Merge tag 'usercopy-v5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
71cd3113 101static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
102 "inactive_anon",
103 "active_anon",
104 "inactive_file",
105 "active_file",
106 "unevictable",
107};
108
a0db00fc
KS
109#define THRESHOLDS_EVENTS_TARGET 128
110#define SOFTLIMIT_EVENTS_TARGET 1024
111#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 112
bb4cc1a8
AM
113/*
114 * Cgroups above their limits are maintained in a RB-Tree, independent of
115 * their hierarchy representation
116 */
117
ef8f2327 118struct mem_cgroup_tree_per_node {
bb4cc1a8 119 struct rb_root rb_root;
fa90b2fd 120 struct rb_node *rb_rightmost;
bb4cc1a8
AM
121 spinlock_t lock;
122};
123
bb4cc1a8
AM
124struct mem_cgroup_tree {
125 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126};
127
128static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129
9490ff27
KH
130/* for OOM */
131struct mem_cgroup_eventfd_list {
132 struct list_head list;
133 struct eventfd_ctx *eventfd;
134};
2e72b634 135
79bd9814
TH
136/*
137 * cgroup_event represents events which userspace want to receive.
138 */
3bc942f3 139struct mem_cgroup_event {
79bd9814 140 /*
59b6f873 141 * memcg which the event belongs to.
79bd9814 142 */
59b6f873 143 struct mem_cgroup *memcg;
79bd9814
TH
144 /*
145 * eventfd to signal userspace about the event.
146 */
147 struct eventfd_ctx *eventfd;
148 /*
149 * Each of these stored in a list by the cgroup.
150 */
151 struct list_head list;
fba94807
TH
152 /*
153 * register_event() callback will be used to add new userspace
154 * waiter for changes related to this event. Use eventfd_signal()
155 * on eventfd to send notification to userspace.
156 */
59b6f873 157 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 158 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
159 /*
160 * unregister_event() callback will be called when userspace closes
161 * the eventfd or on cgroup removing. This callback must be set,
162 * if you want provide notification functionality.
163 */
59b6f873 164 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 165 struct eventfd_ctx *eventfd);
79bd9814
TH
166 /*
167 * All fields below needed to unregister event when
168 * userspace closes eventfd.
169 */
170 poll_table pt;
171 wait_queue_head_t *wqh;
ac6424b9 172 wait_queue_entry_t wait;
79bd9814
TH
173 struct work_struct remove;
174};
175
c0ff4b85
R
176static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 178
7dc74be0
DN
179/* Stuffs for move charges at task migration. */
180/*
1dfab5ab 181 * Types of charges to be moved.
7dc74be0 182 */
1dfab5ab
JW
183#define MOVE_ANON 0x1U
184#define MOVE_FILE 0x2U
185#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 186
4ffef5fe
DN
187/* "mc" and its members are protected by cgroup_mutex */
188static struct move_charge_struct {
b1dd693e 189 spinlock_t lock; /* for from, to */
264a0ae1 190 struct mm_struct *mm;
4ffef5fe
DN
191 struct mem_cgroup *from;
192 struct mem_cgroup *to;
1dfab5ab 193 unsigned long flags;
4ffef5fe 194 unsigned long precharge;
854ffa8d 195 unsigned long moved_charge;
483c30b5 196 unsigned long moved_swap;
8033b97c
DN
197 struct task_struct *moving_task; /* a task moving charges */
198 wait_queue_head_t waitq; /* a waitq for other context */
199} mc = {
2bd9bb20 200 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
201 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202};
4ffef5fe 203
4e416953
BS
204/*
205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206 * limit reclaim to prevent infinite loops, if they ever occur.
207 */
a0db00fc 208#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 209#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 210
217bc319
KH
211enum charge_type {
212 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 213 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 214 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 215 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
216 NR_CHARGE_TYPE,
217};
218
8c7c6e34 219/* for encoding cft->private value on file */
86ae53e1
GC
220enum res_type {
221 _MEM,
222 _MEMSWAP,
223 _OOM_TYPE,
510fc4e1 224 _KMEM,
d55f90bf 225 _TCP,
86ae53e1
GC
226};
227
a0db00fc
KS
228#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
229#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 230#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
231/* Used for OOM nofiier */
232#define OOM_CONTROL (0)
8c7c6e34 233
b05706f1
KT
234/*
235 * Iteration constructs for visiting all cgroups (under a tree). If
236 * loops are exited prematurely (break), mem_cgroup_iter_break() must
237 * be used for reference counting.
238 */
239#define for_each_mem_cgroup_tree(iter, root) \
240 for (iter = mem_cgroup_iter(root, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(root, iter, NULL))
243
244#define for_each_mem_cgroup(iter) \
245 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
246 iter != NULL; \
247 iter = mem_cgroup_iter(NULL, iter, NULL))
248
7775face
TH
249static inline bool should_force_charge(void)
250{
251 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
252 (current->flags & PF_EXITING);
253}
254
70ddf637
AV
255/* Some nice accessors for the vmpressure. */
256struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257{
258 if (!memcg)
259 memcg = root_mem_cgroup;
260 return &memcg->vmpressure;
261}
262
263struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264{
265 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
266}
267
84c07d11 268#ifdef CONFIG_MEMCG_KMEM
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
17cc4dfe 320struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 321#endif
17cc4dfe 322
0a4465d3
KT
323static int memcg_shrinker_map_size;
324static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325
326static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327{
328 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329}
330
331static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 int size, int old_size)
333{
334 struct memcg_shrinker_map *new, *old;
335 int nid;
336
337 lockdep_assert_held(&memcg_shrinker_map_mutex);
338
339 for_each_node(nid) {
340 old = rcu_dereference_protected(
341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 /* Not yet online memcg */
343 if (!old)
344 return 0;
345
346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 if (!new)
348 return -ENOMEM;
349
350 /* Set all old bits, clear all new bits */
351 memset(new->map, (int)0xff, old_size);
352 memset((void *)new->map + old_size, 0, size - old_size);
353
354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 }
357
358 return 0;
359}
360
361static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362{
363 struct mem_cgroup_per_node *pn;
364 struct memcg_shrinker_map *map;
365 int nid;
366
367 if (mem_cgroup_is_root(memcg))
368 return;
369
370 for_each_node(nid) {
371 pn = mem_cgroup_nodeinfo(memcg, nid);
372 map = rcu_dereference_protected(pn->shrinker_map, true);
373 if (map)
374 kvfree(map);
375 rcu_assign_pointer(pn->shrinker_map, NULL);
376 }
377}
378
379static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380{
381 struct memcg_shrinker_map *map;
382 int nid, size, ret = 0;
383
384 if (mem_cgroup_is_root(memcg))
385 return 0;
386
387 mutex_lock(&memcg_shrinker_map_mutex);
388 size = memcg_shrinker_map_size;
389 for_each_node(nid) {
390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 if (!map) {
392 memcg_free_shrinker_maps(memcg);
393 ret = -ENOMEM;
394 break;
395 }
396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 }
398 mutex_unlock(&memcg_shrinker_map_mutex);
399
400 return ret;
401}
402
403int memcg_expand_shrinker_maps(int new_id)
404{
405 int size, old_size, ret = 0;
406 struct mem_cgroup *memcg;
407
408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 old_size = memcg_shrinker_map_size;
410 if (size <= old_size)
411 return 0;
412
413 mutex_lock(&memcg_shrinker_map_mutex);
414 if (!root_mem_cgroup)
415 goto unlock;
416
417 for_each_mem_cgroup(memcg) {
418 if (mem_cgroup_is_root(memcg))
419 continue;
420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 if (ret)
422 goto unlock;
423 }
424unlock:
425 if (!ret)
426 memcg_shrinker_map_size = size;
427 mutex_unlock(&memcg_shrinker_map_mutex);
428 return ret;
429}
fae91d6d
KT
430
431void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
432{
433 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
434 struct memcg_shrinker_map *map;
435
436 rcu_read_lock();
437 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
438 /* Pairs with smp mb in shrink_slab() */
439 smp_mb__before_atomic();
fae91d6d
KT
440 set_bit(shrinker_id, map->map);
441 rcu_read_unlock();
442 }
443}
444
ad7fa852
TH
445/**
446 * mem_cgroup_css_from_page - css of the memcg associated with a page
447 * @page: page of interest
448 *
449 * If memcg is bound to the default hierarchy, css of the memcg associated
450 * with @page is returned. The returned css remains associated with @page
451 * until it is released.
452 *
453 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
454 * is returned.
ad7fa852
TH
455 */
456struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
457{
458 struct mem_cgroup *memcg;
459
ad7fa852
TH
460 memcg = page->mem_cgroup;
461
9e10a130 462 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
463 memcg = root_mem_cgroup;
464
ad7fa852
TH
465 return &memcg->css;
466}
467
2fc04524
VD
468/**
469 * page_cgroup_ino - return inode number of the memcg a page is charged to
470 * @page: the page
471 *
472 * Look up the closest online ancestor of the memory cgroup @page is charged to
473 * and return its inode number or 0 if @page is not charged to any cgroup. It
474 * is safe to call this function without holding a reference to @page.
475 *
476 * Note, this function is inherently racy, because there is nothing to prevent
477 * the cgroup inode from getting torn down and potentially reallocated a moment
478 * after page_cgroup_ino() returns, so it only should be used by callers that
479 * do not care (such as procfs interfaces).
480 */
481ino_t page_cgroup_ino(struct page *page)
482{
483 struct mem_cgroup *memcg;
484 unsigned long ino = 0;
485
486 rcu_read_lock();
4d96ba35
RG
487 if (PageHead(page) && PageSlab(page))
488 memcg = memcg_from_slab_page(page);
489 else
490 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497}
498
ef8f2327
MG
499static struct mem_cgroup_per_node *
500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 501{
97a6c37b 502 int nid = page_to_nid(page);
f64c3f54 503
ef8f2327 504 return memcg->nodeinfo[nid];
f64c3f54
BS
505}
506
ef8f2327
MG
507static struct mem_cgroup_tree_per_node *
508soft_limit_tree_node(int nid)
bb4cc1a8 509{
ef8f2327 510 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
511}
512
ef8f2327 513static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
bb4cc1a8 517
ef8f2327 518 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
519}
520
ef8f2327
MG
521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 523 unsigned long new_usage_in_excess)
bb4cc1a8
AM
524{
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
ef8f2327 527 struct mem_cgroup_per_node *mz_node;
fa90b2fd 528 bool rightmost = true;
bb4cc1a8
AM
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
ef8f2327 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 539 tree_node);
fa90b2fd 540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 541 p = &(*p)->rb_left;
fa90b2fd
DB
542 rightmost = false;
543 }
544
bb4cc1a8
AM
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
fa90b2fd
DB
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
bb4cc1a8
AM
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559}
560
ef8f2327
MG
561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
563{
564 if (!mz->on_tree)
565 return;
fa90b2fd
DB
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
bb4cc1a8
AM
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572}
573
ef8f2327
MG
574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 576{
0a31bc97
JW
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 580 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 581 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
582}
583
3e32cb2e
JW
584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585{
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594}
bb4cc1a8
AM
595
596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597{
3e32cb2e 598 unsigned long excess;
ef8f2327
MG
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 601
e231875b 602 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
603 if (!mctz)
604 return;
bb4cc1a8
AM
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 610 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 611 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
0a31bc97
JW
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
620 /* if on-tree, remove it */
621 if (mz->on_tree)
cf2c8127 622 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
cf2c8127 627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 628 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
629 }
630 }
631}
632
633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634{
ef8f2327
MG
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
bb4cc1a8 638
e231875b 639 for_each_node(nid) {
ef8f2327
MG
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
644 }
645}
646
ef8f2327
MG
647static struct mem_cgroup_per_node *
648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 649{
ef8f2327 650 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
651
652retry:
653 mz = NULL;
fa90b2fd 654 if (!mctz->rb_rightmost)
bb4cc1a8
AM
655 goto done; /* Nothing to reclaim from */
656
fa90b2fd
DB
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
cf2c8127 664 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 665 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 666 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
667 goto retry;
668done:
669 return mz;
670}
671
ef8f2327
MG
672static struct mem_cgroup_per_node *
673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 674{
ef8f2327 675 struct mem_cgroup_per_node *mz;
bb4cc1a8 676
0a31bc97 677 spin_lock_irq(&mctz->lock);
bb4cc1a8 678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 679 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
680 return mz;
681}
682
db9adbcb
JW
683/**
684 * __mod_memcg_state - update cgroup memory statistics
685 * @memcg: the memory cgroup
686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
687 * @val: delta to add to the counter, can be negative
688 */
689void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
690{
691 long x;
692
693 if (mem_cgroup_disabled())
694 return;
695
696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
698 struct mem_cgroup *mi;
699
766a4c19
YS
700 /*
701 * Batch local counters to keep them in sync with
702 * the hierarchical ones.
703 */
704 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
705 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
706 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
707 x = 0;
708 }
709 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
710}
711
42a30035
JW
712static struct mem_cgroup_per_node *
713parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
714{
715 struct mem_cgroup *parent;
716
717 parent = parent_mem_cgroup(pn->memcg);
718 if (!parent)
719 return NULL;
720 return mem_cgroup_nodeinfo(parent, nid);
721}
722
db9adbcb
JW
723/**
724 * __mod_lruvec_state - update lruvec memory statistics
725 * @lruvec: the lruvec
726 * @idx: the stat item
727 * @val: delta to add to the counter, can be negative
728 *
729 * The lruvec is the intersection of the NUMA node and a cgroup. This
730 * function updates the all three counters that are affected by a
731 * change of state at this level: per-node, per-cgroup, per-lruvec.
732 */
733void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
734 int val)
735{
42a30035 736 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 737 struct mem_cgroup_per_node *pn;
42a30035 738 struct mem_cgroup *memcg;
db9adbcb
JW
739 long x;
740
741 /* Update node */
42a30035 742 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
743
744 if (mem_cgroup_disabled())
745 return;
746
747 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 748 memcg = pn->memcg;
db9adbcb
JW
749
750 /* Update memcg */
42a30035 751 __mod_memcg_state(memcg, idx, val);
db9adbcb 752
b4c46484
RG
753 /* Update lruvec */
754 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
755
db9adbcb
JW
756 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
757 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
758 struct mem_cgroup_per_node *pi;
759
42a30035
JW
760 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
761 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
762 x = 0;
763 }
764 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
765}
766
ec9f0238
RG
767void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
768{
769 struct page *page = virt_to_head_page(p);
770 pg_data_t *pgdat = page_pgdat(page);
771 struct mem_cgroup *memcg;
772 struct lruvec *lruvec;
773
774 rcu_read_lock();
775 memcg = memcg_from_slab_page(page);
776
777 /* Untracked pages have no memcg, no lruvec. Update only the node */
778 if (!memcg || memcg == root_mem_cgroup) {
779 __mod_node_page_state(pgdat, idx, val);
780 } else {
781 lruvec = mem_cgroup_lruvec(pgdat, memcg);
782 __mod_lruvec_state(lruvec, idx, val);
783 }
784 rcu_read_unlock();
785}
786
db9adbcb
JW
787/**
788 * __count_memcg_events - account VM events in a cgroup
789 * @memcg: the memory cgroup
790 * @idx: the event item
791 * @count: the number of events that occured
792 */
793void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
794 unsigned long count)
795{
796 unsigned long x;
797
798 if (mem_cgroup_disabled())
799 return;
800
801 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
802 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
803 struct mem_cgroup *mi;
804
766a4c19
YS
805 /*
806 * Batch local counters to keep them in sync with
807 * the hierarchical ones.
808 */
809 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
810 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
811 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
812 x = 0;
813 }
814 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
815}
816
42a30035 817static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 818{
871789d4 819 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
820}
821
42a30035
JW
822static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
823{
815744d7
JW
824 long x = 0;
825 int cpu;
826
827 for_each_possible_cpu(cpu)
828 x += per_cpu(memcg->vmstats_local->events[event], cpu);
829 return x;
42a30035
JW
830}
831
c0ff4b85 832static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 833 struct page *page,
f627c2f5 834 bool compound, int nr_pages)
d52aa412 835{
b2402857
KH
836 /*
837 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
838 * counted as CACHE even if it's on ANON LRU.
839 */
0a31bc97 840 if (PageAnon(page))
c9019e9b 841 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 842 else {
c9019e9b 843 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 844 if (PageSwapBacked(page))
c9019e9b 845 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 846 }
55e462b0 847
f627c2f5
KS
848 if (compound) {
849 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 850 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 851 }
b070e65c 852
e401f176
KH
853 /* pagein of a big page is an event. So, ignore page size */
854 if (nr_pages > 0)
c9019e9b 855 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 856 else {
c9019e9b 857 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
858 nr_pages = -nr_pages; /* for event */
859 }
e401f176 860
871789d4 861 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
862}
863
f53d7ce3
JW
864static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
865 enum mem_cgroup_events_target target)
7a159cc9
JW
866{
867 unsigned long val, next;
868
871789d4
CD
869 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
870 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 871 /* from time_after() in jiffies.h */
6a1a8b80 872 if ((long)(next - val) < 0) {
f53d7ce3
JW
873 switch (target) {
874 case MEM_CGROUP_TARGET_THRESH:
875 next = val + THRESHOLDS_EVENTS_TARGET;
876 break;
bb4cc1a8
AM
877 case MEM_CGROUP_TARGET_SOFTLIMIT:
878 next = val + SOFTLIMIT_EVENTS_TARGET;
879 break;
f53d7ce3
JW
880 case MEM_CGROUP_TARGET_NUMAINFO:
881 next = val + NUMAINFO_EVENTS_TARGET;
882 break;
883 default:
884 break;
885 }
871789d4 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 887 return true;
7a159cc9 888 }
f53d7ce3 889 return false;
d2265e6f
KH
890}
891
892/*
893 * Check events in order.
894 *
895 */
c0ff4b85 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
897{
898 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 901 bool do_softlimit;
82b3f2a7 902 bool do_numainfo __maybe_unused;
f53d7ce3 903
bb4cc1a8
AM
904 do_softlimit = mem_cgroup_event_ratelimit(memcg,
905 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
906#if MAX_NUMNODES > 1
907 do_numainfo = mem_cgroup_event_ratelimit(memcg,
908 MEM_CGROUP_TARGET_NUMAINFO);
909#endif
c0ff4b85 910 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
911 if (unlikely(do_softlimit))
912 mem_cgroup_update_tree(memcg, page);
453a9bf3 913#if MAX_NUMNODES > 1
f53d7ce3 914 if (unlikely(do_numainfo))
c0ff4b85 915 atomic_inc(&memcg->numainfo_events);
453a9bf3 916#endif
0a31bc97 917 }
d2265e6f
KH
918}
919
cf475ad2 920struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 921{
31a78f23
BS
922 /*
923 * mm_update_next_owner() may clear mm->owner to NULL
924 * if it races with swapoff, page migration, etc.
925 * So this can be called with p == NULL.
926 */
927 if (unlikely(!p))
928 return NULL;
929
073219e9 930 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 931}
33398cf2 932EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 933
d46eb14b
SB
934/**
935 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
936 * @mm: mm from which memcg should be extracted. It can be NULL.
937 *
938 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
939 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
940 * returned.
941 */
942struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 943{
d46eb14b
SB
944 struct mem_cgroup *memcg;
945
946 if (mem_cgroup_disabled())
947 return NULL;
0b7f569e 948
54595fe2
KH
949 rcu_read_lock();
950 do {
6f6acb00
MH
951 /*
952 * Page cache insertions can happen withou an
953 * actual mm context, e.g. during disk probing
954 * on boot, loopback IO, acct() writes etc.
955 */
956 if (unlikely(!mm))
df381975 957 memcg = root_mem_cgroup;
6f6acb00
MH
958 else {
959 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
960 if (unlikely(!memcg))
961 memcg = root_mem_cgroup;
962 }
ec903c0c 963 } while (!css_tryget_online(&memcg->css));
54595fe2 964 rcu_read_unlock();
c0ff4b85 965 return memcg;
54595fe2 966}
d46eb14b
SB
967EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968
f745c6f5
SB
969/**
970 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
971 * @page: page from which memcg should be extracted.
972 *
973 * Obtain a reference on page->memcg and returns it if successful. Otherwise
974 * root_mem_cgroup is returned.
975 */
976struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
977{
978 struct mem_cgroup *memcg = page->mem_cgroup;
979
980 if (mem_cgroup_disabled())
981 return NULL;
982
983 rcu_read_lock();
984 if (!memcg || !css_tryget_online(&memcg->css))
985 memcg = root_mem_cgroup;
986 rcu_read_unlock();
987 return memcg;
988}
989EXPORT_SYMBOL(get_mem_cgroup_from_page);
990
d46eb14b
SB
991/**
992 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
993 */
994static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
995{
996 if (unlikely(current->active_memcg)) {
997 struct mem_cgroup *memcg = root_mem_cgroup;
998
999 rcu_read_lock();
1000 if (css_tryget_online(&current->active_memcg->css))
1001 memcg = current->active_memcg;
1002 rcu_read_unlock();
1003 return memcg;
1004 }
1005 return get_mem_cgroup_from_mm(current->mm);
1006}
54595fe2 1007
5660048c
JW
1008/**
1009 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1010 * @root: hierarchy root
1011 * @prev: previously returned memcg, NULL on first invocation
1012 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1013 *
1014 * Returns references to children of the hierarchy below @root, or
1015 * @root itself, or %NULL after a full round-trip.
1016 *
1017 * Caller must pass the return value in @prev on subsequent
1018 * invocations for reference counting, or use mem_cgroup_iter_break()
1019 * to cancel a hierarchy walk before the round-trip is complete.
1020 *
b213b54f 1021 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1022 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1023 * reclaimers operating on the same node and priority.
5660048c 1024 */
694fbc0f 1025struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1026 struct mem_cgroup *prev,
694fbc0f 1027 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1028{
33398cf2 1029 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1030 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1031 struct mem_cgroup *memcg = NULL;
5ac8fb31 1032 struct mem_cgroup *pos = NULL;
711d3d2c 1033
694fbc0f
AM
1034 if (mem_cgroup_disabled())
1035 return NULL;
5660048c 1036
9f3a0d09
JW
1037 if (!root)
1038 root = root_mem_cgroup;
7d74b06f 1039
9f3a0d09 1040 if (prev && !reclaim)
5ac8fb31 1041 pos = prev;
14067bb3 1042
9f3a0d09
JW
1043 if (!root->use_hierarchy && root != root_mem_cgroup) {
1044 if (prev)
5ac8fb31 1045 goto out;
694fbc0f 1046 return root;
9f3a0d09 1047 }
14067bb3 1048
542f85f9 1049 rcu_read_lock();
5f578161 1050
5ac8fb31 1051 if (reclaim) {
ef8f2327 1052 struct mem_cgroup_per_node *mz;
5ac8fb31 1053
ef8f2327 1054 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
1055 iter = &mz->iter[reclaim->priority];
1056
1057 if (prev && reclaim->generation != iter->generation)
1058 goto out_unlock;
1059
6df38689 1060 while (1) {
4db0c3c2 1061 pos = READ_ONCE(iter->position);
6df38689
VD
1062 if (!pos || css_tryget(&pos->css))
1063 break;
5ac8fb31 1064 /*
6df38689
VD
1065 * css reference reached zero, so iter->position will
1066 * be cleared by ->css_released. However, we should not
1067 * rely on this happening soon, because ->css_released
1068 * is called from a work queue, and by busy-waiting we
1069 * might block it. So we clear iter->position right
1070 * away.
5ac8fb31 1071 */
6df38689
VD
1072 (void)cmpxchg(&iter->position, pos, NULL);
1073 }
5ac8fb31
JW
1074 }
1075
1076 if (pos)
1077 css = &pos->css;
1078
1079 for (;;) {
1080 css = css_next_descendant_pre(css, &root->css);
1081 if (!css) {
1082 /*
1083 * Reclaimers share the hierarchy walk, and a
1084 * new one might jump in right at the end of
1085 * the hierarchy - make sure they see at least
1086 * one group and restart from the beginning.
1087 */
1088 if (!prev)
1089 continue;
1090 break;
527a5ec9 1091 }
7d74b06f 1092
5ac8fb31
JW
1093 /*
1094 * Verify the css and acquire a reference. The root
1095 * is provided by the caller, so we know it's alive
1096 * and kicking, and don't take an extra reference.
1097 */
1098 memcg = mem_cgroup_from_css(css);
14067bb3 1099
5ac8fb31
JW
1100 if (css == &root->css)
1101 break;
14067bb3 1102
0b8f73e1
JW
1103 if (css_tryget(css))
1104 break;
9f3a0d09 1105
5ac8fb31 1106 memcg = NULL;
9f3a0d09 1107 }
5ac8fb31
JW
1108
1109 if (reclaim) {
5ac8fb31 1110 /*
6df38689
VD
1111 * The position could have already been updated by a competing
1112 * thread, so check that the value hasn't changed since we read
1113 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1114 */
6df38689
VD
1115 (void)cmpxchg(&iter->position, pos, memcg);
1116
5ac8fb31
JW
1117 if (pos)
1118 css_put(&pos->css);
1119
1120 if (!memcg)
1121 iter->generation++;
1122 else if (!prev)
1123 reclaim->generation = iter->generation;
9f3a0d09 1124 }
5ac8fb31 1125
542f85f9
MH
1126out_unlock:
1127 rcu_read_unlock();
5ac8fb31 1128out:
c40046f3
MH
1129 if (prev && prev != root)
1130 css_put(&prev->css);
1131
9f3a0d09 1132 return memcg;
14067bb3 1133}
7d74b06f 1134
5660048c
JW
1135/**
1136 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1137 * @root: hierarchy root
1138 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139 */
1140void mem_cgroup_iter_break(struct mem_cgroup *root,
1141 struct mem_cgroup *prev)
9f3a0d09
JW
1142{
1143 if (!root)
1144 root = root_mem_cgroup;
1145 if (prev && prev != root)
1146 css_put(&prev->css);
1147}
7d74b06f 1148
54a83d6b
MC
1149static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1150 struct mem_cgroup *dead_memcg)
6df38689 1151{
6df38689 1152 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1153 struct mem_cgroup_per_node *mz;
1154 int nid;
6df38689
VD
1155 int i;
1156
54a83d6b
MC
1157 for_each_node(nid) {
1158 mz = mem_cgroup_nodeinfo(from, nid);
1159 for (i = 0; i <= DEF_PRIORITY; i++) {
1160 iter = &mz->iter[i];
1161 cmpxchg(&iter->position,
1162 dead_memcg, NULL);
6df38689
VD
1163 }
1164 }
1165}
1166
54a83d6b
MC
1167static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1168{
1169 struct mem_cgroup *memcg = dead_memcg;
1170 struct mem_cgroup *last;
1171
1172 do {
1173 __invalidate_reclaim_iterators(memcg, dead_memcg);
1174 last = memcg;
1175 } while ((memcg = parent_mem_cgroup(memcg)));
1176
1177 /*
1178 * When cgruop1 non-hierarchy mode is used,
1179 * parent_mem_cgroup() does not walk all the way up to the
1180 * cgroup root (root_mem_cgroup). So we have to handle
1181 * dead_memcg from cgroup root separately.
