Merge tag 'iommu-updates-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 82
f7e1cb6e 83/* Socket memory accounting disabled? */
0f0cace3 84static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 85
04823c83 86/* Kernel memory accounting disabled? */
e267992f 87bool cgroup_memory_nokmem __ro_after_init;
04823c83 88
21afa38e 89/* Whether the swap controller is active */
c255a458 90#ifdef CONFIG_MEMCG_SWAP
0f0cace3 91bool cgroup_memory_noswap __ro_after_init;
c077719b 92#else
eccb52e7 93#define cgroup_memory_noswap 1
2d1c4980 94#endif
c077719b 95
97b27821
TH
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
7941d214
JW
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
eccb52e7 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
104}
105
a0db00fc
KS
106#define THRESHOLDS_EVENTS_TARGET 128
107#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 108
bb4cc1a8
AM
109/*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
ef8f2327 114struct mem_cgroup_tree_per_node {
bb4cc1a8 115 struct rb_root rb_root;
fa90b2fd 116 struct rb_node *rb_rightmost;
bb4cc1a8
AM
117 spinlock_t lock;
118};
119
bb4cc1a8
AM
120struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122};
123
124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
9490ff27
KH
126/* for OOM */
127struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130};
2e72b634 131
79bd9814
TH
132/*
133 * cgroup_event represents events which userspace want to receive.
134 */
3bc942f3 135struct mem_cgroup_event {
79bd9814 136 /*
59b6f873 137 * memcg which the event belongs to.
79bd9814 138 */
59b6f873 139 struct mem_cgroup *memcg;
79bd9814
TH
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
fba94807
TH
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
59b6f873 153 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 154 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
59b6f873 160 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 161 struct eventfd_ctx *eventfd);
79bd9814
TH
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
ac6424b9 168 wait_queue_entry_t wait;
79bd9814
TH
169 struct work_struct remove;
170};
171
c0ff4b85
R
172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 174
7dc74be0
DN
175/* Stuffs for move charges at task migration. */
176/*
1dfab5ab 177 * Types of charges to be moved.
7dc74be0 178 */
1dfab5ab
JW
179#define MOVE_ANON 0x1U
180#define MOVE_FILE 0x2U
181#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 182
4ffef5fe
DN
183/* "mc" and its members are protected by cgroup_mutex */
184static struct move_charge_struct {
b1dd693e 185 spinlock_t lock; /* for from, to */
264a0ae1 186 struct mm_struct *mm;
4ffef5fe
DN
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
1dfab5ab 189 unsigned long flags;
4ffef5fe 190 unsigned long precharge;
854ffa8d 191 unsigned long moved_charge;
483c30b5 192 unsigned long moved_swap;
8033b97c
DN
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195} mc = {
2bd9bb20 196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198};
4ffef5fe 199
4e416953
BS
200/*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
a0db00fc 204#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 205#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 206
8c7c6e34 207/* for encoding cft->private value on file */
86ae53e1
GC
208enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
510fc4e1 212 _KMEM,
d55f90bf 213 _TCP,
86ae53e1
GC
214};
215
a0db00fc
KS
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 218#define MEMFILE_ATTR(val) ((val) & 0xffff)
f0953a1b 219/* Used for OOM notifier */
9490ff27 220#define OOM_CONTROL (0)
8c7c6e34 221
b05706f1
KT
222/*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227#define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232#define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
7775face
TH
237static inline bool should_force_charge(void)
238{
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241}
242
70ddf637
AV
243/* Some nice accessors for the vmpressure. */
244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245{
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249}
250
251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252{
253 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
254}
255
84c07d11 256#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
257extern spinlock_t css_set_lock;
258
4d5c8aed
RG
259bool mem_cgroup_kmem_disabled(void)
260{
261 return cgroup_memory_nokmem;
262}
263
f1286fae
MS
264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
c1a660de 266
bf4f0599
RG
267static void obj_cgroup_release(struct percpu_ref *ref)
268{
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
bf4f0599 298 if (nr_pages)
f1286fae 299 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1
MS
300
301 spin_lock_irqsave(&css_set_lock, flags);
bf4f0599 302 list_del(&objcg->list);
bf4f0599
RG
303 spin_unlock_irqrestore(&css_set_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307}
308
309static struct obj_cgroup *obj_cgroup_alloc(void)
310{
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326}
327
328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330{
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&css_set_lock);
336
9838354e
MS
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
55007d84 350/*
9855609b 351 * This will be used as a shrinker list's index.
b8627835
LZ
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
55007d84 357 *
dbcf73e2
VD
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
55007d84 360 */
dbcf73e2
VD
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
749c5415 363
05257a1a
VD
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
55007d84
GC
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
b8627835 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
b8627835 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 391
d7f25f8a
GC
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
272911a4 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
ef12947c 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 400#endif
17cc4dfe 401
ad7fa852
TH
402/**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
ad7fa852
TH
412 */
413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414{
415 struct mem_cgroup *memcg;
416
bcfe06bf 417 memcg = page_memcg(page);
ad7fa852 418
9e10a130 419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
420 memcg = root_mem_cgroup;
421
ad7fa852
TH
422 return &memcg->css;
423}
424
2fc04524
VD
425/**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438ino_t page_cgroup_ino(struct page *page)
439{
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
bcfe06bf 444 memcg = page_memcg_check(page);
286e04b8 445
2fc04524
VD
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452}
453
ef8f2327
MG
454static struct mem_cgroup_per_node *
455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 456{
97a6c37b 457 int nid = page_to_nid(page);
f64c3f54 458
ef8f2327 459 return memcg->nodeinfo[nid];
f64c3f54
BS
460}
461
ef8f2327
MG
462static struct mem_cgroup_tree_per_node *
463soft_limit_tree_node(int nid)
bb4cc1a8 464{
ef8f2327 465 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
466}
467
ef8f2327 468static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
469soft_limit_tree_from_page(struct page *page)
470{
471 int nid = page_to_nid(page);
bb4cc1a8 472
ef8f2327 473 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
474}
475
ef8f2327
MG
476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 478 unsigned long new_usage_in_excess)
bb4cc1a8
AM
479{
480 struct rb_node **p = &mctz->rb_root.rb_node;
481 struct rb_node *parent = NULL;
ef8f2327 482 struct mem_cgroup_per_node *mz_node;
fa90b2fd 483 bool rightmost = true;
bb4cc1a8
AM
484
485 if (mz->on_tree)
486 return;
487
488 mz->usage_in_excess = new_usage_in_excess;
489 if (!mz->usage_in_excess)
490 return;
491 while (*p) {
492 parent = *p;
ef8f2327 493 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 494 tree_node);
fa90b2fd 495 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 496 p = &(*p)->rb_left;
fa90b2fd 497 rightmost = false;
378876b0 498 } else {
bb4cc1a8 499 p = &(*p)->rb_right;
378876b0 500 }
bb4cc1a8 501 }
fa90b2fd
DB
502
503 if (rightmost)
504 mctz->rb_rightmost = &mz->tree_node;
505
bb4cc1a8
AM
506 rb_link_node(&mz->tree_node, parent, p);
507 rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 mz->on_tree = true;
509}
510
ef8f2327
MG
511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
513{
514 if (!mz->on_tree)
515 return;
fa90b2fd
DB
516
517 if (&mz->tree_node == mctz->rb_rightmost)
518 mctz->rb_rightmost = rb_prev(&mz->tree_node);
519
bb4cc1a8
AM
520 rb_erase(&mz->tree_node, &mctz->rb_root);
521 mz->on_tree = false;
522}
523
ef8f2327
MG
524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 526{
0a31bc97
JW
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 530 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 531 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
532}
533
3e32cb2e
JW
534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535{
536 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 537 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
538 unsigned long excess = 0;
539
540 if (nr_pages > soft_limit)
541 excess = nr_pages - soft_limit;
542
543 return excess;
544}
bb4cc1a8
AM
545
546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547{
3e32cb2e 548 unsigned long excess;
ef8f2327
MG
549 struct mem_cgroup_per_node *mz;
550 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 551
e231875b 552 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
553 if (!mctz)
554 return;
bb4cc1a8
AM
555 /*
556 * Necessary to update all ancestors when hierarchy is used.
557 * because their event counter is not touched.
558 */
559 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 560 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 561 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
562 /*
563 * We have to update the tree if mz is on RB-tree or
564 * mem is over its softlimit.
565 */
566 if (excess || mz->on_tree) {
0a31bc97
JW
567 unsigned long flags;
568
569 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
570 /* if on-tree, remove it */
571 if (mz->on_tree)
cf2c8127 572 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
573 /*
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
576 */
cf2c8127 577 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 578 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
579 }
580 }
581}
582
583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584{
ef8f2327
MG
585 struct mem_cgroup_tree_per_node *mctz;
586 struct mem_cgroup_per_node *mz;
587 int nid;
bb4cc1a8 588
e231875b 589 for_each_node(nid) {
a3747b53 590 mz = memcg->nodeinfo[nid];
ef8f2327 591 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
592 if (mctz)
593 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
594 }
595}
596
ef8f2327
MG
597static struct mem_cgroup_per_node *
598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 599{
ef8f2327 600 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
601
602retry:
603 mz = NULL;
fa90b2fd 604 if (!mctz->rb_rightmost)
bb4cc1a8
AM
605 goto done; /* Nothing to reclaim from */
606
fa90b2fd
DB
607 mz = rb_entry(mctz->rb_rightmost,
608 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
609 /*
610 * Remove the node now but someone else can add it back,
611 * we will to add it back at the end of reclaim to its correct
612 * position in the tree.
613 */
cf2c8127 614 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 615 if (!soft_limit_excess(mz->memcg) ||
8965aa28 616 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
617 goto retry;
618done:
619 return mz;
620}
621
ef8f2327
MG
622static struct mem_cgroup_per_node *
623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 624{
ef8f2327 625 struct mem_cgroup_per_node *mz;
bb4cc1a8 626
0a31bc97 627 spin_lock_irq(&mctz->lock);
bb4cc1a8 628 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 629 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
630 return mz;
631}
632
db9adbcb
JW
633/**
634 * __mod_memcg_state - update cgroup memory statistics
635 * @memcg: the memory cgroup
636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
637 * @val: delta to add to the counter, can be negative
638 */
639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
640{
db9adbcb
JW
641 if (mem_cgroup_disabled())
642 return;
643
2d146aa3
JW
644 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
645 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
646}
647
2d146aa3 648/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
649static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650{
2d146aa3 651 long x = READ_ONCE(memcg->vmstats.state[idx]);
a18e6e6e
JW
652#ifdef CONFIG_SMP
653 if (x < 0)
654 x = 0;
655#endif
656 return x;
657}
658
2d146aa3 659/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
660static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
661{
662 long x = 0;
663 int cpu;
664
665 for_each_possible_cpu(cpu)
2d146aa3 666 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
667#ifdef CONFIG_SMP
668 if (x < 0)
669 x = 0;
670#endif
671 return x;
672}
673
42a30035
JW
674static struct mem_cgroup_per_node *
675parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
676{
677 struct mem_cgroup *parent;
678
679 parent = parent_mem_cgroup(pn->memcg);
680 if (!parent)
681 return NULL;
a3747b53 682 return parent->nodeinfo[nid];
42a30035
JW
683}
684
eedc4e5a
RG
685void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
686 int val)
db9adbcb
JW
687{
688 struct mem_cgroup_per_node *pn;
42a30035 689 struct mem_cgroup *memcg;
ea426c2a 690 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 691
db9adbcb 692 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 693 memcg = pn->memcg;
db9adbcb
JW
694
695 /* Update memcg */
42a30035 696 __mod_memcg_state(memcg, idx, val);
db9adbcb 697
b4c46484
RG
698 /* Update lruvec */
699 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
700
ea426c2a
RG
701 if (vmstat_item_in_bytes(idx))
702 threshold <<= PAGE_SHIFT;
703
db9adbcb 704 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 705 if (unlikely(abs(x) > threshold)) {
eedc4e5a 706 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
707 struct mem_cgroup_per_node *pi;
708
42a30035
JW
709 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
710 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
711 x = 0;
712 }
713 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
714}
715
eedc4e5a
RG
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
729 /* Update node */
730 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
731
732 /* Update memcg and lruvec */
733 if (!mem_cgroup_disabled())
734 __mod_memcg_lruvec_state(lruvec, idx, val);
735}
736
c47d5032
SB
737void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
738 int val)
739{
740 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 741 struct mem_cgroup *memcg;
c47d5032
SB
742 pg_data_t *pgdat = page_pgdat(page);
743 struct lruvec *lruvec;
744
b4e0b68f
MS
745 rcu_read_lock();
746 memcg = page_memcg(head);
c47d5032 747 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 748 if (!memcg) {
b4e0b68f 749 rcu_read_unlock();
c47d5032
SB
750 __mod_node_page_state(pgdat, idx, val);
751 return;
752 }
753
d635a69d 754 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 755 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 756 rcu_read_unlock();
c47d5032 757}
f0c0c115 758EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 759
da3ceeff 760void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 761{
4f103c63 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
4f103c63 767 memcg = mem_cgroup_from_obj(p);
ec9f0238 768
8faeb1ff
MS
769 /*
770 * Untracked pages have no memcg, no lruvec. Update only the
771 * node. If we reparent the slab objects to the root memcg,
772 * when we free the slab object, we need to update the per-memcg
773 * vmstats to keep it correct for the root memcg.
774 */
775 if (!memcg) {
ec9f0238
RG
776 __mod_node_page_state(pgdat, idx, val);
777 } else {
867e5e1d 778 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
779 __mod_lruvec_state(lruvec, idx, val);
780 }
781 rcu_read_unlock();
782}
783
55927114
WL
784/*
785 * mod_objcg_mlstate() may be called with irq enabled, so
786 * mod_memcg_lruvec_state() should be used.
787 */
68ac5b3c
WL
788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
789 struct pglist_data *pgdat,
790 enum node_stat_item idx, int nr)
fdbcb2a6
WL
791{
792 struct mem_cgroup *memcg;
793 struct lruvec *lruvec;
794
795 rcu_read_lock();
796 memcg = obj_cgroup_memcg(objcg);
797 lruvec = mem_cgroup_lruvec(memcg, pgdat);
55927114 798 mod_memcg_lruvec_state(lruvec, idx, nr);
fdbcb2a6
WL
799 rcu_read_unlock();
800}
801
db9adbcb
JW
802/**
803 * __count_memcg_events - account VM events in a cgroup
804 * @memcg: the memory cgroup
805 * @idx: the event item
f0953a1b 806 * @count: the number of events that occurred
db9adbcb
JW
807 */
808void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
809 unsigned long count)
810{
db9adbcb
JW
811 if (mem_cgroup_disabled())
812 return;
813
2d146aa3
JW
814 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
815 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
816}
817
42a30035 818static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 819{
2d146aa3 820 return READ_ONCE(memcg->vmstats.events[event]);
e9f8974f
JW
821}
822
42a30035
JW
823static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
824{
815744d7
JW
825 long x = 0;
826 int cpu;
827
828 for_each_possible_cpu(cpu)
2d146aa3 829 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
815744d7 830 return x;
42a30035
JW
831}
832
c0ff4b85 833static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 834 struct page *page,
3fba69a5 835 int nr_pages)
d52aa412 836{
e401f176
KH
837 /* pagein of a big page is an event. So, ignore page size */
838 if (nr_pages > 0)
c9019e9b 839 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 840 else {
c9019e9b 841 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
842 nr_pages = -nr_pages; /* for event */
843 }
e401f176 844
871789d4 845 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
846}
847
f53d7ce3
JW
848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
849 enum mem_cgroup_events_target target)
7a159cc9
JW
850{
851 unsigned long val, next;
852
871789d4
CD
853 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
854 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 855 /* from time_after() in jiffies.h */
6a1a8b80 856 if ((long)(next - val) < 0) {
f53d7ce3
JW
857 switch (target) {
858 case MEM_CGROUP_TARGET_THRESH:
859 next = val + THRESHOLDS_EVENTS_TARGET;
860 break;
bb4cc1a8
AM
861 case MEM_CGROUP_TARGET_SOFTLIMIT:
862 next = val + SOFTLIMIT_EVENTS_TARGET;
863 break;
f53d7ce3
JW
864 default:
865 break;
866 }
871789d4 867 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 868 return true;
7a159cc9 869 }
f53d7ce3 870 return false;
d2265e6f
KH
871}
872
873/*
874 * Check events in order.
875 *
876 */
c0ff4b85 877static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
878{
879 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
880 if (unlikely(mem_cgroup_event_ratelimit(memcg,
881 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 882 bool do_softlimit;
f53d7ce3 883
bb4cc1a8
AM
884 do_softlimit = mem_cgroup_event_ratelimit(memcg,
885 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 886 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
887 if (unlikely(do_softlimit))
888 mem_cgroup_update_tree(memcg, page);
0a31bc97 889 }
d2265e6f
KH
890}
891
cf475ad2 892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 893{
31a78f23
BS
894 /*
895 * mm_update_next_owner() may clear mm->owner to NULL
896 * if it races with swapoff, page migration, etc.
897 * So this can be called with p == NULL.
898 */
899 if (unlikely(!p))
900 return NULL;
901
073219e9 902 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 903}
33398cf2 904EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 905
04f94e3f
DS
906static __always_inline struct mem_cgroup *active_memcg(void)
907{
908 if (in_interrupt())
909 return this_cpu_read(int_active_memcg);
910 else
911 return current->active_memcg;
912}
913
d46eb14b
SB
914/**
915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
916 * @mm: mm from which memcg should be extracted. It can be NULL.
917 *
04f94e3f
DS
918 * Obtain a reference on mm->memcg and returns it if successful. If mm
919 * is NULL, then the memcg is chosen as follows:
920 * 1) The active memcg, if set.
921 * 2) current->mm->memcg, if available
922 * 3) root memcg
923 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
924 */
925struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 926{
d46eb14b
SB
927 struct mem_cgroup *memcg;
928
929 if (mem_cgroup_disabled())
930 return NULL;
0b7f569e 931
2884b6b7
MS
932 /*
933 * Page cache insertions can happen without an
934 * actual mm context, e.g. during disk probing
935 * on boot, loopback IO, acct() writes etc.
936 *
937 * No need to css_get on root memcg as the reference
938 * counting is disabled on the root level in the
939 * cgroup core. See CSS_NO_REF.
940 */
04f94e3f
DS
941 if (unlikely(!mm)) {
942 memcg = active_memcg();
943 if (unlikely(memcg)) {
944 /* remote memcg must hold a ref */
945 css_get(&memcg->css);
946 return memcg;
947 }
948 mm = current->mm;
949 if (unlikely(!mm))
950 return root_mem_cgroup;
951 }
2884b6b7 952
54595fe2
KH
953 rcu_read_lock();
954 do {
2884b6b7
MS
955 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
956 if (unlikely(!memcg))
df381975 957 memcg = root_mem_cgroup;
00d484f3 958 } while (!css_tryget(&memcg->css));
54595fe2 959 rcu_read_unlock();
c0ff4b85 960 return memcg;
54595fe2 961}
d46eb14b
SB
962EXPORT_SYMBOL(get_mem_cgroup_from_mm);
963
4127c650
RG
964static __always_inline bool memcg_kmem_bypass(void)
965{
966 /* Allow remote memcg charging from any context. */
967 if (unlikely(active_memcg()))
968 return false;
969
970 /* Memcg to charge can't be determined. */
971 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
972 return true;
973
974 return false;
975}
976
5660048c
JW
977/**
978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
979 * @root: hierarchy root
980 * @prev: previously returned memcg, NULL on first invocation
981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
982 *
983 * Returns references to children of the hierarchy below @root, or
984 * @root itself, or %NULL after a full round-trip.
985 *
986 * Caller must pass the return value in @prev on subsequent
987 * invocations for reference counting, or use mem_cgroup_iter_break()
988 * to cancel a hierarchy walk before the round-trip is complete.
989 *
05bdc520
ML
990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
991 * in the hierarchy among all concurrent reclaimers operating on the
992 * same node.
5660048c 993 */
694fbc0f 994struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 995 struct mem_cgroup *prev,
694fbc0f 996 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 997{
3f649ab7 998 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 999 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1000 struct mem_cgroup *memcg = NULL;
5ac8fb31 1001 struct mem_cgroup *pos = NULL;
711d3d2c 1002
694fbc0f
AM
1003 if (mem_cgroup_disabled())
1004 return NULL;
5660048c 1005
9f3a0d09
JW
1006 if (!root)
1007 root = root_mem_cgroup;
7d74b06f 1008
9f3a0d09 1009 if (prev && !reclaim)
5ac8fb31 1010 pos = prev;
14067bb3 1011
542f85f9 1012 rcu_read_lock();
5f578161 1013
5ac8fb31 1014 if (reclaim) {
ef8f2327 1015 struct mem_cgroup_per_node *mz;
5ac8fb31 1016
a3747b53 1017 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1018 iter = &mz->iter;
5ac8fb31
JW
1019
1020 if (prev && reclaim->generation != iter->generation)
1021 goto out_unlock;
1022
6df38689 1023 while (1) {
4db0c3c2 1024 pos = READ_ONCE(iter->position);
6df38689
VD
1025 if (!pos || css_tryget(&pos->css))
1026 break;
5ac8fb31 1027 /*
6df38689
VD
1028 * css reference reached zero, so iter->position will
1029 * be cleared by ->css_released. However, we should not
1030 * rely on this happening soon, because ->css_released
1031 * is called from a work queue, and by busy-waiting we
1032 * might block it. So we clear iter->position right
1033 * away.
5ac8fb31 1034 */
6df38689
VD
1035 (void)cmpxchg(&iter->position, pos, NULL);
1036 }
5ac8fb31
JW
1037 }
1038
1039 if (pos)
1040 css = &pos->css;
1041
1042 for (;;) {
1043 css = css_next_descendant_pre(css, &root->css);
1044 if (!css) {
1045 /*
1046 * Reclaimers share the hierarchy walk, and a
1047 * new one might jump in right at the end of
1048 * the hierarchy - make sure they see at least
1049 * one group and restart from the beginning.
1050 */
1051 if (!prev)
1052 continue;
1053 break;
527a5ec9 1054 }
7d74b06f 1055
5ac8fb31
JW
1056 /*
1057 * Verify the css and acquire a reference. The root
1058 * is provided by the caller, so we know it's alive
1059 * and kicking, and don't take an extra reference.
1060 */
1061 memcg = mem_cgroup_from_css(css);
14067bb3 1062
5ac8fb31
JW
1063 if (css == &root->css)
1064 break;
14067bb3 1065
0b8f73e1
JW
1066 if (css_tryget(css))
1067 break;
9f3a0d09 1068
5ac8fb31 1069 memcg = NULL;
9f3a0d09 1070 }
5ac8fb31
JW
1071
1072 if (reclaim) {
5ac8fb31 1073 /*
6df38689
VD
1074 * The position could have already been updated by a competing
1075 * thread, so check that the value hasn't changed since we read
1076 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1077 */
6df38689
VD
1078 (void)cmpxchg(&iter->position, pos, memcg);
1079
5ac8fb31
JW
1080 if (pos)
1081 css_put(&pos->css);
1082
1083 if (!memcg)
1084 iter->generation++;
1085 else if (!prev)
1086 reclaim->generation = iter->generation;
9f3a0d09 1087 }
5ac8fb31 1088
542f85f9
MH
1089out_unlock:
1090 rcu_read_unlock();
c40046f3
MH
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
9f3a0d09 1094 return memcg;
14067bb3 1095}
7d74b06f 1096
5660048c
JW
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
9f3a0d09
JW
1104{
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109}
7d74b06f 1110
54a83d6b
MC
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
6df38689 1113{
6df38689 1114 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
6df38689 1117
54a83d6b 1118 for_each_node(nid) {
a3747b53 1119 mz = from->nodeinfo[nid];
9da83f3f
YS
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1122 }
1123}
1124
54a83d6b
MC
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgruop1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (last != root_mem_cgroup)
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144}
1145
7c5f64f8
VD
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164
1165 BUG_ON(memcg == root_mem_cgroup);
1166
1167 for_each_mem_cgroup_tree(iter, memcg) {
1168 struct css_task_iter it;
1169 struct task_struct *task;
1170
f168a9a5 1171 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1172 while (!ret && (task = css_task_iter_next(&it)))
1173 ret = fn(task, arg);
1174 css_task_iter_end(&it);
1175 if (ret) {
1176 mem_cgroup_iter_break(memcg, iter);
1177 break;
1178 }
1179 }
1180 return ret;
1181}
1182
6168d0da
AS
1183#ifdef CONFIG_DEBUG_VM
1184void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185{
1186 struct mem_cgroup *memcg;
1187
1188 if (mem_cgroup_disabled())
1189 return;
1190
1191 memcg = page_memcg(page);
1192
1193 if (!memcg)
1194 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195 else
1196 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197}
1198#endif
1199
6168d0da
AS
1200/**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
1203 *
d7e3aba5
AS
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
6168d0da
AS
1209 */
1210struct lruvec *lock_page_lruvec(struct page *page)
1211{
1212 struct lruvec *lruvec;
6168d0da 1213
a984226f 1214 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1215 spin_lock(&lruvec->lru_lock);
6168d0da
AS
1216
1217 lruvec_memcg_debug(lruvec, page);
1218
1219 return lruvec;
1220}
1221
1222struct lruvec *lock_page_lruvec_irq(struct page *page)
1223{
1224 struct lruvec *lruvec;
6168d0da 1225
a984226f 1226 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1227 spin_lock_irq(&lruvec->lru_lock);
6168d0da
AS
1228
1229 lruvec_memcg_debug(lruvec, page);
1230
1231 return lruvec;
1232}
1233
1234struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235{
1236 struct lruvec *lruvec;
6168d0da 1237
a984226f 1238 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1239 spin_lock_irqsave(&lruvec->lru_lock, *flags);
6168d0da
AS
1240
1241 lruvec_memcg_debug(lruvec, page);
1242
1243 return lruvec;
1244}
1245
925b7673 1246/**
fa9add64
HD
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
b4536f0c 1250 * @zid: zone id of the accounted pages
fa9add64 1251 * @nr_pages: positive when adding or negative when removing
925b7673 1252 *
ca707239
HD
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1256 */
fa9add64 1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1258 int zid, int nr_pages)
3f58a829 1259{
ef8f2327 1260 struct mem_cgroup_per_node *mz;
fa9add64 1261 unsigned long *lru_size;
ca707239 1262 long size;
3f58a829
MK
1263
1264 if (mem_cgroup_disabled())
1265 return;
1266
ef8f2327 1267 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1268 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1269
1270 if (nr_pages < 0)
1271 *lru_size += nr_pages;
1272
1273 size = *lru_size;
b4536f0c
MH
1274 if (WARN_ONCE(size < 0,
1275 "%s(%p, %d, %d): lru_size %ld\n",
1276 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1277 VM_BUG_ON(1);
1278 *lru_size = 0;
1279 }
1280
1281 if (nr_pages > 0)
1282 *lru_size += nr_pages;
08e552c6 1283}
544122e5 1284
19942822 1285/**
9d11ea9f 1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1287 * @memcg: the memory cgroup
19942822 1288 *
9d11ea9f 1289 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1290 * pages.
