Merge branch 'pm-tools'
[linux-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
6a792697 66#include <linux/sched/isolation.h>
08e552c6 67#include "internal.h"
d1a4c0b3 68#include <net/sock.h>
4bd2c1ee 69#include <net/ip.h>
f35c3a8e 70#include "slab.h"
014bb1de 71#include "swap.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
37d5985c
RG
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 85
f7e1cb6e 86/* Socket memory accounting disabled? */
0f0cace3 87static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 88
04823c83 89/* Kernel memory accounting disabled? */
17c17367 90static bool cgroup_memory_nokmem __ro_after_init;
04823c83 91
b6c1a8af
YS
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
b25806dc 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953 199/*
f4d005af 200 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
4e416953
BS
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
510fc4e1 210 _KMEM,
d55f90bf 211 _TCP,
86ae53e1
GC
212};
213
a0db00fc
KS
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
a4ebf1b6 233static inline bool task_is_dying(void)
7775face
TH
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
9647875b 247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 248{
9647875b 249 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
250}
251
1aacbd35
RG
252#define CURRENT_OBJCG_UPDATE_BIT 0
253#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
0764db9b 256static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 257
4d5c8aed
RG
258bool mem_cgroup_kmem_disabled(void)
259{
260 return cgroup_memory_nokmem;
261}
262
f1286fae
MS
263static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264 unsigned int nr_pages);
c1a660de 265
bf4f0599
RG
266static void obj_cgroup_release(struct percpu_ref *ref)
267{
268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
269 unsigned int nr_bytes;
270 unsigned int nr_pages;
271 unsigned long flags;
272
273 /*
274 * At this point all allocated objects are freed, and
275 * objcg->nr_charged_bytes can't have an arbitrary byte value.
276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277 *
278 * The following sequence can lead to it:
279 * 1) CPU0: objcg == stock->cached_objcg
280 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281 * PAGE_SIZE bytes are charged
282 * 3) CPU1: a process from another memcg is allocating something,
283 * the stock if flushed,
284 * objcg->nr_charged_bytes = PAGE_SIZE - 92
285 * 5) CPU0: we do release this object,
286 * 92 bytes are added to stock->nr_bytes
287 * 6) CPU0: stock is flushed,
288 * 92 bytes are added to objcg->nr_charged_bytes
289 *
290 * In the result, nr_charged_bytes == PAGE_SIZE.
291 * This page will be uncharged in obj_cgroup_release().
292 */
293 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295 nr_pages = nr_bytes >> PAGE_SHIFT;
296
bf4f0599 297 if (nr_pages)
f1286fae 298 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 299
0764db9b 300 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 301 list_del(&objcg->list);
0764db9b 302 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
303
304 percpu_ref_exit(ref);
305 kfree_rcu(objcg, rcu);
306}
307
308static struct obj_cgroup *obj_cgroup_alloc(void)
309{
310 struct obj_cgroup *objcg;
311 int ret;
312
313 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314 if (!objcg)
315 return NULL;
316
317 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
318 GFP_KERNEL);
319 if (ret) {
320 kfree(objcg);
321 return NULL;
322 }
323 INIT_LIST_HEAD(&objcg->list);
324 return objcg;
325}
326
327static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328 struct mem_cgroup *parent)
329{
330 struct obj_cgroup *objcg, *iter;
331
332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333
0764db9b 334 spin_lock_irq(&objcg_lock);
bf4f0599 335
9838354e
MS
336 /* 1) Ready to reparent active objcg. */
337 list_add(&objcg->list, &memcg->objcg_list);
338 /* 2) Reparent active objcg and already reparented objcgs to parent. */
339 list_for_each_entry(iter, &memcg->objcg_list, list)
340 WRITE_ONCE(iter->memcg, parent);
341 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
342 list_splice(&memcg->objcg_list, &parent->objcg_list);
343
0764db9b 344 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
345
346 percpu_ref_kill(&objcg->refcnt);
347}
348
d7f25f8a
GC
349/*
350 * A lot of the calls to the cache allocation functions are expected to be
272911a4 351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
352 * conditional to this static branch, we'll have to allow modules that does
353 * kmem_cache_alloc and the such to see this symbol as well
354 */
f7a449f7
RG
355DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
356EXPORT_SYMBOL(memcg_kmem_online_key);
b6c1a8af
YS
357
358DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
359EXPORT_SYMBOL(memcg_bpf_enabled_key);
0a432dcb 360#endif
17cc4dfe 361
ad7fa852 362/**
75376c6f
MWO
363 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
364 * @folio: folio of interest
ad7fa852
TH
365 *
366 * If memcg is bound to the default hierarchy, css of the memcg associated
75376c6f 367 * with @folio is returned. The returned css remains associated with @folio
ad7fa852
TH
368 * until it is released.
369 *
370 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
371 * is returned.
ad7fa852 372 */
75376c6f 373struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
ad7fa852 374{
75376c6f 375 struct mem_cgroup *memcg = folio_memcg(folio);
ad7fa852 376
9e10a130 377 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
378 memcg = root_mem_cgroup;
379
ad7fa852
TH
380 return &memcg->css;
381}
382
2fc04524
VD
383/**
384 * page_cgroup_ino - return inode number of the memcg a page is charged to
385 * @page: the page
386 *
387 * Look up the closest online ancestor of the memory cgroup @page is charged to
388 * and return its inode number or 0 if @page is not charged to any cgroup. It
389 * is safe to call this function without holding a reference to @page.
390 *
391 * Note, this function is inherently racy, because there is nothing to prevent
392 * the cgroup inode from getting torn down and potentially reallocated a moment
393 * after page_cgroup_ino() returns, so it only should be used by callers that
394 * do not care (such as procfs interfaces).
395 */
396ino_t page_cgroup_ino(struct page *page)
397{
398 struct mem_cgroup *memcg;
399 unsigned long ino = 0;
400
401 rcu_read_lock();
ec342603
YA
402 /* page_folio() is racy here, but the entire function is racy anyway */
403 memcg = folio_memcg_check(page_folio(page));
286e04b8 404
2fc04524
VD
405 while (memcg && !(memcg->css.flags & CSS_ONLINE))
406 memcg = parent_mem_cgroup(memcg);
407 if (memcg)
408 ino = cgroup_ino(memcg->css.cgroup);
409 rcu_read_unlock();
410 return ino;
411}
412
ef8f2327
MG
413static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
414 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 415 unsigned long new_usage_in_excess)
bb4cc1a8
AM
416{
417 struct rb_node **p = &mctz->rb_root.rb_node;
418 struct rb_node *parent = NULL;
ef8f2327 419 struct mem_cgroup_per_node *mz_node;
fa90b2fd 420 bool rightmost = true;
bb4cc1a8
AM
421
422 if (mz->on_tree)
423 return;
424
425 mz->usage_in_excess = new_usage_in_excess;
426 if (!mz->usage_in_excess)
427 return;
428 while (*p) {
429 parent = *p;
ef8f2327 430 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 431 tree_node);
fa90b2fd 432 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 433 p = &(*p)->rb_left;
fa90b2fd 434 rightmost = false;
378876b0 435 } else {
bb4cc1a8 436 p = &(*p)->rb_right;
378876b0 437 }
bb4cc1a8 438 }
fa90b2fd
DB
439
440 if (rightmost)
441 mctz->rb_rightmost = &mz->tree_node;
442
bb4cc1a8
AM
443 rb_link_node(&mz->tree_node, parent, p);
444 rb_insert_color(&mz->tree_node, &mctz->rb_root);
445 mz->on_tree = true;
446}
447
ef8f2327
MG
448static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
449 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
450{
451 if (!mz->on_tree)
452 return;
fa90b2fd
DB
453
454 if (&mz->tree_node == mctz->rb_rightmost)
455 mctz->rb_rightmost = rb_prev(&mz->tree_node);
456
bb4cc1a8
AM
457 rb_erase(&mz->tree_node, &mctz->rb_root);
458 mz->on_tree = false;
459}
460
ef8f2327
MG
461static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
462 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 463{
0a31bc97
JW
464 unsigned long flags;
465
466 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 467 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 468 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
469}
470
3e32cb2e
JW
471static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
472{
473 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 474 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
475 unsigned long excess = 0;
476
477 if (nr_pages > soft_limit)
478 excess = nr_pages - soft_limit;
479
480 return excess;
481}
bb4cc1a8 482
658b69c9 483static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 484{
3e32cb2e 485 unsigned long excess;
ef8f2327
MG
486 struct mem_cgroup_per_node *mz;
487 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 488
e4dde56c 489 if (lru_gen_enabled()) {
36c7b4db 490 if (soft_limit_excess(memcg))
5c7e7a0d 491 lru_gen_soft_reclaim(memcg, nid);
e4dde56c
YZ
492 return;
493 }
494
2ab082ba 495 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
496 if (!mctz)
497 return;
bb4cc1a8
AM
498 /*
499 * Necessary to update all ancestors when hierarchy is used.
500 * because their event counter is not touched.
501 */
502 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 503 mz = memcg->nodeinfo[nid];
3e32cb2e 504 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
505 /*
506 * We have to update the tree if mz is on RB-tree or
507 * mem is over its softlimit.
508 */
509 if (excess || mz->on_tree) {
0a31bc97
JW
510 unsigned long flags;
511
512 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
513 /* if on-tree, remove it */
514 if (mz->on_tree)
cf2c8127 515 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
516 /*
517 * Insert again. mz->usage_in_excess will be updated.
518 * If excess is 0, no tree ops.
519 */
cf2c8127 520 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 521 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
522 }
523 }
524}
525
526static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
527{
ef8f2327
MG
528 struct mem_cgroup_tree_per_node *mctz;
529 struct mem_cgroup_per_node *mz;
530 int nid;
bb4cc1a8 531
e231875b 532 for_each_node(nid) {
a3747b53 533 mz = memcg->nodeinfo[nid];
2ab082ba 534 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
535 if (mctz)
536 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
537 }
538}
539
ef8f2327
MG
540static struct mem_cgroup_per_node *
541__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 542{
ef8f2327 543 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
544
545retry:
546 mz = NULL;
fa90b2fd 547 if (!mctz->rb_rightmost)
bb4cc1a8
AM
548 goto done; /* Nothing to reclaim from */
549
fa90b2fd
DB
550 mz = rb_entry(mctz->rb_rightmost,
551 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
552 /*
553 * Remove the node now but someone else can add it back,
554 * we will to add it back at the end of reclaim to its correct
555 * position in the tree.
