memcg: remove redundant returns
[linux-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
93 MEM_CGROUP_STAT_NSTATS,
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
7a159cc9
JW
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 113 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 118#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 119
d52aa412 120struct mem_cgroup_stat_cpu {
7a159cc9 121 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 123 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
124};
125
527a5ec9
JW
126struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131};
132
6d12e2d8
KH
133/*
134 * per-zone information in memory controller.
135 */
6d12e2d8 136struct mem_cgroup_per_zone {
6290df54 137 struct lruvec lruvec;
1eb49272 138 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 139
527a5ec9
JW
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
3e2f41f1 142 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
d79154bb 147 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 148 /* use container_of */
6d12e2d8 149};
6d12e2d8
KH
150
151struct mem_cgroup_per_node {
152 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
153};
154
155struct mem_cgroup_lru_info {
156 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
157};
158
f64c3f54
BS
159/*
160 * Cgroups above their limits are maintained in a RB-Tree, independent of
161 * their hierarchy representation
162 */
163
164struct mem_cgroup_tree_per_zone {
165 struct rb_root rb_root;
166 spinlock_t lock;
167};
168
169struct mem_cgroup_tree_per_node {
170 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
171};
172
173struct mem_cgroup_tree {
174 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
175};
176
177static struct mem_cgroup_tree soft_limit_tree __read_mostly;
178
2e72b634
KS
179struct mem_cgroup_threshold {
180 struct eventfd_ctx *eventfd;
181 u64 threshold;
182};
183
9490ff27 184/* For threshold */
2e72b634
KS
185struct mem_cgroup_threshold_ary {
186 /* An array index points to threshold just below usage. */
5407a562 187 int current_threshold;
2e72b634
KS
188 /* Size of entries[] */
189 unsigned int size;
190 /* Array of thresholds */
191 struct mem_cgroup_threshold entries[0];
192};
2c488db2
KS
193
194struct mem_cgroup_thresholds {
195 /* Primary thresholds array */
196 struct mem_cgroup_threshold_ary *primary;
197 /*
198 * Spare threshold array.
199 * This is needed to make mem_cgroup_unregister_event() "never fail".
200 * It must be able to store at least primary->size - 1 entries.
201 */
202 struct mem_cgroup_threshold_ary *spare;
203};
204
9490ff27
KH
205/* for OOM */
206struct mem_cgroup_eventfd_list {
207 struct list_head list;
208 struct eventfd_ctx *eventfd;
209};
2e72b634 210
c0ff4b85
R
211static void mem_cgroup_threshold(struct mem_cgroup *memcg);
212static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 213
8cdea7c0
BS
214/*
215 * The memory controller data structure. The memory controller controls both
216 * page cache and RSS per cgroup. We would eventually like to provide
217 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
218 * to help the administrator determine what knobs to tune.
219 *
220 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
221 * we hit the water mark. May be even add a low water mark, such that
222 * no reclaim occurs from a cgroup at it's low water mark, this is
223 * a feature that will be implemented much later in the future.
8cdea7c0
BS
224 */
225struct mem_cgroup {
226 struct cgroup_subsys_state css;
227 /*
228 * the counter to account for memory usage
229 */
230 struct res_counter res;
59927fb9
HD
231
232 union {
233 /*
234 * the counter to account for mem+swap usage.
235 */
236 struct res_counter memsw;
237
238 /*
239 * rcu_freeing is used only when freeing struct mem_cgroup,
240 * so put it into a union to avoid wasting more memory.
241 * It must be disjoint from the css field. It could be
242 * in a union with the res field, but res plays a much
243 * larger part in mem_cgroup life than memsw, and might
244 * be of interest, even at time of free, when debugging.
245 * So share rcu_head with the less interesting memsw.
246 */
247 struct rcu_head rcu_freeing;
248 /*
249 * But when using vfree(), that cannot be done at
250 * interrupt time, so we must then queue the work.
251 */
252 struct work_struct work_freeing;
253 };
254
78fb7466
PE
255 /*
256 * Per cgroup active and inactive list, similar to the
257 * per zone LRU lists.
78fb7466 258 */
6d12e2d8 259 struct mem_cgroup_lru_info info;
889976db
YH
260 int last_scanned_node;
261#if MAX_NUMNODES > 1
262 nodemask_t scan_nodes;
453a9bf3
KH
263 atomic_t numainfo_events;
264 atomic_t numainfo_updating;
889976db 265#endif
18f59ea7
BS
266 /*
267 * Should the accounting and control be hierarchical, per subtree?
268 */
269 bool use_hierarchy;
79dfdacc
MH
270
271 bool oom_lock;
272 atomic_t under_oom;
273
8c7c6e34 274 atomic_t refcnt;
14797e23 275
1f4c025b 276 int swappiness;
3c11ecf4
KH
277 /* OOM-Killer disable */
278 int oom_kill_disable;
a7885eb8 279
22a668d7
KH
280 /* set when res.limit == memsw.limit */
281 bool memsw_is_minimum;
282
2e72b634
KS
283 /* protect arrays of thresholds */
284 struct mutex thresholds_lock;
285
286 /* thresholds for memory usage. RCU-protected */
2c488db2 287 struct mem_cgroup_thresholds thresholds;
907860ed 288
2e72b634 289 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 290 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 291
9490ff27
KH
292 /* For oom notifier event fd */
293 struct list_head oom_notify;
185efc0f 294
7dc74be0
DN
295 /*
296 * Should we move charges of a task when a task is moved into this
297 * mem_cgroup ? And what type of charges should we move ?
298 */
299 unsigned long move_charge_at_immigrate;
d52aa412 300 /*
c62b1a3b 301 * percpu counter.
d52aa412 302 */
c62b1a3b 303 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
304 /*
305 * used when a cpu is offlined or other synchronizations
306 * See mem_cgroup_read_stat().
307 */
308 struct mem_cgroup_stat_cpu nocpu_base;
309 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
310
311#ifdef CONFIG_INET
312 struct tcp_memcontrol tcp_mem;
313#endif
8cdea7c0
BS
314};
315
7dc74be0
DN
316/* Stuffs for move charges at task migration. */
317/*
318 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
319 * left-shifted bitmap of these types.
320 */
321enum move_type {
4ffef5fe 322 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 323 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
324 NR_MOVE_TYPE,
325};
326
4ffef5fe
DN
327/* "mc" and its members are protected by cgroup_mutex */
328static struct move_charge_struct {
b1dd693e 329 spinlock_t lock; /* for from, to */
4ffef5fe
DN
330 struct mem_cgroup *from;
331 struct mem_cgroup *to;
332 unsigned long precharge;
854ffa8d 333 unsigned long moved_charge;
483c30b5 334 unsigned long moved_swap;
8033b97c
DN
335 struct task_struct *moving_task; /* a task moving charges */
336 wait_queue_head_t waitq; /* a waitq for other context */
337} mc = {
2bd9bb20 338 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
339 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
340};
4ffef5fe 341
90254a65
DN
342static bool move_anon(void)
343{
344 return test_bit(MOVE_CHARGE_TYPE_ANON,
345 &mc.to->move_charge_at_immigrate);
346}
347
87946a72
DN
348static bool move_file(void)
349{
350 return test_bit(MOVE_CHARGE_TYPE_FILE,
351 &mc.to->move_charge_at_immigrate);
352}
353
4e416953
BS
354/*
355 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
356 * limit reclaim to prevent infinite loops, if they ever occur.
357 */
358#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
359#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
360
217bc319
KH
361enum charge_type {
362 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
363 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 364 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 365 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 366 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 367 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
368 NR_CHARGE_TYPE,
369};
370
8c7c6e34 371/* for encoding cft->private value on file */
65c64ce8
GC
372#define _MEM (0)
373#define _MEMSWAP (1)
374#define _OOM_TYPE (2)
8c7c6e34
KH
375#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
376#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
377#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
378/* Used for OOM nofiier */
379#define OOM_CONTROL (0)
8c7c6e34 380
75822b44
BS
381/*
382 * Reclaim flags for mem_cgroup_hierarchical_reclaim
383 */
384#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
385#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
386#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
387#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
388
c0ff4b85
R
389static void mem_cgroup_get(struct mem_cgroup *memcg);
390static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
391
392/* Writing them here to avoid exposing memcg's inner layout */
393#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 394#include <net/sock.h>
d1a4c0b3 395#include <net/ip.h>
e1aab161
GC
396
397static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
398void sock_update_memcg(struct sock *sk)
399{
376be5ff 400 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
401 struct mem_cgroup *memcg;
402
403 BUG_ON(!sk->sk_prot->proto_cgroup);
404
f3f511e1
GC
405 /* Socket cloning can throw us here with sk_cgrp already
406 * filled. It won't however, necessarily happen from
407 * process context. So the test for root memcg given
408 * the current task's memcg won't help us in this case.
409 *
410 * Respecting the original socket's memcg is a better
411 * decision in this case.
412 */
413 if (sk->sk_cgrp) {
414 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
415 mem_cgroup_get(sk->sk_cgrp->memcg);
416 return;
417 }
418
e1aab161
GC
419 rcu_read_lock();
420 memcg = mem_cgroup_from_task(current);
421 if (!mem_cgroup_is_root(memcg)) {
422 mem_cgroup_get(memcg);
423 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
424 }
425 rcu_read_unlock();
426 }
427}
428EXPORT_SYMBOL(sock_update_memcg);
429
430void sock_release_memcg(struct sock *sk)
431{
376be5ff 432 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
433 struct mem_cgroup *memcg;
434 WARN_ON(!sk->sk_cgrp->memcg);
435 memcg = sk->sk_cgrp->memcg;
436 mem_cgroup_put(memcg);
437 }
438}
d1a4c0b3 439
319d3b9c 440#ifdef CONFIG_INET
d1a4c0b3
GC
441struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
442{
443 if (!memcg || mem_cgroup_is_root(memcg))
444 return NULL;
445
446 return &memcg->tcp_mem.cg_proto;
447}
448EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
449#endif /* CONFIG_INET */
450#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
451
c0ff4b85 452static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 453
f64c3f54 454static struct mem_cgroup_per_zone *
c0ff4b85 455mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 456{
c0ff4b85 457 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
458}
459
c0ff4b85 460struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 461{
c0ff4b85 462 return &memcg->css;
d324236b
WF
463}
464
f64c3f54 465static struct mem_cgroup_per_zone *
c0ff4b85 466page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 467{
97a6c37b
JW
468 int nid = page_to_nid(page);
469 int zid = page_zonenum(page);
f64c3f54 470
c0ff4b85 471 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
472}
473
474static struct mem_cgroup_tree_per_zone *
475soft_limit_tree_node_zone(int nid, int zid)
476{
477 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
478}
479
480static struct mem_cgroup_tree_per_zone *
481soft_limit_tree_from_page(struct page *page)
482{
483 int nid = page_to_nid(page);
484 int zid = page_zonenum(page);
485
486 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
487}
488
489static void
c0ff4b85 490__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 491 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
492 struct mem_cgroup_tree_per_zone *mctz,
493 unsigned long long new_usage_in_excess)
f64c3f54
BS
494{
495 struct rb_node **p = &mctz->rb_root.rb_node;
496 struct rb_node *parent = NULL;
497 struct mem_cgroup_per_zone *mz_node;
498
499 if (mz->on_tree)
500 return;
501
ef8745c1
KH
502 mz->usage_in_excess = new_usage_in_excess;
503 if (!mz->usage_in_excess)
504 return;
f64c3f54
BS
505 while (*p) {
506 parent = *p;
507 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
508 tree_node);
509 if (mz->usage_in_excess < mz_node->usage_in_excess)
510 p = &(*p)->rb_left;
511 /*
512 * We can't avoid mem cgroups that are over their soft
513 * limit by the same amount
514 */
515 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
516 p = &(*p)->rb_right;
517 }
518 rb_link_node(&mz->tree_node, parent, p);
519 rb_insert_color(&mz->tree_node, &mctz->rb_root);
520 mz->on_tree = true;
4e416953
BS
521}
522
523static void
c0ff4b85 524__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
525 struct mem_cgroup_per_zone *mz,
526 struct mem_cgroup_tree_per_zone *mctz)
527{
528 if (!mz->on_tree)
529 return;
530 rb_erase(&mz->tree_node, &mctz->rb_root);
531 mz->on_tree = false;
532}
533
f64c3f54 534static void
c0ff4b85 535mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
536 struct mem_cgroup_per_zone *mz,
537 struct mem_cgroup_tree_per_zone *mctz)
538{
539 spin_lock(&mctz->lock);
c0ff4b85 540 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
541 spin_unlock(&mctz->lock);
542}
543
f64c3f54 544
c0ff4b85 545static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 546{
ef8745c1 547 unsigned long long excess;
f64c3f54
BS
548 struct mem_cgroup_per_zone *mz;
549 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
550 int nid = page_to_nid(page);
551 int zid = page_zonenum(page);
f64c3f54
BS
552 mctz = soft_limit_tree_from_page(page);
553
554 /*
4e649152
KH
555 * Necessary to update all ancestors when hierarchy is used.
556 * because their event counter is not touched.
f64c3f54 557 */
c0ff4b85
R
558 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
559 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
560 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
561 /*
562 * We have to update the tree if mz is on RB-tree or
563 * mem is over its softlimit.
564 */
ef8745c1 565 if (excess || mz->on_tree) {
4e649152
KH
566 spin_lock(&mctz->lock);
567 /* if on-tree, remove it */
568 if (mz->on_tree)
c0ff4b85 569 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 570 /*
ef8745c1
KH
571 * Insert again. mz->usage_in_excess will be updated.
572 * If excess is 0, no tree ops.
4e649152 573 */
c0ff4b85 574 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
575 spin_unlock(&mctz->lock);
576 }
f64c3f54
BS
577 }
578}
579
c0ff4b85 580static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
581{
582 int node, zone;
583 struct mem_cgroup_per_zone *mz;
584 struct mem_cgroup_tree_per_zone *mctz;
585
3ed28fa1 586 for_each_node(node) {
f64c3f54 587 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 588 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 589 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 590 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
591 }
592 }
593}
594
4e416953
BS
595static struct mem_cgroup_per_zone *
596__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
597{
598 struct rb_node *rightmost = NULL;
26251eaf 599 struct mem_cgroup_per_zone *mz;
4e416953
BS
600
601retry:
26251eaf 602 mz = NULL;
4e416953
BS
603 rightmost = rb_last(&mctz->rb_root);
604 if (!rightmost)
605 goto done; /* Nothing to reclaim from */
606
607 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
608 /*
609 * Remove the node now but someone else can add it back,
610 * we will to add it back at the end of reclaim to its correct
611 * position in the tree.
612 */
d79154bb
HD
613 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
614 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
615 !css_tryget(&mz->memcg->css))
4e416953
BS
616 goto retry;
617done:
618 return mz;
619}
620
621static struct mem_cgroup_per_zone *
622mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
623{
624 struct mem_cgroup_per_zone *mz;
625
626 spin_lock(&mctz->lock);
627 mz = __mem_cgroup_largest_soft_limit_node(mctz);
628 spin_unlock(&mctz->lock);
629 return mz;
630}
631
711d3d2c
KH
632/*
633 * Implementation Note: reading percpu statistics for memcg.
634 *
635 * Both of vmstat[] and percpu_counter has threshold and do periodic
636 * synchronization to implement "quick" read. There are trade-off between
637 * reading cost and precision of value. Then, we may have a chance to implement
638 * a periodic synchronizion of counter in memcg's counter.
639 *
640 * But this _read() function is used for user interface now. The user accounts
641 * memory usage by memory cgroup and he _always_ requires exact value because
642 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
643 * have to visit all online cpus and make sum. So, for now, unnecessary
644 * synchronization is not implemented. (just implemented for cpu hotplug)
645 *
646 * If there are kernel internal actions which can make use of some not-exact
647 * value, and reading all cpu value can be performance bottleneck in some
648 * common workload, threashold and synchonization as vmstat[] should be
649 * implemented.
650 */
c0ff4b85 651static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 652 enum mem_cgroup_stat_index idx)
c62b1a3b 653{
7a159cc9 654 long val = 0;
c62b1a3b 655 int cpu;
c62b1a3b 656
711d3d2c
KH
657 get_online_cpus();
658 for_each_online_cpu(cpu)
c0ff4b85 659 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 660#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
661 spin_lock(&memcg->pcp_counter_lock);
662 val += memcg->nocpu_base.count[idx];
663 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
664#endif
665 put_online_cpus();
c62b1a3b
KH
666 return val;
667}
668
c0ff4b85 669static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
670 bool charge)
671{
672 int val = (charge) ? 1 : -1;
c0ff4b85 673 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
674}
675
c0ff4b85 676static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
677 enum mem_cgroup_events_index idx)
678{
679 unsigned long val = 0;
680 int cpu;
681
682 for_each_online_cpu(cpu)
c0ff4b85 683 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 684#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
685 spin_lock(&memcg->pcp_counter_lock);
686 val += memcg->nocpu_base.events[idx];
687 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
688#endif
689 return val;
690}
691
c0ff4b85 692static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 693 bool file, int nr_pages)
d52aa412 694{
c62b1a3b
KH
695 preempt_disable();
696
e401f176 697 if (file)
c0ff4b85
R
698 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
699 nr_pages);
d52aa412 700 else
c0ff4b85
R
701 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
702 nr_pages);
55e462b0 703
e401f176
KH
704 /* pagein of a big page is an event. So, ignore page size */
705 if (nr_pages > 0)
c0ff4b85 706 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 707 else {
c0ff4b85 708 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
709 nr_pages = -nr_pages; /* for event */
710 }
e401f176 711
c0ff4b85 712 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 713
c62b1a3b 714 preempt_enable();
6d12e2d8
KH
715}
716
bb2a0de9 717unsigned long
c0ff4b85 718mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 719 unsigned int lru_mask)
889976db
YH
720{
721 struct mem_cgroup_per_zone *mz;
f156ab93 722 enum lru_list lru;
bb2a0de9
KH
723 unsigned long ret = 0;
724
c0ff4b85 725 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 726
f156ab93
HD
727 for_each_lru(lru) {
728 if (BIT(lru) & lru_mask)
729 ret += mz->lru_size[lru];
bb2a0de9
KH
730 }
731 return ret;
732}
733
734static unsigned long
c0ff4b85 735mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
736 int nid, unsigned int lru_mask)
737{
889976db
YH
738 u64 total = 0;
739 int zid;
740
bb2a0de9 741 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
742 total += mem_cgroup_zone_nr_lru_pages(memcg,
743 nid, zid, lru_mask);
bb2a0de9 744
889976db
YH
745 return total;
746}
bb2a0de9 747
c0ff4b85 748static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 749 unsigned int lru_mask)
6d12e2d8 750{
889976db 751 int nid;
6d12e2d8
KH
752 u64 total = 0;
753
bb2a0de9 754 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 755 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 756 return total;
d52aa412
KH
757}
758
f53d7ce3
JW
759static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
760 enum mem_cgroup_events_target target)
7a159cc9
JW
761{
762 unsigned long val, next;
763
4799401f
SR
764 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
765 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 766 /* from time_after() in jiffies.h */
f53d7ce3
JW
767 if ((long)next - (long)val < 0) {
768 switch (target) {
769 case MEM_CGROUP_TARGET_THRESH:
770 next = val + THRESHOLDS_EVENTS_TARGET;
771 break;
772 case MEM_CGROUP_TARGET_SOFTLIMIT:
773 next = val + SOFTLIMIT_EVENTS_TARGET;
774 break;
775 case MEM_CGROUP_TARGET_NUMAINFO:
776 next = val + NUMAINFO_EVENTS_TARGET;
777 break;
778 default:
779 break;
780 }
781 __this_cpu_write(memcg->stat->targets[target], next);
782 return true;
7a159cc9 783 }
f53d7ce3 784 return false;
d2265e6f
KH
785}
786
787/*
788 * Check events in order.
789 *
790 */
c0ff4b85 791static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 792{
4799401f 793 preempt_disable();
d2265e6f 794 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
795 if (unlikely(mem_cgroup_event_ratelimit(memcg,
796 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
797 bool do_softlimit;
798 bool do_numainfo __maybe_unused;
f53d7ce3
JW
799
800 do_softlimit = mem_cgroup_event_ratelimit(memcg,
801 MEM_CGROUP_TARGET_SOFTLIMIT);
802#if MAX_NUMNODES > 1
803 do_numainfo = mem_cgroup_event_ratelimit(memcg,
804 MEM_CGROUP_TARGET_NUMAINFO);
805#endif
806 preempt_enable();
807
c0ff4b85 808 mem_cgroup_threshold(memcg);
f53d7ce3 809 if (unlikely(do_softlimit))
c0ff4b85 810 mem_cgroup_update_tree(memcg, page);
453a9bf3 811#if MAX_NUMNODES > 1
f53d7ce3 812 if (unlikely(do_numainfo))
c0ff4b85 813 atomic_inc(&memcg->numainfo_events);
453a9bf3 814#endif
f53d7ce3
JW
815 } else
816 preempt_enable();
d2265e6f
KH
817}
818
d1a4c0b3 819struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
820{
821 return container_of(cgroup_subsys_state(cont,
822 mem_cgroup_subsys_id), struct mem_cgroup,
823 css);
824}
825
cf475ad2 826struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 827{
31a78f23
BS
828 /*
829 * mm_update_next_owner() may clear mm->owner to NULL
830 * if it races with swapoff, page migration, etc.
831 * So this can be called with p == NULL.
832 */
833 if (unlikely(!p))
834 return NULL;
835
78fb7466
PE
836 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
837 struct mem_cgroup, css);
838}
839
a433658c 840struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 841{
c0ff4b85 842 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
843
844 if (!mm)
845 return NULL;
54595fe2
KH
846 /*
847 * Because we have no locks, mm->owner's may be being moved to other
848 * cgroup. We use css_tryget() here even if this looks
849 * pessimistic (rather than adding locks here).