19942822 1291 */
c0ff4b85 1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1293{
3e32cb2e
JW
1294 unsigned long margin = 0;
1295 unsigned long count;
1296 unsigned long limit;
9d11ea9f 1297
3e32cb2e 1298 count = page_counter_read(&memcg->memory);
bbec2e15 1299 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1300 if (count < limit)
1301 margin = limit - count;
1302
7941d214 1303 if (do_memsw_account()) {
3e32cb2e 1304 count = page_counter_read(&memcg->memsw);
bbec2e15 1305 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1306 if (count < limit)
3e32cb2e 1307 margin = min(margin, limit - count);
cbedbac3
LR
1308 else
1309 margin = 0;
3e32cb2e
JW
1310 }
1311
1312 return margin;
19942822
JW
1313}
1314
32047e2a 1315/*
bdcbb659 1316 * A routine for checking "mem" is under move_account() or not.
32047e2a 1317 *
bdcbb659
QH
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
32047e2a 1321 */
c0ff4b85 1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1323{
2bd9bb20
KH
1324 struct mem_cgroup *from;
1325 struct mem_cgroup *to;
4b534334 1326 bool ret = false;
2bd9bb20
KH
1327 /*
1328 * Unlike task_move routines, we access mc.to, mc.from not under
1329 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 */
1331 spin_lock(&mc.lock);
1332 from = mc.from;
1333 to = mc.to;
1334 if (!from)
1335 goto unlock;
3e92041d 1336
2314b42d
JW
1337 ret = mem_cgroup_is_descendant(from, memcg) ||
1338 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1339unlock:
1340 spin_unlock(&mc.lock);
4b534334
KH
1341 return ret;
1342}
1343
c0ff4b85 1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1345{
1346 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1347 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1348 DEFINE_WAIT(wait);
1349 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 /* moving charge context might have finished. */
1351 if (mc.moving_task)
1352 schedule();
1353 finish_wait(&mc.waitq, &wait);
1354 return true;
1355 }
1356 }
1357 return false;
1358}
1359
5f9a4f4a
MS
1360struct memory_stat {
1361 const char *name;
5f9a4f4a
MS
1362 unsigned int idx;
1363};
1364
57b2847d 1365static const struct memory_stat memory_stats[] = {
fff66b79
MS
1366 { "anon", NR_ANON_MAPPED },
1367 { "file", NR_FILE_PAGES },
1368 { "kernel_stack", NR_KERNEL_STACK_KB },
1369 { "pagetables", NR_PAGETABLE },
1370 { "percpu", MEMCG_PERCPU_B },
1371 { "sock", MEMCG_SOCK },
1372 { "shmem", NR_SHMEM },
1373 { "file_mapped", NR_FILE_MAPPED },
1374 { "file_dirty", NR_FILE_DIRTY },
1375 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1376#ifdef CONFIG_SWAP
1377 { "swapcached", NR_SWAPCACHE },
1378#endif
5f9a4f4a 1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1380 { "anon_thp", NR_ANON_THPS },
1381 { "file_thp", NR_FILE_THPS },
1382 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1383#endif
fff66b79
MS
1384 { "inactive_anon", NR_INACTIVE_ANON },
1385 { "active_anon", NR_ACTIVE_ANON },
1386 { "inactive_file", NR_INACTIVE_FILE },
1387 { "active_file", NR_ACTIVE_FILE },
1388 { "unevictable", NR_UNEVICTABLE },
1389 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1390 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1391
1392 /* The memory events */
fff66b79
MS
1393 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1394 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1395 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1396 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1397 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1398 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1399 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1400};
1401
fff66b79
MS
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405 switch (item) {
1406 case MEMCG_PERCPU_B:
1407 case NR_SLAB_RECLAIMABLE_B:
1408 case NR_SLAB_UNRECLAIMABLE_B:
1409 case WORKINGSET_REFAULT_ANON:
1410 case WORKINGSET_REFAULT_FILE:
1411 case WORKINGSET_ACTIVATE_ANON:
1412 case WORKINGSET_ACTIVATE_FILE:
1413 case WORKINGSET_RESTORE_ANON:
1414 case WORKINGSET_RESTORE_FILE:
1415 case WORKINGSET_NODERECLAIM:
1416 return 1;
1417 case NR_KERNEL_STACK_KB:
1418 return SZ_1K;
1419 default:
1420 return PAGE_SIZE;
1421 }
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 int item)
1426{
1427 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
c8713d0b
JW
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432 struct seq_buf s;
1433 int i;
71cd3113 1434
c8713d0b
JW
1435 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 if (!s.buffer)
1437 return NULL;
1438
1439 /*
1440 * Provide statistics on the state of the memory subsystem as
1441 * well as cumulative event counters that show past behavior.
1442 *
1443 * This list is ordered following a combination of these gradients:
1444 * 1) generic big picture -> specifics and details
1445 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 *
1447 * Current memory state:
1448 */
2d146aa3 1449 cgroup_rstat_flush(memcg->css.cgroup);
c8713d0b 1450
5f9a4f4a
MS
1451 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 u64 size;
c8713d0b 1453
fff66b79 1454 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1455 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1456
5f9a4f4a 1457 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1458 size += memcg_page_state_output(memcg,
1459 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1460 seq_buf_printf(&s, "slab %llu\n", size);
1461 }
1462 }
c8713d0b
JW
1463
1464 /* Accumulated memory events */
1465
ebc5d83d
KK
1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 memcg_events(memcg, PGFAULT));
1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1470 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1471 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1472 seq_buf_printf(&s, "pgscan %lu\n",
1473 memcg_events(memcg, PGSCAN_KSWAPD) +
1474 memcg_events(memcg, PGSCAN_DIRECT));
1475 seq_buf_printf(&s, "pgsteal %lu\n",
1476 memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1478 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 memcg_events(memcg, PGACTIVATE));
1480 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 memcg_events(memcg, PGDEACTIVATE));
1482 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 memcg_events(memcg, PGLAZYFREE));
1484 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1488 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1489 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1490 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1491 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494 /* The above should easily fit into one page */
1495 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497 return s.buffer;
1498}
71cd3113 1499
58cf188e 1500#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1501/**
f0c867d9 1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
e222432b
BS
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
f0c867d9 1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1511{
e222432b
BS
1512 rcu_read_lock();
1513
f0c867d9 1514 if (memcg) {
1515 pr_cont(",oom_memcg=");
1516 pr_cont_cgroup_path(memcg->css.cgroup);
1517 } else
1518 pr_cont(",global_oom");
2415b9f5 1519 if (p) {
f0c867d9 1520 pr_cont(",task_memcg=");
2415b9f5 1521 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1522 }
e222432b 1523 rcu_read_unlock();
f0c867d9 1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
c8713d0b 1533 char *buf;
e222432b 1534
3e32cb2e
JW
1535 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->memory)),
15b42562 1537 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1538 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1541 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1542 else {
1543 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 K((u64)page_counter_read(&memcg->memsw)),
1545 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->kmem)),
1548 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1549 }
c8713d0b
JW
1550
1551 pr_info("Memory cgroup stats for ");
1552 pr_cont_cgroup_path(memcg->css.cgroup);
1553 pr_cont(":");
1554 buf = memory_stat_format(memcg);
1555 if (!buf)
1556 return;
1557 pr_info("%s", buf);
1558 kfree(buf);
e222432b
BS
1559}
1560
a63d83f4
DR
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
bbec2e15 1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1565{
8d387a5f
WL
1566 unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 if (mem_cgroup_swappiness(memcg))
1570 max += min(READ_ONCE(memcg->swap.max),
1571 (unsigned long)total_swap_pages);
1572 } else { /* v1 */
1573 if (mem_cgroup_swappiness(memcg)) {
1574 /* Calculate swap excess capacity from memsw limit */
1575 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577 max += min(swap, (unsigned long)total_swap_pages);
1578 }
9a5a8f19 1579 }
bbec2e15 1580 return max;
a63d83f4
DR
1581}
1582
9783aa99
CD
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585 return page_counter_read(&memcg->memory);
1586}
1587
b6e6edcf 1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1589 int order)
9cbb78bb 1590{
6e0fc46d
DR
1591 struct oom_control oc = {
1592 .zonelist = NULL,
1593 .nodemask = NULL,
2a966b77 1594 .memcg = memcg,
6e0fc46d
DR
1595 .gfp_mask = gfp_mask,
1596 .order = order,
6e0fc46d 1597 };
1378b37d 1598 bool ret = true;
9cbb78bb 1599
7775face
TH
1600 if (mutex_lock_killable(&oom_lock))
1601 return true;
1378b37d
YS
1602
1603 if (mem_cgroup_margin(memcg) >= (1 << order))
1604 goto unlock;
1605
7775face
TH
1606 /*
1607 * A few threads which were not waiting at mutex_lock_killable() can
1608 * fail to bail out. Therefore, check again after holding oom_lock.
1609 */
1610 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1611
1612unlock:
dc56401f 1613 mutex_unlock(&oom_lock);
7c5f64f8 1614 return ret;
9cbb78bb
DR
1615}
1616
0608f43d 1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1618 pg_data_t *pgdat,
0608f43d
AM
1619 gfp_t gfp_mask,
1620 unsigned long *total_scanned)
1621{
1622 struct mem_cgroup *victim = NULL;
1623 int total = 0;
1624 int loop = 0;
1625 unsigned long excess;
1626 unsigned long nr_scanned;
1627 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1628 .pgdat = pgdat,
0608f43d
AM
1629 };
1630
3e32cb2e 1631 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1632
1633 while (1) {
1634 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 if (!victim) {
1636 loop++;
1637 if (loop >= 2) {
1638 /*
1639 * If we have not been able to reclaim
1640 * anything, it might because there are
1641 * no reclaimable pages under this hierarchy
1642 */
1643 if (!total)
1644 break;
1645 /*
1646 * We want to do more targeted reclaim.
1647 * excess >> 2 is not to excessive so as to
1648 * reclaim too much, nor too less that we keep
1649 * coming back to reclaim from this cgroup
1650 */
1651 if (total >= (excess >> 2) ||
1652 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 break;
1654 }
1655 continue;
1656 }
a9dd0a83 1657 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1658 pgdat, &nr_scanned);
0608f43d 1659 *total_scanned += nr_scanned;
3e32cb2e 1660 if (!soft_limit_excess(root_memcg))
0608f43d 1661 break;
6d61ef40 1662 }
0608f43d
AM
1663 mem_cgroup_iter_break(root_memcg, victim);
1664 return total;
6d61ef40
BS
1665}
1666
0056f4e6
JW
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669 .name = "memcg_oom_lock",
1670};
1671#endif
1672
fb2a6fc5
JW
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
867578cb
KH
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
fb2a6fc5 1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1680{
79dfdacc 1681 struct mem_cgroup *iter, *failed = NULL;
a636b327 1682
fb2a6fc5
JW
1683 spin_lock(&memcg_oom_lock);
1684
9f3a0d09 1685 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1686 if (iter->oom_lock) {
79dfdacc
MH
1687 /*
1688 * this subtree of our hierarchy is already locked
1689 * so we cannot give a lock.
1690 */
79dfdacc 1691 failed = iter;
9f3a0d09
JW
1692 mem_cgroup_iter_break(memcg, iter);
1693 break;
23751be0
JW
1694 } else
1695 iter->oom_lock = true;
7d74b06f 1696 }
867578cb 1697
fb2a6fc5
JW
1698 if (failed) {
1699 /*
1700 * OK, we failed to lock the whole subtree so we have
1701 * to clean up what we set up to the failing subtree
1702 */
1703 for_each_mem_cgroup_tree(iter, memcg) {
1704 if (iter == failed) {
1705 mem_cgroup_iter_break(memcg, iter);
1706 break;
1707 }
1708 iter->oom_lock = false;
79dfdacc 1709 }
0056f4e6
JW
1710 } else
1711 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1712
1713 spin_unlock(&memcg_oom_lock);
1714
1715 return !failed;
a636b327 1716}
0b7f569e 1717
fb2a6fc5 1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1719{
7d74b06f
KH
1720 struct mem_cgroup *iter;
1721
fb2a6fc5 1722 spin_lock(&memcg_oom_lock);
5facae4f 1723 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1724 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1725 iter->oom_lock = false;
fb2a6fc5 1726 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1727}
1728
c0ff4b85 1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1730{
1731 struct mem_cgroup *iter;
1732
c2b42d3c 1733 spin_lock(&memcg_oom_lock);
c0ff4b85 1734 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1735 iter->under_oom++;
1736 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1737}
1738
c0ff4b85 1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1740{
1741 struct mem_cgroup *iter;
1742
867578cb 1743 /*
f0953a1b 1744 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1745 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1746 */
c2b42d3c 1747 spin_lock(&memcg_oom_lock);
c0ff4b85 1748 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1749 if (iter->under_oom > 0)
1750 iter->under_oom--;
1751 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1752}
1753
867578cb
KH
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
dc98df5a 1756struct oom_wait_info {
d79154bb 1757 struct mem_cgroup *memcg;
ac6424b9 1758 wait_queue_entry_t wait;
dc98df5a
KH
1759};
1760
ac6424b9 1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1762 unsigned mode, int sync, void *arg)
1763{
d79154bb
HD
1764 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1766 struct oom_wait_info *oom_wait_info;
1767
1768 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1769 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1770
2314b42d
JW
1771 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1773 return 0;
dc98df5a
KH
1774 return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
c0ff4b85 1777static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1778{
c2b42d3c
TH
1779 /*
1780 * For the following lockless ->under_oom test, the only required
1781 * guarantee is that it must see the state asserted by an OOM when
1782 * this function is called as a result of userland actions
1783 * triggered by the notification of the OOM. This is trivially
1784 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 * triggering notification.
1786 */
1787 if (memcg && memcg->under_oom)
f4b90b70 1788 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1789}
1790
29ef680a
MH
1791enum oom_status {
1792 OOM_SUCCESS,
1793 OOM_FAILED,
1794 OOM_ASYNC,
1795 OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1799{
7056d3a3
MH
1800 enum oom_status ret;
1801 bool locked;
1802
29ef680a
MH
1803 if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 return OOM_SKIPPED;
1805
7a1adfdd
RG
1806 memcg_memory_event(memcg, MEMCG_OOM);
1807
867578cb 1808 /*
49426420
JW
1809 * We are in the middle of the charge context here, so we
1810 * don't want to block when potentially sitting on a callstack
1811 * that holds all kinds of filesystem and mm locks.
1812 *
29ef680a
MH
1813 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 * handling until the charge can succeed; remember the context and put
1815 * the task to sleep at the end of the page fault when all locks are
1816 * released.
49426420 1817 *
29ef680a
MH
1818 * On the other hand, in-kernel OOM killer allows for an async victim
1819 * memory reclaim (oom_reaper) and that means that we are not solely
1820 * relying on the oom victim to make a forward progress and we can
1821 * invoke the oom killer here.
1822 *
1823 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 * victim and then we have to bail out from the charge path.
867578cb 1825 */
29ef680a
MH
1826 if (memcg->oom_kill_disable) {
1827 if (!current->in_user_fault)
1828 return OOM_SKIPPED;
1829 css_get(&memcg->css);
1830 current->memcg_in_oom = memcg;
1831 current->memcg_oom_gfp_mask = mask;
1832 current->memcg_oom_order = order;
1833
1834 return OOM_ASYNC;
1835 }
1836
7056d3a3
MH
1837 mem_cgroup_mark_under_oom(memcg);
1838
1839 locked = mem_cgroup_oom_trylock(memcg);
1840
1841 if (locked)
1842 mem_cgroup_oom_notify(memcg);
1843
1844 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1845 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1846 ret = OOM_SUCCESS;
1847 else
1848 ret = OOM_FAILED;
1849
1850 if (locked)
1851 mem_cgroup_oom_unlock(memcg);
29ef680a 1852
7056d3a3 1853 return ret;
3812c8c8
JW
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1858 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1859 *
49426420
JW
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
3812c8c8 1862 *
49426420 1863 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation. Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1868 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1871 * completed, %false otherwise.
3812c8c8 1872 */
49426420 1873bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1874{
626ebc41 1875 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1876 struct oom_wait_info owait;
49426420 1877 bool locked;
3812c8c8
JW
1878
1879 /* OOM is global, do not handle */
3812c8c8 1880 if (!memcg)
49426420 1881 return false;
3812c8c8 1882
7c5f64f8 1883 if (!handle)
49426420 1884 goto cleanup;
3812c8c8
JW
1885
1886 owait.memcg = memcg;
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
2055da97 1890 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1891
3812c8c8 1892 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1893 mem_cgroup_mark_under_oom(memcg);
1894
1895 locked = mem_cgroup_oom_trylock(memcg);
1896
1897 if (locked)
1898 mem_cgroup_oom_notify(memcg);
1899
1900 if (locked && !memcg->oom_kill_disable) {
1901 mem_cgroup_unmark_under_oom(memcg);
1902 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1903 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 current->memcg_oom_order);
49426420 1905 } else {
3812c8c8 1906 schedule();
49426420
JW
1907 mem_cgroup_unmark_under_oom(memcg);
1908 finish_wait(&memcg_oom_waitq, &owait.wait);
1909 }
1910
1911 if (locked) {
fb2a6fc5
JW
1912 mem_cgroup_oom_unlock(memcg);
1913 /*
1914 * There is no guarantee that an OOM-lock contender
1915 * sees the wakeups triggered by the OOM kill
f0953a1b 1916 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
1917 */
1918 memcg_oom_recover(memcg);
1919 }
49426420 1920cleanup:
626ebc41 1921 current->memcg_in_oom = NULL;
3812c8c8 1922 css_put(&memcg->css);
867578cb 1923 return true;
0b7f569e
KH
1924}
1925
3d8b38eb
RG
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 struct mem_cgroup *oom_domain)
1938{
1939 struct mem_cgroup *oom_group = NULL;
1940 struct mem_cgroup *memcg;
1941
1942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 return NULL;
1944
1945 if (!oom_domain)
1946 oom_domain = root_mem_cgroup;
1947
1948 rcu_read_lock();
1949
1950 memcg = mem_cgroup_from_task(victim);
1951 if (memcg == root_mem_cgroup)
1952 goto out;
1953
48fe267c
RG
1954 /*
1955 * If the victim task has been asynchronously moved to a different
1956 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 * In this case it's better to ignore memory.group.oom.
1958 */
1959 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 goto out;
1961
3d8b38eb
RG
1962 /*
1963 * Traverse the memory cgroup hierarchy from the victim task's
1964 * cgroup up to the OOMing cgroup (or root) to find the
1965 * highest-level memory cgroup with oom.group set.
1966 */
1967 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 if (memcg->oom_group)
1969 oom_group = memcg;
1970
1971 if (memcg == oom_domain)
1972 break;
1973 }
1974
1975 if (oom_group)
1976 css_get(&oom_group->css);
1977out:
1978 rcu_read_unlock();
1979
1980 return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985 pr_info("Tasks in ");
1986 pr_cont_cgroup_path(memcg->css.cgroup);
1987 pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
d7365e78 1990/**
bcfe06bf 1991 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 1992 * @page: the page
32047e2a 1993 *
81f8c3a4 1994 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1995 * another cgroup.
1996 *
1c824a68
JW
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
d69b042f 1999 */
1c824a68 2000void lock_page_memcg(struct page *page)
89c06bd5 2001{
9da7b521 2002 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2003 struct mem_cgroup *memcg;
6de22619 2004 unsigned long flags;
89c06bd5 2005
6de22619
JW
2006 /*
2007 * The RCU lock is held throughout the transaction. The fast
2008 * path can get away without acquiring the memcg->move_lock
2009 * because page moving starts with an RCU grace period.
739f79fc 2010 */
d7365e78
JW
2011 rcu_read_lock();
2012
2013 if (mem_cgroup_disabled())
1c824a68 2014 return;
89c06bd5 2015again:
bcfe06bf 2016 memcg = page_memcg(head);
29833315 2017 if (unlikely(!memcg))
1c824a68 2018 return;
d7365e78 2019
20ad50d6
AS
2020#ifdef CONFIG_PROVE_LOCKING
2021 local_irq_save(flags);
2022 might_lock(&memcg->move_lock);
2023 local_irq_restore(flags);
2024#endif
2025
bdcbb659 2026 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2027 return;
89c06bd5 2028
6de22619 2029 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2030 if (memcg != page_memcg(head)) {
6de22619 2031 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2032 goto again;
2033 }
6de22619
JW
2034
2035 /*
1c824a68
JW
2036 * When charge migration first begins, we can have multiple
2037 * critical sections holding the fast-path RCU lock and one
2038 * holding the slowpath move_lock. Track the task who has the
2039 * move_lock for unlock_page_memcg().
6de22619
JW
2040 */
2041 memcg->move_lock_task = current;
2042 memcg->move_lock_flags = flags;
89c06bd5 2043}
81f8c3a4 2044EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2045
1c824a68 2046static void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2047{
6de22619
JW
2048 if (memcg && memcg->move_lock_task == current) {
2049 unsigned long flags = memcg->move_lock_flags;
2050
2051 memcg->move_lock_task = NULL;
2052 memcg->move_lock_flags = 0;
2053
2054 spin_unlock_irqrestore(&memcg->move_lock, flags);
2055 }
89c06bd5 2056
d7365e78 2057 rcu_read_unlock();
89c06bd5 2058}
739f79fc
JW
2059
2060/**
bcfe06bf 2061 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2062 * @page: the page
2063 */
2064void unlock_page_memcg(struct page *page)
2065{
9da7b521
JW
2066 struct page *head = compound_head(page);
2067
bcfe06bf 2068 __unlock_page_memcg(page_memcg(head));
739f79fc 2069}
81f8c3a4 2070EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2071
55927114 2072struct obj_stock {
bf4f0599
RG
2073#ifdef CONFIG_MEMCG_KMEM
2074 struct obj_cgroup *cached_objcg;
68ac5b3c 2075 struct pglist_data *cached_pgdat;
bf4f0599 2076 unsigned int nr_bytes;
68ac5b3c
WL
2077 int nr_slab_reclaimable_b;
2078 int nr_slab_unreclaimable_b;
55927114
WL
2079#else
2080 int dummy[0];
bf4f0599 2081#endif
55927114
WL
2082};
2083
2084struct memcg_stock_pcp {
2085 struct mem_cgroup *cached; /* this never be root cgroup */
2086 unsigned int nr_pages;
2087 struct obj_stock task_obj;
2088 struct obj_stock irq_obj;
bf4f0599 2089
cdec2e42 2090 struct work_struct work;
26fe6168 2091 unsigned long flags;
a0db00fc 2092#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2095static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2096
bf4f0599 2097#ifdef CONFIG_MEMCG_KMEM
55927114 2098static void drain_obj_stock(struct obj_stock *stock);
bf4f0599
RG
2099static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100 struct mem_cgroup *root_memcg);
2101
2102#else
55927114 2103static inline void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
2104{
2105}
2106static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107 struct mem_cgroup *root_memcg)
2108{
2109 return false;
2110}
2111#endif
2112
55927114
WL
2113/*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125{
2126 struct memcg_stock_pcp *stock;
2127
2128 if (likely(in_task())) {
2129 *pflags = 0UL;
2130 preempt_disable();
2131 stock = this_cpu_ptr(&memcg_stock);
2132 return &stock->task_obj;
2133 }
2134
2135 local_irq_save(*pflags);
2136 stock = this_cpu_ptr(&memcg_stock);
2137 return &stock->irq_obj;
2138}
2139
2140static inline void put_obj_stock(unsigned long flags)
2141{
2142 if (likely(in_task()))
2143 preempt_enable();
2144 else
2145 local_irq_restore(flags);
2146}
2147
a0956d54
SS
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock. Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
cdec2e42 2158 */
a0956d54 2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2160{
2161 struct memcg_stock_pcp *stock;
db2ba40c 2162 unsigned long flags;
3e32cb2e 2163 bool ret = false;
cdec2e42 2164
a983b5eb 2165 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2166 return ret;
a0956d54 2167
db2ba40c
JW
2168 local_irq_save(flags);
2169
2170 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2171 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2172 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2173 ret = true;
2174 }
db2ba40c
JW
2175
2176 local_irq_restore(flags);
2177
cdec2e42
KH
2178 return ret;
2179}
2180
2181/*
3e32cb2e 2182 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186 struct mem_cgroup *old = stock->cached;
2187
1a3e1f40
JW
2188 if (!old)
2189 return;
2190
11c9ea4e 2191 if (stock->nr_pages) {
3e32cb2e 2192 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2193 if (do_memsw_account())
3e32cb2e 2194 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2195 stock->nr_pages = 0;
cdec2e42 2196 }
1a3e1f40
JW
2197
2198 css_put(&old->css);
cdec2e42 2199 stock->cached = NULL;
cdec2e42
KH
2200}
2201
cdec2e42
KH
2202static void drain_local_stock(struct work_struct *dummy)
2203{
db2ba40c
JW
2204 struct memcg_stock_pcp *stock;
2205 unsigned long flags;
2206
72f0184c
MH
2207 /*
2208 * The only protection from memory hotplug vs. drain_stock races is
2209 * that we always operate on local CPU stock here with IRQ disabled
2210 */
db2ba40c
JW
2211 local_irq_save(flags);
2212
2213 stock = this_cpu_ptr(&memcg_stock);
55927114
WL
2214 drain_obj_stock(&stock->irq_obj);
2215 if (in_task())
2216 drain_obj_stock(&stock->task_obj);
cdec2e42 2217 drain_stock(stock);
26fe6168 2218 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2219
2220 local_irq_restore(flags);
cdec2e42
KH
2221}
2222
2223/*
3e32cb2e 2224 * Cache charges(val) to local per_cpu area.