1182 */
1183 if (last != root_mem_cgroup)
1184 __invalidate_reclaim_iterators(root_mem_cgroup,
1185 dead_memcg);
1186}
1187
7c5f64f8
VD
1188/**
1189 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1190 * @memcg: hierarchy root
1191 * @fn: function to call for each task
1192 * @arg: argument passed to @fn
1193 *
1194 * This function iterates over tasks attached to @memcg or to any of its
1195 * descendants and calls @fn for each task. If @fn returns a non-zero
1196 * value, the function breaks the iteration loop and returns the value.
1197 * Otherwise, it will iterate over all tasks and return 0.
1198 *
1199 * This function must not be called for the root memory cgroup.
1200 */
1201int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1202 int (*fn)(struct task_struct *, void *), void *arg)
1203{
1204 struct mem_cgroup *iter;
1205 int ret = 0;
1206
1207 BUG_ON(memcg == root_mem_cgroup);
1208
1209 for_each_mem_cgroup_tree(iter, memcg) {
1210 struct css_task_iter it;
1211 struct task_struct *task;
1212
f168a9a5 1213 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1214 while (!ret && (task = css_task_iter_next(&it)))
1215 ret = fn(task, arg);
1216 css_task_iter_end(&it);
1217 if (ret) {
1218 mem_cgroup_iter_break(memcg, iter);
1219 break;
1220 }
1221 }
1222 return ret;
1223}
1224
925b7673 1225/**
dfe0e773 1226 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1227 * @page: the page
f144c390 1228 * @pgdat: pgdat of the page
dfe0e773
JW
1229 *
1230 * This function is only safe when following the LRU page isolation
1231 * and putback protocol: the LRU lock must be held, and the page must
1232 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1233 */
599d0c95 1234struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1235{
ef8f2327 1236 struct mem_cgroup_per_node *mz;
925b7673 1237 struct mem_cgroup *memcg;
bea8c150 1238 struct lruvec *lruvec;
6d12e2d8 1239
bea8c150 1240 if (mem_cgroup_disabled()) {
599d0c95 1241 lruvec = &pgdat->lruvec;
bea8c150
HD
1242 goto out;
1243 }
925b7673 1244
1306a85a 1245 memcg = page->mem_cgroup;
7512102c 1246 /*
dfe0e773 1247 * Swapcache readahead pages are added to the LRU - and
29833315 1248 * possibly migrated - before they are charged.
7512102c 1249 */
29833315
JW
1250 if (!memcg)
1251 memcg = root_mem_cgroup;
7512102c 1252
ef8f2327 1253 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1254 lruvec = &mz->lruvec;
1255out:
1256 /*
1257 * Since a node can be onlined after the mem_cgroup was created,
1258 * we have to be prepared to initialize lruvec->zone here;
1259 * and if offlined then reonlined, we need to reinitialize it.
1260 */
599d0c95
MG
1261 if (unlikely(lruvec->pgdat != pgdat))
1262 lruvec->pgdat = pgdat;
bea8c150 1263 return lruvec;
08e552c6 1264}
b69408e8 1265
925b7673 1266/**
fa9add64
HD
1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268 * @lruvec: mem_cgroup per zone lru vector
1269 * @lru: index of lru list the page is sitting on
b4536f0c 1270 * @zid: zone id of the accounted pages
fa9add64 1271 * @nr_pages: positive when adding or negative when removing
925b7673 1272 *
ca707239
HD
1273 * This function must be called under lru_lock, just before a page is added
1274 * to or just after a page is removed from an lru list (that ordering being
1275 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1276 */
fa9add64 1277void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1278 int zid, int nr_pages)
3f58a829 1279{
ef8f2327 1280 struct mem_cgroup_per_node *mz;
fa9add64 1281 unsigned long *lru_size;
ca707239 1282 long size;
3f58a829
MK
1283
1284 if (mem_cgroup_disabled())
1285 return;
1286
ef8f2327 1287 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1288 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1289
1290 if (nr_pages < 0)
1291 *lru_size += nr_pages;
1292
1293 size = *lru_size;
b4536f0c
MH
1294 if (WARN_ONCE(size < 0,
1295 "%s(%p, %d, %d): lru_size %ld\n",
1296 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1297 VM_BUG_ON(1);
1298 *lru_size = 0;
1299 }
1300
1301 if (nr_pages > 0)
1302 *lru_size += nr_pages;
08e552c6 1303}
544122e5 1304
19942822 1305/**
9d11ea9f 1306 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1307 * @memcg: the memory cgroup
19942822 1308 *
9d11ea9f 1309 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1310 * pages.
19942822 1311 */
c0ff4b85 1312static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1313{
3e32cb2e
JW
1314 unsigned long margin = 0;
1315 unsigned long count;
1316 unsigned long limit;
9d11ea9f 1317
3e32cb2e 1318 count = page_counter_read(&memcg->memory);
bbec2e15 1319 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1320 if (count < limit)
1321 margin = limit - count;
1322
7941d214 1323 if (do_memsw_account()) {
3e32cb2e 1324 count = page_counter_read(&memcg->memsw);
bbec2e15 1325 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1326 if (count <= limit)
1327 margin = min(margin, limit - count);
cbedbac3
LR
1328 else
1329 margin = 0;
3e32cb2e
JW
1330 }
1331
1332 return margin;
19942822
JW
1333}
1334
32047e2a 1335/*
bdcbb659 1336 * A routine for checking "mem" is under move_account() or not.
32047e2a 1337 *
bdcbb659
QH
1338 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1339 * moving cgroups. This is for waiting at high-memory pressure
1340 * caused by "move".
32047e2a 1341 */
c0ff4b85 1342static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1343{
2bd9bb20
KH
1344 struct mem_cgroup *from;
1345 struct mem_cgroup *to;
4b534334 1346 bool ret = false;
2bd9bb20
KH
1347 /*
1348 * Unlike task_move routines, we access mc.to, mc.from not under
1349 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1350 */
1351 spin_lock(&mc.lock);
1352 from = mc.from;
1353 to = mc.to;
1354 if (!from)
1355 goto unlock;
3e92041d 1356
2314b42d
JW
1357 ret = mem_cgroup_is_descendant(from, memcg) ||
1358 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1359unlock:
1360 spin_unlock(&mc.lock);
4b534334
KH
1361 return ret;
1362}
1363
c0ff4b85 1364static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1365{
1366 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1367 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1368 DEFINE_WAIT(wait);
1369 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1370 /* moving charge context might have finished. */
1371 if (mc.moving_task)
1372 schedule();
1373 finish_wait(&mc.waitq, &wait);
1374 return true;
1375 }
1376 }
1377 return false;
1378}
1379
c8713d0b
JW
1380static char *memory_stat_format(struct mem_cgroup *memcg)
1381{
1382 struct seq_buf s;
1383 int i;
71cd3113 1384
c8713d0b
JW
1385 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1386 if (!s.buffer)
1387 return NULL;
1388
1389 /*
1390 * Provide statistics on the state of the memory subsystem as
1391 * well as cumulative event counters that show past behavior.
1392 *
1393 * This list is ordered following a combination of these gradients:
1394 * 1) generic big picture -> specifics and details
1395 * 2) reflecting userspace activity -> reflecting kernel heuristics
1396 *
1397 * Current memory state:
1398 */
1399
1400 seq_buf_printf(&s, "anon %llu\n",
1401 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1402 PAGE_SIZE);
1403 seq_buf_printf(&s, "file %llu\n",
1404 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1405 PAGE_SIZE);
1406 seq_buf_printf(&s, "kernel_stack %llu\n",
1407 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1408 1024);
1409 seq_buf_printf(&s, "slab %llu\n",
1410 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1411 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1412 PAGE_SIZE);
1413 seq_buf_printf(&s, "sock %llu\n",
1414 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1415 PAGE_SIZE);
1416
1417 seq_buf_printf(&s, "shmem %llu\n",
1418 (u64)memcg_page_state(memcg, NR_SHMEM) *
1419 PAGE_SIZE);
1420 seq_buf_printf(&s, "file_mapped %llu\n",
1421 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1422 PAGE_SIZE);
1423 seq_buf_printf(&s, "file_dirty %llu\n",
1424 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1425 PAGE_SIZE);
1426 seq_buf_printf(&s, "file_writeback %llu\n",
1427 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1428 PAGE_SIZE);
1429
1430 /*
1431 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1432 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1433 * arse because it requires migrating the work out of rmap to a place
1434 * where the page->mem_cgroup is set up and stable.
1435 */
1436 seq_buf_printf(&s, "anon_thp %llu\n",
1437 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1438 PAGE_SIZE);
1439
1440 for (i = 0; i < NR_LRU_LISTS; i++)
1441 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1442 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1443 PAGE_SIZE);
1444
1445 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1446 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1447 PAGE_SIZE);
1448 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1449 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1450 PAGE_SIZE);
1451
1452 /* Accumulated memory events */
1453
1454 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1455 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1456
1457 seq_buf_printf(&s, "workingset_refault %lu\n",
1458 memcg_page_state(memcg, WORKINGSET_REFAULT));
1459 seq_buf_printf(&s, "workingset_activate %lu\n",
1460 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1461 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1462 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1463
1464 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1465 seq_buf_printf(&s, "pgscan %lu\n",
1466 memcg_events(memcg, PGSCAN_KSWAPD) +
1467 memcg_events(memcg, PGSCAN_DIRECT));
1468 seq_buf_printf(&s, "pgsteal %lu\n",
1469 memcg_events(memcg, PGSTEAL_KSWAPD) +
1470 memcg_events(memcg, PGSTEAL_DIRECT));
1471 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1472 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1473 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1474 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1475
1476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1478 memcg_events(memcg, THP_FAULT_ALLOC));
1479 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1480 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1482
1483 /* The above should easily fit into one page */
1484 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1485
1486 return s.buffer;
1487}
71cd3113 1488
58cf188e 1489#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1490/**
f0c867d9 1491 * mem_cgroup_print_oom_context: Print OOM information relevant to
1492 * memory controller.
e222432b
BS
1493 * @memcg: The memory cgroup that went over limit
1494 * @p: Task that is going to be killed
1495 *
1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497 * enabled
1498 */
f0c867d9 1499void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1500{
e222432b
BS
1501 rcu_read_lock();
1502
f0c867d9 1503 if (memcg) {
1504 pr_cont(",oom_memcg=");
1505 pr_cont_cgroup_path(memcg->css.cgroup);
1506 } else
1507 pr_cont(",global_oom");
2415b9f5 1508 if (p) {
f0c867d9 1509 pr_cont(",task_memcg=");
2415b9f5 1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1511 }
e222432b 1512 rcu_read_unlock();
f0c867d9 1513}
1514
1515/**
1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517 * memory controller.
1518 * @memcg: The memory cgroup that went over limit
1519 */
1520void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521{
c8713d0b 1522 char *buf;
e222432b 1523
3e32cb2e
JW
1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1526 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->swap)),
1530 K((u64)memcg->swap.max), memcg->swap.failcnt);
1531 else {
1532 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64)page_counter_read(&memcg->memsw)),
1534 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->kmem)),
1537 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1538 }
c8713d0b
JW
1539
1540 pr_info("Memory cgroup stats for ");
1541 pr_cont_cgroup_path(memcg->css.cgroup);
1542 pr_cont(":");
1543 buf = memory_stat_format(memcg);
1544 if (!buf)
1545 return;
1546 pr_info("%s", buf);
1547 kfree(buf);
e222432b
BS
1548}
1549
a63d83f4
DR
1550/*
1551 * Return the memory (and swap, if configured) limit for a memcg.
1552 */
bbec2e15 1553unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1554{
bbec2e15 1555 unsigned long max;
f3e8eb70 1556
bbec2e15 1557 max = memcg->memory.max;
9a5a8f19 1558 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1559 unsigned long memsw_max;
1560 unsigned long swap_max;
9a5a8f19 1561
bbec2e15
RG
1562 memsw_max = memcg->memsw.max;
1563 swap_max = memcg->swap.max;
1564 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1565 max = min(max + swap_max, memsw_max);
9a5a8f19 1566 }
bbec2e15 1567 return max;
a63d83f4
DR
1568}
1569
b6e6edcf 1570static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1571 int order)
9cbb78bb 1572{
6e0fc46d
DR
1573 struct oom_control oc = {
1574 .zonelist = NULL,
1575 .nodemask = NULL,
2a966b77 1576 .memcg = memcg,
6e0fc46d
DR
1577 .gfp_mask = gfp_mask,
1578 .order = order,
6e0fc46d 1579 };
7c5f64f8 1580 bool ret;
9cbb78bb 1581
7775face
TH
1582 if (mutex_lock_killable(&oom_lock))
1583 return true;
1584 /*
1585 * A few threads which were not waiting at mutex_lock_killable() can
1586 * fail to bail out. Therefore, check again after holding oom_lock.
1587 */
1588 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1589 mutex_unlock(&oom_lock);
7c5f64f8 1590 return ret;
9cbb78bb
DR
1591}
1592
ae6e71d3
MC
1593#if MAX_NUMNODES > 1
1594
4d0c066d
KH
1595/**
1596 * test_mem_cgroup_node_reclaimable
dad7557e 1597 * @memcg: the target memcg
4d0c066d
KH
1598 * @nid: the node ID to be checked.
1599 * @noswap : specify true here if the user wants flle only information.
1600 *
1601 * This function returns whether the specified memcg contains any
1602 * reclaimable pages on a node. Returns true if there are any reclaimable
1603 * pages in the node.
1604 */
c0ff4b85 1605static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1606 int nid, bool noswap)
1607{
2b487e59
JW
1608 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1609
def0fdae
JW
1610 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1611 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1612 return true;
1613 if (noswap || !total_swap_pages)
1614 return false;
def0fdae
JW
1615 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1616 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1617 return true;
1618 return false;
1619
1620}
889976db
YH
1621
1622/*
1623 * Always updating the nodemask is not very good - even if we have an empty
1624 * list or the wrong list here, we can start from some node and traverse all
1625 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1626 *
1627 */
c0ff4b85 1628static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1629{
1630 int nid;
453a9bf3
KH
1631 /*
1632 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1633 * pagein/pageout changes since the last update.
1634 */
c0ff4b85 1635 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1636 return;
c0ff4b85 1637 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1638 return;
1639
889976db 1640 /* make a nodemask where this memcg uses memory from */
31aaea4a 1641 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1642
31aaea4a 1643 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1644
c0ff4b85
R
1645 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1646 node_clear(nid, memcg->scan_nodes);
889976db 1647 }
453a9bf3 1648
c0ff4b85
R
1649 atomic_set(&memcg->numainfo_events, 0);
1650 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1651}
1652
1653/*
1654 * Selecting a node where we start reclaim from. Because what we need is just
1655 * reducing usage counter, start from anywhere is O,K. Considering
1656 * memory reclaim from current node, there are pros. and cons.
1657 *
1658 * Freeing memory from current node means freeing memory from a node which
1659 * we'll use or we've used. So, it may make LRU bad. And if several threads
1660 * hit limits, it will see a contention on a node. But freeing from remote
1661 * node means more costs for memory reclaim because of memory latency.
1662 *
1663 * Now, we use round-robin. Better algorithm is welcomed.
1664 */
c0ff4b85 1665int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1666{
1667 int node;
1668
c0ff4b85
R
1669 mem_cgroup_may_update_nodemask(memcg);
1670 node = memcg->last_scanned_node;
889976db 1671
0edaf86c 1672 node = next_node_in(node, memcg->scan_nodes);
889976db 1673 /*
fda3d69b
MH
1674 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1675 * last time it really checked all the LRUs due to rate limiting.
1676 * Fallback to the current node in that case for simplicity.
889976db
YH
1677 */
1678 if (unlikely(node == MAX_NUMNODES))
1679 node = numa_node_id();
1680
c0ff4b85 1681 memcg->last_scanned_node = node;
889976db
YH
1682 return node;
1683}
889976db 1684#else
c0ff4b85 1685int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1686{
1687 return 0;
1688}
1689#endif
1690
0608f43d 1691static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1692 pg_data_t *pgdat,
0608f43d
AM
1693 gfp_t gfp_mask,
1694 unsigned long *total_scanned)
1695{
1696 struct mem_cgroup *victim = NULL;
1697 int total = 0;
1698 int loop = 0;
1699 unsigned long excess;
1700 unsigned long nr_scanned;
1701 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1702 .pgdat = pgdat,
0608f43d
AM
1703 .priority = 0,
1704 };
1705
3e32cb2e 1706 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1707
1708 while (1) {
1709 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1710 if (!victim) {
1711 loop++;
1712 if (loop >= 2) {
1713 /*
1714 * If we have not been able to reclaim
1715 * anything, it might because there are
1716 * no reclaimable pages under this hierarchy
1717 */
1718 if (!total)
1719 break;
1720 /*
1721 * We want to do more targeted reclaim.
1722 * excess >> 2 is not to excessive so as to
1723 * reclaim too much, nor too less that we keep
1724 * coming back to reclaim from this cgroup
1725 */
1726 if (total >= (excess >> 2) ||
1727 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1728 break;
1729 }
1730 continue;
1731 }
a9dd0a83 1732 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1733 pgdat, &nr_scanned);
0608f43d 1734 *total_scanned += nr_scanned;
3e32cb2e 1735 if (!soft_limit_excess(root_memcg))
0608f43d 1736 break;
6d61ef40 1737 }
0608f43d
AM
1738 mem_cgroup_iter_break(root_memcg, victim);
1739 return total;
6d61ef40
BS
1740}
1741
0056f4e6
JW
1742#ifdef CONFIG_LOCKDEP
1743static struct lockdep_map memcg_oom_lock_dep_map = {
1744 .name = "memcg_oom_lock",
1745};
1746#endif
1747
fb2a6fc5
JW
1748static DEFINE_SPINLOCK(memcg_oom_lock);
1749
867578cb
KH
1750/*
1751 * Check OOM-Killer is already running under our hierarchy.
1752 * If someone is running, return false.
1753 */
fb2a6fc5 1754static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1755{
79dfdacc 1756 struct mem_cgroup *iter, *failed = NULL;
a636b327 1757
fb2a6fc5
JW
1758 spin_lock(&memcg_oom_lock);
1759
9f3a0d09 1760 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1761 if (iter->oom_lock) {
79dfdacc
MH
1762 /*
1763 * this subtree of our hierarchy is already locked
1764 * so we cannot give a lock.
1765 */
79dfdacc 1766 failed = iter;
9f3a0d09
JW
1767 mem_cgroup_iter_break(memcg, iter);
1768 break;
23751be0
JW
1769 } else
1770 iter->oom_lock = true;
7d74b06f 1771 }
867578cb 1772
fb2a6fc5
JW
1773 if (failed) {
1774 /*
1775 * OK, we failed to lock the whole subtree so we have
1776 * to clean up what we set up to the failing subtree
1777 */
1778 for_each_mem_cgroup_tree(iter, memcg) {
1779 if (iter == failed) {
1780 mem_cgroup_iter_break(memcg, iter);
1781 break;
1782 }
1783 iter->oom_lock = false;
79dfdacc 1784 }
0056f4e6
JW
1785 } else
1786 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1787
1788 spin_unlock(&memcg_oom_lock);
1789
1790 return !failed;
a636b327 1791}
0b7f569e 1792
fb2a6fc5 1793static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1794{
7d74b06f
KH
1795 struct mem_cgroup *iter;
1796
fb2a6fc5 1797 spin_lock(&memcg_oom_lock);
0056f4e6 1798 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1799 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1800 iter->oom_lock = false;
fb2a6fc5 1801 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1802}
1803
c0ff4b85 1804static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1805{
1806 struct mem_cgroup *iter;
1807
c2b42d3c 1808 spin_lock(&memcg_oom_lock);
c0ff4b85 1809 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1810 iter->under_oom++;
1811 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1812}
1813
c0ff4b85 1814static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1815{
1816 struct mem_cgroup *iter;
1817
867578cb
KH
1818 /*
1819 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1820 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1821 */
c2b42d3c 1822 spin_lock(&memcg_oom_lock);
c0ff4b85 1823 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1824 if (iter->under_oom > 0)
1825 iter->under_oom--;
1826 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1827}
1828
867578cb
KH
1829static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1830
dc98df5a 1831struct oom_wait_info {
d79154bb 1832 struct mem_cgroup *memcg;
ac6424b9 1833 wait_queue_entry_t wait;
dc98df5a
KH
1834};
1835
ac6424b9 1836static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1837 unsigned mode, int sync, void *arg)
1838{
d79154bb
HD
1839 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1840 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1841 struct oom_wait_info *oom_wait_info;
1842
1843 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1844 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1845
2314b42d
JW
1846 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1847 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1848 return 0;
dc98df5a
KH
1849 return autoremove_wake_function(wait, mode, sync, arg);
1850}
1851
c0ff4b85 1852static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1853{
c2b42d3c
TH
1854 /*
1855 * For the following lockless ->under_oom test, the only required
1856 * guarantee is that it must see the state asserted by an OOM when
1857 * this function is called as a result of userland actions
1858 * triggered by the notification of the OOM. This is trivially
1859 * achieved by invoking mem_cgroup_mark_under_oom() before
1860 * triggering notification.
1861 */
1862 if (memcg && memcg->under_oom)
f4b90b70 1863 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1864}
1865
29ef680a
MH
1866enum oom_status {
1867 OOM_SUCCESS,
1868 OOM_FAILED,
1869 OOM_ASYNC,
1870 OOM_SKIPPED
1871};
1872
1873static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1874{
7056d3a3
MH
1875 enum oom_status ret;
1876 bool locked;
1877
29ef680a
MH
1878 if (order > PAGE_ALLOC_COSTLY_ORDER)
1879 return OOM_SKIPPED;
1880
7a1adfdd
RG
1881 memcg_memory_event(memcg, MEMCG_OOM);
1882
867578cb 1883 /*
49426420
JW
1884 * We are in the middle of the charge context here, so we
1885 * don't want to block when potentially sitting on a callstack
1886 * that holds all kinds of filesystem and mm locks.
1887 *
29ef680a
MH
1888 * cgroup1 allows disabling the OOM killer and waiting for outside
1889 * handling until the charge can succeed; remember the context and put
1890 * the task to sleep at the end of the page fault when all locks are
1891 * released.
49426420 1892 *
29ef680a
MH
1893 * On the other hand, in-kernel OOM killer allows for an async victim
1894 * memory reclaim (oom_reaper) and that means that we are not solely
1895 * relying on the oom victim to make a forward progress and we can
1896 * invoke the oom killer here.
1897 *
1898 * Please note that mem_cgroup_out_of_memory might fail to find a
1899 * victim and then we have to bail out from the charge path.
867578cb 1900 */
29ef680a
MH
1901 if (memcg->oom_kill_disable) {
1902 if (!current->in_user_fault)
1903 return OOM_SKIPPED;
1904 css_get(&memcg->css);
1905 current->memcg_in_oom = memcg;
1906 current->memcg_oom_gfp_mask = mask;
1907 current->memcg_oom_order = order;
1908
1909 return OOM_ASYNC;
1910 }
1911
7056d3a3
MH
1912 mem_cgroup_mark_under_oom(memcg);
1913
1914 locked = mem_cgroup_oom_trylock(memcg);
1915
1916 if (locked)
1917 mem_cgroup_oom_notify(memcg);
1918
1919 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1920 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1921 ret = OOM_SUCCESS;
1922 else
1923 ret = OOM_FAILED;
1924
1925 if (locked)
1926 mem_cgroup_oom_unlock(memcg);
29ef680a 1927
7056d3a3 1928 return ret;
3812c8c8
JW
1929}
1930
1931/**
1932 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1933 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1934 *
49426420
JW
1935 * This has to be called at the end of a page fault if the memcg OOM
1936 * handler was enabled.
3812c8c8 1937 *
49426420 1938 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1939 * sleep on a waitqueue until the userspace task resolves the
1940 * situation. Sleeping directly in the charge context with all kinds
1941 * of locks held is not a good idea, instead we remember an OOM state
1942 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1943 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1944 *
1945 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1946 * completed, %false otherwise.
3812c8c8 1947 */
49426420 1948bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1949{
626ebc41 1950 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1951 struct oom_wait_info owait;
49426420 1952 bool locked;
3812c8c8
JW
1953
1954 /* OOM is global, do not handle */
3812c8c8 1955 if (!memcg)
49426420 1956 return false;
3812c8c8 1957
7c5f64f8 1958 if (!handle)
49426420 1959 goto cleanup;
3812c8c8
JW
1960
1961 owait.memcg = memcg;
1962 owait.wait.flags = 0;
1963 owait.wait.func = memcg_oom_wake_function;
1964 owait.wait.private = current;
2055da97 1965 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1966
3812c8c8 1967 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1968 mem_cgroup_mark_under_oom(memcg);
1969
1970 locked = mem_cgroup_oom_trylock(memcg);
1971
1972 if (locked)
1973 mem_cgroup_oom_notify(memcg);
1974
1975 if (locked && !memcg->oom_kill_disable) {
1976 mem_cgroup_unmark_under_oom(memcg);
1977 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1978 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1979 current->memcg_oom_order);
49426420 1980 } else {
3812c8c8 1981 schedule();
49426420
JW
1982 mem_cgroup_unmark_under_oom(memcg);
1983 finish_wait(&memcg_oom_waitq, &owait.wait);
1984 }
1985
1986 if (locked) {
fb2a6fc5
JW
1987 mem_cgroup_oom_unlock(memcg);
1988 /*
1989 * There is no guarantee that an OOM-lock contender
1990 * sees the wakeups triggered by the OOM kill
1991 * uncharges. Wake any sleepers explicitely.
1992 */
1993 memcg_oom_recover(memcg);
1994 }
49426420 1995cleanup:
626ebc41 1996 current->memcg_in_oom = NULL;
3812c8c8 1997 css_put(&memcg->css);
867578cb 1998 return true;
0b7f569e
KH
1999}
2000
3d8b38eb
RG
2001/**
2002 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2003 * @victim: task to be killed by the OOM killer
2004 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2005 *
2006 * Returns a pointer to a memory cgroup, which has to be cleaned up
2007 * by killing all belonging OOM-killable tasks.
2008 *
2009 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2010 */
2011struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2012 struct mem_cgroup *oom_domain)
2013{
2014 struct mem_cgroup *oom_group = NULL;
2015 struct mem_cgroup *memcg;
2016
2017 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2018 return NULL;
2019
2020 if (!oom_domain)
2021 oom_domain = root_mem_cgroup;
2022
2023 rcu_read_lock();
2024
2025 memcg = mem_cgroup_from_task(victim);
2026 if (memcg == root_mem_cgroup)
2027 goto out;
2028
2029 /*
2030 * Traverse the memory cgroup hierarchy from the victim task's
2031 * cgroup up to the OOMing cgroup (or root) to find the
2032 * highest-level memory cgroup with oom.group set.
2033 */
2034 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2035 if (memcg->oom_group)
2036 oom_group = memcg;
2037
2038 if (memcg == oom_domain)
2039 break;
2040 }
2041
2042 if (oom_group)
2043 css_get(&oom_group->css);
2044out:
2045 rcu_read_unlock();
2046
2047 return oom_group;
2048}
2049
2050void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2051{
2052 pr_info("Tasks in ");
2053 pr_cont_cgroup_path(memcg->css.cgroup);
2054 pr_cont(" are going to be killed due to memory.oom.group set\n");
2055}
2056
d7365e78 2057/**
81f8c3a4
JW
2058 * lock_page_memcg - lock a page->mem_cgroup binding
2059 * @page: the page
32047e2a 2060 *
81f8c3a4 2061 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2062 * another cgroup.
