
0a31bc97 6603
747db954
JW
6604/**
6605 * mem_cgroup_uncharge_list - uncharge a list of page
6606 * @page_list: list of pages to uncharge
6607 *
6608 * Uncharge a list of pages previously charged with
6609 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6610 */
6611void mem_cgroup_uncharge_list(struct list_head *page_list)
6612{
6613 if (mem_cgroup_disabled())
6614 return;
0a31bc97 6615
747db954
JW
6616 if (!list_empty(page_list))
6617 uncharge_list(page_list);
0a31bc97
JW
6618}
6619
6620/**
6621 * mem_cgroup_migrate - migrate a charge to another page
6622 * @oldpage: currently charged page
6623 * @newpage: page to transfer the charge to
6624 * @lrucare: both pages might be on the LRU already
6625 *
6626 * Migrate the charge from @oldpage to @newpage.
6627 *
6628 * Both pages must be locked, @newpage->mapping must be set up.
6629 */
6630void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6631 bool lrucare)
6632{
0a31bc97
JW
6633 struct page_cgroup *pc;
6634 int isolated;
6635
6636 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6637 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6638 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6639 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6640 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6641 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6642 newpage);
0a31bc97
JW
6643
6644 if (mem_cgroup_disabled())
6645 return;
6646
6647 /* Page cache replacement: new page already charged? */
6648 pc = lookup_page_cgroup(newpage);
6649 if (PageCgroupUsed(pc))
6650 return;
6651
6652 /* Re-entrant migration: old page already uncharged? */
6653 pc = lookup_page_cgroup(oldpage);
6654 if (!PageCgroupUsed(pc))
6655 return;
6656
6657 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6658 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6659
0a31bc97
JW
6660 if (lrucare)
6661 lock_page_lru(oldpage, &isolated);
6662
6663 pc->flags = 0;
6664
6665 if (lrucare)
6666 unlock_page_lru(oldpage, isolated);
6667
6abb5a86 6668 commit_charge(newpage, pc->mem_cgroup, lrucare);
0a31bc97
JW
6669}
6670
2d11085e 6671/*
1081312f
MH
6672 * subsys_initcall() for memory controller.
6673 *
6674 * Some parts like hotcpu_notifier() have to be initialized from this context
6675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6676 * everything that doesn't depend on a specific mem_cgroup structure should
6677 * be initialized from here.
2d11085e
MH
6678 */
6679static int __init mem_cgroup_init(void)
6680{
6681 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6682 enable_swap_cgroup();
bb4cc1a8 6683 mem_cgroup_soft_limit_tree_init();
e4777496 6684 memcg_stock_init();
2d11085e
MH
6685 return 0;
6686}
6687subsys_initcall(mem_cgroup_init);