mm: memcontrol: report kernel stack usage in cgroup2 memory.stat
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
4ffef5fe
DN
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
1dfab5ab 212 unsigned long flags;
4ffef5fe 213 unsigned long precharge;
854ffa8d 214 unsigned long moved_charge;
483c30b5 215 unsigned long moved_swap;
8033b97c
DN
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218} mc = {
2bd9bb20 219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221};
4ffef5fe 222
4e416953
BS
223/*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
a0db00fc 227#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 228#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 229
217bc319
KH
230enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 232 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
235 NR_CHARGE_TYPE,
236};
237
8c7c6e34 238/* for encoding cft->private value on file */
86ae53e1
GC
239enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
510fc4e1 243 _KMEM,
d55f90bf 244 _TCP,
86ae53e1
GC
245};
246
a0db00fc
KS
247#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 249#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
250/* Used for OOM nofiier */
251#define OOM_CONTROL (0)
8c7c6e34 252
70ddf637
AV
253/* Some nice accessors for the vmpressure. */
254struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255{
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259}
260
261struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262{
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264}
265
7ffc0edc
MH
266static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267{
268 return (memcg == root_mem_cgroup);
269}
270
127424c8 271#ifndef CONFIG_SLOB
55007d84 272/*
f7ce3190 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
55007d84 279 *
dbcf73e2
VD
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
55007d84 282 */
dbcf73e2
VD
283static DEFINE_IDA(memcg_cache_ida);
284int memcg_nr_cache_ids;
749c5415 285
05257a1a
VD
286/* Protects memcg_nr_cache_ids */
287static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289void memcg_get_cache_ids(void)
290{
291 down_read(&memcg_cache_ids_sem);
292}
293
294void memcg_put_cache_ids(void)
295{
296 up_read(&memcg_cache_ids_sem);
297}
298
55007d84
GC
299/*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
b8627835 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
309 * increase ours as well if it increases.
310 */
311#define MEMCG_CACHES_MIN_SIZE 4
b8627835 312#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 313
d7f25f8a
GC
314/*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
ef12947c 320DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 321EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 322
127424c8 323#endif /* !CONFIG_SLOB */
a8964b9b 324
f64c3f54 325static struct mem_cgroup_per_zone *
e231875b 326mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 327{
e231875b
JZ
328 int nid = zone_to_nid(zone);
329 int zid = zone_idx(zone);
330
54f72fe0 331 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
332}
333
ad7fa852
TH
334/**
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
337 *
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
341 *
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343 * is returned.
ad7fa852
TH
344 */
345struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346{
347 struct mem_cgroup *memcg;
348
ad7fa852
TH
349 memcg = page->mem_cgroup;
350
9e10a130 351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
352 memcg = root_mem_cgroup;
353
ad7fa852
TH
354 return &memcg->css;
355}
356
2fc04524
VD
357/**
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
359 * @page: the page
360 *
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
364 *
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
369 */
370ino_t page_cgroup_ino(struct page *page)
371{
372 struct mem_cgroup *memcg;
373 unsigned long ino = 0;
374
375 rcu_read_lock();
376 memcg = READ_ONCE(page->mem_cgroup);
377 while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 memcg = parent_mem_cgroup(memcg);
379 if (memcg)
380 ino = cgroup_ino(memcg->css.cgroup);
381 rcu_read_unlock();
382 return ino;
383}
384
f64c3f54 385static struct mem_cgroup_per_zone *
e231875b 386mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 387{
97a6c37b
JW
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
f64c3f54 390
e231875b 391 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
392}
393
bb4cc1a8
AM
394static struct mem_cgroup_tree_per_zone *
395soft_limit_tree_node_zone(int nid, int zid)
396{
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398}
399
400static struct mem_cgroup_tree_per_zone *
401soft_limit_tree_from_page(struct page *page)
402{
403 int nid = page_to_nid(page);
404 int zid = page_zonenum(page);
405
406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407}
408
cf2c8127
JW
409static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 411 unsigned long new_usage_in_excess)
bb4cc1a8
AM
412{
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct mem_cgroup_per_zone *mz_node;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess)
428 p = &(*p)->rb_left;
429 /*
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
432 */
433 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 p = &(*p)->rb_right;
435 }
436 rb_link_node(&mz->tree_node, parent, p);
437 rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = true;
439}
440
cf2c8127
JW
441static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
443{
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448}
449
cf2c8127
JW
450static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 452{
0a31bc97
JW
453 unsigned long flags;
454
455 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 456 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 457 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
458}
459
3e32cb2e
JW
460static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461{
462 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
464 unsigned long excess = 0;
465
466 if (nr_pages > soft_limit)
467 excess = nr_pages - soft_limit;
468
469 return excess;
470}
bb4cc1a8
AM
471
472static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473{
3e32cb2e 474 unsigned long excess;
bb4cc1a8
AM
475 struct mem_cgroup_per_zone *mz;
476 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 477
e231875b 478 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
479 /*
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
482 */
483 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 484 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 485 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
486 /*
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
489 */
490 if (excess || mz->on_tree) {
0a31bc97
JW
491 unsigned long flags;
492
493 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
494 /* if on-tree, remove it */
495 if (mz->on_tree)
cf2c8127 496 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
497 /*
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
500 */
cf2c8127 501 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 502 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
503 }
504 }
505}
506
507static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508{
bb4cc1a8 509 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
510 struct mem_cgroup_per_zone *mz;
511 int nid, zid;
bb4cc1a8 512
e231875b
JZ
513 for_each_node(nid) {
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 517 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
518 }
519 }
520}
521
522static struct mem_cgroup_per_zone *
523__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525 struct rb_node *rightmost = NULL;
526 struct mem_cgroup_per_zone *mz;
527
528retry:
529 mz = NULL;
530 rightmost = rb_last(&mctz->rb_root);
531 if (!rightmost)
532 goto done; /* Nothing to reclaim from */
533
534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 /*
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
539 */
cf2c8127 540 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 541 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 542 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
543 goto retry;
544done:
545 return mz;
546}
547
548static struct mem_cgroup_per_zone *
549mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550{
551 struct mem_cgroup_per_zone *mz;
552
0a31bc97 553 spin_lock_irq(&mctz->lock);
bb4cc1a8 554 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 555 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
556 return mz;
557}
558
711d3d2c 559/*
484ebb3b
GT
560 * Return page count for single (non recursive) @memcg.
561 *
711d3d2c
KH
562 * Implementation Note: reading percpu statistics for memcg.
563 *
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 567 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
568 *
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
574 *
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 577 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
578 * implemented.
579 */
484ebb3b
GT
580static unsigned long
581mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 582{
7a159cc9 583 long val = 0;
c62b1a3b 584 int cpu;
c62b1a3b 585
484ebb3b 586 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 587 for_each_possible_cpu(cpu)
c0ff4b85 588 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
589 /*
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
592 */
593 if (val < 0)
594 val = 0;
c62b1a3b
KH
595 return val;
596}
597
c0ff4b85 598static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
599 enum mem_cgroup_events_index idx)
600{
601 unsigned long val = 0;
602 int cpu;
603
733a572e 604 for_each_possible_cpu(cpu)
c0ff4b85 605 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
606 return val;
607}
608
c0ff4b85 609static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 610 struct page *page,
f627c2f5 611 bool compound, int nr_pages)
d52aa412 612{
b2402857
KH
613 /*
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
616 */
0a31bc97 617 if (PageAnon(page))
b2402857 618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 619 nr_pages);
d52aa412 620 else
b2402857 621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 622 nr_pages);
55e462b0 623
f627c2f5
KS
624 if (compound) {
625 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 nr_pages);
f627c2f5 628 }
b070e65c 629
e401f176
KH
630 /* pagein of a big page is an event. So, ignore page size */
631 if (nr_pages > 0)
c0ff4b85 632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 633 else {
c0ff4b85 634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
635 nr_pages = -nr_pages; /* for event */
636 }
e401f176 637
13114716 638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
639}
640
e231875b
JZ
641static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 int nid,
643 unsigned int lru_mask)
bb2a0de9 644{
e231875b 645 unsigned long nr = 0;
889976db
YH
646 int zid;
647
e231875b 648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 649
e231875b
JZ
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
889976db 662}
bb2a0de9 663
c0ff4b85 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 665 unsigned int lru_mask)
6d12e2d8 666{
e231875b 667 unsigned long nr = 0;
889976db 668 int nid;
6d12e2d8 669
31aaea4a 670 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
d52aa412
KH
673}
674
f53d7ce3
JW
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
7a159cc9
JW
677{
678 unsigned long val, next;
679
13114716 680 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 681 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 682 /* from time_after() in jiffies.h */
f53d7ce3
JW
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
bb4cc1a8
AM
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
f53d7ce3
JW
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
7a159cc9 699 }
f53d7ce3 700 return false;
d2265e6f
KH
701}
702
703/*
704 * Check events in order.
705 *
706 */
c0ff4b85 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
708{
709 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 712 bool do_softlimit;
82b3f2a7 713 bool do_numainfo __maybe_unused;
f53d7ce3 714
bb4cc1a8
AM
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
c0ff4b85 721 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
453a9bf3 724#if MAX_NUMNODES > 1
f53d7ce3 725 if (unlikely(do_numainfo))
c0ff4b85 726 atomic_inc(&memcg->numainfo_events);
453a9bf3 727#endif
0a31bc97 728 }
d2265e6f
KH
729}
730
cf475ad2 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 732{
31a78f23
BS
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
073219e9 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 742}
33398cf2 743EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 744
df381975 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 746{
c0ff4b85 747 struct mem_cgroup *memcg = NULL;
0b7f569e 748
54595fe2
KH
749 rcu_read_lock();
750 do {
6f6acb00
MH
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
df381975 757 memcg = root_mem_cgroup;
6f6acb00
MH
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
ec903c0c 763 } while (!css_tryget_online(&memcg->css));
54595fe2 764 rcu_read_unlock();
c0ff4b85 765 return memcg;
54595fe2
KH
766}
767
5660048c
JW
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
694fbc0f 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 786 struct mem_cgroup *prev,
694fbc0f 787 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 788{
33398cf2 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 790 struct cgroup_subsys_state *css = NULL;
9f3a0d09 791 struct mem_cgroup *memcg = NULL;
5ac8fb31 792 struct mem_cgroup *pos = NULL;
711d3d2c 793
694fbc0f
AM
794 if (mem_cgroup_disabled())
795 return NULL;
5660048c 796
9f3a0d09
JW
797 if (!root)
798 root = root_mem_cgroup;
7d74b06f 799
9f3a0d09 800 if (prev && !reclaim)
5ac8fb31 801 pos = prev;
14067bb3 802
9f3a0d09
JW
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
5ac8fb31 805 goto out;
694fbc0f 806 return root;
9f3a0d09 807 }
14067bb3 808
542f85f9 809 rcu_read_lock();
5f578161 810
5ac8fb31
JW
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
6df38689 820 while (1) {
4db0c3c2 821 pos = READ_ONCE(iter->position);
6df38689
VD
822 if (!pos || css_tryget(&pos->css))
823 break;
5ac8fb31 824 /*
6df38689
VD
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
5ac8fb31 831 */
6df38689
VD
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
5ac8fb31
JW
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
527a5ec9 851 }
7d74b06f 852
5ac8fb31
JW
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
14067bb3 859
5ac8fb31
JW
860 if (css == &root->css)
861 break;
14067bb3 862
0b8f73e1
JW
863 if (css_tryget(css))
864 break;
9f3a0d09 865
5ac8fb31 866 memcg = NULL;
9f3a0d09 867 }
5ac8fb31
JW
868
869 if (reclaim) {
5ac8fb31 870 /*
6df38689
VD
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 874 */
6df38689
VD
875 (void)cmpxchg(&iter->position, pos, memcg);
876
5ac8fb31
JW
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
9f3a0d09 884 }
5ac8fb31 885
542f85f9
MH
886out_unlock:
887 rcu_read_unlock();
5ac8fb31 888out:
c40046f3
MH
889 if (prev && prev != root)
890 css_put(&prev->css);
891
9f3a0d09 892 return memcg;
14067bb3 893}
7d74b06f 894
5660048c
JW
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
9f3a0d09
JW
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
7d74b06f 908
6df38689
VD
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
9f3a0d09
JW
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 938 iter != NULL; \
527a5ec9 939 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 940
9f3a0d09 941#define for_each_mem_cgroup(iter) \
527a5ec9 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 943 iter != NULL; \
527a5ec9 944 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 945
925b7673
JW
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
fa9add64 949 * @memcg: memcg of the wanted lruvec
925b7673
JW
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
bea8c150 959 struct lruvec *lruvec;
925b7673 960
bea8c150
HD
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
925b7673 965
e231875b 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
925b7673
JW
977}
978
925b7673 979/**
dfe0e773 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 981 * @page: the page
fa9add64 982 * @zone: zone of the page
dfe0e773
JW
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 987 */
fa9add64 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 989{
08e552c6 990 struct mem_cgroup_per_zone *mz;
925b7673 991 struct mem_cgroup *memcg;
bea8c150 992 struct lruvec *lruvec;
6d12e2d8 993
bea8c150
HD
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
925b7673 998
1306a85a 999 memcg = page->mem_cgroup;
7512102c 1000 /*
dfe0e773 1001 * Swapcache readahead pages are added to the LRU - and
29833315 1002 * possibly migrated - before they are charged.
7512102c 1003 */
29833315
JW
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
7512102c 1006
e231875b 1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
08e552c6 1018}
b69408e8 1019
925b7673 1020/**
fa9add64
HD
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
925b7673 1025 *
fa9add64
HD
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
3f58a829 1028 */
fa9add64
HD
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
3f58a829
MK
1031{
1032 struct mem_cgroup_per_zone *mz;
fa9add64 1033 unsigned long *lru_size;
3f58a829
MK
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
fa9add64
HD
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1042}
544122e5 1043
2314b42d 1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1045{
2314b42d 1046 struct mem_cgroup *task_memcg;
158e0a2d 1047 struct task_struct *p;
ffbdccf5 1048 bool ret;
4c4a2214 1049
158e0a2d 1050 p = find_lock_task_mm(task);
de077d22 1051 if (p) {
2314b42d 1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
ffbdccf5 1060 rcu_read_lock();
2314b42d
JW
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
ffbdccf5 1063 rcu_read_unlock();
de077d22 1064 }
2314b42d
JW
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
4c4a2214
DR
1067 return ret;
1068}
1069
19942822 1070/**
9d11ea9f 1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1072 * @memcg: the memory cgroup
19942822 1073 *
9d11ea9f 1074 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1075 * pages.
19942822 1076 */
c0ff4b85 1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1078{
3e32cb2e
JW
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
9d11ea9f 1082
3e32cb2e 1083 count = page_counter_read(&memcg->memory);
4db0c3c2 1084 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1085 if (count < limit)
1086 margin = limit - count;
1087
7941d214 1088 if (do_memsw_account()) {
3e32cb2e 1089 count = page_counter_read(&memcg->memsw);
4db0c3c2 1090 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
19942822
JW
1096}
1097
32047e2a 1098/*
bdcbb659 1099 * A routine for checking "mem" is under move_account() or not.
32047e2a 1100 *
bdcbb659
QH
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
32047e2a 1104 */
c0ff4b85 1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1106{
2bd9bb20
KH
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
4b534334 1109 bool ret = false;
2bd9bb20
KH
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
3e92041d 1119
2314b42d
JW
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1122unlock:
1123 spin_unlock(&mc.lock);
4b534334
KH
1124 return ret;
1125}
1126
c0ff4b85 1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1130 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
58cf188e 1143#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1144/**
58cf188e 1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
e61734c5 1154 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1155 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1156 struct mem_cgroup *iter;
1157 unsigned int i;
e222432b 1158
08088cb9 1159 mutex_lock(&oom_info_lock);
e222432b
BS
1160 rcu_read_lock();
1161
2415b9f5
BV
1162 if (p) {
1163 pr_info("Task in ");
1164 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1165 pr_cont(" killed as a result of limit of ");
1166 } else {
1167 pr_info("Memory limit reached of cgroup ");
1168 }
1169
e61734c5 1170 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1171 pr_cont("\n");
e222432b 1172
e222432b
BS
1173 rcu_read_unlock();
1174
3e32cb2e
JW
1175 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memory)),
1177 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1178 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->memsw)),
1180 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1181 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->kmem)),
1183 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1184
1185 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1186 pr_info("Memory cgroup stats for ");
1187 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1188 pr_cont(":");
1189
1190 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1191 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1192 continue;
484ebb3b 1193 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1194 K(mem_cgroup_read_stat(iter, i)));
1195 }
1196
1197 for (i = 0; i < NR_LRU_LISTS; i++)
1198 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1199 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1200
1201 pr_cont("\n");
1202 }
08088cb9 1203 mutex_unlock(&oom_info_lock);
e222432b
BS
1204}
1205
81d39c20
KH
1206/*
1207 * This function returns the number of memcg under hierarchy tree. Returns
1208 * 1(self count) if no children.
1209 */
c0ff4b85 1210static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1211{
1212 int num = 0;
7d74b06f
KH
1213 struct mem_cgroup *iter;
1214
c0ff4b85 1215 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1216 num++;
81d39c20
KH
1217 return num;
1218}
1219
a63d83f4
DR
1220/*
1221 * Return the memory (and swap, if configured) limit for a memcg.
1222 */
3e32cb2e 1223static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1224{
3e32cb2e 1225 unsigned long limit;
f3e8eb70 1226
3e32cb2e 1227 limit = memcg->memory.limit;
9a5a8f19 1228 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1229 unsigned long memsw_limit;
37e84351 1230 unsigned long swap_limit;
9a5a8f19 1231
3e32cb2e 1232 memsw_limit = memcg->memsw.limit;
37e84351
VD
1233 swap_limit = memcg->swap.limit;
1234 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1236 }
9a5a8f19 1237 return limit;
a63d83f4
DR
1238}
1239
19965460
DR
1240static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241 int order)
9cbb78bb 1242{
6e0fc46d
DR
1243 struct oom_control oc = {
1244 .zonelist = NULL,
1245 .nodemask = NULL,
1246 .gfp_mask = gfp_mask,
1247 .order = order,
6e0fc46d 1248 };
9cbb78bb
DR
1249 struct mem_cgroup *iter;
1250 unsigned long chosen_points = 0;
1251 unsigned long totalpages;
1252 unsigned int points = 0;
1253 struct task_struct *chosen = NULL;
1254
dc56401f
JW
1255 mutex_lock(&oom_lock);
1256
876aafbf 1257 /*
465adcf1
DR
1258 * If current has a pending SIGKILL or is exiting, then automatically
1259 * select it. The goal is to allow it to allocate so that it may
1260 * quickly exit and free its memory.
876aafbf 1261 */
d003f371 1262 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1263 mark_oom_victim(current);
dc56401f 1264 goto unlock;
876aafbf
DR
1265 }
1266
6e0fc46d 1267 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1268 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1269 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1270 struct css_task_iter it;
9cbb78bb
DR
1271 struct task_struct *task;
1272
72ec7029
TH
1273 css_task_iter_start(&iter->css, &it);
1274 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1275 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1276 case OOM_SCAN_SELECT:
1277 if (chosen)
1278 put_task_struct(chosen);
1279 chosen = task;
1280 chosen_points = ULONG_MAX;
1281 get_task_struct(chosen);
1282 /* fall through */
1283 case OOM_SCAN_CONTINUE:
1284 continue;
1285 case OOM_SCAN_ABORT:
72ec7029 1286 css_task_iter_end(&it);
9cbb78bb
DR
1287 mem_cgroup_iter_break(memcg, iter);
1288 if (chosen)
1289 put_task_struct(chosen);
dc56401f 1290 goto unlock;
9cbb78bb
DR
1291 case OOM_SCAN_OK:
1292 break;
1293 };
1294 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1295 if (!points || points < chosen_points)
1296 continue;
1297 /* Prefer thread group leaders for display purposes */
1298 if (points == chosen_points &&
1299 thread_group_leader(chosen))
1300 continue;
1301
1302 if (chosen)
1303 put_task_struct(chosen);
1304 chosen = task;
1305 chosen_points = points;
1306 get_task_struct(chosen);
9cbb78bb 1307 }
72ec7029 1308 css_task_iter_end(&it);
9cbb78bb
DR
1309 }
1310
dc56401f
JW
1311 if (chosen) {
1312 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1313 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1314 "Memory cgroup out of memory");
dc56401f
JW
1315 }
1316unlock:
1317 mutex_unlock(&oom_lock);
9cbb78bb
DR
1318}
1319
ae6e71d3
MC
1320#if MAX_NUMNODES > 1
1321
4d0c066d
KH
1322/**
1323 * test_mem_cgroup_node_reclaimable
dad7557e 1324 * @memcg: the target memcg
4d0c066d
KH
1325 * @nid: the node ID to be checked.