850 */
851 rcu_read_lock();
852 do {
c0ff4b85
R
853 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
854 if (unlikely(!memcg))
54595fe2 855 break;
c0ff4b85 856 } while (!css_tryget(&memcg->css));
54595fe2 857 rcu_read_unlock();
c0ff4b85 858 return memcg;
54595fe2
KH
859}
860
5660048c
JW
861/**
862 * mem_cgroup_iter - iterate over memory cgroup hierarchy
863 * @root: hierarchy root
864 * @prev: previously returned memcg, NULL on first invocation
865 * @reclaim: cookie for shared reclaim walks, NULL for full walks
866 *
867 * Returns references to children of the hierarchy below @root, or
868 * @root itself, or %NULL after a full round-trip.
869 *
870 * Caller must pass the return value in @prev on subsequent
871 * invocations for reference counting, or use mem_cgroup_iter_break()
872 * to cancel a hierarchy walk before the round-trip is complete.
873 *
874 * Reclaimers can specify a zone and a priority level in @reclaim to
875 * divide up the memcgs in the hierarchy among all concurrent
876 * reclaimers operating on the same zone and priority.
877 */
878struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
879 struct mem_cgroup *prev,
880 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 881{
9f3a0d09
JW
882 struct mem_cgroup *memcg = NULL;
883 int id = 0;
711d3d2c 884
5660048c
JW
885 if (mem_cgroup_disabled())
886 return NULL;
887
9f3a0d09
JW
888 if (!root)
889 root = root_mem_cgroup;
7d74b06f 890
9f3a0d09
JW
891 if (prev && !reclaim)
892 id = css_id(&prev->css);
14067bb3 893
9f3a0d09
JW
894 if (prev && prev != root)
895 css_put(&prev->css);
14067bb3 896
9f3a0d09
JW
897 if (!root->use_hierarchy && root != root_mem_cgroup) {
898 if (prev)
899 return NULL;
900 return root;
901 }
14067bb3 902
9f3a0d09 903 while (!memcg) {
527a5ec9 904 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 905 struct cgroup_subsys_state *css;
711d3d2c 906
527a5ec9
JW
907 if (reclaim) {
908 int nid = zone_to_nid(reclaim->zone);
909 int zid = zone_idx(reclaim->zone);
910 struct mem_cgroup_per_zone *mz;
911
912 mz = mem_cgroup_zoneinfo(root, nid, zid);
913 iter = &mz->reclaim_iter[reclaim->priority];
914 if (prev && reclaim->generation != iter->generation)
915 return NULL;
916 id = iter->position;
917 }
7d74b06f 918
9f3a0d09
JW
919 rcu_read_lock();
920 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
921 if (css) {
922 if (css == &root->css || css_tryget(css))
923 memcg = container_of(css,
924 struct mem_cgroup, css);
925 } else
926 id = 0;
14067bb3 927 rcu_read_unlock();
14067bb3 928
527a5ec9
JW
929 if (reclaim) {
930 iter->position = id;
931 if (!css)
932 iter->generation++;
933 else if (!prev && memcg)
934 reclaim->generation = iter->generation;
935 }
9f3a0d09
JW
936
937 if (prev && !css)
938 return NULL;
939 }
940 return memcg;
14067bb3 941}
7d74b06f 942
5660048c
JW
943/**
944 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
945 * @root: hierarchy root
946 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
947 */
948void mem_cgroup_iter_break(struct mem_cgroup *root,
949 struct mem_cgroup *prev)
9f3a0d09
JW
950{
951 if (!root)
952 root = root_mem_cgroup;
953 if (prev && prev != root)
954 css_put(&prev->css);
955}
7d74b06f 956
9f3a0d09
JW
957/*
958 * Iteration constructs for visiting all cgroups (under a tree). If
959 * loops are exited prematurely (break), mem_cgroup_iter_break() must
960 * be used for reference counting.
961 */
962#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 963 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 964 iter != NULL; \
527a5ec9 965 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 966
9f3a0d09 967#define for_each_mem_cgroup(iter) \
527a5ec9 968 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 969 iter != NULL; \
527a5ec9 970 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 971
c0ff4b85 972static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 973{
c0ff4b85 974 return (memcg == root_mem_cgroup);
4b3bde4c
BS
975}
976
456f998e
YH
977void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
978{
c0ff4b85 979 struct mem_cgroup *memcg;
456f998e
YH
980
981 if (!mm)
982 return;
983
984 rcu_read_lock();
c0ff4b85
R
985 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
986 if (unlikely(!memcg))
456f998e
YH
987 goto out;
988
989 switch (idx) {
456f998e 990 case PGFAULT:
0e574a93
JW
991 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
992 break;
993 case PGMAJFAULT:
994 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
995 break;
996 default:
997 BUG();
998 }
999out:
1000 rcu_read_unlock();
1001}
1002EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1003
925b7673
JW
1004/**
1005 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1006 * @zone: zone of the wanted lruvec
1007 * @mem: memcg of the wanted lruvec
1008 *
1009 * Returns the lru list vector holding pages for the given @zone and
1010 * @mem. This can be the global zone lruvec, if the memory controller
1011 * is disabled.
1012 */
1013struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1014 struct mem_cgroup *memcg)
1015{
1016 struct mem_cgroup_per_zone *mz;
1017
1018 if (mem_cgroup_disabled())
1019 return &zone->lruvec;
1020
1021 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1022 return &mz->lruvec;
1023}
1024
08e552c6
KH
1025/*
1026 * Following LRU functions are allowed to be used without PCG_LOCK.
1027 * Operations are called by routine of global LRU independently from memcg.
1028 * What we have to take care of here is validness of pc->mem_cgroup.
1029 *
1030 * Changes to pc->mem_cgroup happens when
1031 * 1. charge
1032 * 2. moving account
1033 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1034 * It is added to LRU before charge.
1035 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1036 * When moving account, the page is not on LRU. It's isolated.
1037 */
4f98a2fe 1038
925b7673
JW
1039/**
1040 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1041 * @zone: zone of the page
1042 * @page: the page
1043 * @lru: current lru
1044 *
1045 * This function accounts for @page being added to @lru, and returns
1046 * the lruvec for the given @zone and the memcg @page is charged to.
1047 *
1048 * The callsite is then responsible for physically linking the page to
1049 * the returned lruvec->lists[@lru].
1050 */
1051struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1052 enum lru_list lru)
08e552c6 1053{
08e552c6 1054 struct mem_cgroup_per_zone *mz;
925b7673
JW
1055 struct mem_cgroup *memcg;
1056 struct page_cgroup *pc;
6d12e2d8 1057
f8d66542 1058 if (mem_cgroup_disabled())
925b7673
JW
1059 return &zone->lruvec;
1060
08e552c6 1061 pc = lookup_page_cgroup(page);
38c5d72f 1062 memcg = pc->mem_cgroup;
7512102c
HD
1063
1064 /*
1065 * Surreptitiously switch any uncharged page to root:
1066 * an uncharged page off lru does nothing to secure
1067 * its former mem_cgroup from sudden removal.
1068 *
1069 * Our caller holds lru_lock, and PageCgroupUsed is updated
1070 * under page_cgroup lock: between them, they make all uses
1071 * of pc->mem_cgroup safe.
1072 */
1073 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1074 pc->mem_cgroup = memcg = root_mem_cgroup;
1075
925b7673
JW
1076 mz = page_cgroup_zoneinfo(memcg, page);
1077 /* compound_order() is stabilized through lru_lock */
1eb49272 1078 mz->lru_size[lru] += 1 << compound_order(page);
925b7673 1079 return &mz->lruvec;
08e552c6 1080}
b69408e8 1081
925b7673
JW
1082/**
1083 * mem_cgroup_lru_del_list - account for removing an lru page
1084 * @page: the page
1085 * @lru: target lru
1086 *
1087 * This function accounts for @page being removed from @lru.
1088 *
1089 * The callsite is then responsible for physically unlinking
1090 * @page->lru.
3f58a829 1091 */
925b7673 1092void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1093{
1094 struct mem_cgroup_per_zone *mz;
925b7673 1095 struct mem_cgroup *memcg;
3f58a829 1096 struct page_cgroup *pc;
3f58a829
MK
1097
1098 if (mem_cgroup_disabled())
1099 return;
1100
1101 pc = lookup_page_cgroup(page);
38c5d72f
KH
1102 memcg = pc->mem_cgroup;
1103 VM_BUG_ON(!memcg);
925b7673
JW
1104 mz = page_cgroup_zoneinfo(memcg, page);
1105 /* huge page split is done under lru_lock. so, we have no races. */
1eb49272
HD
1106 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1107 mz->lru_size[lru] -= 1 << compound_order(page);
3f58a829
MK
1108}
1109
925b7673 1110void mem_cgroup_lru_del(struct page *page)
08e552c6 1111{
925b7673 1112 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1113}
1114
925b7673
JW
1115/**
1116 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1117 * @zone: zone of the page
1118 * @page: the page
1119 * @from: current lru
1120 * @to: target lru
1121 *
1122 * This function accounts for @page being moved between the lrus @from
1123 * and @to, and returns the lruvec for the given @zone and the memcg
1124 * @page is charged to.
1125 *
1126 * The callsite is then responsible for physically relinking
1127 * @page->lru to the returned lruvec->lists[@to].
1128 */
1129struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1130 struct page *page,
1131 enum lru_list from,
1132 enum lru_list to)
66e1707b 1133{
925b7673
JW
1134 /* XXX: Optimize this, especially for @from == @to */
1135 mem_cgroup_lru_del_list(page, from);
1136 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1137}
544122e5 1138
3e92041d 1139/*
c0ff4b85 1140 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1141 * hierarchy subtree
1142 */
c0ff4b85
R
1143static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1144 struct mem_cgroup *memcg)
3e92041d 1145{
c0ff4b85
R
1146 if (root_memcg != memcg) {
1147 return (root_memcg->use_hierarchy &&
1148 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1149 }
1150
1151 return true;
1152}
1153
c0ff4b85 1154int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1155{
1156 int ret;
0b7f569e 1157 struct mem_cgroup *curr = NULL;
158e0a2d 1158 struct task_struct *p;
4c4a2214 1159
158e0a2d 1160 p = find_lock_task_mm(task);
de077d22
DR
1161 if (p) {
1162 curr = try_get_mem_cgroup_from_mm(p->mm);
1163 task_unlock(p);
1164 } else {
1165 /*
1166 * All threads may have already detached their mm's, but the oom
1167 * killer still needs to detect if they have already been oom
1168 * killed to prevent needlessly killing additional tasks.
1169 */
1170 task_lock(task);
1171 curr = mem_cgroup_from_task(task);
1172 if (curr)
1173 css_get(&curr->css);
1174 task_unlock(task);
1175 }
0b7f569e
KH
1176 if (!curr)
1177 return 0;
d31f56db 1178 /*
c0ff4b85 1179 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1180 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1181 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1182 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1183 */
c0ff4b85 1184 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1185 css_put(&curr->css);
4c4a2214
DR
1186 return ret;
1187}
1188
9b272977 1189int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1190{
9b272977
JW
1191 unsigned long inactive_ratio;
1192 int nid = zone_to_nid(zone);
1193 int zid = zone_idx(zone);
14797e23 1194 unsigned long inactive;
9b272977 1195 unsigned long active;
c772be93 1196 unsigned long gb;
14797e23 1197
9b272977
JW
1198 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1199 BIT(LRU_INACTIVE_ANON));
1200 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1201 BIT(LRU_ACTIVE_ANON));
14797e23 1202
c772be93
KM
1203 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1204 if (gb)
1205 inactive_ratio = int_sqrt(10 * gb);
1206 else
1207 inactive_ratio = 1;
1208
9b272977 1209 return inactive * inactive_ratio < active;
14797e23
KM
1210}
1211
9b272977 1212int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1213{
1214 unsigned long active;
1215 unsigned long inactive;
9b272977
JW
1216 int zid = zone_idx(zone);
1217 int nid = zone_to_nid(zone);
56e49d21 1218
9b272977
JW
1219 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1220 BIT(LRU_INACTIVE_FILE));
1221 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1222 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1223
1224 return (active > inactive);
1225}
1226
3e2f41f1
KM
1227struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1228 struct zone *zone)
1229{
13d7e3a2 1230 int nid = zone_to_nid(zone);
3e2f41f1
KM
1231 int zid = zone_idx(zone);
1232 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1233
1234 return &mz->reclaim_stat;
1235}
1236
1237struct zone_reclaim_stat *
1238mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1239{
1240 struct page_cgroup *pc;
1241 struct mem_cgroup_per_zone *mz;
1242
1243 if (mem_cgroup_disabled())
1244 return NULL;
1245
1246 pc = lookup_page_cgroup(page);
bd112db8
DN
1247 if (!PageCgroupUsed(pc))
1248 return NULL;
713735b4
JW
1249 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1250 smp_rmb();
97a6c37b 1251 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1252 return &mz->reclaim_stat;
1253}
1254
6d61ef40
BS
1255#define mem_cgroup_from_res_counter(counter, member) \
1256 container_of(counter, struct mem_cgroup, member)
1257
19942822 1258/**
9d11ea9f
JW
1259 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1260 * @mem: the memory cgroup
19942822 1261 *
9d11ea9f 1262 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1263 * pages.
19942822 1264 */
c0ff4b85 1265static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1266{
9d11ea9f
JW
1267 unsigned long long margin;
1268
c0ff4b85 1269 margin = res_counter_margin(&memcg->res);
9d11ea9f 1270 if (do_swap_account)
c0ff4b85 1271 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1272 return margin >> PAGE_SHIFT;
19942822
JW
1273}
1274
1f4c025b 1275int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1276{
1277 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1278
1279 /* root ? */
1280 if (cgrp->parent == NULL)
1281 return vm_swappiness;
1282
bf1ff263 1283 return memcg->swappiness;
a7885eb8
KM
1284}
1285
c0ff4b85 1286static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1287{
1288 int cpu;
1489ebad
KH
1289
1290 get_online_cpus();
c0ff4b85 1291 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1292 for_each_online_cpu(cpu)
c0ff4b85
R
1293 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1294 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1295 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1296 put_online_cpus();
32047e2a
KH
1297
1298 synchronize_rcu();
1299}
1300
c0ff4b85 1301static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1302{
1303 int cpu;
1304
c0ff4b85 1305 if (!memcg)
32047e2a 1306 return;
1489ebad 1307 get_online_cpus();
c0ff4b85 1308 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1309 for_each_online_cpu(cpu)
c0ff4b85
R
1310 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1311 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1312 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1313 put_online_cpus();
32047e2a
KH
1314}
1315/*
1316 * 2 routines for checking "mem" is under move_account() or not.
1317 *
1318 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1319 * for avoiding race in accounting. If true,
1320 * pc->mem_cgroup may be overwritten.
1321 *
1322 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1323 * under hierarchy of moving cgroups. This is for
1324 * waiting at hith-memory prressure caused by "move".
1325 */
1326
c0ff4b85 1327static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1328{
1329 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1330 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1331}
4b534334 1332
c0ff4b85 1333static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1334{
2bd9bb20
KH
1335 struct mem_cgroup *from;
1336 struct mem_cgroup *to;
4b534334 1337 bool ret = false;
2bd9bb20
KH
1338 /*
1339 * Unlike task_move routines, we access mc.to, mc.from not under
1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1341 */
1342 spin_lock(&mc.lock);
1343 from = mc.from;
1344 to = mc.to;
1345 if (!from)
1346 goto unlock;
3e92041d 1347
c0ff4b85
R
1348 ret = mem_cgroup_same_or_subtree(memcg, from)
1349 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1350unlock:
1351 spin_unlock(&mc.lock);
4b534334
KH
1352 return ret;
1353}
1354
c0ff4b85 1355static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1356{
1357 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1358 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1359 DEFINE_WAIT(wait);
1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 /* moving charge context might have finished. */
1362 if (mc.moving_task)
1363 schedule();
1364 finish_wait(&mc.waitq, &wait);
1365 return true;
1366 }
1367 }
1368 return false;
1369}
1370
e222432b 1371/**
6a6135b6 1372 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1373 * @memcg: The memory cgroup that went over limit
1374 * @p: Task that is going to be killed
1375 *
1376 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1377 * enabled
1378 */
1379void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1380{
1381 struct cgroup *task_cgrp;
1382 struct cgroup *mem_cgrp;
1383 /*
1384 * Need a buffer in BSS, can't rely on allocations. The code relies
1385 * on the assumption that OOM is serialized for memory controller.
1386 * If this assumption is broken, revisit this code.
1387 */
1388 static char memcg_name[PATH_MAX];
1389 int ret;
1390
d31f56db 1391 if (!memcg || !p)
e222432b
BS
1392 return;
1393
e222432b
BS
1394 rcu_read_lock();
1395
1396 mem_cgrp = memcg->css.cgroup;
1397 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1398
1399 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1400 if (ret < 0) {
1401 /*
1402 * Unfortunately, we are unable to convert to a useful name
1403 * But we'll still print out the usage information
1404 */
1405 rcu_read_unlock();
1406 goto done;
1407 }
1408 rcu_read_unlock();
1409
1410 printk(KERN_INFO "Task in %s killed", memcg_name);
1411
1412 rcu_read_lock();
1413 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1414 if (ret < 0) {
1415 rcu_read_unlock();
1416 goto done;
1417 }
1418 rcu_read_unlock();
1419
1420 /*
1421 * Continues from above, so we don't need an KERN_ level
1422 */
1423 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1424done:
1425
1426 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1427 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1428 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1429 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1430 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1431 "failcnt %llu\n",
1432 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1433 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1434 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1435}
1436
81d39c20
KH
1437/*
1438 * This function returns the number of memcg under hierarchy tree. Returns
1439 * 1(self count) if no children.
1440 */
c0ff4b85 1441static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1442{
1443 int num = 0;
7d74b06f
KH
1444 struct mem_cgroup *iter;
1445
c0ff4b85 1446 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1447 num++;
81d39c20
KH
1448 return num;
1449}
1450
a63d83f4
DR
1451/*
1452 * Return the memory (and swap, if configured) limit for a memcg.
1453 */
1454u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1455{
1456 u64 limit;
1457 u64 memsw;
1458
f3e8eb70
JW
1459 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1460 limit += total_swap_pages << PAGE_SHIFT;
1461
a63d83f4
DR
1462 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1463 /*
1464 * If memsw is finite and limits the amount of swap space available
1465 * to this memcg, return that limit.
1466 */
1467 return min(limit, memsw);
1468}
1469
5660048c
JW
1470static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1471 gfp_t gfp_mask,
1472 unsigned long flags)
1473{
1474 unsigned long total = 0;
1475 bool noswap = false;
1476 int loop;
1477
1478 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1479 noswap = true;
1480 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1481 noswap = true;
1482
1483 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1484 if (loop)
1485 drain_all_stock_async(memcg);
1486 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1487 /*
1488 * Allow limit shrinkers, which are triggered directly
1489 * by userspace, to catch signals and stop reclaim
1490 * after minimal progress, regardless of the margin.
1491 */
1492 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1493 break;
1494 if (mem_cgroup_margin(memcg))
1495 break;
1496 /*
1497 * If nothing was reclaimed after two attempts, there
1498 * may be no reclaimable pages in this hierarchy.
1499 */
1500 if (loop && !total)
1501 break;
1502 }
1503 return total;
1504}
1505
4d0c066d
KH
1506/**
1507 * test_mem_cgroup_node_reclaimable
1508 * @mem: the target memcg
1509 * @nid: the node ID to be checked.
1510 * @noswap : specify true here if the user wants flle only information.
1511 *
1512 * This function returns whether the specified memcg contains any
1513 * reclaimable pages on a node. Returns true if there are any reclaimable
1514 * pages in the node.
1515 */
c0ff4b85 1516static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1517 int nid, bool noswap)
1518{
c0ff4b85 1519 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1520 return true;
1521 if (noswap || !total_swap_pages)
1522 return false;
c0ff4b85 1523 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1524 return true;
1525 return false;
1526
1527}
889976db
YH
1528#if MAX_NUMNODES > 1
1529
1530/*
1531 * Always updating the nodemask is not very good - even if we have an empty
1532 * list or the wrong list here, we can start from some node and traverse all
1533 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1534 *
1535 */
c0ff4b85 1536static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1537{
1538 int nid;
453a9bf3
KH
1539 /*
1540 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1541 * pagein/pageout changes since the last update.
1542 */
c0ff4b85 1543 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1544 return;
c0ff4b85 1545 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1546 return;
1547
889976db 1548 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1549 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1550
1551 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1552
c0ff4b85
R
1553 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1554 node_clear(nid, memcg->scan_nodes);
889976db 1555 }
453a9bf3 1556
c0ff4b85
R
1557 atomic_set(&memcg->numainfo_events, 0);
1558 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1559}
1560
1561/*
1562 * Selecting a node where we start reclaim from. Because what we need is just
1563 * reducing usage counter, start from anywhere is O,K. Considering
1564 * memory reclaim from current node, there are pros. and cons.
1565 *
1566 * Freeing memory from current node means freeing memory from a node which
1567 * we'll use or we've used. So, it may make LRU bad. And if several threads
1568 * hit limits, it will see a contention on a node. But freeing from remote
1569 * node means more costs for memory reclaim because of memory latency.
1570 *
1571 * Now, we use round-robin. Better algorithm is welcomed.