2063 *
2064 * It ensures lifetime of the returned memcg. Caller is responsible
2065 * for the lifetime of the page; __unlock_page_memcg() is available
2066 * when @page might get freed inside the locked section.
d69b042f 2067 */
739f79fc 2068struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
2069{
2070 struct mem_cgroup *memcg;
6de22619 2071 unsigned long flags;
89c06bd5 2072
6de22619
JW
2073 /*
2074 * The RCU lock is held throughout the transaction. The fast
2075 * path can get away without acquiring the memcg->move_lock
2076 * because page moving starts with an RCU grace period.
739f79fc
JW
2077 *
2078 * The RCU lock also protects the memcg from being freed when
2079 * the page state that is going to change is the only thing
2080 * preventing the page itself from being freed. E.g. writeback
2081 * doesn't hold a page reference and relies on PG_writeback to
2082 * keep off truncation, migration and so forth.
2083 */
d7365e78
JW
2084 rcu_read_lock();
2085
2086 if (mem_cgroup_disabled())
739f79fc 2087 return NULL;
89c06bd5 2088again:
1306a85a 2089 memcg = page->mem_cgroup;
29833315 2090 if (unlikely(!memcg))
739f79fc 2091 return NULL;
d7365e78 2092
bdcbb659 2093 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2094 return memcg;
89c06bd5 2095
6de22619 2096 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2097 if (memcg != page->mem_cgroup) {
6de22619 2098 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2099 goto again;
2100 }
6de22619
JW
2101
2102 /*
2103 * When charge migration first begins, we can have locked and
2104 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2105 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2106 */
2107 memcg->move_lock_task = current;
2108 memcg->move_lock_flags = flags;
d7365e78 2109
739f79fc 2110 return memcg;
89c06bd5 2111}
81f8c3a4 2112EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2113
d7365e78 2114/**
739f79fc
JW
2115 * __unlock_page_memcg - unlock and unpin a memcg
2116 * @memcg: the memcg
2117 *
2118 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2119 */
739f79fc 2120void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2121{
6de22619
JW
2122 if (memcg && memcg->move_lock_task == current) {
2123 unsigned long flags = memcg->move_lock_flags;
2124
2125 memcg->move_lock_task = NULL;
2126 memcg->move_lock_flags = 0;
2127
2128 spin_unlock_irqrestore(&memcg->move_lock, flags);
2129 }
89c06bd5 2130
d7365e78 2131 rcu_read_unlock();
89c06bd5 2132}
739f79fc
JW
2133
2134/**
2135 * unlock_page_memcg - unlock a page->mem_cgroup binding
2136 * @page: the page
2137 */
2138void unlock_page_memcg(struct page *page)
2139{
2140 __unlock_page_memcg(page->mem_cgroup);
2141}
81f8c3a4 2142EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2143
cdec2e42
KH
2144struct memcg_stock_pcp {
2145 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2146 unsigned int nr_pages;
cdec2e42 2147 struct work_struct work;
26fe6168 2148 unsigned long flags;
a0db00fc 2149#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2150};
2151static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2152static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2153
a0956d54
SS
2154/**
2155 * consume_stock: Try to consume stocked charge on this cpu.
2156 * @memcg: memcg to consume from.
2157 * @nr_pages: how many pages to charge.
2158 *
2159 * The charges will only happen if @memcg matches the current cpu's memcg
2160 * stock, and at least @nr_pages are available in that stock. Failure to
2161 * service an allocation will refill the stock.
2162 *
2163 * returns true if successful, false otherwise.
cdec2e42 2164 */
a0956d54 2165static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2166{
2167 struct memcg_stock_pcp *stock;
db2ba40c 2168 unsigned long flags;
3e32cb2e 2169 bool ret = false;
cdec2e42 2170
a983b5eb 2171 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2172 return ret;
a0956d54 2173
db2ba40c
JW
2174 local_irq_save(flags);
2175
2176 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2177 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2178 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2179 ret = true;
2180 }
db2ba40c
JW
2181
2182 local_irq_restore(flags);
2183
cdec2e42
KH
2184 return ret;
2185}
2186
2187/*
3e32cb2e 2188 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2189 */
2190static void drain_stock(struct memcg_stock_pcp *stock)
2191{
2192 struct mem_cgroup *old = stock->cached;
2193
11c9ea4e 2194 if (stock->nr_pages) {
3e32cb2e 2195 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2196 if (do_memsw_account())
3e32cb2e 2197 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2198 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2199 stock->nr_pages = 0;
cdec2e42
KH
2200 }
2201 stock->cached = NULL;
cdec2e42
KH
2202}
2203
cdec2e42
KH
2204static void drain_local_stock(struct work_struct *dummy)
2205{
db2ba40c
JW
2206 struct memcg_stock_pcp *stock;
2207 unsigned long flags;
2208
72f0184c
MH
2209 /*
2210 * The only protection from memory hotplug vs. drain_stock races is
2211 * that we always operate on local CPU stock here with IRQ disabled
2212 */
db2ba40c
JW
2213 local_irq_save(flags);
2214
2215 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2216 drain_stock(stock);
26fe6168 2217 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2218
2219 local_irq_restore(flags);
cdec2e42
KH
2220}
2221
2222/*
3e32cb2e 2223 * Cache charges(val) to local per_cpu area.
320cc51d 2224 * This will be consumed by consume_stock() function, later.
cdec2e42 2225 */
c0ff4b85 2226static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2227{
db2ba40c
JW
2228 struct memcg_stock_pcp *stock;
2229 unsigned long flags;
2230
2231 local_irq_save(flags);
cdec2e42 2232
db2ba40c 2233 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2234 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2235 drain_stock(stock);
c0ff4b85 2236 stock->cached = memcg;
cdec2e42 2237 }
11c9ea4e 2238 stock->nr_pages += nr_pages;
db2ba40c 2239
a983b5eb 2240 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2241 drain_stock(stock);
2242
db2ba40c 2243 local_irq_restore(flags);
cdec2e42
KH
2244}
2245
2246/*
c0ff4b85 2247 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2248 * of the hierarchy under it.
cdec2e42 2249 */
6d3d6aa2 2250static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2251{
26fe6168 2252 int cpu, curcpu;
d38144b7 2253
6d3d6aa2
JW
2254 /* If someone's already draining, avoid adding running more workers. */
2255 if (!mutex_trylock(&percpu_charge_mutex))
2256 return;
72f0184c
MH
2257 /*
2258 * Notify other cpus that system-wide "drain" is running
2259 * We do not care about races with the cpu hotplug because cpu down
2260 * as well as workers from this path always operate on the local
2261 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2262 */
5af12d0e 2263 curcpu = get_cpu();
cdec2e42
KH
2264 for_each_online_cpu(cpu) {
2265 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2266 struct mem_cgroup *memcg;
e1a366be 2267 bool flush = false;
26fe6168 2268
e1a366be 2269 rcu_read_lock();
c0ff4b85 2270 memcg = stock->cached;
e1a366be
RG
2271 if (memcg && stock->nr_pages &&
2272 mem_cgroup_is_descendant(memcg, root_memcg))
2273 flush = true;
2274 rcu_read_unlock();
2275
2276 if (flush &&
2277 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2278 if (cpu == curcpu)
2279 drain_local_stock(&stock->work);
2280 else
2281 schedule_work_on(cpu, &stock->work);
2282 }
cdec2e42 2283 }
5af12d0e 2284 put_cpu();
9f50fad6 2285 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2286}
2287
308167fc 2288static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2289{
cdec2e42 2290 struct memcg_stock_pcp *stock;
42a30035 2291 struct mem_cgroup *memcg, *mi;
cdec2e42 2292
cdec2e42
KH
2293 stock = &per_cpu(memcg_stock, cpu);
2294 drain_stock(stock);
a983b5eb
JW
2295
2296 for_each_mem_cgroup(memcg) {
2297 int i;
2298
2299 for (i = 0; i < MEMCG_NR_STAT; i++) {
2300 int nid;
2301 long x;
2302
871789d4 2303 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2304 if (x)
42a30035
JW
2305 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2306 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2307
2308 if (i >= NR_VM_NODE_STAT_ITEMS)
2309 continue;
2310
2311 for_each_node(nid) {
2312 struct mem_cgroup_per_node *pn;
2313
2314 pn = mem_cgroup_nodeinfo(memcg, nid);
2315 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2316 if (x)
42a30035
JW
2317 do {
2318 atomic_long_add(x, &pn->lruvec_stat[i]);
2319 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2320 }
2321 }
2322
e27be240 2323 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2324 long x;
2325
871789d4 2326 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2327 if (x)
42a30035
JW
2328 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2329 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2330 }
2331 }
2332
308167fc 2333 return 0;
cdec2e42
KH
2334}
2335
f7e1cb6e
JW
2336static void reclaim_high(struct mem_cgroup *memcg,
2337 unsigned int nr_pages,
2338 gfp_t gfp_mask)
2339{
2340 do {
2341 if (page_counter_read(&memcg->memory) <= memcg->high)
2342 continue;
e27be240 2343 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2344 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2345 } while ((memcg = parent_mem_cgroup(memcg)));
2346}
2347
2348static void high_work_func(struct work_struct *work)
2349{
2350 struct mem_cgroup *memcg;
2351
2352 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2353 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2354}
2355
0e4b01df
CD
2356/*
2357 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2358 * enough to still cause a significant slowdown in most cases, while still
2359 * allowing diagnostics and tracing to proceed without becoming stuck.
2360 */
2361#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2362
2363/*
2364 * When calculating the delay, we use these either side of the exponentiation to
2365 * maintain precision and scale to a reasonable number of jiffies (see the table
2366 * below.
2367 *
2368 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2369 * overage ratio to a delay.
2370 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2371 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2372 * to produce a reasonable delay curve.
2373 *
2374 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2375 * reasonable delay curve compared to precision-adjusted overage, not
2376 * penalising heavily at first, but still making sure that growth beyond the
2377 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2378 * example, with a high of 100 megabytes:
2379 *
2380 * +-------+------------------------+
2381 * | usage | time to allocate in ms |
2382 * +-------+------------------------+
2383 * | 100M | 0 |
2384 * | 101M | 6 |
2385 * | 102M | 25 |
2386 * | 103M | 57 |
2387 * | 104M | 102 |
2388 * | 105M | 159 |
2389 * | 106M | 230 |
2390 * | 107M | 313 |
2391 * | 108M | 409 |
2392 * | 109M | 518 |
2393 * | 110M | 639 |
2394 * | 111M | 774 |
2395 * | 112M | 921 |
2396 * | 113M | 1081 |
2397 * | 114M | 1254 |
2398 * | 115M | 1439 |
2399 * | 116M | 1638 |
2400 * | 117M | 1849 |
2401 * | 118M | 2000 |
2402 * | 119M | 2000 |
2403 * | 120M | 2000 |
2404 * +-------+------------------------+
2405 */
2406 #define MEMCG_DELAY_PRECISION_SHIFT 20
2407 #define MEMCG_DELAY_SCALING_SHIFT 14
2408
b23afb93
TH
2409/*
2410 * Scheduled by try_charge() to be executed from the userland return path
2411 * and reclaims memory over the high limit.
2412 */
2413void mem_cgroup_handle_over_high(void)
2414{
0e4b01df
CD
2415 unsigned long usage, high, clamped_high;
2416 unsigned long pflags;
2417 unsigned long penalty_jiffies, overage;
b23afb93 2418 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2419 struct mem_cgroup *memcg;
b23afb93
TH
2420
2421 if (likely(!nr_pages))
2422 return;
2423
f7e1cb6e
JW
2424 memcg = get_mem_cgroup_from_mm(current->mm);
2425 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93 2426 current->memcg_nr_pages_over_high = 0;
0e4b01df
CD
2427
2428 /*
2429 * memory.high is breached and reclaim is unable to keep up. Throttle
2430 * allocators proactively to slow down excessive growth.
2431 *
2432 * We use overage compared to memory.high to calculate the number of
2433 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2434 * fairly lenient on small overages, and increasingly harsh when the
2435 * memcg in question makes it clear that it has no intention of stopping
2436 * its crazy behaviour, so we exponentially increase the delay based on
2437 * overage amount.
2438 */
2439
2440 usage = page_counter_read(&memcg->memory);
2441 high = READ_ONCE(memcg->high);
2442
2443 if (usage <= high)
2444 goto out;
2445
2446 /*
2447 * Prevent division by 0 in overage calculation by acting as if it was a
2448 * threshold of 1 page
2449 */
2450 clamped_high = max(high, 1UL);
2451
2452 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2453 clamped_high);
2454
2455 penalty_jiffies = ((u64)overage * overage * HZ)
2456 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2457
2458 /*
2459 * Factor in the task's own contribution to the overage, such that four
2460 * N-sized allocations are throttled approximately the same as one
2461 * 4N-sized allocation.
2462 *
2463 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2464 * larger the current charge patch is than that.
2465 */
2466 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2467
2468 /*
2469 * Clamp the max delay per usermode return so as to still keep the
2470 * application moving forwards and also permit diagnostics, albeit
2471 * extremely slowly.
2472 */
2473 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2474
2475 /*
2476 * Don't sleep if the amount of jiffies this memcg owes us is so low
2477 * that it's not even worth doing, in an attempt to be nice to those who
2478 * go only a small amount over their memory.high value and maybe haven't
2479 * been aggressively reclaimed enough yet.
2480 */
2481 if (penalty_jiffies <= HZ / 100)
2482 goto out;
2483
2484 /*
2485 * If we exit early, we're guaranteed to die (since
2486 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2487 * need to account for any ill-begotten jiffies to pay them off later.
2488 */
2489 psi_memstall_enter(&pflags);
2490 schedule_timeout_killable(penalty_jiffies);
2491 psi_memstall_leave(&pflags);
2492
2493out:
2494 css_put(&memcg->css);
b23afb93
TH
2495}
2496
00501b53
JW
2497static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2498 unsigned int nr_pages)
8a9f3ccd 2499{
a983b5eb 2500 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2501 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2502 struct mem_cgroup *mem_over_limit;
3e32cb2e 2503 struct page_counter *counter;
6539cc05 2504 unsigned long nr_reclaimed;
b70a2a21
JW
2505 bool may_swap = true;
2506 bool drained = false;
29ef680a 2507 enum oom_status oom_status;
a636b327 2508
ce00a967 2509 if (mem_cgroup_is_root(memcg))
10d53c74 2510 return 0;
6539cc05 2511retry:
b6b6cc72 2512 if (consume_stock(memcg, nr_pages))
10d53c74 2513 return 0;
8a9f3ccd 2514
7941d214 2515 if (!do_memsw_account() ||
6071ca52
JW
2516 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2517 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2518 goto done_restock;
7941d214 2519 if (do_memsw_account())
3e32cb2e
JW
2520 page_counter_uncharge(&memcg->memsw, batch);
2521 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2522 } else {
3e32cb2e 2523 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2524 may_swap = false;
3fbe7244 2525 }
7a81b88c 2526
6539cc05
JW
2527 if (batch > nr_pages) {
2528 batch = nr_pages;
2529 goto retry;
2530 }
6d61ef40 2531
06b078fc
JW
2532 /*
2533 * Unlike in global OOM situations, memcg is not in a physical
2534 * memory shortage. Allow dying and OOM-killed tasks to
2535 * bypass the last charges so that they can exit quickly and
2536 * free their memory.
2537 */
7775face 2538 if (unlikely(should_force_charge()))
10d53c74 2539 goto force;
06b078fc 2540
89a28483
JW
2541 /*
2542 * Prevent unbounded recursion when reclaim operations need to
2543 * allocate memory. This might exceed the limits temporarily,
2544 * but we prefer facilitating memory reclaim and getting back
2545 * under the limit over triggering OOM kills in these cases.
2546 */
2547 if (unlikely(current->flags & PF_MEMALLOC))
2548 goto force;
2549
06b078fc
JW
2550 if (unlikely(task_in_memcg_oom(current)))
2551 goto nomem;
2552
d0164adc 2553 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2554 goto nomem;
4b534334 2555
e27be240 2556 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2557
b70a2a21
JW
2558 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2559 gfp_mask, may_swap);
6539cc05 2560
61e02c74 2561 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2562 goto retry;
28c34c29 2563
b70a2a21 2564 if (!drained) {
6d3d6aa2 2565 drain_all_stock(mem_over_limit);
b70a2a21
JW
2566 drained = true;
2567 goto retry;
2568 }
2569
28c34c29
JW
2570 if (gfp_mask & __GFP_NORETRY)
2571 goto nomem;
6539cc05
JW
2572 /*
2573 * Even though the limit is exceeded at this point, reclaim
2574 * may have been able to free some pages. Retry the charge
2575 * before killing the task.
2576 *
2577 * Only for regular pages, though: huge pages are rather
2578 * unlikely to succeed so close to the limit, and we fall back
2579 * to regular pages anyway in case of failure.
2580 */
61e02c74 2581 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2582 goto retry;
2583 /*
2584 * At task move, charge accounts can be doubly counted. So, it's
2585 * better to wait until the end of task_move if something is going on.
2586 */
2587 if (mem_cgroup_wait_acct_move(mem_over_limit))
2588 goto retry;
2589
9b130619
JW
2590 if (nr_retries--)
2591 goto retry;
2592
38d38493 2593 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2594 goto nomem;
2595
06b078fc 2596 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2597 goto force;
06b078fc 2598
6539cc05 2599 if (fatal_signal_pending(current))
10d53c74 2600 goto force;
6539cc05 2601
29ef680a
MH
2602 /*
2603 * keep retrying as long as the memcg oom killer is able to make
2604 * a forward progress or bypass the charge if the oom killer
2605 * couldn't make any progress.
2606 */
2607 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2608 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2609 switch (oom_status) {
2610 case OOM_SUCCESS:
2611 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2612 goto retry;
2613 case OOM_FAILED:
2614 goto force;
2615 default:
2616 goto nomem;
2617 }
7a81b88c 2618nomem:
6d1fdc48 2619 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2620 return -ENOMEM;
10d53c74
TH
2621force:
2622 /*
2623 * The allocation either can't fail or will lead to more memory
2624 * being freed very soon. Allow memory usage go over the limit
2625 * temporarily by force charging it.
2626 */
2627 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2628 if (do_memsw_account())
10d53c74
TH
2629 page_counter_charge(&memcg->memsw, nr_pages);
2630 css_get_many(&memcg->css, nr_pages);
2631
2632 return 0;
6539cc05
JW
2633
2634done_restock:
e8ea14cc 2635 css_get_many(&memcg->css, batch);
6539cc05
JW
2636 if (batch > nr_pages)
2637 refill_stock(memcg, batch - nr_pages);
b23afb93 2638
241994ed 2639 /*
b23afb93
TH
2640 * If the hierarchy is above the normal consumption range, schedule
2641 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2642 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2643 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2644 * not recorded as it most likely matches current's and won't
2645 * change in the meantime. As high limit is checked again before
2646 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2647 */
2648 do {
b23afb93 2649 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2650 /* Don't bother a random interrupted task */
2651 if (in_interrupt()) {
2652 schedule_work(&memcg->high_work);
2653 break;
2654 }
9516a18a 2655 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2656 set_notify_resume(current);
2657 break;
2658 }
241994ed 2659 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2660
2661 return 0;
7a81b88c 2662}
8a9f3ccd 2663
00501b53 2664static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2665{
ce00a967
JW
2666 if (mem_cgroup_is_root(memcg))
2667 return;
2668
3e32cb2e 2669 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2670 if (do_memsw_account())
3e32cb2e 2671 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2672
e8ea14cc 2673 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2674}
2675
0a31bc97
JW
2676static void lock_page_lru(struct page *page, int *isolated)
2677{
f4b7e272 2678 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2679
f4b7e272 2680 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2681 if (PageLRU(page)) {
2682 struct lruvec *lruvec;
2683
f4b7e272 2684 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2685 ClearPageLRU(page);
2686 del_page_from_lru_list(page, lruvec, page_lru(page));
2687 *isolated = 1;
2688 } else
2689 *isolated = 0;
2690}
2691
2692static void unlock_page_lru(struct page *page, int isolated)
2693{
f4b7e272 2694 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2695
2696 if (isolated) {
2697 struct lruvec *lruvec;
2698
f4b7e272 2699 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2700 VM_BUG_ON_PAGE(PageLRU(page), page);
2701 SetPageLRU(page);
2702 add_page_to_lru_list(page, lruvec, page_lru(page));
2703 }
f4b7e272 2704 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2705}
2706
00501b53 2707static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2708 bool lrucare)
7a81b88c 2709{
0a31bc97 2710 int isolated;
9ce70c02 2711
1306a85a 2712 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2713
2714 /*
2715 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2716 * may already be on some other mem_cgroup's LRU. Take care of it.
2717 */
0a31bc97
JW
2718 if (lrucare)
2719 lock_page_lru(page, &isolated);
9ce70c02 2720
0a31bc97
JW
2721 /*
2722 * Nobody should be changing or seriously looking at
1306a85a 2723 * page->mem_cgroup at this point:
0a31bc97
JW
2724 *
2725 * - the page is uncharged
2726 *
2727 * - the page is off-LRU
2728 *
2729 * - an anonymous fault has exclusive page access, except for
2730 * a locked page table
2731 *
2732 * - a page cache insertion, a swapin fault, or a migration
2733 * have the page locked
2734 */
1306a85a 2735 page->mem_cgroup = memcg;
9ce70c02 2736
0a31bc97
JW
2737 if (lrucare)
2738 unlock_page_lru(page, isolated);
7a81b88c 2739}
66e1707b 2740
84c07d11 2741#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2742static int memcg_alloc_cache_id(void)
55007d84 2743{
f3bb3043
VD
2744 int id, size;
2745 int err;
2746
dbcf73e2 2747 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2748 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2749 if (id < 0)
2750 return id;
55007d84 2751
dbcf73e2 2752 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2753 return id;
2754
2755 /*
2756 * There's no space for the new id in memcg_caches arrays,
2757 * so we have to grow them.
2758 */
05257a1a 2759 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2760
2761 size = 2 * (id + 1);
55007d84
GC
2762 if (size < MEMCG_CACHES_MIN_SIZE)
2763 size = MEMCG_CACHES_MIN_SIZE;
2764 else if (size > MEMCG_CACHES_MAX_SIZE)
2765 size = MEMCG_CACHES_MAX_SIZE;
2766
f3bb3043 2767 err = memcg_update_all_caches(size);
60d3fd32
VD
2768 if (!err)
2769 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2770 if (!err)
2771 memcg_nr_cache_ids = size;
2772
2773 up_write(&memcg_cache_ids_sem);
2774
f3bb3043 2775 if (err) {
dbcf73e2 2776 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2777 return err;
2778 }
2779 return id;
2780}
2781
2782static void memcg_free_cache_id(int id)
2783{
dbcf73e2 2784 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2785}
2786
d5b3cf71 2787struct memcg_kmem_cache_create_work {
5722d094
VD
2788 struct mem_cgroup *memcg;
2789 struct kmem_cache *cachep;
2790 struct work_struct work;
2791};
2792
d5b3cf71 2793static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2794{
d5b3cf71
VD
2795 struct memcg_kmem_cache_create_work *cw =
2796 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2797 struct mem_cgroup *memcg = cw->memcg;
2798 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2799
d5b3cf71 2800 memcg_create_kmem_cache(memcg, cachep);
bd673145 2801
5722d094 2802 css_put(&memcg->css);
d7f25f8a
GC
2803 kfree(cw);
2804}
2805
2806/*
2807 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2808 */
85cfb245 2809static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2810 struct kmem_cache *cachep)
d7f25f8a 2811{
d5b3cf71 2812 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2813
f0a3a24b
RG
2814 if (!css_tryget_online(&memcg->css))
2815 return;
2816
c892fd82 2817 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2818 if (!cw)
d7f25f8a 2819 return;
8135be5a 2820
d7f25f8a
GC
2821 cw->memcg = memcg;
2822 cw->cachep = cachep;
d5b3cf71 2823 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2824
17cc4dfe 2825 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2826}
2827
45264778
VD
2828static inline bool memcg_kmem_bypass(void)
2829{
2830 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2831 return true;
2832 return false;
2833}
2834
2835/**
2836 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2837 * @cachep: the original global kmem cache
2838 *
d7f25f8a
GC
2839 * Return the kmem_cache we're supposed to use for a slab allocation.
2840 * We try to use the current memcg's version of the cache.
2841 *
45264778
VD
2842 * If the cache does not exist yet, if we are the first user of it, we
2843 * create it asynchronously in a workqueue and let the current allocation
2844 * go through with the original cache.
d7f25f8a 2845 *
45264778
VD
2846 * This function takes a reference to the cache it returns to assure it
2847 * won't get destroyed while we are working with it. Once the caller is
2848 * done with it, memcg_kmem_put_cache() must be called to release the
2849 * reference.
d7f25f8a 2850 */
45264778 2851struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2852{
2853 struct mem_cgroup *memcg;
959c8963 2854 struct kmem_cache *memcg_cachep;
f0a3a24b 2855 struct memcg_cache_array *arr;
2a4db7eb 2856 int kmemcg_id;
d7f25f8a 2857
f7ce3190 2858 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2859
45264778 2860 if (memcg_kmem_bypass())
230e9fc2
VD
2861 return cachep;
2862
f0a3a24b
RG
2863 rcu_read_lock();
2864
2865 if (unlikely(current->active_memcg))
2866 memcg = current->active_memcg;
2867 else
2868 memcg = mem_cgroup_from_task(current);
2869
2870 if (!memcg || memcg == root_mem_cgroup)
2871 goto out_unlock;
2872
4db0c3c2 2873 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2874 if (kmemcg_id < 0)
f0a3a24b 2875 goto out_unlock;
d7f25f8a 2876
f0a3a24b
RG
2877 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2878
2879 /*
2880 * Make sure we will access the up-to-date value. The code updating
2881 * memcg_caches issues a write barrier to match the data dependency
2882 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2883 */
2884 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2885
2886 /*
2887 * If we are in a safe context (can wait, and not in interrupt
2888 * context), we could be be predictable and return right away.
2889 * This would guarantee that the allocation being performed
2890 * already belongs in the new cache.
2891 *
2892 * However, there are some clashes that can arrive from locking.
2893 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2894 * memcg_create_kmem_cache, this means no further allocation
2895 * could happen with the slab_mutex held. So it's better to
2896 * defer everything.
f0a3a24b
RG
2897 *
2898 * If the memcg is dying or memcg_cache is about to be released,
2899 * don't bother creating new kmem_caches. Because memcg_cachep
2900 * is ZEROed as the fist step of kmem offlining, we don't need
2901 * percpu_ref_tryget_live() here. css_tryget_online() check in
2902 * memcg_schedule_kmem_cache_create() will prevent us from
2903 * creation of a new kmem_cache.
ca0dde97 2904 */
f0a3a24b
RG
2905 if (unlikely(!memcg_cachep))
2906 memcg_schedule_kmem_cache_create(memcg, cachep);
2907 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2908 cachep = memcg_cachep;
2909out_unlock:
2910 rcu_read_unlock();
ca0dde97 2911 return cachep;
d7f25f8a 2912}
d7f25f8a 2913
45264778
VD
2914/**
2915 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2916 * @cachep: the cache returned by memcg_kmem_get_cache
2917 */
2918void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2919{
2920 if (!is_root_cache(cachep))
f0a3a24b 2921 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2922}
2923
45264778 2924/**
60cd4bcd 2925 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2926 * @page: page to charge
2927 * @gfp: reclaim mode
2928 * @order: allocation order
2929 * @memcg: memory cgroup to charge
2930 *
2931 * Returns 0 on success, an error code on failure.