1326 * @noswap : specify true here if the user wants flle only information.
1327 *
1328 * This function returns whether the specified memcg contains any
1329 * reclaimable pages on a node. Returns true if there are any reclaimable
1330 * pages in the node.
1331 */
c0ff4b85 1332static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1333 int nid, bool noswap)
1334{
c0ff4b85 1335 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1336 return true;
1337 if (noswap || !total_swap_pages)
1338 return false;
c0ff4b85 1339 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1340 return true;
1341 return false;
1342
1343}
889976db
YH
1344
1345/*
1346 * Always updating the nodemask is not very good - even if we have an empty
1347 * list or the wrong list here, we can start from some node and traverse all
1348 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1349 *
1350 */
c0ff4b85 1351static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1352{
1353 int nid;
453a9bf3
KH
1354 /*
1355 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1356 * pagein/pageout changes since the last update.
1357 */
c0ff4b85 1358 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1359 return;
c0ff4b85 1360 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1361 return;
1362
889976db 1363 /* make a nodemask where this memcg uses memory from */
31aaea4a 1364 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1365
31aaea4a 1366 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1367
c0ff4b85
R
1368 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1369 node_clear(nid, memcg->scan_nodes);
889976db 1370 }
453a9bf3 1371
c0ff4b85
R
1372 atomic_set(&memcg->numainfo_events, 0);
1373 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1374}
1375
1376/*
1377 * Selecting a node where we start reclaim from. Because what we need is just
1378 * reducing usage counter, start from anywhere is O,K. Considering
1379 * memory reclaim from current node, there are pros. and cons.
1380 *
1381 * Freeing memory from current node means freeing memory from a node which
1382 * we'll use or we've used. So, it may make LRU bad. And if several threads
1383 * hit limits, it will see a contention on a node. But freeing from remote
1384 * node means more costs for memory reclaim because of memory latency.
1385 *
1386 * Now, we use round-robin. Better algorithm is welcomed.
1387 */
c0ff4b85 1388int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1389{
1390 int node;
1391
c0ff4b85
R
1392 mem_cgroup_may_update_nodemask(memcg);
1393 node = memcg->last_scanned_node;
889976db 1394
c0ff4b85 1395 node = next_node(node, memcg->scan_nodes);
889976db 1396 if (node == MAX_NUMNODES)
c0ff4b85 1397 node = first_node(memcg->scan_nodes);
889976db
YH
1398 /*
1399 * We call this when we hit limit, not when pages are added to LRU.
1400 * No LRU may hold pages because all pages are UNEVICTABLE or
1401 * memcg is too small and all pages are not on LRU. In that case,
1402 * we use curret node.
1403 */
1404 if (unlikely(node == MAX_NUMNODES))
1405 node = numa_node_id();
1406
c0ff4b85 1407 memcg->last_scanned_node = node;
889976db
YH
1408 return node;
1409}
889976db 1410#else
c0ff4b85 1411int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1412{
1413 return 0;
1414}
1415#endif
1416
0608f43d
AM
1417static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1418 struct zone *zone,
1419 gfp_t gfp_mask,
1420 unsigned long *total_scanned)
1421{
1422 struct mem_cgroup *victim = NULL;
1423 int total = 0;
1424 int loop = 0;
1425 unsigned long excess;
1426 unsigned long nr_scanned;
1427 struct mem_cgroup_reclaim_cookie reclaim = {
1428 .zone = zone,
1429 .priority = 0,
1430 };
1431
3e32cb2e 1432 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1433
1434 while (1) {
1435 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1436 if (!victim) {
1437 loop++;
1438 if (loop >= 2) {
1439 /*
1440 * If we have not been able to reclaim
1441 * anything, it might because there are
1442 * no reclaimable pages under this hierarchy
1443 */
1444 if (!total)
1445 break;
1446 /*
1447 * We want to do more targeted reclaim.
1448 * excess >> 2 is not to excessive so as to
1449 * reclaim too much, nor too less that we keep
1450 * coming back to reclaim from this cgroup
1451 */
1452 if (total >= (excess >> 2) ||
1453 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1454 break;
1455 }
1456 continue;
1457 }
0608f43d
AM
1458 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1459 zone, &nr_scanned);
1460 *total_scanned += nr_scanned;
3e32cb2e 1461 if (!soft_limit_excess(root_memcg))
0608f43d 1462 break;
6d61ef40 1463 }
0608f43d
AM
1464 mem_cgroup_iter_break(root_memcg, victim);
1465 return total;
6d61ef40
BS
1466}
1467
0056f4e6
JW
1468#ifdef CONFIG_LOCKDEP
1469static struct lockdep_map memcg_oom_lock_dep_map = {
1470 .name = "memcg_oom_lock",
1471};
1472#endif
1473
fb2a6fc5
JW
1474static DEFINE_SPINLOCK(memcg_oom_lock);
1475
867578cb
KH
1476/*
1477 * Check OOM-Killer is already running under our hierarchy.
1478 * If someone is running, return false.
1479 */
fb2a6fc5 1480static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1481{
79dfdacc 1482 struct mem_cgroup *iter, *failed = NULL;
a636b327 1483
fb2a6fc5
JW
1484 spin_lock(&memcg_oom_lock);
1485
9f3a0d09 1486 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1487 if (iter->oom_lock) {
79dfdacc
MH
1488 /*
1489 * this subtree of our hierarchy is already locked
1490 * so we cannot give a lock.
1491 */
79dfdacc 1492 failed = iter;
9f3a0d09
JW
1493 mem_cgroup_iter_break(memcg, iter);
1494 break;
23751be0
JW
1495 } else
1496 iter->oom_lock = true;
7d74b06f 1497 }
867578cb 1498
fb2a6fc5
JW
1499 if (failed) {
1500 /*
1501 * OK, we failed to lock the whole subtree so we have
1502 * to clean up what we set up to the failing subtree
1503 */
1504 for_each_mem_cgroup_tree(iter, memcg) {
1505 if (iter == failed) {
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
1508 }
1509 iter->oom_lock = false;
79dfdacc 1510 }
0056f4e6
JW
1511 } else
1512 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1513
1514 spin_unlock(&memcg_oom_lock);
1515
1516 return !failed;
a636b327 1517}
0b7f569e 1518
fb2a6fc5 1519static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1520{
7d74b06f
KH
1521 struct mem_cgroup *iter;
1522
fb2a6fc5 1523 spin_lock(&memcg_oom_lock);
0056f4e6 1524 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1525 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1526 iter->oom_lock = false;
fb2a6fc5 1527 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1528}
1529
c0ff4b85 1530static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1531{
1532 struct mem_cgroup *iter;
1533
c2b42d3c 1534 spin_lock(&memcg_oom_lock);
c0ff4b85 1535 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1536 iter->under_oom++;
1537 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1538}
1539
c0ff4b85 1540static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1541{
1542 struct mem_cgroup *iter;
1543
867578cb
KH
1544 /*
1545 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1546 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1547 */
c2b42d3c 1548 spin_lock(&memcg_oom_lock);
c0ff4b85 1549 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1550 if (iter->under_oom > 0)
1551 iter->under_oom--;
1552 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1553}
1554
867578cb
KH
1555static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1556
dc98df5a 1557struct oom_wait_info {
d79154bb 1558 struct mem_cgroup *memcg;
dc98df5a
KH
1559 wait_queue_t wait;
1560};
1561
1562static int memcg_oom_wake_function(wait_queue_t *wait,
1563 unsigned mode, int sync, void *arg)
1564{
d79154bb
HD
1565 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1566 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1567 struct oom_wait_info *oom_wait_info;
1568
1569 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1570 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1571
2314b42d
JW
1572 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1573 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1574 return 0;
dc98df5a
KH
1575 return autoremove_wake_function(wait, mode, sync, arg);
1576}
1577
c0ff4b85 1578static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1579{
c2b42d3c
TH
1580 /*
1581 * For the following lockless ->under_oom test, the only required
1582 * guarantee is that it must see the state asserted by an OOM when
1583 * this function is called as a result of userland actions
1584 * triggered by the notification of the OOM. This is trivially
1585 * achieved by invoking mem_cgroup_mark_under_oom() before
1586 * triggering notification.
1587 */
1588 if (memcg && memcg->under_oom)
f4b90b70 1589 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1590}
1591
3812c8c8 1592static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1593{
626ebc41 1594 if (!current->memcg_may_oom)
3812c8c8 1595 return;
867578cb 1596 /*
49426420
JW
1597 * We are in the middle of the charge context here, so we
1598 * don't want to block when potentially sitting on a callstack
1599 * that holds all kinds of filesystem and mm locks.
1600 *
1601 * Also, the caller may handle a failed allocation gracefully
1602 * (like optional page cache readahead) and so an OOM killer
1603 * invocation might not even be necessary.
1604 *
1605 * That's why we don't do anything here except remember the
1606 * OOM context and then deal with it at the end of the page
1607 * fault when the stack is unwound, the locks are released,
1608 * and when we know whether the fault was overall successful.
867578cb 1609 */
49426420 1610 css_get(&memcg->css);
626ebc41
TH
1611 current->memcg_in_oom = memcg;
1612 current->memcg_oom_gfp_mask = mask;
1613 current->memcg_oom_order = order;
3812c8c8
JW
1614}
1615
1616/**
1617 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1618 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1619 *
49426420
JW
1620 * This has to be called at the end of a page fault if the memcg OOM
1621 * handler was enabled.
3812c8c8 1622 *
49426420 1623 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1624 * sleep on a waitqueue until the userspace task resolves the
1625 * situation. Sleeping directly in the charge context with all kinds
1626 * of locks held is not a good idea, instead we remember an OOM state
1627 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1628 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1629 *
1630 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1631 * completed, %false otherwise.
3812c8c8 1632 */
49426420 1633bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1634{
626ebc41 1635 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1636 struct oom_wait_info owait;
49426420 1637 bool locked;
3812c8c8
JW
1638
1639 /* OOM is global, do not handle */
3812c8c8 1640 if (!memcg)
49426420 1641 return false;
3812c8c8 1642
c32b3cbe 1643 if (!handle || oom_killer_disabled)
49426420 1644 goto cleanup;
3812c8c8
JW
1645
1646 owait.memcg = memcg;
1647 owait.wait.flags = 0;
1648 owait.wait.func = memcg_oom_wake_function;
1649 owait.wait.private = current;
1650 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1651
3812c8c8 1652 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1653 mem_cgroup_mark_under_oom(memcg);
1654
1655 locked = mem_cgroup_oom_trylock(memcg);
1656
1657 if (locked)
1658 mem_cgroup_oom_notify(memcg);
1659
1660 if (locked && !memcg->oom_kill_disable) {
1661 mem_cgroup_unmark_under_oom(memcg);
1662 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1663 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1664 current->memcg_oom_order);
49426420 1665 } else {
3812c8c8 1666 schedule();
49426420
JW
1667 mem_cgroup_unmark_under_oom(memcg);
1668 finish_wait(&memcg_oom_waitq, &owait.wait);
1669 }
1670
1671 if (locked) {
fb2a6fc5
JW
1672 mem_cgroup_oom_unlock(memcg);
1673 /*
1674 * There is no guarantee that an OOM-lock contender
1675 * sees the wakeups triggered by the OOM kill
1676 * uncharges. Wake any sleepers explicitely.
1677 */
1678 memcg_oom_recover(memcg);
1679 }
49426420 1680cleanup:
626ebc41 1681 current->memcg_in_oom = NULL;
3812c8c8 1682 css_put(&memcg->css);
867578cb 1683 return true;
0b7f569e
KH
1684}
1685
d7365e78 1686/**
81f8c3a4
JW
1687 * lock_page_memcg - lock a page->mem_cgroup binding
1688 * @page: the page
32047e2a 1689 *
81f8c3a4
JW
1690 * This function protects unlocked LRU pages from being moved to
1691 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1692 */
62cccb8c 1693void lock_page_memcg(struct page *page)
89c06bd5
KH
1694{
1695 struct mem_cgroup *memcg;
6de22619 1696 unsigned long flags;
89c06bd5 1697
6de22619
JW
1698 /*
1699 * The RCU lock is held throughout the transaction. The fast
1700 * path can get away without acquiring the memcg->move_lock
1701 * because page moving starts with an RCU grace period.
6de22619 1702 */
d7365e78
JW
1703 rcu_read_lock();
1704
1705 if (mem_cgroup_disabled())
62cccb8c 1706 return;
89c06bd5 1707again:
1306a85a 1708 memcg = page->mem_cgroup;
29833315 1709 if (unlikely(!memcg))
62cccb8c 1710 return;
d7365e78 1711
bdcbb659 1712 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1713 return;
89c06bd5 1714
6de22619 1715 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1716 if (memcg != page->mem_cgroup) {
6de22619 1717 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1718 goto again;
1719 }
6de22619
JW
1720
1721 /*
1722 * When charge migration first begins, we can have locked and
1723 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1724 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1725 */
1726 memcg->move_lock_task = current;
1727 memcg->move_lock_flags = flags;
d7365e78 1728
62cccb8c 1729 return;
89c06bd5 1730}
81f8c3a4 1731EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1732
d7365e78 1733/**
81f8c3a4 1734 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1735 * @page: the page
d7365e78 1736 */
62cccb8c 1737void unlock_page_memcg(struct page *page)
89c06bd5 1738{
62cccb8c
JW
1739 struct mem_cgroup *memcg = page->mem_cgroup;
1740
6de22619
JW
1741 if (memcg && memcg->move_lock_task == current) {
1742 unsigned long flags = memcg->move_lock_flags;
1743
1744 memcg->move_lock_task = NULL;
1745 memcg->move_lock_flags = 0;
1746
1747 spin_unlock_irqrestore(&memcg->move_lock, flags);
1748 }
89c06bd5 1749
d7365e78 1750 rcu_read_unlock();
89c06bd5 1751}
81f8c3a4 1752EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1753
cdec2e42
KH
1754/*
1755 * size of first charge trial. "32" comes from vmscan.c's magic value.
1756 * TODO: maybe necessary to use big numbers in big irons.
1757 */
7ec99d62 1758#define CHARGE_BATCH 32U
cdec2e42
KH
1759struct memcg_stock_pcp {
1760 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1761 unsigned int nr_pages;
cdec2e42 1762 struct work_struct work;
26fe6168 1763 unsigned long flags;
a0db00fc 1764#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1765};
1766static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1767static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1768
a0956d54
SS
1769/**
1770 * consume_stock: Try to consume stocked charge on this cpu.
1771 * @memcg: memcg to consume from.
1772 * @nr_pages: how many pages to charge.
1773 *
1774 * The charges will only happen if @memcg matches the current cpu's memcg
1775 * stock, and at least @nr_pages are available in that stock. Failure to
1776 * service an allocation will refill the stock.
1777 *
1778 * returns true if successful, false otherwise.
cdec2e42 1779 */
a0956d54 1780static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1781{
1782 struct memcg_stock_pcp *stock;
3e32cb2e 1783 bool ret = false;
cdec2e42 1784
a0956d54 1785 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1786 return ret;
a0956d54 1787
cdec2e42 1788 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1789 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1790 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1791 ret = true;
1792 }
cdec2e42
KH
1793 put_cpu_var(memcg_stock);
1794 return ret;
1795}
1796
1797/*
3e32cb2e 1798 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1799 */
1800static void drain_stock(struct memcg_stock_pcp *stock)
1801{
1802 struct mem_cgroup *old = stock->cached;
1803
11c9ea4e 1804 if (stock->nr_pages) {
3e32cb2e 1805 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1806 if (do_memsw_account())
3e32cb2e 1807 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1808 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1809 stock->nr_pages = 0;
cdec2e42
KH
1810 }
1811 stock->cached = NULL;
cdec2e42
KH
1812}
1813
1814/*
1815 * This must be called under preempt disabled or must be called by
1816 * a thread which is pinned to local cpu.
1817 */
1818static void drain_local_stock(struct work_struct *dummy)
1819{
7c8e0181 1820 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1821 drain_stock(stock);
26fe6168 1822 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1823}
1824
1825/*
3e32cb2e 1826 * Cache charges(val) to local per_cpu area.
320cc51d 1827 * This will be consumed by consume_stock() function, later.
cdec2e42 1828 */
c0ff4b85 1829static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1830{
1831 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1832
c0ff4b85 1833 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1834 drain_stock(stock);
c0ff4b85 1835 stock->cached = memcg;
cdec2e42 1836 }
11c9ea4e 1837 stock->nr_pages += nr_pages;
cdec2e42
KH
1838 put_cpu_var(memcg_stock);
1839}
1840
1841/*
c0ff4b85 1842 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1843 * of the hierarchy under it.
cdec2e42 1844 */
6d3d6aa2 1845static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1846{
26fe6168 1847 int cpu, curcpu;
d38144b7 1848
6d3d6aa2
JW
1849 /* If someone's already draining, avoid adding running more workers. */
1850 if (!mutex_trylock(&percpu_charge_mutex))
1851 return;
cdec2e42 1852 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1853 get_online_cpus();
5af12d0e 1854 curcpu = get_cpu();
cdec2e42
KH
1855 for_each_online_cpu(cpu) {
1856 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1857 struct mem_cgroup *memcg;
26fe6168 1858
c0ff4b85
R
1859 memcg = stock->cached;
1860 if (!memcg || !stock->nr_pages)
26fe6168 1861 continue;
2314b42d 1862 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1863 continue;
d1a05b69
MH
1864 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1865 if (cpu == curcpu)
1866 drain_local_stock(&stock->work);
1867 else
1868 schedule_work_on(cpu, &stock->work);
1869 }
cdec2e42 1870 }
5af12d0e 1871 put_cpu();
f894ffa8 1872 put_online_cpus();
9f50fad6 1873 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1874}
1875
0db0628d 1876static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1877 unsigned long action,
1878 void *hcpu)
1879{
1880 int cpu = (unsigned long)hcpu;
1881 struct memcg_stock_pcp *stock;
1882
619d094b 1883 if (action == CPU_ONLINE)
1489ebad 1884 return NOTIFY_OK;
1489ebad 1885
d833049b 1886 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1887 return NOTIFY_OK;
711d3d2c 1888
cdec2e42
KH
1889 stock = &per_cpu(memcg_stock, cpu);
1890 drain_stock(stock);
1891 return NOTIFY_OK;
1892}
1893
f7e1cb6e
JW
1894static void reclaim_high(struct mem_cgroup *memcg,
1895 unsigned int nr_pages,
1896 gfp_t gfp_mask)
1897{
1898 do {
1899 if (page_counter_read(&memcg->memory) <= memcg->high)
1900 continue;
1901 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1902 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1903 } while ((memcg = parent_mem_cgroup(memcg)));
1904}
1905
1906static void high_work_func(struct work_struct *work)
1907{
1908 struct mem_cgroup *memcg;
1909
1910 memcg = container_of(work, struct mem_cgroup, high_work);
1911 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1912}
1913
b23afb93
TH
1914/*
1915 * Scheduled by try_charge() to be executed from the userland return path
1916 * and reclaims memory over the high limit.
1917 */
1918void mem_cgroup_handle_over_high(void)
1919{
1920 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1921 struct mem_cgroup *memcg;
b23afb93
TH
1922
1923 if (likely(!nr_pages))
1924 return;
1925
f7e1cb6e
JW
1926 memcg = get_mem_cgroup_from_mm(current->mm);
1927 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1928 css_put(&memcg->css);
1929 current->memcg_nr_pages_over_high = 0;
1930}
1931
00501b53
JW
1932static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1933 unsigned int nr_pages)
8a9f3ccd 1934{
7ec99d62 1935 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1936 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1937 struct mem_cgroup *mem_over_limit;
3e32cb2e 1938 struct page_counter *counter;
6539cc05 1939 unsigned long nr_reclaimed;
b70a2a21
JW
1940 bool may_swap = true;
1941 bool drained = false;
a636b327 1942
ce00a967 1943 if (mem_cgroup_is_root(memcg))
10d53c74 1944 return 0;
6539cc05 1945retry:
b6b6cc72 1946 if (consume_stock(memcg, nr_pages))
10d53c74 1947 return 0;
8a9f3ccd 1948
7941d214 1949 if (!do_memsw_account() ||
6071ca52
JW
1950 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1951 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1952 goto done_restock;
7941d214 1953 if (do_memsw_account())
3e32cb2e
JW
1954 page_counter_uncharge(&memcg->memsw, batch);
1955 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1956 } else {
3e32cb2e 1957 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1958 may_swap = false;
3fbe7244 1959 }
7a81b88c 1960
6539cc05
JW
1961 if (batch > nr_pages) {
1962 batch = nr_pages;
1963 goto retry;
1964 }
6d61ef40 1965
06b078fc
JW
1966 /*
1967 * Unlike in global OOM situations, memcg is not in a physical
1968 * memory shortage. Allow dying and OOM-killed tasks to
1969 * bypass the last charges so that they can exit quickly and
1970 * free their memory.