556 */
cf2c8127 557 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 558 if (!soft_limit_excess(mz->memcg) ||
8965aa28 559 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
560 goto retry;
561done:
562 return mz;
563}
564
ef8f2327
MG
565static struct mem_cgroup_per_node *
566mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 567{
ef8f2327 568 struct mem_cgroup_per_node *mz;
bb4cc1a8 569
0a31bc97 570 spin_lock_irq(&mctz->lock);
bb4cc1a8 571 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 572 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
573 return mz;
574}
575
11192d9c
SB
576/*
577 * memcg and lruvec stats flushing
578 *
579 * Many codepaths leading to stats update or read are performance sensitive and
580 * adding stats flushing in such codepaths is not desirable. So, to optimize the
581 * flushing the kernel does:
582 *
583 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
584 * rstat update tree grow unbounded.
585 *
586 * 2) Flush the stats synchronously on reader side only when there are more than
587 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
588 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
589 * only for 2 seconds due to (1).
590 */
591static void flush_memcg_stats_dwork(struct work_struct *w);
592static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
11192d9c 593static DEFINE_PER_CPU(unsigned int, stats_updates);
3cd9992b 594static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
11192d9c 595static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
596static u64 flush_next_time;
597
598#define FLUSH_TIME (2UL*HZ)
11192d9c 599
be3e67b5
SAS
600/*
601 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
602 * not rely on this as part of an acquired spinlock_t lock. These functions are
603 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
604 * is sufficient.
605 */
606static void memcg_stats_lock(void)
607{
e575d401
TG
608 preempt_disable_nested();
609 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
610}
611
612static void __memcg_stats_lock(void)
613{
e575d401 614 preempt_disable_nested();
be3e67b5
SAS
615}
616
617static void memcg_stats_unlock(void)
618{
e575d401 619 preempt_enable_nested();
be3e67b5
SAS
620}
621
5b3be698 622static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 623{
5b3be698
SB
624 unsigned int x;
625
f9d911ca
YA
626 if (!val)
627 return;
628
11192d9c 629 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
630
631 x = __this_cpu_add_return(stats_updates, abs(val));
632 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
633 /*
634 * If stats_flush_threshold exceeds the threshold
635 * (>num_online_cpus()), cgroup stats update will be triggered
636 * in __mem_cgroup_flush_stats(). Increasing this var further
637 * is redundant and simply adds overhead in atomic update.
638 */
639 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
640 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
641 __this_cpu_write(stats_updates, 0);
642 }
11192d9c
SB
643}
644
35822fda 645static void do_flush_stats(void)
11192d9c 646{
3cd9992b
YA
647 /*
648 * We always flush the entire tree, so concurrent flushers can just
649 * skip. This avoids a thundering herd problem on the rstat global lock
650 * from memcg flushers (e.g. reclaim, refault, etc).
651 */
652 if (atomic_read(&stats_flush_ongoing) ||
653 atomic_xchg(&stats_flush_ongoing, 1))
11192d9c
SB
654 return;
655
3cd9992b 656 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
9fad9aee 657
35822fda 658 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
9fad9aee 659
11192d9c 660 atomic_set(&stats_flush_threshold, 0);
3cd9992b 661 atomic_set(&stats_flush_ongoing, 0);
11192d9c
SB
662}
663
664void mem_cgroup_flush_stats(void)
665{
35822fda
YA
666 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
667 do_flush_stats();
9fad9aee
YA
668}
669
4009b2f1 670void mem_cgroup_flush_stats_ratelimited(void)
9b301615 671{
3cd9992b 672 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
4009b2f1 673 mem_cgroup_flush_stats();
9b301615
SB
674}
675
11192d9c
SB
676static void flush_memcg_stats_dwork(struct work_struct *w)
677{
9fad9aee
YA
678 /*
679 * Always flush here so that flushing in latency-sensitive paths is
680 * as cheap as possible.
681 */
35822fda 682 do_flush_stats();
9b301615 683 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
684}
685
d396def5
SB
686/* Subset of vm_event_item to report for memcg event stats */
687static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
688 PGPGIN,
689 PGPGOUT,
d396def5
SB
690 PGSCAN_KSWAPD,
691 PGSCAN_DIRECT,
57e9cc50 692 PGSCAN_KHUGEPAGED,
d396def5
SB
693 PGSTEAL_KSWAPD,
694 PGSTEAL_DIRECT,
57e9cc50 695 PGSTEAL_KHUGEPAGED,
d396def5
SB
696 PGFAULT,
697 PGMAJFAULT,
698 PGREFILL,
699 PGACTIVATE,
700 PGDEACTIVATE,
701 PGLAZYFREE,
702 PGLAZYFREED,
703#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
704 ZSWPIN,
705 ZSWPOUT,
706#endif
707#ifdef CONFIG_TRANSPARENT_HUGEPAGE
708 THP_FAULT_ALLOC,
709 THP_COLLAPSE_ALLOC,
811244a5
XH
710 THP_SWPOUT,
711 THP_SWPOUT_FALLBACK,
d396def5
SB
712#endif
713};
714
8278f1c7
SB
715#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
716static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
717
718static void init_memcg_events(void)
719{
720 int i;
721
722 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
723 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
724}
725
726static inline int memcg_events_index(enum vm_event_item idx)
727{
728 return mem_cgroup_events_index[idx] - 1;
729}
730
410f8e82
SB
731struct memcg_vmstats_percpu {
732 /* Local (CPU and cgroup) page state & events */
733 long state[MEMCG_NR_STAT];
8278f1c7 734 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
735
736 /* Delta calculation for lockless upward propagation */
737 long state_prev[MEMCG_NR_STAT];
8278f1c7 738 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
739
740 /* Cgroup1: threshold notifications & softlimit tree updates */
741 unsigned long nr_page_events;
742 unsigned long targets[MEM_CGROUP_NTARGETS];
743};
744
745struct memcg_vmstats {
746 /* Aggregated (CPU and subtree) page state & events */
747 long state[MEMCG_NR_STAT];
8278f1c7 748 unsigned long events[NR_MEMCG_EVENTS];
410f8e82 749
f82e6bf9
YA
750 /* Non-hierarchical (CPU aggregated) page state & events */
751 long state_local[MEMCG_NR_STAT];
752 unsigned long events_local[NR_MEMCG_EVENTS];
753
410f8e82
SB
754 /* Pending child counts during tree propagation */
755 long state_pending[MEMCG_NR_STAT];
8278f1c7 756 unsigned long events_pending[NR_MEMCG_EVENTS];
410f8e82
SB
757};
758
759unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
760{
761 long x = READ_ONCE(memcg->vmstats->state[idx]);
762#ifdef CONFIG_SMP
763 if (x < 0)
764 x = 0;
765#endif
766 return x;
767}
768
7bd5bc3c
YA
769static int memcg_page_state_unit(int item);
770
771/*
772 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
773 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
774 */
775static int memcg_state_val_in_pages(int idx, int val)
776{
777 int unit = memcg_page_state_unit(idx);
778
779 if (!val || unit == PAGE_SIZE)
780 return val;
781 else
782 return max(val * unit / PAGE_SIZE, 1UL);
783}
784
db9adbcb
JW
785/**
786 * __mod_memcg_state - update cgroup memory statistics
787 * @memcg: the memory cgroup
788 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
789 * @val: delta to add to the counter, can be negative
790 */
791void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
792{
db9adbcb
JW
793 if (mem_cgroup_disabled())
794 return;
795
2d146aa3 796 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
7bd5bc3c 797 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
db9adbcb
JW
798}
799
2d146aa3 800/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
801static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
802{
f82e6bf9 803 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
a18e6e6e 804
a18e6e6e
JW
805#ifdef CONFIG_SMP
806 if (x < 0)
807 x = 0;
808#endif
809 return x;
810}
811
eedc4e5a
RG
812void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
813 int val)
db9adbcb
JW
814{
815 struct mem_cgroup_per_node *pn;
42a30035 816 struct mem_cgroup *memcg;
db9adbcb 817
db9adbcb 818 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 819 memcg = pn->memcg;
db9adbcb 820
be3e67b5 821 /*
be16dd76 822 * The caller from rmap relies on disabled preemption because they never
be3e67b5
SAS
823 * update their counter from in-interrupt context. For these two
824 * counters we check that the update is never performed from an
825 * interrupt context while other caller need to have disabled interrupt.
826 */
827 __memcg_stats_lock();
e575d401 828 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
829 switch (idx) {
830 case NR_ANON_MAPPED:
831 case NR_FILE_MAPPED:
832 case NR_ANON_THPS:
833 case NR_SHMEM_PMDMAPPED:
834 case NR_FILE_PMDMAPPED:
835 WARN_ON_ONCE(!in_task());
836 break;
837 default:
e575d401 838 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
839 }
840 }
841
db9adbcb 842 /* Update memcg */
11192d9c 843 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 844
b4c46484 845 /* Update lruvec */
7e1c0d6f 846 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 847
7bd5bc3c 848 memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
be3e67b5 849 memcg_stats_unlock();
db9adbcb
JW
850}
851
eedc4e5a
RG
852/**
853 * __mod_lruvec_state - update lruvec memory statistics
854 * @lruvec: the lruvec
855 * @idx: the stat item
856 * @val: delta to add to the counter, can be negative
857 *
858 * The lruvec is the intersection of the NUMA node and a cgroup. This
859 * function updates the all three counters that are affected by a
860 * change of state at this level: per-node, per-cgroup, per-lruvec.
861 */
862void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
863 int val)
864{
865 /* Update node */
866 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
867
868 /* Update memcg and lruvec */
869 if (!mem_cgroup_disabled())
870 __mod_memcg_lruvec_state(lruvec, idx, val);
871}
872
c47d5032
SB
873void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
874 int val)
875{
876 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 877 struct mem_cgroup *memcg;
c47d5032
SB
878 pg_data_t *pgdat = page_pgdat(page);
879 struct lruvec *lruvec;
880
b4e0b68f
MS
881 rcu_read_lock();
882 memcg = page_memcg(head);
c47d5032 883 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 884 if (!memcg) {
b4e0b68f 885 rcu_read_unlock();
c47d5032
SB
886 __mod_node_page_state(pgdat, idx, val);
887 return;
888 }
889
d635a69d 890 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 891 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 892 rcu_read_unlock();
c47d5032 893}
f0c0c115 894EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 895
da3ceeff 896void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 897{
4f103c63 898 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
899 struct mem_cgroup *memcg;
900 struct lruvec *lruvec;
901
902 rcu_read_lock();
fc4db90f 903 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 904
8faeb1ff
MS
905 /*
906 * Untracked pages have no memcg, no lruvec. Update only the
907 * node. If we reparent the slab objects to the root memcg,
908 * when we free the slab object, we need to update the per-memcg
909 * vmstats to keep it correct for the root memcg.