2932 */
60cd4bcd 2933int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2934 struct mem_cgroup *memcg)
7ae1e1d0 2935{
f3ccb2c4
VD
2936 unsigned int nr_pages = 1 << order;
2937 struct page_counter *counter;
7ae1e1d0
GC
2938 int ret;
2939
f3ccb2c4 2940 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2941 if (ret)
f3ccb2c4 2942 return ret;
52c29b04
JW
2943
2944 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2945 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2946
2947 /*
2948 * Enforce __GFP_NOFAIL allocation because callers are not
2949 * prepared to see failures and likely do not have any failure
2950 * handling code.
2951 */
2952 if (gfp & __GFP_NOFAIL) {
2953 page_counter_charge(&memcg->kmem, nr_pages);
2954 return 0;
2955 }
52c29b04
JW
2956 cancel_charge(memcg, nr_pages);
2957 return -ENOMEM;
7ae1e1d0 2958 }
f3ccb2c4 2959 return 0;
7ae1e1d0
GC
2960}
2961
45264778 2962/**
60cd4bcd 2963 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2964 * @page: page to charge
2965 * @gfp: reclaim mode
2966 * @order: allocation order
2967 *
2968 * Returns 0 on success, an error code on failure.
2969 */
60cd4bcd 2970int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2971{
f3ccb2c4 2972 struct mem_cgroup *memcg;
fcff7d7e 2973 int ret = 0;
7ae1e1d0 2974
60cd4bcd 2975 if (memcg_kmem_bypass())
45264778
VD
2976 return 0;
2977
d46eb14b 2978 memcg = get_mem_cgroup_from_current();
c4159a75 2979 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2980 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2981 if (!ret) {
2982 page->mem_cgroup = memcg;
c4159a75 2983 __SetPageKmemcg(page);
4d96ba35 2984 }
c4159a75 2985 }
7ae1e1d0 2986 css_put(&memcg->css);
d05e83a6 2987 return ret;
7ae1e1d0 2988}
49a18eae
RG
2989
2990/**
2991 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2992 * @memcg: memcg to uncharge
2993 * @nr_pages: number of pages to uncharge
2994 */
2995void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2996 unsigned int nr_pages)
2997{
2998 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2999 page_counter_uncharge(&memcg->kmem, nr_pages);
3000
3001 page_counter_uncharge(&memcg->memory, nr_pages);
3002 if (do_memsw_account())
3003 page_counter_uncharge(&memcg->memsw, nr_pages);
3004}
45264778 3005/**
60cd4bcd 3006 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
3007 * @page: page to uncharge
3008 * @order: allocation order
3009 */
60cd4bcd 3010void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 3011{
1306a85a 3012 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3013 unsigned int nr_pages = 1 << order;
7ae1e1d0 3014
7ae1e1d0
GC
3015 if (!memcg)
3016 return;
3017
309381fe 3018 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 3019 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 3020 page->mem_cgroup = NULL;
c4159a75
VD
3021
3022 /* slab pages do not have PageKmemcg flag set */
3023 if (PageKmemcg(page))
3024 __ClearPageKmemcg(page);
3025
f3ccb2c4 3026 css_put_many(&memcg->css, nr_pages);
60d3fd32 3027}
84c07d11 3028#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3029
ca3e0214
KH
3030#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3031
ca3e0214
KH
3032/*
3033 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3034 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3035 */
e94c8a9c 3036void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3037{
e94c8a9c 3038 int i;
ca3e0214 3039
3d37c4a9
KH
3040 if (mem_cgroup_disabled())
3041 return;
b070e65c 3042
29833315 3043 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3044 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3045
c9019e9b 3046 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 3047}
12d27107 3048#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3049
c255a458 3050#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3051/**
3052 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3053 * @entry: swap entry to be moved
3054 * @from: mem_cgroup which the entry is moved from
3055 * @to: mem_cgroup which the entry is moved to
3056 *
3057 * It succeeds only when the swap_cgroup's record for this entry is the same
3058 * as the mem_cgroup's id of @from.
3059 *
3060 * Returns 0 on success, -EINVAL on failure.
3061 *
3e32cb2e 3062 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3063 * both res and memsw, and called css_get().
3064 */
3065static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3066 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3067{
3068 unsigned short old_id, new_id;
3069
34c00c31
LZ
3070 old_id = mem_cgroup_id(from);
3071 new_id = mem_cgroup_id(to);
02491447
DN
3072
3073 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3074 mod_memcg_state(from, MEMCG_SWAP, -1);
3075 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3076 return 0;
3077 }
3078 return -EINVAL;
3079}
3080#else
3081static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3082 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3083{
3084 return -EINVAL;
3085}
8c7c6e34 3086#endif
d13d1443 3087
bbec2e15 3088static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3089
bbec2e15
RG
3090static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3091 unsigned long max, bool memsw)
628f4235 3092{
3e32cb2e 3093 bool enlarge = false;
bb4a7ea2 3094 bool drained = false;
3e32cb2e 3095 int ret;
c054a78c
YZ
3096 bool limits_invariant;
3097 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3098
3e32cb2e 3099 do {
628f4235
KH
3100 if (signal_pending(current)) {
3101 ret = -EINTR;
3102 break;
3103 }
3e32cb2e 3104
bbec2e15 3105 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3106 /*
3107 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3108 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3109 */
bbec2e15
RG
3110 limits_invariant = memsw ? max >= memcg->memory.max :
3111 max <= memcg->memsw.max;
c054a78c 3112 if (!limits_invariant) {
bbec2e15 3113 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3114 ret = -EINVAL;
8c7c6e34
KH
3115 break;
3116 }
bbec2e15 3117 if (max > counter->max)
3e32cb2e 3118 enlarge = true;
bbec2e15
RG
3119 ret = page_counter_set_max(counter, max);
3120 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3121
3122 if (!ret)
3123 break;
3124
bb4a7ea2
SB
3125 if (!drained) {
3126 drain_all_stock(memcg);
3127 drained = true;
3128 continue;
3129 }
3130
1ab5c056
AR
3131 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3132 GFP_KERNEL, !memsw)) {
3133 ret = -EBUSY;
3134 break;
3135 }
3136 } while (true);
3e32cb2e 3137
3c11ecf4
KH
3138 if (!ret && enlarge)
3139 memcg_oom_recover(memcg);
3e32cb2e 3140
628f4235
KH
3141 return ret;
3142}
3143
ef8f2327 3144unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3145 gfp_t gfp_mask,
3146 unsigned long *total_scanned)
3147{
3148 unsigned long nr_reclaimed = 0;
ef8f2327 3149 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3150 unsigned long reclaimed;
3151 int loop = 0;
ef8f2327 3152 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3153 unsigned long excess;
0608f43d
AM
3154 unsigned long nr_scanned;
3155
3156 if (order > 0)
3157 return 0;
3158
ef8f2327 3159 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3160
3161 /*
3162 * Do not even bother to check the largest node if the root
3163 * is empty. Do it lockless to prevent lock bouncing. Races
3164 * are acceptable as soft limit is best effort anyway.
3165 */
bfc7228b 3166 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3167 return 0;
3168
0608f43d
AM
3169 /*
3170 * This loop can run a while, specially if mem_cgroup's continuously
3171 * keep exceeding their soft limit and putting the system under
3172 * pressure
3173 */
3174 do {
3175 if (next_mz)
3176 mz = next_mz;
3177 else
3178 mz = mem_cgroup_largest_soft_limit_node(mctz);
3179 if (!mz)
3180 break;
3181
3182 nr_scanned = 0;
ef8f2327 3183 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3184 gfp_mask, &nr_scanned);
3185 nr_reclaimed += reclaimed;
3186 *total_scanned += nr_scanned;
0a31bc97 3187 spin_lock_irq(&mctz->lock);
bc2f2e7f 3188 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3189
3190 /*
3191 * If we failed to reclaim anything from this memory cgroup
3192 * it is time to move on to the next cgroup
3193 */
3194 next_mz = NULL;
bc2f2e7f
VD
3195 if (!reclaimed)
3196 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3197
3e32cb2e 3198 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3199 /*
3200 * One school of thought says that we should not add
3201 * back the node to the tree if reclaim returns 0.
3202 * But our reclaim could return 0, simply because due
3203 * to priority we are exposing a smaller subset of
3204 * memory to reclaim from. Consider this as a longer
3205 * term TODO.
3206 */
3207 /* If excess == 0, no tree ops */
cf2c8127 3208 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3209 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3210 css_put(&mz->memcg->css);
3211 loop++;
3212 /*
3213 * Could not reclaim anything and there are no more
3214 * mem cgroups to try or we seem to be looping without
3215 * reclaiming anything.
3216 */
3217 if (!nr_reclaimed &&
3218 (next_mz == NULL ||
3219 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3220 break;
3221 } while (!nr_reclaimed);
3222 if (next_mz)
3223 css_put(&next_mz->memcg->css);
3224 return nr_reclaimed;
3225}
3226
ea280e7b
TH
3227/*
3228 * Test whether @memcg has children, dead or alive. Note that this
3229 * function doesn't care whether @memcg has use_hierarchy enabled and
3230 * returns %true if there are child csses according to the cgroup
3231 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3232 */
b5f99b53
GC
3233static inline bool memcg_has_children(struct mem_cgroup *memcg)
3234{
ea280e7b
TH
3235 bool ret;
3236
ea280e7b
TH
3237 rcu_read_lock();
3238 ret = css_next_child(NULL, &memcg->css);
3239 rcu_read_unlock();
3240 return ret;
b5f99b53
GC
3241}
3242
c26251f9 3243/*
51038171 3244 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3245 *
3246 * Caller is responsible for holding css reference for memcg.
3247 */
3248static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3249{
3250 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3251
c1e862c1
KH
3252 /* we call try-to-free pages for make this cgroup empty */
3253 lru_add_drain_all();
d12c60f6
JS
3254
3255 drain_all_stock(memcg);
3256
f817ed48 3257 /* try to free all pages in this cgroup */
3e32cb2e 3258 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3259 int progress;
c1e862c1 3260
c26251f9
MH
3261 if (signal_pending(current))
3262 return -EINTR;
3263
b70a2a21
JW
3264 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3265 GFP_KERNEL, true);
c1e862c1 3266 if (!progress) {
f817ed48 3267 nr_retries--;
c1e862c1 3268 /* maybe some writeback is necessary */
8aa7e847 3269 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3270 }
f817ed48
KH
3271
3272 }
ab5196c2
MH
3273
3274 return 0;
cc847582
KH
3275}
3276
6770c64e
TH
3277static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3278 char *buf, size_t nbytes,
3279 loff_t off)
c1e862c1 3280{
6770c64e 3281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3282
d8423011
MH
3283 if (mem_cgroup_is_root(memcg))
3284 return -EINVAL;
6770c64e 3285 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3286}
3287
182446d0
TH
3288static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3289 struct cftype *cft)
18f59ea7 3290{
182446d0 3291 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3292}
3293
182446d0
TH
3294static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3295 struct cftype *cft, u64 val)
18f59ea7
BS
3296{
3297 int retval = 0;
182446d0 3298 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3299 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3300
567fb435 3301 if (memcg->use_hierarchy == val)
0b8f73e1 3302 return 0;
567fb435 3303
18f59ea7 3304 /*
af901ca1 3305 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3306 * in the child subtrees. If it is unset, then the change can
3307 * occur, provided the current cgroup has no children.
3308 *
3309 * For the root cgroup, parent_mem is NULL, we allow value to be
3310 * set if there are no children.
3311 */
c0ff4b85 3312 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3313 (val == 1 || val == 0)) {
ea280e7b 3314 if (!memcg_has_children(memcg))
c0ff4b85 3315 memcg->use_hierarchy = val;
18f59ea7
BS
3316 else
3317 retval = -EBUSY;
3318 } else
3319 retval = -EINVAL;
567fb435 3320
18f59ea7
BS
3321 return retval;
3322}
3323
6f646156 3324static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3325{
42a30035 3326 unsigned long val;
ce00a967 3327
3e32cb2e 3328 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3329 val = memcg_page_state(memcg, MEMCG_CACHE) +
3330 memcg_page_state(memcg, MEMCG_RSS);
3331 if (swap)
3332 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3333 } else {
ce00a967 3334 if (!swap)
3e32cb2e 3335 val = page_counter_read(&memcg->memory);
ce00a967 3336 else
3e32cb2e 3337 val = page_counter_read(&memcg->memsw);
ce00a967 3338 }
c12176d3 3339 return val;
ce00a967
JW
3340}
3341
3e32cb2e
JW
3342enum {
3343 RES_USAGE,
3344 RES_LIMIT,
3345 RES_MAX_USAGE,
3346 RES_FAILCNT,
3347 RES_SOFT_LIMIT,
3348};
ce00a967 3349
791badbd 3350static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3351 struct cftype *cft)
8cdea7c0 3352{
182446d0 3353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3354 struct page_counter *counter;
af36f906 3355
3e32cb2e 3356 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3357 case _MEM:
3e32cb2e
JW
3358 counter = &memcg->memory;
3359 break;
8c7c6e34 3360 case _MEMSWAP:
3e32cb2e
JW
3361 counter = &memcg->memsw;
3362 break;
510fc4e1 3363 case _KMEM:
3e32cb2e 3364 counter = &memcg->kmem;
510fc4e1 3365 break;
d55f90bf 3366 case _TCP:
0db15298 3367 counter = &memcg->tcpmem;
d55f90bf 3368 break;
8c7c6e34
KH
3369 default:
3370 BUG();
8c7c6e34 3371 }
3e32cb2e
JW
3372
3373 switch (MEMFILE_ATTR(cft->private)) {
3374 case RES_USAGE:
3375 if (counter == &memcg->memory)
c12176d3 3376 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3377 if (counter == &memcg->memsw)
c12176d3 3378 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3379 return (u64)page_counter_read(counter) * PAGE_SIZE;
3380 case RES_LIMIT:
bbec2e15 3381 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3382 case RES_MAX_USAGE:
3383 return (u64)counter->watermark * PAGE_SIZE;
3384 case RES_FAILCNT:
3385 return counter->failcnt;
3386 case RES_SOFT_LIMIT:
3387 return (u64)memcg->soft_limit * PAGE_SIZE;
3388 default:
3389 BUG();
3390 }
8cdea7c0 3391}
510fc4e1 3392
bee07b33 3393static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
c350a99e
RG
3394{
3395 unsigned long stat[MEMCG_NR_STAT];
3396 struct mem_cgroup *mi;
3397 int node, cpu, i;
bee07b33 3398 int min_idx, max_idx;
c350a99e 3399
bee07b33
RG
3400 if (slab_only) {
3401 min_idx = NR_SLAB_RECLAIMABLE;
3402 max_idx = NR_SLAB_UNRECLAIMABLE;
3403 } else {
3404 min_idx = 0;
3405 max_idx = MEMCG_NR_STAT;
3406 }
3407
3408 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3409 stat[i] = 0;
3410
3411 for_each_online_cpu(cpu)
bee07b33 3412 for (i = min_idx; i < max_idx; i++)
6c1c2808 3413 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3414
3415 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
bee07b33 3416 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3417 atomic_long_add(stat[i], &mi->vmstats[i]);
3418
bee07b33
RG
3419 if (!slab_only)
3420 max_idx = NR_VM_NODE_STAT_ITEMS;
3421
c350a99e
RG
3422 for_each_node(node) {
3423 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3424 struct mem_cgroup_per_node *pi;
3425
bee07b33 3426 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3427 stat[i] = 0;
3428
3429 for_each_online_cpu(cpu)
bee07b33 3430 for (i = min_idx; i < max_idx; i++)
6c1c2808
SB
3431 stat[i] += per_cpu(
3432 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3433
3434 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
bee07b33 3435 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3436 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3437 }
3438}
3439
bb65f89b
RG
3440static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3441{
3442 unsigned long events[NR_VM_EVENT_ITEMS];
3443 struct mem_cgroup *mi;
3444 int cpu, i;
3445
3446 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3447 events[i] = 0;
3448
3449 for_each_online_cpu(cpu)
3450 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3451 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3452 cpu);
bb65f89b
RG
3453
3454 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3455 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3456 atomic_long_add(events[i], &mi->vmevents[i]);
3457}
3458
84c07d11 3459#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3460static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3461{
d6441637
VD
3462 int memcg_id;
3463
b313aeee
VD
3464 if (cgroup_memory_nokmem)
3465 return 0;
3466
2a4db7eb 3467 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3468 BUG_ON(memcg->kmem_state);
d6441637 3469
f3bb3043 3470 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3471 if (memcg_id < 0)
3472 return memcg_id;
d6441637 3473
ef12947c 3474 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3475 /*
567e9ab2 3476 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3477 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3478 * guarantee no one starts accounting before all call sites are
3479 * patched.
3480 */
900a38f0 3481 memcg->kmemcg_id = memcg_id;
567e9ab2 3482 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3483 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3484
3485 return 0;
d6441637
VD
3486}
3487
8e0a8912
JW
3488static void memcg_offline_kmem(struct mem_cgroup *memcg)
3489{
3490 struct cgroup_subsys_state *css;
3491 struct mem_cgroup *parent, *child;
3492 int kmemcg_id;
3493
3494 if (memcg->kmem_state != KMEM_ONLINE)
3495 return;
3496 /*
3497 * Clear the online state before clearing memcg_caches array
3498 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3499 * guarantees that no cache will be created for this cgroup
3500 * after we are done (see memcg_create_kmem_cache()).
3501 */
3502 memcg->kmem_state = KMEM_ALLOCATED;
3503
8e0a8912
JW
3504 parent = parent_mem_cgroup(memcg);
3505 if (!parent)
3506 parent = root_mem_cgroup;
3507
bee07b33
RG
3508 /*
3509 * Deactivate and reparent kmem_caches. Then flush percpu
3510 * slab statistics to have precise values at the parent and
3511 * all ancestor levels. It's required to keep slab stats
3512 * accurate after the reparenting of kmem_caches.
3513 */
fb2f2b0a 3514 memcg_deactivate_kmem_caches(memcg, parent);
bee07b33 3515 memcg_flush_percpu_vmstats(memcg, true);
fb2f2b0a
RG
3516
3517 kmemcg_id = memcg->kmemcg_id;
3518 BUG_ON(kmemcg_id < 0);
3519
8e0a8912
JW
3520 /*
3521 * Change kmemcg_id of this cgroup and all its descendants to the
3522 * parent's id, and then move all entries from this cgroup's list_lrus
3523 * to ones of the parent. After we have finished, all list_lrus
3524 * corresponding to this cgroup are guaranteed to remain empty. The
3525 * ordering is imposed by list_lru_node->lock taken by
3526 * memcg_drain_all_list_lrus().
3527 */
3a06bb78 3528 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3529 css_for_each_descendant_pre(css, &memcg->css) {
3530 child = mem_cgroup_from_css(css);
3531 BUG_ON(child->kmemcg_id != kmemcg_id);
3532 child->kmemcg_id = parent->kmemcg_id;
3533 if (!memcg->use_hierarchy)
3534 break;
3535 }
3a06bb78
TH
3536 rcu_read_unlock();
3537
9bec5c35 3538 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3539
3540 memcg_free_cache_id(kmemcg_id);
3541}
3542
3543static void memcg_free_kmem(struct mem_cgroup *memcg)
3544{
0b8f73e1
JW
3545 /* css_alloc() failed, offlining didn't happen */
3546 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3547 memcg_offline_kmem(memcg);
3548
8e0a8912 3549 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3550 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3551 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3552 }
8e0a8912 3553}
d6441637 3554#else
0b8f73e1 3555static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3556{
3557 return 0;
3558}
3559static void memcg_offline_kmem(struct mem_cgroup *memcg)
3560{
3561}
3562static void memcg_free_kmem(struct mem_cgroup *memcg)
3563{
3564}
84c07d11 3565#endif /* CONFIG_MEMCG_KMEM */
127424c8 3566
bbec2e15
RG
3567static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3568 unsigned long max)
d6441637 3569{
b313aeee 3570 int ret;
127424c8 3571
bbec2e15
RG
3572 mutex_lock(&memcg_max_mutex);
3573 ret = page_counter_set_max(&memcg->kmem, max);
3574 mutex_unlock(&memcg_max_mutex);
127424c8 3575 return ret;
d6441637 3576}
510fc4e1 3577
bbec2e15 3578static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3579{
3580 int ret;
3581
bbec2e15 3582 mutex_lock(&memcg_max_mutex);
d55f90bf 3583
bbec2e15 3584 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3585 if (ret)
3586 goto out;
3587
0db15298 3588 if (!memcg->tcpmem_active) {
d55f90bf
VD
3589 /*
3590 * The active flag needs to be written after the static_key
3591 * update. This is what guarantees that the socket activation
2d758073
JW
3592 * function is the last one to run. See mem_cgroup_sk_alloc()
3593 * for details, and note that we don't mark any socket as
3594 * belonging to this memcg until that flag is up.
d55f90bf
VD
3595 *
3596 * We need to do this, because static_keys will span multiple
3597 * sites, but we can't control their order. If we mark a socket
3598 * as accounted, but the accounting functions are not patched in
3599 * yet, we'll lose accounting.
3600 *
2d758073 3601 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3602 * because when this value change, the code to process it is not
3603 * patched in yet.
3604 */
3605 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3606 memcg->tcpmem_active = true;
d55f90bf
VD
3607 }
3608out:
bbec2e15 3609 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3610 return ret;
3611}
d55f90bf 3612
628f4235
KH
3613/*
3614 * The user of this function is...
3615 * RES_LIMIT.
3616 */
451af504
TH
3617static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3618 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3619{
451af504 3620 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3621 unsigned long nr_pages;
628f4235
KH
3622 int ret;
3623
451af504 3624 buf = strstrip(buf);
650c5e56 3625 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3626 if (ret)
3627 return ret;
af36f906 3628
3e32cb2e 3629 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3630 case RES_LIMIT:
4b3bde4c
BS
3631 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3632 ret = -EINVAL;
3633 break;
3634 }
3e32cb2e
JW
3635 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3636 case _MEM:
bbec2e15 3637 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3638 break;
3e32cb2e 3639 case _MEMSWAP:
bbec2e15 3640 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3641 break;
3e32cb2e 3642 case _KMEM:
0158115f
MH
3643 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3644 "Please report your usecase to linux-mm@kvack.org if you "
3645 "depend on this functionality.\n");
bbec2e15 3646 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3647 break;
d55f90bf 3648 case _TCP:
bbec2e15 3649 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3650 break;
3e32cb2e 3651 }
296c81d8 3652 break;
3e32cb2e
JW
3653 case RES_SOFT_LIMIT:
3654 memcg->soft_limit = nr_pages;
3655 ret = 0;
628f4235
KH
3656 break;
3657 }
451af504 3658 return ret ?: nbytes;
8cdea7c0
BS
3659}
3660
6770c64e
TH
3661static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3662 size_t nbytes, loff_t off)
c84872e1 3663{
6770c64e 3664 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3665 struct page_counter *counter;
c84872e1 3666
3e32cb2e
JW
3667 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3668 case _MEM:
3669 counter = &memcg->memory;
3670 break;
3671 case _MEMSWAP:
3672 counter = &memcg->memsw;
3673 break;
3674 case _KMEM:
3675 counter = &memcg->kmem;
3676 break;
d55f90bf 3677 case _TCP:
0db15298 3678 counter = &memcg->tcpmem;
d55f90bf 3679 break;
3e32cb2e
JW
3680 default:
3681 BUG();
3682 }
af36f906 3683
3e32cb2e 3684 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3685 case RES_MAX_USAGE:
3e32cb2e 3686 page_counter_reset_watermark(counter);
29f2a4da
PE
3687 break;
3688 case RES_FAILCNT:
3e32cb2e 3689 counter->failcnt = 0;
29f2a4da 3690 break;
3e32cb2e
JW
3691 default:
3692 BUG();
29f2a4da 3693 }
f64c3f54 3694
6770c64e 3695 return nbytes;
c84872e1
PE
3696}
3697
182446d0 3698static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3699 struct cftype *cft)
3700{
182446d0 3701 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3702}
3703
02491447 3704#ifdef CONFIG_MMU
182446d0 3705static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3706 struct cftype *cft, u64 val)
3707{
182446d0 3708 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3709
1dfab5ab 3710 if (val & ~MOVE_MASK)
7dc74be0 3711 return -EINVAL;
ee5e8472 3712
7dc74be0 3713 /*
ee5e8472
GC
3714 * No kind of locking is needed in here, because ->can_attach() will
3715 * check this value once in the beginning of the process, and then carry
3716 * on with stale data. This means that changes to this value will only
3717 * affect task migrations starting after the change.