320cc51d 2225 * This will be consumed by consume_stock() function, later.
cdec2e42 2226 */
c0ff4b85 2227static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2228{
db2ba40c
JW
2229 struct memcg_stock_pcp *stock;
2230 unsigned long flags;
2231
2232 local_irq_save(flags);
cdec2e42 2233
db2ba40c 2234 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2235 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2236 drain_stock(stock);
1a3e1f40 2237 css_get(&memcg->css);
c0ff4b85 2238 stock->cached = memcg;
cdec2e42 2239 }
11c9ea4e 2240 stock->nr_pages += nr_pages;
db2ba40c 2241
a983b5eb 2242 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2243 drain_stock(stock);
2244
db2ba40c 2245 local_irq_restore(flags);
cdec2e42
KH
2246}
2247
2248/*
c0ff4b85 2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2250 * of the hierarchy under it.
cdec2e42 2251 */
6d3d6aa2 2252static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2253{
26fe6168 2254 int cpu, curcpu;
d38144b7 2255
6d3d6aa2
JW
2256 /* If someone's already draining, avoid adding running more workers. */
2257 if (!mutex_trylock(&percpu_charge_mutex))
2258 return;
72f0184c
MH
2259 /*
2260 * Notify other cpus that system-wide "drain" is running
2261 * We do not care about races with the cpu hotplug because cpu down
2262 * as well as workers from this path always operate on the local
2263 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264 */
5af12d0e 2265 curcpu = get_cpu();
cdec2e42
KH
2266 for_each_online_cpu(cpu) {
2267 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2268 struct mem_cgroup *memcg;
e1a366be 2269 bool flush = false;
26fe6168 2270
e1a366be 2271 rcu_read_lock();
c0ff4b85 2272 memcg = stock->cached;
e1a366be
RG
2273 if (memcg && stock->nr_pages &&
2274 mem_cgroup_is_descendant(memcg, root_memcg))
2275 flush = true;
bf4f0599
RG
2276 if (obj_stock_flush_required(stock, root_memcg))
2277 flush = true;
e1a366be
RG
2278 rcu_read_unlock();
2279
2280 if (flush &&
2281 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2282 if (cpu == curcpu)
2283 drain_local_stock(&stock->work);
2284 else
2285 schedule_work_on(cpu, &stock->work);
2286 }
cdec2e42 2287 }
5af12d0e 2288 put_cpu();
9f50fad6 2289 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2290}
2291
2cd21c89 2292static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
cdec2e42 2293{
2cd21c89 2294 int nid;
a983b5eb 2295
2cd21c89
JW
2296 for_each_node(nid) {
2297 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299 struct batched_lruvec_stat *lstatc;
a983b5eb
JW
2300 int i;
2301
2cd21c89 2302 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2d146aa3 2303 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2cd21c89
JW
2304 stat[i] = lstatc->count[i];
2305 lstatc->count[i] = 0;
2306 }
a983b5eb 2307
2cd21c89
JW
2308 do {
2309 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311 } while ((pn = parent_nodeinfo(pn, nid)));
2312 }
2313}
a983b5eb 2314
2cd21c89
JW
2315static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316{
2317 struct memcg_stock_pcp *stock;
2318 struct mem_cgroup *memcg;
a3d4c05a 2319
2cd21c89
JW
2320 stock = &per_cpu(memcg_stock, cpu);
2321 drain_stock(stock);
a3d4c05a 2322
2cd21c89
JW
2323 for_each_mem_cgroup(memcg)
2324 memcg_flush_lruvec_page_state(memcg, cpu);
a983b5eb 2325
308167fc 2326 return 0;
cdec2e42
KH
2327}
2328
b3ff9291
CD
2329static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330 unsigned int nr_pages,
2331 gfp_t gfp_mask)
f7e1cb6e 2332{
b3ff9291
CD
2333 unsigned long nr_reclaimed = 0;
2334
f7e1cb6e 2335 do {
e22c6ed9
JW
2336 unsigned long pflags;
2337
d1663a90
JK
2338 if (page_counter_read(&memcg->memory) <=
2339 READ_ONCE(memcg->memory.high))
f7e1cb6e 2340 continue;
e22c6ed9 2341
e27be240 2342 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2343
2344 psi_memstall_enter(&pflags);
b3ff9291
CD
2345 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346 gfp_mask, true);
e22c6ed9 2347 psi_memstall_leave(&pflags);
4bf17307
CD
2348 } while ((memcg = parent_mem_cgroup(memcg)) &&
2349 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2350
2351 return nr_reclaimed;
f7e1cb6e
JW
2352}
2353
2354static void high_work_func(struct work_struct *work)
2355{
2356 struct mem_cgroup *memcg;
2357
2358 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2359 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2360}
2361
0e4b01df
CD
2362/*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369/*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 * overage ratio to a delay.
ac5ddd0f 2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2377 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 * to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 * +-------+------------------------+
2387 * | usage | time to allocate in ms |
2388 * +-------+------------------------+
2389 * | 100M | 0 |
2390 * | 101M | 6 |
2391 * | 102M | 25 |
2392 * | 103M | 57 |
2393 * | 104M | 102 |
2394 * | 105M | 159 |
2395 * | 106M | 230 |
2396 * | 107M | 313 |
2397 * | 108M | 409 |
2398 * | 109M | 518 |
2399 * | 110M | 639 |
2400 * | 111M | 774 |
2401 * | 112M | 921 |
2402 * | 113M | 1081 |
2403 * | 114M | 1254 |
2404 * | 115M | 1439 |
2405 * | 116M | 1638 |
2406 * | 117M | 1849 |
2407 * | 118M | 2000 |
2408 * | 119M | 2000 |
2409 * | 120M | 2000 |
2410 * +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
8a5dbc65 2415static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2416{
8a5dbc65 2417 u64 overage;
b23afb93 2418
8a5dbc65
JK
2419 if (usage <= high)
2420 return 0;
e26733e0 2421
8a5dbc65
JK
2422 /*
2423 * Prevent division by 0 in overage calculation by acting as if
2424 * it was a threshold of 1 page
2425 */
2426 high = max(high, 1UL);
9b8b1754 2427
8a5dbc65
JK
2428 overage = usage - high;
2429 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430 return div64_u64(overage, high);
2431}
e26733e0 2432
8a5dbc65
JK
2433static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434{
2435 u64 overage, max_overage = 0;
e26733e0 2436
8a5dbc65
JK
2437 do {
2438 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2439 READ_ONCE(memcg->memory.high));
8a5dbc65 2440 max_overage = max(overage, max_overage);
e26733e0
CD
2441 } while ((memcg = parent_mem_cgroup(memcg)) &&
2442 !mem_cgroup_is_root(memcg));
2443
8a5dbc65
JK
2444 return max_overage;
2445}
2446
4b82ab4f
JK
2447static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448{
2449 u64 overage, max_overage = 0;
2450
2451 do {
2452 overage = calculate_overage(page_counter_read(&memcg->swap),
2453 READ_ONCE(memcg->swap.high));
2454 if (overage)
2455 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456 max_overage = max(overage, max_overage);
2457 } while ((memcg = parent_mem_cgroup(memcg)) &&
2458 !mem_cgroup_is_root(memcg));
2459
2460 return max_overage;
2461}
2462
8a5dbc65
JK
2463/*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468 unsigned int nr_pages,
2469 u64 max_overage)
2470{
2471 unsigned long penalty_jiffies;
2472
e26733e0
CD
2473 if (!max_overage)
2474 return 0;
0e4b01df
CD
2475
2476 /*
0e4b01df
CD
2477 * We use overage compared to memory.high to calculate the number of
2478 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479 * fairly lenient on small overages, and increasingly harsh when the
2480 * memcg in question makes it clear that it has no intention of stopping
2481 * its crazy behaviour, so we exponentially increase the delay based on
2482 * overage amount.
2483 */
e26733e0
CD
2484 penalty_jiffies = max_overage * max_overage * HZ;
2485 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2487
2488 /*
2489 * Factor in the task's own contribution to the overage, such that four
2490 * N-sized allocations are throttled approximately the same as one
2491 * 4N-sized allocation.
2492 *
2493 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494 * larger the current charge patch is than that.
2495 */
ff144e69 2496 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2497}
2498
2499/*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503void mem_cgroup_handle_over_high(void)
2504{
2505 unsigned long penalty_jiffies;
2506 unsigned long pflags;
b3ff9291 2507 unsigned long nr_reclaimed;
e26733e0 2508 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2509 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2510 struct mem_cgroup *memcg;
b3ff9291 2511 bool in_retry = false;
e26733e0
CD
2512
2513 if (likely(!nr_pages))
2514 return;
2515
2516 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2517 current->memcg_nr_pages_over_high = 0;
2518
b3ff9291
CD
2519retry_reclaim:
2520 /*
2521 * The allocating task should reclaim at least the batch size, but for
2522 * subsequent retries we only want to do what's necessary to prevent oom
2523 * or breaching resource isolation.
2524 *
2525 * This is distinct from memory.max or page allocator behaviour because
2526 * memory.high is currently batched, whereas memory.max and the page
2527 * allocator run every time an allocation is made.
2528 */
2529 nr_reclaimed = reclaim_high(memcg,
2530 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531 GFP_KERNEL);
2532
e26733e0
CD
2533 /*
2534 * memory.high is breached and reclaim is unable to keep up. Throttle
2535 * allocators proactively to slow down excessive growth.
2536 */
8a5dbc65
JK
2537 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538 mem_find_max_overage(memcg));
0e4b01df 2539
4b82ab4f
JK
2540 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541 swap_find_max_overage(memcg));
2542
ff144e69
JK
2543 /*
2544 * Clamp the max delay per usermode return so as to still keep the
2545 * application moving forwards and also permit diagnostics, albeit
2546 * extremely slowly.
2547 */
2548 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
0e4b01df
CD
2550 /*
2551 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552 * that it's not even worth doing, in an attempt to be nice to those who
2553 * go only a small amount over their memory.high value and maybe haven't
2554 * been aggressively reclaimed enough yet.
2555 */
2556 if (penalty_jiffies <= HZ / 100)
2557 goto out;
2558
b3ff9291
CD
2559 /*
2560 * If reclaim is making forward progress but we're still over
2561 * memory.high, we want to encourage that rather than doing allocator
2562 * throttling.
2563 */
2564 if (nr_reclaimed || nr_retries--) {
2565 in_retry = true;
2566 goto retry_reclaim;
2567 }
2568
0e4b01df
CD
2569 /*
2570 * If we exit early, we're guaranteed to die (since
2571 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572 * need to account for any ill-begotten jiffies to pay them off later.
2573 */
2574 psi_memstall_enter(&pflags);
2575 schedule_timeout_killable(penalty_jiffies);
2576 psi_memstall_leave(&pflags);
2577
2578out:
2579 css_put(&memcg->css);
b23afb93
TH
2580}
2581
c5c8b16b
MS
2582static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583 unsigned int nr_pages)
8a9f3ccd 2584{
a983b5eb 2585 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2586 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2587 struct mem_cgroup *mem_over_limit;
3e32cb2e 2588 struct page_counter *counter;
e22c6ed9 2589 enum oom_status oom_status;
6539cc05 2590 unsigned long nr_reclaimed;
b70a2a21
JW
2591 bool may_swap = true;
2592 bool drained = false;
e22c6ed9 2593 unsigned long pflags;
a636b327 2594
6539cc05 2595retry:
b6b6cc72 2596 if (consume_stock(memcg, nr_pages))
10d53c74 2597 return 0;
8a9f3ccd 2598
7941d214 2599 if (!do_memsw_account() ||
6071ca52
JW
2600 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2602 goto done_restock;
7941d214 2603 if (do_memsw_account())
3e32cb2e
JW
2604 page_counter_uncharge(&memcg->memsw, batch);
2605 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2606 } else {
3e32cb2e 2607 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2608 may_swap = false;
3fbe7244 2609 }
7a81b88c 2610
6539cc05
JW
2611 if (batch > nr_pages) {
2612 batch = nr_pages;
2613 goto retry;
2614 }
6d61ef40 2615
869712fd
JW
2616 /*
2617 * Memcg doesn't have a dedicated reserve for atomic
2618 * allocations. But like the global atomic pool, we need to
2619 * put the burden of reclaim on regular allocation requests
2620 * and let these go through as privileged allocations.
2621 */
2622 if (gfp_mask & __GFP_ATOMIC)
2623 goto force;
2624
06b078fc
JW
2625 /*
2626 * Unlike in global OOM situations, memcg is not in a physical
2627 * memory shortage. Allow dying and OOM-killed tasks to
2628 * bypass the last charges so that they can exit quickly and
2629 * free their memory.
2630 */
7775face 2631 if (unlikely(should_force_charge()))
10d53c74 2632 goto force;
06b078fc 2633
89a28483
JW
2634 /*
2635 * Prevent unbounded recursion when reclaim operations need to
2636 * allocate memory. This might exceed the limits temporarily,
2637 * but we prefer facilitating memory reclaim and getting back
2638 * under the limit over triggering OOM kills in these cases.
2639 */
2640 if (unlikely(current->flags & PF_MEMALLOC))
2641 goto force;
2642
06b078fc
JW
2643 if (unlikely(task_in_memcg_oom(current)))
2644 goto nomem;
2645
d0164adc 2646 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2647 goto nomem;
4b534334 2648
e27be240 2649 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2650
e22c6ed9 2651 psi_memstall_enter(&pflags);
b70a2a21
JW
2652 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653 gfp_mask, may_swap);
e22c6ed9 2654 psi_memstall_leave(&pflags);
6539cc05 2655
61e02c74 2656 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2657 goto retry;
28c34c29 2658
b70a2a21 2659 if (!drained) {
6d3d6aa2 2660 drain_all_stock(mem_over_limit);
b70a2a21
JW
2661 drained = true;
2662 goto retry;
2663 }
2664
28c34c29
JW
2665 if (gfp_mask & __GFP_NORETRY)
2666 goto nomem;
6539cc05
JW
2667 /*
2668 * Even though the limit is exceeded at this point, reclaim
2669 * may have been able to free some pages. Retry the charge
2670 * before killing the task.
2671 *
2672 * Only for regular pages, though: huge pages are rather
2673 * unlikely to succeed so close to the limit, and we fall back
2674 * to regular pages anyway in case of failure.
2675 */
61e02c74 2676 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2677 goto retry;
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 goto retry;
2684
9b130619
JW
2685 if (nr_retries--)
2686 goto retry;
2687
38d38493 2688 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2689 goto nomem;
2690
6539cc05 2691 if (fatal_signal_pending(current))
10d53c74 2692 goto force;
6539cc05 2693
29ef680a
MH
2694 /*
2695 * keep retrying as long as the memcg oom killer is able to make
2696 * a forward progress or bypass the charge if the oom killer
2697 * couldn't make any progress.
2698 */
2699 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2700 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2701 switch (oom_status) {
2702 case OOM_SUCCESS:
d977aa93 2703 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2704 goto retry;
2705 case OOM_FAILED:
2706 goto force;
2707 default:
2708 goto nomem;
2709 }
7a81b88c 2710nomem:
6d1fdc48 2711 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2712 return -ENOMEM;
10d53c74
TH
2713force:
2714 /*
2715 * The allocation either can't fail or will lead to more memory
2716 * being freed very soon. Allow memory usage go over the limit
2717 * temporarily by force charging it.
2718 */
2719 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2720 if (do_memsw_account())
10d53c74 2721 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2722
2723 return 0;
6539cc05
JW
2724
2725done_restock:
2726 if (batch > nr_pages)
2727 refill_stock(memcg, batch - nr_pages);
b23afb93 2728
241994ed 2729 /*
b23afb93
TH
2730 * If the hierarchy is above the normal consumption range, schedule
2731 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2732 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2733 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2734 * not recorded as it most likely matches current's and won't
2735 * change in the meantime. As high limit is checked again before
2736 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2737 */
2738 do {
4b82ab4f
JK
2739 bool mem_high, swap_high;
2740
2741 mem_high = page_counter_read(&memcg->memory) >
2742 READ_ONCE(memcg->memory.high);
2743 swap_high = page_counter_read(&memcg->swap) >
2744 READ_ONCE(memcg->swap.high);
2745
2746 /* Don't bother a random interrupted task */
2747 if (in_interrupt()) {
2748 if (mem_high) {
f7e1cb6e
JW
2749 schedule_work(&memcg->high_work);
2750 break;
2751 }
4b82ab4f
JK
2752 continue;
2753 }
2754
2755 if (mem_high || swap_high) {
2756 /*
2757 * The allocating tasks in this cgroup will need to do
2758 * reclaim or be throttled to prevent further growth
2759 * of the memory or swap footprints.
2760 *
2761 * Target some best-effort fairness between the tasks,
2762 * and distribute reclaim work and delay penalties
2763 * based on how much each task is actually allocating.
2764 */
9516a18a 2765 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2766 set_notify_resume(current);
2767 break;
2768 }
241994ed 2769 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2770
2771 return 0;
7a81b88c 2772}
8a9f3ccd 2773
c5c8b16b
MS
2774static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775 unsigned int nr_pages)
2776{
2777 if (mem_cgroup_is_root(memcg))
2778 return 0;
2779
2780 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781}
2782
f0e45fb4 2783#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2784static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2785{
ce00a967
JW
2786 if (mem_cgroup_is_root(memcg))
2787 return;
2788
3e32cb2e 2789 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2790 if (do_memsw_account())
3e32cb2e 2791 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2792}
f0e45fb4 2793#endif
d01dd17f 2794
d9eb1ea2 2795static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2796{
bcfe06bf 2797 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2798 /*
a5eb011a 2799 * Any of the following ensures page's memcg stability:
0a31bc97 2800 *
a0b5b414
JW
2801 * - the page lock
2802 * - LRU isolation
2803 * - lock_page_memcg()
2804 * - exclusive reference
0a31bc97 2805 */
bcfe06bf 2806 page->memcg_data = (unsigned long)memcg;
7a81b88c 2807}
66e1707b 2808
e74d2259
MS
2809static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810{
2811 struct mem_cgroup *memcg;
2812
2813 rcu_read_lock();
2814retry:
2815 memcg = obj_cgroup_memcg(objcg);
2816 if (unlikely(!css_tryget(&memcg->css)))
2817 goto retry;
2818 rcu_read_unlock();
2819
2820 return memcg;
2821}
2822
84c07d11 2823#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2824/*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
10befea9 2831int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2832 gfp_t gfp, bool new_page)
10befea9
RG
2833{
2834 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2835 unsigned long memcg_data;
10befea9
RG
2836 void *vec;
2837
41eb5df1 2838 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9
RG
2839 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840 page_to_nid(page));
2841 if (!vec)
2842 return -ENOMEM;
2843
2e9bd483
RG
2844 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845 if (new_page) {
2846 /*
2847 * If the slab page is brand new and nobody can yet access
2848 * it's memcg_data, no synchronization is required and
2849 * memcg_data can be simply assigned.
2850 */
2851 page->memcg_data = memcg_data;
2852 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853 /*
2854 * If the slab page is already in use, somebody can allocate
2855 * and assign obj_cgroups in parallel. In this case the existing
2856 * objcg vector should be reused.
2857 */
10befea9 2858 kfree(vec);
2e9bd483
RG
2859 return 0;
2860 }
10befea9 2861
2e9bd483 2862 kmemleak_not_leak(vec);
10befea9
RG
2863 return 0;
2864}
2865
8380ce47
RG
2866/*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
bcfe06bf
RG
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
8380ce47
RG
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879{
2880 struct page *page;
2881
2882 if (mem_cgroup_disabled())
2883 return NULL;
2884
2885 page = virt_to_head_page(p);
2886
2887 /*
9855609b
RG
2888 * Slab objects are accounted individually, not per-page.
2889 * Memcg membership data for each individual object is saved in
2890 * the page->obj_cgroups.
8380ce47 2891 */
270c6a71 2892 if (page_objcgs_check(page)) {
9855609b
RG
2893 struct obj_cgroup *objcg;
2894 unsigned int off;
2895
2896 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2897 objcg = page_objcgs(page)[off];
10befea9
RG
2898 if (objcg)
2899 return obj_cgroup_memcg(objcg);
2900
2901 return NULL;
9855609b 2902 }
8380ce47 2903
bcfe06bf
RG
2904 /*
2905 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906 * check above could fail because the object cgroups vector wasn't set
2907 * at that moment, but it can be set concurrently.
2908 * page_memcg_check(page) will guarantee that a proper memory
2909 * cgroup pointer or NULL will be returned.
2910 */
2911 return page_memcg_check(page);
8380ce47
RG
2912}
2913
bf4f0599
RG
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916 struct obj_cgroup *objcg = NULL;
2917 struct mem_cgroup *memcg;
2918
279c3393
RG
2919 if (memcg_kmem_bypass())
2920 return NULL;
2921
bf4f0599 2922 rcu_read_lock();
37d5985c
RG
2923 if (unlikely(active_memcg()))
2924 memcg = active_memcg();
bf4f0599
RG
2925 else
2926 memcg = mem_cgroup_from_task(current);
2927
2928 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929 objcg = rcu_dereference(memcg->objcg);
2930 if (objcg && obj_cgroup_tryget(objcg))
2931 break;
2f7659a3 2932 objcg = NULL;
bf4f0599
RG
2933 }
2934 rcu_read_unlock();
2935
2936 return objcg;
2937}
2938
f3bb3043 2939static int memcg_alloc_cache_id(void)
55007d84 2940{
f3bb3043
VD
2941 int id, size;
2942 int err;
2943
dbcf73e2 2944 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2945 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946 if (id < 0)
2947 return id;
55007d84 2948
dbcf73e2 2949 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2950 return id;
2951
2952 /*
2953 * There's no space for the new id in memcg_caches arrays,
2954 * so we have to grow them.
2955 */
05257a1a 2956 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2957
2958 size = 2 * (id + 1);
55007d84
GC
2959 if (size < MEMCG_CACHES_MIN_SIZE)
2960 size = MEMCG_CACHES_MIN_SIZE;
2961 else if (size > MEMCG_CACHES_MAX_SIZE)
2962 size = MEMCG_CACHES_MAX_SIZE;
2963
9855609b 2964 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2965 if (!err)
2966 memcg_nr_cache_ids = size;
2967
2968 up_write(&memcg_cache_ids_sem);
2969
f3bb3043 2970 if (err) {
dbcf73e2 2971 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2972 return err;
2973 }
2974 return id;
2975}
2976
2977static void memcg_free_cache_id(int id)
2978{
dbcf73e2 2979 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2980}
2981
f1286fae
MS
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
e74d2259
MS
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988 unsigned int nr_pages)
2989{
2990 struct mem_cgroup *memcg;
2991
2992 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 2993
f1286fae
MS
2994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995 page_counter_uncharge(&memcg->kmem, nr_pages);
2996 refill_stock(memcg, nr_pages);
e74d2259 2997
e74d2259 2998 css_put(&memcg->css);
e74d2259
MS
2999}
3000
f1286fae
MS
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
45264778 3004 * @gfp: reclaim mode
92d0510c 3005 * @nr_pages: number of pages to charge
45264778
VD
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
f1286fae
MS
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010 unsigned int nr_pages)
7ae1e1d0 3011{
f3ccb2c4 3012 struct page_counter *counter;
f1286fae 3013 struct mem_cgroup *memcg;
7ae1e1d0
GC
3014 int ret;
3015
f1286fae
MS
3016 memcg = get_mem_cgroup_from_objcg(objcg);
3017
c5c8b16b 3018 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3019 if (ret)
f1286fae 3020 goto out;
52c29b04
JW
3021
3022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3024
3025 /*
3026 * Enforce __GFP_NOFAIL allocation because callers are not
3027 * prepared to see failures and likely do not have any failure
3028 * handling code.
3029 */
3030 if (gfp & __GFP_NOFAIL) {
3031 page_counter_charge(&memcg->kmem, nr_pages);
f1286fae 3032 goto out;
e55d9d9b 3033 }
52c29b04 3034 cancel_charge(memcg, nr_pages);
f1286fae 3035 ret = -ENOMEM;
7ae1e1d0 3036 }
f1286fae
MS
3037out:
3038 css_put(&memcg->css);
4b13f64d 3039
f1286fae 3040 return ret;
4b13f64d
RG
3041}
3042
45264778 3043/**
f4b00eab 3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
f4b00eab 3051int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3052{
b4e0b68f 3053 struct obj_cgroup *objcg;
fcff7d7e 3054 int ret = 0;
7ae1e1d0 3055
b4e0b68f
MS
3056 objcg = get_obj_cgroup_from_current();
3057 if (objcg) {
3058 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3059 if (!ret) {
b4e0b68f 3060 page->memcg_data = (unsigned long)objcg |
18b2db3b 3061 MEMCG_DATA_KMEM;
1a3e1f40 3062 return 0;
4d96ba35 3063 }
b4e0b68f 3064 obj_cgroup_put(objcg);
c4159a75 3065 }
d05e83a6 3066 return ret;
7ae1e1d0 3067}
49a18eae 3068
45264778 3069/**
f4b00eab 3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3071 * @page: page to uncharge
3072 * @order: allocation order
3073 */
f4b00eab 3074void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3075{
b4e0b68f 3076 struct obj_cgroup *objcg;
f3ccb2c4 3077 unsigned int nr_pages = 1 << order;
7ae1e1d0 3078
b4e0b68f 3079 if (!PageMemcgKmem(page))
7ae1e1d0
GC
3080 return;
3081
b4e0b68f
MS
3082 objcg = __page_objcg(page);
3083 obj_cgroup_uncharge_pages(objcg, nr_pages);
bcfe06bf 3084 page->memcg_data = 0;
b4e0b68f 3085 obj_cgroup_put(objcg);
60d3fd32 3086}
bf4f0599 3087
68ac5b3c
WL
3088void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089 enum node_stat_item idx, int nr)
3090{
68ac5b3c 3091 unsigned long flags;
55927114 3092 struct obj_stock *stock = get_obj_stock(&flags);
68ac5b3c
WL
3093 int *bytes;
3094
68ac5b3c
WL
3095 /*
3096 * Save vmstat data in stock and skip vmstat array update unless
3097 * accumulating over a page of vmstat data or when pgdat or idx
3098 * changes.
3099 */
3100 if (stock->cached_objcg != objcg) {
3101 drain_obj_stock(stock);
3102 obj_cgroup_get(objcg);
3103 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105 stock->cached_objcg = objcg;
3106 stock->cached_pgdat = pgdat;
3107 } else if (stock->cached_pgdat != pgdat) {
3108 /* Flush the existing cached vmstat data */
3109 if (stock->nr_slab_reclaimable_b) {
3110 mod_objcg_mlstate(objcg, pgdat, NR_SLAB_RECLAIMABLE_B,
3111 stock->nr_slab_reclaimable_b);
3112 stock->nr_slab_reclaimable_b = 0;
3113 }
3114 if (stock->nr_slab_unreclaimable_b) {
3115 mod_objcg_mlstate(objcg, pgdat, NR_SLAB_UNRECLAIMABLE_B,
3116 stock->nr_slab_unreclaimable_b);
3117 stock->nr_slab_unreclaimable_b = 0;
3118 }
3119 stock->cached_pgdat = pgdat;
3120 }
3121
3122 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3123 : &stock->nr_slab_unreclaimable_b;
3124 /*
3125 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3126 * cached locally at least once before pushing it out.
3127 */
3128 if (!*bytes) {
3129 *bytes = nr;
3130 nr = 0;
3131 } else {
3132 *bytes += nr;
3133 if (abs(*bytes) > PAGE_SIZE) {
3134 nr = *bytes;
3135 *bytes = 0;
3136 } else {
3137 nr = 0;
3138 }
3139 }
3140 if (nr)
3141 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3142
55927114 3143 put_obj_stock(flags);
68ac5b3c
WL
3144}
3145
bf4f0599
RG
3146static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3147{
bf4f0599 3148 unsigned long flags;
55927114 3149 struct obj_stock *stock = get_obj_stock(&flags);
bf4f0599
RG
3150 bool ret = false;
3151
bf4f0599
RG
3152 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3153 stock->nr_bytes -= nr_bytes;
3154 ret = true;
3155 }
3156
55927114 3157 put_obj_stock(flags);
bf4f0599
RG
3158
3159 return ret;
3160}
3161
55927114 3162static void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
3163{
3164 struct obj_cgroup *old = stock->cached_objcg;
3165
3166 if (!old)
3167 return;
3168
3169 if (stock->nr_bytes) {
3170 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3171 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3172
e74d2259
MS
3173 if (nr_pages)
3174 obj_cgroup_uncharge_pages(old, nr_pages);
bf4f0599
RG
3175
3176 /*
3177 * The leftover is flushed to the centralized per-memcg value.
3178 * On the next attempt to refill obj stock it will be moved
3179 * to a per-cpu stock (probably, on an other CPU), see
3180 * refill_obj_stock().