1572 */
c0ff4b85 1573int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1574{
1575 int node;
1576
c0ff4b85
R
1577 mem_cgroup_may_update_nodemask(memcg);
1578 node = memcg->last_scanned_node;
889976db 1579
c0ff4b85 1580 node = next_node(node, memcg->scan_nodes);
889976db 1581 if (node == MAX_NUMNODES)
c0ff4b85 1582 node = first_node(memcg->scan_nodes);
889976db
YH
1583 /*
1584 * We call this when we hit limit, not when pages are added to LRU.
1585 * No LRU may hold pages because all pages are UNEVICTABLE or
1586 * memcg is too small and all pages are not on LRU. In that case,
1587 * we use curret node.
1588 */
1589 if (unlikely(node == MAX_NUMNODES))
1590 node = numa_node_id();
1591
c0ff4b85 1592 memcg->last_scanned_node = node;
889976db
YH
1593 return node;
1594}
1595
4d0c066d
KH
1596/*
1597 * Check all nodes whether it contains reclaimable pages or not.
1598 * For quick scan, we make use of scan_nodes. This will allow us to skip
1599 * unused nodes. But scan_nodes is lazily updated and may not cotain
1600 * enough new information. We need to do double check.
1601 */
c0ff4b85 1602bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1603{
1604 int nid;
1605
1606 /*
1607 * quick check...making use of scan_node.
1608 * We can skip unused nodes.
1609 */
c0ff4b85
R
1610 if (!nodes_empty(memcg->scan_nodes)) {
1611 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1612 nid < MAX_NUMNODES;
c0ff4b85 1613 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1614
c0ff4b85 1615 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1616 return true;
1617 }
1618 }
1619 /*
1620 * Check rest of nodes.
1621 */
1622 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1623 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1624 continue;
c0ff4b85 1625 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1626 return true;
1627 }
1628 return false;
1629}
1630
889976db 1631#else
c0ff4b85 1632int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1633{
1634 return 0;
1635}
4d0c066d 1636
c0ff4b85 1637bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1638{
c0ff4b85 1639 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1640}
889976db
YH
1641#endif
1642
5660048c
JW
1643static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1644 struct zone *zone,
1645 gfp_t gfp_mask,
1646 unsigned long *total_scanned)
6d61ef40 1647{
9f3a0d09 1648 struct mem_cgroup *victim = NULL;
5660048c 1649 int total = 0;
04046e1a 1650 int loop = 0;
9d11ea9f 1651 unsigned long excess;
185efc0f 1652 unsigned long nr_scanned;
527a5ec9
JW
1653 struct mem_cgroup_reclaim_cookie reclaim = {
1654 .zone = zone,
1655 .priority = 0,
1656 };
9d11ea9f 1657
c0ff4b85 1658 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1659
4e416953 1660 while (1) {
527a5ec9 1661 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1662 if (!victim) {
04046e1a 1663 loop++;
4e416953
BS
1664 if (loop >= 2) {
1665 /*
1666 * If we have not been able to reclaim
1667 * anything, it might because there are
1668 * no reclaimable pages under this hierarchy
1669 */
5660048c 1670 if (!total)
4e416953 1671 break;
4e416953 1672 /*
25985edc 1673 * We want to do more targeted reclaim.
4e416953
BS
1674 * excess >> 2 is not to excessive so as to
1675 * reclaim too much, nor too less that we keep
1676 * coming back to reclaim from this cgroup
1677 */
1678 if (total >= (excess >> 2) ||
9f3a0d09 1679 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1680 break;
4e416953 1681 }
9f3a0d09 1682 continue;
4e416953 1683 }
5660048c 1684 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1685 continue;
5660048c
JW
1686 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1687 zone, &nr_scanned);
1688 *total_scanned += nr_scanned;
1689 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1690 break;
6d61ef40 1691 }
9f3a0d09 1692 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1693 return total;
6d61ef40
BS
1694}
1695
867578cb
KH
1696/*
1697 * Check OOM-Killer is already running under our hierarchy.
1698 * If someone is running, return false.
1af8efe9 1699 * Has to be called with memcg_oom_lock
867578cb 1700 */
c0ff4b85 1701static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1702{
79dfdacc 1703 struct mem_cgroup *iter, *failed = NULL;
a636b327 1704
9f3a0d09 1705 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1706 if (iter->oom_lock) {
79dfdacc
MH
1707 /*
1708 * this subtree of our hierarchy is already locked
1709 * so we cannot give a lock.
1710 */
79dfdacc 1711 failed = iter;
9f3a0d09
JW
1712 mem_cgroup_iter_break(memcg, iter);
1713 break;
23751be0
JW
1714 } else
1715 iter->oom_lock = true;
7d74b06f 1716 }
867578cb 1717
79dfdacc 1718 if (!failed)
23751be0 1719 return true;
79dfdacc
MH
1720
1721 /*
1722 * OK, we failed to lock the whole subtree so we have to clean up
1723 * what we set up to the failing subtree
1724 */
9f3a0d09 1725 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1726 if (iter == failed) {
9f3a0d09
JW
1727 mem_cgroup_iter_break(memcg, iter);
1728 break;
79dfdacc
MH
1729 }
1730 iter->oom_lock = false;
1731 }
23751be0 1732 return false;
a636b327 1733}
0b7f569e 1734
79dfdacc 1735/*
1af8efe9 1736 * Has to be called with memcg_oom_lock
79dfdacc 1737 */
c0ff4b85 1738static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1739{
7d74b06f
KH
1740 struct mem_cgroup *iter;
1741
c0ff4b85 1742 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1743 iter->oom_lock = false;
1744 return 0;
1745}
1746
c0ff4b85 1747static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1748{
1749 struct mem_cgroup *iter;
1750
c0ff4b85 1751 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1752 atomic_inc(&iter->under_oom);
1753}
1754
c0ff4b85 1755static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1756{
1757 struct mem_cgroup *iter;
1758
867578cb
KH
1759 /*
1760 * When a new child is created while the hierarchy is under oom,
1761 * mem_cgroup_oom_lock() may not be called. We have to use
1762 * atomic_add_unless() here.
1763 */
c0ff4b85 1764 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1765 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1766}
1767
1af8efe9 1768static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1769static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1770
dc98df5a 1771struct oom_wait_info {
d79154bb 1772 struct mem_cgroup *memcg;
dc98df5a
KH
1773 wait_queue_t wait;
1774};
1775
1776static int memcg_oom_wake_function(wait_queue_t *wait,
1777 unsigned mode, int sync, void *arg)
1778{
d79154bb
HD
1779 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1780 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1781 struct oom_wait_info *oom_wait_info;
1782
1783 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1784 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1785
dc98df5a 1786 /*
d79154bb 1787 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1788 * Then we can use css_is_ancestor without taking care of RCU.
1789 */
c0ff4b85
R
1790 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1791 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1792 return 0;
dc98df5a
KH
1793 return autoremove_wake_function(wait, mode, sync, arg);
1794}
1795
c0ff4b85 1796static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1797{
c0ff4b85
R
1798 /* for filtering, pass "memcg" as argument. */
1799 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1800}
1801
c0ff4b85 1802static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1803{
c0ff4b85
R
1804 if (memcg && atomic_read(&memcg->under_oom))
1805 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1806}
1807
867578cb
KH
1808/*
1809 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1810 */
e845e199 1811bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1812{
dc98df5a 1813 struct oom_wait_info owait;
3c11ecf4 1814 bool locked, need_to_kill;
867578cb 1815
d79154bb 1816 owait.memcg = memcg;
dc98df5a
KH
1817 owait.wait.flags = 0;
1818 owait.wait.func = memcg_oom_wake_function;
1819 owait.wait.private = current;
1820 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1821 need_to_kill = true;
c0ff4b85 1822 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1823
c0ff4b85 1824 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1825 spin_lock(&memcg_oom_lock);
c0ff4b85 1826 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1827 /*
1828 * Even if signal_pending(), we can't quit charge() loop without
1829 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1830 * under OOM is always welcomed, use TASK_KILLABLE here.
1831 */
3c11ecf4 1832 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1833 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1834 need_to_kill = false;
1835 if (locked)
c0ff4b85 1836 mem_cgroup_oom_notify(memcg);
1af8efe9 1837 spin_unlock(&memcg_oom_lock);
867578cb 1838
3c11ecf4
KH
1839 if (need_to_kill) {
1840 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1841 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1842 } else {
867578cb 1843 schedule();
dc98df5a 1844 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1845 }
1af8efe9 1846 spin_lock(&memcg_oom_lock);
79dfdacc 1847 if (locked)
c0ff4b85
R
1848 mem_cgroup_oom_unlock(memcg);
1849 memcg_wakeup_oom(memcg);
1af8efe9 1850 spin_unlock(&memcg_oom_lock);
867578cb 1851
c0ff4b85 1852 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1853
867578cb
KH
1854 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1855 return false;
1856 /* Give chance to dying process */
715a5ee8 1857 schedule_timeout_uninterruptible(1);
867578cb 1858 return true;
0b7f569e
KH
1859}
1860
d69b042f
BS
1861/*
1862 * Currently used to update mapped file statistics, but the routine can be
1863 * generalized to update other statistics as well.
32047e2a
KH
1864 *
1865 * Notes: Race condition
1866 *
1867 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1868 * it tends to be costly. But considering some conditions, we doesn't need
1869 * to do so _always_.
1870 *
1871 * Considering "charge", lock_page_cgroup() is not required because all
1872 * file-stat operations happen after a page is attached to radix-tree. There
1873 * are no race with "charge".
1874 *
1875 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1876 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1877 * if there are race with "uncharge". Statistics itself is properly handled
1878 * by flags.
1879 *
1880 * Considering "move", this is an only case we see a race. To make the race
1881 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1882 * possibility of race condition. If there is, we take a lock.
d69b042f 1883 */
26174efd 1884
2a7106f2
GT
1885void mem_cgroup_update_page_stat(struct page *page,
1886 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1887{
c0ff4b85 1888 struct mem_cgroup *memcg;
32047e2a
KH
1889 struct page_cgroup *pc = lookup_page_cgroup(page);
1890 bool need_unlock = false;
dbd4ea78 1891 unsigned long uninitialized_var(flags);
d69b042f 1892
cfa44946 1893 if (mem_cgroup_disabled())
d69b042f
BS
1894 return;
1895
32047e2a 1896 rcu_read_lock();
c0ff4b85
R
1897 memcg = pc->mem_cgroup;
1898 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
1899 goto out;
1900 /* pc->mem_cgroup is unstable ? */
c0ff4b85 1901 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 1902 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1903 move_lock_page_cgroup(pc, &flags);
32047e2a 1904 need_unlock = true;
c0ff4b85
R
1905 memcg = pc->mem_cgroup;
1906 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
1907 goto out;
1908 }
26174efd 1909
26174efd 1910 switch (idx) {
2a7106f2 1911 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1912 if (val > 0)
1913 SetPageCgroupFileMapped(pc);
1914 else if (!page_mapped(page))
0c270f8f 1915 ClearPageCgroupFileMapped(pc);
2a7106f2 1916 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1917 break;
1918 default:
1919 BUG();
8725d541 1920 }
d69b042f 1921
c0ff4b85 1922 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 1923
32047e2a
KH
1924out:
1925 if (unlikely(need_unlock))
dbd4ea78 1926 move_unlock_page_cgroup(pc, &flags);
32047e2a 1927 rcu_read_unlock();
d69b042f 1928}
2a7106f2 1929EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1930
cdec2e42
KH
1931/*
1932 * size of first charge trial. "32" comes from vmscan.c's magic value.
1933 * TODO: maybe necessary to use big numbers in big irons.
1934 */
7ec99d62 1935#define CHARGE_BATCH 32U
cdec2e42
KH
1936struct memcg_stock_pcp {
1937 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1938 unsigned int nr_pages;
cdec2e42 1939 struct work_struct work;
26fe6168
KH
1940 unsigned long flags;
1941#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1942};
1943static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1944static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1945
1946/*
11c9ea4e 1947 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1948 * from local stock and true is returned. If the stock is 0 or charges from a
1949 * cgroup which is not current target, returns false. This stock will be
1950 * refilled.
1951 */
c0ff4b85 1952static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
1953{
1954 struct memcg_stock_pcp *stock;
1955 bool ret = true;
1956
1957 stock = &get_cpu_var(memcg_stock);
c0ff4b85 1958 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 1959 stock->nr_pages--;
cdec2e42
KH
1960 else /* need to call res_counter_charge */
1961 ret = false;
1962 put_cpu_var(memcg_stock);
1963 return ret;
1964}
1965
1966/*
1967 * Returns stocks cached in percpu to res_counter and reset cached information.
1968 */
1969static void drain_stock(struct memcg_stock_pcp *stock)
1970{
1971 struct mem_cgroup *old = stock->cached;
1972
11c9ea4e
JW
1973 if (stock->nr_pages) {
1974 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1975
1976 res_counter_uncharge(&old->res, bytes);
cdec2e42 1977 if (do_swap_account)
11c9ea4e
JW
1978 res_counter_uncharge(&old->memsw, bytes);
1979 stock->nr_pages = 0;
cdec2e42
KH
1980 }
1981 stock->cached = NULL;
cdec2e42
KH
1982}
1983
1984/*
1985 * This must be called under preempt disabled or must be called by
1986 * a thread which is pinned to local cpu.
1987 */
1988static void drain_local_stock(struct work_struct *dummy)
1989{
1990 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1991 drain_stock(stock);
26fe6168 1992 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1993}
1994
1995/*
1996 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1997 * This will be consumed by consume_stock() function, later.
cdec2e42 1998 */
c0ff4b85 1999static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2000{
2001 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2002
c0ff4b85 2003 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2004 drain_stock(stock);
c0ff4b85 2005 stock->cached = memcg;
cdec2e42 2006 }
11c9ea4e 2007 stock->nr_pages += nr_pages;
cdec2e42
KH
2008 put_cpu_var(memcg_stock);
2009}
2010
2011/*
c0ff4b85 2012 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2013 * of the hierarchy under it. sync flag says whether we should block
2014 * until the work is done.
cdec2e42 2015 */
c0ff4b85 2016static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2017{
26fe6168 2018 int cpu, curcpu;
d38144b7 2019
cdec2e42 2020 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2021 get_online_cpus();
5af12d0e 2022 curcpu = get_cpu();
cdec2e42
KH
2023 for_each_online_cpu(cpu) {
2024 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2025 struct mem_cgroup *memcg;
26fe6168 2026
c0ff4b85
R
2027 memcg = stock->cached;
2028 if (!memcg || !stock->nr_pages)
26fe6168 2029 continue;
c0ff4b85 2030 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2031 continue;
d1a05b69
MH
2032 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2033 if (cpu == curcpu)
2034 drain_local_stock(&stock->work);
2035 else
2036 schedule_work_on(cpu, &stock->work);
2037 }
cdec2e42 2038 }
5af12d0e 2039 put_cpu();
d38144b7
MH
2040
2041 if (!sync)
2042 goto out;
2043
2044 for_each_online_cpu(cpu) {
2045 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2046 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2047 flush_work(&stock->work);
2048 }
2049out:
cdec2e42 2050 put_online_cpus();
d38144b7
MH
2051}
2052
2053/*
2054 * Tries to drain stocked charges in other cpus. This function is asynchronous
2055 * and just put a work per cpu for draining localy on each cpu. Caller can
2056 * expects some charges will be back to res_counter later but cannot wait for
2057 * it.
2058 */
c0ff4b85 2059static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2060{
9f50fad6
MH
2061 /*
2062 * If someone calls draining, avoid adding more kworker runs.
2063 */
2064 if (!mutex_trylock(&percpu_charge_mutex))
2065 return;
c0ff4b85 2066 drain_all_stock(root_memcg, false);
9f50fad6 2067 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2068}
2069
2070/* This is a synchronous drain interface. */
c0ff4b85 2071static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2072{
2073 /* called when force_empty is called */
9f50fad6 2074 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2075 drain_all_stock(root_memcg, true);
9f50fad6 2076 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2077}
2078
711d3d2c
KH
2079/*
2080 * This function drains percpu counter value from DEAD cpu and
2081 * move it to local cpu. Note that this function can be preempted.
2082 */
c0ff4b85 2083static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2084{
2085 int i;
2086
c0ff4b85 2087 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2088 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2089 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2090
c0ff4b85
R
2091 per_cpu(memcg->stat->count[i], cpu) = 0;
2092 memcg->nocpu_base.count[i] += x;
711d3d2c 2093 }
e9f8974f 2094 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2095 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2096
c0ff4b85
R
2097 per_cpu(memcg->stat->events[i], cpu) = 0;
2098 memcg->nocpu_base.events[i] += x;
e9f8974f 2099 }
1489ebad 2100 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2101 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2102 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2103}
2104
c0ff4b85 2105static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2106{
2107 int idx = MEM_CGROUP_ON_MOVE;
2108
c0ff4b85
R
2109 spin_lock(&memcg->pcp_counter_lock);
2110 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2111 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2112}
2113
2114static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2115 unsigned long action,
2116 void *hcpu)
2117{
2118 int cpu = (unsigned long)hcpu;
2119 struct memcg_stock_pcp *stock;
711d3d2c 2120 struct mem_cgroup *iter;
cdec2e42 2121
1489ebad 2122 if ((action == CPU_ONLINE)) {
9f3a0d09 2123 for_each_mem_cgroup(iter)
1489ebad
KH
2124 synchronize_mem_cgroup_on_move(iter, cpu);
2125 return NOTIFY_OK;
2126 }
2127
711d3d2c 2128 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2129 return NOTIFY_OK;
711d3d2c 2130
9f3a0d09 2131 for_each_mem_cgroup(iter)
711d3d2c
KH
2132 mem_cgroup_drain_pcp_counter(iter, cpu);
2133
cdec2e42
KH
2134 stock = &per_cpu(memcg_stock, cpu);
2135 drain_stock(stock);
2136 return NOTIFY_OK;
2137}
2138
4b534334
KH
2139
2140/* See __mem_cgroup_try_charge() for details */
2141enum {
2142 CHARGE_OK, /* success */
2143 CHARGE_RETRY, /* need to retry but retry is not bad */
2144 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2145 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2146 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2147};
2148
c0ff4b85 2149static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2150 unsigned int nr_pages, bool oom_check)
4b534334 2151{
7ec99d62 2152 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2153 struct mem_cgroup *mem_over_limit;
2154 struct res_counter *fail_res;
2155 unsigned long flags = 0;
2156 int ret;
2157
c0ff4b85 2158 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2159
2160 if (likely(!ret)) {
2161 if (!do_swap_account)
2162 return CHARGE_OK;
c0ff4b85 2163 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2164 if (likely(!ret))
2165 return CHARGE_OK;
2166
c0ff4b85 2167 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2168 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2169 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2170 } else
2171 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2172 /*
7ec99d62
JW
2173 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2174 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2175 *
2176 * Never reclaim on behalf of optional batching, retry with a
2177 * single page instead.
2178 */
7ec99d62 2179 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2180 return CHARGE_RETRY;
2181
2182 if (!(gfp_mask & __GFP_WAIT))
2183 return CHARGE_WOULDBLOCK;
2184
5660048c 2185 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2186 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2187 return CHARGE_RETRY;
4b534334 2188 /*
19942822
JW
2189 * Even though the limit is exceeded at this point, reclaim
2190 * may have been able to free some pages. Retry the charge
2191 * before killing the task.
2192 *
2193 * Only for regular pages, though: huge pages are rather
2194 * unlikely to succeed so close to the limit, and we fall back
2195 * to regular pages anyway in case of failure.
4b534334 2196 */
7ec99d62 2197 if (nr_pages == 1 && ret)
4b534334
KH
2198 return CHARGE_RETRY;
2199
2200 /*
2201 * At task move, charge accounts can be doubly counted. So, it's
2202 * better to wait until the end of task_move if something is going on.
2203 */
2204 if (mem_cgroup_wait_acct_move(mem_over_limit))
2205 return CHARGE_RETRY;
2206
2207 /* If we don't need to call oom-killer at el, return immediately */
2208 if (!oom_check)
2209 return CHARGE_NOMEM;
2210 /* check OOM */
e845e199 2211 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2212 return CHARGE_OOM_DIE;
2213
2214 return CHARGE_RETRY;
2215}
2216
f817ed48 2217/*
38c5d72f
KH
2218 * __mem_cgroup_try_charge() does
2219 * 1. detect memcg to be charged against from passed *mm and *ptr,
2220 * 2. update res_counter
2221 * 3. call memory reclaim if necessary.
2222 *
2223 * In some special case, if the task is fatal, fatal_signal_pending() or
2224 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2225 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2226 * as possible without any hazards. 2: all pages should have a valid
2227 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2228 * pointer, that is treated as a charge to root_mem_cgroup.
2229 *
2230 * So __mem_cgroup_try_charge() will return
2231 * 0 ... on success, filling *ptr with a valid memcg pointer.
2232 * -ENOMEM ... charge failure because of resource limits.
2233 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2234 *
2235 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2236 * the oom-killer can be invoked.
8a9f3ccd 2237 */
f817ed48 2238static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2239 gfp_t gfp_mask,
7ec99d62 2240 unsigned int nr_pages,
c0ff4b85 2241 struct mem_cgroup **ptr,
7ec99d62 2242 bool oom)
8a9f3ccd 2243{
7ec99d62 2244 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2245 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2246 struct mem_cgroup *memcg = NULL;
4b534334 2247 int ret;
a636b327 2248
867578cb
KH
2249 /*
2250 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2251 * in system level. So, allow to go ahead dying process in addition to
2252 * MEMDIE process.
2253 */
2254 if (unlikely(test_thread_flag(TIF_MEMDIE)
2255 || fatal_signal_pending(current)))
2256 goto bypass;
a636b327 2257
8a9f3ccd 2258 /*
3be91277
HD
2259 * We always charge the cgroup the mm_struct belongs to.