7dc74be0 3718 */
c0ff4b85 3719 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3720 return 0;
3721}
02491447 3722#else
182446d0 3723static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3724 struct cftype *cft, u64 val)
3725{
3726 return -ENOSYS;
3727}
3728#endif
7dc74be0 3729
406eb0c9 3730#ifdef CONFIG_NUMA
113b7dfd
JW
3731
3732#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3733#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3734#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3735
3736static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3737 int nid, unsigned int lru_mask)
3738{
3739 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3740 unsigned long nr = 0;
3741 enum lru_list lru;
3742
3743 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3744
3745 for_each_lru(lru) {
3746 if (!(BIT(lru) & lru_mask))
3747 continue;
205b20cc 3748 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3749 }
3750 return nr;
3751}
3752
3753static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3754 unsigned int lru_mask)
3755{
3756 unsigned long nr = 0;
3757 enum lru_list lru;
3758
3759 for_each_lru(lru) {
3760 if (!(BIT(lru) & lru_mask))
3761 continue;
205b20cc 3762 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3763 }
3764 return nr;
3765}
3766
2da8ca82 3767static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3768{
25485de6
GT
3769 struct numa_stat {
3770 const char *name;
3771 unsigned int lru_mask;
3772 };
3773
3774 static const struct numa_stat stats[] = {
3775 { "total", LRU_ALL },
3776 { "file", LRU_ALL_FILE },
3777 { "anon", LRU_ALL_ANON },
3778 { "unevictable", BIT(LRU_UNEVICTABLE) },
3779 };
3780 const struct numa_stat *stat;
406eb0c9 3781 int nid;
25485de6 3782 unsigned long nr;
aa9694bb 3783 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3784
25485de6
GT
3785 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3786 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3787 seq_printf(m, "%s=%lu", stat->name, nr);
3788 for_each_node_state(nid, N_MEMORY) {
3789 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3790 stat->lru_mask);
3791 seq_printf(m, " N%d=%lu", nid, nr);
3792 }
3793 seq_putc(m, '\n');
406eb0c9 3794 }
406eb0c9 3795
071aee13
YH
3796 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3797 struct mem_cgroup *iter;
3798
3799 nr = 0;
3800 for_each_mem_cgroup_tree(iter, memcg)
3801 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3802 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3803 for_each_node_state(nid, N_MEMORY) {
3804 nr = 0;
3805 for_each_mem_cgroup_tree(iter, memcg)
3806 nr += mem_cgroup_node_nr_lru_pages(
3807 iter, nid, stat->lru_mask);
3808 seq_printf(m, " N%d=%lu", nid, nr);
3809 }
3810 seq_putc(m, '\n');
406eb0c9 3811 }
406eb0c9 3812
406eb0c9
YH
3813 return 0;
3814}
3815#endif /* CONFIG_NUMA */
3816
c8713d0b
JW
3817static const unsigned int memcg1_stats[] = {
3818 MEMCG_CACHE,
3819 MEMCG_RSS,
3820 MEMCG_RSS_HUGE,
3821 NR_SHMEM,
3822 NR_FILE_MAPPED,
3823 NR_FILE_DIRTY,
3824 NR_WRITEBACK,
3825 MEMCG_SWAP,
3826};
3827
3828static const char *const memcg1_stat_names[] = {
3829 "cache",
3830 "rss",
3831 "rss_huge",
3832 "shmem",
3833 "mapped_file",
3834 "dirty",
3835 "writeback",
3836 "swap",
3837};
3838
df0e53d0 3839/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3840static const unsigned int memcg1_events[] = {
df0e53d0
JW
3841 PGPGIN,
3842 PGPGOUT,
3843 PGFAULT,
3844 PGMAJFAULT,
3845};
3846
3847static const char *const memcg1_event_names[] = {
3848 "pgpgin",
3849 "pgpgout",
3850 "pgfault",
3851 "pgmajfault",
3852};
3853
2da8ca82 3854static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3855{
aa9694bb 3856 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3857 unsigned long memory, memsw;
af7c4b0e
JW
3858 struct mem_cgroup *mi;
3859 unsigned int i;
406eb0c9 3860
71cd3113 3861 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3862 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3863
71cd3113
JW
3864 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3865 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3866 continue;
71cd3113 3867 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3868 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3869 PAGE_SIZE);
1dd3a273 3870 }
7b854121 3871
df0e53d0
JW
3872 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3873 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3874 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3875
3876 for (i = 0; i < NR_LRU_LISTS; i++)
3877 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3878 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3879 PAGE_SIZE);
af7c4b0e 3880
14067bb3 3881 /* Hierarchical information */
3e32cb2e
JW
3882 memory = memsw = PAGE_COUNTER_MAX;
3883 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3884 memory = min(memory, mi->memory.max);
3885 memsw = min(memsw, mi->memsw.max);
fee7b548 3886 }
3e32cb2e
JW
3887 seq_printf(m, "hierarchical_memory_limit %llu\n",
3888 (u64)memory * PAGE_SIZE);
7941d214 3889 if (do_memsw_account())
3e32cb2e
JW
3890 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3891 (u64)memsw * PAGE_SIZE);
7f016ee8 3892
8de7ecc6 3893 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3894 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3895 continue;
8de7ecc6 3896 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3897 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3898 PAGE_SIZE);
af7c4b0e
JW
3899 }
3900
8de7ecc6
SB
3901 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3902 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
dd923990 3903 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3904
8de7ecc6
SB
3905 for (i = 0; i < NR_LRU_LISTS; i++)
3906 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
3907 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3908 PAGE_SIZE);
14067bb3 3909
7f016ee8 3910#ifdef CONFIG_DEBUG_VM
7f016ee8 3911 {
ef8f2327
MG
3912 pg_data_t *pgdat;
3913 struct mem_cgroup_per_node *mz;
89abfab1 3914 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3915 unsigned long recent_rotated[2] = {0, 0};
3916 unsigned long recent_scanned[2] = {0, 0};
3917
ef8f2327
MG
3918 for_each_online_pgdat(pgdat) {
3919 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3920 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3921
ef8f2327
MG
3922 recent_rotated[0] += rstat->recent_rotated[0];
3923 recent_rotated[1] += rstat->recent_rotated[1];
3924 recent_scanned[0] += rstat->recent_scanned[0];
3925 recent_scanned[1] += rstat->recent_scanned[1];
3926 }
78ccf5b5
JW
3927 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3928 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3929 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3930 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3931 }
3932#endif
3933
d2ceb9b7
KH
3934 return 0;
3935}
3936
182446d0
TH
3937static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3938 struct cftype *cft)
a7885eb8 3939{
182446d0 3940 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3941
1f4c025b 3942 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3943}
3944
182446d0
TH
3945static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3946 struct cftype *cft, u64 val)
a7885eb8 3947{
182446d0 3948 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3949
3dae7fec 3950 if (val > 100)
a7885eb8
KM
3951 return -EINVAL;
3952
14208b0e 3953 if (css->parent)
3dae7fec
JW
3954 memcg->swappiness = val;
3955 else
3956 vm_swappiness = val;
068b38c1 3957
a7885eb8
KM
3958 return 0;
3959}
3960
2e72b634
KS
3961static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3962{
3963 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3964 unsigned long usage;
2e72b634
KS
3965 int i;
3966
3967 rcu_read_lock();
3968 if (!swap)
2c488db2 3969 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3970 else
2c488db2 3971 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3972
3973 if (!t)
3974 goto unlock;
3975
ce00a967 3976 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3977
3978 /*
748dad36 3979 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3980 * If it's not true, a threshold was crossed after last
3981 * call of __mem_cgroup_threshold().
3982 */
5407a562 3983 i = t->current_threshold;
2e72b634
KS
3984
3985 /*
3986 * Iterate backward over array of thresholds starting from
3987 * current_threshold and check if a threshold is crossed.
3988 * If none of thresholds below usage is crossed, we read
3989 * only one element of the array here.
3990 */
3991 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3992 eventfd_signal(t->entries[i].eventfd, 1);
3993
3994 /* i = current_threshold + 1 */
3995 i++;
3996
3997 /*
3998 * Iterate forward over array of thresholds starting from
3999 * current_threshold+1 and check if a threshold is crossed.
4000 * If none of thresholds above usage is crossed, we read
4001 * only one element of the array here.
4002 */
4003 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4004 eventfd_signal(t->entries[i].eventfd, 1);
4005
4006 /* Update current_threshold */
5407a562 4007 t->current_threshold = i - 1;
2e72b634
KS
4008unlock:
4009 rcu_read_unlock();
4010}
4011
4012static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4013{
ad4ca5f4
KS
4014 while (memcg) {
4015 __mem_cgroup_threshold(memcg, false);
7941d214 4016 if (do_memsw_account())
ad4ca5f4
KS
4017 __mem_cgroup_threshold(memcg, true);
4018
4019 memcg = parent_mem_cgroup(memcg);
4020 }
2e72b634
KS
4021}
4022
4023static int compare_thresholds(const void *a, const void *b)
4024{
4025 const struct mem_cgroup_threshold *_a = a;
4026 const struct mem_cgroup_threshold *_b = b;
4027
2bff24a3
GT
4028 if (_a->threshold > _b->threshold)
4029 return 1;
4030
4031 if (_a->threshold < _b->threshold)
4032 return -1;
4033
4034 return 0;
2e72b634
KS
4035}
4036
c0ff4b85 4037static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4038{
4039 struct mem_cgroup_eventfd_list *ev;
4040
2bcf2e92
MH
4041 spin_lock(&memcg_oom_lock);
4042
c0ff4b85 4043 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4044 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4045
4046 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4047 return 0;
4048}
4049
c0ff4b85 4050static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4051{
7d74b06f
KH
4052 struct mem_cgroup *iter;
4053
c0ff4b85 4054 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4055 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4056}
4057
59b6f873 4058static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4059 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4060{
2c488db2
KS
4061 struct mem_cgroup_thresholds *thresholds;
4062 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4063 unsigned long threshold;
4064 unsigned long usage;
2c488db2 4065 int i, size, ret;
2e72b634 4066
650c5e56 4067 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4068 if (ret)
4069 return ret;
4070
4071 mutex_lock(&memcg->thresholds_lock);
2c488db2 4072
05b84301 4073 if (type == _MEM) {
2c488db2 4074 thresholds = &memcg->thresholds;
ce00a967 4075 usage = mem_cgroup_usage(memcg, false);
05b84301 4076 } else if (type == _MEMSWAP) {
2c488db2 4077 thresholds = &memcg->memsw_thresholds;
ce00a967 4078 usage = mem_cgroup_usage(memcg, true);
05b84301 4079 } else
2e72b634
KS
4080 BUG();
4081
2e72b634 4082 /* Check if a threshold crossed before adding a new one */
2c488db2 4083 if (thresholds->primary)
2e72b634
KS
4084 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4085
2c488db2 4086 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4087
4088 /* Allocate memory for new array of thresholds */
67b8046f 4089 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4090 if (!new) {
2e72b634
KS
4091 ret = -ENOMEM;
4092 goto unlock;
4093 }
2c488db2 4094 new->size = size;
2e72b634
KS
4095
4096 /* Copy thresholds (if any) to new array */
2c488db2
KS
4097 if (thresholds->primary) {
4098 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4099 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4100 }
4101
2e72b634 4102 /* Add new threshold */
2c488db2
KS
4103 new->entries[size - 1].eventfd = eventfd;
4104 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4105
4106 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4107 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4108 compare_thresholds, NULL);
4109
4110 /* Find current threshold */
2c488db2 4111 new->current_threshold = -1;
2e72b634 4112 for (i = 0; i < size; i++) {
748dad36 4113 if (new->entries[i].threshold <= usage) {
2e72b634 4114 /*
2c488db2
KS
4115 * new->current_threshold will not be used until
4116 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4117 * it here.
4118 */
2c488db2 4119 ++new->current_threshold;
748dad36
SZ
4120 } else
4121 break;
2e72b634
KS
4122 }
4123
2c488db2
KS
4124 /* Free old spare buffer and save old primary buffer as spare */
4125 kfree(thresholds->spare);
4126 thresholds->spare = thresholds->primary;
4127
4128 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4129
907860ed 4130 /* To be sure that nobody uses thresholds */
2e72b634
KS
4131 synchronize_rcu();
4132
2e72b634
KS
4133unlock:
4134 mutex_unlock(&memcg->thresholds_lock);
4135
4136 return ret;
4137}
4138
59b6f873 4139static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4140 struct eventfd_ctx *eventfd, const char *args)
4141{
59b6f873 4142 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4143}
4144
59b6f873 4145static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4146 struct eventfd_ctx *eventfd, const char *args)
4147{
59b6f873 4148 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4149}
4150
59b6f873 4151static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4152 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4153{
2c488db2
KS
4154 struct mem_cgroup_thresholds *thresholds;
4155 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4156 unsigned long usage;
2c488db2 4157 int i, j, size;
2e72b634
KS
4158
4159 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4160
4161 if (type == _MEM) {
2c488db2 4162 thresholds = &memcg->thresholds;
ce00a967 4163 usage = mem_cgroup_usage(memcg, false);
05b84301 4164 } else if (type == _MEMSWAP) {
2c488db2 4165 thresholds = &memcg->memsw_thresholds;
ce00a967 4166 usage = mem_cgroup_usage(memcg, true);
05b84301 4167 } else
2e72b634
KS
4168 BUG();
4169
371528ca
AV
4170 if (!thresholds->primary)
4171 goto unlock;
4172
2e72b634
KS
4173 /* Check if a threshold crossed before removing */
4174 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4175
4176 /* Calculate new number of threshold */
2c488db2
KS
4177 size = 0;
4178 for (i = 0; i < thresholds->primary->size; i++) {
4179 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4180 size++;
4181 }
4182
2c488db2 4183 new = thresholds->spare;
907860ed 4184
2e72b634
KS
4185 /* Set thresholds array to NULL if we don't have thresholds */
4186 if (!size) {
2c488db2
KS
4187 kfree(new);
4188 new = NULL;
907860ed 4189 goto swap_buffers;
2e72b634
KS
4190 }
4191
2c488db2 4192 new->size = size;
2e72b634
KS
4193
4194 /* Copy thresholds and find current threshold */
2c488db2
KS
4195 new->current_threshold = -1;
4196 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4197 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4198 continue;
4199
2c488db2 4200 new->entries[j] = thresholds->primary->entries[i];
748dad36 4201 if (new->entries[j].threshold <= usage) {
2e72b634 4202 /*
2c488db2 4203 * new->current_threshold will not be used
2e72b634
KS
4204 * until rcu_assign_pointer(), so it's safe to increment
4205 * it here.
4206 */
2c488db2 4207 ++new->current_threshold;
2e72b634
KS
4208 }
4209 j++;
4210 }
4211
907860ed 4212swap_buffers:
2c488db2
KS
4213 /* Swap primary and spare array */
4214 thresholds->spare = thresholds->primary;
8c757763 4215
2c488db2 4216 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4217
907860ed 4218 /* To be sure that nobody uses thresholds */
2e72b634 4219 synchronize_rcu();
6611d8d7
MC
4220
4221 /* If all events are unregistered, free the spare array */
4222 if (!new) {
4223 kfree(thresholds->spare);
4224 thresholds->spare = NULL;
4225 }
371528ca 4226unlock:
2e72b634 4227 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4228}
c1e862c1 4229
59b6f873 4230static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4231 struct eventfd_ctx *eventfd)
4232{
59b6f873 4233 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4234}
4235
59b6f873 4236static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4237 struct eventfd_ctx *eventfd)
4238{
59b6f873 4239 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4240}
4241
59b6f873 4242static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4243 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4244{
9490ff27 4245 struct mem_cgroup_eventfd_list *event;
9490ff27 4246
9490ff27
KH
4247 event = kmalloc(sizeof(*event), GFP_KERNEL);
4248 if (!event)
4249 return -ENOMEM;
4250
1af8efe9 4251 spin_lock(&memcg_oom_lock);
9490ff27
KH
4252
4253 event->eventfd = eventfd;
4254 list_add(&event->list, &memcg->oom_notify);
4255
4256 /* already in OOM ? */
c2b42d3c 4257 if (memcg->under_oom)
9490ff27 4258 eventfd_signal(eventfd, 1);
1af8efe9 4259 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4260
4261 return 0;
4262}
4263
59b6f873 4264static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4265 struct eventfd_ctx *eventfd)
9490ff27 4266{
9490ff27 4267 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4268
1af8efe9 4269 spin_lock(&memcg_oom_lock);
9490ff27 4270
c0ff4b85 4271 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4272 if (ev->eventfd == eventfd) {
4273 list_del(&ev->list);
4274 kfree(ev);
4275 }
4276 }
4277
1af8efe9 4278 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4279}
4280
2da8ca82 4281static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4282{
aa9694bb 4283 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4284
791badbd 4285 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4286 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4287 seq_printf(sf, "oom_kill %lu\n",
4288 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4289 return 0;
4290}
4291
182446d0 4292static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4293 struct cftype *cft, u64 val)
4294{
182446d0 4295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4296
4297 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4298 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4299 return -EINVAL;
4300
c0ff4b85 4301 memcg->oom_kill_disable = val;
4d845ebf 4302 if (!val)
c0ff4b85 4303 memcg_oom_recover(memcg);
3dae7fec 4304
3c11ecf4
KH
4305 return 0;
4306}
4307
52ebea74
TH
4308#ifdef CONFIG_CGROUP_WRITEBACK
4309
3a8e9ac8
TH
4310#include <trace/events/writeback.h>
4311
841710aa
TH
4312static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4313{
4314 return wb_domain_init(&memcg->cgwb_domain, gfp);
4315}
4316
4317static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4318{
4319 wb_domain_exit(&memcg->cgwb_domain);
4320}
4321
2529bb3a
TH
4322static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4323{
4324 wb_domain_size_changed(&memcg->cgwb_domain);
4325}
4326
841710aa
TH
4327struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4328{
4329 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4330
4331 if (!memcg->css.parent)
4332 return NULL;
4333
4334 return &memcg->cgwb_domain;
4335}
4336
0b3d6e6f
GT
4337/*
4338 * idx can be of type enum memcg_stat_item or node_stat_item.
4339 * Keep in sync with memcg_exact_page().
4340 */
4341static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4342{
871789d4 4343 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4344 int cpu;
4345
4346 for_each_online_cpu(cpu)
871789d4 4347 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4348 if (x < 0)
4349 x = 0;
4350 return x;
4351}
4352
c2aa723a
TH
4353/**
4354 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4355 * @wb: bdi_writeback in question
c5edf9cd
TH
4356 * @pfilepages: out parameter for number of file pages
4357 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4358 * @pdirty: out parameter for number of dirty pages
4359 * @pwriteback: out parameter for number of pages under writeback
4360 *
c5edf9cd
TH
4361 * Determine the numbers of file, headroom, dirty, and writeback pages in
4362 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4363 * is a bit more involved.
c2aa723a 4364 *
c5edf9cd
TH
4365 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4366 * headroom is calculated as the lowest headroom of itself and the
4367 * ancestors. Note that this doesn't consider the actual amount of
4368 * available memory in the system. The caller should further cap
4369 * *@pheadroom accordingly.
c2aa723a 4370 */
c5edf9cd
TH
4371void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4372 unsigned long *pheadroom, unsigned long *pdirty,
4373 unsigned long *pwriteback)
c2aa723a
TH
4374{
4375 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4376 struct mem_cgroup *parent;
c2aa723a 4377
0b3d6e6f 4378 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4379
4380 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4381 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4382 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4383 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4384 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4385
c2aa723a 4386 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4387 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4388 unsigned long used = page_counter_read(&memcg->memory);
4389
c5edf9cd 4390 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4391 memcg = parent;
4392 }
c2aa723a
TH
4393}
4394
97b27821
TH
4395/*
4396 * Foreign dirty flushing
4397 *
4398 * There's an inherent mismatch between memcg and writeback. The former
4399 * trackes ownership per-page while the latter per-inode. This was a
4400 * deliberate design decision because honoring per-page ownership in the
4401 * writeback path is complicated, may lead to higher CPU and IO overheads
4402 * and deemed unnecessary given that write-sharing an inode across
4403 * different cgroups isn't a common use-case.
4404 *
4405 * Combined with inode majority-writer ownership switching, this works well
4406 * enough in most cases but there are some pathological cases. For
4407 * example, let's say there are two cgroups A and B which keep writing to
4408 * different but confined parts of the same inode. B owns the inode and
4409 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4410 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4411 * triggering background writeback. A will be slowed down without a way to
4412 * make writeback of the dirty pages happen.
4413 *
4414 * Conditions like the above can lead to a cgroup getting repatedly and
4415 * severely throttled after making some progress after each
4416 * dirty_expire_interval while the underyling IO device is almost
4417 * completely idle.
4418 *
4419 * Solving this problem completely requires matching the ownership tracking
4420 * granularities between memcg and writeback in either direction. However,
4421 * the more egregious behaviors can be avoided by simply remembering the
4422 * most recent foreign dirtying events and initiating remote flushes on
4423 * them when local writeback isn't enough to keep the memory clean enough.
4424 *
4425 * The following two functions implement such mechanism. When a foreign
4426 * page - a page whose memcg and writeback ownerships don't match - is
4427 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4428 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4429 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4430 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4431 * foreign bdi_writebacks which haven't expired. Both the numbers of
4432 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4433 * limited to MEMCG_CGWB_FRN_CNT.
4434 *
4435 * The mechanism only remembers IDs and doesn't hold any object references.
4436 * As being wrong occasionally doesn't matter, updates and accesses to the
4437 * records are lockless and racy.
4438 */
4439void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4440 struct bdi_writeback *wb)
4441{
4442 struct mem_cgroup *memcg = page->mem_cgroup;
4443 struct memcg_cgwb_frn *frn;
4444 u64 now = get_jiffies_64();
4445 u64 oldest_at = now;
4446 int oldest = -1;
4447 int i;
4448
3a8e9ac8
TH
4449 trace_track_foreign_dirty(page, wb);
4450
97b27821
TH
4451 /*
4452 * Pick the slot to use. If there is already a slot for @wb, keep
4453 * using it. If not replace the oldest one which isn't being
4454 * written out.
4455 */
4456 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4457 frn = &memcg->cgwb_frn[i];
4458 if (frn->bdi_id == wb->bdi->id &&
4459 frn->memcg_id == wb->memcg_css->id)
4460 break;
4461 if (time_before64(frn->at, oldest_at) &&
4462 atomic_read(&frn->done.cnt) == 1) {
4463 oldest = i;
4464 oldest_at = frn->at;
4465 }
4466 }
4467
4468 if (i < MEMCG_CGWB_FRN_CNT) {
4469 /*
4470 * Re-using an existing one. Update timestamp lazily to
4471 * avoid making the cacheline hot. We want them to be
4472 * reasonably up-to-date and significantly shorter than
4473 * dirty_expire_interval as that's what expires the record.
4474 * Use the shorter of 1s and dirty_expire_interval / 8.
4475 */
4476 unsigned long update_intv =
4477 min_t(unsigned long, HZ,
4478 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4479
4480 if (time_before64(frn->at, now - update_intv))
4481 frn->at = now;
4482 } else if (oldest >= 0) {
4483 /* replace the oldest free one */
4484 frn = &memcg->cgwb_frn[oldest];
4485 frn->bdi_id = wb->bdi->id;
4486 frn->memcg_id = wb->memcg_css->id;
4487 frn->at = now;
4488 }
4489}
4490
4491/* issue foreign writeback flushes for recorded foreign dirtying events */
4492void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4493{
4494 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4495 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4496 u64 now = jiffies_64;
4497 int i;
4498
4499 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4500 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4501
4502 /*
4503 * If the record is older than dirty_expire_interval,
4504 * writeback on it has already started. No need to kick it
4505 * off again. Also, don't start a new one if there's
4506 * already one in flight.
4507 */
4508 if (time_after64(frn->at, now - intv) &&
4509 atomic_read(&frn->done.cnt) == 1) {
4510 frn->at = 0;
3a8e9ac8 4511 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4512 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4513 WB_REASON_FOREIGN_FLUSH,
4514 &frn->done);
4515 }
4516 }
4517}
4518
841710aa
TH
4519#else /* CONFIG_CGROUP_WRITEBACK */
4520
4521static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4522{
4523 return 0;
4524}
4525
4526static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4527{
4528}
4529
2529bb3a
TH
4530static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4531{
4532}
4533
52ebea74
TH
4534#endif /* CONFIG_CGROUP_WRITEBACK */
4535
3bc942f3
TH
4536/*
4537 * DO NOT USE IN NEW FILES.
4538 *
4539 * "cgroup.event_control" implementation.
4540 *
4541 * This is way over-engineered. It tries to support fully configurable
4542 * events for each user. Such level of flexibility is completely
4543 * unnecessary especially in the light of the planned unified hierarchy.
4544 *
4545 * Please deprecate this and replace with something simpler if at all
4546 * possible.
4547 */
4548
79bd9814
TH
4549/*
4550 * Unregister event and free resources.
4551 *
4552 * Gets called from workqueue.
4553 */
3bc942f3 4554static void memcg_event_remove(struct work_struct *work)
79bd9814 4555{
3bc942f3
TH
4556 struct mem_cgroup_event *event =
4557 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4558 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4559
4560 remove_wait_queue(event->wqh, &event->wait);
4561
59b6f873 4562 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4563
4564 /* Notify userspace the event is going away. */
4565 eventfd_signal(event->eventfd, 1);
4566
4567 eventfd_ctx_put(event->eventfd);
4568 kfree(event);
59b6f873 4569 css_put(&memcg->css);
79bd9814
TH
4570}
4571
4572/*
a9a08845 4573 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4574 *
4575 * Called with wqh->lock held and interrupts disabled.
4576 */
ac6424b9 4577static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4578 int sync, void *key)
79bd9814 4579{
3bc942f3
TH
4580 struct mem_cgroup_event *event =
4581 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4582 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4583 __poll_t flags = key_to_poll(key);
79bd9814 4584
a9a08845 4585 if (flags & EPOLLHUP) {
79bd9814
TH
4586 /*
4587 * If the event has been detached at cgroup removal, we
4588 * can simply return knowing the other side will cleanup
4589 * for us.
4590 *
4591 * We can't race against event freeing since the other
4592 * side will require wqh->lock via remove_wait_queue(),
4593 * which we hold.
4594 */
fba94807 4595 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4596 if (!list_empty(&event->list)) {
4597 list_del_init(&event->list);
4598 /*
4599 * We are in atomic context, but cgroup_event_remove()
4600 * may sleep, so we have to call it in workqueue.
4601 */
4602 schedule_work(&event->remove);
4603 }
fba94807 4604 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4605 }
4606
4607 return 0;
4608}
4609
3bc942f3 4610static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4611 wait_queue_head_t *wqh, poll_table *pt)
4612{
3bc942f3
TH
4613 struct mem_cgroup_event *event =
4614 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4615
4616 event->wqh = wqh;
4617 add_wait_queue(wqh, &event->wait);
4618}
4619
4620/*
3bc942f3
TH
4621 * DO NOT USE IN NEW FILES.
4622 *
79bd9814
TH
4623 * Parse input and register new cgroup event handler.
4624 *
4625 * Input must be in format '<event_fd> <control_fd> <args>'.
4626 * Interpretation of args is defined by control file implementation.
4627 */
451af504
TH
4628static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4629 char *buf, size_t nbytes, loff_t off)
79bd9814 4630{
451af504 4631 struct cgroup_subsys_state *css = of_css(of);
fba94807 4632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4633 struct mem_cgroup_event *event;
79bd9814
TH
4634 struct cgroup_subsys_state *cfile_css;
4635 unsigned int efd, cfd;
4636 struct fd efile;
4637 struct fd cfile;
fba94807 4638 const char *name;
79bd9814
TH
4639 char *endp;
4640 int ret;
4641
451af504
TH
4642 buf = strstrip(buf);
4643
4644 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4645 if (*endp != ' ')
4646 return -EINVAL;
451af504 4647 buf = endp + 1;
79bd9814 4648
451af504 4649 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4650 if ((*endp != ' ') && (*endp != '\0'))
4651 return -EINVAL;
451af504 4652 buf = endp + 1;
79bd9814
TH
4653
4654 event = kzalloc(sizeof(*event), GFP_KERNEL);
4655 if (!event)
4656 return -ENOMEM;
4657
59b6f873 4658 event->memcg = memcg;
79bd9814 4659 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4660 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4661 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4662 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4663
4664 efile = fdget(efd);
4665 if (!efile.file) {
4666 ret = -EBADF;
4667 goto out_kfree;
4668 }
4669
4670 event->eventfd = eventfd_ctx_fileget(efile.file);
4671 if (IS_ERR(event->eventfd)) {
4672 ret = PTR_ERR(event->eventfd);
4673 goto out_put_efile;
4674 }
4675
4676 cfile = fdget(cfd);
4677 if (!cfile.file) {
4678 ret = -EBADF;
4679 goto out_put_eventfd;
4680 }
4681
4682 /* the process need read permission on control file */
4683 /* AV: shouldn't we check that it's been opened for read instead? */
4684 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4685 if (ret < 0)
4686 goto out_put_cfile;
4687
fba94807
TH
4688 /*
4689 * Determine the event callbacks and set them in @event. This used
4690 * to be done via struct cftype but cgroup core no longer knows
4691 * about these events. The following is crude but the whole thing
4692 * is for compatibility anyway.