3181 *
3182 * How often it's flushed is a trade-off between the memory
3183 * limit enforcement accuracy and potential CPU contention,
3184 * so it might be changed in the future.
3185 */
3186 atomic_add(nr_bytes, &old->nr_charged_bytes);
3187 stock->nr_bytes = 0;
3188 }
3189
68ac5b3c
WL
3190 /*
3191 * Flush the vmstat data in current stock
3192 */
3193 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3194 if (stock->nr_slab_reclaimable_b) {
3195 mod_objcg_mlstate(old, stock->cached_pgdat,
3196 NR_SLAB_RECLAIMABLE_B,
3197 stock->nr_slab_reclaimable_b);
3198 stock->nr_slab_reclaimable_b = 0;
3199 }
3200 if (stock->nr_slab_unreclaimable_b) {
3201 mod_objcg_mlstate(old, stock->cached_pgdat,
3202 NR_SLAB_UNRECLAIMABLE_B,
3203 stock->nr_slab_unreclaimable_b);
3204 stock->nr_slab_unreclaimable_b = 0;
3205 }
3206 stock->cached_pgdat = NULL;
3207 }
3208
bf4f0599
RG
3209 obj_cgroup_put(old);
3210 stock->cached_objcg = NULL;
3211}
3212
3213static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3214 struct mem_cgroup *root_memcg)
3215{
3216 struct mem_cgroup *memcg;
3217
55927114
WL
3218 if (in_task() && stock->task_obj.cached_objcg) {
3219 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3220 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3221 return true;
3222 }
3223 if (stock->irq_obj.cached_objcg) {
3224 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
bf4f0599
RG
3225 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3226 return true;
3227 }
3228
3229 return false;
3230}
3231
5387c904
WL
3232static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3233 bool allow_uncharge)
bf4f0599 3234{
bf4f0599 3235 unsigned long flags;
55927114 3236 struct obj_stock *stock = get_obj_stock(&flags);
5387c904 3237 unsigned int nr_pages = 0;
bf4f0599 3238
bf4f0599
RG
3239 if (stock->cached_objcg != objcg) { /* reset if necessary */
3240 drain_obj_stock(stock);
3241 obj_cgroup_get(objcg);
3242 stock->cached_objcg = objcg;
5387c904
WL
3243 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3244 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3245 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3246 }
3247 stock->nr_bytes += nr_bytes;
3248
5387c904
WL
3249 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3250 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3251 stock->nr_bytes &= (PAGE_SIZE - 1);
3252 }
bf4f0599 3253
55927114 3254 put_obj_stock(flags);
5387c904
WL
3255
3256 if (nr_pages)
3257 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3258}
3259
3260int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3261{
bf4f0599
RG
3262 unsigned int nr_pages, nr_bytes;
3263 int ret;
3264
3265 if (consume_obj_stock(objcg, size))
3266 return 0;
3267
3268 /*
5387c904 3269 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3270 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3271 * flushing objcg->nr_charged_bytes requires two atomic
3272 * operations, and objcg->nr_charged_bytes can't be big.
3273 * The shared objcg->nr_charged_bytes can also become a
3274 * performance bottleneck if all tasks of the same memcg are
3275 * trying to update it. So it's better to ignore it and try
3276 * grab some new pages. The stock's nr_bytes will be flushed to
3277 * objcg->nr_charged_bytes later on when objcg changes.
3278 *
3279 * The stock's nr_bytes may contain enough pre-charged bytes
3280 * to allow one less page from being charged, but we can't rely
3281 * on the pre-charged bytes not being changed outside of
3282 * consume_obj_stock() or refill_obj_stock(). So ignore those
3283 * pre-charged bytes as well when charging pages. To avoid a
3284 * page uncharge right after a page charge, we set the
3285 * allow_uncharge flag to false when calling refill_obj_stock()
3286 * to temporarily allow the pre-charged bytes to exceed the page
3287 * size limit. The maximum reachable value of the pre-charged
3288 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3289 * race.
bf4f0599 3290 */
bf4f0599
RG
3291 nr_pages = size >> PAGE_SHIFT;
3292 nr_bytes = size & (PAGE_SIZE - 1);
3293
3294 if (nr_bytes)
3295 nr_pages += 1;
3296
e74d2259 3297 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3298 if (!ret && nr_bytes)
5387c904 3299 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3300
bf4f0599
RG
3301 return ret;
3302}
3303
3304void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3305{
5387c904 3306 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3307}
3308
84c07d11 3309#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3310
ca3e0214 3311/*
be6c8982 3312 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3313 */
be6c8982 3314void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3315{
bcfe06bf 3316 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3317 int i;
ca3e0214 3318
be6c8982 3319 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3320 return;
b070e65c 3321
be6c8982
ZG
3322 for (i = 1; i < nr; i++)
3323 head[i].memcg_data = head->memcg_data;
b4e0b68f
MS
3324
3325 if (PageMemcgKmem(head))
3326 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3327 else
3328 css_get_many(&memcg->css, nr - 1);
ca3e0214 3329}
ca3e0214 3330
c255a458 3331#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3332/**
3333 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3334 * @entry: swap entry to be moved
3335 * @from: mem_cgroup which the entry is moved from
3336 * @to: mem_cgroup which the entry is moved to
3337 *
3338 * It succeeds only when the swap_cgroup's record for this entry is the same
3339 * as the mem_cgroup's id of @from.
3340 *
3341 * Returns 0 on success, -EINVAL on failure.
3342 *
3e32cb2e 3343 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3344 * both res and memsw, and called css_get().
3345 */
3346static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3347 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3348{
3349 unsigned short old_id, new_id;
3350
34c00c31
LZ
3351 old_id = mem_cgroup_id(from);
3352 new_id = mem_cgroup_id(to);
02491447
DN
3353
3354 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3355 mod_memcg_state(from, MEMCG_SWAP, -1);
3356 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3357 return 0;
3358 }
3359 return -EINVAL;
3360}
3361#else
3362static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3363 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3364{
3365 return -EINVAL;
3366}
8c7c6e34 3367#endif
d13d1443 3368
bbec2e15 3369static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3370
bbec2e15
RG
3371static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3372 unsigned long max, bool memsw)
628f4235 3373{
3e32cb2e 3374 bool enlarge = false;
bb4a7ea2 3375 bool drained = false;
3e32cb2e 3376 int ret;
c054a78c
YZ
3377 bool limits_invariant;
3378 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3379
3e32cb2e 3380 do {
628f4235
KH
3381 if (signal_pending(current)) {
3382 ret = -EINTR;
3383 break;
3384 }
3e32cb2e 3385
bbec2e15 3386 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3387 /*
3388 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3389 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3390 */
15b42562 3391 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3392 max <= memcg->memsw.max;
c054a78c 3393 if (!limits_invariant) {
bbec2e15 3394 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3395 ret = -EINVAL;
8c7c6e34
KH
3396 break;
3397 }
bbec2e15 3398 if (max > counter->max)
3e32cb2e 3399 enlarge = true;
bbec2e15
RG
3400 ret = page_counter_set_max(counter, max);
3401 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3402
3403 if (!ret)
3404 break;
3405
bb4a7ea2
SB
3406 if (!drained) {
3407 drain_all_stock(memcg);
3408 drained = true;
3409 continue;
3410 }
3411
1ab5c056
AR
3412 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3413 GFP_KERNEL, !memsw)) {
3414 ret = -EBUSY;
3415 break;
3416 }
3417 } while (true);
3e32cb2e 3418
3c11ecf4
KH
3419 if (!ret && enlarge)
3420 memcg_oom_recover(memcg);
3e32cb2e 3421
628f4235
KH
3422 return ret;
3423}
3424
ef8f2327 3425unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3426 gfp_t gfp_mask,
3427 unsigned long *total_scanned)
3428{
3429 unsigned long nr_reclaimed = 0;
ef8f2327 3430 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3431 unsigned long reclaimed;
3432 int loop = 0;
ef8f2327 3433 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3434 unsigned long excess;
0608f43d
AM
3435 unsigned long nr_scanned;
3436
3437 if (order > 0)
3438 return 0;
3439
ef8f2327 3440 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3441
3442 /*
3443 * Do not even bother to check the largest node if the root
3444 * is empty. Do it lockless to prevent lock bouncing. Races
3445 * are acceptable as soft limit is best effort anyway.
3446 */
bfc7228b 3447 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3448 return 0;
3449
0608f43d
AM
3450 /*
3451 * This loop can run a while, specially if mem_cgroup's continuously
3452 * keep exceeding their soft limit and putting the system under
3453 * pressure
3454 */
3455 do {
3456 if (next_mz)
3457 mz = next_mz;
3458 else
3459 mz = mem_cgroup_largest_soft_limit_node(mctz);
3460 if (!mz)
3461 break;
3462
3463 nr_scanned = 0;
ef8f2327 3464 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3465 gfp_mask, &nr_scanned);
3466 nr_reclaimed += reclaimed;
3467 *total_scanned += nr_scanned;
0a31bc97 3468 spin_lock_irq(&mctz->lock);
bc2f2e7f 3469 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3470
3471 /*
3472 * If we failed to reclaim anything from this memory cgroup
3473 * it is time to move on to the next cgroup
3474 */
3475 next_mz = NULL;
bc2f2e7f
VD
3476 if (!reclaimed)
3477 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3478
3e32cb2e 3479 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3480 /*
3481 * One school of thought says that we should not add
3482 * back the node to the tree if reclaim returns 0.
3483 * But our reclaim could return 0, simply because due
3484 * to priority we are exposing a smaller subset of
3485 * memory to reclaim from. Consider this as a longer
3486 * term TODO.
3487 */
3488 /* If excess == 0, no tree ops */
cf2c8127 3489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3490 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3491 css_put(&mz->memcg->css);
3492 loop++;
3493 /*
3494 * Could not reclaim anything and there are no more
3495 * mem cgroups to try or we seem to be looping without
3496 * reclaiming anything.
3497 */
3498 if (!nr_reclaimed &&
3499 (next_mz == NULL ||
3500 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3501 break;
3502 } while (!nr_reclaimed);
3503 if (next_mz)
3504 css_put(&next_mz->memcg->css);
3505 return nr_reclaimed;
3506}
3507
c26251f9 3508/*
51038171 3509 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3510 *
3511 * Caller is responsible for holding css reference for memcg.
3512 */
3513static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3514{
d977aa93 3515 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3516
c1e862c1
KH
3517 /* we call try-to-free pages for make this cgroup empty */
3518 lru_add_drain_all();
d12c60f6
JS
3519
3520 drain_all_stock(memcg);
3521
f817ed48 3522 /* try to free all pages in this cgroup */
3e32cb2e 3523 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3524 int progress;
c1e862c1 3525
c26251f9
MH
3526 if (signal_pending(current))
3527 return -EINTR;
3528
b70a2a21
JW
3529 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3530 GFP_KERNEL, true);
c1e862c1 3531 if (!progress) {
f817ed48 3532 nr_retries--;
c1e862c1 3533 /* maybe some writeback is necessary */
8aa7e847 3534 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3535 }
f817ed48
KH
3536
3537 }
ab5196c2
MH
3538
3539 return 0;
cc847582
KH
3540}
3541
6770c64e
TH
3542static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3543 char *buf, size_t nbytes,
3544 loff_t off)
c1e862c1 3545{
6770c64e 3546 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3547
d8423011
MH
3548 if (mem_cgroup_is_root(memcg))
3549 return -EINVAL;
6770c64e 3550 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3551}
3552
182446d0
TH
3553static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3554 struct cftype *cft)
18f59ea7 3555{
bef8620c 3556 return 1;
18f59ea7
BS
3557}
3558
182446d0
TH
3559static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3560 struct cftype *cft, u64 val)
18f59ea7 3561{
bef8620c 3562 if (val == 1)
0b8f73e1 3563 return 0;
567fb435 3564
bef8620c
RG
3565 pr_warn_once("Non-hierarchical mode is deprecated. "
3566 "Please report your usecase to linux-mm@kvack.org if you "
3567 "depend on this functionality.\n");
567fb435 3568
bef8620c 3569 return -EINVAL;
18f59ea7
BS
3570}
3571
6f646156 3572static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3573{
42a30035 3574 unsigned long val;
ce00a967 3575
3e32cb2e 3576 if (mem_cgroup_is_root(memcg)) {
2d146aa3 3577 cgroup_rstat_flush(memcg->css.cgroup);
0d1c2072 3578 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3579 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3580 if (swap)
3581 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3582 } else {
ce00a967 3583 if (!swap)
3e32cb2e 3584 val = page_counter_read(&memcg->memory);
ce00a967 3585 else
3e32cb2e 3586 val = page_counter_read(&memcg->memsw);
ce00a967 3587 }
c12176d3 3588 return val;
ce00a967
JW
3589}
3590
3e32cb2e
JW
3591enum {
3592 RES_USAGE,
3593 RES_LIMIT,
3594 RES_MAX_USAGE,
3595 RES_FAILCNT,
3596 RES_SOFT_LIMIT,
3597};
ce00a967 3598
791badbd 3599static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3600 struct cftype *cft)
8cdea7c0 3601{
182446d0 3602 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3603 struct page_counter *counter;
af36f906 3604
3e32cb2e 3605 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3606 case _MEM:
3e32cb2e
JW
3607 counter = &memcg->memory;
3608 break;
8c7c6e34 3609 case _MEMSWAP:
3e32cb2e
JW
3610 counter = &memcg->memsw;
3611 break;
510fc4e1 3612 case _KMEM:
3e32cb2e 3613 counter = &memcg->kmem;
510fc4e1 3614 break;
d55f90bf 3615 case _TCP:
0db15298 3616 counter = &memcg->tcpmem;
d55f90bf 3617 break;
8c7c6e34
KH
3618 default:
3619 BUG();
8c7c6e34 3620 }
3e32cb2e
JW
3621
3622 switch (MEMFILE_ATTR(cft->private)) {
3623 case RES_USAGE:
3624 if (counter == &memcg->memory)
c12176d3 3625 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3626 if (counter == &memcg->memsw)
c12176d3 3627 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3628 return (u64)page_counter_read(counter) * PAGE_SIZE;
3629 case RES_LIMIT:
bbec2e15 3630 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3631 case RES_MAX_USAGE:
3632 return (u64)counter->watermark * PAGE_SIZE;
3633 case RES_FAILCNT:
3634 return counter->failcnt;
3635 case RES_SOFT_LIMIT:
3636 return (u64)memcg->soft_limit * PAGE_SIZE;
3637 default:
3638 BUG();
3639 }
8cdea7c0 3640}
510fc4e1 3641
84c07d11 3642#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3643static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3644{
bf4f0599 3645 struct obj_cgroup *objcg;
d6441637
VD
3646 int memcg_id;
3647
b313aeee
VD
3648 if (cgroup_memory_nokmem)
3649 return 0;
3650
2a4db7eb 3651 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3652 BUG_ON(memcg->kmem_state);
d6441637 3653
f3bb3043 3654 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3655 if (memcg_id < 0)
3656 return memcg_id;
d6441637 3657
bf4f0599
RG
3658 objcg = obj_cgroup_alloc();
3659 if (!objcg) {
3660 memcg_free_cache_id(memcg_id);
3661 return -ENOMEM;
3662 }
3663 objcg->memcg = memcg;
3664 rcu_assign_pointer(memcg->objcg, objcg);
3665
d648bcc7
RG
3666 static_branch_enable(&memcg_kmem_enabled_key);
3667
900a38f0 3668 memcg->kmemcg_id = memcg_id;
567e9ab2 3669 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3670
3671 return 0;
d6441637
VD
3672}
3673
8e0a8912
JW
3674static void memcg_offline_kmem(struct mem_cgroup *memcg)
3675{
3676 struct cgroup_subsys_state *css;
3677 struct mem_cgroup *parent, *child;
3678 int kmemcg_id;
3679
3680 if (memcg->kmem_state != KMEM_ONLINE)
3681 return;
9855609b 3682
8e0a8912
JW
3683 memcg->kmem_state = KMEM_ALLOCATED;
3684
8e0a8912
JW
3685 parent = parent_mem_cgroup(memcg);
3686 if (!parent)
3687 parent = root_mem_cgroup;
3688
bf4f0599 3689 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3690
3691 kmemcg_id = memcg->kmemcg_id;
3692 BUG_ON(kmemcg_id < 0);
3693
8e0a8912
JW
3694 /*
3695 * Change kmemcg_id of this cgroup and all its descendants to the
3696 * parent's id, and then move all entries from this cgroup's list_lrus
3697 * to ones of the parent. After we have finished, all list_lrus
3698 * corresponding to this cgroup are guaranteed to remain empty. The
3699 * ordering is imposed by list_lru_node->lock taken by
3700 * memcg_drain_all_list_lrus().
3701 */
3a06bb78 3702 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3703 css_for_each_descendant_pre(css, &memcg->css) {
3704 child = mem_cgroup_from_css(css);
3705 BUG_ON(child->kmemcg_id != kmemcg_id);
3706 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3707 }
3a06bb78
TH
3708 rcu_read_unlock();
3709
9bec5c35 3710 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3711
3712 memcg_free_cache_id(kmemcg_id);
3713}
3714
3715static void memcg_free_kmem(struct mem_cgroup *memcg)
3716{
0b8f73e1
JW
3717 /* css_alloc() failed, offlining didn't happen */
3718 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3719 memcg_offline_kmem(memcg);
8e0a8912 3720}
d6441637 3721#else
0b8f73e1 3722static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3723{
3724 return 0;
3725}
3726static void memcg_offline_kmem(struct mem_cgroup *memcg)
3727{
3728}
3729static void memcg_free_kmem(struct mem_cgroup *memcg)
3730{
3731}
84c07d11 3732#endif /* CONFIG_MEMCG_KMEM */
127424c8 3733
bbec2e15
RG
3734static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3735 unsigned long max)
d6441637 3736{
b313aeee 3737 int ret;
127424c8 3738
bbec2e15
RG
3739 mutex_lock(&memcg_max_mutex);
3740 ret = page_counter_set_max(&memcg->kmem, max);
3741 mutex_unlock(&memcg_max_mutex);
127424c8 3742 return ret;
d6441637 3743}
510fc4e1 3744
bbec2e15 3745static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3746{
3747 int ret;
3748
bbec2e15 3749 mutex_lock(&memcg_max_mutex);
d55f90bf 3750
bbec2e15 3751 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3752 if (ret)
3753 goto out;
3754
0db15298 3755 if (!memcg->tcpmem_active) {
d55f90bf
VD
3756 /*
3757 * The active flag needs to be written after the static_key
3758 * update. This is what guarantees that the socket activation
2d758073
JW
3759 * function is the last one to run. See mem_cgroup_sk_alloc()
3760 * for details, and note that we don't mark any socket as
3761 * belonging to this memcg until that flag is up.
d55f90bf
VD
3762 *
3763 * We need to do this, because static_keys will span multiple
3764 * sites, but we can't control their order. If we mark a socket
3765 * as accounted, but the accounting functions are not patched in
3766 * yet, we'll lose accounting.
3767 *
2d758073 3768 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3769 * because when this value change, the code to process it is not
3770 * patched in yet.
3771 */
3772 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3773 memcg->tcpmem_active = true;
d55f90bf
VD
3774 }
3775out:
bbec2e15 3776 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3777 return ret;
3778}
d55f90bf 3779
628f4235
KH
3780/*
3781 * The user of this function is...
3782 * RES_LIMIT.
3783 */
451af504
TH
3784static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3785 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3786{
451af504 3787 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3788 unsigned long nr_pages;
628f4235
KH
3789 int ret;
3790
451af504 3791 buf = strstrip(buf);
650c5e56 3792 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3793 if (ret)
3794 return ret;
af36f906 3795
3e32cb2e 3796 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3797 case RES_LIMIT:
4b3bde4c
BS
3798 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3799 ret = -EINVAL;
3800 break;
3801 }
3e32cb2e
JW
3802 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3803 case _MEM:
bbec2e15 3804 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3805 break;
3e32cb2e 3806 case _MEMSWAP:
bbec2e15 3807 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3808 break;
3e32cb2e 3809 case _KMEM:
0158115f
MH
3810 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3811 "Please report your usecase to linux-mm@kvack.org if you "
3812 "depend on this functionality.\n");
bbec2e15 3813 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3814 break;
d55f90bf 3815 case _TCP:
bbec2e15 3816 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3817 break;
3e32cb2e 3818 }
296c81d8 3819 break;
3e32cb2e
JW
3820 case RES_SOFT_LIMIT:
3821 memcg->soft_limit = nr_pages;
3822 ret = 0;
628f4235
KH
3823 break;
3824 }
451af504 3825 return ret ?: nbytes;
8cdea7c0
BS
3826}
3827
6770c64e
TH
3828static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3829 size_t nbytes, loff_t off)
c84872e1 3830{
6770c64e 3831 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3832 struct page_counter *counter;
c84872e1 3833
3e32cb2e
JW
3834 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3835 case _MEM:
3836 counter = &memcg->memory;
3837 break;
3838 case _MEMSWAP:
3839 counter = &memcg->memsw;
3840 break;
3841 case _KMEM:
3842 counter = &memcg->kmem;
3843 break;
d55f90bf 3844 case _TCP:
0db15298 3845 counter = &memcg->tcpmem;
d55f90bf 3846 break;
3e32cb2e
JW
3847 default:
3848 BUG();
3849 }
af36f906 3850
3e32cb2e 3851 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3852 case RES_MAX_USAGE:
3e32cb2e 3853 page_counter_reset_watermark(counter);
29f2a4da
PE
3854 break;
3855 case RES_FAILCNT:
3e32cb2e 3856 counter->failcnt = 0;
29f2a4da 3857 break;
3e32cb2e
JW
3858 default:
3859 BUG();
29f2a4da 3860 }
f64c3f54 3861
6770c64e 3862 return nbytes;
c84872e1
PE
3863}
3864
182446d0 3865static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3866 struct cftype *cft)
3867{
182446d0 3868 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3869}
3870
02491447 3871#ifdef CONFIG_MMU
182446d0 3872static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3873 struct cftype *cft, u64 val)
3874{
182446d0 3875 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3876
1dfab5ab 3877 if (val & ~MOVE_MASK)
7dc74be0 3878 return -EINVAL;
ee5e8472 3879
7dc74be0 3880 /*
ee5e8472
GC
3881 * No kind of locking is needed in here, because ->can_attach() will
3882 * check this value once in the beginning of the process, and then carry
3883 * on with stale data. This means that changes to this value will only
3884 * affect task migrations starting after the change.
7dc74be0 3885 */
c0ff4b85 3886 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3887 return 0;
3888}
02491447 3889#else
182446d0 3890static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3891 struct cftype *cft, u64 val)
3892{
3893 return -ENOSYS;
3894}
3895#endif
7dc74be0 3896
406eb0c9 3897#ifdef CONFIG_NUMA
113b7dfd
JW
3898
3899#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3900#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3901#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3902
3903static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3904 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3905{
867e5e1d 3906 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3907 unsigned long nr = 0;
3908 enum lru_list lru;
3909
3910 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3911
3912 for_each_lru(lru) {
3913 if (!(BIT(lru) & lru_mask))
3914 continue;
dd8657b6
SB
3915 if (tree)
3916 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3917 else
3918 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3919 }
3920 return nr;
3921}
3922
3923static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3924 unsigned int lru_mask,
3925 bool tree)
113b7dfd
JW
3926{
3927 unsigned long nr = 0;
3928 enum lru_list lru;
3929
3930 for_each_lru(lru) {
3931 if (!(BIT(lru) & lru_mask))
3932 continue;
dd8657b6
SB
3933 if (tree)
3934 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3935 else
3936 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3937 }
3938 return nr;
3939}
3940
2da8ca82 3941static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3942{
25485de6
GT
3943 struct numa_stat {
3944 const char *name;
3945 unsigned int lru_mask;
3946 };
3947
3948 static const struct numa_stat stats[] = {
3949 { "total", LRU_ALL },
3950 { "file", LRU_ALL_FILE },
3951 { "anon", LRU_ALL_ANON },
3952 { "unevictable", BIT(LRU_UNEVICTABLE) },
3953 };
3954 const struct numa_stat *stat;
406eb0c9 3955 int nid;
aa9694bb 3956 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3957
2d146aa3
JW
3958 cgroup_rstat_flush(memcg->css.cgroup);
3959
25485de6 3960 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3961 seq_printf(m, "%s=%lu", stat->name,
3962 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3963 false));
3964 for_each_node_state(nid, N_MEMORY)
3965 seq_printf(m, " N%d=%lu", nid,
3966 mem_cgroup_node_nr_lru_pages(memcg, nid,
3967 stat->lru_mask, false));
25485de6 3968 seq_putc(m, '\n');
406eb0c9 3969 }
406eb0c9 3970
071aee13 3971 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3972
3973 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3974 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3975 true));
3976 for_each_node_state(nid, N_MEMORY)
3977 seq_printf(m, " N%d=%lu", nid,
3978 mem_cgroup_node_nr_lru_pages(memcg, nid,
3979 stat->lru_mask, true));
071aee13 3980 seq_putc(m, '\n');
406eb0c9 3981 }
406eb0c9 3982
406eb0c9
YH
3983 return 0;
3984}
3985#endif /* CONFIG_NUMA */
3986
c8713d0b 3987static const unsigned int memcg1_stats[] = {
0d1c2072 3988 NR_FILE_PAGES,
be5d0a74 3989 NR_ANON_MAPPED,
468c3982
JW
3990#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3991 NR_ANON_THPS,
3992#endif
c8713d0b
JW
3993 NR_SHMEM,
3994 NR_FILE_MAPPED,
3995 NR_FILE_DIRTY,
3996 NR_WRITEBACK,
3997 MEMCG_SWAP,
3998};
3999
4000static const char *const memcg1_stat_names[] = {
4001 "cache",
4002 "rss",
468c3982 4003#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4004 "rss_huge",
468c3982 4005#endif
c8713d0b
JW
4006 "shmem",
4007 "mapped_file",
4008 "dirty",
4009 "writeback",
4010 "swap",
4011};
4012
df0e53d0 4013/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4014static const unsigned int memcg1_events[] = {
df0e53d0
JW
4015 PGPGIN,
4016 PGPGOUT,
4017 PGFAULT,
4018 PGMAJFAULT,
4019};
4020
2da8ca82 4021static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4022{
aa9694bb 4023 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4024 unsigned long memory, memsw;
af7c4b0e
JW
4025 struct mem_cgroup *mi;
4026 unsigned int i;
406eb0c9 4027
71cd3113 4028 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4029
2d146aa3
JW
4030 cgroup_rstat_flush(memcg->css.cgroup);
4031
71cd3113 4032 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4033 unsigned long nr;
4034
71cd3113 4035 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4036 continue;
468c3982 4037 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 4038 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4039 }
7b854121 4040
df0e53d0 4041 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4042 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4043 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4044
4045 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4046 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4047 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4048 PAGE_SIZE);
af7c4b0e 4049
14067bb3 4050 /* Hierarchical information */
3e32cb2e
JW
4051 memory = memsw = PAGE_COUNTER_MAX;
4052 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4053 memory = min(memory, READ_ONCE(mi->memory.max));
4054 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4055 }
3e32cb2e
JW
4056 seq_printf(m, "hierarchical_memory_limit %llu\n",
4057 (u64)memory * PAGE_SIZE);
7941d214 4058 if (do_memsw_account())
3e32cb2e
JW
4059 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4060 (u64)memsw * PAGE_SIZE);
7f016ee8 4061
8de7ecc6 4062 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4063 unsigned long nr;
4064
71cd3113 4065 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4066 continue;
7de2e9f1 4067 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4068 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4069 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4070 }
4071
8de7ecc6 4072 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4073 seq_printf(m, "total_%s %llu\n",
4074 vm_event_name(memcg1_events[i]),
dd923990 4075 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4076
8de7ecc6 4077 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4078 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4079 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4080 PAGE_SIZE);
14067bb3 4081
7f016ee8 4082#ifdef CONFIG_DEBUG_VM
7f016ee8 4083 {
ef8f2327
MG
4084 pg_data_t *pgdat;
4085 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4086 unsigned long anon_cost = 0;
4087 unsigned long file_cost = 0;
7f016ee8 4088
ef8f2327 4089 for_each_online_pgdat(pgdat) {
a3747b53 4090 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4091
1431d4d1
JW
4092 anon_cost += mz->lruvec.anon_cost;
4093 file_cost += mz->lruvec.file_cost;
ef8f2327 4094 }
1431d4d1
JW
4095 seq_printf(m, "anon_cost %lu\n", anon_cost);
4096 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4097 }
4098#endif
4099
d2ceb9b7
KH
4100 return 0;
4101}
4102
182446d0
TH
4103static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4104 struct cftype *cft)
a7885eb8 4105{
182446d0 4106 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4107
1f4c025b 4108 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4109}
4110
182446d0
TH
4111static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4112 struct cftype *cft, u64 val)
a7885eb8 4113{
182446d0 4114 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4115
3dae7fec 4116 if (val > 100)
a7885eb8
KM
4117 return -EINVAL;
4118
a4792030 4119 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4120 memcg->swappiness = val;
4121 else
4122 vm_swappiness = val;
068b38c1 4123
a7885eb8
KM
4124 return 0;
4125}
4126
2e72b634
KS
4127static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4128{
4129 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4130 unsigned long usage;
2e72b634
KS
4131 int i;
4132
4133 rcu_read_lock();
4134 if (!swap)
2c488db2 4135 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4136 else
2c488db2 4137 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4138
4139 if (!t)
4140 goto unlock;
4141
ce00a967 4142 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4143
4144 /*
748dad36 4145 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4146 * If it's not true, a threshold was crossed after last
4147 * call of __mem_cgroup_threshold().