1971 */
1972 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1973 fatal_signal_pending(current) ||
1974 current->flags & PF_EXITING))
10d53c74 1975 goto force;
06b078fc
JW
1976
1977 if (unlikely(task_in_memcg_oom(current)))
1978 goto nomem;
1979
d0164adc 1980 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1981 goto nomem;
4b534334 1982
241994ed
JW
1983 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1984
b70a2a21
JW
1985 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1986 gfp_mask, may_swap);
6539cc05 1987
61e02c74 1988 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1989 goto retry;
28c34c29 1990
b70a2a21 1991 if (!drained) {
6d3d6aa2 1992 drain_all_stock(mem_over_limit);
b70a2a21
JW
1993 drained = true;
1994 goto retry;
1995 }
1996
28c34c29
JW
1997 if (gfp_mask & __GFP_NORETRY)
1998 goto nomem;
6539cc05
JW
1999 /*
2000 * Even though the limit is exceeded at this point, reclaim
2001 * may have been able to free some pages. Retry the charge
2002 * before killing the task.
2003 *
2004 * Only for regular pages, though: huge pages are rather
2005 * unlikely to succeed so close to the limit, and we fall back
2006 * to regular pages anyway in case of failure.
2007 */
61e02c74 2008 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2009 goto retry;
2010 /*
2011 * At task move, charge accounts can be doubly counted. So, it's
2012 * better to wait until the end of task_move if something is going on.
2013 */
2014 if (mem_cgroup_wait_acct_move(mem_over_limit))
2015 goto retry;
2016
9b130619
JW
2017 if (nr_retries--)
2018 goto retry;
2019
06b078fc 2020 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2021 goto force;
06b078fc 2022
6539cc05 2023 if (fatal_signal_pending(current))
10d53c74 2024 goto force;
6539cc05 2025
241994ed
JW
2026 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2027
3608de07
JM
2028 mem_cgroup_oom(mem_over_limit, gfp_mask,
2029 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2030nomem:
6d1fdc48 2031 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2032 return -ENOMEM;
10d53c74
TH
2033force:
2034 /*
2035 * The allocation either can't fail or will lead to more memory
2036 * being freed very soon. Allow memory usage go over the limit
2037 * temporarily by force charging it.
2038 */
2039 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2040 if (do_memsw_account())
10d53c74
TH
2041 page_counter_charge(&memcg->memsw, nr_pages);
2042 css_get_many(&memcg->css, nr_pages);
2043
2044 return 0;
6539cc05
JW
2045
2046done_restock:
e8ea14cc 2047 css_get_many(&memcg->css, batch);
6539cc05
JW
2048 if (batch > nr_pages)
2049 refill_stock(memcg, batch - nr_pages);
b23afb93 2050
241994ed 2051 /*
b23afb93
TH
2052 * If the hierarchy is above the normal consumption range, schedule
2053 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2054 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2055 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2056 * not recorded as it most likely matches current's and won't
2057 * change in the meantime. As high limit is checked again before
2058 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2059 */
2060 do {
b23afb93 2061 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2062 /* Don't bother a random interrupted task */
2063 if (in_interrupt()) {
2064 schedule_work(&memcg->high_work);
2065 break;
2066 }
9516a18a 2067 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2068 set_notify_resume(current);
2069 break;
2070 }
241994ed 2071 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2072
2073 return 0;
7a81b88c 2074}
8a9f3ccd 2075
00501b53 2076static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2077{
ce00a967
JW
2078 if (mem_cgroup_is_root(memcg))
2079 return;
2080
3e32cb2e 2081 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2082 if (do_memsw_account())
3e32cb2e 2083 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2084
e8ea14cc 2085 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2086}
2087
0a31bc97
JW
2088static void lock_page_lru(struct page *page, int *isolated)
2089{
2090 struct zone *zone = page_zone(page);
2091
2092 spin_lock_irq(&zone->lru_lock);
2093 if (PageLRU(page)) {
2094 struct lruvec *lruvec;
2095
2096 lruvec = mem_cgroup_page_lruvec(page, zone);
2097 ClearPageLRU(page);
2098 del_page_from_lru_list(page, lruvec, page_lru(page));
2099 *isolated = 1;
2100 } else
2101 *isolated = 0;
2102}
2103
2104static void unlock_page_lru(struct page *page, int isolated)
2105{
2106 struct zone *zone = page_zone(page);
2107
2108 if (isolated) {
2109 struct lruvec *lruvec;
2110
2111 lruvec = mem_cgroup_page_lruvec(page, zone);
2112 VM_BUG_ON_PAGE(PageLRU(page), page);
2113 SetPageLRU(page);
2114 add_page_to_lru_list(page, lruvec, page_lru(page));
2115 }
2116 spin_unlock_irq(&zone->lru_lock);
2117}
2118
00501b53 2119static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2120 bool lrucare)
7a81b88c 2121{
0a31bc97 2122 int isolated;
9ce70c02 2123
1306a85a 2124 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2125
2126 /*
2127 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2128 * may already be on some other mem_cgroup's LRU. Take care of it.
2129 */
0a31bc97
JW
2130 if (lrucare)
2131 lock_page_lru(page, &isolated);
9ce70c02 2132
0a31bc97
JW
2133 /*
2134 * Nobody should be changing or seriously looking at
1306a85a 2135 * page->mem_cgroup at this point:
0a31bc97
JW
2136 *
2137 * - the page is uncharged
2138 *
2139 * - the page is off-LRU
2140 *
2141 * - an anonymous fault has exclusive page access, except for
2142 * a locked page table
2143 *
2144 * - a page cache insertion, a swapin fault, or a migration
2145 * have the page locked
2146 */
1306a85a 2147 page->mem_cgroup = memcg;
9ce70c02 2148
0a31bc97
JW
2149 if (lrucare)
2150 unlock_page_lru(page, isolated);
7a81b88c 2151}
66e1707b 2152
127424c8 2153#ifndef CONFIG_SLOB
f3bb3043 2154static int memcg_alloc_cache_id(void)
55007d84 2155{
f3bb3043
VD
2156 int id, size;
2157 int err;
2158
dbcf73e2 2159 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2160 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2161 if (id < 0)
2162 return id;
55007d84 2163
dbcf73e2 2164 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2165 return id;
2166
2167 /*
2168 * There's no space for the new id in memcg_caches arrays,
2169 * so we have to grow them.
2170 */
05257a1a 2171 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2172
2173 size = 2 * (id + 1);
55007d84
GC
2174 if (size < MEMCG_CACHES_MIN_SIZE)
2175 size = MEMCG_CACHES_MIN_SIZE;
2176 else if (size > MEMCG_CACHES_MAX_SIZE)
2177 size = MEMCG_CACHES_MAX_SIZE;
2178
f3bb3043 2179 err = memcg_update_all_caches(size);
60d3fd32
VD
2180 if (!err)
2181 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2182 if (!err)
2183 memcg_nr_cache_ids = size;
2184
2185 up_write(&memcg_cache_ids_sem);
2186
f3bb3043 2187 if (err) {
dbcf73e2 2188 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2189 return err;
2190 }
2191 return id;
2192}
2193
2194static void memcg_free_cache_id(int id)
2195{
dbcf73e2 2196 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2197}
2198
d5b3cf71 2199struct memcg_kmem_cache_create_work {
5722d094
VD
2200 struct mem_cgroup *memcg;
2201 struct kmem_cache *cachep;
2202 struct work_struct work;
2203};
2204
d5b3cf71 2205static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2206{
d5b3cf71
VD
2207 struct memcg_kmem_cache_create_work *cw =
2208 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2209 struct mem_cgroup *memcg = cw->memcg;
2210 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2211
d5b3cf71 2212 memcg_create_kmem_cache(memcg, cachep);
bd673145 2213
5722d094 2214 css_put(&memcg->css);
d7f25f8a
GC
2215 kfree(cw);
2216}
2217
2218/*
2219 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2220 */
d5b3cf71
VD
2221static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2222 struct kmem_cache *cachep)
d7f25f8a 2223{
d5b3cf71 2224 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2225
776ed0f0 2226 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2227 if (!cw)
d7f25f8a 2228 return;
8135be5a
VD
2229
2230 css_get(&memcg->css);
d7f25f8a
GC
2231
2232 cw->memcg = memcg;
2233 cw->cachep = cachep;
d5b3cf71 2234 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2235
d7f25f8a
GC
2236 schedule_work(&cw->work);
2237}
2238
d5b3cf71
VD
2239static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2240 struct kmem_cache *cachep)
0e9d92f2
GC
2241{
2242 /*
2243 * We need to stop accounting when we kmalloc, because if the
2244 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2245 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2246 *
2247 * However, it is better to enclose the whole function. Depending on
2248 * the debugging options enabled, INIT_WORK(), for instance, can
2249 * trigger an allocation. This too, will make us recurse. Because at
2250 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2251 * the safest choice is to do it like this, wrapping the whole function.
2252 */
6f185c29 2253 current->memcg_kmem_skip_account = 1;
d5b3cf71 2254 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2255 current->memcg_kmem_skip_account = 0;
0e9d92f2 2256}
c67a8a68 2257
d7f25f8a
GC
2258/*
2259 * Return the kmem_cache we're supposed to use for a slab allocation.
2260 * We try to use the current memcg's version of the cache.
2261 *
2262 * If the cache does not exist yet, if we are the first user of it,
2263 * we either create it immediately, if possible, or create it asynchronously
2264 * in a workqueue.
2265 * In the latter case, we will let the current allocation go through with
2266 * the original cache.
2267 *
2268 * Can't be called in interrupt context or from kernel threads.
2269 * This function needs to be called with rcu_read_lock() held.
2270 */
230e9fc2 2271struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2272{
2273 struct mem_cgroup *memcg;
959c8963 2274 struct kmem_cache *memcg_cachep;
2a4db7eb 2275 int kmemcg_id;
d7f25f8a 2276
f7ce3190 2277 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2278
230e9fc2
VD
2279 if (cachep->flags & SLAB_ACCOUNT)
2280 gfp |= __GFP_ACCOUNT;
2281
2282 if (!(gfp & __GFP_ACCOUNT))
2283 return cachep;
2284
9d100c5e 2285 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2286 return cachep;
2287
8135be5a 2288 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2289 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2290 if (kmemcg_id < 0)
ca0dde97 2291 goto out;
d7f25f8a 2292
2a4db7eb 2293 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2294 if (likely(memcg_cachep))
2295 return memcg_cachep;
ca0dde97
LZ
2296
2297 /*
2298 * If we are in a safe context (can wait, and not in interrupt
2299 * context), we could be be predictable and return right away.
2300 * This would guarantee that the allocation being performed
2301 * already belongs in the new cache.
2302 *
2303 * However, there are some clashes that can arrive from locking.
2304 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2305 * memcg_create_kmem_cache, this means no further allocation
2306 * could happen with the slab_mutex held. So it's better to
2307 * defer everything.
ca0dde97 2308 */
d5b3cf71 2309 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2310out:
8135be5a 2311 css_put(&memcg->css);
ca0dde97 2312 return cachep;
d7f25f8a 2313}
d7f25f8a 2314
8135be5a
VD
2315void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2316{
2317 if (!is_root_cache(cachep))
f7ce3190 2318 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2319}
2320
f3ccb2c4
VD
2321int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2322 struct mem_cgroup *memcg)
7ae1e1d0 2323{
f3ccb2c4
VD
2324 unsigned int nr_pages = 1 << order;
2325 struct page_counter *counter;
7ae1e1d0
GC
2326 int ret;
2327
f3ccb2c4 2328 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2329 if (ret)
f3ccb2c4 2330 return ret;
52c29b04
JW
2331
2332 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2333 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2334 cancel_charge(memcg, nr_pages);
2335 return -ENOMEM;
7ae1e1d0
GC
2336 }
2337
f3ccb2c4 2338 page->mem_cgroup = memcg;
7ae1e1d0 2339
f3ccb2c4 2340 return 0;
7ae1e1d0
GC
2341}
2342
f3ccb2c4 2343int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2344{
f3ccb2c4 2345 struct mem_cgroup *memcg;
fcff7d7e 2346 int ret = 0;
7ae1e1d0 2347
f3ccb2c4 2348 memcg = get_mem_cgroup_from_mm(current->mm);
fcff7d7e
VD
2349 if (memcg_kmem_online(memcg))
2350 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2351 css_put(&memcg->css);
d05e83a6 2352 return ret;
7ae1e1d0
GC
2353}
2354
d05e83a6 2355void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2356{
1306a85a 2357 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2358 unsigned int nr_pages = 1 << order;
7ae1e1d0 2359
7ae1e1d0
GC
2360 if (!memcg)
2361 return;
2362
309381fe 2363 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2364
52c29b04
JW
2365 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2366 page_counter_uncharge(&memcg->kmem, nr_pages);
2367
f3ccb2c4 2368 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2369 if (do_memsw_account())
f3ccb2c4 2370 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2371
1306a85a 2372 page->mem_cgroup = NULL;
f3ccb2c4 2373 css_put_many(&memcg->css, nr_pages);
60d3fd32 2374}
127424c8 2375#endif /* !CONFIG_SLOB */
7ae1e1d0 2376
ca3e0214
KH
2377#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2378
ca3e0214
KH
2379/*
2380 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2381 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2382 */
e94c8a9c 2383void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2384{
e94c8a9c 2385 int i;
ca3e0214 2386
3d37c4a9
KH
2387 if (mem_cgroup_disabled())
2388 return;
b070e65c 2389
29833315 2390 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2391 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2392
1306a85a 2393 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2394 HPAGE_PMD_NR);
ca3e0214 2395}
12d27107 2396#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2397
c255a458 2398#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2399static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2400 bool charge)
d13d1443 2401{
0a31bc97
JW
2402 int val = (charge) ? 1 : -1;
2403 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2404}
02491447
DN
2405
2406/**
2407 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2408 * @entry: swap entry to be moved
2409 * @from: mem_cgroup which the entry is moved from
2410 * @to: mem_cgroup which the entry is moved to
2411 *
2412 * It succeeds only when the swap_cgroup's record for this entry is the same
2413 * as the mem_cgroup's id of @from.
2414 *
2415 * Returns 0 on success, -EINVAL on failure.
2416 *
3e32cb2e 2417 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2418 * both res and memsw, and called css_get().
2419 */
2420static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2421 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2422{
2423 unsigned short old_id, new_id;
2424
34c00c31
LZ
2425 old_id = mem_cgroup_id(from);
2426 new_id = mem_cgroup_id(to);
02491447
DN
2427
2428 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2429 mem_cgroup_swap_statistics(from, false);
483c30b5 2430 mem_cgroup_swap_statistics(to, true);
02491447
DN
2431 return 0;
2432 }
2433 return -EINVAL;
2434}
2435#else
2436static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2437 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2438{
2439 return -EINVAL;
2440}
8c7c6e34 2441#endif
d13d1443 2442
3e32cb2e 2443static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2444
d38d2a75 2445static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2446 unsigned long limit)
628f4235 2447{
3e32cb2e
JW
2448 unsigned long curusage;
2449 unsigned long oldusage;
2450 bool enlarge = false;
81d39c20 2451 int retry_count;
3e32cb2e 2452 int ret;
81d39c20
KH
2453
2454 /*
2455 * For keeping hierarchical_reclaim simple, how long we should retry
2456 * is depends on callers. We set our retry-count to be function
2457 * of # of children which we should visit in this loop.
2458 */
3e32cb2e
JW
2459 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2460 mem_cgroup_count_children(memcg);
81d39c20 2461
3e32cb2e 2462 oldusage = page_counter_read(&memcg->memory);
628f4235 2463
3e32cb2e 2464 do {
628f4235
KH
2465 if (signal_pending(current)) {
2466 ret = -EINTR;
2467 break;
2468 }
3e32cb2e
JW
2469
2470 mutex_lock(&memcg_limit_mutex);
2471 if (limit > memcg->memsw.limit) {
2472 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2473 ret = -EINVAL;
628f4235
KH
2474 break;
2475 }
3e32cb2e
JW
2476 if (limit > memcg->memory.limit)
2477 enlarge = true;
2478 ret = page_counter_limit(&memcg->memory, limit);
2479 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2480
2481 if (!ret)
2482 break;
2483
b70a2a21
JW
2484 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2485
3e32cb2e 2486 curusage = page_counter_read(&memcg->memory);
81d39c20 2487 /* Usage is reduced ? */
f894ffa8 2488 if (curusage >= oldusage)
81d39c20
KH
2489 retry_count--;
2490 else
2491 oldusage = curusage;
3e32cb2e
JW
2492 } while (retry_count);
2493
3c11ecf4
KH
2494 if (!ret && enlarge)
2495 memcg_oom_recover(memcg);
14797e23 2496
8c7c6e34
KH
2497 return ret;
2498}
2499
338c8431 2500static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2501 unsigned long limit)
8c7c6e34 2502{
3e32cb2e
JW
2503 unsigned long curusage;
2504 unsigned long oldusage;
2505 bool enlarge = false;
81d39c20 2506 int retry_count;
3e32cb2e 2507 int ret;
8c7c6e34 2508
81d39c20 2509 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2510 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2511 mem_cgroup_count_children(memcg);
2512
2513 oldusage = page_counter_read(&memcg->memsw);
2514
2515 do {
8c7c6e34
KH
2516 if (signal_pending(current)) {
2517 ret = -EINTR;
2518 break;
2519 }
3e32cb2e
JW
2520
2521 mutex_lock(&memcg_limit_mutex);
2522 if (limit < memcg->memory.limit) {
2523 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2524 ret = -EINVAL;
8c7c6e34
KH
2525 break;
2526 }
3e32cb2e
JW
2527 if (limit > memcg->memsw.limit)
2528 enlarge = true;
2529 ret = page_counter_limit(&memcg->memsw, limit);
2530 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2531
2532 if (!ret)
2533 break;
2534
b70a2a21
JW
2535 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2536
3e32cb2e 2537 curusage = page_counter_read(&memcg->memsw);
81d39c20 2538 /* Usage is reduced ? */
8c7c6e34 2539 if (curusage >= oldusage)
628f4235 2540 retry_count--;
81d39c20
KH
2541 else
2542 oldusage = curusage;
3e32cb2e
JW
2543 } while (retry_count);
2544
3c11ecf4
KH
2545 if (!ret && enlarge)
2546 memcg_oom_recover(memcg);
3e32cb2e 2547
628f4235
KH
2548 return ret;
2549}
2550
0608f43d
AM
2551unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2552 gfp_t gfp_mask,
2553 unsigned long *total_scanned)
2554{
2555 unsigned long nr_reclaimed = 0;
2556 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2557 unsigned long reclaimed;
2558 int loop = 0;
2559 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2560 unsigned long excess;
0608f43d
AM
2561 unsigned long nr_scanned;
2562
2563 if (order > 0)
2564 return 0;
2565
2566 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2567 /*
2568 * This loop can run a while, specially if mem_cgroup's continuously
2569 * keep exceeding their soft limit and putting the system under
2570 * pressure
2571 */
2572 do {
2573 if (next_mz)
2574 mz = next_mz;
2575 else
2576 mz = mem_cgroup_largest_soft_limit_node(mctz);
2577 if (!mz)
2578 break;
2579
2580 nr_scanned = 0;
2581 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2582 gfp_mask, &nr_scanned);
2583 nr_reclaimed += reclaimed;
2584 *total_scanned += nr_scanned;
0a31bc97 2585 spin_lock_irq(&mctz->lock);
bc2f2e7f 2586 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2587
2588 /*
2589 * If we failed to reclaim anything from this memory cgroup
2590 * it is time to move on to the next cgroup
2591 */
2592 next_mz = NULL;
bc2f2e7f
VD
2593 if (!reclaimed)
2594 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2595
3e32cb2e 2596 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2597 /*
2598 * One school of thought says that we should not add
2599 * back the node to the tree if reclaim returns 0.
2600 * But our reclaim could return 0, simply because due
2601 * to priority we are exposing a smaller subset of
2602 * memory to reclaim from. Consider this as a longer
2603 * term TODO.
2604 */
2605 /* If excess == 0, no tree ops */
cf2c8127 2606 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2607 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2608 css_put(&mz->memcg->css);
2609 loop++;
2610 /*
2611 * Could not reclaim anything and there are no more
2612 * mem cgroups to try or we seem to be looping without
2613 * reclaiming anything.