2260 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2261 * thread group leader migrates. It's possible that mm is not
2262 * set, if so charge the init_mm (happens for pagecache usage).
2263 */
c0ff4b85 2264 if (!*ptr && !mm)
38c5d72f 2265 *ptr = root_mem_cgroup;
f75ca962 2266again:
c0ff4b85
R
2267 if (*ptr) { /* css should be a valid one */
2268 memcg = *ptr;
2269 VM_BUG_ON(css_is_removed(&memcg->css));
2270 if (mem_cgroup_is_root(memcg))
f75ca962 2271 goto done;
c0ff4b85 2272 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2273 goto done;
c0ff4b85 2274 css_get(&memcg->css);
4b534334 2275 } else {
f75ca962 2276 struct task_struct *p;
54595fe2 2277
f75ca962
KH
2278 rcu_read_lock();
2279 p = rcu_dereference(mm->owner);
f75ca962 2280 /*
ebb76ce1 2281 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2282 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2283 * race with swapoff. Then, we have small risk of mis-accouning.
2284 * But such kind of mis-account by race always happens because
2285 * we don't have cgroup_mutex(). It's overkill and we allo that
2286 * small race, here.
2287 * (*) swapoff at el will charge against mm-struct not against
2288 * task-struct. So, mm->owner can be NULL.
f75ca962 2289 */
c0ff4b85 2290 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2291 if (!memcg)
2292 memcg = root_mem_cgroup;
2293 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2294 rcu_read_unlock();
2295 goto done;
2296 }
c0ff4b85 2297 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2298 /*
2299 * It seems dagerous to access memcg without css_get().
2300 * But considering how consume_stok works, it's not
2301 * necessary. If consume_stock success, some charges
2302 * from this memcg are cached on this cpu. So, we
2303 * don't need to call css_get()/css_tryget() before
2304 * calling consume_stock().
2305 */
2306 rcu_read_unlock();
2307 goto done;
2308 }
2309 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2310 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2311 rcu_read_unlock();
2312 goto again;
2313 }
2314 rcu_read_unlock();
2315 }
8a9f3ccd 2316
4b534334
KH
2317 do {
2318 bool oom_check;
7a81b88c 2319
4b534334 2320 /* If killed, bypass charge */
f75ca962 2321 if (fatal_signal_pending(current)) {
c0ff4b85 2322 css_put(&memcg->css);
4b534334 2323 goto bypass;
f75ca962 2324 }
6d61ef40 2325
4b534334
KH
2326 oom_check = false;
2327 if (oom && !nr_oom_retries) {
2328 oom_check = true;
2329 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2330 }
66e1707b 2331
c0ff4b85 2332 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2333 switch (ret) {
2334 case CHARGE_OK:
2335 break;
2336 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2337 batch = nr_pages;
c0ff4b85
R
2338 css_put(&memcg->css);
2339 memcg = NULL;
f75ca962 2340 goto again;
4b534334 2341 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2342 css_put(&memcg->css);
4b534334
KH
2343 goto nomem;
2344 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2345 if (!oom) {
c0ff4b85 2346 css_put(&memcg->css);
867578cb 2347 goto nomem;
f75ca962 2348 }
4b534334
KH
2349 /* If oom, we never return -ENOMEM */
2350 nr_oom_retries--;
2351 break;
2352 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2353 css_put(&memcg->css);
867578cb 2354 goto bypass;
66e1707b 2355 }
4b534334
KH
2356 } while (ret != CHARGE_OK);
2357
7ec99d62 2358 if (batch > nr_pages)
c0ff4b85
R
2359 refill_stock(memcg, batch - nr_pages);
2360 css_put(&memcg->css);
0c3e73e8 2361done:
c0ff4b85 2362 *ptr = memcg;
7a81b88c
KH
2363 return 0;
2364nomem:
c0ff4b85 2365 *ptr = NULL;
7a81b88c 2366 return -ENOMEM;
867578cb 2367bypass:
38c5d72f
KH
2368 *ptr = root_mem_cgroup;
2369 return -EINTR;
7a81b88c 2370}
8a9f3ccd 2371
a3032a2c
DN
2372/*
2373 * Somemtimes we have to undo a charge we got by try_charge().
2374 * This function is for that and do uncharge, put css's refcnt.
2375 * gotten by try_charge().
2376 */
c0ff4b85 2377static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2378 unsigned int nr_pages)
a3032a2c 2379{
c0ff4b85 2380 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2381 unsigned long bytes = nr_pages * PAGE_SIZE;
2382
c0ff4b85 2383 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2384 if (do_swap_account)
c0ff4b85 2385 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2386 }
854ffa8d
DN
2387}
2388
a3b2d692
KH
2389/*
2390 * A helper function to get mem_cgroup from ID. must be called under
2391 * rcu_read_lock(). The caller must check css_is_removed() or some if
2392 * it's concern. (dropping refcnt from swap can be called against removed
2393 * memcg.)
2394 */
2395static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2396{
2397 struct cgroup_subsys_state *css;
2398
2399 /* ID 0 is unused ID */
2400 if (!id)
2401 return NULL;
2402 css = css_lookup(&mem_cgroup_subsys, id);
2403 if (!css)
2404 return NULL;
2405 return container_of(css, struct mem_cgroup, css);
2406}
2407
e42d9d5d 2408struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2409{
c0ff4b85 2410 struct mem_cgroup *memcg = NULL;
3c776e64 2411 struct page_cgroup *pc;
a3b2d692 2412 unsigned short id;
b5a84319
KH
2413 swp_entry_t ent;
2414
3c776e64
DN
2415 VM_BUG_ON(!PageLocked(page));
2416
3c776e64 2417 pc = lookup_page_cgroup(page);
c0bd3f63 2418 lock_page_cgroup(pc);
a3b2d692 2419 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2420 memcg = pc->mem_cgroup;
2421 if (memcg && !css_tryget(&memcg->css))
2422 memcg = NULL;
e42d9d5d 2423 } else if (PageSwapCache(page)) {
3c776e64 2424 ent.val = page_private(page);
9fb4b7cc 2425 id = lookup_swap_cgroup_id(ent);
a3b2d692 2426 rcu_read_lock();
c0ff4b85
R
2427 memcg = mem_cgroup_lookup(id);
2428 if (memcg && !css_tryget(&memcg->css))
2429 memcg = NULL;
a3b2d692 2430 rcu_read_unlock();
3c776e64 2431 }
c0bd3f63 2432 unlock_page_cgroup(pc);
c0ff4b85 2433 return memcg;
b5a84319
KH
2434}
2435
c0ff4b85 2436static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2437 struct page *page,
7ec99d62 2438 unsigned int nr_pages,
ca3e0214 2439 struct page_cgroup *pc,
9ce70c02
HD
2440 enum charge_type ctype,
2441 bool lrucare)
7a81b88c 2442{
9ce70c02
HD
2443 struct zone *uninitialized_var(zone);
2444 bool was_on_lru = false;
2445
ca3e0214
KH
2446 lock_page_cgroup(pc);
2447 if (unlikely(PageCgroupUsed(pc))) {
2448 unlock_page_cgroup(pc);
c0ff4b85 2449 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2450 return;
2451 }
2452 /*
2453 * we don't need page_cgroup_lock about tail pages, becase they are not
2454 * accessed by any other context at this point.
2455 */
9ce70c02
HD
2456
2457 /*
2458 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2459 * may already be on some other mem_cgroup's LRU. Take care of it.
2460 */
2461 if (lrucare) {
2462 zone = page_zone(page);
2463 spin_lock_irq(&zone->lru_lock);
2464 if (PageLRU(page)) {
2465 ClearPageLRU(page);
2466 del_page_from_lru_list(zone, page, page_lru(page));
2467 was_on_lru = true;
2468 }
2469 }
2470
c0ff4b85 2471 pc->mem_cgroup = memcg;
261fb61a
KH
2472 /*
2473 * We access a page_cgroup asynchronously without lock_page_cgroup().
2474 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2475 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2476 * before USED bit, we need memory barrier here.
2477 * See mem_cgroup_add_lru_list(), etc.
2478 */
08e552c6 2479 smp_wmb();
4b3bde4c
BS
2480 switch (ctype) {
2481 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2482 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2483 SetPageCgroupCache(pc);
2484 SetPageCgroupUsed(pc);
2485 break;
2486 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2487 ClearPageCgroupCache(pc);
2488 SetPageCgroupUsed(pc);
2489 break;
2490 default:
2491 break;
2492 }
3be91277 2493
9ce70c02
HD
2494 if (lrucare) {
2495 if (was_on_lru) {
2496 VM_BUG_ON(PageLRU(page));
2497 SetPageLRU(page);
2498 add_page_to_lru_list(zone, page, page_lru(page));
2499 }
2500 spin_unlock_irq(&zone->lru_lock);
2501 }
2502
c0ff4b85 2503 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2504 unlock_page_cgroup(pc);
9ce70c02 2505
430e4863
KH
2506 /*
2507 * "charge_statistics" updated event counter. Then, check it.
2508 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2509 * if they exceeds softlimit.
2510 */
c0ff4b85 2511 memcg_check_events(memcg, page);
7a81b88c 2512}
66e1707b 2513
ca3e0214
KH
2514#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2515
2516#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
38c5d72f 2517 (1 << PCG_MIGRATION))
ca3e0214
KH
2518/*
2519 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2520 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2521 * charge/uncharge will be never happen and move_account() is done under
2522 * compound_lock(), so we don't have to take care of races.
ca3e0214 2523 */
e94c8a9c 2524void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2525{
2526 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2527 struct page_cgroup *pc;
2528 int i;
ca3e0214 2529
3d37c4a9
KH
2530 if (mem_cgroup_disabled())
2531 return;
e94c8a9c
KH
2532 for (i = 1; i < HPAGE_PMD_NR; i++) {
2533 pc = head_pc + i;
2534 pc->mem_cgroup = head_pc->mem_cgroup;
2535 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2536 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2537 }
ca3e0214 2538}
12d27107 2539#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2540
f817ed48 2541/**
de3638d9 2542 * mem_cgroup_move_account - move account of the page
5564e88b 2543 * @page: the page
7ec99d62 2544 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2545 * @pc: page_cgroup of the page.
2546 * @from: mem_cgroup which the page is moved from.
2547 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2548 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2549 *
2550 * The caller must confirm following.
08e552c6 2551 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2552 * - compound_lock is held when nr_pages > 1
f817ed48 2553 *
854ffa8d 2554 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2555 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2556 * true, this function does "uncharge" from old cgroup, but it doesn't if
2557 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2558 */
7ec99d62
JW
2559static int mem_cgroup_move_account(struct page *page,
2560 unsigned int nr_pages,
2561 struct page_cgroup *pc,
2562 struct mem_cgroup *from,
2563 struct mem_cgroup *to,
2564 bool uncharge)
f817ed48 2565{
de3638d9
JW
2566 unsigned long flags;
2567 int ret;
987eba66 2568
f817ed48 2569 VM_BUG_ON(from == to);
5564e88b 2570 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2571 /*
2572 * The page is isolated from LRU. So, collapse function
2573 * will not handle this page. But page splitting can happen.
2574 * Do this check under compound_page_lock(). The caller should
2575 * hold it.
2576 */
2577 ret = -EBUSY;
7ec99d62 2578 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2579 goto out;
2580
2581 lock_page_cgroup(pc);
2582
2583 ret = -EINVAL;
2584 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2585 goto unlock;
2586
2587 move_lock_page_cgroup(pc, &flags);
f817ed48 2588
8725d541 2589 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2590 /* Update mapped_file data for mem_cgroup */
2591 preempt_disable();
2592 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2593 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2594 preempt_enable();
d69b042f 2595 }
987eba66 2596 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2597 if (uncharge)
2598 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2599 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2600
854ffa8d 2601 /* caller should have done css_get */
08e552c6 2602 pc->mem_cgroup = to;
987eba66 2603 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2604 /*
2605 * We charges against "to" which may not have any tasks. Then, "to"
2606 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2607 * this function is just force_empty() and move charge, so it's
25985edc 2608 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2609 * status here.
88703267 2610 */
de3638d9
JW
2611 move_unlock_page_cgroup(pc, &flags);
2612 ret = 0;
2613unlock:
57f9fd7d 2614 unlock_page_cgroup(pc);
d2265e6f
KH
2615 /*
2616 * check events
2617 */
5564e88b
JW
2618 memcg_check_events(to, page);
2619 memcg_check_events(from, page);
de3638d9 2620out:
f817ed48
KH
2621 return ret;
2622}
2623
2624/*
2625 * move charges to its parent.
2626 */
2627
5564e88b
JW
2628static int mem_cgroup_move_parent(struct page *page,
2629 struct page_cgroup *pc,
f817ed48
KH
2630 struct mem_cgroup *child,
2631 gfp_t gfp_mask)
2632{
2633 struct cgroup *cg = child->css.cgroup;
2634 struct cgroup *pcg = cg->parent;
2635 struct mem_cgroup *parent;
7ec99d62 2636 unsigned int nr_pages;
4be4489f 2637 unsigned long uninitialized_var(flags);
f817ed48
KH
2638 int ret;
2639
2640 /* Is ROOT ? */
2641 if (!pcg)
2642 return -EINVAL;
2643
57f9fd7d
DN
2644 ret = -EBUSY;
2645 if (!get_page_unless_zero(page))
2646 goto out;
2647 if (isolate_lru_page(page))
2648 goto put;
52dbb905 2649
7ec99d62 2650 nr_pages = hpage_nr_pages(page);
08e552c6 2651
f817ed48 2652 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2653 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2654 if (ret)
57f9fd7d 2655 goto put_back;
f817ed48 2656
7ec99d62 2657 if (nr_pages > 1)
987eba66
KH
2658 flags = compound_lock_irqsave(page);
2659
7ec99d62 2660 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2661 if (ret)
7ec99d62 2662 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2663
7ec99d62 2664 if (nr_pages > 1)
987eba66 2665 compound_unlock_irqrestore(page, flags);
8dba474f 2666put_back:
08e552c6 2667 putback_lru_page(page);
57f9fd7d 2668put:
40d58138 2669 put_page(page);
57f9fd7d 2670out:
f817ed48
KH
2671 return ret;
2672}
2673
7a81b88c
KH
2674/*
2675 * Charge the memory controller for page usage.
2676 * Return
2677 * 0 if the charge was successful
2678 * < 0 if the cgroup is over its limit
2679 */
2680static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2681 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2682{
c0ff4b85 2683 struct mem_cgroup *memcg = NULL;
7ec99d62 2684 unsigned int nr_pages = 1;
7a81b88c 2685 struct page_cgroup *pc;
8493ae43 2686 bool oom = true;
7a81b88c 2687 int ret;
ec168510 2688
37c2ac78 2689 if (PageTransHuge(page)) {
7ec99d62 2690 nr_pages <<= compound_order(page);
37c2ac78 2691 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2692 /*
2693 * Never OOM-kill a process for a huge page. The
2694 * fault handler will fall back to regular pages.
2695 */
2696 oom = false;
37c2ac78 2697 }
7a81b88c
KH
2698
2699 pc = lookup_page_cgroup(page);
c0ff4b85 2700 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2701 if (ret == -ENOMEM)
7a81b88c 2702 return ret;
9ce70c02 2703 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
8a9f3ccd 2704 return 0;
8a9f3ccd
BS
2705}
2706
7a81b88c
KH
2707int mem_cgroup_newpage_charge(struct page *page,
2708 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2709{
f8d66542 2710 if (mem_cgroup_disabled())
cede86ac 2711 return 0;
7a0524cf
JW
2712 VM_BUG_ON(page_mapped(page));
2713 VM_BUG_ON(page->mapping && !PageAnon(page));
2714 VM_BUG_ON(!mm);
217bc319 2715 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2716 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2717}
2718
83aae4c7
DN
2719static void
2720__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2721 enum charge_type ctype);
2722
e1a1cd59
BS
2723int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2724 gfp_t gfp_mask)
8697d331 2725{
c0ff4b85 2726 struct mem_cgroup *memcg = NULL;
dc67d504 2727 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2728 int ret;
2729
f8d66542 2730 if (mem_cgroup_disabled())
cede86ac 2731 return 0;
52d4b9ac
KH
2732 if (PageCompound(page))
2733 return 0;
accf163e 2734
73045c47 2735 if (unlikely(!mm))
8697d331 2736 mm = &init_mm;
dc67d504
KH
2737 if (!page_is_file_cache(page))
2738 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2739
38c5d72f 2740 if (!PageSwapCache(page))
dc67d504 2741 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2742 else { /* page is swapcache/shmem */
c0ff4b85 2743 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2744 if (!ret)
dc67d504
KH
2745 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2746 }
b5a84319 2747 return ret;
e8589cc1
KH
2748}
2749
54595fe2
KH
2750/*
2751 * While swap-in, try_charge -> commit or cancel, the page is locked.
2752 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2753 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2754 * "commit()" or removed by "cancel()"
2755 */
8c7c6e34
KH
2756int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2757 struct page *page,
72835c86 2758 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2759{
c0ff4b85 2760 struct mem_cgroup *memcg;
54595fe2 2761 int ret;
8c7c6e34 2762
72835c86 2763 *memcgp = NULL;
56039efa 2764
f8d66542 2765 if (mem_cgroup_disabled())
8c7c6e34
KH
2766 return 0;
2767
2768 if (!do_swap_account)
2769 goto charge_cur_mm;
8c7c6e34
KH
2770 /*
2771 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2772 * the pte, and even removed page from swap cache: in those cases
2773 * do_swap_page()'s pte_same() test will fail; but there's also a
2774 * KSM case which does need to charge the page.
8c7c6e34
KH
2775 */
2776 if (!PageSwapCache(page))
407f9c8b 2777 goto charge_cur_mm;
c0ff4b85
R
2778 memcg = try_get_mem_cgroup_from_page(page);
2779 if (!memcg)
54595fe2 2780 goto charge_cur_mm;
72835c86
JW
2781 *memcgp = memcg;
2782 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2783 css_put(&memcg->css);
38c5d72f
KH
2784 if (ret == -EINTR)
2785 ret = 0;
54595fe2 2786 return ret;
8c7c6e34
KH
2787charge_cur_mm:
2788 if (unlikely(!mm))
2789 mm = &init_mm;
38c5d72f
KH
2790 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2791 if (ret == -EINTR)
2792 ret = 0;
2793 return ret;
8c7c6e34
KH
2794}
2795
83aae4c7 2796static void
72835c86 2797__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2798 enum charge_type ctype)
7a81b88c 2799{
9ce70c02
HD
2800 struct page_cgroup *pc;
2801
f8d66542 2802 if (mem_cgroup_disabled())
7a81b88c 2803 return;
72835c86 2804 if (!memcg)
7a81b88c 2805 return;
72835c86 2806 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2807
9ce70c02
HD
2808 pc = lookup_page_cgroup(page);
2809 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
8c7c6e34
KH
2810 /*
2811 * Now swap is on-memory. This means this page may be
2812 * counted both as mem and swap....double count.
03f3c433
KH
2813 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2814 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2815 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2816 */
03f3c433 2817 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2818 swp_entry_t ent = {.val = page_private(page)};
72835c86 2819 struct mem_cgroup *swap_memcg;
a3b2d692 2820 unsigned short id;
a3b2d692
KH
2821
2822 id = swap_cgroup_record(ent, 0);
2823 rcu_read_lock();
72835c86
JW
2824 swap_memcg = mem_cgroup_lookup(id);
2825 if (swap_memcg) {
a3b2d692
KH
2826 /*
2827 * This recorded memcg can be obsolete one. So, avoid
2828 * calling css_tryget
2829 */
72835c86
JW
2830 if (!mem_cgroup_is_root(swap_memcg))
2831 res_counter_uncharge(&swap_memcg->memsw,
2832 PAGE_SIZE);
2833 mem_cgroup_swap_statistics(swap_memcg, false);
2834 mem_cgroup_put(swap_memcg);
8c7c6e34 2835 }
a3b2d692 2836 rcu_read_unlock();
8c7c6e34 2837 }
88703267
KH
2838 /*
2839 * At swapin, we may charge account against cgroup which has no tasks.
2840 * So, rmdir()->pre_destroy() can be called while we do this charge.
2841 * In that case, we need to call pre_destroy() again. check it here.
2842 */
72835c86 2843 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2844}
2845
72835c86
JW
2846void mem_cgroup_commit_charge_swapin(struct page *page,
2847 struct mem_cgroup *memcg)
83aae4c7 2848{
72835c86
JW
2849 __mem_cgroup_commit_charge_swapin(page, memcg,
2850 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2851}
2852
c0ff4b85 2853void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2854{
f8d66542 2855 if (mem_cgroup_disabled())
7a81b88c 2856 return;
c0ff4b85 2857 if (!memcg)
7a81b88c 2858 return;
c0ff4b85 2859 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2860}
2861
c0ff4b85 2862static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2863 unsigned int nr_pages,
2864 const enum charge_type ctype)
569b846d
KH
2865{
2866 struct memcg_batch_info *batch = NULL;
2867 bool uncharge_memsw = true;
7ec99d62 2868
569b846d
KH
2869 /* If swapout, usage of swap doesn't decrease */
2870 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2871 uncharge_memsw = false;
569b846d
KH
2872
2873 batch = &current->memcg_batch;
2874 /*
2875 * In usual, we do css_get() when we remember memcg pointer.
2876 * But in this case, we keep res->usage until end of a series of
2877 * uncharges. Then, it's ok to ignore memcg's refcnt.
2878 */
2879 if (!batch->memcg)
c0ff4b85 2880 batch->memcg = memcg;
3c11ecf4
KH
2881 /*
2882 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2883 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2884 * the same cgroup and we have chance to coalesce uncharges.
2885 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2886 * because we want to do uncharge as soon as possible.