4148 */
5407a562 4149 i = t->current_threshold;
2e72b634
KS
4150
4151 /*
4152 * Iterate backward over array of thresholds starting from
4153 * current_threshold and check if a threshold is crossed.
4154 * If none of thresholds below usage is crossed, we read
4155 * only one element of the array here.
4156 */
4157 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4158 eventfd_signal(t->entries[i].eventfd, 1);
4159
4160 /* i = current_threshold + 1 */
4161 i++;
4162
4163 /*
4164 * Iterate forward over array of thresholds starting from
4165 * current_threshold+1 and check if a threshold is crossed.
4166 * If none of thresholds above usage is crossed, we read
4167 * only one element of the array here.
4168 */
4169 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4170 eventfd_signal(t->entries[i].eventfd, 1);
4171
4172 /* Update current_threshold */
5407a562 4173 t->current_threshold = i - 1;
2e72b634
KS
4174unlock:
4175 rcu_read_unlock();
4176}
4177
4178static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4179{
ad4ca5f4
KS
4180 while (memcg) {
4181 __mem_cgroup_threshold(memcg, false);
7941d214 4182 if (do_memsw_account())
ad4ca5f4
KS
4183 __mem_cgroup_threshold(memcg, true);
4184
4185 memcg = parent_mem_cgroup(memcg);
4186 }
2e72b634
KS
4187}
4188
4189static int compare_thresholds(const void *a, const void *b)
4190{
4191 const struct mem_cgroup_threshold *_a = a;
4192 const struct mem_cgroup_threshold *_b = b;
4193
2bff24a3
GT
4194 if (_a->threshold > _b->threshold)
4195 return 1;
4196
4197 if (_a->threshold < _b->threshold)
4198 return -1;
4199
4200 return 0;
2e72b634
KS
4201}
4202
c0ff4b85 4203static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4204{
4205 struct mem_cgroup_eventfd_list *ev;
4206
2bcf2e92
MH
4207 spin_lock(&memcg_oom_lock);
4208
c0ff4b85 4209 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4210 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4211
4212 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4213 return 0;
4214}
4215
c0ff4b85 4216static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4217{
7d74b06f
KH
4218 struct mem_cgroup *iter;
4219
c0ff4b85 4220 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4221 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4222}
4223
59b6f873 4224static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4225 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4226{
2c488db2
KS
4227 struct mem_cgroup_thresholds *thresholds;
4228 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4229 unsigned long threshold;
4230 unsigned long usage;
2c488db2 4231 int i, size, ret;
2e72b634 4232
650c5e56 4233 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4234 if (ret)
4235 return ret;
4236
4237 mutex_lock(&memcg->thresholds_lock);
2c488db2 4238
05b84301 4239 if (type == _MEM) {
2c488db2 4240 thresholds = &memcg->thresholds;
ce00a967 4241 usage = mem_cgroup_usage(memcg, false);
05b84301 4242 } else if (type == _MEMSWAP) {
2c488db2 4243 thresholds = &memcg->memsw_thresholds;
ce00a967 4244 usage = mem_cgroup_usage(memcg, true);
05b84301 4245 } else
2e72b634
KS
4246 BUG();
4247
2e72b634 4248 /* Check if a threshold crossed before adding a new one */
2c488db2 4249 if (thresholds->primary)
2e72b634
KS
4250 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4251
2c488db2 4252 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4253
4254 /* Allocate memory for new array of thresholds */
67b8046f 4255 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4256 if (!new) {
2e72b634
KS
4257 ret = -ENOMEM;
4258 goto unlock;
4259 }
2c488db2 4260 new->size = size;
2e72b634
KS
4261
4262 /* Copy thresholds (if any) to new array */
e90342e6
GS
4263 if (thresholds->primary)
4264 memcpy(new->entries, thresholds->primary->entries,
4265 flex_array_size(new, entries, size - 1));
2c488db2 4266
2e72b634 4267 /* Add new threshold */
2c488db2
KS
4268 new->entries[size - 1].eventfd = eventfd;
4269 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4270
4271 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4272 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4273 compare_thresholds, NULL);
4274
4275 /* Find current threshold */
2c488db2 4276 new->current_threshold = -1;
2e72b634 4277 for (i = 0; i < size; i++) {
748dad36 4278 if (new->entries[i].threshold <= usage) {
2e72b634 4279 /*
2c488db2
KS
4280 * new->current_threshold will not be used until
4281 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4282 * it here.
4283 */
2c488db2 4284 ++new->current_threshold;
748dad36
SZ
4285 } else
4286 break;
2e72b634
KS
4287 }
4288
2c488db2
KS
4289 /* Free old spare buffer and save old primary buffer as spare */
4290 kfree(thresholds->spare);
4291 thresholds->spare = thresholds->primary;
4292
4293 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4294
907860ed 4295 /* To be sure that nobody uses thresholds */
2e72b634
KS
4296 synchronize_rcu();
4297
2e72b634
KS
4298unlock:
4299 mutex_unlock(&memcg->thresholds_lock);
4300
4301 return ret;
4302}
4303
59b6f873 4304static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4305 struct eventfd_ctx *eventfd, const char *args)
4306{
59b6f873 4307 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4308}
4309
59b6f873 4310static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4311 struct eventfd_ctx *eventfd, const char *args)
4312{
59b6f873 4313 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4314}
4315
59b6f873 4316static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4317 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4318{
2c488db2
KS
4319 struct mem_cgroup_thresholds *thresholds;
4320 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4321 unsigned long usage;
7d36665a 4322 int i, j, size, entries;
2e72b634
KS
4323
4324 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4325
4326 if (type == _MEM) {
2c488db2 4327 thresholds = &memcg->thresholds;
ce00a967 4328 usage = mem_cgroup_usage(memcg, false);
05b84301 4329 } else if (type == _MEMSWAP) {
2c488db2 4330 thresholds = &memcg->memsw_thresholds;
ce00a967 4331 usage = mem_cgroup_usage(memcg, true);
05b84301 4332 } else
2e72b634
KS
4333 BUG();
4334
371528ca
AV
4335 if (!thresholds->primary)
4336 goto unlock;
4337
2e72b634
KS
4338 /* Check if a threshold crossed before removing */
4339 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4340
4341 /* Calculate new number of threshold */
7d36665a 4342 size = entries = 0;
2c488db2
KS
4343 for (i = 0; i < thresholds->primary->size; i++) {
4344 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4345 size++;
7d36665a
CX
4346 else
4347 entries++;
2e72b634
KS
4348 }
4349
2c488db2 4350 new = thresholds->spare;
907860ed 4351
7d36665a
CX
4352 /* If no items related to eventfd have been cleared, nothing to do */
4353 if (!entries)
4354 goto unlock;
4355
2e72b634
KS
4356 /* Set thresholds array to NULL if we don't have thresholds */
4357 if (!size) {
2c488db2
KS
4358 kfree(new);
4359 new = NULL;
907860ed 4360 goto swap_buffers;
2e72b634
KS
4361 }
4362
2c488db2 4363 new->size = size;
2e72b634
KS
4364
4365 /* Copy thresholds and find current threshold */
2c488db2
KS
4366 new->current_threshold = -1;
4367 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4368 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4369 continue;
4370
2c488db2 4371 new->entries[j] = thresholds->primary->entries[i];
748dad36 4372 if (new->entries[j].threshold <= usage) {
2e72b634 4373 /*
2c488db2 4374 * new->current_threshold will not be used
2e72b634
KS
4375 * until rcu_assign_pointer(), so it's safe to increment
4376 * it here.
4377 */
2c488db2 4378 ++new->current_threshold;
2e72b634
KS
4379 }
4380 j++;
4381 }
4382
907860ed 4383swap_buffers:
2c488db2
KS
4384 /* Swap primary and spare array */
4385 thresholds->spare = thresholds->primary;
8c757763 4386
2c488db2 4387 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4388
907860ed 4389 /* To be sure that nobody uses thresholds */
2e72b634 4390 synchronize_rcu();
6611d8d7
MC
4391
4392 /* If all events are unregistered, free the spare array */
4393 if (!new) {
4394 kfree(thresholds->spare);
4395 thresholds->spare = NULL;
4396 }
371528ca 4397unlock:
2e72b634 4398 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4399}
c1e862c1 4400
59b6f873 4401static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4402 struct eventfd_ctx *eventfd)
4403{
59b6f873 4404 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4405}
4406
59b6f873 4407static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4408 struct eventfd_ctx *eventfd)
4409{
59b6f873 4410 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4411}
4412
59b6f873 4413static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4414 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4415{
9490ff27 4416 struct mem_cgroup_eventfd_list *event;
9490ff27 4417
9490ff27
KH
4418 event = kmalloc(sizeof(*event), GFP_KERNEL);
4419 if (!event)
4420 return -ENOMEM;
4421
1af8efe9 4422 spin_lock(&memcg_oom_lock);
9490ff27
KH
4423
4424 event->eventfd = eventfd;
4425 list_add(&event->list, &memcg->oom_notify);
4426
4427 /* already in OOM ? */
c2b42d3c 4428 if (memcg->under_oom)
9490ff27 4429 eventfd_signal(eventfd, 1);
1af8efe9 4430 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4431
4432 return 0;
4433}
4434
59b6f873 4435static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4436 struct eventfd_ctx *eventfd)
9490ff27 4437{
9490ff27 4438 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4439
1af8efe9 4440 spin_lock(&memcg_oom_lock);
9490ff27 4441
c0ff4b85 4442 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4443 if (ev->eventfd == eventfd) {
4444 list_del(&ev->list);
4445 kfree(ev);
4446 }
4447 }
4448
1af8efe9 4449 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4450}
4451
2da8ca82 4452static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4453{
aa9694bb 4454 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4455
791badbd 4456 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4457 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4458 seq_printf(sf, "oom_kill %lu\n",
4459 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4460 return 0;
4461}
4462
182446d0 4463static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4464 struct cftype *cft, u64 val)
4465{
182446d0 4466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4467
4468 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4469 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4470 return -EINVAL;
4471
c0ff4b85 4472 memcg->oom_kill_disable = val;
4d845ebf 4473 if (!val)
c0ff4b85 4474 memcg_oom_recover(memcg);
3dae7fec 4475
3c11ecf4
KH
4476 return 0;
4477}
4478
52ebea74
TH
4479#ifdef CONFIG_CGROUP_WRITEBACK
4480
3a8e9ac8
TH
4481#include <trace/events/writeback.h>
4482
841710aa
TH
4483static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4484{
4485 return wb_domain_init(&memcg->cgwb_domain, gfp);
4486}
4487
4488static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4489{
4490 wb_domain_exit(&memcg->cgwb_domain);
4491}
4492
2529bb3a
TH
4493static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4494{
4495 wb_domain_size_changed(&memcg->cgwb_domain);
4496}
4497
841710aa
TH
4498struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4499{
4500 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4501
4502 if (!memcg->css.parent)
4503 return NULL;
4504
4505 return &memcg->cgwb_domain;
4506}
4507
c2aa723a
TH
4508/**
4509 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4510 * @wb: bdi_writeback in question
c5edf9cd
TH
4511 * @pfilepages: out parameter for number of file pages
4512 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4513 * @pdirty: out parameter for number of dirty pages
4514 * @pwriteback: out parameter for number of pages under writeback
4515 *
c5edf9cd
TH
4516 * Determine the numbers of file, headroom, dirty, and writeback pages in
4517 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4518 * is a bit more involved.
c2aa723a 4519 *
c5edf9cd
TH
4520 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4521 * headroom is calculated as the lowest headroom of itself and the
4522 * ancestors. Note that this doesn't consider the actual amount of
4523 * available memory in the system. The caller should further cap
4524 * *@pheadroom accordingly.
c2aa723a 4525 */
c5edf9cd
TH
4526void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4527 unsigned long *pheadroom, unsigned long *pdirty,
4528 unsigned long *pwriteback)
c2aa723a
TH
4529{
4530 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4531 struct mem_cgroup *parent;
c2aa723a 4532
2d146aa3 4533 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
c2aa723a 4534
2d146aa3
JW
4535 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4536 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4537 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4538 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4539
2d146aa3 4540 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4541 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4542 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4543 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4544 unsigned long used = page_counter_read(&memcg->memory);
4545
c5edf9cd 4546 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4547 memcg = parent;
4548 }
c2aa723a
TH
4549}
4550
97b27821
TH
4551/*
4552 * Foreign dirty flushing
4553 *
4554 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4555 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4556 * deliberate design decision because honoring per-page ownership in the
4557 * writeback path is complicated, may lead to higher CPU and IO overheads
4558 * and deemed unnecessary given that write-sharing an inode across
4559 * different cgroups isn't a common use-case.
4560 *
4561 * Combined with inode majority-writer ownership switching, this works well
4562 * enough in most cases but there are some pathological cases. For
4563 * example, let's say there are two cgroups A and B which keep writing to
4564 * different but confined parts of the same inode. B owns the inode and
4565 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4566 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4567 * triggering background writeback. A will be slowed down without a way to
4568 * make writeback of the dirty pages happen.
4569 *
f0953a1b 4570 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4571 * severely throttled after making some progress after each
f0953a1b 4572 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4573 * completely idle.
4574 *
4575 * Solving this problem completely requires matching the ownership tracking
4576 * granularities between memcg and writeback in either direction. However,
4577 * the more egregious behaviors can be avoided by simply remembering the
4578 * most recent foreign dirtying events and initiating remote flushes on
4579 * them when local writeback isn't enough to keep the memory clean enough.
4580 *
4581 * The following two functions implement such mechanism. When a foreign
4582 * page - a page whose memcg and writeback ownerships don't match - is
4583 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4584 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4585 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4586 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4587 * foreign bdi_writebacks which haven't expired. Both the numbers of
4588 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4589 * limited to MEMCG_CGWB_FRN_CNT.
4590 *
4591 * The mechanism only remembers IDs and doesn't hold any object references.
4592 * As being wrong occasionally doesn't matter, updates and accesses to the
4593 * records are lockless and racy.
4594 */
4595void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4596 struct bdi_writeback *wb)
4597{
bcfe06bf 4598 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4599 struct memcg_cgwb_frn *frn;
4600 u64 now = get_jiffies_64();
4601 u64 oldest_at = now;
4602 int oldest = -1;
4603 int i;
4604
3a8e9ac8
TH
4605 trace_track_foreign_dirty(page, wb);
4606
97b27821
TH
4607 /*
4608 * Pick the slot to use. If there is already a slot for @wb, keep
4609 * using it. If not replace the oldest one which isn't being
4610 * written out.
4611 */
4612 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4613 frn = &memcg->cgwb_frn[i];
4614 if (frn->bdi_id == wb->bdi->id &&
4615 frn->memcg_id == wb->memcg_css->id)
4616 break;
4617 if (time_before64(frn->at, oldest_at) &&
4618 atomic_read(&frn->done.cnt) == 1) {
4619 oldest = i;
4620 oldest_at = frn->at;
4621 }
4622 }
4623
4624 if (i < MEMCG_CGWB_FRN_CNT) {
4625 /*
4626 * Re-using an existing one. Update timestamp lazily to
4627 * avoid making the cacheline hot. We want them to be
4628 * reasonably up-to-date and significantly shorter than
4629 * dirty_expire_interval as that's what expires the record.
4630 * Use the shorter of 1s and dirty_expire_interval / 8.
4631 */
4632 unsigned long update_intv =
4633 min_t(unsigned long, HZ,
4634 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4635
4636 if (time_before64(frn->at, now - update_intv))
4637 frn->at = now;
4638 } else if (oldest >= 0) {
4639 /* replace the oldest free one */
4640 frn = &memcg->cgwb_frn[oldest];
4641 frn->bdi_id = wb->bdi->id;
4642 frn->memcg_id = wb->memcg_css->id;
4643 frn->at = now;
4644 }
4645}
4646
4647/* issue foreign writeback flushes for recorded foreign dirtying events */
4648void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4649{
4650 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4651 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4652 u64 now = jiffies_64;
4653 int i;
4654
4655 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4656 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4657
4658 /*
4659 * If the record is older than dirty_expire_interval,
4660 * writeback on it has already started. No need to kick it
4661 * off again. Also, don't start a new one if there's
4662 * already one in flight.
4663 */
4664 if (time_after64(frn->at, now - intv) &&
4665 atomic_read(&frn->done.cnt) == 1) {
4666 frn->at = 0;
3a8e9ac8 4667 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4668 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4669 WB_REASON_FOREIGN_FLUSH,
4670 &frn->done);
4671 }
4672 }
4673}
4674
841710aa
TH
4675#else /* CONFIG_CGROUP_WRITEBACK */
4676
4677static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4678{
4679 return 0;
4680}
4681
4682static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4683{
4684}
4685
2529bb3a
TH
4686static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4687{
4688}
4689
52ebea74
TH
4690#endif /* CONFIG_CGROUP_WRITEBACK */
4691
3bc942f3
TH
4692/*
4693 * DO NOT USE IN NEW FILES.
4694 *
4695 * "cgroup.event_control" implementation.
4696 *
4697 * This is way over-engineered. It tries to support fully configurable
4698 * events for each user. Such level of flexibility is completely
4699 * unnecessary especially in the light of the planned unified hierarchy.
4700 *
4701 * Please deprecate this and replace with something simpler if at all
4702 * possible.
4703 */
4704
79bd9814
TH
4705/*
4706 * Unregister event and free resources.
4707 *
4708 * Gets called from workqueue.
4709 */
3bc942f3 4710static void memcg_event_remove(struct work_struct *work)
79bd9814 4711{
3bc942f3
TH
4712 struct mem_cgroup_event *event =
4713 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4714 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4715
4716 remove_wait_queue(event->wqh, &event->wait);
4717
59b6f873 4718 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4719
4720 /* Notify userspace the event is going away. */
4721 eventfd_signal(event->eventfd, 1);
4722
4723 eventfd_ctx_put(event->eventfd);
4724 kfree(event);
59b6f873 4725 css_put(&memcg->css);
79bd9814
TH
4726}
4727
4728/*
a9a08845 4729 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4730 *
4731 * Called with wqh->lock held and interrupts disabled.
4732 */
ac6424b9 4733static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4734 int sync, void *key)
79bd9814 4735{
3bc942f3
TH
4736 struct mem_cgroup_event *event =
4737 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4738 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4739 __poll_t flags = key_to_poll(key);
79bd9814 4740
a9a08845 4741 if (flags & EPOLLHUP) {
79bd9814
TH
4742 /*
4743 * If the event has been detached at cgroup removal, we
4744 * can simply return knowing the other side will cleanup
4745 * for us.
4746 *
4747 * We can't race against event freeing since the other
4748 * side will require wqh->lock via remove_wait_queue(),
4749 * which we hold.
4750 */
fba94807 4751 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4752 if (!list_empty(&event->list)) {
4753 list_del_init(&event->list);
4754 /*
4755 * We are in atomic context, but cgroup_event_remove()
4756 * may sleep, so we have to call it in workqueue.
4757 */
4758 schedule_work(&event->remove);
4759 }
fba94807 4760 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4761 }
4762
4763 return 0;
4764}
4765
3bc942f3 4766static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4767 wait_queue_head_t *wqh, poll_table *pt)
4768{
3bc942f3
TH
4769 struct mem_cgroup_event *event =
4770 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4771
4772 event->wqh = wqh;
4773 add_wait_queue(wqh, &event->wait);
4774}
4775
4776/*
3bc942f3
TH
4777 * DO NOT USE IN NEW FILES.
4778 *
79bd9814
TH
4779 * Parse input and register new cgroup event handler.
4780 *
4781 * Input must be in format '<event_fd> <control_fd> <args>'.
4782 * Interpretation of args is defined by control file implementation.
4783 */
451af504
TH
4784static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4785 char *buf, size_t nbytes, loff_t off)
79bd9814 4786{
451af504 4787 struct cgroup_subsys_state *css = of_css(of);
fba94807 4788 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4789 struct mem_cgroup_event *event;
79bd9814
TH
4790 struct cgroup_subsys_state *cfile_css;
4791 unsigned int efd, cfd;
4792 struct fd efile;
4793 struct fd cfile;
fba94807 4794 const char *name;
79bd9814
TH
4795 char *endp;
4796 int ret;
4797
451af504
TH
4798 buf = strstrip(buf);
4799
4800 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4801 if (*endp != ' ')
4802 return -EINVAL;
451af504 4803 buf = endp + 1;
79bd9814 4804
451af504 4805 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4806 if ((*endp != ' ') && (*endp != '\0'))
4807 return -EINVAL;
451af504 4808 buf = endp + 1;
79bd9814
TH
4809
4810 event = kzalloc(sizeof(*event), GFP_KERNEL);
4811 if (!event)
4812 return -ENOMEM;
4813
59b6f873 4814 event->memcg = memcg;
79bd9814 4815 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4816 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4817 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4818 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4819
4820 efile = fdget(efd);
4821 if (!efile.file) {
4822 ret = -EBADF;
4823 goto out_kfree;
4824 }
4825
4826 event->eventfd = eventfd_ctx_fileget(efile.file);
4827 if (IS_ERR(event->eventfd)) {
4828 ret = PTR_ERR(event->eventfd);
4829 goto out_put_efile;
4830 }
4831
4832 cfile = fdget(cfd);
4833 if (!cfile.file) {
4834 ret = -EBADF;
4835 goto out_put_eventfd;
4836 }
4837
4838 /* the process need read permission on control file */
4839 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4840 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4841 if (ret < 0)
4842 goto out_put_cfile;
4843
fba94807
TH
4844 /*
4845 * Determine the event callbacks and set them in @event. This used
4846 * to be done via struct cftype but cgroup core no longer knows
4847 * about these events. The following is crude but the whole thing
4848 * is for compatibility anyway.
3bc942f3
TH
4849 *
4850 * DO NOT ADD NEW FILES.
fba94807 4851 */
b583043e 4852 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4853
4854 if (!strcmp(name, "memory.usage_in_bytes")) {
4855 event->register_event = mem_cgroup_usage_register_event;
4856 event->unregister_event = mem_cgroup_usage_unregister_event;
4857 } else if (!strcmp(name, "memory.oom_control")) {
4858 event->register_event = mem_cgroup_oom_register_event;
4859 event->unregister_event = mem_cgroup_oom_unregister_event;
4860 } else if (!strcmp(name, "memory.pressure_level")) {
4861 event->register_event = vmpressure_register_event;
4862 event->unregister_event = vmpressure_unregister_event;
4863 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4864 event->register_event = memsw_cgroup_usage_register_event;
4865 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4866 } else {
4867 ret = -EINVAL;
4868 goto out_put_cfile;
4869 }
4870
79bd9814 4871 /*
b5557c4c
TH
4872 * Verify @cfile should belong to @css. Also, remaining events are
4873 * automatically removed on cgroup destruction but the removal is
4874 * asynchronous, so take an extra ref on @css.