2614 */
2615 if (!nr_reclaimed &&
2616 (next_mz == NULL ||
2617 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2618 break;
2619 } while (!nr_reclaimed);
2620 if (next_mz)
2621 css_put(&next_mz->memcg->css);
2622 return nr_reclaimed;
2623}
2624
ea280e7b
TH
2625/*
2626 * Test whether @memcg has children, dead or alive. Note that this
2627 * function doesn't care whether @memcg has use_hierarchy enabled and
2628 * returns %true if there are child csses according to the cgroup
2629 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2630 */
b5f99b53
GC
2631static inline bool memcg_has_children(struct mem_cgroup *memcg)
2632{
ea280e7b
TH
2633 bool ret;
2634
ea280e7b
TH
2635 rcu_read_lock();
2636 ret = css_next_child(NULL, &memcg->css);
2637 rcu_read_unlock();
2638 return ret;
b5f99b53
GC
2639}
2640
c26251f9
MH
2641/*
2642 * Reclaims as many pages from the given memcg as possible and moves
2643 * the rest to the parent.
2644 *
2645 * Caller is responsible for holding css reference for memcg.
2646 */
2647static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2648{
2649 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2650
c1e862c1
KH
2651 /* we call try-to-free pages for make this cgroup empty */
2652 lru_add_drain_all();
f817ed48 2653 /* try to free all pages in this cgroup */
3e32cb2e 2654 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2655 int progress;
c1e862c1 2656
c26251f9
MH
2657 if (signal_pending(current))
2658 return -EINTR;
2659
b70a2a21
JW
2660 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2661 GFP_KERNEL, true);
c1e862c1 2662 if (!progress) {
f817ed48 2663 nr_retries--;
c1e862c1 2664 /* maybe some writeback is necessary */
8aa7e847 2665 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2666 }
f817ed48
KH
2667
2668 }
ab5196c2
MH
2669
2670 return 0;
cc847582
KH
2671}
2672
6770c64e
TH
2673static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2674 char *buf, size_t nbytes,
2675 loff_t off)
c1e862c1 2676{
6770c64e 2677 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2678
d8423011
MH
2679 if (mem_cgroup_is_root(memcg))
2680 return -EINVAL;
6770c64e 2681 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2682}
2683
182446d0
TH
2684static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2685 struct cftype *cft)
18f59ea7 2686{
182446d0 2687 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2688}
2689
182446d0
TH
2690static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2691 struct cftype *cft, u64 val)
18f59ea7
BS
2692{
2693 int retval = 0;
182446d0 2694 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2695 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2696
567fb435 2697 if (memcg->use_hierarchy == val)
0b8f73e1 2698 return 0;
567fb435 2699
18f59ea7 2700 /*
af901ca1 2701 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2702 * in the child subtrees. If it is unset, then the change can
2703 * occur, provided the current cgroup has no children.
2704 *
2705 * For the root cgroup, parent_mem is NULL, we allow value to be
2706 * set if there are no children.
2707 */
c0ff4b85 2708 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2709 (val == 1 || val == 0)) {
ea280e7b 2710 if (!memcg_has_children(memcg))
c0ff4b85 2711 memcg->use_hierarchy = val;
18f59ea7
BS
2712 else
2713 retval = -EBUSY;
2714 } else
2715 retval = -EINVAL;
567fb435 2716
18f59ea7
BS
2717 return retval;
2718}
2719
72b54e73 2720static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2721{
2722 struct mem_cgroup *iter;
72b54e73 2723 int i;
ce00a967 2724
72b54e73 2725 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2726
72b54e73
VD
2727 for_each_mem_cgroup_tree(iter, memcg) {
2728 for (i = 0; i < MEMCG_NR_STAT; i++)
2729 stat[i] += mem_cgroup_read_stat(iter, i);
2730 }
ce00a967
JW
2731}
2732
72b54e73 2733static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2734{
2735 struct mem_cgroup *iter;
72b54e73 2736 int i;
587d9f72 2737
72b54e73 2738 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2739
72b54e73
VD
2740 for_each_mem_cgroup_tree(iter, memcg) {
2741 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2742 events[i] += mem_cgroup_read_events(iter, i);
2743 }
587d9f72
JW
2744}
2745
6f646156 2746static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2747{
72b54e73 2748 unsigned long val = 0;
ce00a967 2749
3e32cb2e 2750 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2751 struct mem_cgroup *iter;
2752
2753 for_each_mem_cgroup_tree(iter, memcg) {
2754 val += mem_cgroup_read_stat(iter,
2755 MEM_CGROUP_STAT_CACHE);
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_RSS);
2758 if (swap)
2759 val += mem_cgroup_read_stat(iter,
2760 MEM_CGROUP_STAT_SWAP);
2761 }
3e32cb2e 2762 } else {
ce00a967 2763 if (!swap)
3e32cb2e 2764 val = page_counter_read(&memcg->memory);
ce00a967 2765 else
3e32cb2e 2766 val = page_counter_read(&memcg->memsw);
ce00a967 2767 }
c12176d3 2768 return val;
ce00a967
JW
2769}
2770
3e32cb2e
JW
2771enum {
2772 RES_USAGE,
2773 RES_LIMIT,
2774 RES_MAX_USAGE,
2775 RES_FAILCNT,
2776 RES_SOFT_LIMIT,
2777};
ce00a967 2778
791badbd 2779static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2780 struct cftype *cft)
8cdea7c0 2781{
182446d0 2782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2783 struct page_counter *counter;
af36f906 2784
3e32cb2e 2785 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2786 case _MEM:
3e32cb2e
JW
2787 counter = &memcg->memory;
2788 break;
8c7c6e34 2789 case _MEMSWAP:
3e32cb2e
JW
2790 counter = &memcg->memsw;
2791 break;
510fc4e1 2792 case _KMEM:
3e32cb2e 2793 counter = &memcg->kmem;
510fc4e1 2794 break;
d55f90bf 2795 case _TCP:
0db15298 2796 counter = &memcg->tcpmem;
d55f90bf 2797 break;
8c7c6e34
KH
2798 default:
2799 BUG();
8c7c6e34 2800 }
3e32cb2e
JW
2801
2802 switch (MEMFILE_ATTR(cft->private)) {
2803 case RES_USAGE:
2804 if (counter == &memcg->memory)
c12176d3 2805 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2806 if (counter == &memcg->memsw)
c12176d3 2807 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2808 return (u64)page_counter_read(counter) * PAGE_SIZE;
2809 case RES_LIMIT:
2810 return (u64)counter->limit * PAGE_SIZE;
2811 case RES_MAX_USAGE:
2812 return (u64)counter->watermark * PAGE_SIZE;
2813 case RES_FAILCNT:
2814 return counter->failcnt;
2815 case RES_SOFT_LIMIT:
2816 return (u64)memcg->soft_limit * PAGE_SIZE;
2817 default:
2818 BUG();
2819 }
8cdea7c0 2820}
510fc4e1 2821
127424c8 2822#ifndef CONFIG_SLOB
567e9ab2 2823static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2824{
d6441637
VD
2825 int memcg_id;
2826
2a4db7eb 2827 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2828 BUG_ON(memcg->kmem_state);
d6441637 2829
f3bb3043 2830 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2831 if (memcg_id < 0)
2832 return memcg_id;
d6441637 2833
ef12947c 2834 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2835 /*
567e9ab2 2836 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2837 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
900a38f0 2841 memcg->kmemcg_id = memcg_id;
567e9ab2 2842 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2843
2844 return 0;
d6441637
VD
2845}
2846
0b8f73e1
JW
2847static int memcg_propagate_kmem(struct mem_cgroup *parent,
2848 struct mem_cgroup *memcg)
510fc4e1 2849{
55007d84 2850 int ret = 0;
55007d84 2851
8c0145b6 2852 mutex_lock(&memcg_limit_mutex);
55007d84 2853 /*
567e9ab2
JW
2854 * If the parent cgroup is not kmem-online now, it cannot be
2855 * onlined after this point, because it has at least one child
2856 * already.
55007d84 2857 */
04823c83
VD
2858 if (memcg_kmem_online(parent) ||
2859 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
567e9ab2 2860 ret = memcg_online_kmem(memcg);
8c0145b6 2861 mutex_unlock(&memcg_limit_mutex);
55007d84 2862 return ret;
510fc4e1 2863}
8e0a8912 2864
8e0a8912
JW
2865static void memcg_offline_kmem(struct mem_cgroup *memcg)
2866{
2867 struct cgroup_subsys_state *css;
2868 struct mem_cgroup *parent, *child;
2869 int kmemcg_id;
2870
2871 if (memcg->kmem_state != KMEM_ONLINE)
2872 return;
2873 /*
2874 * Clear the online state before clearing memcg_caches array
2875 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2876 * guarantees that no cache will be created for this cgroup
2877 * after we are done (see memcg_create_kmem_cache()).
2878 */
2879 memcg->kmem_state = KMEM_ALLOCATED;
2880
2881 memcg_deactivate_kmem_caches(memcg);
2882
2883 kmemcg_id = memcg->kmemcg_id;
2884 BUG_ON(kmemcg_id < 0);
2885
2886 parent = parent_mem_cgroup(memcg);
2887 if (!parent)
2888 parent = root_mem_cgroup;
2889
2890 /*
2891 * Change kmemcg_id of this cgroup and all its descendants to the
2892 * parent's id, and then move all entries from this cgroup's list_lrus
2893 * to ones of the parent. After we have finished, all list_lrus
2894 * corresponding to this cgroup are guaranteed to remain empty. The
2895 * ordering is imposed by list_lru_node->lock taken by
2896 * memcg_drain_all_list_lrus().
2897 */
2898 css_for_each_descendant_pre(css, &memcg->css) {
2899 child = mem_cgroup_from_css(css);
2900 BUG_ON(child->kmemcg_id != kmemcg_id);
2901 child->kmemcg_id = parent->kmemcg_id;
2902 if (!memcg->use_hierarchy)
2903 break;
2904 }
2905 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2906
2907 memcg_free_cache_id(kmemcg_id);
2908}
2909
2910static void memcg_free_kmem(struct mem_cgroup *memcg)
2911{
0b8f73e1
JW
2912 /* css_alloc() failed, offlining didn't happen */
2913 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2914 memcg_offline_kmem(memcg);
2915
8e0a8912
JW
2916 if (memcg->kmem_state == KMEM_ALLOCATED) {
2917 memcg_destroy_kmem_caches(memcg);
2918 static_branch_dec(&memcg_kmem_enabled_key);
2919 WARN_ON(page_counter_read(&memcg->kmem));
2920 }
8e0a8912 2921}
d6441637 2922#else
0b8f73e1
JW
2923static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2924{
2925 return 0;
2926}
2927static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2928{
2929 return 0;
2930}
2931static void memcg_offline_kmem(struct mem_cgroup *memcg)
2932{
2933}
2934static void memcg_free_kmem(struct mem_cgroup *memcg)
2935{
2936}
2937#endif /* !CONFIG_SLOB */
2938
d6441637 2939static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2940 unsigned long limit)
d6441637 2941{
0b8f73e1 2942 int ret = 0;
127424c8
JW
2943
2944 mutex_lock(&memcg_limit_mutex);
2945 /* Top-level cgroup doesn't propagate from root */
2946 if (!memcg_kmem_online(memcg)) {
0b8f73e1
JW
2947 if (cgroup_is_populated(memcg->css.cgroup) ||
2948 (memcg->use_hierarchy && memcg_has_children(memcg)))
2949 ret = -EBUSY;
2950 if (ret)
2951 goto out;
127424c8
JW
2952 ret = memcg_online_kmem(memcg);
2953 if (ret)
2954 goto out;
2955 }
2956 ret = page_counter_limit(&memcg->kmem, limit);
2957out:
2958 mutex_unlock(&memcg_limit_mutex);
2959 return ret;
d6441637 2960}
510fc4e1 2961
d55f90bf
VD
2962static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2963{
2964 int ret;
2965
2966 mutex_lock(&memcg_limit_mutex);
2967
0db15298 2968 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2969 if (ret)
2970 goto out;
2971
0db15298 2972 if (!memcg->tcpmem_active) {
d55f90bf
VD
2973 /*
2974 * The active flag needs to be written after the static_key
2975 * update. This is what guarantees that the socket activation
2976 * function is the last one to run. See sock_update_memcg() for
2977 * details, and note that we don't mark any socket as belonging
2978 * to this memcg until that flag is up.
2979 *
2980 * We need to do this, because static_keys will span multiple
2981 * sites, but we can't control their order. If we mark a socket
2982 * as accounted, but the accounting functions are not patched in
2983 * yet, we'll lose accounting.
2984 *
2985 * We never race with the readers in sock_update_memcg(),
2986 * because when this value change, the code to process it is not
2987 * patched in yet.
2988 */
2989 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2990 memcg->tcpmem_active = true;
d55f90bf
VD
2991 }
2992out:
2993 mutex_unlock(&memcg_limit_mutex);
2994 return ret;
2995}
d55f90bf 2996
628f4235
KH
2997/*
2998 * The user of this function is...
2999 * RES_LIMIT.
3000 */
451af504
TH
3001static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3002 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3003{
451af504 3004 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3005 unsigned long nr_pages;
628f4235
KH
3006 int ret;
3007
451af504 3008 buf = strstrip(buf);
650c5e56 3009 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3010 if (ret)
3011 return ret;
af36f906 3012
3e32cb2e 3013 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3014 case RES_LIMIT:
4b3bde4c
BS
3015 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3016 ret = -EINVAL;
3017 break;
3018 }
3e32cb2e
JW
3019 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3020 case _MEM:
3021 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3022 break;
3e32cb2e
JW
3023 case _MEMSWAP:
3024 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3025 break;
3e32cb2e
JW
3026 case _KMEM:
3027 ret = memcg_update_kmem_limit(memcg, nr_pages);
3028 break;
d55f90bf
VD
3029 case _TCP:
3030 ret = memcg_update_tcp_limit(memcg, nr_pages);
3031 break;
3e32cb2e 3032 }
296c81d8 3033 break;
3e32cb2e
JW
3034 case RES_SOFT_LIMIT:
3035 memcg->soft_limit = nr_pages;
3036 ret = 0;
628f4235
KH
3037 break;
3038 }
451af504 3039 return ret ?: nbytes;
8cdea7c0
BS
3040}
3041
6770c64e
TH
3042static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3043 size_t nbytes, loff_t off)
c84872e1 3044{
6770c64e 3045 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3046 struct page_counter *counter;
c84872e1 3047
3e32cb2e
JW
3048 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3049 case _MEM:
3050 counter = &memcg->memory;
3051 break;
3052 case _MEMSWAP:
3053 counter = &memcg->memsw;
3054 break;
3055 case _KMEM:
3056 counter = &memcg->kmem;
3057 break;
d55f90bf 3058 case _TCP:
0db15298 3059 counter = &memcg->tcpmem;
d55f90bf 3060 break;
3e32cb2e
JW
3061 default:
3062 BUG();
3063 }
af36f906 3064
3e32cb2e 3065 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3066 case RES_MAX_USAGE:
3e32cb2e 3067 page_counter_reset_watermark(counter);
29f2a4da
PE
3068 break;
3069 case RES_FAILCNT:
3e32cb2e 3070 counter->failcnt = 0;
29f2a4da 3071 break;
3e32cb2e
JW
3072 default:
3073 BUG();
29f2a4da 3074 }
f64c3f54 3075
6770c64e 3076 return nbytes;
c84872e1
PE
3077}
3078
182446d0 3079static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3080 struct cftype *cft)
3081{
182446d0 3082 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3083}
3084
02491447 3085#ifdef CONFIG_MMU
182446d0 3086static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3087 struct cftype *cft, u64 val)
3088{
182446d0 3089 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3090
1dfab5ab 3091 if (val & ~MOVE_MASK)
7dc74be0 3092 return -EINVAL;
ee5e8472 3093
7dc74be0 3094 /*
ee5e8472
GC
3095 * No kind of locking is needed in here, because ->can_attach() will
3096 * check this value once in the beginning of the process, and then carry
3097 * on with stale data. This means that changes to this value will only
3098 * affect task migrations starting after the change.
7dc74be0 3099 */
c0ff4b85 3100 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3101 return 0;
3102}
02491447 3103#else
182446d0 3104static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3105 struct cftype *cft, u64 val)
3106{
3107 return -ENOSYS;
3108}
3109#endif
7dc74be0 3110
406eb0c9 3111#ifdef CONFIG_NUMA
2da8ca82 3112static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3113{
25485de6
GT
3114 struct numa_stat {
3115 const char *name;
3116 unsigned int lru_mask;
3117 };
3118
3119 static const struct numa_stat stats[] = {
3120 { "total", LRU_ALL },
3121 { "file", LRU_ALL_FILE },
3122 { "anon", LRU_ALL_ANON },
3123 { "unevictable", BIT(LRU_UNEVICTABLE) },
3124 };
3125 const struct numa_stat *stat;
406eb0c9 3126 int nid;
25485de6 3127 unsigned long nr;
2da8ca82 3128 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3129
25485de6
GT
3130 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3131 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3132 seq_printf(m, "%s=%lu", stat->name, nr);
3133 for_each_node_state(nid, N_MEMORY) {
3134 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3135 stat->lru_mask);
3136 seq_printf(m, " N%d=%lu", nid, nr);
3137 }
3138 seq_putc(m, '\n');
406eb0c9 3139 }
406eb0c9 3140
071aee13
YH
3141 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3142 struct mem_cgroup *iter;
3143
3144 nr = 0;
3145 for_each_mem_cgroup_tree(iter, memcg)
3146 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3147 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3148 for_each_node_state(nid, N_MEMORY) {
3149 nr = 0;
3150 for_each_mem_cgroup_tree(iter, memcg)
3151 nr += mem_cgroup_node_nr_lru_pages(
3152 iter, nid, stat->lru_mask);
3153 seq_printf(m, " N%d=%lu", nid, nr);
3154 }
3155 seq_putc(m, '\n');
406eb0c9 3156 }
406eb0c9 3157
406eb0c9
YH
3158 return 0;
3159}
3160#endif /* CONFIG_NUMA */
3161
2da8ca82 3162static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3163{
2da8ca82 3164 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3165 unsigned long memory, memsw;
af7c4b0e
JW
3166 struct mem_cgroup *mi;
3167 unsigned int i;
406eb0c9 3168
0ca44b14
GT
3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3170 MEM_CGROUP_STAT_NSTATS);
3171 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3172 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3173 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3174
af7c4b0e 3175 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3176 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3177 continue;
484ebb3b 3178 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3179 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3180 }
7b854121 3181
af7c4b0e
JW
3182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3183 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3184 mem_cgroup_read_events(memcg, i));
3185
3186 for (i = 0; i < NR_LRU_LISTS; i++)
3187 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3188 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3189
14067bb3 3190 /* Hierarchical information */
3e32cb2e
JW
3191 memory = memsw = PAGE_COUNTER_MAX;
3192 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3193 memory = min(memory, mi->memory.limit);
3194 memsw = min(memsw, mi->memsw.limit);
fee7b548 3195 }
3e32cb2e
JW
3196 seq_printf(m, "hierarchical_memory_limit %llu\n",
3197 (u64)memory * PAGE_SIZE);
7941d214 3198 if (do_memsw_account())
3e32cb2e
JW
3199 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3200 (u64)memsw * PAGE_SIZE);
7f016ee8 3201
af7c4b0e 3202 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3203 unsigned long long val = 0;
af7c4b0e 3204
7941d214 3205 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3206 continue;
af7c4b0e
JW
3207 for_each_mem_cgroup_tree(mi, memcg)
3208 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3209 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3210 }
3211
3212 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3213 unsigned long long val = 0;
3214
3215 for_each_mem_cgroup_tree(mi, memcg)
3216 val += mem_cgroup_read_events(mi, i);
3217 seq_printf(m, "total_%s %llu\n",
3218 mem_cgroup_events_names[i], val);
3219 }
3220
3221 for (i = 0; i < NR_LRU_LISTS; i++) {
3222 unsigned long long val = 0;
3223
3224 for_each_mem_cgroup_tree(mi, memcg)
3225 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3226 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3227 }
14067bb3 3228
7f016ee8 3229#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3230 {
3231 int nid, zid;
3232 struct mem_cgroup_per_zone *mz;
89abfab1 3233 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3234 unsigned long recent_rotated[2] = {0, 0};
3235 unsigned long recent_scanned[2] = {0, 0};
3236
3237 for_each_online_node(nid)
3238 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3239 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3240 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3241
89abfab1
HD
3242 recent_rotated[0] += rstat->recent_rotated[0];
3243 recent_rotated[1] += rstat->recent_rotated[1];
3244 recent_scanned[0] += rstat->recent_scanned[0];
3245 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3246 }
78ccf5b5
JW
3247 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3248 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3249 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3250 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3251 }
3252#endif
3253
d2ceb9b7
KH
3254 return 0;
3255}
3256
182446d0
TH
3257static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3258 struct cftype *cft)
a7885eb8 3259{
182446d0 3260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3261
1f4c025b 3262 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3263}
3264
182446d0
TH
3265static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3266 struct cftype *cft, u64 val)
a7885eb8 3267{
182446d0 3268 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3269
3dae7fec 3270 if (val > 100)
a7885eb8
KM
3271 return -EINVAL;
3272
14208b0e 3273 if (css->parent)
3dae7fec
JW
3274 memcg->swappiness = val;
3275 else
3276 vm_swappiness = val;
068b38c1 3277
a7885eb8
KM
3278 return 0;
3279}
3280
2e72b634
KS
3281static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3282{
3283 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3284 unsigned long usage;
2e72b634
KS
3285 int i;
3286
3287 rcu_read_lock();
3288 if (!swap)
2c488db2 3289 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3290 else
2c488db2 3291 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3292
3293 if (!t)
3294 goto unlock;
3295
ce00a967 3296 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3297
3298 /*
748dad36 3299 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3300 * If it's not true, a threshold was crossed after last
3301 * call of __mem_cgroup_threshold().