3bc942f3
TH
4693 *
4694 * DO NOT ADD NEW FILES.
fba94807 4695 */
b583043e 4696 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4697
4698 if (!strcmp(name, "memory.usage_in_bytes")) {
4699 event->register_event = mem_cgroup_usage_register_event;
4700 event->unregister_event = mem_cgroup_usage_unregister_event;
4701 } else if (!strcmp(name, "memory.oom_control")) {
4702 event->register_event = mem_cgroup_oom_register_event;
4703 event->unregister_event = mem_cgroup_oom_unregister_event;
4704 } else if (!strcmp(name, "memory.pressure_level")) {
4705 event->register_event = vmpressure_register_event;
4706 event->unregister_event = vmpressure_unregister_event;
4707 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4708 event->register_event = memsw_cgroup_usage_register_event;
4709 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4710 } else {
4711 ret = -EINVAL;
4712 goto out_put_cfile;
4713 }
4714
79bd9814 4715 /*
b5557c4c
TH
4716 * Verify @cfile should belong to @css. Also, remaining events are
4717 * automatically removed on cgroup destruction but the removal is
4718 * asynchronous, so take an extra ref on @css.
79bd9814 4719 */
b583043e 4720 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4721 &memory_cgrp_subsys);
79bd9814 4722 ret = -EINVAL;
5a17f543 4723 if (IS_ERR(cfile_css))
79bd9814 4724 goto out_put_cfile;
5a17f543
TH
4725 if (cfile_css != css) {
4726 css_put(cfile_css);
79bd9814 4727 goto out_put_cfile;
5a17f543 4728 }
79bd9814 4729
451af504 4730 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4731 if (ret)
4732 goto out_put_css;
4733
9965ed17 4734 vfs_poll(efile.file, &event->pt);
79bd9814 4735
fba94807
TH
4736 spin_lock(&memcg->event_list_lock);
4737 list_add(&event->list, &memcg->event_list);
4738 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4739
4740 fdput(cfile);
4741 fdput(efile);
4742
451af504 4743 return nbytes;
79bd9814
TH
4744
4745out_put_css:
b5557c4c 4746 css_put(css);
79bd9814
TH
4747out_put_cfile:
4748 fdput(cfile);
4749out_put_eventfd:
4750 eventfd_ctx_put(event->eventfd);
4751out_put_efile:
4752 fdput(efile);
4753out_kfree:
4754 kfree(event);
4755
4756 return ret;
4757}
4758
241994ed 4759static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4760 {
0eea1030 4761 .name = "usage_in_bytes",
8c7c6e34 4762 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4763 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4764 },
c84872e1
PE
4765 {
4766 .name = "max_usage_in_bytes",
8c7c6e34 4767 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4768 .write = mem_cgroup_reset,
791badbd 4769 .read_u64 = mem_cgroup_read_u64,
c84872e1 4770 },
8cdea7c0 4771 {
0eea1030 4772 .name = "limit_in_bytes",
8c7c6e34 4773 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4774 .write = mem_cgroup_write,
791badbd 4775 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4776 },
296c81d8
BS
4777 {
4778 .name = "soft_limit_in_bytes",
4779 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4780 .write = mem_cgroup_write,
791badbd 4781 .read_u64 = mem_cgroup_read_u64,
296c81d8 4782 },
8cdea7c0
BS
4783 {
4784 .name = "failcnt",
8c7c6e34 4785 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4786 .write = mem_cgroup_reset,
791badbd 4787 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4788 },
d2ceb9b7
KH
4789 {
4790 .name = "stat",
2da8ca82 4791 .seq_show = memcg_stat_show,
d2ceb9b7 4792 },
c1e862c1
KH
4793 {
4794 .name = "force_empty",
6770c64e 4795 .write = mem_cgroup_force_empty_write,
c1e862c1 4796 },
18f59ea7
BS
4797 {
4798 .name = "use_hierarchy",
4799 .write_u64 = mem_cgroup_hierarchy_write,
4800 .read_u64 = mem_cgroup_hierarchy_read,
4801 },
79bd9814 4802 {
3bc942f3 4803 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4804 .write = memcg_write_event_control,
7dbdb199 4805 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4806 },
a7885eb8
KM
4807 {
4808 .name = "swappiness",
4809 .read_u64 = mem_cgroup_swappiness_read,
4810 .write_u64 = mem_cgroup_swappiness_write,
4811 },
7dc74be0
DN
4812 {
4813 .name = "move_charge_at_immigrate",
4814 .read_u64 = mem_cgroup_move_charge_read,
4815 .write_u64 = mem_cgroup_move_charge_write,
4816 },
9490ff27
KH
4817 {
4818 .name = "oom_control",
2da8ca82 4819 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4820 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4821 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4822 },
70ddf637
AV
4823 {
4824 .name = "pressure_level",
70ddf637 4825 },
406eb0c9
YH
4826#ifdef CONFIG_NUMA
4827 {
4828 .name = "numa_stat",
2da8ca82 4829 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4830 },
4831#endif
510fc4e1
GC
4832 {
4833 .name = "kmem.limit_in_bytes",
4834 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4835 .write = mem_cgroup_write,
791badbd 4836 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4837 },
4838 {
4839 .name = "kmem.usage_in_bytes",
4840 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4841 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4842 },
4843 {
4844 .name = "kmem.failcnt",
4845 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4846 .write = mem_cgroup_reset,
791badbd 4847 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4848 },
4849 {
4850 .name = "kmem.max_usage_in_bytes",
4851 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4852 .write = mem_cgroup_reset,
791badbd 4853 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4854 },
5b365771 4855#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4856 {
4857 .name = "kmem.slabinfo",
bc2791f8
TH
4858 .seq_start = memcg_slab_start,
4859 .seq_next = memcg_slab_next,
4860 .seq_stop = memcg_slab_stop,
b047501c 4861 .seq_show = memcg_slab_show,
749c5415
GC
4862 },
4863#endif
d55f90bf
VD
4864 {
4865 .name = "kmem.tcp.limit_in_bytes",
4866 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4867 .write = mem_cgroup_write,
4868 .read_u64 = mem_cgroup_read_u64,
4869 },
4870 {
4871 .name = "kmem.tcp.usage_in_bytes",
4872 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4873 .read_u64 = mem_cgroup_read_u64,
4874 },
4875 {
4876 .name = "kmem.tcp.failcnt",
4877 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4878 .write = mem_cgroup_reset,
4879 .read_u64 = mem_cgroup_read_u64,
4880 },
4881 {
4882 .name = "kmem.tcp.max_usage_in_bytes",
4883 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4884 .write = mem_cgroup_reset,
4885 .read_u64 = mem_cgroup_read_u64,
4886 },
6bc10349 4887 { }, /* terminate */
af36f906 4888};
8c7c6e34 4889
73f576c0
JW
4890/*
4891 * Private memory cgroup IDR
4892 *
4893 * Swap-out records and page cache shadow entries need to store memcg
4894 * references in constrained space, so we maintain an ID space that is
4895 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4896 * memory-controlled cgroups to 64k.
4897 *
4898 * However, there usually are many references to the oflline CSS after
4899 * the cgroup has been destroyed, such as page cache or reclaimable
4900 * slab objects, that don't need to hang on to the ID. We want to keep
4901 * those dead CSS from occupying IDs, or we might quickly exhaust the
4902 * relatively small ID space and prevent the creation of new cgroups
4903 * even when there are much fewer than 64k cgroups - possibly none.
4904 *
4905 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4906 * be freed and recycled when it's no longer needed, which is usually
4907 * when the CSS is offlined.
4908 *
4909 * The only exception to that are records of swapped out tmpfs/shmem
4910 * pages that need to be attributed to live ancestors on swapin. But
4911 * those references are manageable from userspace.
4912 */
4913
4914static DEFINE_IDR(mem_cgroup_idr);
4915
7e97de0b
KT
4916static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4917{
4918 if (memcg->id.id > 0) {
4919 idr_remove(&mem_cgroup_idr, memcg->id.id);
4920 memcg->id.id = 0;
4921 }
4922}
4923
615d66c3 4924static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4925{
1c2d479a 4926 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4927}
4928
615d66c3 4929static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4930{
1c2d479a 4931 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4932 mem_cgroup_id_remove(memcg);
73f576c0
JW
4933
4934 /* Memcg ID pins CSS */
4935 css_put(&memcg->css);
4936 }
4937}
4938
615d66c3
VD
4939static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4940{
4941 mem_cgroup_id_put_many(memcg, 1);
4942}
4943
73f576c0
JW
4944/**
4945 * mem_cgroup_from_id - look up a memcg from a memcg id
4946 * @id: the memcg id to look up
4947 *
4948 * Caller must hold rcu_read_lock().
4949 */
4950struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4951{
4952 WARN_ON_ONCE(!rcu_read_lock_held());
4953 return idr_find(&mem_cgroup_idr, id);
4954}
4955
ef8f2327 4956static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4957{
4958 struct mem_cgroup_per_node *pn;
ef8f2327 4959 int tmp = node;
1ecaab2b
KH
4960 /*
4961 * This routine is called against possible nodes.
4962 * But it's BUG to call kmalloc() against offline node.
4963 *
4964 * TODO: this routine can waste much memory for nodes which will
4965 * never be onlined. It's better to use memory hotplug callback
4966 * function.
4967 */
41e3355d
KH
4968 if (!node_state(node, N_NORMAL_MEMORY))
4969 tmp = -1;
17295c88 4970 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4971 if (!pn)
4972 return 1;
1ecaab2b 4973
815744d7
JW
4974 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4975 if (!pn->lruvec_stat_local) {
4976 kfree(pn);
4977 return 1;
4978 }
4979
a983b5eb
JW
4980 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4981 if (!pn->lruvec_stat_cpu) {
815744d7 4982 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4983 kfree(pn);
4984 return 1;
4985 }
4986
ef8f2327
MG
4987 lruvec_init(&pn->lruvec);
4988 pn->usage_in_excess = 0;
4989 pn->on_tree = false;
4990 pn->memcg = memcg;
4991
54f72fe0 4992 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4993 return 0;
4994}
4995
ef8f2327 4996static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4997{
00f3ca2c
JW
4998 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4999
4eaf431f
MH
5000 if (!pn)
5001 return;
5002
a983b5eb 5003 free_percpu(pn->lruvec_stat_cpu);
815744d7 5004 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5005 kfree(pn);
1ecaab2b
KH
5006}
5007
40e952f9 5008static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5009{
c8b2a36f 5010 int node;
59927fb9 5011
c350a99e 5012 /*
bb65f89b 5013 * Flush percpu vmstats and vmevents to guarantee the value correctness
c350a99e
RG
5014 * on parent's and all ancestor levels.
5015 */
bee07b33 5016 memcg_flush_percpu_vmstats(memcg, false);
bb65f89b 5017 memcg_flush_percpu_vmevents(memcg);
c8b2a36f 5018 for_each_node(node)
ef8f2327 5019 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5020 free_percpu(memcg->vmstats_percpu);
815744d7 5021 free_percpu(memcg->vmstats_local);
8ff69e2c 5022 kfree(memcg);
59927fb9 5023}
3afe36b1 5024
40e952f9
TE
5025static void mem_cgroup_free(struct mem_cgroup *memcg)
5026{
5027 memcg_wb_domain_exit(memcg);
5028 __mem_cgroup_free(memcg);
5029}
5030
0b8f73e1 5031static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5032{
d142e3e6 5033 struct mem_cgroup *memcg;
b9726c26 5034 unsigned int size;
6d12e2d8 5035 int node;
97b27821 5036 int __maybe_unused i;
8cdea7c0 5037
0b8f73e1
JW
5038 size = sizeof(struct mem_cgroup);
5039 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5040
5041 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5042 if (!memcg)
0b8f73e1
JW
5043 return NULL;
5044
73f576c0
JW
5045 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5046 1, MEM_CGROUP_ID_MAX,
5047 GFP_KERNEL);
5048 if (memcg->id.id < 0)
5049 goto fail;
5050
815744d7
JW
5051 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5052 if (!memcg->vmstats_local)
5053 goto fail;
5054
871789d4
CD
5055 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5056 if (!memcg->vmstats_percpu)
0b8f73e1 5057 goto fail;
78fb7466 5058
3ed28fa1 5059 for_each_node(node)
ef8f2327 5060 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5061 goto fail;
f64c3f54 5062
0b8f73e1
JW
5063 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5064 goto fail;
28dbc4b6 5065
f7e1cb6e 5066 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
5067 memcg->last_scanned_node = MAX_NUMNODES;
5068 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5069 mutex_init(&memcg->thresholds_lock);
5070 spin_lock_init(&memcg->move_lock);
70ddf637 5071 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5072 INIT_LIST_HEAD(&memcg->event_list);
5073 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5074 memcg->socket_pressure = jiffies;
84c07d11 5075#ifdef CONFIG_MEMCG_KMEM
900a38f0 5076 memcg->kmemcg_id = -1;
900a38f0 5077#endif
52ebea74
TH
5078#ifdef CONFIG_CGROUP_WRITEBACK
5079 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5080 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5081 memcg->cgwb_frn[i].done =
5082 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5083#endif
5084#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5085 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5086 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5087 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5088#endif
73f576c0 5089 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5090 return memcg;
5091fail:
7e97de0b 5092 mem_cgroup_id_remove(memcg);
40e952f9 5093 __mem_cgroup_free(memcg);
0b8f73e1 5094 return NULL;
d142e3e6
GC
5095}
5096
0b8f73e1
JW
5097static struct cgroup_subsys_state * __ref
5098mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5099{
0b8f73e1
JW
5100 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5101 struct mem_cgroup *memcg;
5102 long error = -ENOMEM;
d142e3e6 5103
0b8f73e1
JW
5104 memcg = mem_cgroup_alloc();
5105 if (!memcg)
5106 return ERR_PTR(error);
d142e3e6 5107
0b8f73e1
JW
5108 memcg->high = PAGE_COUNTER_MAX;
5109 memcg->soft_limit = PAGE_COUNTER_MAX;
5110 if (parent) {
5111 memcg->swappiness = mem_cgroup_swappiness(parent);
5112 memcg->oom_kill_disable = parent->oom_kill_disable;
5113 }
5114 if (parent && parent->use_hierarchy) {
5115 memcg->use_hierarchy = true;
3e32cb2e 5116 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5117 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5118 page_counter_init(&memcg->memsw, &parent->memsw);
5119 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5120 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5121 } else {
3e32cb2e 5122 page_counter_init(&memcg->memory, NULL);
37e84351 5123 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5124 page_counter_init(&memcg->memsw, NULL);
5125 page_counter_init(&memcg->kmem, NULL);
0db15298 5126 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5127 /*
5128 * Deeper hierachy with use_hierarchy == false doesn't make
5129 * much sense so let cgroup subsystem know about this
5130 * unfortunate state in our controller.
5131 */
d142e3e6 5132 if (parent != root_mem_cgroup)
073219e9 5133 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5134 }
d6441637 5135
0b8f73e1
JW
5136 /* The following stuff does not apply to the root */
5137 if (!parent) {
fb2f2b0a
RG
5138#ifdef CONFIG_MEMCG_KMEM
5139 INIT_LIST_HEAD(&memcg->kmem_caches);
5140#endif
0b8f73e1
JW
5141 root_mem_cgroup = memcg;
5142 return &memcg->css;
5143 }
5144
b313aeee 5145 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5146 if (error)
5147 goto fail;
127424c8 5148
f7e1cb6e 5149 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5150 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5151
0b8f73e1
JW
5152 return &memcg->css;
5153fail:
7e97de0b 5154 mem_cgroup_id_remove(memcg);
0b8f73e1 5155 mem_cgroup_free(memcg);
ea3a9645 5156 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
5157}
5158
73f576c0 5159static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5160{
58fa2a55
VD
5161 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5162
0a4465d3
KT
5163 /*
5164 * A memcg must be visible for memcg_expand_shrinker_maps()
5165 * by the time the maps are allocated. So, we allocate maps
5166 * here, when for_each_mem_cgroup() can't skip it.
5167 */
5168 if (memcg_alloc_shrinker_maps(memcg)) {
5169 mem_cgroup_id_remove(memcg);
5170 return -ENOMEM;
5171 }
5172
73f576c0 5173 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5174 refcount_set(&memcg->id.ref, 1);
73f576c0 5175 css_get(css);
2f7dd7a4 5176 return 0;
8cdea7c0
BS
5177}
5178
eb95419b 5179static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5180{
eb95419b 5181 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5182 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5183
5184 /*
5185 * Unregister events and notify userspace.
5186 * Notify userspace about cgroup removing only after rmdir of cgroup
5187 * directory to avoid race between userspace and kernelspace.
5188 */
fba94807
TH
5189 spin_lock(&memcg->event_list_lock);
5190 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5191 list_del_init(&event->list);
5192 schedule_work(&event->remove);
5193 }
fba94807 5194 spin_unlock(&memcg->event_list_lock);
ec64f515 5195
bf8d5d52 5196 page_counter_set_min(&memcg->memory, 0);
23067153 5197 page_counter_set_low(&memcg->memory, 0);
63677c74 5198
567e9ab2 5199 memcg_offline_kmem(memcg);
52ebea74 5200 wb_memcg_offline(memcg);
73f576c0 5201
591edfb1
RG
5202 drain_all_stock(memcg);
5203
73f576c0 5204 mem_cgroup_id_put(memcg);
df878fb0
KH
5205}
5206
6df38689
VD
5207static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5208{
5209 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5210
5211 invalidate_reclaim_iterators(memcg);
5212}
5213
eb95419b 5214static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5215{
eb95419b 5216 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5217 int __maybe_unused i;
c268e994 5218
97b27821
TH
5219#ifdef CONFIG_CGROUP_WRITEBACK
5220 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5221 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5222#endif
f7e1cb6e 5223 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5224 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5225
0db15298 5226 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5227 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5228
0b8f73e1
JW
5229 vmpressure_cleanup(&memcg->vmpressure);
5230 cancel_work_sync(&memcg->high_work);
5231 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5232 memcg_free_shrinker_maps(memcg);
d886f4e4 5233 memcg_free_kmem(memcg);
0b8f73e1 5234 mem_cgroup_free(memcg);
8cdea7c0
BS
5235}
5236
1ced953b
TH
5237/**
5238 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5239 * @css: the target css
5240 *
5241 * Reset the states of the mem_cgroup associated with @css. This is
5242 * invoked when the userland requests disabling on the default hierarchy
5243 * but the memcg is pinned through dependency. The memcg should stop
5244 * applying policies and should revert to the vanilla state as it may be
5245 * made visible again.
5246 *
5247 * The current implementation only resets the essential configurations.
5248 * This needs to be expanded to cover all the visible parts.
5249 */
5250static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5251{
5252 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5253
bbec2e15
RG
5254 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5255 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5256 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5257 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5258 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5259 page_counter_set_min(&memcg->memory, 0);
23067153 5260 page_counter_set_low(&memcg->memory, 0);
241994ed 5261 memcg->high = PAGE_COUNTER_MAX;
24d404dc 5262 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 5263 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5264}
5265
02491447 5266#ifdef CONFIG_MMU
7dc74be0 5267/* Handlers for move charge at task migration. */
854ffa8d 5268static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5269{
05b84301 5270 int ret;
9476db97 5271
d0164adc
MG
5272 /* Try a single bulk charge without reclaim first, kswapd may wake */
5273 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5274 if (!ret) {
854ffa8d 5275 mc.precharge += count;
854ffa8d
DN
5276 return ret;
5277 }
9476db97 5278
3674534b 5279 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5280 while (count--) {
3674534b 5281 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5282 if (ret)
38c5d72f 5283 return ret;
854ffa8d 5284 mc.precharge++;
9476db97 5285 cond_resched();
854ffa8d 5286 }
9476db97 5287 return 0;
4ffef5fe
DN
5288}
5289
4ffef5fe
DN
5290union mc_target {
5291 struct page *page;
02491447 5292 swp_entry_t ent;
4ffef5fe
DN
5293};
5294
4ffef5fe 5295enum mc_target_type {
8d32ff84 5296 MC_TARGET_NONE = 0,
4ffef5fe 5297 MC_TARGET_PAGE,
02491447 5298 MC_TARGET_SWAP,
c733a828 5299 MC_TARGET_DEVICE,
4ffef5fe
DN
5300};
5301
90254a65
DN
5302static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5303 unsigned long addr, pte_t ptent)
4ffef5fe 5304{
25b2995a 5305 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5306
90254a65
DN
5307 if (!page || !page_mapped(page))
5308 return NULL;
5309 if (PageAnon(page)) {
1dfab5ab 5310 if (!(mc.flags & MOVE_ANON))
90254a65 5311 return NULL;
1dfab5ab
JW
5312 } else {
5313 if (!(mc.flags & MOVE_FILE))
5314 return NULL;
5315 }
90254a65
DN
5316 if (!get_page_unless_zero(page))
5317 return NULL;
5318
5319 return page;
5320}
5321
c733a828 5322#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5323static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5324 pte_t ptent, swp_entry_t *entry)
90254a65 5325{
90254a65
DN
5326 struct page *page = NULL;
5327 swp_entry_t ent = pte_to_swp_entry(ptent);
5328
1dfab5ab 5329 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5330 return NULL;
c733a828
JG
5331
5332 /*
5333 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5334 * a device and because they are not accessible by CPU they are store
5335 * as special swap entry in the CPU page table.
5336 */
5337 if (is_device_private_entry(ent)) {
5338 page = device_private_entry_to_page(ent);
5339 /*
5340 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5341 * a refcount of 1 when free (unlike normal page)
5342 */
5343 if (!page_ref_add_unless(page, 1, 1))
5344 return NULL;
5345 return page;
5346 }
5347
4b91355e
KH
5348 /*
5349 * Because lookup_swap_cache() updates some statistics counter,
5350 * we call find_get_page() with swapper_space directly.
5351 */
f6ab1f7f 5352 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5353 if (do_memsw_account())
90254a65
DN
5354 entry->val = ent.val;
5355
5356 return page;
5357}
4b91355e
KH
5358#else
5359static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5360 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5361{
5362 return NULL;
5363}
5364#endif
90254a65 5365
87946a72
DN
5366static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5367 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5368{
5369 struct page *page = NULL;
87946a72
DN
5370 struct address_space *mapping;
5371 pgoff_t pgoff;
5372
5373 if (!vma->vm_file) /* anonymous vma */
5374 return NULL;
1dfab5ab 5375 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5376 return NULL;
5377
87946a72 5378 mapping = vma->vm_file->f_mapping;
0661a336 5379 pgoff = linear_page_index(vma, addr);
87946a72
DN
5380
5381 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5382#ifdef CONFIG_SWAP
5383 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5384 if (shmem_mapping(mapping)) {
5385 page = find_get_entry(mapping, pgoff);
3159f943 5386 if (xa_is_value(page)) {
139b6a6f 5387 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5388 if (do_memsw_account())
139b6a6f 5389 *entry = swp;
f6ab1f7f
HY
5390 page = find_get_page(swap_address_space(swp),
5391 swp_offset(swp));
139b6a6f
JW
5392 }
5393 } else
5394 page = find_get_page(mapping, pgoff);
5395#else
5396 page = find_get_page(mapping, pgoff);
aa3b1895 5397#endif
87946a72
DN
5398 return page;
5399}
5400
b1b0deab
CG
5401/**
5402 * mem_cgroup_move_account - move account of the page
5403 * @page: the page
25843c2b 5404 * @compound: charge the page as compound or small page
b1b0deab
CG
5405 * @from: mem_cgroup which the page is moved from.
5406 * @to: mem_cgroup which the page is moved to. @from != @to.
5407 *
3ac808fd 5408 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5409 *
5410 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5411 * from old cgroup.
5412 */
5413static int mem_cgroup_move_account(struct page *page,
f627c2f5 5414 bool compound,
b1b0deab
CG
5415 struct mem_cgroup *from,
5416 struct mem_cgroup *to)
5417{
5418 unsigned long flags;
f627c2f5 5419 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5420 int ret;
c4843a75 5421 bool anon;
b1b0deab
CG
5422
5423 VM_BUG_ON(from == to);
5424 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5425 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5426
5427 /*
6a93ca8f 5428 * Prevent mem_cgroup_migrate() from looking at
45637bab 5429 * page->mem_cgroup of its source page while we change it.
b1b0deab 5430 */
f627c2f5 5431 ret = -EBUSY;
b1b0deab
CG
5432 if (!trylock_page(page))
5433 goto out;
5434
5435 ret = -EINVAL;
5436 if (page->mem_cgroup != from)
5437 goto out_unlock;
5438
c4843a75
GT
5439 anon = PageAnon(page);
5440
b1b0deab
CG
5441 spin_lock_irqsave(&from->move_lock, flags);
5442
c4843a75 5443 if (!anon && page_mapped(page)) {
c9019e9b
JW
5444 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5445 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5446 }
5447
c4843a75
GT
5448 /*
5449 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5450 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5451 * So mapping should be stable for dirty pages.
5452 */
5453 if (!anon && PageDirty(page)) {
5454 struct address_space *mapping = page_mapping(page);
5455
5456 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
5457 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5458 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5459 }
5460 }
5461
b1b0deab 5462 if (PageWriteback(page)) {
c9019e9b
JW
5463 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5464 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5465 }
5466
87eaceb3
YS
5467#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5468 if (compound && !list_empty(page_deferred_list(page))) {
5469 spin_lock(&from->deferred_split_queue.split_queue_lock);
5470 list_del_init(page_deferred_list(page));
5471 from->deferred_split_queue.split_queue_len--;
5472 spin_unlock(&from->deferred_split_queue.split_queue_lock);
5473 }
5474#endif
b1b0deab
CG
5475 /*
5476 * It is safe to change page->mem_cgroup here because the page
5477 * is referenced, charged, and isolated - we can't race with
5478 * uncharging, charging, migration, or LRU putback.
5479 */
5480
5481 /* caller should have done css_get */
5482 page->mem_cgroup = to;
87eaceb3
YS
5483
5484#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5485 if (compound && list_empty(page_deferred_list(page))) {
5486 spin_lock(&to->deferred_split_queue.split_queue_lock);
5487 list_add_tail(page_deferred_list(page),
5488 &to->deferred_split_queue.split_queue);
5489 to->deferred_split_queue.split_queue_len++;
5490 spin_unlock(&to->deferred_split_queue.split_queue_lock);
5491 }
5492#endif
5493
b1b0deab
CG
5494 spin_unlock_irqrestore(&from->move_lock, flags);
5495
5496 ret = 0;
5497
5498 local_irq_disable();
f627c2f5 5499 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5500 memcg_check_events(to, page);
f627c2f5 5501 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5502 memcg_check_events(from, page);
5503 local_irq_enable();
5504out_unlock:
5505 unlock_page(page);
5506out:
5507 return ret;
5508}
5509
7cf7806c
LR
5510/**
5511 * get_mctgt_type - get target type of moving charge
5512 * @vma: the vma the pte to be checked belongs
5513 * @addr: the address corresponding to the pte to be checked
5514 * @ptent: the pte to be checked
5515 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5516 *
5517 * Returns
5518 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5519 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5520 * move charge. if @target is not NULL, the page is stored in target->page
5521 * with extra refcnt got(Callers should handle it).
5522 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5523 * target for charge migration. if @target is not NULL, the entry is stored
5524 * in target->ent.