79bd9814 4875 */
b583043e 4876 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4877 &memory_cgrp_subsys);
79bd9814 4878 ret = -EINVAL;
5a17f543 4879 if (IS_ERR(cfile_css))
79bd9814 4880 goto out_put_cfile;
5a17f543
TH
4881 if (cfile_css != css) {
4882 css_put(cfile_css);
79bd9814 4883 goto out_put_cfile;
5a17f543 4884 }
79bd9814 4885
451af504 4886 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4887 if (ret)
4888 goto out_put_css;
4889
9965ed17 4890 vfs_poll(efile.file, &event->pt);
79bd9814 4891
fba94807
TH
4892 spin_lock(&memcg->event_list_lock);
4893 list_add(&event->list, &memcg->event_list);
4894 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4895
4896 fdput(cfile);
4897 fdput(efile);
4898
451af504 4899 return nbytes;
79bd9814
TH
4900
4901out_put_css:
b5557c4c 4902 css_put(css);
79bd9814
TH
4903out_put_cfile:
4904 fdput(cfile);
4905out_put_eventfd:
4906 eventfd_ctx_put(event->eventfd);
4907out_put_efile:
4908 fdput(efile);
4909out_kfree:
4910 kfree(event);
4911
4912 return ret;
4913}
4914
241994ed 4915static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4916 {
0eea1030 4917 .name = "usage_in_bytes",
8c7c6e34 4918 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4919 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4920 },
c84872e1
PE
4921 {
4922 .name = "max_usage_in_bytes",
8c7c6e34 4923 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4924 .write = mem_cgroup_reset,
791badbd 4925 .read_u64 = mem_cgroup_read_u64,
c84872e1 4926 },
8cdea7c0 4927 {
0eea1030 4928 .name = "limit_in_bytes",
8c7c6e34 4929 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4930 .write = mem_cgroup_write,
791badbd 4931 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4932 },
296c81d8
BS
4933 {
4934 .name = "soft_limit_in_bytes",
4935 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4936 .write = mem_cgroup_write,
791badbd 4937 .read_u64 = mem_cgroup_read_u64,
296c81d8 4938 },
8cdea7c0
BS
4939 {
4940 .name = "failcnt",
8c7c6e34 4941 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4942 .write = mem_cgroup_reset,
791badbd 4943 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4944 },
d2ceb9b7
KH
4945 {
4946 .name = "stat",
2da8ca82 4947 .seq_show = memcg_stat_show,
d2ceb9b7 4948 },
c1e862c1
KH
4949 {
4950 .name = "force_empty",
6770c64e 4951 .write = mem_cgroup_force_empty_write,
c1e862c1 4952 },
18f59ea7
BS
4953 {
4954 .name = "use_hierarchy",
4955 .write_u64 = mem_cgroup_hierarchy_write,
4956 .read_u64 = mem_cgroup_hierarchy_read,
4957 },
79bd9814 4958 {
3bc942f3 4959 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4960 .write = memcg_write_event_control,
7dbdb199 4961 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4962 },
a7885eb8
KM
4963 {
4964 .name = "swappiness",
4965 .read_u64 = mem_cgroup_swappiness_read,
4966 .write_u64 = mem_cgroup_swappiness_write,
4967 },
7dc74be0
DN
4968 {
4969 .name = "move_charge_at_immigrate",
4970 .read_u64 = mem_cgroup_move_charge_read,
4971 .write_u64 = mem_cgroup_move_charge_write,
4972 },
9490ff27
KH
4973 {
4974 .name = "oom_control",
2da8ca82 4975 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4976 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4977 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4978 },
70ddf637
AV
4979 {
4980 .name = "pressure_level",
70ddf637 4981 },
406eb0c9
YH
4982#ifdef CONFIG_NUMA
4983 {
4984 .name = "numa_stat",
2da8ca82 4985 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4986 },
4987#endif
510fc4e1
GC
4988 {
4989 .name = "kmem.limit_in_bytes",
4990 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4991 .write = mem_cgroup_write,
791badbd 4992 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4993 },
4994 {
4995 .name = "kmem.usage_in_bytes",
4996 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4997 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4998 },
4999 {
5000 .name = "kmem.failcnt",
5001 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5002 .write = mem_cgroup_reset,
791badbd 5003 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5004 },
5005 {
5006 .name = "kmem.max_usage_in_bytes",
5007 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5008 .write = mem_cgroup_reset,
791badbd 5009 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5010 },
a87425a3
YS
5011#if defined(CONFIG_MEMCG_KMEM) && \
5012 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5013 {
5014 .name = "kmem.slabinfo",
b047501c 5015 .seq_show = memcg_slab_show,
749c5415
GC
5016 },
5017#endif
d55f90bf
VD
5018 {
5019 .name = "kmem.tcp.limit_in_bytes",
5020 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5021 .write = mem_cgroup_write,
5022 .read_u64 = mem_cgroup_read_u64,
5023 },
5024 {
5025 .name = "kmem.tcp.usage_in_bytes",
5026 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5027 .read_u64 = mem_cgroup_read_u64,
5028 },
5029 {
5030 .name = "kmem.tcp.failcnt",
5031 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5032 .write = mem_cgroup_reset,
5033 .read_u64 = mem_cgroup_read_u64,
5034 },
5035 {
5036 .name = "kmem.tcp.max_usage_in_bytes",
5037 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5038 .write = mem_cgroup_reset,
5039 .read_u64 = mem_cgroup_read_u64,
5040 },
6bc10349 5041 { }, /* terminate */
af36f906 5042};
8c7c6e34 5043
73f576c0
JW
5044/*
5045 * Private memory cgroup IDR
5046 *
5047 * Swap-out records and page cache shadow entries need to store memcg
5048 * references in constrained space, so we maintain an ID space that is
5049 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5050 * memory-controlled cgroups to 64k.
5051 *
b8f2935f 5052 * However, there usually are many references to the offline CSS after
73f576c0
JW
5053 * the cgroup has been destroyed, such as page cache or reclaimable
5054 * slab objects, that don't need to hang on to the ID. We want to keep
5055 * those dead CSS from occupying IDs, or we might quickly exhaust the
5056 * relatively small ID space and prevent the creation of new cgroups
5057 * even when there are much fewer than 64k cgroups - possibly none.
5058 *
5059 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5060 * be freed and recycled when it's no longer needed, which is usually
5061 * when the CSS is offlined.
5062 *
5063 * The only exception to that are records of swapped out tmpfs/shmem
5064 * pages that need to be attributed to live ancestors on swapin. But
5065 * those references are manageable from userspace.
5066 */
5067
5068static DEFINE_IDR(mem_cgroup_idr);
5069
7e97de0b
KT
5070static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5071{
5072 if (memcg->id.id > 0) {
5073 idr_remove(&mem_cgroup_idr, memcg->id.id);
5074 memcg->id.id = 0;
5075 }
5076}
5077
c1514c0a
VF
5078static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5079 unsigned int n)
73f576c0 5080{
1c2d479a 5081 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5082}
5083
615d66c3 5084static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5085{
1c2d479a 5086 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5087 mem_cgroup_id_remove(memcg);
73f576c0
JW
5088
5089 /* Memcg ID pins CSS */
5090 css_put(&memcg->css);
5091 }
5092}
5093
615d66c3
VD
5094static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5095{
5096 mem_cgroup_id_put_many(memcg, 1);
5097}
5098
73f576c0
JW
5099/**
5100 * mem_cgroup_from_id - look up a memcg from a memcg id
5101 * @id: the memcg id to look up
5102 *
5103 * Caller must hold rcu_read_lock().
5104 */
5105struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5106{
5107 WARN_ON_ONCE(!rcu_read_lock_held());
5108 return idr_find(&mem_cgroup_idr, id);
5109}
5110
ef8f2327 5111static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5112{
5113 struct mem_cgroup_per_node *pn;
ef8f2327 5114 int tmp = node;
1ecaab2b
KH
5115 /*
5116 * This routine is called against possible nodes.
5117 * But it's BUG to call kmalloc() against offline node.
5118 *
5119 * TODO: this routine can waste much memory for nodes which will
5120 * never be onlined. It's better to use memory hotplug callback
5121 * function.
5122 */
41e3355d
KH
5123 if (!node_state(node, N_NORMAL_MEMORY))
5124 tmp = -1;
17295c88 5125 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5126 if (!pn)
5127 return 1;
1ecaab2b 5128
3e38e0aa
RG
5129 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5130 GFP_KERNEL_ACCOUNT);
815744d7
JW
5131 if (!pn->lruvec_stat_local) {
5132 kfree(pn);
5133 return 1;
5134 }
5135
f3344adf 5136 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
3e38e0aa 5137 GFP_KERNEL_ACCOUNT);
a983b5eb 5138 if (!pn->lruvec_stat_cpu) {
815744d7 5139 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5140 kfree(pn);
5141 return 1;
5142 }
5143
ef8f2327
MG
5144 lruvec_init(&pn->lruvec);
5145 pn->usage_in_excess = 0;
5146 pn->on_tree = false;
5147 pn->memcg = memcg;
5148
54f72fe0 5149 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5150 return 0;
5151}
5152
ef8f2327 5153static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5154{
00f3ca2c
JW
5155 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5156
4eaf431f
MH
5157 if (!pn)
5158 return;
5159
a983b5eb 5160 free_percpu(pn->lruvec_stat_cpu);
815744d7 5161 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5162 kfree(pn);
1ecaab2b
KH
5163}
5164
40e952f9 5165static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5166{
c8b2a36f 5167 int node;
59927fb9 5168
c8b2a36f 5169 for_each_node(node)
ef8f2327 5170 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5171 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5172 kfree(memcg);
59927fb9 5173}
3afe36b1 5174
40e952f9
TE
5175static void mem_cgroup_free(struct mem_cgroup *memcg)
5176{
2cd21c89
JW
5177 int cpu;
5178
40e952f9 5179 memcg_wb_domain_exit(memcg);
7961eee3 5180 /*
2d146aa3
JW
5181 * Flush percpu lruvec stats to guarantee the value
5182 * correctness on parent's and all ancestor levels.
7961eee3 5183 */
2cd21c89
JW
5184 for_each_online_cpu(cpu)
5185 memcg_flush_lruvec_page_state(memcg, cpu);
40e952f9
TE
5186 __mem_cgroup_free(memcg);
5187}
5188
0b8f73e1 5189static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5190{
d142e3e6 5191 struct mem_cgroup *memcg;
b9726c26 5192 unsigned int size;
6d12e2d8 5193 int node;
97b27821 5194 int __maybe_unused i;
11d67612 5195 long error = -ENOMEM;
8cdea7c0 5196
0b8f73e1
JW
5197 size = sizeof(struct mem_cgroup);
5198 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5199
5200 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5201 if (!memcg)
11d67612 5202 return ERR_PTR(error);
0b8f73e1 5203
73f576c0
JW
5204 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5205 1, MEM_CGROUP_ID_MAX,
5206 GFP_KERNEL);
11d67612
YS
5207 if (memcg->id.id < 0) {
5208 error = memcg->id.id;
73f576c0 5209 goto fail;
11d67612 5210 }
73f576c0 5211
3e38e0aa
RG
5212 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5213 GFP_KERNEL_ACCOUNT);
871789d4 5214 if (!memcg->vmstats_percpu)
0b8f73e1 5215 goto fail;
78fb7466 5216
3ed28fa1 5217 for_each_node(node)
ef8f2327 5218 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5219 goto fail;
f64c3f54 5220
0b8f73e1
JW
5221 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5222 goto fail;
28dbc4b6 5223
f7e1cb6e 5224 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5225 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5226 mutex_init(&memcg->thresholds_lock);
5227 spin_lock_init(&memcg->move_lock);
70ddf637 5228 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5229 INIT_LIST_HEAD(&memcg->event_list);
5230 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5231 memcg->socket_pressure = jiffies;
84c07d11 5232#ifdef CONFIG_MEMCG_KMEM
900a38f0 5233 memcg->kmemcg_id = -1;
bf4f0599 5234 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5235#endif
52ebea74
TH
5236#ifdef CONFIG_CGROUP_WRITEBACK
5237 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5238 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5239 memcg->cgwb_frn[i].done =
5240 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5241#endif
5242#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5243 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5244 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5245 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5246#endif
73f576c0 5247 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5248 return memcg;
5249fail:
7e97de0b 5250 mem_cgroup_id_remove(memcg);
40e952f9 5251 __mem_cgroup_free(memcg);
11d67612 5252 return ERR_PTR(error);
d142e3e6
GC
5253}
5254
0b8f73e1
JW
5255static struct cgroup_subsys_state * __ref
5256mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5257{
0b8f73e1 5258 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5259 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5260 long error = -ENOMEM;
d142e3e6 5261
b87d8cef 5262 old_memcg = set_active_memcg(parent);
0b8f73e1 5263 memcg = mem_cgroup_alloc();
b87d8cef 5264 set_active_memcg(old_memcg);
11d67612
YS
5265 if (IS_ERR(memcg))
5266 return ERR_CAST(memcg);
d142e3e6 5267
d1663a90 5268 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5269 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5270 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5271 if (parent) {
5272 memcg->swappiness = mem_cgroup_swappiness(parent);
5273 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5274
3e32cb2e 5275 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5276 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5277 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5278 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5279 } else {
bef8620c
RG
5280 page_counter_init(&memcg->memory, NULL);
5281 page_counter_init(&memcg->swap, NULL);
5282 page_counter_init(&memcg->kmem, NULL);
5283 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5284
0b8f73e1
JW
5285 root_mem_cgroup = memcg;
5286 return &memcg->css;
5287 }
5288
bef8620c 5289 /* The following stuff does not apply to the root */
b313aeee 5290 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5291 if (error)
5292 goto fail;
127424c8 5293
f7e1cb6e 5294 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5295 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5296
0b8f73e1
JW
5297 return &memcg->css;
5298fail:
7e97de0b 5299 mem_cgroup_id_remove(memcg);
0b8f73e1 5300 mem_cgroup_free(memcg);
11d67612 5301 return ERR_PTR(error);
0b8f73e1
JW
5302}
5303
73f576c0 5304static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5305{
58fa2a55
VD
5306 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5307
0a4465d3 5308 /*
e4262c4f 5309 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5310 * by the time the maps are allocated. So, we allocate maps
5311 * here, when for_each_mem_cgroup() can't skip it.
5312 */
e4262c4f 5313 if (alloc_shrinker_info(memcg)) {
0a4465d3
KT
5314 mem_cgroup_id_remove(memcg);
5315 return -ENOMEM;
5316 }
5317
73f576c0 5318 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5319 refcount_set(&memcg->id.ref, 1);
73f576c0 5320 css_get(css);
2f7dd7a4 5321 return 0;
8cdea7c0
BS
5322}
5323
eb95419b 5324static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5325{
eb95419b 5326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5327 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5328
5329 /*
5330 * Unregister events and notify userspace.
5331 * Notify userspace about cgroup removing only after rmdir of cgroup
5332 * directory to avoid race between userspace and kernelspace.
5333 */
fba94807
TH
5334 spin_lock(&memcg->event_list_lock);
5335 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5336 list_del_init(&event->list);
5337 schedule_work(&event->remove);
5338 }
fba94807 5339 spin_unlock(&memcg->event_list_lock);
ec64f515 5340
bf8d5d52 5341 page_counter_set_min(&memcg->memory, 0);
23067153 5342 page_counter_set_low(&memcg->memory, 0);
63677c74 5343
567e9ab2 5344 memcg_offline_kmem(memcg);
a178015c 5345 reparent_shrinker_deferred(memcg);
52ebea74 5346 wb_memcg_offline(memcg);
73f576c0 5347
591edfb1
RG
5348 drain_all_stock(memcg);
5349
73f576c0 5350 mem_cgroup_id_put(memcg);
df878fb0
KH
5351}
5352
6df38689
VD
5353static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5354{
5355 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5356
5357 invalidate_reclaim_iterators(memcg);
5358}
5359
eb95419b 5360static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5361{
eb95419b 5362 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5363 int __maybe_unused i;
c268e994 5364
97b27821
TH
5365#ifdef CONFIG_CGROUP_WRITEBACK
5366 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5367 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5368#endif
f7e1cb6e 5369 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5370 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5371
0db15298 5372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5373 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5374
0b8f73e1
JW
5375 vmpressure_cleanup(&memcg->vmpressure);
5376 cancel_work_sync(&memcg->high_work);
5377 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5378 free_shrinker_info(memcg);
d886f4e4 5379 memcg_free_kmem(memcg);
0b8f73e1 5380 mem_cgroup_free(memcg);
8cdea7c0
BS
5381}
5382
1ced953b
TH
5383/**
5384 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5385 * @css: the target css
5386 *
5387 * Reset the states of the mem_cgroup associated with @css. This is
5388 * invoked when the userland requests disabling on the default hierarchy
5389 * but the memcg is pinned through dependency. The memcg should stop
5390 * applying policies and should revert to the vanilla state as it may be
5391 * made visible again.
5392 *
5393 * The current implementation only resets the essential configurations.
5394 * This needs to be expanded to cover all the visible parts.
5395 */
5396static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5397{
5398 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5399
bbec2e15
RG
5400 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5401 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5402 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5403 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5404 page_counter_set_min(&memcg->memory, 0);
23067153 5405 page_counter_set_low(&memcg->memory, 0);
d1663a90 5406 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5407 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5408 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5409 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5410}
5411
2d146aa3
JW
5412static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5413{
5414 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5415 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5416 struct memcg_vmstats_percpu *statc;
5417 long delta, v;
5418 int i;
5419
5420 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5421
5422 for (i = 0; i < MEMCG_NR_STAT; i++) {
5423 /*
5424 * Collect the aggregated propagation counts of groups
5425 * below us. We're in a per-cpu loop here and this is
5426 * a global counter, so the first cycle will get them.
5427 */
5428 delta = memcg->vmstats.state_pending[i];
5429 if (delta)
5430 memcg->vmstats.state_pending[i] = 0;
5431
5432 /* Add CPU changes on this level since the last flush */
5433 v = READ_ONCE(statc->state[i]);
5434 if (v != statc->state_prev[i]) {
5435 delta += v - statc->state_prev[i];
5436 statc->state_prev[i] = v;
5437 }
5438
5439 if (!delta)
5440 continue;
5441
5442 /* Aggregate counts on this level and propagate upwards */
5443 memcg->vmstats.state[i] += delta;
5444 if (parent)
5445 parent->vmstats.state_pending[i] += delta;
5446 }
5447
5448 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5449 delta = memcg->vmstats.events_pending[i];
5450 if (delta)
5451 memcg->vmstats.events_pending[i] = 0;
5452
5453 v = READ_ONCE(statc->events[i]);
5454 if (v != statc->events_prev[i]) {
5455 delta += v - statc->events_prev[i];
5456 statc->events_prev[i] = v;
5457 }
5458
5459 if (!delta)
5460 continue;
5461
5462 memcg->vmstats.events[i] += delta;
5463 if (parent)
5464 parent->vmstats.events_pending[i] += delta;
5465 }
5466}
5467
02491447 5468#ifdef CONFIG_MMU
7dc74be0 5469/* Handlers for move charge at task migration. */
854ffa8d 5470static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5471{
05b84301 5472 int ret;
9476db97 5473
d0164adc
MG
5474 /* Try a single bulk charge without reclaim first, kswapd may wake */
5475 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5476 if (!ret) {
854ffa8d 5477 mc.precharge += count;
854ffa8d
DN
5478 return ret;
5479 }
9476db97 5480
3674534b 5481 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5482 while (count--) {
3674534b 5483 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5484 if (ret)
38c5d72f 5485 return ret;
854ffa8d 5486 mc.precharge++;
9476db97 5487 cond_resched();
854ffa8d 5488 }
9476db97 5489 return 0;
4ffef5fe
DN
5490}
5491
4ffef5fe
DN
5492union mc_target {
5493 struct page *page;
02491447 5494 swp_entry_t ent;
4ffef5fe
DN
5495};
5496
4ffef5fe 5497enum mc_target_type {
8d32ff84 5498 MC_TARGET_NONE = 0,
4ffef5fe 5499 MC_TARGET_PAGE,
02491447 5500 MC_TARGET_SWAP,
c733a828 5501 MC_TARGET_DEVICE,
4ffef5fe
DN
5502};
5503
90254a65
DN
5504static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5505 unsigned long addr, pte_t ptent)
4ffef5fe 5506{
25b2995a 5507 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5508
90254a65
DN
5509 if (!page || !page_mapped(page))
5510 return NULL;
5511 if (PageAnon(page)) {
1dfab5ab 5512 if (!(mc.flags & MOVE_ANON))
90254a65 5513 return NULL;
1dfab5ab
JW
5514 } else {
5515 if (!(mc.flags & MOVE_FILE))
5516 return NULL;
5517 }
90254a65
DN
5518 if (!get_page_unless_zero(page))
5519 return NULL;
5520
5521 return page;
5522}
5523
c733a828 5524#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5525static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5526 pte_t ptent, swp_entry_t *entry)
90254a65 5527{
90254a65
DN
5528 struct page *page = NULL;
5529 swp_entry_t ent = pte_to_swp_entry(ptent);
5530
9a137153 5531 if (!(mc.flags & MOVE_ANON))
90254a65 5532 return NULL;
c733a828
JG
5533
5534 /*
5535 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5536 * a device and because they are not accessible by CPU they are store
5537 * as special swap entry in the CPU page table.
5538 */
5539 if (is_device_private_entry(ent)) {
af5cdaf8 5540 page = pfn_swap_entry_to_page(ent);
c733a828
JG
5541 /*
5542 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5543 * a refcount of 1 when free (unlike normal page)
5544 */
5545 if (!page_ref_add_unless(page, 1, 1))
5546 return NULL;
5547 return page;
5548 }
5549
9a137153
RC
5550 if (non_swap_entry(ent))
5551 return NULL;
5552
4b91355e
KH
5553 /*
5554 * Because lookup_swap_cache() updates some statistics counter,
5555 * we call find_get_page() with swapper_space directly.
5556 */
f6ab1f7f 5557 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5558 entry->val = ent.val;
90254a65
DN
5559
5560 return page;
5561}
4b91355e
KH
5562#else
5563static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5564 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5565{
5566 return NULL;
5567}
5568#endif
90254a65 5569
87946a72
DN
5570static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5571 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5572{
87946a72
DN
5573 if (!vma->vm_file) /* anonymous vma */
5574 return NULL;
1dfab5ab 5575 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5576 return NULL;
5577
87946a72 5578 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5579 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5580 return find_get_incore_page(vma->vm_file->f_mapping,
5581 linear_page_index(vma, addr));
87946a72
DN
5582}
5583
b1b0deab
CG
5584/**
5585 * mem_cgroup_move_account - move account of the page
5586 * @page: the page
25843c2b 5587 * @compound: charge the page as compound or small page
b1b0deab
CG
5588 * @from: mem_cgroup which the page is moved from.
5589 * @to: mem_cgroup which the page is moved to. @from != @to.
5590 *
3ac808fd 5591 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5592 *
5593 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5594 * from old cgroup.
5595 */
5596static int mem_cgroup_move_account(struct page *page,
f627c2f5 5597 bool compound,
b1b0deab
CG
5598 struct mem_cgroup *from,
5599 struct mem_cgroup *to)
5600{
ae8af438
KK
5601 struct lruvec *from_vec, *to_vec;
5602 struct pglist_data *pgdat;
6c357848 5603 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5604 int ret;
5605
5606 VM_BUG_ON(from == to);
5607 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5608 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5609
5610 /*
6a93ca8f 5611 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5612 * page's memory cgroup of its source page while we change it.
b1b0deab 5613 */
f627c2f5 5614 ret = -EBUSY;
b1b0deab
CG
5615 if (!trylock_page(page))
5616 goto out;
5617
5618 ret = -EINVAL;
bcfe06bf 5619 if (page_memcg(page) != from)
b1b0deab
CG
5620 goto out_unlock;
5621
ae8af438 5622 pgdat = page_pgdat(page);
867e5e1d
JW
5623 from_vec = mem_cgroup_lruvec(from, pgdat);
5624 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5625
abb242f5 5626 lock_page_memcg(page);
b1b0deab 5627
be5d0a74
JW
5628 if (PageAnon(page)) {
5629 if (page_mapped(page)) {
5630 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5631 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5632 if (PageTransHuge(page)) {
69473e5d
MS
5633 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5634 -nr_pages);
5635 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5636 nr_pages);
468c3982 5637 }
be5d0a74
JW
5638 }
5639 } else {
0d1c2072
JW
5640 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5641 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5642
5643 if (PageSwapBacked(page)) {
5644 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5645 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5646 }
5647
49e50d27
JW
5648 if (page_mapped(page)) {
5649 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5650 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5651 }
b1b0deab 5652
49e50d27
JW
5653 if (PageDirty(page)) {
5654 struct address_space *mapping = page_mapping(page);
c4843a75 5655
f56753ac 5656 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5657 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5658 -nr_pages);
5659 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5660 nr_pages);
5661 }
c4843a75
GT
5662 }
5663 }
5664
b1b0deab 5665 if (PageWriteback(page)) {
ae8af438
KK
5666 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5667 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5668 }
5669
5670 /*
abb242f5
JW
5671 * All state has been migrated, let's switch to the new memcg.
5672 *
bcfe06bf 5673 * It is safe to change page's memcg here because the page
abb242f5
JW
5674 * is referenced, charged, isolated, and locked: we can't race
5675 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5676 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5677 *
5678 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5679 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5680 * new memcg that isn't locked, the above state can change
5681 * concurrently again. Make sure we're truly done with it.
b1b0deab 5682 */
abb242f5 5683 smp_mb();
b1b0deab 5684
1a3e1f40
JW
5685 css_get(&to->css);
5686 css_put(&from->css);
5687
bcfe06bf 5688 page->memcg_data = (unsigned long)to;
87eaceb3 5689
abb242f5 5690 __unlock_page_memcg(from);
b1b0deab
CG
5691
5692 ret = 0;
5693
5694 local_irq_disable();
3fba69a5 5695 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5696 memcg_check_events(to, page);
3fba69a5 5697 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5698 memcg_check_events(from, page);
5699 local_irq_enable();
5700out_unlock:
5701 unlock_page(page);
5702out:
5703 return ret;
5704}
5705
7cf7806c
LR
5706/**
5707 * get_mctgt_type - get target type of moving charge
5708 * @vma: the vma the pte to be checked belongs
5709 * @addr: the address corresponding to the pte to be checked
5710 * @ptent: the pte to be checked
5711 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5712 *
5713 * Returns
5714 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5715 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5716 * move charge. if @target is not NULL, the page is stored in target->page
5717 * with extra refcnt got(Callers should handle it).
5718 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5719 * target for charge migration. if @target is not NULL, the entry is stored
5720 * in target->ent.
25b2995a
CH
5721 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5722 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5723 * For now we such page is charge like a regular page would be as for all
5724 * intent and purposes it is just special memory taking the place of a
5725 * regular page.
c733a828
JG
5726 *
5727 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5728 *
5729 * Called with pte lock held.
5730 */
5731
8d32ff84 5732static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5733 unsigned long addr, pte_t ptent, union mc_target *target)
5734{
5735 struct page *page = NULL;
8d32ff84 5736 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5737 swp_entry_t ent = { .val = 0 };
5738
5739 if (pte_present(ptent))
5740 page = mc_handle_present_pte(vma, addr, ptent);
5741 else if (is_swap_pte(ptent))
48406ef8 5742 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5743 else if (pte_none(ptent))
87946a72 5744 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5745
5746 if (!page && !ent.val)
8d32ff84 5747 return ret;
02491447 5748 if (page) {
02491447 5749 /*
0a31bc97 5750 * Do only loose check w/o serialization.
1306a85a 5751 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5752 * not under LRU exclusion.
02491447 5753 */
bcfe06bf 5754 if (page_memcg(page) == mc.from) {
02491447 5755 ret = MC_TARGET_PAGE;
25b2995a 5756 if (is_device_private_page(page))
c733a828 5757 ret = MC_TARGET_DEVICE;
02491447
DN
5758 if (target)
5759 target->page = page;
5760 }
5761 if (!ret || !target)
5762 put_page(page);
5763 }
3e14a57b
HY
5764 /*
5765 * There is a swap entry and a page doesn't exist or isn't charged.
5766 * But we cannot move a tail-page in a THP.
5767 */
5768 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5769 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5770 ret = MC_TARGET_SWAP;
5771 if (target)
5772 target->ent = ent;
4ffef5fe 5773 }
4ffef5fe
DN
5774 return ret;
5775}
5776
12724850
NH
5777#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5778/*
d6810d73
HY
5779 * We don't consider PMD mapped swapping or file mapped pages because THP does
5780 * not support them for now.
12724850
NH
5781 * Caller should make sure that pmd_trans_huge(pmd) is true.