2887 */
2888
2889 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2890 goto direct_uncharge;
2891
7ec99d62 2892 if (nr_pages > 1)
ec168510
AA
2893 goto direct_uncharge;
2894
569b846d
KH
2895 /*
2896 * In typical case, batch->memcg == mem. This means we can
2897 * merge a series of uncharges to an uncharge of res_counter.
2898 * If not, we uncharge res_counter ony by one.
2899 */
c0ff4b85 2900 if (batch->memcg != memcg)
569b846d
KH
2901 goto direct_uncharge;
2902 /* remember freed charge and uncharge it later */
7ffd4ca7 2903 batch->nr_pages++;
569b846d 2904 if (uncharge_memsw)
7ffd4ca7 2905 batch->memsw_nr_pages++;
569b846d
KH
2906 return;
2907direct_uncharge:
c0ff4b85 2908 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2909 if (uncharge_memsw)
c0ff4b85
R
2910 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2911 if (unlikely(batch->memcg != memcg))
2912 memcg_oom_recover(memcg);
569b846d 2913}
7a81b88c 2914
8a9f3ccd 2915/*
69029cd5 2916 * uncharge if !page_mapped(page)
8a9f3ccd 2917 */
8c7c6e34 2918static struct mem_cgroup *
69029cd5 2919__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2920{
c0ff4b85 2921 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2922 unsigned int nr_pages = 1;
2923 struct page_cgroup *pc;
8a9f3ccd 2924
f8d66542 2925 if (mem_cgroup_disabled())
8c7c6e34 2926 return NULL;
4077960e 2927
d13d1443 2928 if (PageSwapCache(page))
8c7c6e34 2929 return NULL;
d13d1443 2930
37c2ac78 2931 if (PageTransHuge(page)) {
7ec99d62 2932 nr_pages <<= compound_order(page);
37c2ac78
AA
2933 VM_BUG_ON(!PageTransHuge(page));
2934 }
8697d331 2935 /*
3c541e14 2936 * Check if our page_cgroup is valid
8697d331 2937 */
52d4b9ac 2938 pc = lookup_page_cgroup(page);
cfa44946 2939 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2940 return NULL;
b9c565d5 2941
52d4b9ac 2942 lock_page_cgroup(pc);
d13d1443 2943
c0ff4b85 2944 memcg = pc->mem_cgroup;
8c7c6e34 2945
d13d1443
KH
2946 if (!PageCgroupUsed(pc))
2947 goto unlock_out;
2948
2949 switch (ctype) {
2950 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2951 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2952 /* See mem_cgroup_prepare_migration() */
2953 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2954 goto unlock_out;
2955 break;
2956 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2957 if (!PageAnon(page)) { /* Shared memory */
2958 if (page->mapping && !page_is_file_cache(page))
2959 goto unlock_out;
2960 } else if (page_mapped(page)) /* Anon */
2961 goto unlock_out;
2962 break;
2963 default:
2964 break;
52d4b9ac 2965 }
d13d1443 2966
c0ff4b85 2967 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 2968
52d4b9ac 2969 ClearPageCgroupUsed(pc);
544122e5
KH
2970 /*
2971 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2972 * freed from LRU. This is safe because uncharged page is expected not
2973 * to be reused (freed soon). Exception is SwapCache, it's handled by
2974 * special functions.
2975 */
b9c565d5 2976
52d4b9ac 2977 unlock_page_cgroup(pc);
f75ca962 2978 /*
c0ff4b85 2979 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
2980 * will never be freed.
2981 */
c0ff4b85 2982 memcg_check_events(memcg, page);
f75ca962 2983 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
2984 mem_cgroup_swap_statistics(memcg, true);
2985 mem_cgroup_get(memcg);
f75ca962 2986 }
c0ff4b85
R
2987 if (!mem_cgroup_is_root(memcg))
2988 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 2989
c0ff4b85 2990 return memcg;
d13d1443
KH
2991
2992unlock_out:
2993 unlock_page_cgroup(pc);
8c7c6e34 2994 return NULL;
3c541e14
BS
2995}
2996
69029cd5
KH
2997void mem_cgroup_uncharge_page(struct page *page)
2998{
52d4b9ac
KH
2999 /* early check. */
3000 if (page_mapped(page))
3001 return;
40f23a21 3002 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3003 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3004}
3005
3006void mem_cgroup_uncharge_cache_page(struct page *page)
3007{
3008 VM_BUG_ON(page_mapped(page));
b7abea96 3009 VM_BUG_ON(page->mapping);
69029cd5
KH
3010 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3011}
3012
569b846d
KH
3013/*
3014 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3015 * In that cases, pages are freed continuously and we can expect pages
3016 * are in the same memcg. All these calls itself limits the number of
3017 * pages freed at once, then uncharge_start/end() is called properly.
3018 * This may be called prural(2) times in a context,
3019 */
3020
3021void mem_cgroup_uncharge_start(void)
3022{
3023 current->memcg_batch.do_batch++;
3024 /* We can do nest. */
3025 if (current->memcg_batch.do_batch == 1) {
3026 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3027 current->memcg_batch.nr_pages = 0;
3028 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3029 }
3030}
3031
3032void mem_cgroup_uncharge_end(void)
3033{
3034 struct memcg_batch_info *batch = &current->memcg_batch;
3035
3036 if (!batch->do_batch)
3037 return;
3038
3039 batch->do_batch--;
3040 if (batch->do_batch) /* If stacked, do nothing. */
3041 return;
3042
3043 if (!batch->memcg)
3044 return;
3045 /*
3046 * This "batch->memcg" is valid without any css_get/put etc...
3047 * bacause we hide charges behind us.
3048 */
7ffd4ca7
JW
3049 if (batch->nr_pages)
3050 res_counter_uncharge(&batch->memcg->res,
3051 batch->nr_pages * PAGE_SIZE);
3052 if (batch->memsw_nr_pages)
3053 res_counter_uncharge(&batch->memcg->memsw,
3054 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3055 memcg_oom_recover(batch->memcg);
569b846d
KH
3056 /* forget this pointer (for sanity check) */
3057 batch->memcg = NULL;
3058}
3059
e767e056 3060#ifdef CONFIG_SWAP
8c7c6e34 3061/*
e767e056 3062 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3063 * memcg information is recorded to swap_cgroup of "ent"
3064 */
8a9478ca
KH
3065void
3066mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3067{
3068 struct mem_cgroup *memcg;
8a9478ca
KH
3069 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3070
3071 if (!swapout) /* this was a swap cache but the swap is unused ! */
3072 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3073
3074 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3075
f75ca962
KH
3076 /*
3077 * record memcg information, if swapout && memcg != NULL,
3078 * mem_cgroup_get() was called in uncharge().
3079 */
3080 if (do_swap_account && swapout && memcg)
a3b2d692 3081 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3082}
e767e056 3083#endif
8c7c6e34
KH
3084
3085#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3086/*
3087 * called from swap_entry_free(). remove record in swap_cgroup and
3088 * uncharge "memsw" account.
3089 */
3090void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3091{
8c7c6e34 3092 struct mem_cgroup *memcg;
a3b2d692 3093 unsigned short id;
8c7c6e34
KH
3094
3095 if (!do_swap_account)
3096 return;
3097
a3b2d692
KH
3098 id = swap_cgroup_record(ent, 0);
3099 rcu_read_lock();
3100 memcg = mem_cgroup_lookup(id);
8c7c6e34 3101 if (memcg) {
a3b2d692
KH
3102 /*
3103 * We uncharge this because swap is freed.
3104 * This memcg can be obsolete one. We avoid calling css_tryget
3105 */
0c3e73e8 3106 if (!mem_cgroup_is_root(memcg))
4e649152 3107 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3108 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3109 mem_cgroup_put(memcg);
3110 }
a3b2d692 3111 rcu_read_unlock();
d13d1443 3112}
02491447
DN
3113
3114/**
3115 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3116 * @entry: swap entry to be moved
3117 * @from: mem_cgroup which the entry is moved from
3118 * @to: mem_cgroup which the entry is moved to
483c30b5 3119 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3120 *
3121 * It succeeds only when the swap_cgroup's record for this entry is the same
3122 * as the mem_cgroup's id of @from.
3123 *
3124 * Returns 0 on success, -EINVAL on failure.
3125 *
3126 * The caller must have charged to @to, IOW, called res_counter_charge() about
3127 * both res and memsw, and called css_get().
3128 */
3129static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3130 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3131{
3132 unsigned short old_id, new_id;
3133
3134 old_id = css_id(&from->css);
3135 new_id = css_id(&to->css);
3136
3137 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3138 mem_cgroup_swap_statistics(from, false);
483c30b5 3139 mem_cgroup_swap_statistics(to, true);
02491447 3140 /*
483c30b5
DN
3141 * This function is only called from task migration context now.
3142 * It postpones res_counter and refcount handling till the end
3143 * of task migration(mem_cgroup_clear_mc()) for performance
3144 * improvement. But we cannot postpone mem_cgroup_get(to)
3145 * because if the process that has been moved to @to does
3146 * swap-in, the refcount of @to might be decreased to 0.
02491447 3147 */
02491447 3148 mem_cgroup_get(to);
483c30b5
DN
3149 if (need_fixup) {
3150 if (!mem_cgroup_is_root(from))
3151 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3152 mem_cgroup_put(from);
3153 /*
3154 * we charged both to->res and to->memsw, so we should
3155 * uncharge to->res.
3156 */
3157 if (!mem_cgroup_is_root(to))
3158 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3159 }
02491447
DN
3160 return 0;
3161 }
3162 return -EINVAL;
3163}
3164#else
3165static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3166 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3167{
3168 return -EINVAL;
3169}
8c7c6e34 3170#endif
d13d1443 3171
ae41be37 3172/*
01b1ae63
KH
3173 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3174 * page belongs to.
ae41be37 3175 */
ac39cf8c 3176int mem_cgroup_prepare_migration(struct page *page,
72835c86 3177 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3178{
c0ff4b85 3179 struct mem_cgroup *memcg = NULL;
7ec99d62 3180 struct page_cgroup *pc;
ac39cf8c 3181 enum charge_type ctype;
e8589cc1 3182 int ret = 0;
8869b8f6 3183
72835c86 3184 *memcgp = NULL;
56039efa 3185
ec168510 3186 VM_BUG_ON(PageTransHuge(page));
f8d66542 3187 if (mem_cgroup_disabled())
4077960e
BS
3188 return 0;
3189
52d4b9ac
KH
3190 pc = lookup_page_cgroup(page);
3191 lock_page_cgroup(pc);
3192 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3193 memcg = pc->mem_cgroup;
3194 css_get(&memcg->css);
ac39cf8c 3195 /*
3196 * At migrating an anonymous page, its mapcount goes down
3197 * to 0 and uncharge() will be called. But, even if it's fully
3198 * unmapped, migration may fail and this page has to be
3199 * charged again. We set MIGRATION flag here and delay uncharge
3200 * until end_migration() is called
3201 *
3202 * Corner Case Thinking
3203 * A)
3204 * When the old page was mapped as Anon and it's unmap-and-freed
3205 * while migration was ongoing.
3206 * If unmap finds the old page, uncharge() of it will be delayed
3207 * until end_migration(). If unmap finds a new page, it's
3208 * uncharged when it make mapcount to be 1->0. If unmap code
3209 * finds swap_migration_entry, the new page will not be mapped
3210 * and end_migration() will find it(mapcount==0).
3211 *
3212 * B)
3213 * When the old page was mapped but migraion fails, the kernel
3214 * remaps it. A charge for it is kept by MIGRATION flag even
3215 * if mapcount goes down to 0. We can do remap successfully
3216 * without charging it again.
3217 *
3218 * C)
3219 * The "old" page is under lock_page() until the end of
3220 * migration, so, the old page itself will not be swapped-out.
3221 * If the new page is swapped out before end_migraton, our
3222 * hook to usual swap-out path will catch the event.
3223 */
3224 if (PageAnon(page))
3225 SetPageCgroupMigration(pc);
e8589cc1 3226 }
52d4b9ac 3227 unlock_page_cgroup(pc);
ac39cf8c 3228 /*
3229 * If the page is not charged at this point,
3230 * we return here.
3231 */
c0ff4b85 3232 if (!memcg)
ac39cf8c 3233 return 0;
01b1ae63 3234
72835c86
JW
3235 *memcgp = memcg;
3236 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3237 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3238 if (ret) {
ac39cf8c 3239 if (PageAnon(page)) {
3240 lock_page_cgroup(pc);
3241 ClearPageCgroupMigration(pc);
3242 unlock_page_cgroup(pc);
3243 /*
3244 * The old page may be fully unmapped while we kept it.
3245 */
3246 mem_cgroup_uncharge_page(page);
3247 }
38c5d72f 3248 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3249 return -ENOMEM;
e8589cc1 3250 }
ac39cf8c 3251 /*
3252 * We charge new page before it's used/mapped. So, even if unlock_page()
3253 * is called before end_migration, we can catch all events on this new
3254 * page. In the case new page is migrated but not remapped, new page's
3255 * mapcount will be finally 0 and we call uncharge in end_migration().
3256 */
3257 pc = lookup_page_cgroup(newpage);
3258 if (PageAnon(page))
3259 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3260 else if (page_is_file_cache(page))
3261 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3262 else
3263 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
9ce70c02 3264 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
e8589cc1 3265 return ret;
ae41be37 3266}
8869b8f6 3267
69029cd5 3268/* remove redundant charge if migration failed*/
c0ff4b85 3269void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3270 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3271{
ac39cf8c 3272 struct page *used, *unused;
01b1ae63 3273 struct page_cgroup *pc;
01b1ae63 3274
c0ff4b85 3275 if (!memcg)
01b1ae63 3276 return;
ac39cf8c 3277 /* blocks rmdir() */
c0ff4b85 3278 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3279 if (!migration_ok) {
ac39cf8c 3280 used = oldpage;
3281 unused = newpage;
01b1ae63 3282 } else {
ac39cf8c 3283 used = newpage;
01b1ae63
KH
3284 unused = oldpage;
3285 }
69029cd5 3286 /*
ac39cf8c 3287 * We disallowed uncharge of pages under migration because mapcount
3288 * of the page goes down to zero, temporarly.
3289 * Clear the flag and check the page should be charged.
01b1ae63 3290 */
ac39cf8c 3291 pc = lookup_page_cgroup(oldpage);
3292 lock_page_cgroup(pc);
3293 ClearPageCgroupMigration(pc);
3294 unlock_page_cgroup(pc);
01b1ae63 3295
ac39cf8c 3296 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3297
01b1ae63 3298 /*
ac39cf8c 3299 * If a page is a file cache, radix-tree replacement is very atomic
3300 * and we can skip this check. When it was an Anon page, its mapcount
3301 * goes down to 0. But because we added MIGRATION flage, it's not
3302 * uncharged yet. There are several case but page->mapcount check
3303 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3304 * check. (see prepare_charge() also)
69029cd5 3305 */
ac39cf8c 3306 if (PageAnon(used))
3307 mem_cgroup_uncharge_page(used);
88703267 3308 /*
ac39cf8c 3309 * At migration, we may charge account against cgroup which has no
3310 * tasks.
88703267
KH
3311 * So, rmdir()->pre_destroy() can be called while we do this charge.
3312 * In that case, we need to call pre_destroy() again. check it here.
3313 */
c0ff4b85 3314 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3315}
78fb7466 3316
ab936cbc
KH
3317/*
3318 * At replace page cache, newpage is not under any memcg but it's on
3319 * LRU. So, this function doesn't touch res_counter but handles LRU
3320 * in correct way. Both pages are locked so we cannot race with uncharge.
3321 */
3322void mem_cgroup_replace_page_cache(struct page *oldpage,
3323 struct page *newpage)
3324{
3325 struct mem_cgroup *memcg;
3326 struct page_cgroup *pc;
ab936cbc 3327 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3328
3329 if (mem_cgroup_disabled())
3330 return;
3331
3332 pc = lookup_page_cgroup(oldpage);
3333 /* fix accounting on old pages */
3334 lock_page_cgroup(pc);
3335 memcg = pc->mem_cgroup;
3336 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3337 ClearPageCgroupUsed(pc);
3338 unlock_page_cgroup(pc);
3339
3340 if (PageSwapBacked(oldpage))
3341 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3342
ab936cbc
KH
3343 /*
3344 * Even if newpage->mapping was NULL before starting replacement,
3345 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3346 * LRU while we overwrite pc->mem_cgroup.
3347 */
9ce70c02 3348 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
ab936cbc
KH
3349}
3350
f212ad7c
DN
3351#ifdef CONFIG_DEBUG_VM
3352static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3353{
3354 struct page_cgroup *pc;
3355
3356 pc = lookup_page_cgroup(page);
cfa44946
JW
3357 /*
3358 * Can be NULL while feeding pages into the page allocator for
3359 * the first time, i.e. during boot or memory hotplug;
3360 * or when mem_cgroup_disabled().
3361 */
f212ad7c
DN
3362 if (likely(pc) && PageCgroupUsed(pc))
3363 return pc;
3364 return NULL;
3365}
3366
3367bool mem_cgroup_bad_page_check(struct page *page)
3368{
3369 if (mem_cgroup_disabled())
3370 return false;
3371
3372 return lookup_page_cgroup_used(page) != NULL;
3373}
3374
3375void mem_cgroup_print_bad_page(struct page *page)
3376{
3377 struct page_cgroup *pc;
3378
3379 pc = lookup_page_cgroup_used(page);
3380 if (pc) {
90b3feae 3381 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3382 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3383 }
3384}
3385#endif
3386
8c7c6e34
KH
3387static DEFINE_MUTEX(set_limit_mutex);
3388
d38d2a75 3389static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3390 unsigned long long val)
628f4235 3391{
81d39c20 3392 int retry_count;
3c11ecf4 3393 u64 memswlimit, memlimit;
628f4235 3394 int ret = 0;
81d39c20
KH
3395 int children = mem_cgroup_count_children(memcg);
3396 u64 curusage, oldusage;
3c11ecf4 3397 int enlarge;
81d39c20
KH
3398
3399 /*
3400 * For keeping hierarchical_reclaim simple, how long we should retry
3401 * is depends on callers. We set our retry-count to be function
3402 * of # of children which we should visit in this loop.
3403 */
3404 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3405
3406 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3407
3c11ecf4 3408 enlarge = 0;
8c7c6e34 3409 while (retry_count) {
628f4235
KH
3410 if (signal_pending(current)) {
3411 ret = -EINTR;
3412 break;
3413 }
8c7c6e34
KH
3414 /*
3415 * Rather than hide all in some function, I do this in
3416 * open coded manner. You see what this really does.
c0ff4b85 3417 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3418 */
3419 mutex_lock(&set_limit_mutex);
3420 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3421 if (memswlimit < val) {
3422 ret = -EINVAL;
3423 mutex_unlock(&set_limit_mutex);
628f4235
KH
3424 break;
3425 }
3c11ecf4
KH
3426
3427 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3428 if (memlimit < val)
3429 enlarge = 1;
3430
8c7c6e34 3431 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3432 if (!ret) {
3433 if (memswlimit == val)
3434 memcg->memsw_is_minimum = true;
3435 else
3436 memcg->memsw_is_minimum = false;
3437 }
8c7c6e34
KH
3438 mutex_unlock(&set_limit_mutex);
3439
3440 if (!ret)
3441 break;
3442
5660048c
JW
3443 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3444 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3445 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3446 /* Usage is reduced ? */
3447 if (curusage >= oldusage)
3448 retry_count--;
3449 else
3450 oldusage = curusage;
8c7c6e34 3451 }
3c11ecf4
KH
3452 if (!ret && enlarge)
3453 memcg_oom_recover(memcg);
14797e23 3454
8c7c6e34
KH
3455 return ret;
3456}
3457
338c8431
LZ
3458static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3459 unsigned long long val)
8c7c6e34 3460{
81d39c20 3461 int retry_count;
3c11ecf4 3462 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3463 int children = mem_cgroup_count_children(memcg);
3464 int ret = -EBUSY;
3c11ecf4 3465 int enlarge = 0;
8c7c6e34 3466
81d39c20
KH
3467 /* see mem_cgroup_resize_res_limit */
3468 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3469 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3470 while (retry_count) {
3471 if (signal_pending(current)) {
3472 ret = -EINTR;
3473 break;
3474 }
3475 /*
3476 * Rather than hide all in some function, I do this in
3477 * open coded manner. You see what this really does.
c0ff4b85 3478 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3479 */
3480 mutex_lock(&set_limit_mutex);
3481 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3482 if (memlimit > val) {
3483 ret = -EINVAL;
3484 mutex_unlock(&set_limit_mutex);
3485 break;
3486 }
3c11ecf4
KH
3487 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3488 if (memswlimit < val)
3489 enlarge = 1;
8c7c6e34 3490 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3491 if (!ret) {
3492 if (memlimit == val)
3493 memcg->memsw_is_minimum = true;
3494 else
3495 memcg->memsw_is_minimum = false;
3496 }
8c7c6e34
KH
3497 mutex_unlock(&set_limit_mutex);
3498
3499 if (!ret)
3500 break;
3501
5660048c
JW
3502 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3503 MEM_CGROUP_RECLAIM_NOSWAP |
3504 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3505 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3506 /* Usage is reduced ? */
8c7c6e34 3507 if (curusage >= oldusage)
628f4235 3508 retry_count--;
81d39c20
KH
3509 else
3510 oldusage = curusage;
628f4235 3511 }
3c11ecf4
KH
3512 if (!ret && enlarge)
3513 memcg_oom_recover(memcg);
628f4235
KH
3514 return ret;
3515}
3516
4e416953 3517unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3518 gfp_t gfp_mask,
3519 unsigned long *total_scanned)
4e416953
BS
3520{
3521 unsigned long nr_reclaimed = 0;
3522 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3523 unsigned long reclaimed;
3524 int loop = 0;
3525 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3526 unsigned long long excess;
0ae5e89c 3527 unsigned long nr_scanned;
4e416953
BS
3528
3529 if (order > 0)
3530 return 0;
3531
00918b6a 3532 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3533 /*
3534 * This loop can run a while, specially if mem_cgroup's continuously
3535 * keep exceeding their soft limit and putting the system under
3536 * pressure
3537 */
3538 do {
3539 if (next_mz)
3540 mz = next_mz;
3541 else
3542 mz = mem_cgroup_largest_soft_limit_node(mctz);
3543 if (!mz)
3544 break;
3545
0ae5e89c 3546 nr_scanned = 0;
d79154bb 3547 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3548 gfp_mask, &nr_scanned);
4e416953 3549 nr_reclaimed += reclaimed;
0ae5e89c 3550 *total_scanned += nr_scanned;
4e416953
BS
3551 spin_lock(&mctz->lock);
3552
3553 /*
3554 * If we failed to reclaim anything from this memory cgroup
3555 * it is time to move on to the next cgroup
3556 */
3557 next_mz = NULL;
3558 if (!reclaimed) {
3559 do {
3560 /*
3561 * Loop until we find yet another one.