25b2995a
CH
5525 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5526 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5527 * For now we such page is charge like a regular page would be as for all
5528 * intent and purposes it is just special memory taking the place of a
5529 * regular page.
c733a828
JG
5530 *
5531 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5532 *
5533 * Called with pte lock held.
5534 */
5535
8d32ff84 5536static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5537 unsigned long addr, pte_t ptent, union mc_target *target)
5538{
5539 struct page *page = NULL;
8d32ff84 5540 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5541 swp_entry_t ent = { .val = 0 };
5542
5543 if (pte_present(ptent))
5544 page = mc_handle_present_pte(vma, addr, ptent);
5545 else if (is_swap_pte(ptent))
48406ef8 5546 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5547 else if (pte_none(ptent))
87946a72 5548 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5549
5550 if (!page && !ent.val)
8d32ff84 5551 return ret;
02491447 5552 if (page) {
02491447 5553 /*
0a31bc97 5554 * Do only loose check w/o serialization.
1306a85a 5555 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5556 * not under LRU exclusion.
02491447 5557 */
1306a85a 5558 if (page->mem_cgroup == mc.from) {
02491447 5559 ret = MC_TARGET_PAGE;
25b2995a 5560 if (is_device_private_page(page))
c733a828 5561 ret = MC_TARGET_DEVICE;
02491447
DN
5562 if (target)
5563 target->page = page;
5564 }
5565 if (!ret || !target)
5566 put_page(page);
5567 }
3e14a57b
HY
5568 /*
5569 * There is a swap entry and a page doesn't exist or isn't charged.
5570 * But we cannot move a tail-page in a THP.
5571 */
5572 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5573 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5574 ret = MC_TARGET_SWAP;
5575 if (target)
5576 target->ent = ent;
4ffef5fe 5577 }
4ffef5fe
DN
5578 return ret;
5579}
5580
12724850
NH
5581#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5582/*
d6810d73
HY
5583 * We don't consider PMD mapped swapping or file mapped pages because THP does
5584 * not support them for now.
12724850
NH
5585 * Caller should make sure that pmd_trans_huge(pmd) is true.
5586 */
5587static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5588 unsigned long addr, pmd_t pmd, union mc_target *target)
5589{
5590 struct page *page = NULL;
12724850
NH
5591 enum mc_target_type ret = MC_TARGET_NONE;
5592
84c3fc4e
ZY
5593 if (unlikely(is_swap_pmd(pmd))) {
5594 VM_BUG_ON(thp_migration_supported() &&
5595 !is_pmd_migration_entry(pmd));
5596 return ret;
5597 }
12724850 5598 page = pmd_page(pmd);
309381fe 5599 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5600 if (!(mc.flags & MOVE_ANON))
12724850 5601 return ret;
1306a85a 5602 if (page->mem_cgroup == mc.from) {
12724850
NH
5603 ret = MC_TARGET_PAGE;
5604 if (target) {
5605 get_page(page);
5606 target->page = page;
5607 }
5608 }
5609 return ret;
5610}
5611#else
5612static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5613 unsigned long addr, pmd_t pmd, union mc_target *target)
5614{
5615 return MC_TARGET_NONE;
5616}
5617#endif
5618
4ffef5fe
DN
5619static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5620 unsigned long addr, unsigned long end,
5621 struct mm_walk *walk)
5622{
26bcd64a 5623 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5624 pte_t *pte;
5625 spinlock_t *ptl;
5626
b6ec57f4
KS
5627 ptl = pmd_trans_huge_lock(pmd, vma);
5628 if (ptl) {
c733a828
JG
5629 /*
5630 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5631 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5632 * this might change.
c733a828 5633 */
12724850
NH
5634 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5635 mc.precharge += HPAGE_PMD_NR;
bf929152 5636 spin_unlock(ptl);
1a5a9906 5637 return 0;
12724850 5638 }
03319327 5639
45f83cef
AA
5640 if (pmd_trans_unstable(pmd))
5641 return 0;
4ffef5fe
DN
5642 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5643 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5644 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5645 mc.precharge++; /* increment precharge temporarily */
5646 pte_unmap_unlock(pte - 1, ptl);
5647 cond_resched();
5648
7dc74be0
DN
5649 return 0;
5650}
5651
7b86ac33
CH
5652static const struct mm_walk_ops precharge_walk_ops = {
5653 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5654};
5655
4ffef5fe
DN
5656static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5657{
5658 unsigned long precharge;
4ffef5fe 5659
dfe076b0 5660 down_read(&mm->mmap_sem);
7b86ac33 5661 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5662 up_read(&mm->mmap_sem);
4ffef5fe
DN
5663
5664 precharge = mc.precharge;
5665 mc.precharge = 0;
5666
5667 return precharge;
5668}
5669
4ffef5fe
DN
5670static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5671{
dfe076b0
DN
5672 unsigned long precharge = mem_cgroup_count_precharge(mm);
5673
5674 VM_BUG_ON(mc.moving_task);
5675 mc.moving_task = current;
5676 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5677}
5678
dfe076b0
DN
5679/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5680static void __mem_cgroup_clear_mc(void)
4ffef5fe 5681{
2bd9bb20
KH
5682 struct mem_cgroup *from = mc.from;
5683 struct mem_cgroup *to = mc.to;
5684
4ffef5fe 5685 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5686 if (mc.precharge) {
00501b53 5687 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5688 mc.precharge = 0;
5689 }
5690 /*
5691 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5692 * we must uncharge here.
5693 */
5694 if (mc.moved_charge) {
00501b53 5695 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5696 mc.moved_charge = 0;
4ffef5fe 5697 }
483c30b5
DN
5698 /* we must fixup refcnts and charges */
5699 if (mc.moved_swap) {
483c30b5 5700 /* uncharge swap account from the old cgroup */
ce00a967 5701 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5702 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5703
615d66c3
VD
5704 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5705
05b84301 5706 /*
3e32cb2e
JW
5707 * we charged both to->memory and to->memsw, so we
5708 * should uncharge to->memory.
05b84301 5709 */
ce00a967 5710 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5711 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5712
615d66c3
VD
5713 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5714 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5715
483c30b5
DN
5716 mc.moved_swap = 0;
5717 }
dfe076b0
DN
5718 memcg_oom_recover(from);
5719 memcg_oom_recover(to);
5720 wake_up_all(&mc.waitq);
5721}
5722
5723static void mem_cgroup_clear_mc(void)
5724{
264a0ae1
TH
5725 struct mm_struct *mm = mc.mm;
5726
dfe076b0
DN
5727 /*
5728 * we must clear moving_task before waking up waiters at the end of
5729 * task migration.
5730 */
5731 mc.moving_task = NULL;
5732 __mem_cgroup_clear_mc();
2bd9bb20 5733 spin_lock(&mc.lock);
4ffef5fe
DN
5734 mc.from = NULL;
5735 mc.to = NULL;
264a0ae1 5736 mc.mm = NULL;
2bd9bb20 5737 spin_unlock(&mc.lock);
264a0ae1
TH
5738
5739 mmput(mm);
4ffef5fe
DN
5740}
5741
1f7dd3e5 5742static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5743{
1f7dd3e5 5744 struct cgroup_subsys_state *css;
eed67d75 5745 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5746 struct mem_cgroup *from;
4530eddb 5747 struct task_struct *leader, *p;
9f2115f9 5748 struct mm_struct *mm;
1dfab5ab 5749 unsigned long move_flags;
9f2115f9 5750 int ret = 0;
7dc74be0 5751
1f7dd3e5
TH
5752 /* charge immigration isn't supported on the default hierarchy */
5753 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5754 return 0;
5755
4530eddb
TH
5756 /*
5757 * Multi-process migrations only happen on the default hierarchy
5758 * where charge immigration is not used. Perform charge
5759 * immigration if @tset contains a leader and whine if there are
5760 * multiple.
5761 */
5762 p = NULL;
1f7dd3e5 5763 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5764 WARN_ON_ONCE(p);
5765 p = leader;
1f7dd3e5 5766 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5767 }
5768 if (!p)
5769 return 0;
5770
1f7dd3e5
TH
5771 /*
5772 * We are now commited to this value whatever it is. Changes in this
5773 * tunable will only affect upcoming migrations, not the current one.
5774 * So we need to save it, and keep it going.
5775 */
5776 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5777 if (!move_flags)
5778 return 0;
5779
9f2115f9
TH
5780 from = mem_cgroup_from_task(p);
5781
5782 VM_BUG_ON(from == memcg);
5783
5784 mm = get_task_mm(p);
5785 if (!mm)
5786 return 0;
5787 /* We move charges only when we move a owner of the mm */
5788 if (mm->owner == p) {
5789 VM_BUG_ON(mc.from);
5790 VM_BUG_ON(mc.to);
5791 VM_BUG_ON(mc.precharge);
5792 VM_BUG_ON(mc.moved_charge);
5793 VM_BUG_ON(mc.moved_swap);
5794
5795 spin_lock(&mc.lock);
264a0ae1 5796 mc.mm = mm;
9f2115f9
TH
5797 mc.from = from;
5798 mc.to = memcg;
5799 mc.flags = move_flags;
5800 spin_unlock(&mc.lock);
5801 /* We set mc.moving_task later */
5802
5803 ret = mem_cgroup_precharge_mc(mm);
5804 if (ret)
5805 mem_cgroup_clear_mc();
264a0ae1
TH
5806 } else {
5807 mmput(mm);
7dc74be0
DN
5808 }
5809 return ret;
5810}
5811
1f7dd3e5 5812static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5813{
4e2f245d
JW
5814 if (mc.to)
5815 mem_cgroup_clear_mc();
7dc74be0
DN
5816}
5817
4ffef5fe
DN
5818static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5819 unsigned long addr, unsigned long end,
5820 struct mm_walk *walk)
7dc74be0 5821{
4ffef5fe 5822 int ret = 0;
26bcd64a 5823 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5824 pte_t *pte;
5825 spinlock_t *ptl;
12724850
NH
5826 enum mc_target_type target_type;
5827 union mc_target target;
5828 struct page *page;
4ffef5fe 5829
b6ec57f4
KS
5830 ptl = pmd_trans_huge_lock(pmd, vma);
5831 if (ptl) {
62ade86a 5832 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5833 spin_unlock(ptl);
12724850
NH
5834 return 0;
5835 }
5836 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5837 if (target_type == MC_TARGET_PAGE) {
5838 page = target.page;
5839 if (!isolate_lru_page(page)) {
f627c2f5 5840 if (!mem_cgroup_move_account(page, true,
1306a85a 5841 mc.from, mc.to)) {
12724850
NH
5842 mc.precharge -= HPAGE_PMD_NR;
5843 mc.moved_charge += HPAGE_PMD_NR;
5844 }
5845 putback_lru_page(page);
5846 }
5847 put_page(page);
c733a828
JG
5848 } else if (target_type == MC_TARGET_DEVICE) {
5849 page = target.page;
5850 if (!mem_cgroup_move_account(page, true,
5851 mc.from, mc.to)) {
5852 mc.precharge -= HPAGE_PMD_NR;
5853 mc.moved_charge += HPAGE_PMD_NR;
5854 }
5855 put_page(page);
12724850 5856 }
bf929152 5857 spin_unlock(ptl);
1a5a9906 5858 return 0;
12724850
NH
5859 }
5860
45f83cef
AA
5861 if (pmd_trans_unstable(pmd))
5862 return 0;
4ffef5fe
DN
5863retry:
5864 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5865 for (; addr != end; addr += PAGE_SIZE) {
5866 pte_t ptent = *(pte++);
c733a828 5867 bool device = false;
02491447 5868 swp_entry_t ent;
4ffef5fe
DN
5869
5870 if (!mc.precharge)
5871 break;
5872
8d32ff84 5873 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5874 case MC_TARGET_DEVICE:
5875 device = true;
5876 /* fall through */
4ffef5fe
DN
5877 case MC_TARGET_PAGE:
5878 page = target.page;
53f9263b
KS
5879 /*
5880 * We can have a part of the split pmd here. Moving it
5881 * can be done but it would be too convoluted so simply
5882 * ignore such a partial THP and keep it in original
5883 * memcg. There should be somebody mapping the head.
5884 */
5885 if (PageTransCompound(page))
5886 goto put;
c733a828 5887 if (!device && isolate_lru_page(page))
4ffef5fe 5888 goto put;
f627c2f5
KS
5889 if (!mem_cgroup_move_account(page, false,
5890 mc.from, mc.to)) {
4ffef5fe 5891 mc.precharge--;
854ffa8d
DN
5892 /* we uncharge from mc.from later. */
5893 mc.moved_charge++;
4ffef5fe 5894 }
c733a828
JG
5895 if (!device)
5896 putback_lru_page(page);
8d32ff84 5897put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5898 put_page(page);
5899 break;
02491447
DN
5900 case MC_TARGET_SWAP:
5901 ent = target.ent;
e91cbb42 5902 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5903 mc.precharge--;
483c30b5
DN
5904 /* we fixup refcnts and charges later. */
5905 mc.moved_swap++;
5906 }
02491447 5907 break;
4ffef5fe
DN
5908 default:
5909 break;
5910 }
5911 }
5912 pte_unmap_unlock(pte - 1, ptl);
5913 cond_resched();
5914
5915 if (addr != end) {
5916 /*
5917 * We have consumed all precharges we got in can_attach().
5918 * We try charge one by one, but don't do any additional
5919 * charges to mc.to if we have failed in charge once in attach()
5920 * phase.
5921 */
854ffa8d 5922 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5923 if (!ret)
5924 goto retry;
5925 }
5926
5927 return ret;
5928}
5929
7b86ac33
CH
5930static const struct mm_walk_ops charge_walk_ops = {
5931 .pmd_entry = mem_cgroup_move_charge_pte_range,
5932};
5933
264a0ae1 5934static void mem_cgroup_move_charge(void)
4ffef5fe 5935{
4ffef5fe 5936 lru_add_drain_all();
312722cb 5937 /*
81f8c3a4
JW
5938 * Signal lock_page_memcg() to take the memcg's move_lock
5939 * while we're moving its pages to another memcg. Then wait
5940 * for already started RCU-only updates to finish.
312722cb
JW
5941 */
5942 atomic_inc(&mc.from->moving_account);
5943 synchronize_rcu();
dfe076b0 5944retry:
264a0ae1 5945 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5946 /*
5947 * Someone who are holding the mmap_sem might be waiting in
5948 * waitq. So we cancel all extra charges, wake up all waiters,
5949 * and retry. Because we cancel precharges, we might not be able
5950 * to move enough charges, but moving charge is a best-effort
5951 * feature anyway, so it wouldn't be a big problem.
5952 */
5953 __mem_cgroup_clear_mc();
5954 cond_resched();
5955 goto retry;
5956 }
26bcd64a
NH
5957 /*
5958 * When we have consumed all precharges and failed in doing
5959 * additional charge, the page walk just aborts.
5960 */
7b86ac33
CH
5961 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5962 NULL);
0247f3f4 5963
264a0ae1 5964 up_read(&mc.mm->mmap_sem);
312722cb 5965 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5966}
5967
264a0ae1 5968static void mem_cgroup_move_task(void)
67e465a7 5969{
264a0ae1
TH
5970 if (mc.to) {
5971 mem_cgroup_move_charge();
a433658c 5972 mem_cgroup_clear_mc();
264a0ae1 5973 }
67e465a7 5974}
5cfb80a7 5975#else /* !CONFIG_MMU */
1f7dd3e5 5976static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5977{
5978 return 0;
5979}
1f7dd3e5 5980static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5981{
5982}
264a0ae1 5983static void mem_cgroup_move_task(void)
5cfb80a7
DN
5984{
5985}
5986#endif
67e465a7 5987
f00baae7
TH
5988/*
5989 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5990 * to verify whether we're attached to the default hierarchy on each mount
5991 * attempt.
f00baae7 5992 */
eb95419b 5993static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5994{
5995 /*
aa6ec29b 5996 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5997 * guarantees that @root doesn't have any children, so turning it
5998 * on for the root memcg is enough.
5999 */
9e10a130 6000 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
6001 root_mem_cgroup->use_hierarchy = true;
6002 else
6003 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
6004}
6005
677dc973
CD
6006static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6007{
6008 if (value == PAGE_COUNTER_MAX)
6009 seq_puts(m, "max\n");
6010 else
6011 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6012
6013 return 0;
6014}
6015
241994ed
JW
6016static u64 memory_current_read(struct cgroup_subsys_state *css,
6017 struct cftype *cft)
6018{
f5fc3c5d
JW
6019 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6020
6021 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6022}
6023
bf8d5d52
RG
6024static int memory_min_show(struct seq_file *m, void *v)
6025{
677dc973
CD
6026 return seq_puts_memcg_tunable(m,
6027 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6028}
6029
6030static ssize_t memory_min_write(struct kernfs_open_file *of,
6031 char *buf, size_t nbytes, loff_t off)
6032{
6033 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6034 unsigned long min;
6035 int err;
6036
6037 buf = strstrip(buf);
6038 err = page_counter_memparse(buf, "max", &min);
6039 if (err)
6040 return err;
6041
6042 page_counter_set_min(&memcg->memory, min);
6043
6044 return nbytes;
6045}
6046
241994ed
JW
6047static int memory_low_show(struct seq_file *m, void *v)
6048{
677dc973
CD
6049 return seq_puts_memcg_tunable(m,
6050 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6051}
6052
6053static ssize_t memory_low_write(struct kernfs_open_file *of,
6054 char *buf, size_t nbytes, loff_t off)
6055{
6056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6057 unsigned long low;
6058 int err;
6059
6060 buf = strstrip(buf);
d2973697 6061 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6062 if (err)
6063 return err;
6064
23067153 6065 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6066
6067 return nbytes;
6068}
6069
6070static int memory_high_show(struct seq_file *m, void *v)
6071{
677dc973 6072 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
6073}
6074
6075static ssize_t memory_high_write(struct kernfs_open_file *of,
6076 char *buf, size_t nbytes, loff_t off)
6077{
6078 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 6079 unsigned long nr_pages;
241994ed
JW
6080 unsigned long high;
6081 int err;
6082
6083 buf = strstrip(buf);
d2973697 6084 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6085 if (err)
6086 return err;
6087
6088 memcg->high = high;
6089
588083bb
JW
6090 nr_pages = page_counter_read(&memcg->memory);
6091 if (nr_pages > high)
6092 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6093 GFP_KERNEL, true);
6094
2529bb3a 6095 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6096 return nbytes;
6097}
6098
6099static int memory_max_show(struct seq_file *m, void *v)
6100{
677dc973
CD
6101 return seq_puts_memcg_tunable(m,
6102 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6103}
6104
6105static ssize_t memory_max_write(struct kernfs_open_file *of,
6106 char *buf, size_t nbytes, loff_t off)
6107{
6108 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6109 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6110 bool drained = false;
241994ed
JW
6111 unsigned long max;
6112 int err;
6113
6114 buf = strstrip(buf);
d2973697 6115 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6116 if (err)
6117 return err;
6118
bbec2e15 6119 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6120
6121 for (;;) {
6122 unsigned long nr_pages = page_counter_read(&memcg->memory);
6123
6124 if (nr_pages <= max)
6125 break;
6126
6127 if (signal_pending(current)) {
6128 err = -EINTR;
6129 break;
6130 }
6131
6132 if (!drained) {
6133 drain_all_stock(memcg);
6134 drained = true;
6135 continue;
6136 }
6137
6138 if (nr_reclaims) {
6139 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6140 GFP_KERNEL, true))
6141 nr_reclaims--;
6142 continue;
6143 }
6144
e27be240 6145 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6146 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6147 break;
6148 }
241994ed 6149
2529bb3a 6150 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6151 return nbytes;
6152}
6153
1e577f97
SB
6154static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6155{
6156 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6157 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6158 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6159 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6160 seq_printf(m, "oom_kill %lu\n",
6161 atomic_long_read(&events[MEMCG_OOM_KILL]));
6162}
6163
241994ed
JW
6164static int memory_events_show(struct seq_file *m, void *v)
6165{
aa9694bb 6166 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6167
1e577f97
SB
6168 __memory_events_show(m, memcg->memory_events);
6169 return 0;
6170}
6171
6172static int memory_events_local_show(struct seq_file *m, void *v)
6173{
6174 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6175
1e577f97 6176 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6177 return 0;
6178}
6179
587d9f72
JW
6180static int memory_stat_show(struct seq_file *m, void *v)
6181{
aa9694bb 6182 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6183 char *buf;
1ff9e6e1 6184
c8713d0b
JW
6185 buf = memory_stat_format(memcg);
6186 if (!buf)
6187 return -ENOMEM;
6188 seq_puts(m, buf);
6189 kfree(buf);
587d9f72
JW
6190 return 0;
6191}
6192
3d8b38eb
RG
6193static int memory_oom_group_show(struct seq_file *m, void *v)
6194{
aa9694bb 6195 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6196
6197 seq_printf(m, "%d\n", memcg->oom_group);
6198
6199 return 0;
6200}
6201
6202static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6203 char *buf, size_t nbytes, loff_t off)
6204{
6205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6206 int ret, oom_group;
6207
6208 buf = strstrip(buf);
6209 if (!buf)
6210 return -EINVAL;
6211
6212 ret = kstrtoint(buf, 0, &oom_group);
6213 if (ret)
6214 return ret;
6215
6216 if (oom_group != 0 && oom_group != 1)
6217 return -EINVAL;
6218
6219 memcg->oom_group = oom_group;
6220
6221 return nbytes;
6222}
6223
241994ed
JW
6224static struct cftype memory_files[] = {
6225 {
6226 .name = "current",
f5fc3c5d 6227 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6228 .read_u64 = memory_current_read,
6229 },
bf8d5d52
RG
6230 {
6231 .name = "min",
6232 .flags = CFTYPE_NOT_ON_ROOT,
6233 .seq_show = memory_min_show,
6234 .write = memory_min_write,
6235 },
241994ed
JW
6236 {
6237 .name = "low",
6238 .flags = CFTYPE_NOT_ON_ROOT,
6239 .seq_show = memory_low_show,
6240 .write = memory_low_write,
6241 },
6242 {
6243 .name = "high",
6244 .flags = CFTYPE_NOT_ON_ROOT,
6245 .seq_show = memory_high_show,
6246 .write = memory_high_write,
6247 },
6248 {
6249 .name = "max",
6250 .flags = CFTYPE_NOT_ON_ROOT,
6251 .seq_show = memory_max_show,
6252 .write = memory_max_write,
6253 },
6254 {
6255 .name = "events",
6256 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6257 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6258 .seq_show = memory_events_show,
6259 },
1e577f97
SB
6260 {
6261 .name = "events.local",
6262 .flags = CFTYPE_NOT_ON_ROOT,
6263 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6264 .seq_show = memory_events_local_show,
6265 },
587d9f72
JW
6266 {
6267 .name = "stat",
6268 .flags = CFTYPE_NOT_ON_ROOT,
6269 .seq_show = memory_stat_show,
6270 },
3d8b38eb
RG
6271 {
6272 .name = "oom.group",
6273 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6274 .seq_show = memory_oom_group_show,
6275 .write = memory_oom_group_write,
6276 },
241994ed
JW
6277 { } /* terminate */
6278};
6279
073219e9 6280struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6281 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6282 .css_online = mem_cgroup_css_online,
92fb9748 6283 .css_offline = mem_cgroup_css_offline,
6df38689 6284 .css_released = mem_cgroup_css_released,
92fb9748 6285 .css_free = mem_cgroup_css_free,
1ced953b 6286 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6287 .can_attach = mem_cgroup_can_attach,
6288 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6289 .post_attach = mem_cgroup_move_task,
f00baae7 6290 .bind = mem_cgroup_bind,
241994ed
JW
6291 .dfl_cftypes = memory_files,
6292 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6293 .early_init = 0,
8cdea7c0 6294};
c077719b 6295
241994ed 6296/**
bf8d5d52 6297 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6298 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6299 * @memcg: the memory cgroup to check
6300 *
23067153
RG
6301 * WARNING: This function is not stateless! It can only be used as part
6302 * of a top-down tree iteration, not for isolated queries.
34c81057 6303 *
bf8d5d52
RG
6304 * Returns one of the following:
6305 * MEMCG_PROT_NONE: cgroup memory is not protected
6306 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6307 * an unprotected supply of reclaimable memory from other cgroups.
6308 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 6309 *
bf8d5d52 6310 * @root is exclusive; it is never protected when looked at directly
34c81057 6311 *
bf8d5d52
RG
6312 * To provide a proper hierarchical behavior, effective memory.min/low values
6313 * are used. Below is the description of how effective memory.low is calculated.
6314 * Effective memory.min values is calculated in the same way.
34c81057 6315 *
23067153
RG
6316 * Effective memory.low is always equal or less than the original memory.low.
6317 * If there is no memory.low overcommittment (which is always true for
6318 * top-level memory cgroups), these two values are equal.
6319 * Otherwise, it's a part of parent's effective memory.low,
6320 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6321 * memory.low usages, where memory.low usage is the size of actually
6322 * protected memory.
34c81057 6323 *
23067153
RG
6324 * low_usage
6325 * elow = min( memory.low, parent->elow * ------------------ ),
6326 * siblings_low_usage
34c81057 6327 *
23067153
RG
6328 * | memory.current, if memory.current < memory.low
6329 * low_usage = |
82ede7ee 6330 * | 0, otherwise.
34c81057 6331 *
23067153
RG
6332 *
6333 * Such definition of the effective memory.low provides the expected
6334 * hierarchical behavior: parent's memory.low value is limiting
6335 * children, unprotected memory is reclaimed first and cgroups,
6336 * which are not using their guarantee do not affect actual memory
6337 * distribution.
6338 *
6339 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6340 *
6341 * A A/memory.low = 2G, A/memory.current = 6G
6342 * //\\
6343 * BC DE B/memory.low = 3G B/memory.current = 2G
6344 * C/memory.low = 1G C/memory.current = 2G
6345 * D/memory.low = 0 D/memory.current = 2G
6346 * E/memory.low = 10G E/memory.current = 0
6347 *
6348 * and the memory pressure is applied, the following memory distribution
6349 * is expected (approximately):
6350 *
6351 * A/memory.current = 2G
6352 *
6353 * B/memory.current = 1.3G
6354 * C/memory.current = 0.6G
6355 * D/memory.current = 0
6356 * E/memory.current = 0
6357 *
6358 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
6359 * (see propagate_protected_usage()), as well as recursive calculation of
6360 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
6361 * path for each memory cgroup top-down from the reclaim,
6362 * it's possible to optimize this part, and save calculated elow
6363 * for next usage. This part is intentionally racy, but it's ok,
6364 * as memory.low is a best-effort mechanism.