5782 */
5783static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5784 unsigned long addr, pmd_t pmd, union mc_target *target)
5785{
5786 struct page *page = NULL;
12724850
NH
5787 enum mc_target_type ret = MC_TARGET_NONE;
5788
84c3fc4e
ZY
5789 if (unlikely(is_swap_pmd(pmd))) {
5790 VM_BUG_ON(thp_migration_supported() &&
5791 !is_pmd_migration_entry(pmd));
5792 return ret;
5793 }
12724850 5794 page = pmd_page(pmd);
309381fe 5795 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5796 if (!(mc.flags & MOVE_ANON))
12724850 5797 return ret;
bcfe06bf 5798 if (page_memcg(page) == mc.from) {
12724850
NH
5799 ret = MC_TARGET_PAGE;
5800 if (target) {
5801 get_page(page);
5802 target->page = page;
5803 }
5804 }
5805 return ret;
5806}
5807#else
5808static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5809 unsigned long addr, pmd_t pmd, union mc_target *target)
5810{
5811 return MC_TARGET_NONE;
5812}
5813#endif
5814
4ffef5fe
DN
5815static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5816 unsigned long addr, unsigned long end,
5817 struct mm_walk *walk)
5818{
26bcd64a 5819 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5820 pte_t *pte;
5821 spinlock_t *ptl;
5822
b6ec57f4
KS
5823 ptl = pmd_trans_huge_lock(pmd, vma);
5824 if (ptl) {
c733a828
JG
5825 /*
5826 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5827 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5828 * this might change.
c733a828 5829 */
12724850
NH
5830 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5831 mc.precharge += HPAGE_PMD_NR;
bf929152 5832 spin_unlock(ptl);
1a5a9906 5833 return 0;
12724850 5834 }
03319327 5835
45f83cef
AA
5836 if (pmd_trans_unstable(pmd))
5837 return 0;
4ffef5fe
DN
5838 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5839 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5840 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5841 mc.precharge++; /* increment precharge temporarily */
5842 pte_unmap_unlock(pte - 1, ptl);
5843 cond_resched();
5844
7dc74be0
DN
5845 return 0;
5846}
5847
7b86ac33
CH
5848static const struct mm_walk_ops precharge_walk_ops = {
5849 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5850};
5851
4ffef5fe
DN
5852static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5853{
5854 unsigned long precharge;
4ffef5fe 5855
d8ed45c5 5856 mmap_read_lock(mm);
7b86ac33 5857 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5858 mmap_read_unlock(mm);
4ffef5fe
DN
5859
5860 precharge = mc.precharge;
5861 mc.precharge = 0;
5862
5863 return precharge;
5864}
5865
4ffef5fe
DN
5866static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5867{
dfe076b0
DN
5868 unsigned long precharge = mem_cgroup_count_precharge(mm);
5869
5870 VM_BUG_ON(mc.moving_task);
5871 mc.moving_task = current;
5872 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5873}
5874
dfe076b0
DN
5875/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5876static void __mem_cgroup_clear_mc(void)
4ffef5fe 5877{
2bd9bb20
KH
5878 struct mem_cgroup *from = mc.from;
5879 struct mem_cgroup *to = mc.to;
5880
4ffef5fe 5881 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5882 if (mc.precharge) {
00501b53 5883 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5884 mc.precharge = 0;
5885 }
5886 /*
5887 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5888 * we must uncharge here.
5889 */
5890 if (mc.moved_charge) {
00501b53 5891 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5892 mc.moved_charge = 0;
4ffef5fe 5893 }
483c30b5
DN
5894 /* we must fixup refcnts and charges */
5895 if (mc.moved_swap) {
483c30b5 5896 /* uncharge swap account from the old cgroup */
ce00a967 5897 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5898 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5899
615d66c3
VD
5900 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5901
05b84301 5902 /*
3e32cb2e
JW
5903 * we charged both to->memory and to->memsw, so we
5904 * should uncharge to->memory.
05b84301 5905 */
ce00a967 5906 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5907 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5908
483c30b5
DN
5909 mc.moved_swap = 0;
5910 }
dfe076b0
DN
5911 memcg_oom_recover(from);
5912 memcg_oom_recover(to);
5913 wake_up_all(&mc.waitq);
5914}
5915
5916static void mem_cgroup_clear_mc(void)
5917{
264a0ae1
TH
5918 struct mm_struct *mm = mc.mm;
5919
dfe076b0
DN
5920 /*
5921 * we must clear moving_task before waking up waiters at the end of
5922 * task migration.
5923 */
5924 mc.moving_task = NULL;
5925 __mem_cgroup_clear_mc();
2bd9bb20 5926 spin_lock(&mc.lock);
4ffef5fe
DN
5927 mc.from = NULL;
5928 mc.to = NULL;
264a0ae1 5929 mc.mm = NULL;
2bd9bb20 5930 spin_unlock(&mc.lock);
264a0ae1
TH
5931
5932 mmput(mm);
4ffef5fe
DN
5933}
5934
1f7dd3e5 5935static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5936{
1f7dd3e5 5937 struct cgroup_subsys_state *css;
eed67d75 5938 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5939 struct mem_cgroup *from;
4530eddb 5940 struct task_struct *leader, *p;
9f2115f9 5941 struct mm_struct *mm;
1dfab5ab 5942 unsigned long move_flags;
9f2115f9 5943 int ret = 0;
7dc74be0 5944
1f7dd3e5
TH
5945 /* charge immigration isn't supported on the default hierarchy */
5946 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5947 return 0;
5948
4530eddb
TH
5949 /*
5950 * Multi-process migrations only happen on the default hierarchy
5951 * where charge immigration is not used. Perform charge
5952 * immigration if @tset contains a leader and whine if there are
5953 * multiple.
5954 */
5955 p = NULL;
1f7dd3e5 5956 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5957 WARN_ON_ONCE(p);
5958 p = leader;
1f7dd3e5 5959 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5960 }
5961 if (!p)
5962 return 0;
5963
1f7dd3e5 5964 /*
f0953a1b 5965 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
5966 * tunable will only affect upcoming migrations, not the current one.
5967 * So we need to save it, and keep it going.
5968 */
5969 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5970 if (!move_flags)
5971 return 0;
5972
9f2115f9
TH
5973 from = mem_cgroup_from_task(p);
5974
5975 VM_BUG_ON(from == memcg);
5976
5977 mm = get_task_mm(p);
5978 if (!mm)
5979 return 0;
5980 /* We move charges only when we move a owner of the mm */
5981 if (mm->owner == p) {
5982 VM_BUG_ON(mc.from);
5983 VM_BUG_ON(mc.to);
5984 VM_BUG_ON(mc.precharge);
5985 VM_BUG_ON(mc.moved_charge);
5986 VM_BUG_ON(mc.moved_swap);
5987
5988 spin_lock(&mc.lock);
264a0ae1 5989 mc.mm = mm;
9f2115f9
TH
5990 mc.from = from;
5991 mc.to = memcg;
5992 mc.flags = move_flags;
5993 spin_unlock(&mc.lock);
5994 /* We set mc.moving_task later */
5995
5996 ret = mem_cgroup_precharge_mc(mm);
5997 if (ret)
5998 mem_cgroup_clear_mc();
264a0ae1
TH
5999 } else {
6000 mmput(mm);
7dc74be0
DN
6001 }
6002 return ret;
6003}
6004
1f7dd3e5 6005static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6006{
4e2f245d
JW
6007 if (mc.to)
6008 mem_cgroup_clear_mc();
7dc74be0
DN
6009}
6010
4ffef5fe
DN
6011static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6012 unsigned long addr, unsigned long end,
6013 struct mm_walk *walk)
7dc74be0 6014{
4ffef5fe 6015 int ret = 0;
26bcd64a 6016 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6017 pte_t *pte;
6018 spinlock_t *ptl;
12724850
NH
6019 enum mc_target_type target_type;
6020 union mc_target target;
6021 struct page *page;
4ffef5fe 6022
b6ec57f4
KS
6023 ptl = pmd_trans_huge_lock(pmd, vma);
6024 if (ptl) {
62ade86a 6025 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6026 spin_unlock(ptl);
12724850
NH
6027 return 0;
6028 }
6029 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6030 if (target_type == MC_TARGET_PAGE) {
6031 page = target.page;
6032 if (!isolate_lru_page(page)) {
f627c2f5 6033 if (!mem_cgroup_move_account(page, true,
1306a85a 6034 mc.from, mc.to)) {
12724850
NH
6035 mc.precharge -= HPAGE_PMD_NR;
6036 mc.moved_charge += HPAGE_PMD_NR;
6037 }
6038 putback_lru_page(page);
6039 }
6040 put_page(page);
c733a828
JG
6041 } else if (target_type == MC_TARGET_DEVICE) {
6042 page = target.page;
6043 if (!mem_cgroup_move_account(page, true,
6044 mc.from, mc.to)) {
6045 mc.precharge -= HPAGE_PMD_NR;
6046 mc.moved_charge += HPAGE_PMD_NR;
6047 }
6048 put_page(page);
12724850 6049 }
bf929152 6050 spin_unlock(ptl);
1a5a9906 6051 return 0;
12724850
NH
6052 }
6053
45f83cef
AA
6054 if (pmd_trans_unstable(pmd))
6055 return 0;
4ffef5fe
DN
6056retry:
6057 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6058 for (; addr != end; addr += PAGE_SIZE) {
6059 pte_t ptent = *(pte++);
c733a828 6060 bool device = false;
02491447 6061 swp_entry_t ent;
4ffef5fe
DN
6062
6063 if (!mc.precharge)
6064 break;
6065
8d32ff84 6066 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6067 case MC_TARGET_DEVICE:
6068 device = true;
e4a9bc58 6069 fallthrough;
4ffef5fe
DN
6070 case MC_TARGET_PAGE:
6071 page = target.page;
53f9263b
KS
6072 /*
6073 * We can have a part of the split pmd here. Moving it
6074 * can be done but it would be too convoluted so simply
6075 * ignore such a partial THP and keep it in original
6076 * memcg. There should be somebody mapping the head.
6077 */
6078 if (PageTransCompound(page))
6079 goto put;
c733a828 6080 if (!device && isolate_lru_page(page))
4ffef5fe 6081 goto put;
f627c2f5
KS
6082 if (!mem_cgroup_move_account(page, false,
6083 mc.from, mc.to)) {
4ffef5fe 6084 mc.precharge--;
854ffa8d
DN
6085 /* we uncharge from mc.from later. */
6086 mc.moved_charge++;
4ffef5fe 6087 }
c733a828
JG
6088 if (!device)
6089 putback_lru_page(page);
8d32ff84 6090put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6091 put_page(page);
6092 break;
02491447
DN
6093 case MC_TARGET_SWAP:
6094 ent = target.ent;
e91cbb42 6095 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6096 mc.precharge--;
8d22a935
HD
6097 mem_cgroup_id_get_many(mc.to, 1);
6098 /* we fixup other refcnts and charges later. */
483c30b5
DN
6099 mc.moved_swap++;
6100 }
02491447 6101 break;
4ffef5fe
DN
6102 default:
6103 break;
6104 }
6105 }
6106 pte_unmap_unlock(pte - 1, ptl);
6107 cond_resched();
6108
6109 if (addr != end) {
6110 /*
6111 * We have consumed all precharges we got in can_attach().
6112 * We try charge one by one, but don't do any additional
6113 * charges to mc.to if we have failed in charge once in attach()
6114 * phase.
6115 */
854ffa8d 6116 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6117 if (!ret)
6118 goto retry;
6119 }
6120
6121 return ret;
6122}
6123
7b86ac33
CH
6124static const struct mm_walk_ops charge_walk_ops = {
6125 .pmd_entry = mem_cgroup_move_charge_pte_range,
6126};
6127
264a0ae1 6128static void mem_cgroup_move_charge(void)
4ffef5fe 6129{
4ffef5fe 6130 lru_add_drain_all();
312722cb 6131 /*
81f8c3a4
JW
6132 * Signal lock_page_memcg() to take the memcg's move_lock
6133 * while we're moving its pages to another memcg. Then wait
6134 * for already started RCU-only updates to finish.
312722cb
JW
6135 */
6136 atomic_inc(&mc.from->moving_account);
6137 synchronize_rcu();
dfe076b0 6138retry:
d8ed45c5 6139 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6140 /*
c1e8d7c6 6141 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6142 * waitq. So we cancel all extra charges, wake up all waiters,
6143 * and retry. Because we cancel precharges, we might not be able
6144 * to move enough charges, but moving charge is a best-effort
6145 * feature anyway, so it wouldn't be a big problem.
6146 */
6147 __mem_cgroup_clear_mc();
6148 cond_resched();
6149 goto retry;
6150 }
26bcd64a
NH
6151 /*
6152 * When we have consumed all precharges and failed in doing
6153 * additional charge, the page walk just aborts.
6154 */
7b86ac33
CH
6155 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6156 NULL);
0247f3f4 6157
d8ed45c5 6158 mmap_read_unlock(mc.mm);
312722cb 6159 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6160}
6161
264a0ae1 6162static void mem_cgroup_move_task(void)
67e465a7 6163{
264a0ae1
TH
6164 if (mc.to) {
6165 mem_cgroup_move_charge();
a433658c 6166 mem_cgroup_clear_mc();
264a0ae1 6167 }
67e465a7 6168}
5cfb80a7 6169#else /* !CONFIG_MMU */
1f7dd3e5 6170static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6171{
6172 return 0;
6173}
1f7dd3e5 6174static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6175{
6176}
264a0ae1 6177static void mem_cgroup_move_task(void)
5cfb80a7
DN
6178{
6179}
6180#endif
67e465a7 6181
677dc973
CD
6182static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6183{
6184 if (value == PAGE_COUNTER_MAX)
6185 seq_puts(m, "max\n");
6186 else
6187 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6188
6189 return 0;
6190}
6191
241994ed
JW
6192static u64 memory_current_read(struct cgroup_subsys_state *css,
6193 struct cftype *cft)
6194{
f5fc3c5d
JW
6195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6196
6197 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6198}
6199
bf8d5d52
RG
6200static int memory_min_show(struct seq_file *m, void *v)
6201{
677dc973
CD
6202 return seq_puts_memcg_tunable(m,
6203 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6204}
6205
6206static ssize_t memory_min_write(struct kernfs_open_file *of,
6207 char *buf, size_t nbytes, loff_t off)
6208{
6209 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6210 unsigned long min;
6211 int err;
6212
6213 buf = strstrip(buf);
6214 err = page_counter_memparse(buf, "max", &min);
6215 if (err)
6216 return err;
6217
6218 page_counter_set_min(&memcg->memory, min);
6219
6220 return nbytes;
6221}
6222
241994ed
JW
6223static int memory_low_show(struct seq_file *m, void *v)
6224{
677dc973
CD
6225 return seq_puts_memcg_tunable(m,
6226 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6227}
6228
6229static ssize_t memory_low_write(struct kernfs_open_file *of,
6230 char *buf, size_t nbytes, loff_t off)
6231{
6232 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6233 unsigned long low;
6234 int err;
6235
6236 buf = strstrip(buf);
d2973697 6237 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6238 if (err)
6239 return err;
6240
23067153 6241 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6242
6243 return nbytes;
6244}
6245
6246static int memory_high_show(struct seq_file *m, void *v)
6247{
d1663a90
JK
6248 return seq_puts_memcg_tunable(m,
6249 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6250}
6251
6252static ssize_t memory_high_write(struct kernfs_open_file *of,
6253 char *buf, size_t nbytes, loff_t off)
6254{
6255 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6256 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6257 bool drained = false;
241994ed
JW
6258 unsigned long high;
6259 int err;
6260
6261 buf = strstrip(buf);
d2973697 6262 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6263 if (err)
6264 return err;
6265
e82553c1
JW
6266 page_counter_set_high(&memcg->memory, high);
6267
8c8c383c
JW
6268 for (;;) {
6269 unsigned long nr_pages = page_counter_read(&memcg->memory);
6270 unsigned long reclaimed;
6271
6272 if (nr_pages <= high)
6273 break;
6274
6275 if (signal_pending(current))
6276 break;
6277
6278 if (!drained) {
6279 drain_all_stock(memcg);
6280 drained = true;
6281 continue;
6282 }
6283
6284 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6285 GFP_KERNEL, true);
6286
6287 if (!reclaimed && !nr_retries--)
6288 break;
6289 }
588083bb 6290
19ce33ac 6291 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6292 return nbytes;
6293}
6294
6295static int memory_max_show(struct seq_file *m, void *v)
6296{
677dc973
CD
6297 return seq_puts_memcg_tunable(m,
6298 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6299}
6300
6301static ssize_t memory_max_write(struct kernfs_open_file *of,
6302 char *buf, size_t nbytes, loff_t off)
6303{
6304 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6305 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6306 bool drained = false;
241994ed
JW
6307 unsigned long max;
6308 int err;
6309
6310 buf = strstrip(buf);
d2973697 6311 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6312 if (err)
6313 return err;
6314
bbec2e15 6315 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6316
6317 for (;;) {
6318 unsigned long nr_pages = page_counter_read(&memcg->memory);
6319
6320 if (nr_pages <= max)
6321 break;
6322
7249c9f0 6323 if (signal_pending(current))
b6e6edcf 6324 break;
b6e6edcf
JW
6325
6326 if (!drained) {
6327 drain_all_stock(memcg);
6328 drained = true;
6329 continue;
6330 }
6331
6332 if (nr_reclaims) {
6333 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6334 GFP_KERNEL, true))
6335 nr_reclaims--;
6336 continue;
6337 }
6338
e27be240 6339 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6340 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6341 break;
6342 }
241994ed 6343
2529bb3a 6344 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6345 return nbytes;
6346}
6347
1e577f97
SB
6348static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6349{
6350 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6351 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6352 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6353 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6354 seq_printf(m, "oom_kill %lu\n",
6355 atomic_long_read(&events[MEMCG_OOM_KILL]));
6356}
6357
241994ed
JW
6358static int memory_events_show(struct seq_file *m, void *v)
6359{
aa9694bb 6360 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6361
1e577f97
SB
6362 __memory_events_show(m, memcg->memory_events);
6363 return 0;
6364}
6365
6366static int memory_events_local_show(struct seq_file *m, void *v)
6367{
6368 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6369
1e577f97 6370 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6371 return 0;
6372}
6373
587d9f72
JW
6374static int memory_stat_show(struct seq_file *m, void *v)
6375{
aa9694bb 6376 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6377 char *buf;
1ff9e6e1 6378
c8713d0b
JW
6379 buf = memory_stat_format(memcg);
6380 if (!buf)
6381 return -ENOMEM;
6382 seq_puts(m, buf);
6383 kfree(buf);
587d9f72
JW
6384 return 0;
6385}
6386
5f9a4f4a 6387#ifdef CONFIG_NUMA
fff66b79
MS
6388static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6389 int item)
6390{
6391 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6392}
6393
5f9a4f4a
MS
6394static int memory_numa_stat_show(struct seq_file *m, void *v)
6395{
6396 int i;
6397 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6398
6399 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6400 int nid;
6401
6402 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6403 continue;
6404
6405 seq_printf(m, "%s", memory_stats[i].name);
6406 for_each_node_state(nid, N_MEMORY) {
6407 u64 size;
6408 struct lruvec *lruvec;
6409
6410 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6411 size = lruvec_page_state_output(lruvec,
6412 memory_stats[i].idx);
5f9a4f4a
MS
6413 seq_printf(m, " N%d=%llu", nid, size);
6414 }
6415 seq_putc(m, '\n');
6416 }
6417
6418 return 0;
6419}
6420#endif
6421
3d8b38eb
RG
6422static int memory_oom_group_show(struct seq_file *m, void *v)
6423{
aa9694bb 6424 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6425
6426 seq_printf(m, "%d\n", memcg->oom_group);
6427
6428 return 0;
6429}
6430
6431static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6432 char *buf, size_t nbytes, loff_t off)
6433{
6434 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6435 int ret, oom_group;
6436
6437 buf = strstrip(buf);
6438 if (!buf)
6439 return -EINVAL;
6440
6441 ret = kstrtoint(buf, 0, &oom_group);
6442 if (ret)
6443 return ret;
6444
6445 if (oom_group != 0 && oom_group != 1)
6446 return -EINVAL;
6447
6448 memcg->oom_group = oom_group;
6449
6450 return nbytes;
6451}
6452
241994ed
JW
6453static struct cftype memory_files[] = {
6454 {
6455 .name = "current",
f5fc3c5d 6456 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6457 .read_u64 = memory_current_read,
6458 },
bf8d5d52
RG
6459 {
6460 .name = "min",
6461 .flags = CFTYPE_NOT_ON_ROOT,
6462 .seq_show = memory_min_show,
6463 .write = memory_min_write,
6464 },
241994ed
JW
6465 {
6466 .name = "low",
6467 .flags = CFTYPE_NOT_ON_ROOT,
6468 .seq_show = memory_low_show,
6469 .write = memory_low_write,
6470 },
6471 {
6472 .name = "high",
6473 .flags = CFTYPE_NOT_ON_ROOT,
6474 .seq_show = memory_high_show,
6475 .write = memory_high_write,
6476 },
6477 {
6478 .name = "max",
6479 .flags = CFTYPE_NOT_ON_ROOT,
6480 .seq_show = memory_max_show,
6481 .write = memory_max_write,
6482 },
6483 {
6484 .name = "events",
6485 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6486 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6487 .seq_show = memory_events_show,
6488 },
1e577f97
SB
6489 {
6490 .name = "events.local",
6491 .flags = CFTYPE_NOT_ON_ROOT,
6492 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6493 .seq_show = memory_events_local_show,
6494 },
587d9f72
JW
6495 {
6496 .name = "stat",
587d9f72
JW
6497 .seq_show = memory_stat_show,
6498 },
5f9a4f4a
MS
6499#ifdef CONFIG_NUMA
6500 {
6501 .name = "numa_stat",
6502 .seq_show = memory_numa_stat_show,
6503 },
6504#endif
3d8b38eb
RG
6505 {
6506 .name = "oom.group",
6507 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6508 .seq_show = memory_oom_group_show,
6509 .write = memory_oom_group_write,
6510 },
241994ed
JW
6511 { } /* terminate */
6512};
6513
073219e9 6514struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6515 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6516 .css_online = mem_cgroup_css_online,
92fb9748 6517 .css_offline = mem_cgroup_css_offline,
6df38689 6518 .css_released = mem_cgroup_css_released,
92fb9748 6519 .css_free = mem_cgroup_css_free,
1ced953b 6520 .css_reset = mem_cgroup_css_reset,
2d146aa3 6521 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0
DN
6522 .can_attach = mem_cgroup_can_attach,
6523 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6524 .post_attach = mem_cgroup_move_task,
241994ed
JW
6525 .dfl_cftypes = memory_files,
6526 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6527 .early_init = 0,
8cdea7c0 6528};
c077719b 6529
bc50bcc6
JW
6530/*
6531 * This function calculates an individual cgroup's effective
6532 * protection which is derived from its own memory.min/low, its
6533 * parent's and siblings' settings, as well as the actual memory
6534 * distribution in the tree.
6535 *
6536 * The following rules apply to the effective protection values:
6537 *
6538 * 1. At the first level of reclaim, effective protection is equal to
6539 * the declared protection in memory.min and memory.low.
6540 *
6541 * 2. To enable safe delegation of the protection configuration, at
6542 * subsequent levels the effective protection is capped to the
6543 * parent's effective protection.
6544 *
6545 * 3. To make complex and dynamic subtrees easier to configure, the
6546 * user is allowed to overcommit the declared protection at a given
6547 * level. If that is the case, the parent's effective protection is
6548 * distributed to the children in proportion to how much protection
6549 * they have declared and how much of it they are utilizing.
6550 *
6551 * This makes distribution proportional, but also work-conserving:
6552 * if one cgroup claims much more protection than it uses memory,
6553 * the unused remainder is available to its siblings.
6554 *
6555 * 4. Conversely, when the declared protection is undercommitted at a
6556 * given level, the distribution of the larger parental protection
6557 * budget is NOT proportional. A cgroup's protection from a sibling
6558 * is capped to its own memory.min/low setting.
6559 *
8a931f80
JW
6560 * 5. However, to allow protecting recursive subtrees from each other
6561 * without having to declare each individual cgroup's fixed share
6562 * of the ancestor's claim to protection, any unutilized -
6563 * "floating" - protection from up the tree is distributed in
6564 * proportion to each cgroup's *usage*. This makes the protection
6565 * neutral wrt sibling cgroups and lets them compete freely over
6566 * the shared parental protection budget, but it protects the
6567 * subtree as a whole from neighboring subtrees.
6568 *
6569 * Note that 4. and 5. are not in conflict: 4. is about protecting
6570 * against immediate siblings whereas 5. is about protecting against
6571 * neighboring subtrees.
bc50bcc6
JW
6572 */
6573static unsigned long effective_protection(unsigned long usage,
8a931f80 6574 unsigned long parent_usage,
bc50bcc6
JW
6575 unsigned long setting,
6576 unsigned long parent_effective,
6577 unsigned long siblings_protected)
6578{
6579 unsigned long protected;
8a931f80 6580 unsigned long ep;
bc50bcc6
JW
6581
6582 protected = min(usage, setting);
6583 /*
6584 * If all cgroups at this level combined claim and use more
6585 * protection then what the parent affords them, distribute
6586 * shares in proportion to utilization.
6587 *
6588 * We are using actual utilization rather than the statically
6589 * claimed protection in order to be work-conserving: claimed
6590 * but unused protection is available to siblings that would
6591 * otherwise get a smaller chunk than what they claimed.
6592 */
6593 if (siblings_protected > parent_effective)
6594 return protected * parent_effective / siblings_protected;
6595
6596 /*
6597 * Ok, utilized protection of all children is within what the
6598 * parent affords them, so we know whatever this child claims
6599 * and utilizes is effectively protected.
6600 *
6601 * If there is unprotected usage beyond this value, reclaim
6602 * will apply pressure in proportion to that amount.
6603 *
6604 * If there is unutilized protection, the cgroup will be fully
6605 * shielded from reclaim, but we do return a smaller value for
6606 * protection than what the group could enjoy in theory. This
6607 * is okay. With the overcommit distribution above, effective
6608 * protection is always dependent on how memory is actually
6609 * consumed among the siblings anyway.
6610 */
8a931f80
JW
6611 ep = protected;
6612
6613 /*
6614 * If the children aren't claiming (all of) the protection
6615 * afforded to them by the parent, distribute the remainder in
6616 * proportion to the (unprotected) memory of each cgroup. That
6617 * way, cgroups that aren't explicitly prioritized wrt each
6618 * other compete freely over the allowance, but they are
6619 * collectively protected from neighboring trees.
6620 *
6621 * We're using unprotected memory for the weight so that if
6622 * some cgroups DO claim explicit protection, we don't protect
6623 * the same bytes twice.
cd324edc
JW
6624 *
6625 * Check both usage and parent_usage against the respective
6626 * protected values. One should imply the other, but they
6627 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6628 */
6629 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6630 return ep;
cd324edc
JW
6631 if (parent_effective > siblings_protected &&
6632 parent_usage > siblings_protected &&
6633 usage > protected) {
8a931f80
JW
6634 unsigned long unclaimed;
6635
6636 unclaimed = parent_effective - siblings_protected;
6637 unclaimed *= usage - protected;
6638 unclaimed /= parent_usage - siblings_protected;
6639
6640 ep += unclaimed;
6641 }
6642
6643 return ep;
bc50bcc6
JW
6644}
6645
241994ed 6646/**
05395718 6647 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6648 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6649 * @memcg: the memory cgroup to check
6650 *
23067153
RG
6651 * WARNING: This function is not stateless! It can only be used as part
6652 * of a top-down tree iteration, not for isolated queries.