3302 */
5407a562 3303 i = t->current_threshold;
2e72b634
KS
3304
3305 /*
3306 * Iterate backward over array of thresholds starting from
3307 * current_threshold and check if a threshold is crossed.
3308 * If none of thresholds below usage is crossed, we read
3309 * only one element of the array here.
3310 */
3311 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3312 eventfd_signal(t->entries[i].eventfd, 1);
3313
3314 /* i = current_threshold + 1 */
3315 i++;
3316
3317 /*
3318 * Iterate forward over array of thresholds starting from
3319 * current_threshold+1 and check if a threshold is crossed.
3320 * If none of thresholds above usage is crossed, we read
3321 * only one element of the array here.
3322 */
3323 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3324 eventfd_signal(t->entries[i].eventfd, 1);
3325
3326 /* Update current_threshold */
5407a562 3327 t->current_threshold = i - 1;
2e72b634
KS
3328unlock:
3329 rcu_read_unlock();
3330}
3331
3332static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3333{
ad4ca5f4
KS
3334 while (memcg) {
3335 __mem_cgroup_threshold(memcg, false);
7941d214 3336 if (do_memsw_account())
ad4ca5f4
KS
3337 __mem_cgroup_threshold(memcg, true);
3338
3339 memcg = parent_mem_cgroup(memcg);
3340 }
2e72b634
KS
3341}
3342
3343static int compare_thresholds(const void *a, const void *b)
3344{
3345 const struct mem_cgroup_threshold *_a = a;
3346 const struct mem_cgroup_threshold *_b = b;
3347
2bff24a3
GT
3348 if (_a->threshold > _b->threshold)
3349 return 1;
3350
3351 if (_a->threshold < _b->threshold)
3352 return -1;
3353
3354 return 0;
2e72b634
KS
3355}
3356
c0ff4b85 3357static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3358{
3359 struct mem_cgroup_eventfd_list *ev;
3360
2bcf2e92
MH
3361 spin_lock(&memcg_oom_lock);
3362
c0ff4b85 3363 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3364 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3365
3366 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3367 return 0;
3368}
3369
c0ff4b85 3370static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3371{
7d74b06f
KH
3372 struct mem_cgroup *iter;
3373
c0ff4b85 3374 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3375 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3376}
3377
59b6f873 3378static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3379 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3380{
2c488db2
KS
3381 struct mem_cgroup_thresholds *thresholds;
3382 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3383 unsigned long threshold;
3384 unsigned long usage;
2c488db2 3385 int i, size, ret;
2e72b634 3386
650c5e56 3387 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3388 if (ret)
3389 return ret;
3390
3391 mutex_lock(&memcg->thresholds_lock);
2c488db2 3392
05b84301 3393 if (type == _MEM) {
2c488db2 3394 thresholds = &memcg->thresholds;
ce00a967 3395 usage = mem_cgroup_usage(memcg, false);
05b84301 3396 } else if (type == _MEMSWAP) {
2c488db2 3397 thresholds = &memcg->memsw_thresholds;
ce00a967 3398 usage = mem_cgroup_usage(memcg, true);
05b84301 3399 } else
2e72b634
KS
3400 BUG();
3401
2e72b634 3402 /* Check if a threshold crossed before adding a new one */
2c488db2 3403 if (thresholds->primary)
2e72b634
KS
3404 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3405
2c488db2 3406 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3407
3408 /* Allocate memory for new array of thresholds */
2c488db2 3409 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3410 GFP_KERNEL);
2c488db2 3411 if (!new) {
2e72b634
KS
3412 ret = -ENOMEM;
3413 goto unlock;
3414 }
2c488db2 3415 new->size = size;
2e72b634
KS
3416
3417 /* Copy thresholds (if any) to new array */
2c488db2
KS
3418 if (thresholds->primary) {
3419 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3420 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3421 }
3422
2e72b634 3423 /* Add new threshold */
2c488db2
KS
3424 new->entries[size - 1].eventfd = eventfd;
3425 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3426
3427 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3428 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3429 compare_thresholds, NULL);
3430
3431 /* Find current threshold */
2c488db2 3432 new->current_threshold = -1;
2e72b634 3433 for (i = 0; i < size; i++) {
748dad36 3434 if (new->entries[i].threshold <= usage) {
2e72b634 3435 /*
2c488db2
KS
3436 * new->current_threshold will not be used until
3437 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3438 * it here.
3439 */
2c488db2 3440 ++new->current_threshold;
748dad36
SZ
3441 } else
3442 break;
2e72b634
KS
3443 }
3444
2c488db2
KS
3445 /* Free old spare buffer and save old primary buffer as spare */
3446 kfree(thresholds->spare);
3447 thresholds->spare = thresholds->primary;
3448
3449 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3450
907860ed 3451 /* To be sure that nobody uses thresholds */
2e72b634
KS
3452 synchronize_rcu();
3453
2e72b634
KS
3454unlock:
3455 mutex_unlock(&memcg->thresholds_lock);
3456
3457 return ret;
3458}
3459
59b6f873 3460static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3461 struct eventfd_ctx *eventfd, const char *args)
3462{
59b6f873 3463 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3464}
3465
59b6f873 3466static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3467 struct eventfd_ctx *eventfd, const char *args)
3468{
59b6f873 3469 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3470}
3471
59b6f873 3472static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3473 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3474{
2c488db2
KS
3475 struct mem_cgroup_thresholds *thresholds;
3476 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3477 unsigned long usage;
2c488db2 3478 int i, j, size;
2e72b634
KS
3479
3480 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3481
3482 if (type == _MEM) {
2c488db2 3483 thresholds = &memcg->thresholds;
ce00a967 3484 usage = mem_cgroup_usage(memcg, false);
05b84301 3485 } else if (type == _MEMSWAP) {
2c488db2 3486 thresholds = &memcg->memsw_thresholds;
ce00a967 3487 usage = mem_cgroup_usage(memcg, true);
05b84301 3488 } else
2e72b634
KS
3489 BUG();
3490
371528ca
AV
3491 if (!thresholds->primary)
3492 goto unlock;
3493
2e72b634
KS
3494 /* Check if a threshold crossed before removing */
3495 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3496
3497 /* Calculate new number of threshold */
2c488db2
KS
3498 size = 0;
3499 for (i = 0; i < thresholds->primary->size; i++) {
3500 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3501 size++;
3502 }
3503
2c488db2 3504 new = thresholds->spare;
907860ed 3505
2e72b634
KS
3506 /* Set thresholds array to NULL if we don't have thresholds */
3507 if (!size) {
2c488db2
KS
3508 kfree(new);
3509 new = NULL;
907860ed 3510 goto swap_buffers;
2e72b634
KS
3511 }
3512
2c488db2 3513 new->size = size;
2e72b634
KS
3514
3515 /* Copy thresholds and find current threshold */
2c488db2
KS
3516 new->current_threshold = -1;
3517 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3518 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3519 continue;
3520
2c488db2 3521 new->entries[j] = thresholds->primary->entries[i];
748dad36 3522 if (new->entries[j].threshold <= usage) {
2e72b634 3523 /*
2c488db2 3524 * new->current_threshold will not be used
2e72b634
KS
3525 * until rcu_assign_pointer(), so it's safe to increment
3526 * it here.
3527 */
2c488db2 3528 ++new->current_threshold;
2e72b634
KS
3529 }
3530 j++;
3531 }
3532
907860ed 3533swap_buffers:
2c488db2
KS
3534 /* Swap primary and spare array */
3535 thresholds->spare = thresholds->primary;
8c757763 3536
2c488db2 3537 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3538
907860ed 3539 /* To be sure that nobody uses thresholds */
2e72b634 3540 synchronize_rcu();
6611d8d7
MC
3541
3542 /* If all events are unregistered, free the spare array */
3543 if (!new) {
3544 kfree(thresholds->spare);
3545 thresholds->spare = NULL;
3546 }
371528ca 3547unlock:
2e72b634 3548 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3549}
c1e862c1 3550
59b6f873 3551static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3552 struct eventfd_ctx *eventfd)
3553{
59b6f873 3554 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3555}
3556
59b6f873 3557static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3558 struct eventfd_ctx *eventfd)
3559{
59b6f873 3560 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3561}
3562
59b6f873 3563static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3564 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3565{
9490ff27 3566 struct mem_cgroup_eventfd_list *event;
9490ff27 3567
9490ff27
KH
3568 event = kmalloc(sizeof(*event), GFP_KERNEL);
3569 if (!event)
3570 return -ENOMEM;
3571
1af8efe9 3572 spin_lock(&memcg_oom_lock);
9490ff27
KH
3573
3574 event->eventfd = eventfd;
3575 list_add(&event->list, &memcg->oom_notify);
3576
3577 /* already in OOM ? */
c2b42d3c 3578 if (memcg->under_oom)
9490ff27 3579 eventfd_signal(eventfd, 1);
1af8efe9 3580 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3581
3582 return 0;
3583}
3584
59b6f873 3585static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3586 struct eventfd_ctx *eventfd)
9490ff27 3587{
9490ff27 3588 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3589
1af8efe9 3590 spin_lock(&memcg_oom_lock);
9490ff27 3591
c0ff4b85 3592 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3593 if (ev->eventfd == eventfd) {
3594 list_del(&ev->list);
3595 kfree(ev);
3596 }
3597 }
3598
1af8efe9 3599 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3600}
3601
2da8ca82 3602static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3603{
2da8ca82 3604 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3605
791badbd 3606 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3607 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3608 return 0;
3609}
3610
182446d0 3611static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3612 struct cftype *cft, u64 val)
3613{
182446d0 3614 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3615
3616 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3617 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3618 return -EINVAL;
3619
c0ff4b85 3620 memcg->oom_kill_disable = val;
4d845ebf 3621 if (!val)
c0ff4b85 3622 memcg_oom_recover(memcg);
3dae7fec 3623
3c11ecf4
KH
3624 return 0;
3625}
3626
52ebea74
TH
3627#ifdef CONFIG_CGROUP_WRITEBACK
3628
3629struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3630{
3631 return &memcg->cgwb_list;
3632}
3633
841710aa
TH
3634static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3635{
3636 return wb_domain_init(&memcg->cgwb_domain, gfp);
3637}
3638
3639static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3640{
3641 wb_domain_exit(&memcg->cgwb_domain);
3642}
3643
2529bb3a
TH
3644static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3645{
3646 wb_domain_size_changed(&memcg->cgwb_domain);
3647}
3648
841710aa
TH
3649struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3650{
3651 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3652
3653 if (!memcg->css.parent)
3654 return NULL;
3655
3656 return &memcg->cgwb_domain;
3657}
3658
c2aa723a
TH
3659/**
3660 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3661 * @wb: bdi_writeback in question
c5edf9cd
TH
3662 * @pfilepages: out parameter for number of file pages
3663 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3664 * @pdirty: out parameter for number of dirty pages
3665 * @pwriteback: out parameter for number of pages under writeback
3666 *
c5edf9cd
TH
3667 * Determine the numbers of file, headroom, dirty, and writeback pages in
3668 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3669 * is a bit more involved.
c2aa723a 3670 *
c5edf9cd
TH
3671 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3672 * headroom is calculated as the lowest headroom of itself and the
3673 * ancestors. Note that this doesn't consider the actual amount of
3674 * available memory in the system. The caller should further cap
3675 * *@pheadroom accordingly.
c2aa723a 3676 */
c5edf9cd
TH
3677void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3678 unsigned long *pheadroom, unsigned long *pdirty,
3679 unsigned long *pwriteback)
c2aa723a
TH
3680{
3681 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3682 struct mem_cgroup *parent;
c2aa723a
TH
3683
3684 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3685
3686 /* this should eventually include NR_UNSTABLE_NFS */
3687 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3688 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3689 (1 << LRU_ACTIVE_FILE));
3690 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3691
c2aa723a
TH
3692 while ((parent = parent_mem_cgroup(memcg))) {
3693 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3694 unsigned long used = page_counter_read(&memcg->memory);
3695
c5edf9cd 3696 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3697 memcg = parent;
3698 }
c2aa723a
TH
3699}
3700
841710aa
TH
3701#else /* CONFIG_CGROUP_WRITEBACK */
3702
3703static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3704{
3705 return 0;
3706}
3707
3708static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3709{
3710}
3711
2529bb3a
TH
3712static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3713{
3714}
3715
52ebea74
TH
3716#endif /* CONFIG_CGROUP_WRITEBACK */
3717
3bc942f3
TH
3718/*
3719 * DO NOT USE IN NEW FILES.
3720 *
3721 * "cgroup.event_control" implementation.
3722 *
3723 * This is way over-engineered. It tries to support fully configurable
3724 * events for each user. Such level of flexibility is completely
3725 * unnecessary especially in the light of the planned unified hierarchy.
3726 *
3727 * Please deprecate this and replace with something simpler if at all
3728 * possible.
3729 */
3730
79bd9814
TH
3731/*
3732 * Unregister event and free resources.
3733 *
3734 * Gets called from workqueue.
3735 */
3bc942f3 3736static void memcg_event_remove(struct work_struct *work)
79bd9814 3737{
3bc942f3
TH
3738 struct mem_cgroup_event *event =
3739 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3740 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3741
3742 remove_wait_queue(event->wqh, &event->wait);
3743
59b6f873 3744 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3745
3746 /* Notify userspace the event is going away. */
3747 eventfd_signal(event->eventfd, 1);
3748
3749 eventfd_ctx_put(event->eventfd);
3750 kfree(event);
59b6f873 3751 css_put(&memcg->css);
79bd9814
TH
3752}
3753
3754/*
3755 * Gets called on POLLHUP on eventfd when user closes it.
3756 *
3757 * Called with wqh->lock held and interrupts disabled.
3758 */
3bc942f3
TH
3759static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3760 int sync, void *key)
79bd9814 3761{
3bc942f3
TH
3762 struct mem_cgroup_event *event =
3763 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3764 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3765 unsigned long flags = (unsigned long)key;
3766
3767 if (flags & POLLHUP) {
3768 /*
3769 * If the event has been detached at cgroup removal, we
3770 * can simply return knowing the other side will cleanup
3771 * for us.
3772 *
3773 * We can't race against event freeing since the other
3774 * side will require wqh->lock via remove_wait_queue(),
3775 * which we hold.
3776 */
fba94807 3777 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3778 if (!list_empty(&event->list)) {
3779 list_del_init(&event->list);
3780 /*
3781 * We are in atomic context, but cgroup_event_remove()
3782 * may sleep, so we have to call it in workqueue.
3783 */
3784 schedule_work(&event->remove);
3785 }
fba94807 3786 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3787 }
3788
3789 return 0;
3790}
3791
3bc942f3 3792static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3793 wait_queue_head_t *wqh, poll_table *pt)
3794{
3bc942f3
TH
3795 struct mem_cgroup_event *event =
3796 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3797
3798 event->wqh = wqh;
3799 add_wait_queue(wqh, &event->wait);
3800}
3801
3802/*
3bc942f3
TH
3803 * DO NOT USE IN NEW FILES.
3804 *
79bd9814
TH
3805 * Parse input and register new cgroup event handler.
3806 *
3807 * Input must be in format '<event_fd> <control_fd> <args>'.
3808 * Interpretation of args is defined by control file implementation.
3809 */
451af504
TH
3810static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3811 char *buf, size_t nbytes, loff_t off)
79bd9814 3812{
451af504 3813 struct cgroup_subsys_state *css = of_css(of);
fba94807 3814 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3815 struct mem_cgroup_event *event;
79bd9814
TH
3816 struct cgroup_subsys_state *cfile_css;
3817 unsigned int efd, cfd;
3818 struct fd efile;
3819 struct fd cfile;
fba94807 3820 const char *name;
79bd9814
TH
3821 char *endp;
3822 int ret;
3823
451af504
TH
3824 buf = strstrip(buf);
3825
3826 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3827 if (*endp != ' ')
3828 return -EINVAL;
451af504 3829 buf = endp + 1;
79bd9814 3830
451af504 3831 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3832 if ((*endp != ' ') && (*endp != '\0'))
3833 return -EINVAL;
451af504 3834 buf = endp + 1;
79bd9814
TH
3835
3836 event = kzalloc(sizeof(*event), GFP_KERNEL);
3837 if (!event)
3838 return -ENOMEM;
3839
59b6f873 3840 event->memcg = memcg;
79bd9814 3841 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3842 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3843 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3844 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3845
3846 efile = fdget(efd);
3847 if (!efile.file) {
3848 ret = -EBADF;
3849 goto out_kfree;
3850 }
3851
3852 event->eventfd = eventfd_ctx_fileget(efile.file);
3853 if (IS_ERR(event->eventfd)) {
3854 ret = PTR_ERR(event->eventfd);
3855 goto out_put_efile;
3856 }
3857
3858 cfile = fdget(cfd);
3859 if (!cfile.file) {
3860 ret = -EBADF;
3861 goto out_put_eventfd;
3862 }
3863
3864 /* the process need read permission on control file */
3865 /* AV: shouldn't we check that it's been opened for read instead? */
3866 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3867 if (ret < 0)
3868 goto out_put_cfile;
3869
fba94807
TH
3870 /*
3871 * Determine the event callbacks and set them in @event. This used
3872 * to be done via struct cftype but cgroup core no longer knows
3873 * about these events. The following is crude but the whole thing
3874 * is for compatibility anyway.
3bc942f3
TH
3875 *
3876 * DO NOT ADD NEW FILES.
fba94807 3877 */
b583043e 3878 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3879
3880 if (!strcmp(name, "memory.usage_in_bytes")) {
3881 event->register_event = mem_cgroup_usage_register_event;
3882 event->unregister_event = mem_cgroup_usage_unregister_event;
3883 } else if (!strcmp(name, "memory.oom_control")) {
3884 event->register_event = mem_cgroup_oom_register_event;
3885 event->unregister_event = mem_cgroup_oom_unregister_event;
3886 } else if (!strcmp(name, "memory.pressure_level")) {
3887 event->register_event = vmpressure_register_event;
3888 event->unregister_event = vmpressure_unregister_event;
3889 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3890 event->register_event = memsw_cgroup_usage_register_event;
3891 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3892 } else {
3893 ret = -EINVAL;
3894 goto out_put_cfile;
3895 }
3896
79bd9814 3897 /*
b5557c4c
TH
3898 * Verify @cfile should belong to @css. Also, remaining events are
3899 * automatically removed on cgroup destruction but the removal is
3900 * asynchronous, so take an extra ref on @css.