3562 *
3563 * By the time we get the soft_limit lock
3564 * again, someone might have aded the
3565 * group back on the RB tree. Iterate to
3566 * make sure we get a different mem.
3567 * mem_cgroup_largest_soft_limit_node returns
3568 * NULL if no other cgroup is present on
3569 * the tree
3570 */
3571 next_mz =
3572 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3573 if (next_mz == mz)
d79154bb 3574 css_put(&next_mz->memcg->css);
39cc98f1 3575 else /* next_mz == NULL or other memcg */
4e416953
BS
3576 break;
3577 } while (1);
3578 }
d79154bb
HD
3579 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3580 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3581 /*
3582 * One school of thought says that we should not add
3583 * back the node to the tree if reclaim returns 0.
3584 * But our reclaim could return 0, simply because due
3585 * to priority we are exposing a smaller subset of
3586 * memory to reclaim from. Consider this as a longer
3587 * term TODO.
3588 */
ef8745c1 3589 /* If excess == 0, no tree ops */
d79154bb 3590 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3591 spin_unlock(&mctz->lock);
d79154bb 3592 css_put(&mz->memcg->css);
4e416953
BS
3593 loop++;
3594 /*
3595 * Could not reclaim anything and there are no more
3596 * mem cgroups to try or we seem to be looping without
3597 * reclaiming anything.
3598 */
3599 if (!nr_reclaimed &&
3600 (next_mz == NULL ||
3601 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3602 break;
3603 } while (!nr_reclaimed);
3604 if (next_mz)
d79154bb 3605 css_put(&next_mz->memcg->css);
4e416953
BS
3606 return nr_reclaimed;
3607}
3608
cc847582
KH
3609/*
3610 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3611 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3612 */
c0ff4b85 3613static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3614 int node, int zid, enum lru_list lru)
cc847582 3615{
08e552c6 3616 struct mem_cgroup_per_zone *mz;
08e552c6 3617 unsigned long flags, loop;
072c56c1 3618 struct list_head *list;
925b7673
JW
3619 struct page *busy;
3620 struct zone *zone;
f817ed48 3621 int ret = 0;
072c56c1 3622
08e552c6 3623 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3624 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3625 list = &mz->lruvec.lists[lru];
cc847582 3626
1eb49272 3627 loop = mz->lru_size[lru];
f817ed48
KH
3628 /* give some margin against EBUSY etc...*/
3629 loop += 256;
3630 busy = NULL;
3631 while (loop--) {
925b7673 3632 struct page_cgroup *pc;
5564e88b
JW
3633 struct page *page;
3634
f817ed48 3635 ret = 0;
08e552c6 3636 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3637 if (list_empty(list)) {
08e552c6 3638 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3639 break;
f817ed48 3640 }
925b7673
JW
3641 page = list_entry(list->prev, struct page, lru);
3642 if (busy == page) {
3643 list_move(&page->lru, list);
648bcc77 3644 busy = NULL;
08e552c6 3645 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3646 continue;
3647 }
08e552c6 3648 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3649
925b7673 3650 pc = lookup_page_cgroup(page);
5564e88b 3651
c0ff4b85 3652 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3653 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3654 break;
f817ed48
KH
3655
3656 if (ret == -EBUSY || ret == -EINVAL) {
3657 /* found lock contention or "pc" is obsolete. */
925b7673 3658 busy = page;
f817ed48
KH
3659 cond_resched();
3660 } else
3661 busy = NULL;
cc847582 3662 }
08e552c6 3663
f817ed48
KH
3664 if (!ret && !list_empty(list))
3665 return -EBUSY;
3666 return ret;
cc847582
KH
3667}
3668
3669/*
3670 * make mem_cgroup's charge to be 0 if there is no task.
3671 * This enables deleting this mem_cgroup.
3672 */
c0ff4b85 3673static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3674{
f817ed48
KH
3675 int ret;
3676 int node, zid, shrink;
3677 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3678 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3679
c0ff4b85 3680 css_get(&memcg->css);
f817ed48
KH
3681
3682 shrink = 0;
c1e862c1
KH
3683 /* should free all ? */
3684 if (free_all)
3685 goto try_to_free;
f817ed48 3686move_account:
fce66477 3687 do {
f817ed48 3688 ret = -EBUSY;
c1e862c1
KH
3689 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3690 goto out;
3691 ret = -EINTR;
3692 if (signal_pending(current))
cc847582 3693 goto out;
52d4b9ac
KH
3694 /* This is for making all *used* pages to be on LRU. */
3695 lru_add_drain_all();
c0ff4b85 3696 drain_all_stock_sync(memcg);
f817ed48 3697 ret = 0;
c0ff4b85 3698 mem_cgroup_start_move(memcg);
299b4eaa 3699 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3700 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3701 enum lru_list lru;
3702 for_each_lru(lru) {
c0ff4b85 3703 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3704 node, zid, lru);
f817ed48
KH
3705 if (ret)
3706 break;
3707 }
1ecaab2b 3708 }
f817ed48
KH
3709 if (ret)
3710 break;
3711 }
c0ff4b85
R
3712 mem_cgroup_end_move(memcg);
3713 memcg_oom_recover(memcg);
f817ed48
KH
3714 /* it seems parent cgroup doesn't have enough mem */
3715 if (ret == -ENOMEM)
3716 goto try_to_free;
52d4b9ac 3717 cond_resched();
fce66477 3718 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3719 } while (memcg->res.usage > 0 || ret);
cc847582 3720out:
c0ff4b85 3721 css_put(&memcg->css);
cc847582 3722 return ret;
f817ed48
KH
3723
3724try_to_free:
c1e862c1
KH
3725 /* returns EBUSY if there is a task or if we come here twice. */
3726 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3727 ret = -EBUSY;
3728 goto out;
3729 }
c1e862c1
KH
3730 /* we call try-to-free pages for make this cgroup empty */
3731 lru_add_drain_all();
f817ed48
KH
3732 /* try to free all pages in this cgroup */
3733 shrink = 1;
c0ff4b85 3734 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3735 int progress;
c1e862c1
KH
3736
3737 if (signal_pending(current)) {
3738 ret = -EINTR;
3739 goto out;
3740 }
c0ff4b85 3741 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3742 false);
c1e862c1 3743 if (!progress) {
f817ed48 3744 nr_retries--;
c1e862c1 3745 /* maybe some writeback is necessary */
8aa7e847 3746 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3747 }
f817ed48
KH
3748
3749 }
08e552c6 3750 lru_add_drain();
f817ed48 3751 /* try move_account...there may be some *locked* pages. */
fce66477 3752 goto move_account;
cc847582
KH
3753}
3754
c1e862c1
KH
3755int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3756{
3757 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3758}
3759
3760
18f59ea7
BS
3761static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3762{
3763 return mem_cgroup_from_cont(cont)->use_hierarchy;
3764}
3765
3766static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3767 u64 val)
3768{
3769 int retval = 0;
c0ff4b85 3770 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3771 struct cgroup *parent = cont->parent;
c0ff4b85 3772 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3773
3774 if (parent)
c0ff4b85 3775 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3776
3777 cgroup_lock();
3778 /*
af901ca1 3779 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3780 * in the child subtrees. If it is unset, then the change can
3781 * occur, provided the current cgroup has no children.
3782 *
3783 * For the root cgroup, parent_mem is NULL, we allow value to be
3784 * set if there are no children.
3785 */
c0ff4b85 3786 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3787 (val == 1 || val == 0)) {
3788 if (list_empty(&cont->children))
c0ff4b85 3789 memcg->use_hierarchy = val;
18f59ea7
BS
3790 else
3791 retval = -EBUSY;
3792 } else
3793 retval = -EINVAL;
3794 cgroup_unlock();
3795
3796 return retval;
3797}
3798
0c3e73e8 3799
c0ff4b85 3800static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3801 enum mem_cgroup_stat_index idx)
0c3e73e8 3802{
7d74b06f 3803 struct mem_cgroup *iter;
7a159cc9 3804 long val = 0;
0c3e73e8 3805
7a159cc9 3806 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3807 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3808 val += mem_cgroup_read_stat(iter, idx);
3809
3810 if (val < 0) /* race ? */
3811 val = 0;
3812 return val;
0c3e73e8
BS
3813}
3814
c0ff4b85 3815static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3816{
7d74b06f 3817 u64 val;
104f3928 3818
c0ff4b85 3819 if (!mem_cgroup_is_root(memcg)) {
104f3928 3820 if (!swap)
65c64ce8 3821 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3822 else
65c64ce8 3823 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3824 }
3825
c0ff4b85
R
3826 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3827 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3828
7d74b06f 3829 if (swap)
c0ff4b85 3830 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3831
3832 return val << PAGE_SHIFT;
3833}
3834
2c3daa72 3835static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3836{
c0ff4b85 3837 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3838 u64 val;
8c7c6e34
KH
3839 int type, name;
3840
3841 type = MEMFILE_TYPE(cft->private);
3842 name = MEMFILE_ATTR(cft->private);
3843 switch (type) {
3844 case _MEM:
104f3928 3845 if (name == RES_USAGE)
c0ff4b85 3846 val = mem_cgroup_usage(memcg, false);
104f3928 3847 else
c0ff4b85 3848 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3849 break;
3850 case _MEMSWAP:
104f3928 3851 if (name == RES_USAGE)
c0ff4b85 3852 val = mem_cgroup_usage(memcg, true);
104f3928 3853 else
c0ff4b85 3854 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3855 break;
3856 default:
3857 BUG();
3858 break;
3859 }
3860 return val;
8cdea7c0 3861}
628f4235
KH
3862/*
3863 * The user of this function is...
3864 * RES_LIMIT.
3865 */
856c13aa
PM
3866static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3867 const char *buffer)
8cdea7c0 3868{
628f4235 3869 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3870 int type, name;
628f4235
KH
3871 unsigned long long val;
3872 int ret;
3873
8c7c6e34
KH
3874 type = MEMFILE_TYPE(cft->private);
3875 name = MEMFILE_ATTR(cft->private);
3876 switch (name) {
628f4235 3877 case RES_LIMIT:
4b3bde4c
BS
3878 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3879 ret = -EINVAL;
3880 break;
3881 }
628f4235
KH
3882 /* This function does all necessary parse...reuse it */
3883 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3884 if (ret)
3885 break;
3886 if (type == _MEM)
628f4235 3887 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3888 else
3889 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3890 break;
296c81d8
BS
3891 case RES_SOFT_LIMIT:
3892 ret = res_counter_memparse_write_strategy(buffer, &val);
3893 if (ret)
3894 break;
3895 /*
3896 * For memsw, soft limits are hard to implement in terms
3897 * of semantics, for now, we support soft limits for
3898 * control without swap
3899 */
3900 if (type == _MEM)
3901 ret = res_counter_set_soft_limit(&memcg->res, val);
3902 else
3903 ret = -EINVAL;
3904 break;
628f4235
KH
3905 default:
3906 ret = -EINVAL; /* should be BUG() ? */
3907 break;
3908 }
3909 return ret;
8cdea7c0
BS
3910}
3911
fee7b548
KH
3912static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3913 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3914{
3915 struct cgroup *cgroup;
3916 unsigned long long min_limit, min_memsw_limit, tmp;
3917
3918 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3919 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3920 cgroup = memcg->css.cgroup;
3921 if (!memcg->use_hierarchy)
3922 goto out;
3923
3924 while (cgroup->parent) {
3925 cgroup = cgroup->parent;
3926 memcg = mem_cgroup_from_cont(cgroup);
3927 if (!memcg->use_hierarchy)
3928 break;
3929 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3930 min_limit = min(min_limit, tmp);
3931 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3932 min_memsw_limit = min(min_memsw_limit, tmp);
3933 }
3934out:
3935 *mem_limit = min_limit;
3936 *memsw_limit = min_memsw_limit;
fee7b548
KH
3937}
3938
29f2a4da 3939static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3940{
c0ff4b85 3941 struct mem_cgroup *memcg;
8c7c6e34 3942 int type, name;
c84872e1 3943
c0ff4b85 3944 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3945 type = MEMFILE_TYPE(event);
3946 name = MEMFILE_ATTR(event);
3947 switch (name) {
29f2a4da 3948 case RES_MAX_USAGE:
8c7c6e34 3949 if (type == _MEM)
c0ff4b85 3950 res_counter_reset_max(&memcg->res);
8c7c6e34 3951 else
c0ff4b85 3952 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3953 break;
3954 case RES_FAILCNT:
8c7c6e34 3955 if (type == _MEM)
c0ff4b85 3956 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3957 else
c0ff4b85 3958 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3959 break;
3960 }
f64c3f54 3961
85cc59db 3962 return 0;
c84872e1
PE
3963}
3964
7dc74be0
DN
3965static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3966 struct cftype *cft)
3967{
3968 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3969}
3970
02491447 3971#ifdef CONFIG_MMU
7dc74be0
DN
3972static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3973 struct cftype *cft, u64 val)
3974{
c0ff4b85 3975 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
3976
3977 if (val >= (1 << NR_MOVE_TYPE))
3978 return -EINVAL;
3979 /*
3980 * We check this value several times in both in can_attach() and
3981 * attach(), so we need cgroup lock to prevent this value from being
3982 * inconsistent.
3983 */
3984 cgroup_lock();
c0ff4b85 3985 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3986 cgroup_unlock();
3987
3988 return 0;
3989}
02491447
DN
3990#else
3991static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3992 struct cftype *cft, u64 val)
3993{
3994 return -ENOSYS;
3995}
3996#endif
7dc74be0 3997
14067bb3
KH
3998
3999/* For read statistics */
4000enum {
4001 MCS_CACHE,
4002 MCS_RSS,
d8046582 4003 MCS_FILE_MAPPED,
14067bb3
KH
4004 MCS_PGPGIN,
4005 MCS_PGPGOUT,
1dd3a273 4006 MCS_SWAP,
456f998e
YH
4007 MCS_PGFAULT,
4008 MCS_PGMAJFAULT,
14067bb3
KH
4009 MCS_INACTIVE_ANON,
4010 MCS_ACTIVE_ANON,
4011 MCS_INACTIVE_FILE,
4012 MCS_ACTIVE_FILE,
4013 MCS_UNEVICTABLE,
4014 NR_MCS_STAT,
4015};
4016
4017struct mcs_total_stat {
4018 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4019};
4020
14067bb3
KH
4021struct {
4022 char *local_name;
4023 char *total_name;
4024} memcg_stat_strings[NR_MCS_STAT] = {
4025 {"cache", "total_cache"},
4026 {"rss", "total_rss"},
d69b042f 4027 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4028 {"pgpgin", "total_pgpgin"},
4029 {"pgpgout", "total_pgpgout"},
1dd3a273 4030 {"swap", "total_swap"},
456f998e
YH
4031 {"pgfault", "total_pgfault"},
4032 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4033 {"inactive_anon", "total_inactive_anon"},
4034 {"active_anon", "total_active_anon"},
4035 {"inactive_file", "total_inactive_file"},
4036 {"active_file", "total_active_file"},
4037 {"unevictable", "total_unevictable"}
4038};
4039
4040
7d74b06f 4041static void
c0ff4b85 4042mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4043{
14067bb3
KH
4044 s64 val;
4045
4046 /* per cpu stat */
c0ff4b85 4047 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4048 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4049 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4050 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4051 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4052 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4053 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4054 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4055 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4056 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4057 if (do_swap_account) {
c0ff4b85 4058 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4059 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4060 }
c0ff4b85 4061 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4062 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4063 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4064 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4065
4066 /* per zone stat */
c0ff4b85 4067 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4068 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4069 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4070 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4071 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4072 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4073 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4074 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4075 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4076 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4077}
4078
4079static void
c0ff4b85 4080mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4081{
7d74b06f
KH
4082 struct mem_cgroup *iter;
4083
c0ff4b85 4084 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4085 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4086}
4087
406eb0c9
YH
4088#ifdef CONFIG_NUMA
4089static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4090{
4091 int nid;
4092 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4093 unsigned long node_nr;
4094 struct cgroup *cont = m->private;
d79154bb 4095 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4096
d79154bb 4097 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4098 seq_printf(m, "total=%lu", total_nr);
4099 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4100 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4101 seq_printf(m, " N%d=%lu", nid, node_nr);
4102 }
4103 seq_putc(m, '\n');
4104
d79154bb 4105 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4106 seq_printf(m, "file=%lu", file_nr);
4107 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4108 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4109 LRU_ALL_FILE);
406eb0c9
YH
4110 seq_printf(m, " N%d=%lu", nid, node_nr);
4111 }
4112 seq_putc(m, '\n');
4113
d79154bb 4114 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4115 seq_printf(m, "anon=%lu", anon_nr);
4116 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4117 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4118 LRU_ALL_ANON);
406eb0c9
YH
4119 seq_printf(m, " N%d=%lu", nid, node_nr);
4120 }
4121 seq_putc(m, '\n');
4122
d79154bb 4123 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4124 seq_printf(m, "unevictable=%lu", unevictable_nr);
4125 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4126 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4127 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4128 seq_printf(m, " N%d=%lu", nid, node_nr);
4129 }
4130 seq_putc(m, '\n');
4131 return 0;
4132}
4133#endif /* CONFIG_NUMA */
4134
c64745cf
PM
4135static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4136 struct cgroup_map_cb *cb)
d2ceb9b7 4137{
d79154bb 4138 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
14067bb3 4139 struct mcs_total_stat mystat;
d2ceb9b7
KH
4140 int i;
4141
14067bb3 4142 memset(&mystat, 0, sizeof(mystat));
d79154bb 4143 mem_cgroup_get_local_stat(memcg, &mystat);
d2ceb9b7 4144
406eb0c9 4145
1dd3a273
DN
4146 for (i = 0; i < NR_MCS_STAT; i++) {
4147 if (i == MCS_SWAP && !do_swap_account)
4148 continue;
14067bb3 4149 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4150 }
7b854121 4151
14067bb3 4152 /* Hierarchical information */
fee7b548
KH
4153 {
4154 unsigned long long limit, memsw_limit;
d79154bb 4155 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
fee7b548
KH
4156 cb->fill(cb, "hierarchical_memory_limit", limit);
4157 if (do_swap_account)
4158 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4159 }
7f016ee8 4160
14067bb3 4161 memset(&mystat, 0, sizeof(mystat));
d79154bb 4162 mem_cgroup_get_total_stat(memcg, &mystat);
1dd3a273
DN
4163 for (i = 0; i < NR_MCS_STAT; i++) {
4164 if (i == MCS_SWAP && !do_swap_account)
4165 continue;
14067bb3 4166 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4167 }
14067bb3 4168
7f016ee8 4169#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4170 {
4171 int nid, zid;
4172 struct mem_cgroup_per_zone *mz;
4173 unsigned long recent_rotated[2] = {0, 0};
4174 unsigned long recent_scanned[2] = {0, 0};
4175
4176 for_each_online_node(nid)
4177 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4178 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
7f016ee8
KM
4179
4180 recent_rotated[0] +=
4181 mz->reclaim_stat.recent_rotated[0];
4182 recent_rotated[1] +=
4183 mz->reclaim_stat.recent_rotated[1];
4184 recent_scanned[0] +=
4185 mz->reclaim_stat.recent_scanned[0];
4186 recent_scanned[1] +=
4187 mz->reclaim_stat.recent_scanned[1];
4188 }
4189 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4190 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4191 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4192 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4193 }
4194#endif
4195
d2ceb9b7
KH
4196 return 0;
4197}
4198
a7885eb8
KM
4199static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4200{
4201 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4202
1f4c025b 4203 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4204}
4205
4206static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4207 u64 val)
4208{
4209 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4210 struct mem_cgroup *parent;
068b38c1 4211
a7885eb8
KM
4212 if (val > 100)
4213 return -EINVAL;
4214
4215 if (cgrp->parent == NULL)
4216 return -EINVAL;
4217
4218 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4219
4220 cgroup_lock();
4221
a7885eb8
KM
4222 /* If under hierarchy, only empty-root can set this value */
4223 if ((parent->use_hierarchy) ||
068b38c1
LZ
4224 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4225 cgroup_unlock();
a7885eb8 4226 return -EINVAL;
068b38c1 4227 }
a7885eb8 4228
a7885eb8 4229 memcg->swappiness = val;
a7885eb8 4230
068b38c1
LZ
4231 cgroup_unlock();
4232
a7885eb8
KM
4233 return 0;
4234}
4235
2e72b634
KS
4236static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4237{
4238 struct mem_cgroup_threshold_ary *t;
4239 u64 usage;
4240 int i;
4241
4242 rcu_read_lock();
4243 if (!swap)
2c488db2 4244 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4245 else
2c488db2 4246 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4247
4248 if (!t)
4249 goto unlock;
4250
4251 usage = mem_cgroup_usage(memcg, swap);
4252
4253 /*
4254 * current_threshold points to threshold just below usage.