241994ed 6653 */
45c7f7e1
CD
6654void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6655 struct mem_cgroup *memcg)
241994ed 6656{
8a931f80 6657 unsigned long usage, parent_usage;
23067153
RG
6658 struct mem_cgroup *parent;
6659
241994ed 6660 if (mem_cgroup_disabled())
45c7f7e1 6661 return;
241994ed 6662
34c81057
SC
6663 if (!root)
6664 root = root_mem_cgroup;
22f7496f
YS
6665
6666 /*
6667 * Effective values of the reclaim targets are ignored so they
6668 * can be stale. Have a look at mem_cgroup_protection for more
6669 * details.
6670 * TODO: calculation should be more robust so that we do not need
6671 * that special casing.
6672 */
34c81057 6673 if (memcg == root)
45c7f7e1 6674 return;
241994ed 6675
23067153 6676 usage = page_counter_read(&memcg->memory);
bf8d5d52 6677 if (!usage)
45c7f7e1 6678 return;
bf8d5d52 6679
bf8d5d52 6680 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6681 /* No parent means a non-hierarchical mode on v1 memcg */
6682 if (!parent)
45c7f7e1 6683 return;
df2a4196 6684
bc50bcc6 6685 if (parent == root) {
c3d53200 6686 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6687 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6688 return;
bf8d5d52
RG
6689 }
6690
8a931f80
JW
6691 parent_usage = page_counter_read(&parent->memory);
6692
b3a7822e 6693 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6694 READ_ONCE(memcg->memory.min),
6695 READ_ONCE(parent->memory.emin),
b3a7822e 6696 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6697
b3a7822e 6698 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6699 READ_ONCE(memcg->memory.low),
6700 READ_ONCE(parent->memory.elow),
b3a7822e 6701 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6702}
6703
0add0c77
SB
6704static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6705 gfp_t gfp)
6706{
6707 unsigned int nr_pages = thp_nr_pages(page);
6708 int ret;
6709
6710 ret = try_charge(memcg, gfp, nr_pages);
6711 if (ret)
6712 goto out;
6713
6714 css_get(&memcg->css);
6715 commit_charge(page, memcg);
6716
6717 local_irq_disable();
6718 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6719 memcg_check_events(memcg, page);
6720 local_irq_enable();
6721out:
6722 return ret;
6723}
6724
00501b53 6725/**
f0e45fb4 6726 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6727 * @page: page to charge
6728 * @mm: mm context of the victim
6729 * @gfp_mask: reclaim mode
00501b53
JW
6730 *
6731 * Try to charge @page to the memcg that @mm belongs to, reclaiming
04f94e3f
DS
6732 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6733 * charge to the active memcg.
00501b53 6734 *
0add0c77
SB
6735 * Do not use this for pages allocated for swapin.
6736 *
f0e45fb4 6737 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6738 */
d9eb1ea2 6739int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6740{
0add0c77
SB
6741 struct mem_cgroup *memcg;
6742 int ret;
00501b53
JW
6743
6744 if (mem_cgroup_disabled())
0add0c77 6745 return 0;
00501b53 6746
0add0c77
SB
6747 memcg = get_mem_cgroup_from_mm(mm);
6748 ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6749 css_put(&memcg->css);
2d1c4980 6750
0add0c77
SB
6751 return ret;
6752}
e993d905 6753
0add0c77
SB
6754/**
6755 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6756 * @page: page to charge
6757 * @mm: mm context of the victim
6758 * @gfp: reclaim mode
6759 * @entry: swap entry for which the page is allocated
6760 *
6761 * This function charges a page allocated for swapin. Please call this before
6762 * adding the page to the swapcache.
6763 *
6764 * Returns 0 on success. Otherwise, an error code is returned.
6765 */
6766int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6767 gfp_t gfp, swp_entry_t entry)
6768{
6769 struct mem_cgroup *memcg;
6770 unsigned short id;
6771 int ret;
00501b53 6772
0add0c77
SB
6773 if (mem_cgroup_disabled())
6774 return 0;
00501b53 6775
0add0c77
SB
6776 id = lookup_swap_cgroup_id(entry);
6777 rcu_read_lock();
6778 memcg = mem_cgroup_from_id(id);
6779 if (!memcg || !css_tryget_online(&memcg->css))
6780 memcg = get_mem_cgroup_from_mm(mm);
6781 rcu_read_unlock();
00501b53 6782
0add0c77 6783 ret = __mem_cgroup_charge(page, memcg, gfp);
6abb5a86 6784
0add0c77
SB
6785 css_put(&memcg->css);
6786 return ret;
6787}
00501b53 6788
0add0c77
SB
6789/*
6790 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6791 * @entry: swap entry for which the page is charged
6792 *
6793 * Call this function after successfully adding the charged page to swapcache.
6794 *
6795 * Note: This function assumes the page for which swap slot is being uncharged
6796 * is order 0 page.
6797 */
6798void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6799{
cae3af62
MS
6800 /*
6801 * Cgroup1's unified memory+swap counter has been charged with the
6802 * new swapcache page, finish the transfer by uncharging the swap
6803 * slot. The swap slot would also get uncharged when it dies, but
6804 * it can stick around indefinitely and we'd count the page twice
6805 * the entire time.
6806 *
6807 * Cgroup2 has separate resource counters for memory and swap,
6808 * so this is a non-issue here. Memory and swap charge lifetimes
6809 * correspond 1:1 to page and swap slot lifetimes: we charge the
6810 * page to memory here, and uncharge swap when the slot is freed.
6811 */
0add0c77 6812 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6813 /*
6814 * The swap entry might not get freed for a long time,
6815 * let's not wait for it. The page already received a
6816 * memory+swap charge, drop the swap entry duplicate.
6817 */
0add0c77 6818 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6819 }
3fea5a49
JW
6820}
6821
a9d5adee
JG
6822struct uncharge_gather {
6823 struct mem_cgroup *memcg;
b4e0b68f 6824 unsigned long nr_memory;
a9d5adee 6825 unsigned long pgpgout;
a9d5adee 6826 unsigned long nr_kmem;
a9d5adee
JG
6827 struct page *dummy_page;
6828};
6829
6830static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6831{
a9d5adee
JG
6832 memset(ug, 0, sizeof(*ug));
6833}
6834
6835static void uncharge_batch(const struct uncharge_gather *ug)
6836{
747db954
JW
6837 unsigned long flags;
6838
b4e0b68f
MS
6839 if (ug->nr_memory) {
6840 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 6841 if (do_memsw_account())
b4e0b68f 6842 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a9d5adee
JG
6843 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6844 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6845 memcg_oom_recover(ug->memcg);
ce00a967 6846 }
747db954
JW
6847
6848 local_irq_save(flags);
c9019e9b 6849 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 6850 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
a9d5adee 6851 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6852 local_irq_restore(flags);
f1796544
MH
6853
6854 /* drop reference from uncharge_page */
6855 css_put(&ug->memcg->css);
a9d5adee
JG
6856}
6857
6858static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6859{
9f762dbe 6860 unsigned long nr_pages;
b4e0b68f
MS
6861 struct mem_cgroup *memcg;
6862 struct obj_cgroup *objcg;
55927114 6863 bool use_objcg = PageMemcgKmem(page);
9f762dbe 6864
a9d5adee 6865 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6866
a9d5adee
JG
6867 /*
6868 * Nobody should be changing or seriously looking at
b4e0b68f 6869 * page memcg or objcg at this point, we have fully
a9d5adee
JG
6870 * exclusive access to the page.
6871 */
55927114 6872 if (use_objcg) {
b4e0b68f
MS
6873 objcg = __page_objcg(page);
6874 /*
6875 * This get matches the put at the end of the function and
6876 * kmem pages do not hold memcg references anymore.
6877 */
6878 memcg = get_mem_cgroup_from_objcg(objcg);
6879 } else {
6880 memcg = __page_memcg(page);
6881 }
a9d5adee 6882
b4e0b68f
MS
6883 if (!memcg)
6884 return;
6885
6886 if (ug->memcg != memcg) {
a9d5adee
JG
6887 if (ug->memcg) {
6888 uncharge_batch(ug);
6889 uncharge_gather_clear(ug);
6890 }
b4e0b68f 6891 ug->memcg = memcg;
7ab345a8 6892 ug->dummy_page = page;
f1796544
MH
6893
6894 /* pairs with css_put in uncharge_batch */
b4e0b68f 6895 css_get(&memcg->css);
a9d5adee
JG
6896 }
6897
9f762dbe 6898 nr_pages = compound_nr(page);
a9d5adee 6899
55927114 6900 if (use_objcg) {
b4e0b68f 6901 ug->nr_memory += nr_pages;
9f762dbe 6902 ug->nr_kmem += nr_pages;
b4e0b68f
MS
6903
6904 page->memcg_data = 0;
6905 obj_cgroup_put(objcg);
6906 } else {
6907 /* LRU pages aren't accounted at the root level */
6908 if (!mem_cgroup_is_root(memcg))
6909 ug->nr_memory += nr_pages;
18b2db3b 6910 ug->pgpgout++;
a9d5adee 6911
b4e0b68f
MS
6912 page->memcg_data = 0;
6913 }
6914
6915 css_put(&memcg->css);
747db954
JW
6916}
6917
0a31bc97
JW
6918/**
6919 * mem_cgroup_uncharge - uncharge a page
6920 * @page: page to uncharge
6921 *
f0e45fb4 6922 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6923 */
6924void mem_cgroup_uncharge(struct page *page)
6925{
a9d5adee
JG
6926 struct uncharge_gather ug;
6927
0a31bc97
JW
6928 if (mem_cgroup_disabled())
6929 return;
6930
747db954 6931 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6932 if (!page_memcg(page))
0a31bc97
JW
6933 return;
6934
a9d5adee
JG
6935 uncharge_gather_clear(&ug);
6936 uncharge_page(page, &ug);
6937 uncharge_batch(&ug);
747db954 6938}
0a31bc97 6939
747db954
JW
6940/**
6941 * mem_cgroup_uncharge_list - uncharge a list of page
6942 * @page_list: list of pages to uncharge
6943 *
6944 * Uncharge a list of pages previously charged with
f0e45fb4 6945 * mem_cgroup_charge().
747db954
JW
6946 */
6947void mem_cgroup_uncharge_list(struct list_head *page_list)
6948{
c41a40b6
MS
6949 struct uncharge_gather ug;
6950 struct page *page;
6951
747db954
JW
6952 if (mem_cgroup_disabled())
6953 return;
0a31bc97 6954
c41a40b6
MS
6955 uncharge_gather_clear(&ug);
6956 list_for_each_entry(page, page_list, lru)
6957 uncharge_page(page, &ug);
6958 if (ug.memcg)
6959 uncharge_batch(&ug);
0a31bc97
JW
6960}
6961
6962/**
6a93ca8f
JW
6963 * mem_cgroup_migrate - charge a page's replacement
6964 * @oldpage: currently circulating page
6965 * @newpage: replacement page
0a31bc97 6966 *
6a93ca8f
JW
6967 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6968 * be uncharged upon free.
0a31bc97
JW
6969 *
6970 * Both pages must be locked, @newpage->mapping must be set up.
6971 */
6a93ca8f 6972void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6973{
29833315 6974 struct mem_cgroup *memcg;
44b7a8d3 6975 unsigned int nr_pages;
d93c4130 6976 unsigned long flags;
0a31bc97
JW
6977
6978 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6979 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6980 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6981 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6982 newpage);
0a31bc97
JW
6983
6984 if (mem_cgroup_disabled())
6985 return;
6986
6987 /* Page cache replacement: new page already charged? */
bcfe06bf 6988 if (page_memcg(newpage))
0a31bc97
JW
6989 return;
6990
bcfe06bf 6991 memcg = page_memcg(oldpage);
a4055888 6992 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6993 if (!memcg)
0a31bc97
JW
6994 return;
6995
44b7a8d3 6996 /* Force-charge the new page. The old one will be freed soon */
6c357848 6997 nr_pages = thp_nr_pages(newpage);
44b7a8d3 6998
8dc87c7d
MS
6999 if (!mem_cgroup_is_root(memcg)) {
7000 page_counter_charge(&memcg->memory, nr_pages);
7001 if (do_memsw_account())
7002 page_counter_charge(&memcg->memsw, nr_pages);
7003 }
0a31bc97 7004
1a3e1f40 7005 css_get(&memcg->css);
d9eb1ea2 7006 commit_charge(newpage, memcg);
44b7a8d3 7007
d93c4130 7008 local_irq_save(flags);
3fba69a5 7009 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 7010 memcg_check_events(memcg, newpage);
d93c4130 7011 local_irq_restore(flags);
0a31bc97
JW
7012}
7013
ef12947c 7014DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7015EXPORT_SYMBOL(memcg_sockets_enabled_key);
7016
2d758073 7017void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7018{
7019 struct mem_cgroup *memcg;
7020
2d758073
JW
7021 if (!mem_cgroup_sockets_enabled)
7022 return;
7023
e876ecc6
SB
7024 /* Do not associate the sock with unrelated interrupted task's memcg. */
7025 if (in_interrupt())
7026 return;
7027
11092087
JW
7028 rcu_read_lock();
7029 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
7030 if (memcg == root_mem_cgroup)
7031 goto out;
0db15298 7032 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7033 goto out;
8965aa28 7034 if (css_tryget(&memcg->css))
11092087 7035 sk->sk_memcg = memcg;
f7e1cb6e 7036out:
11092087
JW
7037 rcu_read_unlock();
7038}
11092087 7039
2d758073 7040void mem_cgroup_sk_free(struct sock *sk)
11092087 7041{
2d758073
JW
7042 if (sk->sk_memcg)
7043 css_put(&sk->sk_memcg->css);
11092087
JW
7044}
7045
7046/**
7047 * mem_cgroup_charge_skmem - charge socket memory
7048 * @memcg: memcg to charge
7049 * @nr_pages: number of pages to charge
7050 *
7051 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7052 * @memcg's configured limit, %false if the charge had to be forced.
7053 */
7054bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7055{
f7e1cb6e 7056 gfp_t gfp_mask = GFP_KERNEL;
11092087 7057
f7e1cb6e 7058 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7059 struct page_counter *fail;
f7e1cb6e 7060
0db15298
JW
7061 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7062 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7063 return true;
7064 }
0db15298
JW
7065 page_counter_charge(&memcg->tcpmem, nr_pages);
7066 memcg->tcpmem_pressure = 1;
f7e1cb6e 7067 return false;
11092087 7068 }
d886f4e4 7069
f7e1cb6e
JW
7070 /* Don't block in the packet receive path */
7071 if (in_softirq())
7072 gfp_mask = GFP_NOWAIT;
7073
c9019e9b 7074 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7075
f7e1cb6e
JW
7076 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7077 return true;
7078
7079 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7080 return false;
7081}
7082
7083/**
7084 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7085 * @memcg: memcg to uncharge
7086 * @nr_pages: number of pages to uncharge
11092087
JW
7087 */
7088void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7089{
f7e1cb6e 7090 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7091 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7092 return;
7093 }
d886f4e4 7094
c9019e9b 7095 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7096
475d0487 7097 refill_stock(memcg, nr_pages);
11092087
JW
7098}
7099
f7e1cb6e
JW
7100static int __init cgroup_memory(char *s)
7101{
7102 char *token;
7103
7104 while ((token = strsep(&s, ",")) != NULL) {
7105 if (!*token)
7106 continue;
7107 if (!strcmp(token, "nosocket"))
7108 cgroup_memory_nosocket = true;
04823c83
VD
7109 if (!strcmp(token, "nokmem"))
7110 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7111 }
7112 return 0;
7113}
7114__setup("cgroup.memory=", cgroup_memory);
11092087 7115
2d11085e 7116/*
1081312f
MH
7117 * subsys_initcall() for memory controller.
7118 *
308167fc
SAS
7119 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7120 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7121 * basically everything that doesn't depend on a specific mem_cgroup structure
7122 * should be initialized from here.
2d11085e
MH
7123 */
7124static int __init mem_cgroup_init(void)
7125{
95a045f6
JW
7126 int cpu, node;
7127
f3344adf
MS
7128 /*
7129 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7130 * used for per-memcg-per-cpu caching of per-node statistics. In order
7131 * to work fine, we should make sure that the overfill threshold can't
7132 * exceed S32_MAX / PAGE_SIZE.
7133 */
7134 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7135
308167fc
SAS
7136 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7137 memcg_hotplug_cpu_dead);
95a045f6
JW
7138
7139 for_each_possible_cpu(cpu)
7140 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7141 drain_local_stock);
7142
7143 for_each_node(node) {
7144 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7145
7146 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7147 node_online(node) ? node : NUMA_NO_NODE);
7148
ef8f2327 7149 rtpn->rb_root = RB_ROOT;
fa90b2fd 7150 rtpn->rb_rightmost = NULL;
ef8f2327 7151 spin_lock_init(&rtpn->lock);
95a045f6
JW
7152 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7153 }
7154
2d11085e
MH
7155 return 0;
7156}
7157subsys_initcall(mem_cgroup_init);
21afa38e
JW
7158
7159#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7160static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7161{
1c2d479a 7162 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7163 /*
7164 * The root cgroup cannot be destroyed, so it's refcount must
7165 * always be >= 1.
7166 */
7167 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7168 VM_BUG_ON(1);
7169 break;
7170 }
7171 memcg = parent_mem_cgroup(memcg);
7172 if (!memcg)
7173 memcg = root_mem_cgroup;
7174 }
7175 return memcg;
7176}
7177
21afa38e
JW
7178/**
7179 * mem_cgroup_swapout - transfer a memsw charge to swap
7180 * @page: page whose memsw charge to transfer
7181 * @entry: swap entry to move the charge to
7182 *
7183 * Transfer the memsw charge of @page to @entry.
7184 */
7185void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7186{
1f47b61f 7187 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7188 unsigned int nr_entries;
21afa38e
JW
7189 unsigned short oldid;
7190
7191 VM_BUG_ON_PAGE(PageLRU(page), page);
7192 VM_BUG_ON_PAGE(page_count(page), page);
7193
76358ab5
AS
7194 if (mem_cgroup_disabled())
7195 return;
7196
2d1c4980 7197 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7198 return;
7199
bcfe06bf 7200 memcg = page_memcg(page);
21afa38e 7201
a4055888 7202 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7203 if (!memcg)
7204 return;
7205
1f47b61f
VD
7206 /*
7207 * In case the memcg owning these pages has been offlined and doesn't
7208 * have an ID allocated to it anymore, charge the closest online
7209 * ancestor for the swap instead and transfer the memory+swap charge.
7210 */
7211 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7212 nr_entries = thp_nr_pages(page);
d6810d73
HY
7213 /* Get references for the tail pages, too */
7214 if (nr_entries > 1)
7215 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7216 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7217 nr_entries);
21afa38e 7218 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7219 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7220
bcfe06bf 7221 page->memcg_data = 0;
21afa38e
JW
7222
7223 if (!mem_cgroup_is_root(memcg))
d6810d73 7224 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7225
2d1c4980 7226 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7227 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7228 page_counter_charge(&swap_memcg->memsw, nr_entries);
7229 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7230 }
7231
ce9ce665
SAS
7232 /*
7233 * Interrupts should be disabled here because the caller holds the
b93b0163 7234 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7235 * important here to have the interrupts disabled because it is the
b93b0163 7236 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7237 */
7238 VM_BUG_ON(!irqs_disabled());
3fba69a5 7239 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7240 memcg_check_events(memcg, page);
73f576c0 7241
1a3e1f40 7242 css_put(&memcg->css);
21afa38e
JW
7243}
7244
38d8b4e6
HY
7245/**
7246 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7247 * @page: page being added to swap
7248 * @entry: swap entry to charge
7249 *
38d8b4e6 7250 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7251 *
7252 * Returns 0 on success, -ENOMEM on failure.
7253 */
7254int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7255{
6c357848 7256 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7257 struct page_counter *counter;
38d8b4e6 7258 struct mem_cgroup *memcg;
37e84351
VD
7259 unsigned short oldid;
7260
76358ab5
AS
7261 if (mem_cgroup_disabled())
7262 return 0;
7263
2d1c4980 7264 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7265 return 0;
7266
bcfe06bf 7267 memcg = page_memcg(page);
37e84351 7268
a4055888 7269 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7270 if (!memcg)
7271 return 0;
7272
f3a53a3a
TH
7273 if (!entry.val) {
7274 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7275 return 0;
f3a53a3a 7276 }
bb98f2c5 7277
1f47b61f
VD
7278 memcg = mem_cgroup_id_get_online(memcg);
7279
2d1c4980 7280 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7281 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7282 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7283 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7284 mem_cgroup_id_put(memcg);
37e84351 7285 return -ENOMEM;
1f47b61f 7286 }
37e84351 7287
38d8b4e6
HY
7288 /* Get references for the tail pages, too */
7289 if (nr_pages > 1)
7290 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7291 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7292 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7293 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7294
37e84351
VD
7295 return 0;
7296}
7297
21afa38e 7298/**
38d8b4e6 7299 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7300 * @entry: swap entry to uncharge
38d8b4e6 7301 * @nr_pages: the amount of swap space to uncharge
21afa38e 7302 */
38d8b4e6 7303void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7304{
7305 struct mem_cgroup *memcg;
7306 unsigned short id;
7307
38d8b4e6 7308 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7309 rcu_read_lock();
adbe427b 7310 memcg = mem_cgroup_from_id(id);
21afa38e 7311 if (memcg) {
2d1c4980 7312 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7313 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7314 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7315 else
38d8b4e6 7316 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7317 }
c9019e9b 7318 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7319 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7320 }
7321 rcu_read_unlock();
7322}
7323
d8b38438
VD
7324long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7325{
7326 long nr_swap_pages = get_nr_swap_pages();
7327
eccb52e7 7328 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7329 return nr_swap_pages;
7330 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7331 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7332 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7333 page_counter_read(&memcg->swap));
7334 return nr_swap_pages;
7335}
7336
5ccc5aba
VD
7337bool mem_cgroup_swap_full(struct page *page)
7338{
7339 struct mem_cgroup *memcg;
7340
7341 VM_BUG_ON_PAGE(!PageLocked(page), page);
7342
7343 if (vm_swap_full())
7344 return true;
eccb52e7 7345 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7346 return false;
7347
bcfe06bf 7348 memcg = page_memcg(page);
5ccc5aba
VD
7349 if (!memcg)
7350 return false;
7351
4b82ab4f
JK
7352 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7353 unsigned long usage = page_counter_read(&memcg->swap);
7354
7355 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7356 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7357 return true;
4b82ab4f 7358 }
5ccc5aba
VD
7359
7360 return false;
7361}
7362
eccb52e7 7363static int __init setup_swap_account(char *s)
21afa38e
JW
7364{
7365 if (!strcmp(s, "1"))
5ab92901 7366 cgroup_memory_noswap = false;
21afa38e 7367 else if (!strcmp(s, "0"))
5ab92901 7368 cgroup_memory_noswap = true;
21afa38e
JW
7369 return 1;
7370}
eccb52e7 7371__setup("swapaccount=", setup_swap_account);
21afa38e 7372
37e84351
VD
7373static u64 swap_current_read(struct cgroup_subsys_state *css,
7374 struct cftype *cft)
7375{
7376 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7377
7378 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7379}
7380
4b82ab4f
JK
7381static int swap_high_show(struct seq_file *m, void *v)
7382{
7383 return seq_puts_memcg_tunable(m,
7384 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7385}
7386
7387static ssize_t swap_high_write(struct kernfs_open_file *of,
7388 char *buf, size_t nbytes, loff_t off)
7389{
7390 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7391 unsigned long high;
7392 int err;
7393
7394 buf = strstrip(buf);
7395 err = page_counter_memparse(buf, "max", &high);
7396 if (err)
7397 return err;
7398
7399 page_counter_set_high(&memcg->swap, high);
7400
7401 return nbytes;
7402}
7403
37e84351
VD
7404static int swap_max_show(struct seq_file *m, void *v)
7405{
677dc973
CD
7406 return seq_puts_memcg_tunable(m,
7407 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7408}
7409
7410static ssize_t swap_max_write(struct kernfs_open_file *of,
7411 char *buf, size_t nbytes, loff_t off)
7412{
7413 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7414 unsigned long max;
7415 int err;
7416
7417 buf = strstrip(buf);
7418 err = page_counter_memparse(buf, "max", &max);
7419 if (err)
7420 return err;
7421
be09102b 7422 xchg(&memcg->swap.max, max);
37e84351
VD
7423
7424 return nbytes;
7425}
7426
f3a53a3a
TH
7427static int swap_events_show(struct seq_file *m, void *v)
7428{
aa9694bb 7429 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7430
4b82ab4f
JK
7431 seq_printf(m, "high %lu\n",
7432 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7433 seq_printf(m, "max %lu\n",
7434 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7435 seq_printf(m, "fail %lu\n",
7436 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7437
7438 return 0;
7439}
7440
37e84351
VD
7441static struct cftype swap_files[] = {
7442 {
7443 .name = "swap.current",
7444 .flags = CFTYPE_NOT_ON_ROOT,
7445 .read_u64 = swap_current_read,
7446 },
4b82ab4f
JK
7447 {
7448 .name = "swap.high",
7449 .flags = CFTYPE_NOT_ON_ROOT,
7450 .seq_show = swap_high_show,
7451 .write = swap_high_write,
7452 },
37e84351
VD
7453 {
7454 .name = "swap.max",
7455 .flags = CFTYPE_NOT_ON_ROOT,
7456 .seq_show = swap_max_show,
7457 .write = swap_max_write,
7458 },
f3a53a3a
TH
7459 {
7460 .name = "swap.events",
7461 .flags = CFTYPE_NOT_ON_ROOT,
7462 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7463 .seq_show = swap_events_show,
7464 },
37e84351
VD
7465 { } /* terminate */
7466};
7467
eccb52e7 7468static struct cftype memsw_files[] = {
21afa38e
JW
7469 {
7470 .name = "memsw.usage_in_bytes",
7471 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7472 .read_u64 = mem_cgroup_read_u64,
7473 },
7474 {
7475 .name = "memsw.max_usage_in_bytes",
7476 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7477 .write = mem_cgroup_reset,
7478 .read_u64 = mem_cgroup_read_u64,
7479 },
7480 {
7481 .name = "memsw.limit_in_bytes",
7482 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7483 .write = mem_cgroup_write,
7484 .read_u64 = mem_cgroup_read_u64,
7485 },
7486 {
7487 .name = "memsw.failcnt",
7488 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7489 .write = mem_cgroup_reset,
7490 .read_u64 = mem_cgroup_read_u64,
7491 },
7492 { }, /* terminate */
7493};
7494
82ff165c
BS
7495/*
7496 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7497 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7498 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7499 * boot parameter. This may result in premature OOPS inside
7500 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7501 */
21afa38e
JW
7502static int __init mem_cgroup_swap_init(void)
7503{
2d1c4980
JW
7504 /* No memory control -> no swap control */
7505 if (mem_cgroup_disabled())
7506 cgroup_memory_noswap = true;
7507
7508 if (cgroup_memory_noswap)
eccb52e7
JW
7509 return 0;
7510
7511 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7512 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7513
21afa38e
JW
7514 return 0;
7515}
82ff165c 7516core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7517
7518#endif /* CONFIG_MEMCG_SWAP */