910 */
911 if (!memcg) {
ec9f0238
RG
912 __mod_node_page_state(pgdat, idx, val);
913 } else {
867e5e1d 914 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
915 __mod_lruvec_state(lruvec, idx, val);
916 }
917 rcu_read_unlock();
918}
919
db9adbcb
JW
920/**
921 * __count_memcg_events - account VM events in a cgroup
922 * @memcg: the memory cgroup
923 * @idx: the event item
f0953a1b 924 * @count: the number of events that occurred
db9adbcb
JW
925 */
926void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
927 unsigned long count)
928{
8278f1c7
SB
929 int index = memcg_events_index(idx);
930
931 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
932 return;
933
be3e67b5 934 memcg_stats_lock();
8278f1c7 935 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 936 memcg_rstat_updated(memcg, count);
be3e67b5 937 memcg_stats_unlock();
db9adbcb
JW
938}
939
42a30035 940static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 941{
8278f1c7
SB
942 int index = memcg_events_index(event);
943
944 if (index < 0)
945 return 0;
946 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
947}
948
42a30035
JW
949static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
950{
8278f1c7
SB
951 int index = memcg_events_index(event);
952
953 if (index < 0)
954 return 0;
815744d7 955
f82e6bf9 956 return READ_ONCE(memcg->vmstats->events_local[index]);
42a30035
JW
957}
958
c0ff4b85 959static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 960 int nr_pages)
d52aa412 961{
e401f176
KH
962 /* pagein of a big page is an event. So, ignore page size */
963 if (nr_pages > 0)
c9019e9b 964 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 965 else {
c9019e9b 966 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
967 nr_pages = -nr_pages; /* for event */
968 }
e401f176 969
871789d4 970 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
971}
972
f53d7ce3
JW
973static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
974 enum mem_cgroup_events_target target)
7a159cc9
JW
975{
976 unsigned long val, next;
977
871789d4
CD
978 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
979 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 980 /* from time_after() in jiffies.h */
6a1a8b80 981 if ((long)(next - val) < 0) {
f53d7ce3
JW
982 switch (target) {
983 case MEM_CGROUP_TARGET_THRESH:
984 next = val + THRESHOLDS_EVENTS_TARGET;
985 break;
bb4cc1a8
AM
986 case MEM_CGROUP_TARGET_SOFTLIMIT:
987 next = val + SOFTLIMIT_EVENTS_TARGET;
988 break;
f53d7ce3
JW
989 default:
990 break;
991 }
871789d4 992 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 993 return true;
7a159cc9 994 }
f53d7ce3 995 return false;
d2265e6f
KH
996}
997
998/*
999 * Check events in order.
1000 *
1001 */
8e88bd2d 1002static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 1003{
2343e88d
SAS
1004 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1005 return;
1006
d2265e6f 1007 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1008 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1010 bool do_softlimit;
f53d7ce3 1011
bb4cc1a8
AM
1012 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1013 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 1014 mem_cgroup_threshold(memcg);
bb4cc1a8 1015 if (unlikely(do_softlimit))
8e88bd2d 1016 mem_cgroup_update_tree(memcg, nid);
0a31bc97 1017 }
d2265e6f
KH
1018}
1019
cf475ad2 1020struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1021{
31a78f23
BS
1022 /*
1023 * mm_update_next_owner() may clear mm->owner to NULL
1024 * if it races with swapoff, page migration, etc.
1025 * So this can be called with p == NULL.
1026 */
1027 if (unlikely(!p))
1028 return NULL;
1029
073219e9 1030 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1031}
33398cf2 1032EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1033
04f94e3f
DS
1034static __always_inline struct mem_cgroup *active_memcg(void)
1035{
55a68c82 1036 if (!in_task())
04f94e3f
DS
1037 return this_cpu_read(int_active_memcg);
1038 else
1039 return current->active_memcg;
1040}
1041
d46eb14b
SB
1042/**
1043 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1044 * @mm: mm from which memcg should be extracted. It can be NULL.
1045 *
04f94e3f
DS
1046 * Obtain a reference on mm->memcg and returns it if successful. If mm
1047 * is NULL, then the memcg is chosen as follows:
1048 * 1) The active memcg, if set.
1049 * 2) current->mm->memcg, if available
1050 * 3) root memcg
1051 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1052 */
1053struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1054{
d46eb14b
SB
1055 struct mem_cgroup *memcg;
1056
1057 if (mem_cgroup_disabled())
1058 return NULL;
0b7f569e 1059
2884b6b7
MS
1060 /*
1061 * Page cache insertions can happen without an
1062 * actual mm context, e.g. during disk probing
1063 * on boot, loopback IO, acct() writes etc.
1064 *
1065 * No need to css_get on root memcg as the reference
1066 * counting is disabled on the root level in the
1067 * cgroup core. See CSS_NO_REF.
1068 */
04f94e3f
DS
1069 if (unlikely(!mm)) {
1070 memcg = active_memcg();
1071 if (unlikely(memcg)) {
1072 /* remote memcg must hold a ref */
1073 css_get(&memcg->css);
1074 return memcg;
1075 }
1076 mm = current->mm;
1077 if (unlikely(!mm))
1078 return root_mem_cgroup;
1079 }
2884b6b7 1080
54595fe2
KH
1081 rcu_read_lock();
1082 do {
2884b6b7
MS
1083 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1084 if (unlikely(!memcg))
df381975 1085 memcg = root_mem_cgroup;
00d484f3 1086 } while (!css_tryget(&memcg->css));
54595fe2 1087 rcu_read_unlock();
c0ff4b85 1088 return memcg;
54595fe2 1089}
d46eb14b
SB
1090EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1091
4b569387
NP
1092/**
1093 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1094 */
1095struct mem_cgroup *get_mem_cgroup_from_current(void)
1096{
1097 struct mem_cgroup *memcg;
1098
1099 if (mem_cgroup_disabled())
1100 return NULL;
1101
1102again:
1103 rcu_read_lock();
1104 memcg = mem_cgroup_from_task(current);
1105 if (!css_tryget(&memcg->css)) {
1106 rcu_read_unlock();
1107 goto again;
1108 }
1109 rcu_read_unlock();
1110 return memcg;
1111}
1112
5660048c
JW
1113/**
1114 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1115 * @root: hierarchy root
1116 * @prev: previously returned memcg, NULL on first invocation
1117 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1118 *
1119 * Returns references to children of the hierarchy below @root, or
1120 * @root itself, or %NULL after a full round-trip.
1121 *
1122 * Caller must pass the return value in @prev on subsequent
1123 * invocations for reference counting, or use mem_cgroup_iter_break()
1124 * to cancel a hierarchy walk before the round-trip is complete.
1125 *
05bdc520
ML
1126 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1127 * in the hierarchy among all concurrent reclaimers operating on the
1128 * same node.
5660048c 1129 */
694fbc0f 1130struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1131 struct mem_cgroup *prev,
694fbc0f 1132 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1133{
3f649ab7 1134 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1135 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1136 struct mem_cgroup *memcg = NULL;
5ac8fb31 1137 struct mem_cgroup *pos = NULL;
711d3d2c 1138
694fbc0f
AM
1139 if (mem_cgroup_disabled())
1140 return NULL;
5660048c 1141
9f3a0d09
JW
1142 if (!root)
1143 root = root_mem_cgroup;
7d74b06f 1144
542f85f9 1145 rcu_read_lock();
5f578161 1146
5ac8fb31 1147 if (reclaim) {
ef8f2327 1148 struct mem_cgroup_per_node *mz;
5ac8fb31 1149
a3747b53 1150 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1151 iter = &mz->iter;
5ac8fb31 1152
a9320aae
WY
1153 /*
1154 * On start, join the current reclaim iteration cycle.
1155 * Exit when a concurrent walker completes it.
1156 */
1157 if (!prev)
1158 reclaim->generation = iter->generation;
1159 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1160 goto out_unlock;
1161
6df38689 1162 while (1) {
4db0c3c2 1163 pos = READ_ONCE(iter->position);
6df38689
VD
1164 if (!pos || css_tryget(&pos->css))
1165 break;
5ac8fb31 1166 /*
6df38689
VD
1167 * css reference reached zero, so iter->position will
1168 * be cleared by ->css_released. However, we should not
1169 * rely on this happening soon, because ->css_released
1170 * is called from a work queue, and by busy-waiting we
1171 * might block it. So we clear iter->position right
1172 * away.
5ac8fb31 1173 */
6df38689
VD
1174 (void)cmpxchg(&iter->position, pos, NULL);
1175 }
89d8330c
WY
1176 } else if (prev) {
1177 pos = prev;
5ac8fb31
JW
1178 }
1179
1180 if (pos)
1181 css = &pos->css;
1182
1183 for (;;) {
1184 css = css_next_descendant_pre(css, &root->css);
1185 if (!css) {
1186 /*
1187 * Reclaimers share the hierarchy walk, and a
1188 * new one might jump in right at the end of
1189 * the hierarchy - make sure they see at least
1190 * one group and restart from the beginning.
1191 */
1192 if (!prev)
1193 continue;
1194 break;
527a5ec9 1195 }
7d74b06f 1196
5ac8fb31
JW
1197 /*
1198 * Verify the css and acquire a reference. The root
1199 * is provided by the caller, so we know it's alive
1200 * and kicking, and don't take an extra reference.
1201 */
41555dad
WY
1202 if (css == &root->css || css_tryget(css)) {
1203 memcg = mem_cgroup_from_css(css);
0b8f73e1 1204 break;
41555dad 1205 }
9f3a0d09 1206 }
5ac8fb31
JW
1207
1208 if (reclaim) {
5ac8fb31 1209 /*
6df38689
VD
1210 * The position could have already been updated by a competing
1211 * thread, so check that the value hasn't changed since we read
1212 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1213 */
6df38689
VD
1214 (void)cmpxchg(&iter->position, pos, memcg);
1215
5ac8fb31
JW
1216 if (pos)
1217 css_put(&pos->css);
1218
1219 if (!memcg)
1220 iter->generation++;
9f3a0d09 1221 }
5ac8fb31 1222
542f85f9
MH
1223out_unlock:
1224 rcu_read_unlock();
c40046f3
MH
1225 if (prev && prev != root)
1226 css_put(&prev->css);
1227
9f3a0d09 1228 return memcg;
14067bb3 1229}
7d74b06f 1230
5660048c
JW
1231/**
1232 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1233 * @root: hierarchy root
1234 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1235 */
1236void mem_cgroup_iter_break(struct mem_cgroup *root,
1237 struct mem_cgroup *prev)
9f3a0d09
JW
1238{
1239 if (!root)
1240 root = root_mem_cgroup;
1241 if (prev && prev != root)
1242 css_put(&prev->css);
1243}
7d74b06f 1244
54a83d6b
MC
1245static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1246 struct mem_cgroup *dead_memcg)
6df38689 1247{
6df38689 1248 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1249 struct mem_cgroup_per_node *mz;
1250 int nid;
6df38689 1251
54a83d6b 1252 for_each_node(nid) {
a3747b53 1253 mz = from->nodeinfo[nid];
9da83f3f
YS
1254 iter = &mz->iter;
1255 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1256 }
1257}
1258
54a83d6b
MC
1259static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1260{
1261 struct mem_cgroup *memcg = dead_memcg;
1262 struct mem_cgroup *last;
1263
1264 do {
1265 __invalidate_reclaim_iterators(memcg, dead_memcg);
1266 last = memcg;
1267 } while ((memcg = parent_mem_cgroup(memcg)));
1268
1269 /*
b8dd3ee9 1270 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1271 * parent_mem_cgroup() does not walk all the way up to the
1272 * cgroup root (root_mem_cgroup). So we have to handle
1273 * dead_memcg from cgroup root separately.