79bd9814 3901 */
b583043e 3902 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3903 &memory_cgrp_subsys);
79bd9814 3904 ret = -EINVAL;
5a17f543 3905 if (IS_ERR(cfile_css))
79bd9814 3906 goto out_put_cfile;
5a17f543
TH
3907 if (cfile_css != css) {
3908 css_put(cfile_css);
79bd9814 3909 goto out_put_cfile;
5a17f543 3910 }
79bd9814 3911
451af504 3912 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3913 if (ret)
3914 goto out_put_css;
3915
3916 efile.file->f_op->poll(efile.file, &event->pt);
3917
fba94807
TH
3918 spin_lock(&memcg->event_list_lock);
3919 list_add(&event->list, &memcg->event_list);
3920 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3921
3922 fdput(cfile);
3923 fdput(efile);
3924
451af504 3925 return nbytes;
79bd9814
TH
3926
3927out_put_css:
b5557c4c 3928 css_put(css);
79bd9814
TH
3929out_put_cfile:
3930 fdput(cfile);
3931out_put_eventfd:
3932 eventfd_ctx_put(event->eventfd);
3933out_put_efile:
3934 fdput(efile);
3935out_kfree:
3936 kfree(event);
3937
3938 return ret;
3939}
3940
241994ed 3941static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3942 {
0eea1030 3943 .name = "usage_in_bytes",
8c7c6e34 3944 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3945 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3946 },
c84872e1
PE
3947 {
3948 .name = "max_usage_in_bytes",
8c7c6e34 3949 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3950 .write = mem_cgroup_reset,
791badbd 3951 .read_u64 = mem_cgroup_read_u64,
c84872e1 3952 },
8cdea7c0 3953 {
0eea1030 3954 .name = "limit_in_bytes",
8c7c6e34 3955 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3956 .write = mem_cgroup_write,
791badbd 3957 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3958 },
296c81d8
BS
3959 {
3960 .name = "soft_limit_in_bytes",
3961 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3962 .write = mem_cgroup_write,
791badbd 3963 .read_u64 = mem_cgroup_read_u64,
296c81d8 3964 },
8cdea7c0
BS
3965 {
3966 .name = "failcnt",
8c7c6e34 3967 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3968 .write = mem_cgroup_reset,
791badbd 3969 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3970 },
d2ceb9b7
KH
3971 {
3972 .name = "stat",
2da8ca82 3973 .seq_show = memcg_stat_show,
d2ceb9b7 3974 },
c1e862c1
KH
3975 {
3976 .name = "force_empty",
6770c64e 3977 .write = mem_cgroup_force_empty_write,
c1e862c1 3978 },
18f59ea7
BS
3979 {
3980 .name = "use_hierarchy",
3981 .write_u64 = mem_cgroup_hierarchy_write,
3982 .read_u64 = mem_cgroup_hierarchy_read,
3983 },
79bd9814 3984 {
3bc942f3 3985 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3986 .write = memcg_write_event_control,
7dbdb199 3987 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3988 },
a7885eb8
KM
3989 {
3990 .name = "swappiness",
3991 .read_u64 = mem_cgroup_swappiness_read,
3992 .write_u64 = mem_cgroup_swappiness_write,
3993 },
7dc74be0
DN
3994 {
3995 .name = "move_charge_at_immigrate",
3996 .read_u64 = mem_cgroup_move_charge_read,
3997 .write_u64 = mem_cgroup_move_charge_write,
3998 },
9490ff27
KH
3999 {
4000 .name = "oom_control",
2da8ca82 4001 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4002 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4003 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4004 },
70ddf637
AV
4005 {
4006 .name = "pressure_level",
70ddf637 4007 },
406eb0c9
YH
4008#ifdef CONFIG_NUMA
4009 {
4010 .name = "numa_stat",
2da8ca82 4011 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4012 },
4013#endif
510fc4e1
GC
4014 {
4015 .name = "kmem.limit_in_bytes",
4016 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4017 .write = mem_cgroup_write,
791badbd 4018 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4019 },
4020 {
4021 .name = "kmem.usage_in_bytes",
4022 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4023 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4024 },
4025 {
4026 .name = "kmem.failcnt",
4027 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4028 .write = mem_cgroup_reset,
791badbd 4029 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4030 },
4031 {
4032 .name = "kmem.max_usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4034 .write = mem_cgroup_reset,
791badbd 4035 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4036 },
749c5415
GC
4037#ifdef CONFIG_SLABINFO
4038 {
4039 .name = "kmem.slabinfo",
b047501c
VD
4040 .seq_start = slab_start,
4041 .seq_next = slab_next,
4042 .seq_stop = slab_stop,
4043 .seq_show = memcg_slab_show,
749c5415
GC
4044 },
4045#endif
d55f90bf
VD
4046 {
4047 .name = "kmem.tcp.limit_in_bytes",
4048 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4049 .write = mem_cgroup_write,
4050 .read_u64 = mem_cgroup_read_u64,
4051 },
4052 {
4053 .name = "kmem.tcp.usage_in_bytes",
4054 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4055 .read_u64 = mem_cgroup_read_u64,
4056 },
4057 {
4058 .name = "kmem.tcp.failcnt",
4059 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4060 .write = mem_cgroup_reset,
4061 .read_u64 = mem_cgroup_read_u64,
4062 },
4063 {
4064 .name = "kmem.tcp.max_usage_in_bytes",
4065 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4066 .write = mem_cgroup_reset,
4067 .read_u64 = mem_cgroup_read_u64,
4068 },
6bc10349 4069 { }, /* terminate */
af36f906 4070};
8c7c6e34 4071
c0ff4b85 4072static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4073{
4074 struct mem_cgroup_per_node *pn;
1ecaab2b 4075 struct mem_cgroup_per_zone *mz;
41e3355d 4076 int zone, tmp = node;
1ecaab2b
KH
4077 /*
4078 * This routine is called against possible nodes.
4079 * But it's BUG to call kmalloc() against offline node.
4080 *
4081 * TODO: this routine can waste much memory for nodes which will
4082 * never be onlined. It's better to use memory hotplug callback
4083 * function.
4084 */
41e3355d
KH
4085 if (!node_state(node, N_NORMAL_MEMORY))
4086 tmp = -1;
17295c88 4087 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4088 if (!pn)
4089 return 1;
1ecaab2b 4090
1ecaab2b
KH
4091 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4092 mz = &pn->zoneinfo[zone];
bea8c150 4093 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4094 mz->usage_in_excess = 0;
4095 mz->on_tree = false;
d79154bb 4096 mz->memcg = memcg;
1ecaab2b 4097 }
54f72fe0 4098 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4099 return 0;
4100}
4101
c0ff4b85 4102static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4103{
54f72fe0 4104 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4105}
4106
0b8f73e1 4107static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4108{
c8b2a36f 4109 int node;
59927fb9 4110
0b8f73e1 4111 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4112 for_each_node(node)
4113 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4114 free_percpu(memcg->stat);
8ff69e2c 4115 kfree(memcg);
59927fb9 4116}
3afe36b1 4117
0b8f73e1 4118static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4119{
d142e3e6 4120 struct mem_cgroup *memcg;
0b8f73e1 4121 size_t size;
6d12e2d8 4122 int node;
8cdea7c0 4123
0b8f73e1
JW
4124 size = sizeof(struct mem_cgroup);
4125 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4126
4127 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4128 if (!memcg)
0b8f73e1
JW
4129 return NULL;
4130
4131 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4132 if (!memcg->stat)
4133 goto fail;
78fb7466 4134
3ed28fa1 4135 for_each_node(node)
c0ff4b85 4136 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4137 goto fail;
f64c3f54 4138
0b8f73e1
JW
4139 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4140 goto fail;
28dbc4b6 4141
f7e1cb6e 4142 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4143 memcg->last_scanned_node = MAX_NUMNODES;
4144 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4145 mutex_init(&memcg->thresholds_lock);
4146 spin_lock_init(&memcg->move_lock);
70ddf637 4147 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4148 INIT_LIST_HEAD(&memcg->event_list);
4149 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4150 memcg->socket_pressure = jiffies;
127424c8 4151#ifndef CONFIG_SLOB
900a38f0 4152 memcg->kmemcg_id = -1;
900a38f0 4153#endif
52ebea74
TH
4154#ifdef CONFIG_CGROUP_WRITEBACK
4155 INIT_LIST_HEAD(&memcg->cgwb_list);
4156#endif
0b8f73e1
JW
4157 return memcg;
4158fail:
4159 mem_cgroup_free(memcg);
4160 return NULL;
d142e3e6
GC
4161}
4162
0b8f73e1
JW
4163static struct cgroup_subsys_state * __ref
4164mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4165{
0b8f73e1
JW
4166 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4167 struct mem_cgroup *memcg;
4168 long error = -ENOMEM;
d142e3e6 4169
0b8f73e1
JW
4170 memcg = mem_cgroup_alloc();
4171 if (!memcg)
4172 return ERR_PTR(error);
d142e3e6 4173
0b8f73e1
JW
4174 memcg->high = PAGE_COUNTER_MAX;
4175 memcg->soft_limit = PAGE_COUNTER_MAX;
4176 if (parent) {
4177 memcg->swappiness = mem_cgroup_swappiness(parent);
4178 memcg->oom_kill_disable = parent->oom_kill_disable;
4179 }
4180 if (parent && parent->use_hierarchy) {
4181 memcg->use_hierarchy = true;
3e32cb2e 4182 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4183 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4184 page_counter_init(&memcg->memsw, &parent->memsw);
4185 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4186 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4187 } else {
3e32cb2e 4188 page_counter_init(&memcg->memory, NULL);
37e84351 4189 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4190 page_counter_init(&memcg->memsw, NULL);
4191 page_counter_init(&memcg->kmem, NULL);
0db15298 4192 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4193 /*
4194 * Deeper hierachy with use_hierarchy == false doesn't make
4195 * much sense so let cgroup subsystem know about this
4196 * unfortunate state in our controller.
4197 */
d142e3e6 4198 if (parent != root_mem_cgroup)
073219e9 4199 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4200 }
d6441637 4201
0b8f73e1
JW
4202 /* The following stuff does not apply to the root */
4203 if (!parent) {
4204 root_mem_cgroup = memcg;
4205 return &memcg->css;
4206 }
4207
4208 error = memcg_propagate_kmem(parent, memcg);
4209 if (error)
4210 goto fail;
127424c8 4211
f7e1cb6e 4212 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4213 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4214
0b8f73e1
JW
4215 return &memcg->css;
4216fail:
4217 mem_cgroup_free(memcg);
4218 return NULL;
4219}
4220
4221static int
4222mem_cgroup_css_online(struct cgroup_subsys_state *css)
4223{
4224 if (css->id > MEM_CGROUP_ID_MAX)
4225 return -ENOSPC;
2f7dd7a4
JW
4226
4227 return 0;
8cdea7c0
BS
4228}
4229
eb95419b 4230static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4231{
eb95419b 4232 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4233 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4234
4235 /*
4236 * Unregister events and notify userspace.
4237 * Notify userspace about cgroup removing only after rmdir of cgroup
4238 * directory to avoid race between userspace and kernelspace.
4239 */
fba94807
TH
4240 spin_lock(&memcg->event_list_lock);
4241 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4242 list_del_init(&event->list);
4243 schedule_work(&event->remove);
4244 }
fba94807 4245 spin_unlock(&memcg->event_list_lock);
ec64f515 4246
567e9ab2 4247 memcg_offline_kmem(memcg);
52ebea74 4248 wb_memcg_offline(memcg);
df878fb0
KH
4249}
4250
6df38689
VD
4251static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4252{
4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4254
4255 invalidate_reclaim_iterators(memcg);
4256}
4257
eb95419b 4258static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4259{
eb95419b 4260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4261
f7e1cb6e 4262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4263 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4264
0db15298 4265 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4266 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4267
0b8f73e1
JW
4268 vmpressure_cleanup(&memcg->vmpressure);
4269 cancel_work_sync(&memcg->high_work);
4270 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4271 memcg_free_kmem(memcg);
0b8f73e1 4272 mem_cgroup_free(memcg);
8cdea7c0
BS
4273}
4274
1ced953b
TH
4275/**
4276 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4277 * @css: the target css
4278 *
4279 * Reset the states of the mem_cgroup associated with @css. This is
4280 * invoked when the userland requests disabling on the default hierarchy
4281 * but the memcg is pinned through dependency. The memcg should stop
4282 * applying policies and should revert to the vanilla state as it may be
4283 * made visible again.
4284 *
4285 * The current implementation only resets the essential configurations.
4286 * This needs to be expanded to cover all the visible parts.
4287 */
4288static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4289{
4290 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4291
3e32cb2e
JW
4292 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4293 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4294 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4295 memcg->low = 0;
4296 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4297 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4298 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4299}
4300
02491447 4301#ifdef CONFIG_MMU
7dc74be0 4302/* Handlers for move charge at task migration. */
854ffa8d 4303static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4304{
05b84301 4305 int ret;
9476db97 4306
d0164adc
MG
4307 /* Try a single bulk charge without reclaim first, kswapd may wake */
4308 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4309 if (!ret) {
854ffa8d 4310 mc.precharge += count;
854ffa8d
DN
4311 return ret;
4312 }
9476db97
JW
4313
4314 /* Try charges one by one with reclaim */
854ffa8d 4315 while (count--) {
00501b53 4316 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4317 if (ret)
38c5d72f 4318 return ret;
854ffa8d 4319 mc.precharge++;
9476db97 4320 cond_resched();
854ffa8d 4321 }
9476db97 4322 return 0;
4ffef5fe
DN
4323}
4324
4325/**
8d32ff84 4326 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4327 * @vma: the vma the pte to be checked belongs
4328 * @addr: the address corresponding to the pte to be checked
4329 * @ptent: the pte to be checked
02491447 4330 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4331 *
4332 * Returns
4333 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4334 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4335 * move charge. if @target is not NULL, the page is stored in target->page
4336 * with extra refcnt got(Callers should handle it).
02491447
DN
4337 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4338 * target for charge migration. if @target is not NULL, the entry is stored
4339 * in target->ent.
4ffef5fe
DN
4340 *
4341 * Called with pte lock held.
4342 */
4ffef5fe
DN
4343union mc_target {
4344 struct page *page;
02491447 4345 swp_entry_t ent;
4ffef5fe
DN
4346};
4347
4ffef5fe 4348enum mc_target_type {
8d32ff84 4349 MC_TARGET_NONE = 0,
4ffef5fe 4350 MC_TARGET_PAGE,
02491447 4351 MC_TARGET_SWAP,
4ffef5fe
DN
4352};
4353
90254a65
DN
4354static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4355 unsigned long addr, pte_t ptent)
4ffef5fe 4356{
90254a65 4357 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4358
90254a65
DN
4359 if (!page || !page_mapped(page))
4360 return NULL;
4361 if (PageAnon(page)) {
1dfab5ab 4362 if (!(mc.flags & MOVE_ANON))
90254a65 4363 return NULL;
1dfab5ab
JW
4364 } else {
4365 if (!(mc.flags & MOVE_FILE))
4366 return NULL;
4367 }
90254a65
DN
4368 if (!get_page_unless_zero(page))
4369 return NULL;
4370
4371 return page;
4372}
4373
4b91355e 4374#ifdef CONFIG_SWAP
90254a65
DN
4375static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4376 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4377{
90254a65
DN
4378 struct page *page = NULL;
4379 swp_entry_t ent = pte_to_swp_entry(ptent);
4380
1dfab5ab 4381 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4382 return NULL;
4b91355e
KH
4383 /*
4384 * Because lookup_swap_cache() updates some statistics counter,
4385 * we call find_get_page() with swapper_space directly.
4386 */
33806f06 4387 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4388 if (do_memsw_account())
90254a65
DN
4389 entry->val = ent.val;
4390
4391 return page;
4392}
4b91355e
KH
4393#else
4394static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4395 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4396{
4397 return NULL;
4398}
4399#endif
90254a65 4400
87946a72
DN
4401static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4402 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4403{
4404 struct page *page = NULL;
87946a72
DN
4405 struct address_space *mapping;
4406 pgoff_t pgoff;
4407
4408 if (!vma->vm_file) /* anonymous vma */
4409 return NULL;
1dfab5ab 4410 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4411 return NULL;
4412
87946a72 4413 mapping = vma->vm_file->f_mapping;
0661a336 4414 pgoff = linear_page_index(vma, addr);
87946a72
DN
4415
4416 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4417#ifdef CONFIG_SWAP
4418 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4419 if (shmem_mapping(mapping)) {
4420 page = find_get_entry(mapping, pgoff);
4421 if (radix_tree_exceptional_entry(page)) {
4422 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4423 if (do_memsw_account())
139b6a6f
JW
4424 *entry = swp;
4425 page = find_get_page(swap_address_space(swp), swp.val);
4426 }
4427 } else
4428 page = find_get_page(mapping, pgoff);
4429#else
4430 page = find_get_page(mapping, pgoff);
aa3b1895 4431#endif
87946a72
DN
4432 return page;
4433}
4434
b1b0deab
CG
4435/**
4436 * mem_cgroup_move_account - move account of the page
4437 * @page: the page
4438 * @nr_pages: number of regular pages (>1 for huge pages)
4439 * @from: mem_cgroup which the page is moved from.
4440 * @to: mem_cgroup which the page is moved to. @from != @to.
4441 *
3ac808fd 4442 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4443 *
4444 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4445 * from old cgroup.
4446 */
4447static int mem_cgroup_move_account(struct page *page,
f627c2f5 4448 bool compound,
b1b0deab
CG
4449 struct mem_cgroup *from,
4450 struct mem_cgroup *to)
4451{
4452 unsigned long flags;
f627c2f5 4453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4454 int ret;
c4843a75 4455 bool anon;
b1b0deab
CG
4456
4457 VM_BUG_ON(from == to);
4458 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4459 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4460
4461 /*
6a93ca8f 4462 * Prevent mem_cgroup_migrate() from looking at
45637bab 4463 * page->mem_cgroup of its source page while we change it.
b1b0deab 4464 */
f627c2f5 4465 ret = -EBUSY;
b1b0deab
CG
4466 if (!trylock_page(page))
4467 goto out;
4468
4469 ret = -EINVAL;
4470 if (page->mem_cgroup != from)
4471 goto out_unlock;
4472
c4843a75
GT
4473 anon = PageAnon(page);
4474
b1b0deab
CG
4475 spin_lock_irqsave(&from->move_lock, flags);
4476
c4843a75 4477 if (!anon && page_mapped(page)) {
b1b0deab
CG
4478 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4479 nr_pages);
4480 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4481 nr_pages);
4482 }
4483
c4843a75
GT
4484 /*
4485 * move_lock grabbed above and caller set from->moving_account, so
4486 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4487 * So mapping should be stable for dirty pages.
4488 */
4489 if (!anon && PageDirty(page)) {
4490 struct address_space *mapping = page_mapping(page);
4491
4492 if (mapping_cap_account_dirty(mapping)) {
4493 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4494 nr_pages);
4495 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4496 nr_pages);
4497 }
4498 }
4499
b1b0deab
CG
4500 if (PageWriteback(page)) {
4501 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4502 nr_pages);
4503 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4504 nr_pages);
4505 }
4506
4507 /*
4508 * It is safe to change page->mem_cgroup here because the page
4509 * is referenced, charged, and isolated - we can't race with
4510 * uncharging, charging, migration, or LRU putback.
4511 */
4512
4513 /* caller should have done css_get */
4514 page->mem_cgroup = to;
4515 spin_unlock_irqrestore(&from->move_lock, flags);
4516
4517 ret = 0;
4518
4519 local_irq_disable();
f627c2f5 4520 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4521 memcg_check_events(to, page);
f627c2f5 4522 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4523 memcg_check_events(from, page);
4524 local_irq_enable();
4525out_unlock:
4526 unlock_page(page);
4527out:
4528 return ret;
4529}
4530
8d32ff84 4531static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4532 unsigned long addr, pte_t ptent, union mc_target *target)
4533{
4534 struct page *page = NULL;
8d32ff84 4535 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4536 swp_entry_t ent = { .val = 0 };
4537
4538 if (pte_present(ptent))
4539 page = mc_handle_present_pte(vma, addr, ptent);
4540 else if (is_swap_pte(ptent))
4541 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4542 else if (pte_none(ptent))
87946a72 4543 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4544
4545 if (!page && !ent.val)
8d32ff84 4546 return ret;
02491447 4547 if (page) {
02491447 4548 /*
0a31bc97 4549 * Do only loose check w/o serialization.
1306a85a 4550 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4551 * not under LRU exclusion.
02491447 4552 */
1306a85a 4553 if (page->mem_cgroup == mc.from) {
02491447
DN
4554 ret = MC_TARGET_PAGE;
4555 if (target)
4556 target->page = page;
4557 }
4558 if (!ret || !target)
4559 put_page(page);
4560 }
90254a65
DN
4561 /* There is a swap entry and a page doesn't exist or isn't charged */
4562 if (ent.val && !ret &&
34c00c31 4563 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4564 ret = MC_TARGET_SWAP;
4565 if (target)
4566 target->ent = ent;
4ffef5fe 4567 }
4ffef5fe
DN
4568 return ret;
4569}
4570
12724850
NH
4571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4572/*
4573 * We don't consider swapping or file mapped pages because THP does not
4574 * support them for now.
4575 * Caller should make sure that pmd_trans_huge(pmd) is true.