4255 * If it's not true, a threshold was crossed after last
4256 * call of __mem_cgroup_threshold().
4257 */
5407a562 4258 i = t->current_threshold;
2e72b634
KS
4259
4260 /*
4261 * Iterate backward over array of thresholds starting from
4262 * current_threshold and check if a threshold is crossed.
4263 * If none of thresholds below usage is crossed, we read
4264 * only one element of the array here.
4265 */
4266 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4267 eventfd_signal(t->entries[i].eventfd, 1);
4268
4269 /* i = current_threshold + 1 */
4270 i++;
4271
4272 /*
4273 * Iterate forward over array of thresholds starting from
4274 * current_threshold+1 and check if a threshold is crossed.
4275 * If none of thresholds above usage is crossed, we read
4276 * only one element of the array here.
4277 */
4278 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4279 eventfd_signal(t->entries[i].eventfd, 1);
4280
4281 /* Update current_threshold */
5407a562 4282 t->current_threshold = i - 1;
2e72b634
KS
4283unlock:
4284 rcu_read_unlock();
4285}
4286
4287static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4288{
ad4ca5f4
KS
4289 while (memcg) {
4290 __mem_cgroup_threshold(memcg, false);
4291 if (do_swap_account)
4292 __mem_cgroup_threshold(memcg, true);
4293
4294 memcg = parent_mem_cgroup(memcg);
4295 }
2e72b634
KS
4296}
4297
4298static int compare_thresholds(const void *a, const void *b)
4299{
4300 const struct mem_cgroup_threshold *_a = a;
4301 const struct mem_cgroup_threshold *_b = b;
4302
4303 return _a->threshold - _b->threshold;
4304}
4305
c0ff4b85 4306static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4307{
4308 struct mem_cgroup_eventfd_list *ev;
4309
c0ff4b85 4310 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4311 eventfd_signal(ev->eventfd, 1);
4312 return 0;
4313}
4314
c0ff4b85 4315static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4316{
7d74b06f
KH
4317 struct mem_cgroup *iter;
4318
c0ff4b85 4319 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4320 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4321}
4322
4323static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4324 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4325{
4326 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4327 struct mem_cgroup_thresholds *thresholds;
4328 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4329 int type = MEMFILE_TYPE(cft->private);
4330 u64 threshold, usage;
2c488db2 4331 int i, size, ret;
2e72b634
KS
4332
4333 ret = res_counter_memparse_write_strategy(args, &threshold);
4334 if (ret)
4335 return ret;
4336
4337 mutex_lock(&memcg->thresholds_lock);
2c488db2 4338
2e72b634 4339 if (type == _MEM)
2c488db2 4340 thresholds = &memcg->thresholds;
2e72b634 4341 else if (type == _MEMSWAP)
2c488db2 4342 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4343 else
4344 BUG();
4345
4346 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4347
4348 /* Check if a threshold crossed before adding a new one */
2c488db2 4349 if (thresholds->primary)
2e72b634
KS
4350 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4351
2c488db2 4352 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4353
4354 /* Allocate memory for new array of thresholds */
2c488db2 4355 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4356 GFP_KERNEL);
2c488db2 4357 if (!new) {
2e72b634
KS
4358 ret = -ENOMEM;
4359 goto unlock;
4360 }
2c488db2 4361 new->size = size;
2e72b634
KS
4362
4363 /* Copy thresholds (if any) to new array */
2c488db2
KS
4364 if (thresholds->primary) {
4365 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4366 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4367 }
4368
2e72b634 4369 /* Add new threshold */
2c488db2
KS
4370 new->entries[size - 1].eventfd = eventfd;
4371 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4372
4373 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4374 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4375 compare_thresholds, NULL);
4376
4377 /* Find current threshold */
2c488db2 4378 new->current_threshold = -1;
2e72b634 4379 for (i = 0; i < size; i++) {
2c488db2 4380 if (new->entries[i].threshold < usage) {
2e72b634 4381 /*
2c488db2
KS
4382 * new->current_threshold will not be used until
4383 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4384 * it here.
4385 */
2c488db2 4386 ++new->current_threshold;
2e72b634
KS
4387 }
4388 }
4389
2c488db2
KS
4390 /* Free old spare buffer and save old primary buffer as spare */
4391 kfree(thresholds->spare);
4392 thresholds->spare = thresholds->primary;
4393
4394 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4395
907860ed 4396 /* To be sure that nobody uses thresholds */
2e72b634
KS
4397 synchronize_rcu();
4398
2e72b634
KS
4399unlock:
4400 mutex_unlock(&memcg->thresholds_lock);
4401
4402 return ret;
4403}
4404
907860ed 4405static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4406 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4407{
4408 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4409 struct mem_cgroup_thresholds *thresholds;
4410 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4411 int type = MEMFILE_TYPE(cft->private);
4412 u64 usage;
2c488db2 4413 int i, j, size;
2e72b634
KS
4414
4415 mutex_lock(&memcg->thresholds_lock);
4416 if (type == _MEM)
2c488db2 4417 thresholds = &memcg->thresholds;
2e72b634 4418 else if (type == _MEMSWAP)
2c488db2 4419 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4420 else
4421 BUG();
4422
4423 /*
4424 * Something went wrong if we trying to unregister a threshold
4425 * if we don't have thresholds
4426 */
4427 BUG_ON(!thresholds);
4428
371528ca
AV
4429 if (!thresholds->primary)
4430 goto unlock;
4431
2e72b634
KS
4432 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4433
4434 /* Check if a threshold crossed before removing */
4435 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4436
4437 /* Calculate new number of threshold */
2c488db2
KS
4438 size = 0;
4439 for (i = 0; i < thresholds->primary->size; i++) {
4440 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4441 size++;
4442 }
4443
2c488db2 4444 new = thresholds->spare;
907860ed 4445
2e72b634
KS
4446 /* Set thresholds array to NULL if we don't have thresholds */
4447 if (!size) {
2c488db2
KS
4448 kfree(new);
4449 new = NULL;
907860ed 4450 goto swap_buffers;
2e72b634
KS
4451 }
4452
2c488db2 4453 new->size = size;
2e72b634
KS
4454
4455 /* Copy thresholds and find current threshold */
2c488db2
KS
4456 new->current_threshold = -1;
4457 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4458 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4459 continue;
4460
2c488db2
KS
4461 new->entries[j] = thresholds->primary->entries[i];
4462 if (new->entries[j].threshold < usage) {
2e72b634 4463 /*
2c488db2 4464 * new->current_threshold will not be used
2e72b634
KS
4465 * until rcu_assign_pointer(), so it's safe to increment
4466 * it here.
4467 */
2c488db2 4468 ++new->current_threshold;
2e72b634
KS
4469 }
4470 j++;
4471 }
4472
907860ed 4473swap_buffers:
2c488db2
KS
4474 /* Swap primary and spare array */
4475 thresholds->spare = thresholds->primary;
4476 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4477
907860ed 4478 /* To be sure that nobody uses thresholds */
2e72b634 4479 synchronize_rcu();
371528ca 4480unlock:
2e72b634 4481 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4482}
c1e862c1 4483
9490ff27
KH
4484static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4485 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4486{
4487 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4488 struct mem_cgroup_eventfd_list *event;
4489 int type = MEMFILE_TYPE(cft->private);
4490
4491 BUG_ON(type != _OOM_TYPE);
4492 event = kmalloc(sizeof(*event), GFP_KERNEL);
4493 if (!event)
4494 return -ENOMEM;
4495
1af8efe9 4496 spin_lock(&memcg_oom_lock);
9490ff27
KH
4497
4498 event->eventfd = eventfd;
4499 list_add(&event->list, &memcg->oom_notify);
4500
4501 /* already in OOM ? */
79dfdacc 4502 if (atomic_read(&memcg->under_oom))
9490ff27 4503 eventfd_signal(eventfd, 1);
1af8efe9 4504 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4505
4506 return 0;
4507}
4508
907860ed 4509static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4510 struct cftype *cft, struct eventfd_ctx *eventfd)
4511{
c0ff4b85 4512 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4513 struct mem_cgroup_eventfd_list *ev, *tmp;
4514 int type = MEMFILE_TYPE(cft->private);
4515
4516 BUG_ON(type != _OOM_TYPE);
4517
1af8efe9 4518 spin_lock(&memcg_oom_lock);
9490ff27 4519
c0ff4b85 4520 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4521 if (ev->eventfd == eventfd) {
4522 list_del(&ev->list);
4523 kfree(ev);
4524 }
4525 }
4526
1af8efe9 4527 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4528}
4529
3c11ecf4
KH
4530static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4531 struct cftype *cft, struct cgroup_map_cb *cb)
4532{
c0ff4b85 4533 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4534
c0ff4b85 4535 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4536
c0ff4b85 4537 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4538 cb->fill(cb, "under_oom", 1);
4539 else
4540 cb->fill(cb, "under_oom", 0);
4541 return 0;
4542}
4543
3c11ecf4
KH
4544static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4545 struct cftype *cft, u64 val)
4546{
c0ff4b85 4547 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4548 struct mem_cgroup *parent;
4549
4550 /* cannot set to root cgroup and only 0 and 1 are allowed */
4551 if (!cgrp->parent || !((val == 0) || (val == 1)))
4552 return -EINVAL;
4553
4554 parent = mem_cgroup_from_cont(cgrp->parent);
4555
4556 cgroup_lock();
4557 /* oom-kill-disable is a flag for subhierarchy. */
4558 if ((parent->use_hierarchy) ||
c0ff4b85 4559 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4560 cgroup_unlock();
4561 return -EINVAL;
4562 }
c0ff4b85 4563 memcg->oom_kill_disable = val;
4d845ebf 4564 if (!val)
c0ff4b85 4565 memcg_oom_recover(memcg);
3c11ecf4
KH
4566 cgroup_unlock();
4567 return 0;
4568}
4569
406eb0c9
YH
4570#ifdef CONFIG_NUMA
4571static const struct file_operations mem_control_numa_stat_file_operations = {
4572 .read = seq_read,
4573 .llseek = seq_lseek,
4574 .release = single_release,
4575};
4576
4577static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4578{
4579 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4580
4581 file->f_op = &mem_control_numa_stat_file_operations;
4582 return single_open(file, mem_control_numa_stat_show, cont);
4583}
4584#endif /* CONFIG_NUMA */
4585
e5671dfa 4586#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4587static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4588{
d1a4c0b3
GC
4589 /*
4590 * Part of this would be better living in a separate allocation
4591 * function, leaving us with just the cgroup tree population work.
4592 * We, however, depend on state such as network's proto_list that
4593 * is only initialized after cgroup creation. I found the less
4594 * cumbersome way to deal with it to defer it all to populate time
4595 */
65c64ce8 4596 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4597};
4598
761b3ef5 4599static void kmem_cgroup_destroy(struct cgroup *cont)
d1a4c0b3 4600{
761b3ef5 4601 mem_cgroup_sockets_destroy(cont);
d1a4c0b3 4602}
e5671dfa
GC
4603#else
4604static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4605{
4606 return 0;
4607}
d1a4c0b3 4608
761b3ef5 4609static void kmem_cgroup_destroy(struct cgroup *cont)
d1a4c0b3
GC
4610{
4611}
e5671dfa
GC
4612#endif
4613
8cdea7c0
BS
4614static struct cftype mem_cgroup_files[] = {
4615 {
0eea1030 4616 .name = "usage_in_bytes",
8c7c6e34 4617 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4618 .read_u64 = mem_cgroup_read,
9490ff27
KH
4619 .register_event = mem_cgroup_usage_register_event,
4620 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4621 },
c84872e1
PE
4622 {
4623 .name = "max_usage_in_bytes",
8c7c6e34 4624 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4625 .trigger = mem_cgroup_reset,
c84872e1
PE
4626 .read_u64 = mem_cgroup_read,
4627 },
8cdea7c0 4628 {
0eea1030 4629 .name = "limit_in_bytes",
8c7c6e34 4630 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4631 .write_string = mem_cgroup_write,
2c3daa72 4632 .read_u64 = mem_cgroup_read,
8cdea7c0 4633 },
296c81d8
BS
4634 {
4635 .name = "soft_limit_in_bytes",
4636 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4637 .write_string = mem_cgroup_write,
4638 .read_u64 = mem_cgroup_read,
4639 },
8cdea7c0
BS
4640 {
4641 .name = "failcnt",
8c7c6e34 4642 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4643 .trigger = mem_cgroup_reset,
2c3daa72 4644 .read_u64 = mem_cgroup_read,
8cdea7c0 4645 },
d2ceb9b7
KH
4646 {
4647 .name = "stat",
c64745cf 4648 .read_map = mem_control_stat_show,
d2ceb9b7 4649 },
c1e862c1
KH
4650 {
4651 .name = "force_empty",
4652 .trigger = mem_cgroup_force_empty_write,
4653 },
18f59ea7
BS
4654 {
4655 .name = "use_hierarchy",
4656 .write_u64 = mem_cgroup_hierarchy_write,
4657 .read_u64 = mem_cgroup_hierarchy_read,
4658 },
a7885eb8
KM
4659 {
4660 .name = "swappiness",
4661 .read_u64 = mem_cgroup_swappiness_read,
4662 .write_u64 = mem_cgroup_swappiness_write,
4663 },
7dc74be0
DN
4664 {
4665 .name = "move_charge_at_immigrate",
4666 .read_u64 = mem_cgroup_move_charge_read,
4667 .write_u64 = mem_cgroup_move_charge_write,
4668 },
9490ff27
KH
4669 {
4670 .name = "oom_control",
3c11ecf4
KH
4671 .read_map = mem_cgroup_oom_control_read,
4672 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4673 .register_event = mem_cgroup_oom_register_event,
4674 .unregister_event = mem_cgroup_oom_unregister_event,
4675 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4676 },
406eb0c9
YH
4677#ifdef CONFIG_NUMA
4678 {
4679 .name = "numa_stat",
4680 .open = mem_control_numa_stat_open,
89577127 4681 .mode = S_IRUGO,
406eb0c9
YH
4682 },
4683#endif
8cdea7c0
BS
4684};
4685
8c7c6e34
KH
4686#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4687static struct cftype memsw_cgroup_files[] = {
4688 {
4689 .name = "memsw.usage_in_bytes",
4690 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4691 .read_u64 = mem_cgroup_read,
9490ff27
KH
4692 .register_event = mem_cgroup_usage_register_event,
4693 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4694 },
4695 {
4696 .name = "memsw.max_usage_in_bytes",
4697 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4698 .trigger = mem_cgroup_reset,
4699 .read_u64 = mem_cgroup_read,
4700 },
4701 {
4702 .name = "memsw.limit_in_bytes",
4703 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4704 .write_string = mem_cgroup_write,
4705 .read_u64 = mem_cgroup_read,
4706 },
4707 {
4708 .name = "memsw.failcnt",
4709 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4710 .trigger = mem_cgroup_reset,
4711 .read_u64 = mem_cgroup_read,
4712 },
4713};
4714
4715static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4716{
4717 if (!do_swap_account)
4718 return 0;
4719 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4720 ARRAY_SIZE(memsw_cgroup_files));
4721};
4722#else
4723static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4724{
4725 return 0;
4726}
4727#endif
4728
c0ff4b85 4729static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4730{
4731 struct mem_cgroup_per_node *pn;
1ecaab2b 4732 struct mem_cgroup_per_zone *mz;
f156ab93 4733 enum lru_list lru;
41e3355d 4734 int zone, tmp = node;
1ecaab2b
KH
4735 /*
4736 * This routine is called against possible nodes.
4737 * But it's BUG to call kmalloc() against offline node.
4738 *
4739 * TODO: this routine can waste much memory for nodes which will
4740 * never be onlined. It's better to use memory hotplug callback
4741 * function.
4742 */
41e3355d
KH
4743 if (!node_state(node, N_NORMAL_MEMORY))
4744 tmp = -1;
17295c88 4745 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4746 if (!pn)
4747 return 1;
1ecaab2b 4748
1ecaab2b
KH
4749 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4750 mz = &pn->zoneinfo[zone];
f156ab93
HD
4751 for_each_lru(lru)
4752 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
f64c3f54 4753 mz->usage_in_excess = 0;
4e416953 4754 mz->on_tree = false;
d79154bb 4755 mz->memcg = memcg;
1ecaab2b 4756 }
0a619e58 4757 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4758 return 0;
4759}
4760
c0ff4b85 4761static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4762{
c0ff4b85 4763 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4764}
4765
33327948
KH
4766static struct mem_cgroup *mem_cgroup_alloc(void)
4767{
d79154bb 4768 struct mem_cgroup *memcg;
c62b1a3b 4769 int size = sizeof(struct mem_cgroup);
33327948 4770
c62b1a3b 4771 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4772 if (size < PAGE_SIZE)
d79154bb 4773 memcg = kzalloc(size, GFP_KERNEL);
33327948 4774 else
d79154bb 4775 memcg = vzalloc(size);
33327948 4776
d79154bb 4777 if (!memcg)
e7bbcdf3
DC
4778 return NULL;
4779
d79154bb
HD
4780 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4781 if (!memcg->stat)
d2e61b8d 4782 goto out_free;
d79154bb
HD
4783 spin_lock_init(&memcg->pcp_counter_lock);
4784 return memcg;
d2e61b8d
DC
4785
4786out_free:
4787 if (size < PAGE_SIZE)
d79154bb 4788 kfree(memcg);
d2e61b8d 4789 else
d79154bb 4790 vfree(memcg);
d2e61b8d 4791 return NULL;
33327948
KH
4792}
4793
59927fb9
HD
4794/*
4795 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4796 * but in process context. The work_freeing structure is overlaid
4797 * on the rcu_freeing structure, which itself is overlaid on memsw.
4798 */
4799static void vfree_work(struct work_struct *work)
4800{
4801 struct mem_cgroup *memcg;
4802
4803 memcg = container_of(work, struct mem_cgroup, work_freeing);
4804 vfree(memcg);
4805}
4806static void vfree_rcu(struct rcu_head *rcu_head)
4807{
4808 struct mem_cgroup *memcg;
4809
4810 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4811 INIT_WORK(&memcg->work_freeing, vfree_work);
4812 schedule_work(&memcg->work_freeing);
4813}
4814
8c7c6e34
KH
4815/*
4816 * At destroying mem_cgroup, references from swap_cgroup can remain.
4817 * (scanning all at force_empty is too costly...)
4818 *
4819 * Instead of clearing all references at force_empty, we remember
4820 * the number of reference from swap_cgroup and free mem_cgroup when
4821 * it goes down to 0.
4822 *
8c7c6e34
KH
4823 * Removal of cgroup itself succeeds regardless of refs from swap.
4824 */
4825
c0ff4b85 4826static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4827{
08e552c6
KH
4828 int node;
4829
c0ff4b85
R
4830 mem_cgroup_remove_from_trees(memcg);
4831 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4832
3ed28fa1 4833 for_each_node(node)
c0ff4b85 4834 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4835
c0ff4b85 4836 free_percpu(memcg->stat);
c62b1a3b 4837 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4838 kfree_rcu(memcg, rcu_freeing);
33327948 4839 else
59927fb9 4840 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4841}
4842
c0ff4b85 4843static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4844{
c0ff4b85 4845 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4846}
4847
c0ff4b85 4848static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4849{
c0ff4b85
R
4850 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4851 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4852 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4853 if (parent)
4854 mem_cgroup_put(parent);
4855 }
8c7c6e34
KH
4856}
4857
c0ff4b85 4858static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4859{
c0ff4b85 4860 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4861}
4862
7bcc1bb1
DN
4863/*
4864 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4865 */
e1aab161 4866struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4867{
c0ff4b85 4868 if (!memcg->res.parent)
7bcc1bb1 4869 return NULL;
c0ff4b85 4870 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4871}
e1aab161 4872EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4873
c077719b
KH
4874#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4875static void __init enable_swap_cgroup(void)
4876{
f8d66542 4877 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4878 do_swap_account = 1;
4879}
4880#else
4881static void __init enable_swap_cgroup(void)
4882{
4883}
4884#endif
4885
f64c3f54
BS
4886static int mem_cgroup_soft_limit_tree_init(void)
4887{
4888 struct mem_cgroup_tree_per_node *rtpn;
4889 struct mem_cgroup_tree_per_zone *rtpz;
4890 int tmp, node, zone;
4891
3ed28fa1 4892 for_each_node(node) {
f64c3f54
BS
4893 tmp = node;
4894 if (!node_state(node, N_NORMAL_MEMORY))
4895 tmp = -1;
4896 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4897 if (!rtpn)
c3cecc68 4898 goto err_cleanup;
f64c3f54
BS
4899
4900 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4901
4902 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4903 rtpz = &rtpn->rb_tree_per_zone[zone];
4904 rtpz->rb_root = RB_ROOT;
4905 spin_lock_init(&rtpz->lock);
4906 }
4907 }
4908 return 0;
c3cecc68
MH
4909
4910err_cleanup:
3ed28fa1 4911 for_each_node(node) {
c3cecc68
MH
4912 if (!soft_limit_tree.rb_tree_per_node[node])
4913 break;
4914 kfree(soft_limit_tree.rb_tree_per_node[node]);
4915 soft_limit_tree.rb_tree_per_node[node] = NULL;
4916 }
4917 return 1;
4918
f64c3f54
BS
4919}
4920
0eb253e2 4921static struct cgroup_subsys_state * __ref
761b3ef5 4922mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4923{
c0ff4b85 4924 struct mem_cgroup *memcg, *parent;
04046e1a 4925 long error = -ENOMEM;
6d12e2d8 4926 int node;
8cdea7c0 4927
c0ff4b85
R
4928 memcg = mem_cgroup_alloc();
4929 if (!memcg)
04046e1a 4930 return ERR_PTR(error);
78fb7466 4931
3ed28fa1 4932 for_each_node(node)
c0ff4b85 4933 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4934 goto free_out;
f64c3f54 4935
c077719b 4936 /* root ? */
28dbc4b6 4937 if (cont->parent == NULL) {
cdec2e42 4938 int cpu;
c077719b 4939 enable_swap_cgroup();
28dbc4b6 4940 parent = NULL;
f64c3f54
BS
4941 if (mem_cgroup_soft_limit_tree_init())
4942 goto free_out;
a41c58a6 4943 root_mem_cgroup = memcg;
cdec2e42
KH
4944 for_each_possible_cpu(cpu) {
4945 struct memcg_stock_pcp *stock =
4946 &per_cpu(memcg_stock, cpu);
4947 INIT_WORK(&stock->work, drain_local_stock);
4948 }
711d3d2c 4949 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4950 } else {
28dbc4b6 4951 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4952 memcg->use_hierarchy = parent->use_hierarchy;
4953 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4954 }
28dbc4b6 4955
18f59ea7 4956 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4957 res_counter_init(&memcg->res, &parent->res);
4958 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4959 /*
4960 * We increment refcnt of the parent to ensure that we can
4961 * safely access it on res_counter_charge/uncharge.