1274 */
7848ed62 1275 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1276 __invalidate_reclaim_iterators(root_mem_cgroup,
1277 dead_memcg);
1278}
1279
7c5f64f8
VD
1280/**
1281 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1282 * @memcg: hierarchy root
1283 * @fn: function to call for each task
1284 * @arg: argument passed to @fn
1285 *
1286 * This function iterates over tasks attached to @memcg or to any of its
1287 * descendants and calls @fn for each task. If @fn returns a non-zero
025b7799
Z
1288 * value, the function breaks the iteration loop. Otherwise, it will iterate
1289 * over all tasks and return 0.
7c5f64f8
VD
1290 *
1291 * This function must not be called for the root memory cgroup.
1292 */
025b7799
Z
1293void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1294 int (*fn)(struct task_struct *, void *), void *arg)
7c5f64f8
VD
1295{
1296 struct mem_cgroup *iter;
1297 int ret = 0;
1298
7848ed62 1299 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1300
1301 for_each_mem_cgroup_tree(iter, memcg) {
1302 struct css_task_iter it;
1303 struct task_struct *task;
1304
f168a9a5 1305 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1306 while (!ret && (task = css_task_iter_next(&it)))
1307 ret = fn(task, arg);
1308 css_task_iter_end(&it);
1309 if (ret) {
1310 mem_cgroup_iter_break(memcg, iter);
1311 break;
1312 }
1313 }
7c5f64f8
VD
1314}
1315
6168d0da 1316#ifdef CONFIG_DEBUG_VM
e809c3fe 1317void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1318{
1319 struct mem_cgroup *memcg;
1320
1321 if (mem_cgroup_disabled())
1322 return;
1323
e809c3fe 1324 memcg = folio_memcg(folio);
6168d0da
AS
1325
1326 if (!memcg)
7848ed62 1327 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1328 else
e809c3fe 1329 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1330}
1331#endif
1332
6168d0da 1333/**
e809c3fe
MWO
1334 * folio_lruvec_lock - Lock the lruvec for a folio.
1335 * @folio: Pointer to the folio.
6168d0da 1336 *
d7e3aba5 1337 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1338 * - folio locked
1339 * - folio_test_lru false
1340 * - folio_memcg_lock()
1341 * - folio frozen (refcount of 0)
1342 *
1343 * Return: The lruvec this folio is on with its lock held.
6168d0da 1344 */
e809c3fe 1345struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1346{
e809c3fe 1347 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1348
6168d0da 1349 spin_lock(&lruvec->lru_lock);
e809c3fe 1350 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1351
1352 return lruvec;
1353}
1354
e809c3fe
MWO
1355/**
1356 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1357 * @folio: Pointer to the folio.
1358 *
1359 * These functions are safe to use under any of the following conditions:
1360 * - folio locked
1361 * - folio_test_lru false
1362 * - folio_memcg_lock()
1363 * - folio frozen (refcount of 0)
1364 *
1365 * Return: The lruvec this folio is on with its lock held and interrupts
1366 * disabled.
1367 */
1368struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1369{
e809c3fe 1370 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1371
6168d0da 1372 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1373 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1374
1375 return lruvec;
1376}
1377
e809c3fe
MWO
1378/**
1379 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1380 * @folio: Pointer to the folio.
1381 * @flags: Pointer to irqsave flags.
1382 *
1383 * These functions are safe to use under any of the following conditions:
1384 * - folio locked
1385 * - folio_test_lru false
1386 * - folio_memcg_lock()
1387 * - folio frozen (refcount of 0)
1388 *
1389 * Return: The lruvec this folio is on with its lock held and interrupts
1390 * disabled.
1391 */
1392struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1393 unsigned long *flags)
6168d0da 1394{
e809c3fe 1395 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1396
6168d0da 1397 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1398 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1399
1400 return lruvec;
1401}
1402
925b7673 1403/**
fa9add64
HD
1404 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1405 * @lruvec: mem_cgroup per zone lru vector
1406 * @lru: index of lru list the page is sitting on
b4536f0c 1407 * @zid: zone id of the accounted pages
fa9add64 1408 * @nr_pages: positive when adding or negative when removing
925b7673 1409 *
ca707239 1410 * This function must be called under lru_lock, just before a page is added
07ca7606 1411 * to or just after a page is removed from an lru list.
3f58a829 1412 */
fa9add64 1413void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1414 int zid, int nr_pages)
3f58a829 1415{
ef8f2327 1416 struct mem_cgroup_per_node *mz;
fa9add64 1417 unsigned long *lru_size;
ca707239 1418 long size;
3f58a829
MK
1419
1420 if (mem_cgroup_disabled())
1421 return;
1422
ef8f2327 1423 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1424 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1425
1426 if (nr_pages < 0)
1427 *lru_size += nr_pages;
1428
1429 size = *lru_size;
b4536f0c
MH
1430 if (WARN_ONCE(size < 0,
1431 "%s(%p, %d, %d): lru_size %ld\n",
1432 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1433 VM_BUG_ON(1);
1434 *lru_size = 0;
1435 }
1436
1437 if (nr_pages > 0)
1438 *lru_size += nr_pages;
08e552c6 1439}
544122e5 1440
19942822 1441/**
9d11ea9f 1442 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1443 * @memcg: the memory cgroup
19942822 1444 *
9d11ea9f 1445 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1446 * pages.
19942822 1447 */
c0ff4b85 1448static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1449{
3e32cb2e
JW
1450 unsigned long margin = 0;
1451 unsigned long count;
1452 unsigned long limit;
9d11ea9f 1453
3e32cb2e 1454 count = page_counter_read(&memcg->memory);
bbec2e15 1455 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1456 if (count < limit)
1457 margin = limit - count;
1458
7941d214 1459 if (do_memsw_account()) {
3e32cb2e 1460 count = page_counter_read(&memcg->memsw);
bbec2e15 1461 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1462 if (count < limit)
3e32cb2e 1463 margin = min(margin, limit - count);
cbedbac3
LR
1464 else
1465 margin = 0;
3e32cb2e
JW
1466 }
1467
1468 return margin;
19942822
JW
1469}
1470
32047e2a 1471/*
bdcbb659 1472 * A routine for checking "mem" is under move_account() or not.
32047e2a 1473 *
bdcbb659
QH
1474 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1475 * moving cgroups. This is for waiting at high-memory pressure
1476 * caused by "move".
32047e2a 1477 */
c0ff4b85 1478static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1479{
2bd9bb20
KH
1480 struct mem_cgroup *from;
1481 struct mem_cgroup *to;
4b534334 1482 bool ret = false;
2bd9bb20
KH
1483 /*
1484 * Unlike task_move routines, we access mc.to, mc.from not under
1485 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1486 */
1487 spin_lock(&mc.lock);
1488 from = mc.from;
1489 to = mc.to;
1490 if (!from)
1491 goto unlock;
3e92041d 1492
2314b42d
JW
1493 ret = mem_cgroup_is_descendant(from, memcg) ||
1494 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1495unlock:
1496 spin_unlock(&mc.lock);
4b534334
KH
1497 return ret;
1498}
1499
c0ff4b85 1500static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1501{
1502 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1503 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1504 DEFINE_WAIT(wait);
1505 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1506 /* moving charge context might have finished. */
1507 if (mc.moving_task)
1508 schedule();
1509 finish_wait(&mc.waitq, &wait);
1510 return true;
1511 }
1512 }
1513 return false;
1514}
1515
5f9a4f4a
MS
1516struct memory_stat {
1517 const char *name;
5f9a4f4a
MS
1518 unsigned int idx;
1519};
1520
57b2847d 1521static const struct memory_stat memory_stats[] = {
fff66b79
MS
1522 { "anon", NR_ANON_MAPPED },
1523 { "file", NR_FILE_PAGES },
a8c49af3 1524 { "kernel", MEMCG_KMEM },
fff66b79
MS
1525 { "kernel_stack", NR_KERNEL_STACK_KB },
1526 { "pagetables", NR_PAGETABLE },
ebc97a52 1527 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1528 { "percpu", MEMCG_PERCPU_B },
1529 { "sock", MEMCG_SOCK },
4e5aa1f4 1530 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1531 { "shmem", NR_SHMEM },
f4840ccf
JW
1532#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1533 { "zswap", MEMCG_ZSWAP_B },
1534 { "zswapped", MEMCG_ZSWAPPED },
1535#endif
fff66b79
MS
1536 { "file_mapped", NR_FILE_MAPPED },
1537 { "file_dirty", NR_FILE_DIRTY },
1538 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1539#ifdef CONFIG_SWAP
1540 { "swapcached", NR_SWAPCACHE },
1541#endif
5f9a4f4a 1542#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1543 { "anon_thp", NR_ANON_THPS },
1544 { "file_thp", NR_FILE_THPS },
1545 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1546#endif
fff66b79
MS
1547 { "inactive_anon", NR_INACTIVE_ANON },
1548 { "active_anon", NR_ACTIVE_ANON },
1549 { "inactive_file", NR_INACTIVE_FILE },
1550 { "active_file", NR_ACTIVE_FILE },
1551 { "unevictable", NR_UNEVICTABLE },
1552 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1553 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1554
1555 /* The memory events */
fff66b79
MS
1556 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1557 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1558 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1559 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1560 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1561 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1562 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1563};
1564
ff841a06 1565/* The actual unit of the state item, not the same as the output unit */
fff66b79
MS
1566static int memcg_page_state_unit(int item)
1567{
1568 switch (item) {
1569 case MEMCG_PERCPU_B:
f4840ccf 1570 case MEMCG_ZSWAP_B:
fff66b79
MS
1571 case NR_SLAB_RECLAIMABLE_B:
1572 case NR_SLAB_UNRECLAIMABLE_B:
ff841a06
YA
1573 return 1;
1574 case NR_KERNEL_STACK_KB:
1575 return SZ_1K;
1576 default:
1577 return PAGE_SIZE;
1578 }
1579}
1580
1581/* Translate stat items to the correct unit for memory.stat output */
1582static int memcg_page_state_output_unit(int item)
1583{
1584 /*
1585 * Workingset state is actually in pages, but we export it to userspace
1586 * as a scalar count of events, so special case it here.