4576 */
4577static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4578 unsigned long addr, pmd_t pmd, union mc_target *target)
4579{
4580 struct page *page = NULL;
12724850
NH
4581 enum mc_target_type ret = MC_TARGET_NONE;
4582
4583 page = pmd_page(pmd);
309381fe 4584 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4585 if (!(mc.flags & MOVE_ANON))
12724850 4586 return ret;
1306a85a 4587 if (page->mem_cgroup == mc.from) {
12724850
NH
4588 ret = MC_TARGET_PAGE;
4589 if (target) {
4590 get_page(page);
4591 target->page = page;
4592 }
4593 }
4594 return ret;
4595}
4596#else
4597static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4598 unsigned long addr, pmd_t pmd, union mc_target *target)
4599{
4600 return MC_TARGET_NONE;
4601}
4602#endif
4603
4ffef5fe
DN
4604static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4605 unsigned long addr, unsigned long end,
4606 struct mm_walk *walk)
4607{
26bcd64a 4608 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4609 pte_t *pte;
4610 spinlock_t *ptl;
4611
b6ec57f4
KS
4612 ptl = pmd_trans_huge_lock(pmd, vma);
4613 if (ptl) {
12724850
NH
4614 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4615 mc.precharge += HPAGE_PMD_NR;
bf929152 4616 spin_unlock(ptl);
1a5a9906 4617 return 0;
12724850 4618 }
03319327 4619
45f83cef
AA
4620 if (pmd_trans_unstable(pmd))
4621 return 0;
4ffef5fe
DN
4622 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4623 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4624 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4625 mc.precharge++; /* increment precharge temporarily */
4626 pte_unmap_unlock(pte - 1, ptl);
4627 cond_resched();
4628
7dc74be0
DN
4629 return 0;
4630}
4631
4ffef5fe
DN
4632static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4633{
4634 unsigned long precharge;
4ffef5fe 4635
26bcd64a
NH
4636 struct mm_walk mem_cgroup_count_precharge_walk = {
4637 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4638 .mm = mm,
4639 };
dfe076b0 4640 down_read(&mm->mmap_sem);
26bcd64a 4641 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4642 up_read(&mm->mmap_sem);
4ffef5fe
DN
4643
4644 precharge = mc.precharge;
4645 mc.precharge = 0;
4646
4647 return precharge;
4648}
4649
4ffef5fe
DN
4650static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4651{
dfe076b0
DN
4652 unsigned long precharge = mem_cgroup_count_precharge(mm);
4653
4654 VM_BUG_ON(mc.moving_task);
4655 mc.moving_task = current;
4656 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4657}
4658
dfe076b0
DN
4659/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4660static void __mem_cgroup_clear_mc(void)
4ffef5fe 4661{
2bd9bb20
KH
4662 struct mem_cgroup *from = mc.from;
4663 struct mem_cgroup *to = mc.to;
4664
4ffef5fe 4665 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4666 if (mc.precharge) {
00501b53 4667 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4668 mc.precharge = 0;
4669 }
4670 /*
4671 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4672 * we must uncharge here.
4673 */
4674 if (mc.moved_charge) {
00501b53 4675 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4676 mc.moved_charge = 0;
4ffef5fe 4677 }
483c30b5
DN
4678 /* we must fixup refcnts and charges */
4679 if (mc.moved_swap) {
483c30b5 4680 /* uncharge swap account from the old cgroup */
ce00a967 4681 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4682 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4683
05b84301 4684 /*
3e32cb2e
JW
4685 * we charged both to->memory and to->memsw, so we
4686 * should uncharge to->memory.
05b84301 4687 */
ce00a967 4688 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4689 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4690
e8ea14cc 4691 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4692
4050377b 4693 /* we've already done css_get(mc.to) */
483c30b5
DN
4694 mc.moved_swap = 0;
4695 }
dfe076b0
DN
4696 memcg_oom_recover(from);
4697 memcg_oom_recover(to);
4698 wake_up_all(&mc.waitq);
4699}
4700
4701static void mem_cgroup_clear_mc(void)
4702{
dfe076b0
DN
4703 /*
4704 * we must clear moving_task before waking up waiters at the end of
4705 * task migration.
4706 */
4707 mc.moving_task = NULL;
4708 __mem_cgroup_clear_mc();
2bd9bb20 4709 spin_lock(&mc.lock);
4ffef5fe
DN
4710 mc.from = NULL;
4711 mc.to = NULL;
2bd9bb20 4712 spin_unlock(&mc.lock);
4ffef5fe
DN
4713}
4714
1f7dd3e5 4715static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4716{
1f7dd3e5 4717 struct cgroup_subsys_state *css;
eed67d75 4718 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4719 struct mem_cgroup *from;
4530eddb 4720 struct task_struct *leader, *p;
9f2115f9 4721 struct mm_struct *mm;
1dfab5ab 4722 unsigned long move_flags;
9f2115f9 4723 int ret = 0;
7dc74be0 4724
1f7dd3e5
TH
4725 /* charge immigration isn't supported on the default hierarchy */
4726 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4727 return 0;
4728
4530eddb
TH
4729 /*
4730 * Multi-process migrations only happen on the default hierarchy
4731 * where charge immigration is not used. Perform charge
4732 * immigration if @tset contains a leader and whine if there are
4733 * multiple.
4734 */
4735 p = NULL;
1f7dd3e5 4736 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4737 WARN_ON_ONCE(p);
4738 p = leader;
1f7dd3e5 4739 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4740 }
4741 if (!p)
4742 return 0;
4743
1f7dd3e5
TH
4744 /*
4745 * We are now commited to this value whatever it is. Changes in this
4746 * tunable will only affect upcoming migrations, not the current one.
4747 * So we need to save it, and keep it going.
4748 */
4749 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4750 if (!move_flags)
4751 return 0;
4752
9f2115f9
TH
4753 from = mem_cgroup_from_task(p);
4754
4755 VM_BUG_ON(from == memcg);
4756
4757 mm = get_task_mm(p);
4758 if (!mm)
4759 return 0;
4760 /* We move charges only when we move a owner of the mm */
4761 if (mm->owner == p) {
4762 VM_BUG_ON(mc.from);
4763 VM_BUG_ON(mc.to);
4764 VM_BUG_ON(mc.precharge);
4765 VM_BUG_ON(mc.moved_charge);
4766 VM_BUG_ON(mc.moved_swap);
4767
4768 spin_lock(&mc.lock);
4769 mc.from = from;
4770 mc.to = memcg;
4771 mc.flags = move_flags;
4772 spin_unlock(&mc.lock);
4773 /* We set mc.moving_task later */
4774
4775 ret = mem_cgroup_precharge_mc(mm);
4776 if (ret)
4777 mem_cgroup_clear_mc();
7dc74be0 4778 }
9f2115f9 4779 mmput(mm);
7dc74be0
DN
4780 return ret;
4781}
4782
1f7dd3e5 4783static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4784{
4e2f245d
JW
4785 if (mc.to)
4786 mem_cgroup_clear_mc();
7dc74be0
DN
4787}
4788
4ffef5fe
DN
4789static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4790 unsigned long addr, unsigned long end,
4791 struct mm_walk *walk)
7dc74be0 4792{
4ffef5fe 4793 int ret = 0;
26bcd64a 4794 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4795 pte_t *pte;
4796 spinlock_t *ptl;
12724850
NH
4797 enum mc_target_type target_type;
4798 union mc_target target;
4799 struct page *page;
4ffef5fe 4800
b6ec57f4
KS
4801 ptl = pmd_trans_huge_lock(pmd, vma);
4802 if (ptl) {
62ade86a 4803 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4804 spin_unlock(ptl);
12724850
NH
4805 return 0;
4806 }
4807 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4808 if (target_type == MC_TARGET_PAGE) {
4809 page = target.page;
4810 if (!isolate_lru_page(page)) {
f627c2f5 4811 if (!mem_cgroup_move_account(page, true,
1306a85a 4812 mc.from, mc.to)) {
12724850
NH
4813 mc.precharge -= HPAGE_PMD_NR;
4814 mc.moved_charge += HPAGE_PMD_NR;
4815 }
4816 putback_lru_page(page);
4817 }
4818 put_page(page);
4819 }
bf929152 4820 spin_unlock(ptl);
1a5a9906 4821 return 0;
12724850
NH
4822 }
4823
45f83cef
AA
4824 if (pmd_trans_unstable(pmd))
4825 return 0;
4ffef5fe
DN
4826retry:
4827 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4828 for (; addr != end; addr += PAGE_SIZE) {
4829 pte_t ptent = *(pte++);
02491447 4830 swp_entry_t ent;
4ffef5fe
DN
4831
4832 if (!mc.precharge)
4833 break;
4834
8d32ff84 4835 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4836 case MC_TARGET_PAGE:
4837 page = target.page;
53f9263b
KS
4838 /*
4839 * We can have a part of the split pmd here. Moving it
4840 * can be done but it would be too convoluted so simply
4841 * ignore such a partial THP and keep it in original
4842 * memcg. There should be somebody mapping the head.
4843 */
4844 if (PageTransCompound(page))
4845 goto put;
4ffef5fe
DN
4846 if (isolate_lru_page(page))
4847 goto put;
f627c2f5
KS
4848 if (!mem_cgroup_move_account(page, false,
4849 mc.from, mc.to)) {
4ffef5fe 4850 mc.precharge--;
854ffa8d
DN
4851 /* we uncharge from mc.from later. */
4852 mc.moved_charge++;
4ffef5fe
DN
4853 }
4854 putback_lru_page(page);
8d32ff84 4855put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4856 put_page(page);
4857 break;
02491447
DN
4858 case MC_TARGET_SWAP:
4859 ent = target.ent;
e91cbb42 4860 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4861 mc.precharge--;
483c30b5
DN
4862 /* we fixup refcnts and charges later. */
4863 mc.moved_swap++;
4864 }
02491447 4865 break;
4ffef5fe
DN
4866 default:
4867 break;
4868 }
4869 }
4870 pte_unmap_unlock(pte - 1, ptl);
4871 cond_resched();
4872
4873 if (addr != end) {
4874 /*
4875 * We have consumed all precharges we got in can_attach().
4876 * We try charge one by one, but don't do any additional
4877 * charges to mc.to if we have failed in charge once in attach()
4878 * phase.
4879 */
854ffa8d 4880 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4881 if (!ret)
4882 goto retry;
4883 }
4884
4885 return ret;
4886}
4887
4888static void mem_cgroup_move_charge(struct mm_struct *mm)
4889{
26bcd64a
NH
4890 struct mm_walk mem_cgroup_move_charge_walk = {
4891 .pmd_entry = mem_cgroup_move_charge_pte_range,
4892 .mm = mm,
4893 };
4ffef5fe
DN
4894
4895 lru_add_drain_all();
312722cb 4896 /*
81f8c3a4
JW
4897 * Signal lock_page_memcg() to take the memcg's move_lock
4898 * while we're moving its pages to another memcg. Then wait
4899 * for already started RCU-only updates to finish.
312722cb
JW
4900 */
4901 atomic_inc(&mc.from->moving_account);
4902 synchronize_rcu();
dfe076b0
DN
4903retry:
4904 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4905 /*
4906 * Someone who are holding the mmap_sem might be waiting in
4907 * waitq. So we cancel all extra charges, wake up all waiters,
4908 * and retry. Because we cancel precharges, we might not be able
4909 * to move enough charges, but moving charge is a best-effort
4910 * feature anyway, so it wouldn't be a big problem.
4911 */
4912 __mem_cgroup_clear_mc();
4913 cond_resched();
4914 goto retry;
4915 }
26bcd64a
NH
4916 /*
4917 * When we have consumed all precharges and failed in doing
4918 * additional charge, the page walk just aborts.
4919 */
4920 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4921 up_read(&mm->mmap_sem);
312722cb 4922 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4923}
4924
1f7dd3e5 4925static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 4926{
1f7dd3e5
TH
4927 struct cgroup_subsys_state *css;
4928 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 4929 struct mm_struct *mm = get_task_mm(p);
dfe076b0 4930
dfe076b0 4931 if (mm) {
a433658c
KM
4932 if (mc.to)
4933 mem_cgroup_move_charge(mm);
dfe076b0
DN
4934 mmput(mm);
4935 }
a433658c
KM
4936 if (mc.to)
4937 mem_cgroup_clear_mc();
67e465a7 4938}
5cfb80a7 4939#else /* !CONFIG_MMU */
1f7dd3e5 4940static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4941{
4942 return 0;
4943}
1f7dd3e5 4944static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4945{
4946}
1f7dd3e5 4947static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
4948{
4949}
4950#endif
67e465a7 4951
f00baae7
TH
4952/*
4953 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4954 * to verify whether we're attached to the default hierarchy on each mount
4955 * attempt.
f00baae7 4956 */
eb95419b 4957static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4958{
4959 /*
aa6ec29b 4960 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4961 * guarantees that @root doesn't have any children, so turning it
4962 * on for the root memcg is enough.
4963 */
9e10a130 4964 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4965 root_mem_cgroup->use_hierarchy = true;
4966 else
4967 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4968}
4969
241994ed
JW
4970static u64 memory_current_read(struct cgroup_subsys_state *css,
4971 struct cftype *cft)
4972{
f5fc3c5d
JW
4973 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4974
4975 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4976}
4977
4978static int memory_low_show(struct seq_file *m, void *v)
4979{
4980 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4981 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4982
4983 if (low == PAGE_COUNTER_MAX)
d2973697 4984 seq_puts(m, "max\n");
241994ed
JW
4985 else
4986 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4987
4988 return 0;
4989}
4990
4991static ssize_t memory_low_write(struct kernfs_open_file *of,
4992 char *buf, size_t nbytes, loff_t off)
4993{
4994 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4995 unsigned long low;
4996 int err;
4997
4998 buf = strstrip(buf);
d2973697 4999 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5000 if (err)
5001 return err;
5002
5003 memcg->low = low;
5004
5005 return nbytes;
5006}
5007
5008static int memory_high_show(struct seq_file *m, void *v)
5009{
5010 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5011 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5012
5013 if (high == PAGE_COUNTER_MAX)
d2973697 5014 seq_puts(m, "max\n");
241994ed
JW
5015 else
5016 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5017
5018 return 0;
5019}
5020
5021static ssize_t memory_high_write(struct kernfs_open_file *of,
5022 char *buf, size_t nbytes, loff_t off)
5023{
5024 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5025 unsigned long high;
5026 int err;
5027
5028 buf = strstrip(buf);
d2973697 5029 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5030 if (err)
5031 return err;
5032
5033 memcg->high = high;
5034
2529bb3a 5035 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5036 return nbytes;
5037}
5038
5039static int memory_max_show(struct seq_file *m, void *v)
5040{
5041 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5042 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5043
5044 if (max == PAGE_COUNTER_MAX)
d2973697 5045 seq_puts(m, "max\n");
241994ed
JW
5046 else
5047 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5048
5049 return 0;
5050}
5051
5052static ssize_t memory_max_write(struct kernfs_open_file *of,
5053 char *buf, size_t nbytes, loff_t off)
5054{
5055 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5056 unsigned long max;
5057 int err;
5058
5059 buf = strstrip(buf);
d2973697 5060 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5061 if (err)
5062 return err;
5063
5064 err = mem_cgroup_resize_limit(memcg, max);
5065 if (err)
5066 return err;
5067
2529bb3a 5068 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5069 return nbytes;
5070}
5071
5072static int memory_events_show(struct seq_file *m, void *v)
5073{
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5075
5076 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5077 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5078 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5079 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5080
5081 return 0;
5082}
5083
587d9f72
JW
5084static int memory_stat_show(struct seq_file *m, void *v)
5085{
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5087 unsigned long stat[MEMCG_NR_STAT];
5088 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5089 int i;
5090
5091 /*
5092 * Provide statistics on the state of the memory subsystem as
5093 * well as cumulative event counters that show past behavior.
5094 *
5095 * This list is ordered following a combination of these gradients:
5096 * 1) generic big picture -> specifics and details
5097 * 2) reflecting userspace activity -> reflecting kernel heuristics
5098 *
5099 * Current memory state:
5100 */
5101
72b54e73
VD
5102 tree_stat(memcg, stat);
5103 tree_events(memcg, events);
5104
587d9f72 5105 seq_printf(m, "anon %llu\n",
72b54e73 5106 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5107 seq_printf(m, "file %llu\n",
72b54e73 5108 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5109 seq_printf(m, "kernel_stack %llu\n",
5110 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5111 seq_printf(m, "slab %llu\n",
5112 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5113 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5114 seq_printf(m, "sock %llu\n",
72b54e73 5115 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5116
5117 seq_printf(m, "file_mapped %llu\n",
72b54e73 5118 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5119 seq_printf(m, "file_dirty %llu\n",
72b54e73 5120 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5121 seq_printf(m, "file_writeback %llu\n",
72b54e73 5122 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5123
5124 for (i = 0; i < NR_LRU_LISTS; i++) {
5125 struct mem_cgroup *mi;
5126 unsigned long val = 0;
5127
5128 for_each_mem_cgroup_tree(mi, memcg)
5129 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5130 seq_printf(m, "%s %llu\n",
5131 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5132 }
5133
27ee57c9
VD
5134 seq_printf(m, "slab_reclaimable %llu\n",
5135 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5136 seq_printf(m, "slab_unreclaimable %llu\n",
5137 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5138
587d9f72
JW
5139 /* Accumulated memory events */
5140
5141 seq_printf(m, "pgfault %lu\n",
72b54e73 5142 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5143 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5144 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5145
5146 return 0;
5147}
5148
241994ed
JW
5149static struct cftype memory_files[] = {
5150 {
5151 .name = "current",
f5fc3c5d 5152 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5153 .read_u64 = memory_current_read,
5154 },
5155 {
5156 .name = "low",
5157 .flags = CFTYPE_NOT_ON_ROOT,
5158 .seq_show = memory_low_show,
5159 .write = memory_low_write,
5160 },
5161 {
5162 .name = "high",
5163 .flags = CFTYPE_NOT_ON_ROOT,
5164 .seq_show = memory_high_show,
5165 .write = memory_high_write,
5166 },
5167 {
5168 .name = "max",
5169 .flags = CFTYPE_NOT_ON_ROOT,
5170 .seq_show = memory_max_show,
5171 .write = memory_max_write,
5172 },
5173 {
5174 .name = "events",
5175 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5176 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5177 .seq_show = memory_events_show,
5178 },
587d9f72
JW
5179 {
5180 .name = "stat",
5181 .flags = CFTYPE_NOT_ON_ROOT,
5182 .seq_show = memory_stat_show,
5183 },
241994ed
JW
5184 { } /* terminate */
5185};
5186
073219e9 5187struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5188 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5189 .css_online = mem_cgroup_css_online,
92fb9748 5190 .css_offline = mem_cgroup_css_offline,
6df38689 5191 .css_released = mem_cgroup_css_released,
92fb9748 5192 .css_free = mem_cgroup_css_free,
1ced953b 5193 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5194 .can_attach = mem_cgroup_can_attach,
5195 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5196 .attach = mem_cgroup_move_task,
f00baae7 5197 .bind = mem_cgroup_bind,
241994ed
JW
5198 .dfl_cftypes = memory_files,
5199 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5200 .early_init = 0,
8cdea7c0 5201};
c077719b 5202
241994ed
JW
5203/**
5204 * mem_cgroup_low - check if memory consumption is below the normal range
5205 * @root: the highest ancestor to consider
5206 * @memcg: the memory cgroup to check
5207 *
5208 * Returns %true if memory consumption of @memcg, and that of all
5209 * configurable ancestors up to @root, is below the normal range.
5210 */
5211bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5212{
5213 if (mem_cgroup_disabled())
5214 return false;
5215
5216 /*
5217 * The toplevel group doesn't have a configurable range, so
5218 * it's never low when looked at directly, and it is not
5219 * considered an ancestor when assessing the hierarchy.
5220 */
5221
5222 if (memcg == root_mem_cgroup)
5223 return false;
5224
4e54dede 5225 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5226 return false;
5227
5228 while (memcg != root) {
5229 memcg = parent_mem_cgroup(memcg);
5230
5231 if (memcg == root_mem_cgroup)
5232 break;
5233
4e54dede 5234 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5235 return false;
5236 }
5237 return true;
5238}
5239
00501b53
JW
5240/**
5241 * mem_cgroup_try_charge - try charging a page
5242 * @page: page to charge
5243 * @mm: mm context of the victim
5244 * @gfp_mask: reclaim mode
5245 * @memcgp: charged memcg return
5246 *
5247 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5248 * pages according to @gfp_mask if necessary.
5249 *
5250 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5251 * Otherwise, an error code is returned.
5252 *
5253 * After page->mapping has been set up, the caller must finalize the
5254 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5255 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5256 */
5257int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5258 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5259 bool compound)
00501b53
JW
5260{
5261 struct mem_cgroup *memcg = NULL;
f627c2f5 5262 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5263 int ret = 0;
5264
5265 if (mem_cgroup_disabled())
5266 goto out;
5267
5268 if (PageSwapCache(page)) {
00501b53
JW
5269 /*
5270 * Every swap fault against a single page tries to charge the
5271 * page, bail as early as possible. shmem_unuse() encounters
5272 * already charged pages, too. The USED bit is protected by
5273 * the page lock, which serializes swap cache removal, which
5274 * in turn serializes uncharging.