241994ed 6365 */
bf8d5d52
RG
6366enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6367 struct mem_cgroup *memcg)
241994ed 6368{
23067153 6369 struct mem_cgroup *parent;
bf8d5d52
RG
6370 unsigned long emin, parent_emin;
6371 unsigned long elow, parent_elow;
6372 unsigned long usage;
23067153 6373
241994ed 6374 if (mem_cgroup_disabled())
bf8d5d52 6375 return MEMCG_PROT_NONE;
241994ed 6376
34c81057
SC
6377 if (!root)
6378 root = root_mem_cgroup;
6379 if (memcg == root)
bf8d5d52 6380 return MEMCG_PROT_NONE;
241994ed 6381
23067153 6382 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6383 if (!usage)
6384 return MEMCG_PROT_NONE;
6385
6386 emin = memcg->memory.min;
6387 elow = memcg->memory.low;
34c81057 6388
bf8d5d52 6389 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6390 /* No parent means a non-hierarchical mode on v1 memcg */
6391 if (!parent)
6392 return MEMCG_PROT_NONE;
6393
23067153
RG
6394 if (parent == root)
6395 goto exit;
6396
bf8d5d52
RG
6397 parent_emin = READ_ONCE(parent->memory.emin);
6398 emin = min(emin, parent_emin);
6399 if (emin && parent_emin) {
6400 unsigned long min_usage, siblings_min_usage;
6401
6402 min_usage = min(usage, memcg->memory.min);
6403 siblings_min_usage = atomic_long_read(
6404 &parent->memory.children_min_usage);
6405
6406 if (min_usage && siblings_min_usage)
6407 emin = min(emin, parent_emin * min_usage /
6408 siblings_min_usage);
6409 }
6410
23067153
RG
6411 parent_elow = READ_ONCE(parent->memory.elow);
6412 elow = min(elow, parent_elow);
bf8d5d52
RG
6413 if (elow && parent_elow) {
6414 unsigned long low_usage, siblings_low_usage;
23067153 6415
bf8d5d52
RG
6416 low_usage = min(usage, memcg->memory.low);
6417 siblings_low_usage = atomic_long_read(
6418 &parent->memory.children_low_usage);
23067153 6419
bf8d5d52
RG
6420 if (low_usage && siblings_low_usage)
6421 elow = min(elow, parent_elow * low_usage /
6422 siblings_low_usage);
6423 }
23067153 6424
23067153 6425exit:
bf8d5d52 6426 memcg->memory.emin = emin;
23067153 6427 memcg->memory.elow = elow;
bf8d5d52
RG
6428
6429 if (usage <= emin)
6430 return MEMCG_PROT_MIN;
6431 else if (usage <= elow)
6432 return MEMCG_PROT_LOW;
6433 else
6434 return MEMCG_PROT_NONE;
241994ed
JW
6435}
6436
00501b53
JW
6437/**
6438 * mem_cgroup_try_charge - try charging a page
6439 * @page: page to charge
6440 * @mm: mm context of the victim
6441 * @gfp_mask: reclaim mode
6442 * @memcgp: charged memcg return
25843c2b 6443 * @compound: charge the page as compound or small page
00501b53
JW
6444 *
6445 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6446 * pages according to @gfp_mask if necessary.
6447 *
6448 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6449 * Otherwise, an error code is returned.
6450 *
6451 * After page->mapping has been set up, the caller must finalize the
6452 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6453 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6454 */
6455int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6456 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6457 bool compound)
00501b53
JW
6458{
6459 struct mem_cgroup *memcg = NULL;
f627c2f5 6460 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6461 int ret = 0;
6462
6463 if (mem_cgroup_disabled())
6464 goto out;
6465
6466 if (PageSwapCache(page)) {
00501b53
JW
6467 /*
6468 * Every swap fault against a single page tries to charge the
6469 * page, bail as early as possible. shmem_unuse() encounters
6470 * already charged pages, too. The USED bit is protected by
6471 * the page lock, which serializes swap cache removal, which
6472 * in turn serializes uncharging.
6473 */
e993d905 6474 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6475 if (compound_head(page)->mem_cgroup)
00501b53 6476 goto out;
e993d905 6477
37e84351 6478 if (do_swap_account) {
e993d905
VD
6479 swp_entry_t ent = { .val = page_private(page), };
6480 unsigned short id = lookup_swap_cgroup_id(ent);
6481
6482 rcu_read_lock();
6483 memcg = mem_cgroup_from_id(id);
6484 if (memcg && !css_tryget_online(&memcg->css))
6485 memcg = NULL;
6486 rcu_read_unlock();
6487 }
00501b53
JW
6488 }
6489
00501b53
JW
6490 if (!memcg)
6491 memcg = get_mem_cgroup_from_mm(mm);
6492
6493 ret = try_charge(memcg, gfp_mask, nr_pages);
6494
6495 css_put(&memcg->css);
00501b53
JW
6496out:
6497 *memcgp = memcg;
6498 return ret;
6499}
6500
2cf85583
TH
6501int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6502 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6503 bool compound)
6504{
6505 struct mem_cgroup *memcg;
6506 int ret;
6507
6508 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6509 memcg = *memcgp;
6510 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6511 return ret;
6512}
6513
00501b53
JW
6514/**
6515 * mem_cgroup_commit_charge - commit a page charge
6516 * @page: page to charge
6517 * @memcg: memcg to charge the page to
6518 * @lrucare: page might be on LRU already
25843c2b 6519 * @compound: charge the page as compound or small page
00501b53
JW
6520 *
6521 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6522 * after page->mapping has been set up. This must happen atomically
6523 * as part of the page instantiation, i.e. under the page table lock
6524 * for anonymous pages, under the page lock for page and swap cache.
6525 *
6526 * In addition, the page must not be on the LRU during the commit, to
6527 * prevent racing with task migration. If it might be, use @lrucare.
6528 *
6529 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6530 */
6531void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6532 bool lrucare, bool compound)
00501b53 6533{
f627c2f5 6534 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6535
6536 VM_BUG_ON_PAGE(!page->mapping, page);
6537 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6538
6539 if (mem_cgroup_disabled())
6540 return;
6541 /*
6542 * Swap faults will attempt to charge the same page multiple
6543 * times. But reuse_swap_page() might have removed the page
6544 * from swapcache already, so we can't check PageSwapCache().
6545 */
6546 if (!memcg)
6547 return;
6548
6abb5a86
JW
6549 commit_charge(page, memcg, lrucare);
6550
6abb5a86 6551 local_irq_disable();
f627c2f5 6552 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6553 memcg_check_events(memcg, page);
6554 local_irq_enable();
00501b53 6555
7941d214 6556 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6557 swp_entry_t entry = { .val = page_private(page) };
6558 /*
6559 * The swap entry might not get freed for a long time,
6560 * let's not wait for it. The page already received a
6561 * memory+swap charge, drop the swap entry duplicate.
6562 */
38d8b4e6 6563 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6564 }
6565}
6566
6567/**
6568 * mem_cgroup_cancel_charge - cancel a page charge
6569 * @page: page to charge
6570 * @memcg: memcg to charge the page to
25843c2b 6571 * @compound: charge the page as compound or small page
00501b53
JW
6572 *
6573 * Cancel a charge transaction started by mem_cgroup_try_charge().
6574 */
f627c2f5
KS
6575void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6576 bool compound)
00501b53 6577{
f627c2f5 6578 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6579
6580 if (mem_cgroup_disabled())
6581 return;
6582 /*
6583 * Swap faults will attempt to charge the same page multiple
6584 * times. But reuse_swap_page() might have removed the page
6585 * from swapcache already, so we can't check PageSwapCache().
6586 */
6587 if (!memcg)
6588 return;
6589
00501b53
JW
6590 cancel_charge(memcg, nr_pages);
6591}
6592
a9d5adee
JG
6593struct uncharge_gather {
6594 struct mem_cgroup *memcg;
6595 unsigned long pgpgout;
6596 unsigned long nr_anon;
6597 unsigned long nr_file;
6598 unsigned long nr_kmem;
6599 unsigned long nr_huge;
6600 unsigned long nr_shmem;
6601 struct page *dummy_page;
6602};
6603
6604static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6605{
a9d5adee
JG
6606 memset(ug, 0, sizeof(*ug));
6607}
6608
6609static void uncharge_batch(const struct uncharge_gather *ug)
6610{
6611 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6612 unsigned long flags;
6613
a9d5adee
JG
6614 if (!mem_cgroup_is_root(ug->memcg)) {
6615 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6616 if (do_memsw_account())
a9d5adee
JG
6617 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6618 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6619 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6620 memcg_oom_recover(ug->memcg);
ce00a967 6621 }
747db954
JW
6622
6623 local_irq_save(flags);
c9019e9b
JW
6624 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6625 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6626 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6627 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6628 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6629 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6630 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6631 local_irq_restore(flags);
e8ea14cc 6632
a9d5adee
JG
6633 if (!mem_cgroup_is_root(ug->memcg))
6634 css_put_many(&ug->memcg->css, nr_pages);
6635}
6636
6637static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6638{
6639 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6640 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6641 !PageHWPoison(page) , page);
a9d5adee
JG
6642
6643 if (!page->mem_cgroup)
6644 return;
6645
6646 /*
6647 * Nobody should be changing or seriously looking at
6648 * page->mem_cgroup at this point, we have fully
6649 * exclusive access to the page.
6650 */
6651
6652 if (ug->memcg != page->mem_cgroup) {
6653 if (ug->memcg) {
6654 uncharge_batch(ug);
6655 uncharge_gather_clear(ug);
6656 }
6657 ug->memcg = page->mem_cgroup;
6658 }
6659
6660 if (!PageKmemcg(page)) {
6661 unsigned int nr_pages = 1;
6662
6663 if (PageTransHuge(page)) {
d8c6546b 6664 nr_pages = compound_nr(page);
a9d5adee
JG
6665 ug->nr_huge += nr_pages;
6666 }
6667 if (PageAnon(page))
6668 ug->nr_anon += nr_pages;
6669 else {
6670 ug->nr_file += nr_pages;
6671 if (PageSwapBacked(page))
6672 ug->nr_shmem += nr_pages;
6673 }
6674 ug->pgpgout++;
6675 } else {
d8c6546b 6676 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6677 __ClearPageKmemcg(page);
6678 }
6679
6680 ug->dummy_page = page;
6681 page->mem_cgroup = NULL;
747db954
JW
6682}
6683
6684static void uncharge_list(struct list_head *page_list)
6685{
a9d5adee 6686 struct uncharge_gather ug;
747db954 6687 struct list_head *next;
a9d5adee
JG
6688
6689 uncharge_gather_clear(&ug);
747db954 6690
8b592656
JW
6691 /*
6692 * Note that the list can be a single page->lru; hence the
6693 * do-while loop instead of a simple list_for_each_entry().
6694 */
747db954
JW
6695 next = page_list->next;
6696 do {
a9d5adee
JG
6697 struct page *page;
6698
747db954
JW
6699 page = list_entry(next, struct page, lru);
6700 next = page->lru.next;
6701
a9d5adee 6702 uncharge_page(page, &ug);
747db954
JW
6703 } while (next != page_list);
6704
a9d5adee
JG
6705 if (ug.memcg)
6706 uncharge_batch(&ug);
747db954
JW
6707}
6708
0a31bc97
JW
6709/**
6710 * mem_cgroup_uncharge - uncharge a page
6711 * @page: page to uncharge
6712 *
6713 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6714 * mem_cgroup_commit_charge().
6715 */
6716void mem_cgroup_uncharge(struct page *page)
6717{
a9d5adee
JG
6718 struct uncharge_gather ug;
6719
0a31bc97
JW
6720 if (mem_cgroup_disabled())
6721 return;
6722
747db954 6723 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6724 if (!page->mem_cgroup)
0a31bc97
JW
6725 return;
6726
a9d5adee
JG
6727 uncharge_gather_clear(&ug);
6728 uncharge_page(page, &ug);
6729 uncharge_batch(&ug);
747db954 6730}
0a31bc97 6731
747db954
JW
6732/**
6733 * mem_cgroup_uncharge_list - uncharge a list of page
6734 * @page_list: list of pages to uncharge
6735 *
6736 * Uncharge a list of pages previously charged with
6737 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6738 */
6739void mem_cgroup_uncharge_list(struct list_head *page_list)
6740{
6741 if (mem_cgroup_disabled())
6742 return;
0a31bc97 6743
747db954
JW
6744 if (!list_empty(page_list))
6745 uncharge_list(page_list);
0a31bc97
JW
6746}
6747
6748/**
6a93ca8f
JW
6749 * mem_cgroup_migrate - charge a page's replacement
6750 * @oldpage: currently circulating page
6751 * @newpage: replacement page
0a31bc97 6752 *
6a93ca8f
JW
6753 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6754 * be uncharged upon free.
0a31bc97
JW
6755 *
6756 * Both pages must be locked, @newpage->mapping must be set up.
6757 */
6a93ca8f 6758void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6759{
29833315 6760 struct mem_cgroup *memcg;
44b7a8d3
JW
6761 unsigned int nr_pages;
6762 bool compound;
d93c4130 6763 unsigned long flags;
0a31bc97
JW
6764
6765 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6766 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6767 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6768 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6769 newpage);
0a31bc97
JW
6770
6771 if (mem_cgroup_disabled())
6772 return;
6773
6774 /* Page cache replacement: new page already charged? */
1306a85a 6775 if (newpage->mem_cgroup)
0a31bc97
JW
6776 return;
6777
45637bab 6778 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6779 memcg = oldpage->mem_cgroup;
29833315 6780 if (!memcg)
0a31bc97
JW
6781 return;
6782
44b7a8d3
JW
6783 /* Force-charge the new page. The old one will be freed soon */
6784 compound = PageTransHuge(newpage);
6785 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6786
6787 page_counter_charge(&memcg->memory, nr_pages);
6788 if (do_memsw_account())
6789 page_counter_charge(&memcg->memsw, nr_pages);
6790 css_get_many(&memcg->css, nr_pages);
0a31bc97 6791
9cf7666a 6792 commit_charge(newpage, memcg, false);
44b7a8d3 6793
d93c4130 6794 local_irq_save(flags);
44b7a8d3
JW
6795 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6796 memcg_check_events(memcg, newpage);
d93c4130 6797 local_irq_restore(flags);
0a31bc97
JW
6798}
6799
ef12947c 6800DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6801EXPORT_SYMBOL(memcg_sockets_enabled_key);
6802
2d758073 6803void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6804{
6805 struct mem_cgroup *memcg;
6806
2d758073
JW
6807 if (!mem_cgroup_sockets_enabled)
6808 return;
6809
edbe69ef
RG
6810 /*
6811 * Socket cloning can throw us here with sk_memcg already
6812 * filled. It won't however, necessarily happen from
6813 * process context. So the test for root memcg given
6814 * the current task's memcg won't help us in this case.
6815 *
6816 * Respecting the original socket's memcg is a better
6817 * decision in this case.
6818 */
6819 if (sk->sk_memcg) {
6820 css_get(&sk->sk_memcg->css);
6821 return;
6822 }
6823
11092087
JW
6824 rcu_read_lock();
6825 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6826 if (memcg == root_mem_cgroup)
6827 goto out;
0db15298 6828 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6829 goto out;
f7e1cb6e 6830 if (css_tryget_online(&memcg->css))
11092087 6831 sk->sk_memcg = memcg;
f7e1cb6e 6832out:
11092087
JW
6833 rcu_read_unlock();
6834}
11092087 6835
2d758073 6836void mem_cgroup_sk_free(struct sock *sk)
11092087 6837{
2d758073
JW
6838 if (sk->sk_memcg)
6839 css_put(&sk->sk_memcg->css);
11092087
JW
6840}
6841
6842/**
6843 * mem_cgroup_charge_skmem - charge socket memory
6844 * @memcg: memcg to charge
6845 * @nr_pages: number of pages to charge
6846 *
6847 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6848 * @memcg's configured limit, %false if the charge had to be forced.
6849 */
6850bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6851{
f7e1cb6e 6852 gfp_t gfp_mask = GFP_KERNEL;
11092087 6853
f7e1cb6e 6854 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6855 struct page_counter *fail;
f7e1cb6e 6856
0db15298
JW
6857 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6858 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6859 return true;
6860 }
0db15298
JW
6861 page_counter_charge(&memcg->tcpmem, nr_pages);
6862 memcg->tcpmem_pressure = 1;
f7e1cb6e 6863 return false;
11092087 6864 }
d886f4e4 6865
f7e1cb6e
JW
6866 /* Don't block in the packet receive path */
6867 if (in_softirq())
6868 gfp_mask = GFP_NOWAIT;
6869
c9019e9b 6870 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6871
f7e1cb6e
JW
6872 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6873 return true;
6874
6875 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6876 return false;
6877}
6878
6879/**
6880 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6881 * @memcg: memcg to uncharge
6882 * @nr_pages: number of pages to uncharge
11092087
JW
6883 */
6884void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6885{
f7e1cb6e 6886 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6887 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6888 return;
6889 }
d886f4e4 6890
c9019e9b 6891 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6892
475d0487 6893 refill_stock(memcg, nr_pages);
11092087
JW
6894}
6895
f7e1cb6e
JW
6896static int __init cgroup_memory(char *s)
6897{
6898 char *token;
6899
6900 while ((token = strsep(&s, ",")) != NULL) {
6901 if (!*token)
6902 continue;
6903 if (!strcmp(token, "nosocket"))
6904 cgroup_memory_nosocket = true;
04823c83
VD
6905 if (!strcmp(token, "nokmem"))
6906 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6907 }
6908 return 0;
6909}
6910__setup("cgroup.memory=", cgroup_memory);
11092087 6911
2d11085e 6912/*
1081312f
MH
6913 * subsys_initcall() for memory controller.
6914 *
308167fc
SAS
6915 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6916 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6917 * basically everything that doesn't depend on a specific mem_cgroup structure
6918 * should be initialized from here.
2d11085e
MH
6919 */
6920static int __init mem_cgroup_init(void)
6921{
95a045f6
JW
6922 int cpu, node;
6923
84c07d11 6924#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6925 /*
6926 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6927 * so use a workqueue with limited concurrency to avoid stalling
6928 * all worker threads in case lots of cgroups are created and
6929 * destroyed simultaneously.
13583c3d 6930 */
17cc4dfe
TH
6931 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6932 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6933#endif
6934
308167fc
SAS
6935 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6936 memcg_hotplug_cpu_dead);
95a045f6
JW
6937
6938 for_each_possible_cpu(cpu)
6939 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6940 drain_local_stock);
6941
6942 for_each_node(node) {
6943 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6944
6945 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6946 node_online(node) ? node : NUMA_NO_NODE);
6947
ef8f2327 6948 rtpn->rb_root = RB_ROOT;
fa90b2fd 6949 rtpn->rb_rightmost = NULL;
ef8f2327 6950 spin_lock_init(&rtpn->lock);
95a045f6
JW
6951 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6952 }
6953
2d11085e
MH
6954 return 0;
6955}
6956subsys_initcall(mem_cgroup_init);
21afa38e
JW
6957
6958#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6959static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6960{
1c2d479a 6961 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6962 /*
6963 * The root cgroup cannot be destroyed, so it's refcount must
6964 * always be >= 1.
6965 */
6966 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6967 VM_BUG_ON(1);
6968 break;
6969 }
6970 memcg = parent_mem_cgroup(memcg);
6971 if (!memcg)
6972 memcg = root_mem_cgroup;
6973 }
6974 return memcg;
6975}
6976
21afa38e
JW
6977/**
6978 * mem_cgroup_swapout - transfer a memsw charge to swap
6979 * @page: page whose memsw charge to transfer
6980 * @entry: swap entry to move the charge to
6981 *
6982 * Transfer the memsw charge of @page to @entry.
6983 */
6984void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6985{
1f47b61f 6986 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6987 unsigned int nr_entries;
21afa38e
JW
6988 unsigned short oldid;
6989
6990 VM_BUG_ON_PAGE(PageLRU(page), page);
6991 VM_BUG_ON_PAGE(page_count(page), page);
6992
7941d214 6993 if (!do_memsw_account())
21afa38e
JW
6994 return;
6995
6996 memcg = page->mem_cgroup;
6997
6998 /* Readahead page, never charged */
6999 if (!memcg)
7000 return;
7001
1f47b61f
VD
7002 /*
7003 * In case the memcg owning these pages has been offlined and doesn't
7004 * have an ID allocated to it anymore, charge the closest online
7005 * ancestor for the swap instead and transfer the memory+swap charge.
7006 */
7007 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
7008 nr_entries = hpage_nr_pages(page);
7009 /* Get references for the tail pages, too */
7010 if (nr_entries > 1)
7011 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7012 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7013 nr_entries);
21afa38e 7014 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7015 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7016
7017 page->mem_cgroup = NULL;
7018
7019 if (!mem_cgroup_is_root(memcg))
d6810d73 7020 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7021
1f47b61f
VD
7022 if (memcg != swap_memcg) {
7023 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7024 page_counter_charge(&swap_memcg->memsw, nr_entries);
7025 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7026 }
7027
ce9ce665
SAS
7028 /*
7029 * Interrupts should be disabled here because the caller holds the
b93b0163 7030 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7031 * important here to have the interrupts disabled because it is the
b93b0163 7032 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7033 */
7034 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
7035 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7036 -nr_entries);
21afa38e 7037 memcg_check_events(memcg, page);
73f576c0
JW
7038
7039 if (!mem_cgroup_is_root(memcg))
d08afa14 7040 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
7041}
7042
38d8b4e6
HY
7043/**
7044 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7045 * @page: page being added to swap
7046 * @entry: swap entry to charge
7047 *
38d8b4e6 7048 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7049 *
7050 * Returns 0 on success, -ENOMEM on failure.
7051 */
7052int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7053{
38d8b4e6 7054 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7055 struct page_counter *counter;
38d8b4e6 7056 struct mem_cgroup *memcg;
37e84351
VD
7057 unsigned short oldid;
7058
7059 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7060 return 0;
7061
7062 memcg = page->mem_cgroup;
7063
7064 /* Readahead page, never charged */
7065 if (!memcg)
7066 return 0;
7067
f3a53a3a
TH
7068 if (!entry.val) {
7069 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7070 return 0;
f3a53a3a 7071 }
bb98f2c5 7072
1f47b61f
VD
7073 memcg = mem_cgroup_id_get_online(memcg);
7074
37e84351 7075 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7076 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7077 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7078 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7079 mem_cgroup_id_put(memcg);
37e84351 7080 return -ENOMEM;
1f47b61f 7081 }
37e84351 7082
38d8b4e6
HY
7083 /* Get references for the tail pages, too */
7084 if (nr_pages > 1)
7085 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7086 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7087 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7088 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7089
37e84351
VD
7090 return 0;
7091}
7092
21afa38e 7093/**
38d8b4e6 7094 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7095 * @entry: swap entry to uncharge
38d8b4e6 7096 * @nr_pages: the amount of swap space to uncharge
21afa38e 7097 */
38d8b4e6 7098void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7099{
7100 struct mem_cgroup *memcg;
7101 unsigned short id;
7102
37e84351 7103 if (!do_swap_account)
21afa38e
JW
7104 return;
7105
38d8b4e6 7106 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7107 rcu_read_lock();
adbe427b 7108 memcg = mem_cgroup_from_id(id);
21afa38e 7109 if (memcg) {
37e84351
VD
7110 if (!mem_cgroup_is_root(memcg)) {
7111 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7112 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7113 else
38d8b4e6 7114 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7115 }
c9019e9b 7116 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7117 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7118 }
7119 rcu_read_unlock();
7120}
7121
d8b38438
VD
7122long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7123{
7124 long nr_swap_pages = get_nr_swap_pages();
7125
7126 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7127 return nr_swap_pages;
7128 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7129 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7130 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7131 page_counter_read(&memcg->swap));
7132 return nr_swap_pages;
7133}
7134
5ccc5aba
VD
7135bool mem_cgroup_swap_full(struct page *page)
7136{
7137 struct mem_cgroup *memcg;
7138
7139 VM_BUG_ON_PAGE(!PageLocked(page), page);
7140
7141 if (vm_swap_full())
7142 return true;
7143 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7144 return false;
7145
7146 memcg = page->mem_cgroup;
7147 if (!memcg)
7148 return false;
7149
7150 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 7151 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
7152 return true;
7153
7154 return false;
7155}
7156
21afa38e
JW
7157/* for remember boot option*/
7158#ifdef CONFIG_MEMCG_SWAP_ENABLED
7159static int really_do_swap_account __initdata = 1;
7160#else
7161static int really_do_swap_account __initdata;
7162#endif
7163
7164static int __init enable_swap_account(char *s)
7165{
7166 if (!strcmp(s, "1"))
7167 really_do_swap_account = 1;
7168 else if (!strcmp(s, "0"))
7169 really_do_swap_account = 0;
7170 return 1;
7171}
7172__setup("swapaccount=", enable_swap_account);
7173
37e84351
VD
7174static u64 swap_current_read(struct cgroup_subsys_state *css,
7175 struct cftype *cft)
7176{
7177 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7178
7179 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7180}
7181
7182static int swap_max_show(struct seq_file *m, void *v)
7183{
677dc973
CD
7184 return seq_puts_memcg_tunable(m,
7185 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7186}
7187
7188static ssize_t swap_max_write(struct kernfs_open_file *of,
7189 char *buf, size_t nbytes, loff_t off)
7190{
7191 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7192 unsigned long max;
7193 int err;
7194
7195 buf = strstrip(buf);
7196 err = page_counter_memparse(buf, "max", &max);
7197 if (err)
7198 return err;
7199
be09102b 7200 xchg(&memcg->swap.max, max);
37e84351
VD
7201
7202 return nbytes;
7203}
7204
f3a53a3a
TH
7205static int swap_events_show(struct seq_file *m, void *v)
7206{
aa9694bb 7207 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
7208
7209 seq_printf(m, "max %lu\n",
7210 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7211 seq_printf(m, "fail %lu\n",
7212 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7213
7214 return 0;
7215}
7216
37e84351
VD
7217static struct cftype swap_files[] = {
7218 {
7219 .name = "swap.current",
7220 .flags = CFTYPE_NOT_ON_ROOT,
7221 .read_u64 = swap_current_read,
7222 },
7223 {
7224 .name = "swap.max",
7225 .flags = CFTYPE_NOT_ON_ROOT,
7226 .seq_show = swap_max_show,
7227 .write = swap_max_write,
7228 },
f3a53a3a
TH
7229 {
7230 .name = "swap.events",
7231 .flags = CFTYPE_NOT_ON_ROOT,
7232 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7233 .seq_show = swap_events_show,
7234 },
37e84351
VD
7235 { } /* terminate */
7236};
7237
21afa38e
JW
7238static struct cftype memsw_cgroup_files[] = {
7239 {
7240 .name = "memsw.usage_in_bytes",
7241 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7242 .read_u64 = mem_cgroup_read_u64,
7243 },
7244 {
7245 .name = "memsw.max_usage_in_bytes",
7246 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7247 .write = mem_cgroup_reset,
7248 .read_u64 = mem_cgroup_read_u64,
7249 },
7250 {
7251 .name = "memsw.limit_in_bytes",
7252 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7253 .write = mem_cgroup_write,
7254 .read_u64 = mem_cgroup_read_u64,
7255 },
7256 {
7257 .name = "memsw.failcnt",
7258 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7259 .write = mem_cgroup_reset,
7260 .read_u64 = mem_cgroup_read_u64,
7261 },
7262 { }, /* terminate */
7263};
7264
7265static int __init mem_cgroup_swap_init(void)
7266{
7267 if (!mem_cgroup_disabled() && really_do_swap_account) {
7268 do_swap_account = 1;
37e84351
VD
7269 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7270 swap_files));
21afa38e
JW
7271 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7272 memsw_cgroup_files));
7273 }
7274 return 0;
7275}
7276subsys_initcall(mem_cgroup_swap_init);
7277
7278#endif /* CONFIG_MEMCG_SWAP */