1587 */
1588 switch (item) {
fff66b79
MS
1589 case WORKINGSET_REFAULT_ANON:
1590 case WORKINGSET_REFAULT_FILE:
1591 case WORKINGSET_ACTIVATE_ANON:
1592 case WORKINGSET_ACTIVATE_FILE:
1593 case WORKINGSET_RESTORE_ANON:
1594 case WORKINGSET_RESTORE_FILE:
1595 case WORKINGSET_NODERECLAIM:
1596 return 1;
fff66b79 1597 default:
ff841a06 1598 return memcg_page_state_unit(item);
fff66b79
MS
1599 }
1600}
1601
1602static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1603 int item)
1604{
ff841a06
YA
1605 return memcg_page_state(memcg, item) *
1606 memcg_page_state_output_unit(item);
1607}
1608
1609static inline unsigned long memcg_page_state_local_output(
1610 struct mem_cgroup *memcg, int item)
1611{
1612 return memcg_page_state_local(memcg, item) *
1613 memcg_page_state_output_unit(item);
fff66b79
MS
1614}
1615
dddb44ff 1616static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
c8713d0b 1617{
c8713d0b 1618 int i;
71cd3113 1619
c8713d0b
JW
1620 /*
1621 * Provide statistics on the state of the memory subsystem as
1622 * well as cumulative event counters that show past behavior.
1623 *
1624 * This list is ordered following a combination of these gradients:
1625 * 1) generic big picture -> specifics and details
1626 * 2) reflecting userspace activity -> reflecting kernel heuristics
1627 *
1628 * Current memory state:
1629 */
fd25a9e0 1630 mem_cgroup_flush_stats();
c8713d0b 1631
5f9a4f4a
MS
1632 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1633 u64 size;
c8713d0b 1634
fff66b79 1635 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5b42360c 1636 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1637
5f9a4f4a 1638 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1639 size += memcg_page_state_output(memcg,
1640 NR_SLAB_RECLAIMABLE_B);
5b42360c 1641 seq_buf_printf(s, "slab %llu\n", size);
5f9a4f4a
MS
1642 }
1643 }
c8713d0b
JW
1644
1645 /* Accumulated memory events */
5b42360c 1646 seq_buf_printf(s, "pgscan %lu\n",
c8713d0b 1647 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1648 memcg_events(memcg, PGSCAN_DIRECT) +
1649 memcg_events(memcg, PGSCAN_KHUGEPAGED));
5b42360c 1650 seq_buf_printf(s, "pgsteal %lu\n",
c8713d0b 1651 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1652 memcg_events(memcg, PGSTEAL_DIRECT) +
1653 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1654
8278f1c7
SB
1655 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1656 if (memcg_vm_event_stat[i] == PGPGIN ||
1657 memcg_vm_event_stat[i] == PGPGOUT)
1658 continue;
1659
5b42360c 1660 seq_buf_printf(s, "%s %lu\n",
673520f8
QZ
1661 vm_event_name(memcg_vm_event_stat[i]),
1662 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1663 }
c8713d0b
JW
1664
1665 /* The above should easily fit into one page */
5b42360c 1666 WARN_ON_ONCE(seq_buf_has_overflowed(s));
c8713d0b 1667}
71cd3113 1668
dddb44ff
YA
1669static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1670
1671static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1672{
1673 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1674 memcg_stat_format(memcg, s);
1675 else
1676 memcg1_stat_format(memcg, s);
1677 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1678}
1679
e222432b 1680/**
f0c867d9 1681 * mem_cgroup_print_oom_context: Print OOM information relevant to
1682 * memory controller.
e222432b
BS
1683 * @memcg: The memory cgroup that went over limit
1684 * @p: Task that is going to be killed
1685 *
1686 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1687 * enabled
1688 */
f0c867d9 1689void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1690{
e222432b
BS
1691 rcu_read_lock();
1692
f0c867d9 1693 if (memcg) {
1694 pr_cont(",oom_memcg=");
1695 pr_cont_cgroup_path(memcg->css.cgroup);
1696 } else
1697 pr_cont(",global_oom");
2415b9f5 1698 if (p) {
f0c867d9 1699 pr_cont(",task_memcg=");
2415b9f5 1700 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1701 }
e222432b 1702 rcu_read_unlock();
f0c867d9 1703}
1704
1705/**
1706 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1707 * memory controller.
1708 * @memcg: The memory cgroup that went over limit
1709 */
1710void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1711{
68aaee14
TH
1712 /* Use static buffer, for the caller is holding oom_lock. */
1713 static char buf[PAGE_SIZE];
5b42360c 1714 struct seq_buf s;
68aaee14
TH
1715
1716 lockdep_assert_held(&oom_lock);
e222432b 1717
3e32cb2e
JW
1718 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1719 K((u64)page_counter_read(&memcg->memory)),
15b42562 1720 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1721 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1722 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1723 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1724 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1725 else {
1726 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1727 K((u64)page_counter_read(&memcg->memsw)),
1728 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1729 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1730 K((u64)page_counter_read(&memcg->kmem)),
1731 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1732 }
c8713d0b
JW
1733
1734 pr_info("Memory cgroup stats for ");
1735 pr_cont_cgroup_path(memcg->css.cgroup);
1736 pr_cont(":");
5b42360c
YA
1737 seq_buf_init(&s, buf, sizeof(buf));
1738 memory_stat_format(memcg, &s);
1739 seq_buf_do_printk(&s, KERN_INFO);
e222432b
BS
1740}
1741
a63d83f4
DR
1742/*
1743 * Return the memory (and swap, if configured) limit for a memcg.
1744 */
bbec2e15 1745unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1746{
8d387a5f
WL
1747 unsigned long max = READ_ONCE(memcg->memory.max);
1748
b94c4e94 1749 if (do_memsw_account()) {
8d387a5f
WL
1750 if (mem_cgroup_swappiness(memcg)) {
1751 /* Calculate swap excess capacity from memsw limit */
1752 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1753
1754 max += min(swap, (unsigned long)total_swap_pages);
1755 }
b94c4e94
JW
1756 } else {
1757 if (mem_cgroup_swappiness(memcg))
1758 max += min(READ_ONCE(memcg->swap.max),
1759 (unsigned long)total_swap_pages);
9a5a8f19 1760 }
bbec2e15 1761 return max;
a63d83f4
DR
1762}
1763
9783aa99
CD
1764unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1765{
1766 return page_counter_read(&memcg->memory);
1767}
1768
b6e6edcf 1769static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1770 int order)
9cbb78bb 1771{
6e0fc46d
DR
1772 struct oom_control oc = {
1773 .zonelist = NULL,
1774 .nodemask = NULL,
2a966b77 1775 .memcg = memcg,
6e0fc46d
DR
1776 .gfp_mask = gfp_mask,
1777 .order = order,
6e0fc46d 1778 };
1378b37d 1779 bool ret = true;
9cbb78bb 1780
7775face
TH
1781 if (mutex_lock_killable(&oom_lock))
1782 return true;
1378b37d
YS
1783
1784 if (mem_cgroup_margin(memcg) >= (1 << order))
1785 goto unlock;
1786
7775face
TH
1787 /*
1788 * A few threads which were not waiting at mutex_lock_killable() can
1789 * fail to bail out. Therefore, check again after holding oom_lock.
1790 */
a4ebf1b6 1791 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1792
1793unlock:
dc56401f 1794 mutex_unlock(&oom_lock);
7c5f64f8 1795 return ret;
9cbb78bb
DR
1796}
1797
0608f43d 1798static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1799 pg_data_t *pgdat,
0608f43d
AM
1800 gfp_t gfp_mask,
1801 unsigned long *total_scanned)
1802{
1803 struct mem_cgroup *victim = NULL;
1804 int total = 0;
1805 int loop = 0;
1806 unsigned long excess;
1807 unsigned long nr_scanned;
1808 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1809 .pgdat = pgdat,
0608f43d
AM
1810 };
1811
3e32cb2e 1812 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1813
1814 while (1) {
1815 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1816 if (!victim) {
1817 loop++;
1818 if (loop >= 2) {
1819 /*
1820 * If we have not been able to reclaim
1821 * anything, it might because there are
1822 * no reclaimable pages under this hierarchy
1823 */
1824 if (!total)
1825 break;
1826 /*
1827 * We want to do more targeted reclaim.
1828 * excess >> 2 is not to excessive so as to
1829 * reclaim too much, nor too less that we keep
1830 * coming back to reclaim from this cgroup
1831 */
1832 if (total >= (excess >> 2) ||
1833 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1834 break;
1835 }
1836 continue;
1837 }
a9dd0a83 1838 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1839 pgdat, &nr_scanned);
0608f43d 1840 *total_scanned += nr_scanned;
3e32cb2e 1841 if (!soft_limit_excess(root_memcg))
0608f43d 1842 break;
6d61ef40 1843 }
0608f43d
AM
1844 mem_cgroup_iter_break(root_memcg, victim);
1845 return total;
6d61ef40
BS
1846}
1847
0056f4e6
JW
1848#ifdef CONFIG_LOCKDEP
1849static struct lockdep_map memcg_oom_lock_dep_map = {
1850 .name = "memcg_oom_lock",
1851};
1852#endif
1853
fb2a6fc5
JW
1854static DEFINE_SPINLOCK(memcg_oom_lock);
1855
867578cb
KH
1856/*
1857 * Check OOM-Killer is already running under our hierarchy.
1858 * If someone is running, return false.
1859 */
fb2a6fc5 1860static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1861{
79dfdacc 1862 struct mem_cgroup *iter, *failed = NULL;
a636b327 1863
fb2a6fc5
JW
1864 spin_lock(&memcg_oom_lock);
1865
9f3a0d09 1866 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1867 if (iter->oom_lock) {
79dfdacc
MH
1868 /*
1869 * this subtree of our hierarchy is already locked
1870 * so we cannot give a lock.