5275 */
e993d905 5276 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5277 if (page->mem_cgroup)
00501b53 5278 goto out;
e993d905 5279
37e84351 5280 if (do_swap_account) {
e993d905
VD
5281 swp_entry_t ent = { .val = page_private(page), };
5282 unsigned short id = lookup_swap_cgroup_id(ent);
5283
5284 rcu_read_lock();
5285 memcg = mem_cgroup_from_id(id);
5286 if (memcg && !css_tryget_online(&memcg->css))
5287 memcg = NULL;
5288 rcu_read_unlock();
5289 }
00501b53
JW
5290 }
5291
00501b53
JW
5292 if (!memcg)
5293 memcg = get_mem_cgroup_from_mm(mm);
5294
5295 ret = try_charge(memcg, gfp_mask, nr_pages);
5296
5297 css_put(&memcg->css);
00501b53
JW
5298out:
5299 *memcgp = memcg;
5300 return ret;
5301}
5302
5303/**
5304 * mem_cgroup_commit_charge - commit a page charge
5305 * @page: page to charge
5306 * @memcg: memcg to charge the page to
5307 * @lrucare: page might be on LRU already
5308 *
5309 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5310 * after page->mapping has been set up. This must happen atomically
5311 * as part of the page instantiation, i.e. under the page table lock
5312 * for anonymous pages, under the page lock for page and swap cache.
5313 *
5314 * In addition, the page must not be on the LRU during the commit, to
5315 * prevent racing with task migration. If it might be, use @lrucare.
5316 *
5317 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5318 */
5319void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5320 bool lrucare, bool compound)
00501b53 5321{
f627c2f5 5322 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5323
5324 VM_BUG_ON_PAGE(!page->mapping, page);
5325 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5326
5327 if (mem_cgroup_disabled())
5328 return;
5329 /*
5330 * Swap faults will attempt to charge the same page multiple
5331 * times. But reuse_swap_page() might have removed the page
5332 * from swapcache already, so we can't check PageSwapCache().
5333 */
5334 if (!memcg)
5335 return;
5336
6abb5a86
JW
5337 commit_charge(page, memcg, lrucare);
5338
6abb5a86 5339 local_irq_disable();
f627c2f5 5340 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5341 memcg_check_events(memcg, page);
5342 local_irq_enable();
00501b53 5343
7941d214 5344 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5345 swp_entry_t entry = { .val = page_private(page) };
5346 /*
5347 * The swap entry might not get freed for a long time,
5348 * let's not wait for it. The page already received a
5349 * memory+swap charge, drop the swap entry duplicate.
5350 */
5351 mem_cgroup_uncharge_swap(entry);
5352 }
5353}
5354
5355/**
5356 * mem_cgroup_cancel_charge - cancel a page charge
5357 * @page: page to charge
5358 * @memcg: memcg to charge the page to
5359 *
5360 * Cancel a charge transaction started by mem_cgroup_try_charge().
5361 */
f627c2f5
KS
5362void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5363 bool compound)
00501b53 5364{
f627c2f5 5365 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5366
5367 if (mem_cgroup_disabled())
5368 return;
5369 /*
5370 * Swap faults will attempt to charge the same page multiple
5371 * times. But reuse_swap_page() might have removed the page
5372 * from swapcache already, so we can't check PageSwapCache().
5373 */
5374 if (!memcg)
5375 return;
5376
00501b53
JW
5377 cancel_charge(memcg, nr_pages);
5378}
5379
747db954 5380static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5381 unsigned long nr_anon, unsigned long nr_file,
5382 unsigned long nr_huge, struct page *dummy_page)
5383{
18eca2e6 5384 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5385 unsigned long flags;
5386
ce00a967 5387 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5388 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5389 if (do_memsw_account())
18eca2e6 5390 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5391 memcg_oom_recover(memcg);
5392 }
747db954
JW
5393
5394 local_irq_save(flags);
5395 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5396 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5397 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5398 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5399 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5400 memcg_check_events(memcg, dummy_page);
5401 local_irq_restore(flags);
e8ea14cc
JW
5402
5403 if (!mem_cgroup_is_root(memcg))
18eca2e6 5404 css_put_many(&memcg->css, nr_pages);
747db954
JW
5405}
5406
5407static void uncharge_list(struct list_head *page_list)
5408{
5409 struct mem_cgroup *memcg = NULL;
747db954
JW
5410 unsigned long nr_anon = 0;
5411 unsigned long nr_file = 0;
5412 unsigned long nr_huge = 0;
5413 unsigned long pgpgout = 0;
747db954
JW
5414 struct list_head *next;
5415 struct page *page;
5416
5417 next = page_list->next;
5418 do {
5419 unsigned int nr_pages = 1;
747db954
JW
5420
5421 page = list_entry(next, struct page, lru);
5422 next = page->lru.next;
5423
5424 VM_BUG_ON_PAGE(PageLRU(page), page);
5425 VM_BUG_ON_PAGE(page_count(page), page);
5426
1306a85a 5427 if (!page->mem_cgroup)
747db954
JW
5428 continue;
5429
5430 /*
5431 * Nobody should be changing or seriously looking at
1306a85a 5432 * page->mem_cgroup at this point, we have fully
29833315 5433 * exclusive access to the page.
747db954
JW
5434 */
5435
1306a85a 5436 if (memcg != page->mem_cgroup) {
747db954 5437 if (memcg) {
18eca2e6
JW
5438 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5439 nr_huge, page);
5440 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5441 }
1306a85a 5442 memcg = page->mem_cgroup;
747db954
JW
5443 }
5444
5445 if (PageTransHuge(page)) {
5446 nr_pages <<= compound_order(page);
5447 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5448 nr_huge += nr_pages;
5449 }
5450
5451 if (PageAnon(page))
5452 nr_anon += nr_pages;
5453 else
5454 nr_file += nr_pages;
5455
1306a85a 5456 page->mem_cgroup = NULL;
747db954
JW
5457
5458 pgpgout++;
5459 } while (next != page_list);
5460
5461 if (memcg)
18eca2e6
JW
5462 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5463 nr_huge, page);
747db954
JW
5464}
5465
0a31bc97
JW
5466/**
5467 * mem_cgroup_uncharge - uncharge a page
5468 * @page: page to uncharge
5469 *
5470 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5471 * mem_cgroup_commit_charge().
5472 */
5473void mem_cgroup_uncharge(struct page *page)
5474{
0a31bc97
JW
5475 if (mem_cgroup_disabled())
5476 return;
5477
747db954 5478 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5479 if (!page->mem_cgroup)
0a31bc97
JW
5480 return;
5481
747db954
JW
5482 INIT_LIST_HEAD(&page->lru);
5483 uncharge_list(&page->lru);
5484}
0a31bc97 5485
747db954
JW
5486/**
5487 * mem_cgroup_uncharge_list - uncharge a list of page
5488 * @page_list: list of pages to uncharge
5489 *
5490 * Uncharge a list of pages previously charged with
5491 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5492 */
5493void mem_cgroup_uncharge_list(struct list_head *page_list)
5494{
5495 if (mem_cgroup_disabled())
5496 return;
0a31bc97 5497
747db954
JW
5498 if (!list_empty(page_list))
5499 uncharge_list(page_list);
0a31bc97
JW
5500}
5501
5502/**
6a93ca8f
JW
5503 * mem_cgroup_migrate - charge a page's replacement
5504 * @oldpage: currently circulating page
5505 * @newpage: replacement page
0a31bc97 5506 *
6a93ca8f
JW
5507 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5508 * be uncharged upon free.
0a31bc97
JW
5509 *
5510 * Both pages must be locked, @newpage->mapping must be set up.
5511 */
6a93ca8f 5512void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5513{
29833315 5514 struct mem_cgroup *memcg;
44b7a8d3
JW
5515 unsigned int nr_pages;
5516 bool compound;
0a31bc97
JW
5517
5518 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5519 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5520 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5521 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5522 newpage);
0a31bc97
JW
5523
5524 if (mem_cgroup_disabled())
5525 return;
5526
5527 /* Page cache replacement: new page already charged? */
1306a85a 5528 if (newpage->mem_cgroup)
0a31bc97
JW
5529 return;
5530
45637bab 5531 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5532 memcg = oldpage->mem_cgroup;
29833315 5533 if (!memcg)
0a31bc97
JW
5534 return;
5535
44b7a8d3
JW
5536 /* Force-charge the new page. The old one will be freed soon */
5537 compound = PageTransHuge(newpage);
5538 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5539
5540 page_counter_charge(&memcg->memory, nr_pages);
5541 if (do_memsw_account())
5542 page_counter_charge(&memcg->memsw, nr_pages);
5543 css_get_many(&memcg->css, nr_pages);
0a31bc97 5544
9cf7666a 5545 commit_charge(newpage, memcg, false);
44b7a8d3
JW
5546
5547 local_irq_disable();
5548 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5549 memcg_check_events(memcg, newpage);
5550 local_irq_enable();
0a31bc97
JW
5551}
5552
ef12947c 5553DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5554EXPORT_SYMBOL(memcg_sockets_enabled_key);
5555
5556void sock_update_memcg(struct sock *sk)
5557{
5558 struct mem_cgroup *memcg;
5559
5560 /* Socket cloning can throw us here with sk_cgrp already
5561 * filled. It won't however, necessarily happen from
5562 * process context. So the test for root memcg given
5563 * the current task's memcg won't help us in this case.
5564 *
5565 * Respecting the original socket's memcg is a better
5566 * decision in this case.
5567 */
5568 if (sk->sk_memcg) {
5569 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5570 css_get(&sk->sk_memcg->css);
5571 return;
5572 }
5573
5574 rcu_read_lock();
5575 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5576 if (memcg == root_mem_cgroup)
5577 goto out;
0db15298 5578 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5579 goto out;
f7e1cb6e 5580 if (css_tryget_online(&memcg->css))
11092087 5581 sk->sk_memcg = memcg;
f7e1cb6e 5582out:
11092087
JW
5583 rcu_read_unlock();
5584}
5585EXPORT_SYMBOL(sock_update_memcg);
5586
5587void sock_release_memcg(struct sock *sk)
5588{
5589 WARN_ON(!sk->sk_memcg);
5590 css_put(&sk->sk_memcg->css);
5591}
5592
5593/**
5594 * mem_cgroup_charge_skmem - charge socket memory
5595 * @memcg: memcg to charge
5596 * @nr_pages: number of pages to charge
5597 *
5598 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5599 * @memcg's configured limit, %false if the charge had to be forced.
5600 */
5601bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5602{
f7e1cb6e 5603 gfp_t gfp_mask = GFP_KERNEL;
11092087 5604
f7e1cb6e 5605 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5606 struct page_counter *fail;
f7e1cb6e 5607
0db15298
JW
5608 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5609 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5610 return true;
5611 }
0db15298
JW
5612 page_counter_charge(&memcg->tcpmem, nr_pages);
5613 memcg->tcpmem_pressure = 1;
f7e1cb6e 5614 return false;
11092087 5615 }
d886f4e4 5616
f7e1cb6e
JW
5617 /* Don't block in the packet receive path */
5618 if (in_softirq())
5619 gfp_mask = GFP_NOWAIT;
5620
b2807f07
JW
5621 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5622
f7e1cb6e
JW
5623 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5624 return true;
5625
5626 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5627 return false;
5628}
5629
5630/**
5631 * mem_cgroup_uncharge_skmem - uncharge socket memory
5632 * @memcg - memcg to uncharge
5633 * @nr_pages - number of pages to uncharge
5634 */
5635void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5636{
f7e1cb6e 5637 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5638 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5639 return;
5640 }
d886f4e4 5641
b2807f07
JW
5642 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5643
f7e1cb6e
JW
5644 page_counter_uncharge(&memcg->memory, nr_pages);
5645 css_put_many(&memcg->css, nr_pages);
11092087
JW
5646}
5647
f7e1cb6e
JW
5648static int __init cgroup_memory(char *s)
5649{
5650 char *token;
5651
5652 while ((token = strsep(&s, ",")) != NULL) {
5653 if (!*token)
5654 continue;
5655 if (!strcmp(token, "nosocket"))
5656 cgroup_memory_nosocket = true;
04823c83
VD
5657 if (!strcmp(token, "nokmem"))
5658 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5659 }
5660 return 0;
5661}
5662__setup("cgroup.memory=", cgroup_memory);
11092087 5663
2d11085e 5664/*
1081312f
MH
5665 * subsys_initcall() for memory controller.
5666 *
5667 * Some parts like hotcpu_notifier() have to be initialized from this context
5668 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5669 * everything that doesn't depend on a specific mem_cgroup structure should
5670 * be initialized from here.
2d11085e
MH
5671 */
5672static int __init mem_cgroup_init(void)
5673{
95a045f6
JW
5674 int cpu, node;
5675
2d11085e 5676 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5677
5678 for_each_possible_cpu(cpu)
5679 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5680 drain_local_stock);
5681
5682 for_each_node(node) {
5683 struct mem_cgroup_tree_per_node *rtpn;
5684 int zone;
5685
5686 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5687 node_online(node) ? node : NUMA_NO_NODE);
5688
5689 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5690 struct mem_cgroup_tree_per_zone *rtpz;
5691
5692 rtpz = &rtpn->rb_tree_per_zone[zone];
5693 rtpz->rb_root = RB_ROOT;
5694 spin_lock_init(&rtpz->lock);
5695 }
5696 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5697 }
5698
2d11085e
MH
5699 return 0;
5700}
5701subsys_initcall(mem_cgroup_init);
21afa38e
JW
5702
5703#ifdef CONFIG_MEMCG_SWAP
5704/**
5705 * mem_cgroup_swapout - transfer a memsw charge to swap
5706 * @page: page whose memsw charge to transfer
5707 * @entry: swap entry to move the charge to
5708 *
5709 * Transfer the memsw charge of @page to @entry.
5710 */
5711void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5712{
5713 struct mem_cgroup *memcg;
5714 unsigned short oldid;
5715
5716 VM_BUG_ON_PAGE(PageLRU(page), page);
5717 VM_BUG_ON_PAGE(page_count(page), page);
5718
7941d214 5719 if (!do_memsw_account())
21afa38e
JW
5720 return;
5721
5722 memcg = page->mem_cgroup;
5723
5724 /* Readahead page, never charged */
5725 if (!memcg)
5726 return;
5727
5728 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5729 VM_BUG_ON_PAGE(oldid, page);
5730 mem_cgroup_swap_statistics(memcg, true);
5731
5732 page->mem_cgroup = NULL;
5733
5734 if (!mem_cgroup_is_root(memcg))
5735 page_counter_uncharge(&memcg->memory, 1);
5736
ce9ce665
SAS
5737 /*
5738 * Interrupts should be disabled here because the caller holds the
5739 * mapping->tree_lock lock which is taken with interrupts-off. It is
5740 * important here to have the interrupts disabled because it is the
5741 * only synchronisation we have for udpating the per-CPU variables.
5742 */
5743 VM_BUG_ON(!irqs_disabled());
f627c2f5 5744 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5745 memcg_check_events(memcg, page);
5746}
5747
37e84351
VD
5748/*
5749 * mem_cgroup_try_charge_swap - try charging a swap entry
5750 * @page: page being added to swap
5751 * @entry: swap entry to charge
5752 *
5753 * Try to charge @entry to the memcg that @page belongs to.
5754 *
5755 * Returns 0 on success, -ENOMEM on failure.
5756 */
5757int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5758{
5759 struct mem_cgroup *memcg;
5760 struct page_counter *counter;
5761 unsigned short oldid;
5762
5763 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5764 return 0;
5765
5766 memcg = page->mem_cgroup;
5767
5768 /* Readahead page, never charged */
5769 if (!memcg)
5770 return 0;
5771
5772 if (!mem_cgroup_is_root(memcg) &&
5773 !page_counter_try_charge(&memcg->swap, 1, &counter))
5774 return -ENOMEM;
5775
5776 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5777 VM_BUG_ON_PAGE(oldid, page);
5778 mem_cgroup_swap_statistics(memcg, true);
5779
5780 css_get(&memcg->css);
5781 return 0;
5782}
5783
21afa38e
JW
5784/**
5785 * mem_cgroup_uncharge_swap - uncharge a swap entry
5786 * @entry: swap entry to uncharge
5787 *
37e84351 5788 * Drop the swap charge associated with @entry.
21afa38e
JW
5789 */
5790void mem_cgroup_uncharge_swap(swp_entry_t entry)
5791{
5792 struct mem_cgroup *memcg;
5793 unsigned short id;
5794
37e84351 5795 if (!do_swap_account)
21afa38e
JW
5796 return;
5797
5798 id = swap_cgroup_record(entry, 0);
5799 rcu_read_lock();
adbe427b 5800 memcg = mem_cgroup_from_id(id);
21afa38e 5801 if (memcg) {
37e84351
VD
5802 if (!mem_cgroup_is_root(memcg)) {
5803 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5804 page_counter_uncharge(&memcg->swap, 1);
5805 else
5806 page_counter_uncharge(&memcg->memsw, 1);
5807 }
21afa38e
JW
5808 mem_cgroup_swap_statistics(memcg, false);
5809 css_put(&memcg->css);
5810 }
5811 rcu_read_unlock();
5812}
5813
d8b38438
VD
5814long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5815{
5816 long nr_swap_pages = get_nr_swap_pages();
5817
5818 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5819 return nr_swap_pages;
5820 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5821 nr_swap_pages = min_t(long, nr_swap_pages,
5822 READ_ONCE(memcg->swap.limit) -
5823 page_counter_read(&memcg->swap));
5824 return nr_swap_pages;
5825}
5826
5ccc5aba
VD
5827bool mem_cgroup_swap_full(struct page *page)
5828{
5829 struct mem_cgroup *memcg;
5830
5831 VM_BUG_ON_PAGE(!PageLocked(page), page);
5832
5833 if (vm_swap_full())
5834 return true;
5835 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5836 return false;
5837
5838 memcg = page->mem_cgroup;
5839 if (!memcg)
5840 return false;
5841
5842 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5843 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5844 return true;
5845
5846 return false;
5847}
5848
21afa38e
JW
5849/* for remember boot option*/
5850#ifdef CONFIG_MEMCG_SWAP_ENABLED
5851static int really_do_swap_account __initdata = 1;
5852#else
5853static int really_do_swap_account __initdata;
5854#endif
5855
5856static int __init enable_swap_account(char *s)
5857{
5858 if (!strcmp(s, "1"))
5859 really_do_swap_account = 1;
5860 else if (!strcmp(s, "0"))
5861 really_do_swap_account = 0;
5862 return 1;
5863}
5864__setup("swapaccount=", enable_swap_account);
5865
37e84351
VD
5866static u64 swap_current_read(struct cgroup_subsys_state *css,
5867 struct cftype *cft)
5868{
5869 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5870
5871 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5872}
5873
5874static int swap_max_show(struct seq_file *m, void *v)
5875{
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5877 unsigned long max = READ_ONCE(memcg->swap.limit);
5878
5879 if (max == PAGE_COUNTER_MAX)
5880 seq_puts(m, "max\n");
5881 else
5882 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5883
5884 return 0;
5885}
5886
5887static ssize_t swap_max_write(struct kernfs_open_file *of,
5888 char *buf, size_t nbytes, loff_t off)
5889{
5890 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5891 unsigned long max;
5892 int err;
5893
5894 buf = strstrip(buf);
5895 err = page_counter_memparse(buf, "max", &max);
5896 if (err)
5897 return err;
5898
5899 mutex_lock(&memcg_limit_mutex);
5900 err = page_counter_limit(&memcg->swap, max);
5901 mutex_unlock(&memcg_limit_mutex);
5902 if (err)
5903 return err;
5904
5905 return nbytes;
5906}
5907
5908static struct cftype swap_files[] = {
5909 {
5910 .name = "swap.current",
5911 .flags = CFTYPE_NOT_ON_ROOT,
5912 .read_u64 = swap_current_read,
5913 },
5914 {
5915 .name = "swap.max",
5916 .flags = CFTYPE_NOT_ON_ROOT,
5917 .seq_show = swap_max_show,
5918 .write = swap_max_write,
5919 },
5920 { } /* terminate */
5921};
5922
21afa38e
JW
5923static struct cftype memsw_cgroup_files[] = {
5924 {
5925 .name = "memsw.usage_in_bytes",
5926 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5927 .read_u64 = mem_cgroup_read_u64,
5928 },
5929 {
5930 .name = "memsw.max_usage_in_bytes",
5931 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5932 .write = mem_cgroup_reset,
5933 .read_u64 = mem_cgroup_read_u64,
5934 },
5935 {
5936 .name = "memsw.limit_in_bytes",
5937 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5938 .write = mem_cgroup_write,
5939 .read_u64 = mem_cgroup_read_u64,
5940 },
5941 {
5942 .name = "memsw.failcnt",
5943 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5944 .write = mem_cgroup_reset,
5945 .read_u64 = mem_cgroup_read_u64,
5946 },
5947 { }, /* terminate */
5948};
5949
5950static int __init mem_cgroup_swap_init(void)
5951{
5952 if (!mem_cgroup_disabled() && really_do_swap_account) {
5953 do_swap_account = 1;
37e84351
VD
5954 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5955 swap_files));
21afa38e
JW
5956 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5957 memsw_cgroup_files));
5958 }
5959 return 0;
5960}
5961subsys_initcall(mem_cgroup_swap_init);
5962
5963#endif /* CONFIG_MEMCG_SWAP */