4962 * This refcnt will be decremented when freeing this
4963 * mem_cgroup(see mem_cgroup_put).
4964 */
4965 mem_cgroup_get(parent);
18f59ea7 4966 } else {
c0ff4b85
R
4967 res_counter_init(&memcg->res, NULL);
4968 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4969 }
c0ff4b85
R
4970 memcg->last_scanned_node = MAX_NUMNODES;
4971 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4972
a7885eb8 4973 if (parent)
c0ff4b85
R
4974 memcg->swappiness = mem_cgroup_swappiness(parent);
4975 atomic_set(&memcg->refcnt, 1);
4976 memcg->move_charge_at_immigrate = 0;
4977 mutex_init(&memcg->thresholds_lock);
4978 return &memcg->css;
6d12e2d8 4979free_out:
c0ff4b85 4980 __mem_cgroup_free(memcg);
04046e1a 4981 return ERR_PTR(error);
8cdea7c0
BS
4982}
4983
761b3ef5 4984static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 4985{
c0ff4b85 4986 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4987
c0ff4b85 4988 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
4989}
4990
761b3ef5 4991static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 4992{
c0ff4b85 4993 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 4994
761b3ef5 4995 kmem_cgroup_destroy(cont);
d1a4c0b3 4996
c0ff4b85 4997 mem_cgroup_put(memcg);
8cdea7c0
BS
4998}
4999
5000static int mem_cgroup_populate(struct cgroup_subsys *ss,
5001 struct cgroup *cont)
5002{
8c7c6e34
KH
5003 int ret;
5004
5005 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5006 ARRAY_SIZE(mem_cgroup_files));
5007
5008 if (!ret)
5009 ret = register_memsw_files(cont, ss);
e5671dfa
GC
5010
5011 if (!ret)
5012 ret = register_kmem_files(cont, ss);
5013
8c7c6e34 5014 return ret;
8cdea7c0
BS
5015}
5016
02491447 5017#ifdef CONFIG_MMU
7dc74be0 5018/* Handlers for move charge at task migration. */
854ffa8d
DN
5019#define PRECHARGE_COUNT_AT_ONCE 256
5020static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5021{
854ffa8d
DN
5022 int ret = 0;
5023 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5024 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5025
c0ff4b85 5026 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5027 mc.precharge += count;
5028 /* we don't need css_get for root */
5029 return ret;
5030 }
5031 /* try to charge at once */
5032 if (count > 1) {
5033 struct res_counter *dummy;
5034 /*
c0ff4b85 5035 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5036 * by cgroup_lock_live_cgroup() that it is not removed and we
5037 * are still under the same cgroup_mutex. So we can postpone
5038 * css_get().
5039 */
c0ff4b85 5040 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5041 goto one_by_one;
c0ff4b85 5042 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5043 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5044 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5045 goto one_by_one;
5046 }
5047 mc.precharge += count;
854ffa8d
DN
5048 return ret;
5049 }
5050one_by_one:
5051 /* fall back to one by one charge */
5052 while (count--) {
5053 if (signal_pending(current)) {
5054 ret = -EINTR;
5055 break;
5056 }
5057 if (!batch_count--) {
5058 batch_count = PRECHARGE_COUNT_AT_ONCE;
5059 cond_resched();
5060 }
c0ff4b85
R
5061 ret = __mem_cgroup_try_charge(NULL,
5062 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5063 if (ret)
854ffa8d 5064 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5065 return ret;
854ffa8d
DN
5066 mc.precharge++;
5067 }
4ffef5fe
DN
5068 return ret;
5069}
5070
5071/**
5072 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5073 * @vma: the vma the pte to be checked belongs
5074 * @addr: the address corresponding to the pte to be checked
5075 * @ptent: the pte to be checked
02491447 5076 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5077 *
5078 * Returns
5079 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5080 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5081 * move charge. if @target is not NULL, the page is stored in target->page
5082 * with extra refcnt got(Callers should handle it).
02491447
DN
5083 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5084 * target for charge migration. if @target is not NULL, the entry is stored
5085 * in target->ent.
4ffef5fe
DN
5086 *
5087 * Called with pte lock held.
5088 */
4ffef5fe
DN
5089union mc_target {
5090 struct page *page;
02491447 5091 swp_entry_t ent;
4ffef5fe
DN
5092};
5093
4ffef5fe
DN
5094enum mc_target_type {
5095 MC_TARGET_NONE, /* not used */
5096 MC_TARGET_PAGE,
02491447 5097 MC_TARGET_SWAP,
4ffef5fe
DN
5098};
5099
90254a65
DN
5100static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5101 unsigned long addr, pte_t ptent)
4ffef5fe 5102{
90254a65 5103 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5104
90254a65
DN
5105 if (!page || !page_mapped(page))
5106 return NULL;
5107 if (PageAnon(page)) {
5108 /* we don't move shared anon */
be22aece 5109 if (!move_anon() || page_mapcount(page) > 2)
90254a65 5110 return NULL;
87946a72
DN
5111 } else if (!move_file())
5112 /* we ignore mapcount for file pages */
90254a65
DN
5113 return NULL;
5114 if (!get_page_unless_zero(page))
5115 return NULL;
5116
5117 return page;
5118}
5119
5120static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5121 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5122{
5123 int usage_count;
5124 struct page *page = NULL;
5125 swp_entry_t ent = pte_to_swp_entry(ptent);
5126
5127 if (!move_anon() || non_swap_entry(ent))
5128 return NULL;
5129 usage_count = mem_cgroup_count_swap_user(ent, &page);
5130 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5131 if (page)
5132 put_page(page);
90254a65 5133 return NULL;
02491447 5134 }
90254a65
DN
5135 if (do_swap_account)
5136 entry->val = ent.val;
5137
5138 return page;
5139}
5140
87946a72
DN
5141static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5142 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5143{
5144 struct page *page = NULL;
5145 struct inode *inode;
5146 struct address_space *mapping;
5147 pgoff_t pgoff;
5148
5149 if (!vma->vm_file) /* anonymous vma */
5150 return NULL;
5151 if (!move_file())
5152 return NULL;
5153
5154 inode = vma->vm_file->f_path.dentry->d_inode;
5155 mapping = vma->vm_file->f_mapping;
5156 if (pte_none(ptent))
5157 pgoff = linear_page_index(vma, addr);
5158 else /* pte_file(ptent) is true */
5159 pgoff = pte_to_pgoff(ptent);
5160
5161 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5162 page = find_get_page(mapping, pgoff);
5163
5164#ifdef CONFIG_SWAP
5165 /* shmem/tmpfs may report page out on swap: account for that too. */
5166 if (radix_tree_exceptional_entry(page)) {
5167 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5168 if (do_swap_account)
aa3b1895
HD
5169 *entry = swap;
5170 page = find_get_page(&swapper_space, swap.val);
87946a72 5171 }
aa3b1895 5172#endif
87946a72
DN
5173 return page;
5174}
5175
90254a65
DN
5176static int is_target_pte_for_mc(struct vm_area_struct *vma,
5177 unsigned long addr, pte_t ptent, union mc_target *target)
5178{
5179 struct page *page = NULL;
5180 struct page_cgroup *pc;
5181 int ret = 0;
5182 swp_entry_t ent = { .val = 0 };
5183
5184 if (pte_present(ptent))
5185 page = mc_handle_present_pte(vma, addr, ptent);
5186 else if (is_swap_pte(ptent))
5187 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5188 else if (pte_none(ptent) || pte_file(ptent))
5189 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5190
5191 if (!page && !ent.val)
5192 return 0;
02491447
DN
5193 if (page) {
5194 pc = lookup_page_cgroup(page);
5195 /*
5196 * Do only loose check w/o page_cgroup lock.
5197 * mem_cgroup_move_account() checks the pc is valid or not under
5198 * the lock.
5199 */
5200 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5201 ret = MC_TARGET_PAGE;
5202 if (target)
5203 target->page = page;
5204 }
5205 if (!ret || !target)
5206 put_page(page);
5207 }
90254a65
DN
5208 /* There is a swap entry and a page doesn't exist or isn't charged */
5209 if (ent.val && !ret &&
9fb4b7cc 5210 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5211 ret = MC_TARGET_SWAP;
5212 if (target)
5213 target->ent = ent;
4ffef5fe 5214 }
4ffef5fe
DN
5215 return ret;
5216}
5217
5218static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5219 unsigned long addr, unsigned long end,
5220 struct mm_walk *walk)
5221{
5222 struct vm_area_struct *vma = walk->private;
5223 pte_t *pte;
5224 spinlock_t *ptl;
5225
03319327 5226 split_huge_page_pmd(walk->mm, pmd);
1a5a9906
AA
5227 if (pmd_trans_unstable(pmd))
5228 return 0;
03319327 5229
4ffef5fe
DN
5230 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5231 for (; addr != end; pte++, addr += PAGE_SIZE)
5232 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5233 mc.precharge++; /* increment precharge temporarily */
5234 pte_unmap_unlock(pte - 1, ptl);
5235 cond_resched();
5236
7dc74be0
DN
5237 return 0;
5238}
5239
4ffef5fe
DN
5240static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5241{
5242 unsigned long precharge;
5243 struct vm_area_struct *vma;
5244
dfe076b0 5245 down_read(&mm->mmap_sem);
4ffef5fe
DN
5246 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5247 struct mm_walk mem_cgroup_count_precharge_walk = {
5248 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5249 .mm = mm,
5250 .private = vma,
5251 };
5252 if (is_vm_hugetlb_page(vma))
5253 continue;
4ffef5fe
DN
5254 walk_page_range(vma->vm_start, vma->vm_end,
5255 &mem_cgroup_count_precharge_walk);
5256 }
dfe076b0 5257 up_read(&mm->mmap_sem);
4ffef5fe
DN
5258
5259 precharge = mc.precharge;
5260 mc.precharge = 0;
5261
5262 return precharge;
5263}
5264
4ffef5fe
DN
5265static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5266{
dfe076b0
DN
5267 unsigned long precharge = mem_cgroup_count_precharge(mm);
5268
5269 VM_BUG_ON(mc.moving_task);
5270 mc.moving_task = current;
5271 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5272}
5273
dfe076b0
DN
5274/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5275static void __mem_cgroup_clear_mc(void)
4ffef5fe 5276{
2bd9bb20
KH
5277 struct mem_cgroup *from = mc.from;
5278 struct mem_cgroup *to = mc.to;
5279
4ffef5fe 5280 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5281 if (mc.precharge) {
5282 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5283 mc.precharge = 0;
5284 }
5285 /*
5286 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5287 * we must uncharge here.
5288 */
5289 if (mc.moved_charge) {
5290 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5291 mc.moved_charge = 0;
4ffef5fe 5292 }
483c30b5
DN
5293 /* we must fixup refcnts and charges */
5294 if (mc.moved_swap) {
483c30b5
DN
5295 /* uncharge swap account from the old cgroup */
5296 if (!mem_cgroup_is_root(mc.from))
5297 res_counter_uncharge(&mc.from->memsw,
5298 PAGE_SIZE * mc.moved_swap);
5299 __mem_cgroup_put(mc.from, mc.moved_swap);
5300
5301 if (!mem_cgroup_is_root(mc.to)) {
5302 /*
5303 * we charged both to->res and to->memsw, so we should
5304 * uncharge to->res.
5305 */
5306 res_counter_uncharge(&mc.to->res,
5307 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5308 }
5309 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5310 mc.moved_swap = 0;
5311 }
dfe076b0
DN
5312 memcg_oom_recover(from);
5313 memcg_oom_recover(to);
5314 wake_up_all(&mc.waitq);
5315}
5316
5317static void mem_cgroup_clear_mc(void)
5318{
5319 struct mem_cgroup *from = mc.from;
5320
5321 /*
5322 * we must clear moving_task before waking up waiters at the end of
5323 * task migration.
5324 */
5325 mc.moving_task = NULL;
5326 __mem_cgroup_clear_mc();
2bd9bb20 5327 spin_lock(&mc.lock);
4ffef5fe
DN
5328 mc.from = NULL;
5329 mc.to = NULL;
2bd9bb20 5330 spin_unlock(&mc.lock);
32047e2a 5331 mem_cgroup_end_move(from);
4ffef5fe
DN
5332}
5333
761b3ef5
LZ
5334static int mem_cgroup_can_attach(struct cgroup *cgroup,
5335 struct cgroup_taskset *tset)
7dc74be0 5336{
2f7ee569 5337 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5338 int ret = 0;
c0ff4b85 5339 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5340
c0ff4b85 5341 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5342 struct mm_struct *mm;
5343 struct mem_cgroup *from = mem_cgroup_from_task(p);
5344
c0ff4b85 5345 VM_BUG_ON(from == memcg);
7dc74be0
DN
5346
5347 mm = get_task_mm(p);
5348 if (!mm)
5349 return 0;
7dc74be0 5350 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5351 if (mm->owner == p) {
5352 VM_BUG_ON(mc.from);
5353 VM_BUG_ON(mc.to);
5354 VM_BUG_ON(mc.precharge);
854ffa8d 5355 VM_BUG_ON(mc.moved_charge);
483c30b5 5356 VM_BUG_ON(mc.moved_swap);
32047e2a 5357 mem_cgroup_start_move(from);
2bd9bb20 5358 spin_lock(&mc.lock);
4ffef5fe 5359 mc.from = from;
c0ff4b85 5360 mc.to = memcg;
2bd9bb20 5361 spin_unlock(&mc.lock);
dfe076b0 5362 /* We set mc.moving_task later */
4ffef5fe
DN
5363
5364 ret = mem_cgroup_precharge_mc(mm);
5365 if (ret)
5366 mem_cgroup_clear_mc();
dfe076b0
DN
5367 }
5368 mmput(mm);
7dc74be0
DN
5369 }
5370 return ret;
5371}
5372
761b3ef5
LZ
5373static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5374 struct cgroup_taskset *tset)
7dc74be0 5375{
4ffef5fe 5376 mem_cgroup_clear_mc();
7dc74be0
DN
5377}
5378
4ffef5fe
DN
5379static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5380 unsigned long addr, unsigned long end,
5381 struct mm_walk *walk)
7dc74be0 5382{
4ffef5fe
DN
5383 int ret = 0;
5384 struct vm_area_struct *vma = walk->private;
5385 pte_t *pte;
5386 spinlock_t *ptl;
5387
03319327 5388 split_huge_page_pmd(walk->mm, pmd);
1a5a9906
AA
5389 if (pmd_trans_unstable(pmd))
5390 return 0;
4ffef5fe
DN
5391retry:
5392 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5393 for (; addr != end; addr += PAGE_SIZE) {
5394 pte_t ptent = *(pte++);
5395 union mc_target target;
5396 int type;
5397 struct page *page;
5398 struct page_cgroup *pc;
02491447 5399 swp_entry_t ent;
4ffef5fe
DN
5400
5401 if (!mc.precharge)
5402 break;
5403
5404 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5405 switch (type) {
5406 case MC_TARGET_PAGE:
5407 page = target.page;
5408 if (isolate_lru_page(page))
5409 goto put;
5410 pc = lookup_page_cgroup(page);
7ec99d62
JW
5411 if (!mem_cgroup_move_account(page, 1, pc,
5412 mc.from, mc.to, false)) {
4ffef5fe 5413 mc.precharge--;
854ffa8d
DN
5414 /* we uncharge from mc.from later. */
5415 mc.moved_charge++;
4ffef5fe
DN
5416 }
5417 putback_lru_page(page);
5418put: /* is_target_pte_for_mc() gets the page */
5419 put_page(page);
5420 break;
02491447
DN
5421 case MC_TARGET_SWAP:
5422 ent = target.ent;
483c30b5
DN
5423 if (!mem_cgroup_move_swap_account(ent,
5424 mc.from, mc.to, false)) {
02491447 5425 mc.precharge--;
483c30b5
DN
5426 /* we fixup refcnts and charges later. */
5427 mc.moved_swap++;
5428 }
02491447 5429 break;
4ffef5fe
DN
5430 default:
5431 break;
5432 }
5433 }
5434 pte_unmap_unlock(pte - 1, ptl);
5435 cond_resched();
5436
5437 if (addr != end) {
5438 /*
5439 * We have consumed all precharges we got in can_attach().
5440 * We try charge one by one, but don't do any additional
5441 * charges to mc.to if we have failed in charge once in attach()
5442 * phase.
5443 */
854ffa8d 5444 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5445 if (!ret)
5446 goto retry;
5447 }
5448
5449 return ret;
5450}
5451
5452static void mem_cgroup_move_charge(struct mm_struct *mm)
5453{
5454 struct vm_area_struct *vma;
5455
5456 lru_add_drain_all();
dfe076b0
DN
5457retry:
5458 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5459 /*
5460 * Someone who are holding the mmap_sem might be waiting in
5461 * waitq. So we cancel all extra charges, wake up all waiters,
5462 * and retry. Because we cancel precharges, we might not be able
5463 * to move enough charges, but moving charge is a best-effort
5464 * feature anyway, so it wouldn't be a big problem.
5465 */
5466 __mem_cgroup_clear_mc();
5467 cond_resched();
5468 goto retry;
5469 }
4ffef5fe
DN
5470 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5471 int ret;
5472 struct mm_walk mem_cgroup_move_charge_walk = {
5473 .pmd_entry = mem_cgroup_move_charge_pte_range,
5474 .mm = mm,
5475 .private = vma,
5476 };
5477 if (is_vm_hugetlb_page(vma))
5478 continue;
4ffef5fe
DN
5479 ret = walk_page_range(vma->vm_start, vma->vm_end,
5480 &mem_cgroup_move_charge_walk);
5481 if (ret)
5482 /*
5483 * means we have consumed all precharges and failed in
5484 * doing additional charge. Just abandon here.
5485 */
5486 break;
5487 }
dfe076b0 5488 up_read(&mm->mmap_sem);
7dc74be0
DN
5489}
5490
761b3ef5
LZ
5491static void mem_cgroup_move_task(struct cgroup *cont,
5492 struct cgroup_taskset *tset)
67e465a7 5493{
2f7ee569 5494 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5495 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5496
dfe076b0 5497 if (mm) {
a433658c
KM
5498 if (mc.to)
5499 mem_cgroup_move_charge(mm);
5500 put_swap_token(mm);
dfe076b0
DN
5501 mmput(mm);
5502 }
a433658c
KM
5503 if (mc.to)
5504 mem_cgroup_clear_mc();
67e465a7 5505}
5cfb80a7 5506#else /* !CONFIG_MMU */
761b3ef5
LZ
5507static int mem_cgroup_can_attach(struct cgroup *cgroup,
5508 struct cgroup_taskset *tset)
5cfb80a7
DN
5509{
5510 return 0;
5511}
761b3ef5
LZ
5512static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5513 struct cgroup_taskset *tset)
5cfb80a7
DN
5514{
5515}
761b3ef5
LZ
5516static void mem_cgroup_move_task(struct cgroup *cont,
5517 struct cgroup_taskset *tset)
5cfb80a7
DN
5518{
5519}
5520#endif
67e465a7 5521
8cdea7c0
BS
5522struct cgroup_subsys mem_cgroup_subsys = {
5523 .name = "memory",
5524 .subsys_id = mem_cgroup_subsys_id,
5525 .create = mem_cgroup_create,
df878fb0 5526 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5527 .destroy = mem_cgroup_destroy,
5528 .populate = mem_cgroup_populate,
7dc74be0
DN
5529 .can_attach = mem_cgroup_can_attach,
5530 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5531 .attach = mem_cgroup_move_task,
6d12e2d8 5532 .early_init = 0,
04046e1a 5533 .use_id = 1,
8cdea7c0 5534};
c077719b
KH
5535
5536#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5537static int __init enable_swap_account(char *s)
5538{
5539 /* consider enabled if no parameter or 1 is given */
a2c8990a 5540 if (!strcmp(s, "1"))
a42c390c 5541 really_do_swap_account = 1;
a2c8990a 5542 else if (!strcmp(s, "0"))
a42c390c
MH
5543 really_do_swap_account = 0;
5544 return 1;
5545}
a2c8990a 5546__setup("swapaccount=", enable_swap_account);
c077719b 5547
c077719b 5548#endif