1871 */
79dfdacc 1872 failed = iter;
9f3a0d09
JW
1873 mem_cgroup_iter_break(memcg, iter);
1874 break;
23751be0
JW
1875 } else
1876 iter->oom_lock = true;
7d74b06f 1877 }
867578cb 1878
fb2a6fc5
JW
1879 if (failed) {
1880 /*
1881 * OK, we failed to lock the whole subtree so we have
1882 * to clean up what we set up to the failing subtree
1883 */
1884 for_each_mem_cgroup_tree(iter, memcg) {
1885 if (iter == failed) {
1886 mem_cgroup_iter_break(memcg, iter);
1887 break;
1888 }
1889 iter->oom_lock = false;
79dfdacc 1890 }
0056f4e6
JW
1891 } else
1892 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1893
1894 spin_unlock(&memcg_oom_lock);
1895
1896 return !failed;
a636b327 1897}
0b7f569e 1898
fb2a6fc5 1899static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1900{
7d74b06f
KH
1901 struct mem_cgroup *iter;
1902
fb2a6fc5 1903 spin_lock(&memcg_oom_lock);
5facae4f 1904 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1905 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1906 iter->oom_lock = false;
fb2a6fc5 1907 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1908}
1909
c0ff4b85 1910static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1911{
1912 struct mem_cgroup *iter;
1913
c2b42d3c 1914 spin_lock(&memcg_oom_lock);
c0ff4b85 1915 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1916 iter->under_oom++;
1917 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1918}
1919
c0ff4b85 1920static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1921{
1922 struct mem_cgroup *iter;
1923
867578cb 1924 /*
f0953a1b 1925 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1926 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1927 */
c2b42d3c 1928 spin_lock(&memcg_oom_lock);
c0ff4b85 1929 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1930 if (iter->under_oom > 0)
1931 iter->under_oom--;
1932 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1933}
1934
867578cb
KH
1935static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1936
dc98df5a 1937struct oom_wait_info {
d79154bb 1938 struct mem_cgroup *memcg;
ac6424b9 1939 wait_queue_entry_t wait;
dc98df5a
KH
1940};
1941
ac6424b9 1942static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1943 unsigned mode, int sync, void *arg)
1944{
d79154bb
HD
1945 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1946 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1947 struct oom_wait_info *oom_wait_info;
1948
1949 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1950 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1951
2314b42d
JW
1952 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1953 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1954 return 0;
dc98df5a
KH
1955 return autoremove_wake_function(wait, mode, sync, arg);
1956}
1957
c0ff4b85 1958static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1959{
c2b42d3c
TH
1960 /*
1961 * For the following lockless ->under_oom test, the only required
1962 * guarantee is that it must see the state asserted by an OOM when
1963 * this function is called as a result of userland actions
1964 * triggered by the notification of the OOM. This is trivially
1965 * achieved by invoking mem_cgroup_mark_under_oom() before
1966 * triggering notification.
1967 */
1968 if (memcg && memcg->under_oom)
f4b90b70 1969 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1970}
1971
becdf89d
SB
1972/*
1973 * Returns true if successfully killed one or more processes. Though in some
1974 * corner cases it can return true even without killing any process.
1975 */
1976static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1977{
becdf89d 1978 bool locked, ret;
7056d3a3 1979
29ef680a 1980 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1981 return false;
29ef680a 1982
7a1adfdd
RG
1983 memcg_memory_event(memcg, MEMCG_OOM);
1984
867578cb 1985 /*
49426420
JW
1986 * We are in the middle of the charge context here, so we
1987 * don't want to block when potentially sitting on a callstack
1988 * that holds all kinds of filesystem and mm locks.
1989 *
29ef680a
MH
1990 * cgroup1 allows disabling the OOM killer and waiting for outside
1991 * handling until the charge can succeed; remember the context and put
1992 * the task to sleep at the end of the page fault when all locks are
1993 * released.
49426420 1994 *
29ef680a
MH
1995 * On the other hand, in-kernel OOM killer allows for an async victim
1996 * memory reclaim (oom_reaper) and that means that we are not solely
1997 * relying on the oom victim to make a forward progress and we can
1998 * invoke the oom killer here.
1999 *
2000 * Please note that mem_cgroup_out_of_memory might fail to find a
2001 * victim and then we have to bail out from the charge path.
867578cb 2002 */
17c56de6 2003 if (READ_ONCE(memcg->oom_kill_disable)) {
becdf89d
SB
2004 if (current->in_user_fault) {
2005 css_get(&memcg->css);
2006 current->memcg_in_oom = memcg;
2007 current->memcg_oom_gfp_mask = mask;
2008 current->memcg_oom_order = order;
2009 }
2010 return false;
29ef680a
MH
2011 }
2012
7056d3a3
MH
2013 mem_cgroup_mark_under_oom(memcg);
2014
2015 locked = mem_cgroup_oom_trylock(memcg);
2016
2017 if (locked)
2018 mem_cgroup_oom_notify(memcg);
2019
2020 mem_cgroup_unmark_under_oom(memcg);
becdf89d 2021 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
2022
2023 if (locked)
2024 mem_cgroup_oom_unlock(memcg);
29ef680a 2025
7056d3a3 2026 return ret;
3812c8c8
JW
2027}
2028
2029/**
2030 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2031 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2032 *
49426420
JW
2033 * This has to be called at the end of a page fault if the memcg OOM
2034 * handler was enabled.
3812c8c8 2035 *
49426420 2036 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2037 * sleep on a waitqueue until the userspace task resolves the
2038 * situation. Sleeping directly in the charge context with all kinds
2039 * of locks held is not a good idea, instead we remember an OOM state
2040 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2041 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2042 *
2043 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2044 * completed, %false otherwise.
3812c8c8 2045 */
49426420 2046bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2047{
626ebc41 2048 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2049 struct oom_wait_info owait;
49426420 2050 bool locked;
3812c8c8
JW
2051
2052 /* OOM is global, do not handle */
3812c8c8 2053 if (!memcg)
49426420 2054 return false;
3812c8c8 2055
7c5f64f8 2056 if (!handle)
49426420 2057 goto cleanup;
3812c8c8
JW
2058
2059 owait.memcg = memcg;
2060 owait.wait.flags = 0;
2061 owait.wait.func = memcg_oom_wake_function;
2062 owait.wait.private = current;
2055da97 2063 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2064
3812c8c8 2065 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2066 mem_cgroup_mark_under_oom(memcg);
2067
2068 locked = mem_cgroup_oom_trylock(memcg);
2069
2070 if (locked)
2071 mem_cgroup_oom_notify(memcg);
2072
857f2139
HX
2073 schedule();
2074 mem_cgroup_unmark_under_oom(memcg);
2075 finish_wait(&memcg_oom_waitq, &owait.wait);
49426420 2076
18b1d18b 2077 if (locked)
fb2a6fc5 2078 mem_cgroup_oom_unlock(memcg);
49426420 2079cleanup:
626ebc41 2080 current->memcg_in_oom = NULL;
3812c8c8 2081 css_put(&memcg->css);
867578cb 2082 return true;
0b7f569e
KH
2083}
2084
3d8b38eb
RG
2085/**
2086 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2087 * @victim: task to be killed by the OOM killer
2088 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2089 *
2090 * Returns a pointer to a memory cgroup, which has to be cleaned up
2091 * by killing all belonging OOM-killable tasks.
2092 *
2093 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2094 */
2095struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2096 struct mem_cgroup *oom_domain)
2097{
2098 struct mem_cgroup *oom_group = NULL;
2099 struct mem_cgroup *memcg;
2100
2101 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2102 return NULL;
2103
2104 if (!oom_domain)
2105 oom_domain = root_mem_cgroup;
2106
2107 rcu_read_lock();
2108
2109 memcg = mem_cgroup_from_task(victim);
7848ed62 2110 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2111 goto out;
2112
48fe267c
RG
2113 /*
2114 * If the victim task has been asynchronously moved to a different
2115 * memory cgroup, we might end up killing tasks outside oom_domain.
2116 * In this case it's better to ignore memory.group.oom.
2117 */
2118 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2119 goto out;
2120
3d8b38eb
RG
2121 /*
2122 * Traverse the memory cgroup hierarchy from the victim task's
2123 * cgroup up to the OOMing cgroup (or root) to find the
2124 * highest-level memory cgroup with oom.group set.
2125 */
2126 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
eaf7b66b 2127 if (READ_ONCE(memcg->oom_group))
3d8b38eb
RG
2128 oom_group = memcg;
2129
2130 if (memcg == oom_domain)
2131 break;
2132 }
2133
2134 if (oom_group)
2135 css_get(&oom_group->css);
2136out:
2137 rcu_read_unlock();
2138
2139 return oom_group;
2140}
2141
2142void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2143{
2144 pr_info("Tasks in ");
2145 pr_cont_cgroup_path(memcg->css.cgroup);
2146 pr_cont(" are going to be killed due to memory.oom.group set\n");
2147}
2148
d7365e78 2149/**
f70ad448
MWO
2150 * folio_memcg_lock - Bind a folio to its memcg.
2151 * @folio: The folio.
32047e2a 2152 *
f70ad448 2153 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2154 * another cgroup.
2155 *
f70ad448
MWO
2156 * It ensures lifetime of the bound memcg. The caller is responsible
2157 * for the lifetime of the folio.
d69b042f 2158 */
f70ad448 2159void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2160{
2161 struct mem_cgroup *memcg;
6de22619 2162 unsigned long flags;
89c06bd5 2163
6de22619
JW
2164 /*
2165 * The RCU lock is held throughout the transaction. The fast
2166 * path can get away without acquiring the memcg->move_lock
2167 * because page moving starts with an RCU grace period.
739f79fc 2168 */
d7365e78
JW
2169 rcu_read_lock();
2170
2171 if (mem_cgroup_disabled())
1c824a68 2172 return;
89c06bd5 2173again:
f70ad448 2174 memcg = folio_memcg(folio);
29833315 2175 if (unlikely(!memcg))
1c824a68 2176 return;
d7365e78 2177
20ad50d6
AS
2178#ifdef CONFIG_PROVE_LOCKING
2179 local_irq_save(flags);
2180 might_lock(&memcg->move_lock);
2181 local_irq_restore(flags);
2182#endif
2183
bdcbb659 2184 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2185 return;
89c06bd5 2186
6de22619 2187 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2188 if (memcg != folio_memcg(folio)) {
6de22619 2189 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2190 goto again;
2191 }
6de22619
JW
2192
2193 /*
1c824a68
JW
2194 * When charge migration first begins, we can have multiple
2195 * critical sections holding the fast-path RCU lock and one
2196 * holding the slowpath move_lock. Track the task who has the
6c77b607 2197 * move_lock for folio_memcg_unlock().
6de22619
JW
2198 */
2199 memcg->move_lock_task = current;
2200 memcg->move_lock_flags = flags;
89c06bd5 2201}
f70ad448 2202
f70ad448 2203static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2204{
6de22619
JW
2205 if (memcg && memcg->move_lock_task == current) {
2206 unsigned long flags = memcg->move_lock_flags;
2207
2208 memcg->move_lock_task = NULL;
2209 memcg->move_lock_flags = 0;
2210
2211 spin_unlock_irqrestore(&memcg->move_lock, flags);
2212 }
89c06bd5 2213
d7365e78 2214 rcu_read_unlock();
89c06bd5 2215}
739f79fc
JW
2216
2217/**
f70ad448
MWO
2218 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2219 * @folio: The folio.
2220 *
2221 * This releases the binding created by folio_memcg_lock(). This does
2222 * not change the accounting of this folio to its memcg, but it does
2223 * permit others to change it.
739f79fc 2224 */
f70ad448 2225void folio_memcg_unlock(struct folio *folio)
739f79fc 2226{
f70ad448
MWO
2227 __folio_memcg_unlock(folio_memcg(folio));
2228}
9da7b521 2229
fead2b86 2230struct memcg_stock_pcp {
56751146 2231 local_lock_t stock_lock;
fead2b86
MH
2232 struct mem_cgroup *cached; /* this never be root cgroup */
2233 unsigned int nr_pages;
2234
bf4f0599
RG
2235#ifdef CONFIG_MEMCG_KMEM
2236 struct obj_cgroup *cached_objcg;
68ac5b3c 2237 struct pglist_data *cached_pgdat;
bf4f0599 2238 unsigned int nr_bytes;
68ac5b3c
WL
2239 int nr_slab_reclaimable_b;
2240 int nr_slab_unreclaimable_b;
bf4f0599
RG
2241#endif
2242
cdec2e42 2243 struct work_struct work;
26fe6168 2244 unsigned long flags;
a0db00fc 2245#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2246};
56751146
SAS
2247static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2248 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2249};
9f50fad6 2250static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2251
bf4f0599 2252#ifdef CONFIG_MEMCG_KMEM
56751146 2253static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2254static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2255 struct mem_cgroup *root_memcg);
a8c49af3 2256static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2257
2258#else
56751146 2259static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2260{
56751146 2261 return NULL;
bf4f0599
RG
2262}
2263static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2264 struct mem_cgroup *root_memcg)
2265{
2266 return false;
2267}
a8c49af3
YA
2268static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2269{
2270}
bf4f0599
RG
2271#endif
2272
a0956d54
SS
2273/**
2274 * consume_stock: Try to consume stocked charge on this cpu.
2275 * @memcg: memcg to consume from.
2276 * @nr_pages: how many pages to charge.
2277 *
2278 * The charges will only happen if @memcg matches the current cpu's memcg
2279 * stock, and at least @nr_pages are available in that stock. Failure to
2280 * service an allocation will refill the stock.
2281 *
2282 * returns true if successful, false otherwise.
cdec2e42 2283 */
a0956d54 2284static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2285{
2286 struct memcg_stock_pcp *stock;
db2ba40c 2287 unsigned long flags;
3e32cb2e 2288 bool ret = false;
cdec2e42 2289
a983b5eb 2290 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2291 return ret;
a0956d54 2292
56751146 2293 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2294
2295 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2296 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
a0956d54 2297 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2298 ret = true;
2299 }
db2ba40c 2300
56751146 2301 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2302
cdec2e42
KH
2303 return ret;
2304}
2305
2306/*
3e32cb2e 2307 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2308 */
2309static void drain_stock(struct memcg_stock_pcp *stock)
2310{
f785a8f2 2311 struct mem_cgroup *old = READ_ONCE(stock->cached);
cdec2e42 2312
1a3e1f40
JW
2313 if (!old)
2314 return;
2315
11c9ea4e 2316 if (stock->nr_pages) {
3e32cb2e 2317 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2318 if (do_memsw_account())
3e32cb2e 2319 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2320 stock->nr_pages = 0;
cdec2e42 2321 }
1a3e1f40
JW
2322
2323 css_put(&old->css);
f785a8f2 2324 WRITE_ONCE(stock->cached, NULL);
cdec2e42
KH
2325}
2326
cdec2e42
KH
2327static void drain_local_stock(struct work_struct *dummy)
2328{
db2ba40c 2329 struct memcg_stock_pcp *stock;
56751146 2330 struct obj_cgroup *old = NULL;
db2ba40c
JW
2331 unsigned long flags;
2332
72f0184c 2333 /*
5c49cf9a
MH
2334 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2335 * drain_stock races is that we always operate on local CPU stock
2336 * here with IRQ disabled
72f0184c 2337 */
56751146 2338 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2339
2340 stock = this_cpu_ptr(&memcg_stock);
56751146 2341 old = drain_obj_stock(stock);
cdec2e42 2342 drain_stock(stock);
26fe6168 2343 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2344
56751146
SAS
2345 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2346 if (old)
2347 obj_cgroup_put(old);
cdec2e42
KH
2348}
2349
2350/*
3e32cb2e 2351 * Cache charges(val) to local per_cpu area.
320cc51d 2352 * This will be consumed by consume_stock() function, later.
cdec2e42 2353 */
af9a3b69 2354static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2355{
db2ba40c 2356 struct memcg_stock_pcp *stock;
cdec2e42 2357
db2ba40c 2358 stock = this_cpu_ptr(&memcg_stock);
f785a8f2 2359 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
cdec2e42 2360 drain_stock(stock);
1a3e1f40 2361 css_get(&memcg->css);
f785a8f2 2362 WRITE_ONCE(stock->cached, memcg);
cdec2e42 2363 }
11c9ea4e 2364 stock->nr_pages += nr_pages;
db2ba40c 2365
a983b5eb 2366 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2367 drain_stock(stock);
af9a3b69
JW
2368}
2369
2370static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2371{
2372 unsigned long flags;
475d0487 2373
56751146 2374 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2375 __refill_stock(memcg, nr_pages);
56751146 2376 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2377}
2378
2379/*
c0ff4b85 2380 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2381 * of the hierarchy under it.
cdec2e42 2382 */
6d3d6aa2 2383static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2384{
26fe6168 2385 int cpu, curcpu;
d38144b7 2386
6d3d6aa2
JW
2387 /* If someone's already draining, avoid adding running more workers. */
2388 if (!mutex_trylock(&percpu_charge_mutex))
2389 return;
72f0184c
MH
2390 /*
2391 * Notify other cpus that system-wide "drain" is running
2392 * We do not care about races with the cpu hotplug because cpu down
2393 * as well as workers from this path always operate on the local
2394 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2395 */
0790ed62
SAS
2396 migrate_disable();
2397 curcpu = smp_processor_id();
cdec2e42
KH
2398 for_each_online_cpu(cpu) {
2399 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2400 struct mem_cgroup *memcg;
e1a366be 2401 bool flush = false;
26fe6168 2402
e1a366be 2403 rcu_read_lock();
f785a8f2 2404 memcg = READ_ONCE(stock->cached);
e1a366be
RG
2405 if (memcg && stock->nr_pages &&
2406 mem_cgroup_is_descendant(memcg, root_memcg))
2407 flush = true;
27fb0956 2408 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2409 flush = true;
e1a366be
RG
2410 rcu_read_unlock();
2411
2412 if (flush &&
2413 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2414 if (cpu == curcpu)
2415 drain_local_stock(&stock->work);
6a792697 2416 else if (!cpu_is_isolated(cpu))
d1a05b69
MH
2417 schedule_work_on(cpu, &stock->work);
2418 }
cdec2e42 2419 }
0790ed62 2420 migrate_enable();
9f50fad6 2421 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2422}
2423
2cd21c89
JW
2424static int memcg_hotplug_cpu_dead(unsigned int cpu)
2425{
2426 struct memcg_stock_pcp *stock;
a3d4c05a 2427
2cd21c89
JW
2428 stock = &per_cpu(memcg_stock, cpu);
2429 drain_stock(stock);
a3d4c05a 2430
308167fc 2431 return 0;
cdec2e42
KH
2432}
2433
b3ff9291
CD
2434static unsigned long reclaim_high(struct mem_cgroup *memcg,
2435 unsigned int nr_pages,
2436 gfp_t gfp_mask)
f7e1cb6e 2437{
b3ff9291
CD
2438 unsigned long nr_reclaimed = 0;
2439
f7e1cb6e 2440 do {
e22c6ed9
JW
2441 unsigned long pflags;
2442
d1663a90
JK
2443 if (page_counter_read(&memcg->memory) <=
2444 READ_ONCE(memcg->memory.high))
f7e1cb6e 2445 continue;
e22c6ed9 2446
e27be240 2447 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2448
2449 psi_memstall_enter(&pflags);
b3ff9291 2450 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2451 gfp_mask,
55ab834a 2452 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2453 psi_memstall_leave(&pflags);
4bf17307
CD
2454 } while ((memcg = parent_mem_cgroup(memcg)) &&
2455 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2456
2457 return nr_reclaimed;
f7e1cb6e
JW
2458}
2459
2460static void high_work_func(struct work_struct *work)
2461{
2462 struct mem_cgroup *memcg;
2463
2464 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2465 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2466}
2467
0e4b01df
CD
2468/*
2469 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2470 * enough to still cause a significant slowdown in most cases, while still
2471 * allowing diagnostics and tracing to proceed without becoming stuck.
2472 */
2473#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2474
2475/*
2476 * When calculating the delay, we use these either side of the exponentiation to
2477 * maintain precision and scale to a reasonable number of jiffies (see the table
2478 * below.
2479 *
2480 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2481 * overage ratio to a delay.
ac5ddd0f 2482 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2483 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2484 * to produce a reasonable delay curve.
2485 *
2486 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2487 * reasonable delay curve compared to precision-adjusted overage, not
2488 * penalising heavily at first, but still making sure that growth beyond the
2489 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2490 * example, with a high of 100 megabytes:
2491 *
2492 * +-------+------------------------+
2493 * | usage | time to allocate in ms |
2494 * +-------+------------------------+
2495 * | 100M | 0 |
2496 * | 101M | 6 |
2497 * | 102M | 25 |
2498 * | 103M | 57 |
2499 * | 104M | 102 |
2500 * | 105M | 159 |
2501 * | 106M | 230 |
2502 * | 107M | 313 |
2503 * | 108M | 409 |
2504 * | 109M | 518 |
2505 * | 110M | 639 |
2506 * | 111M | 774 |
2507 * | 112M | 921 |
2508 * | 113M | 1081 |
2509 * | 114M | 1254 |
2510 * | 115M | 1439 |
2511 * | 116M | 1638 |
2512 * | 117M | 1849 |
2513 * | 118M | 2000 |
2514 * | 119M | 2000 |
2515 * | 120M | 2000 |
2516 * +-------+------------------------+
2517 */
2518 #define MEMCG_DELAY_PRECISION_SHIFT 20
2519 #define MEMCG_DELAY_SCALING_SHIFT 14
2520
8a5dbc65 2521static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2522{
8a5dbc65 2523 u64 overage;
b23afb93 2524
8a5dbc65
JK
2525 if (usage <= high)
2526 return 0;
e26733e0 2527
8a5dbc65
JK
2528 /*
2529 * Prevent division by 0 in overage calculation by acting as if
2530 * it was a threshold of 1 page
2531 */
2532 high = max(high, 1UL);
9b8b1754 2533
8a5dbc65
JK
2534 overage = usage - high;
2535 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2536 return div64_u64(overage, high);
2537}
e26733e0 2538
8a5dbc65
JK
2539static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2540{
2541 u64 overage, max_overage = 0;
e26733e0 2542
8a5dbc65
JK
2543 do {
2544 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2545 READ_ONCE(memcg->memory.high));
8a5dbc65 2546 max_overage = max(overage, max_overage);
e26733e0
CD
2547 } while ((memcg = parent_mem_cgroup(memcg)) &&
2548 !mem_cgroup_is_root(memcg));
2549
8a5dbc65
JK
2550 return max_overage;
2551}
2552
4b82ab4f
JK
2553static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2554{
2555 u64 overage, max_overage = 0;
2556
2557 do {
2558 overage = calculate_overage(page_counter_read(&memcg->swap),
2559 READ_ONCE(memcg->swap.high));
2560 if (overage)
2561 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2562 max_overage = max(overage, max_overage);
2563 } while ((memcg = parent_mem_cgroup(memcg)) &&
2564 !mem_cgroup_is_root(memcg));
2565
2566 return max_overage;
2567}
2568
8a5dbc65
JK
2569/*
2570 * Get the number of jiffies that we should penalise a mischievous cgroup which
2571 * is exceeding its memory.high by checking both it and its ancestors.
2572 */
2573static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2574 unsigned int nr_pages,
2575 u64 max_overage)
2576{
2577 unsigned long penalty_jiffies;
2578
e26733e0
CD
2579 if (!max_overage)
2580 return 0;
0e4b01df
CD
2581
2582 /*
0e4b01df
CD
2583 * We use overage compared to memory.high to calculate the number of
2584 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2585 * fairly lenient on small overages, and increasingly harsh when the
2586 * memcg in question makes it clear that it has no intention of stopping
2587 * its crazy behaviour, so we exponentially increase the delay based on
2588 * overage amount.
2589 */
e26733e0
CD
2590 penalty_jiffies = max_overage * max_overage * HZ;
2591 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2592 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2593
2594 /*
2595 * Factor in the task's own contribution to the overage, such that four
2596 * N-sized allocations are throttled approximately the same as one
2597 * 4N-sized allocation.
2598 *
2599 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2600 * larger the current charge patch is than that.
2601 */
ff144e69 2602 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2603}
2604
2605/*
2606 * Scheduled by try_charge() to be executed from the userland return path
2607 * and reclaims memory over the high limit.
2608 */
9ea9cb00 2609void mem_cgroup_handle_over_high(gfp_t gfp_mask)
e26733e0
CD
2610{
2611 unsigned long penalty_jiffies;
2612 unsigned long pflags;
b3ff9291 2613 unsigned long nr_reclaimed;
e26733e0 2614 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2615 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2616 struct mem_cgroup *memcg;
b3ff9291 2617 bool in_retry = false;
e26733e0
CD
2618
2619 if (likely(!nr_pages))
2620 return;
2621
2622 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2623 current->memcg_nr_pages_over_high = 0;
2624
b3ff9291
CD
2625retry_reclaim:
2626 /*
2627 * The allocating task should reclaim at least the batch size, but for
2628 * subsequent retries we only want to do what's necessary to prevent oom
2629 * or breaching resource isolation.
2630 *
2631 * This is distinct from memory.max or page allocator behaviour because
2632 * memory.high is currently batched, whereas memory.max and the page
2633 * allocator run every time an allocation is made.
2634 */
2635 nr_reclaimed = reclaim_high(memcg,
2636 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
9ea9cb00 2637 gfp_mask);
b3ff9291 2638
e26733e0
CD
2639 /*
2640 * memory.high is breached and reclaim is unable to keep up. Throttle
2641 * allocators proactively to slow down excessive growth.
2642 */
8a5dbc65
JK
2643 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2644 mem_find_max_overage(memcg));
0e4b01df 2645
4b82ab4f
JK
2646 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2647 swap_find_max_overage(memcg));
2648
ff144e69
JK
2649 /*
2650 * Clamp the max delay per usermode return so as to still keep the
2651 * application moving forwards and also permit diagnostics, albeit
2652 * extremely slowly.
2653 */
2654 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2655
0e4b01df
CD
2656 /*
2657 * Don't sleep if the amount of jiffies this memcg owes us is so low
2658 * that it's not even worth doing, in an attempt to be nice to those who
2659 * go only a small amount over their memory.high value and maybe haven't
2660 * been aggressively reclaimed enough yet.
2661 */
2662 if (penalty_jiffies <= HZ / 100)
2663 goto out;
2664
b3ff9291
CD
2665 /*
2666 * If reclaim is making forward progress but we're still over
2667 * memory.high, we want to encourage that rather than doing allocator
2668 * throttling.
2669 */
2670 if (nr_reclaimed || nr_retries--) {
2671 in_retry = true;
2672 goto retry_reclaim;
2673 }
2674
0e4b01df
CD
2675 /*
2676 * If we exit early, we're guaranteed to die (since
2677 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2678 * need to account for any ill-begotten jiffies to pay them off later.
2679 */
2680 psi_memstall_enter(&pflags);
2681 schedule_timeout_killable(penalty_jiffies);
2682 psi_memstall_leave(&pflags);
2683
2684out:
2685 css_put(&memcg->css);
b23afb93
TH
2686}
2687
c5c8b16b
MS
2688static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2689 unsigned int nr_pages)
8a9f3ccd 2690{
a983b5eb 2691 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2692 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2693 struct mem_cgroup *mem_over_limit;
3e32cb2e 2694 struct page_counter *counter;
6539cc05 2695 unsigned long nr_reclaimed;
a4ebf1b6 2696 bool passed_oom = false;
73b73bac 2697 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2698 bool drained = false;
d6e103a7 2699 bool raised_max_event = false;
e22c6ed9 2700 unsigned long pflags;
a636b327 2701
6539cc05 2702retry:
b6b6cc72 2703 if (consume_stock(memcg, nr_pages))
10d53c74 2704 return 0;
8a9f3ccd 2705
7941d214 2706 if (!do_memsw_account() ||
6071ca52
JW
2707 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2708 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2709 goto done_restock;
7941d214 2710 if (do_memsw_account())
3e32cb2e
JW
2711 page_counter_uncharge(&memcg->memsw, batch);
2712 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2713 } else {
3e32cb2e 2714 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2715 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2716 }
7a81b88c 2717
6539cc05
JW
2718 if (batch > nr_pages) {
2719 batch = nr_pages;
2720 goto retry;
2721 }
6d61ef40 2722
89a28483
JW
2723 /*
2724 * Prevent unbounded recursion when reclaim operations need to
2725 * allocate memory. This might exceed the limits temporarily,
2726 * but we prefer facilitating memory reclaim and getting back
2727 * under the limit over triggering OOM kills in these cases.
2728 */
2729 if (unlikely(current->flags & PF_MEMALLOC))
2730 goto force;
2731
06b078fc
JW
2732 if (unlikely(task_in_memcg_oom(current)))
2733 goto nomem;
2734
d0164adc 2735 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2736 goto nomem;
4b534334 2737
e27be240 2738 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2739 raised_max_event = true;
241994ed 2740
e22c6ed9 2741 psi_memstall_enter(&pflags);
b70a2a21 2742 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
55ab834a 2743 gfp_mask, reclaim_options);
e22c6ed9 2744 psi_memstall_leave(&pflags);
6539cc05 2745
61e02c74 2746 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2747 goto retry;
28c34c29 2748
b70a2a21 2749 if (!drained) {
6d3d6aa2 2750 drain_all_stock(mem_over_limit);
b70a2a21
JW
2751 drained = true;
2752 goto retry;
2753 }
2754
28c34c29
JW
2755 if (gfp_mask & __GFP_NORETRY)
2756 goto nomem;
6539cc05
JW
2757 /*
2758 * Even though the limit is exceeded at this point, reclaim
2759 * may have been able to free some pages. Retry the charge
2760 * before killing the task.
2761 *
2762 * Only for regular pages, though: huge pages are rather
2763 * unlikely to succeed so close to the limit, and we fall back
2764 * to regular pages anyway in case of failure.
2765 */
61e02c74 2766 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2767 goto retry;
2768 /*
2769 * At task move, charge accounts can be doubly counted. So, it's
2770 * better to wait until the end of task_move if something is going on.
2771 */
2772 if (mem_cgroup_wait_acct_move(mem_over_limit))
2773 goto retry;
2774
9b130619
JW
2775 if (nr_retries--)
2776 goto retry;
2777
38d38493 2778 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2779 goto nomem;
2780
a4ebf1b6
VA
2781 /* Avoid endless loop for tasks bypassed by the oom killer */
2782 if (passed_oom && task_is_dying())
2783 goto nomem;
6539cc05 2784
29ef680a
MH
2785 /*
2786 * keep retrying as long as the memcg oom killer is able to make
2787 * a forward progress or bypass the charge if the oom killer
2788 * couldn't make any progress.
2789 */
becdf89d
SB
2790 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2791 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2792 passed_oom = true;
d977aa93 2793 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2794 goto retry;
29ef680a 2795 }
7a81b88c 2796nomem:
1461e8c2
SB
2797 /*
2798 * Memcg doesn't have a dedicated reserve for atomic
2799 * allocations. But like the global atomic pool, we need to
2800 * put the burden of reclaim on regular allocation requests
2801 * and let these go through as privileged allocations.
2802 */
2803 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2804 return -ENOMEM;
10d53c74 2805force:
d6e103a7
RG
2806 /*
2807 * If the allocation has to be enforced, don't forget to raise
2808 * a MEMCG_MAX event.
2809 */
2810 if (!raised_max_event)
2811 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2812
10d53c74
TH
2813 /*
2814 * The allocation either can't fail or will lead to more memory
2815 * being freed very soon. Allow memory usage go over the limit
2816 * temporarily by force charging it.
2817 */
2818 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2819 if (do_memsw_account())
10d53c74 2820 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2821
2822 return 0;
6539cc05
JW
2823
2824done_restock:
2825 if (batch > nr_pages)
2826 refill_stock(memcg, batch - nr_pages);
b23afb93 2827
241994ed 2828 /*
b23afb93
TH
2829 * If the hierarchy is above the normal consumption range, schedule
2830 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2831 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2832 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2833 * not recorded as it most likely matches current's and won't
2834 * change in the meantime. As high limit is checked again before
2835 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2836 */
2837 do {
4b82ab4f
JK
2838 bool mem_high, swap_high;
2839
2840 mem_high = page_counter_read(&memcg->memory) >
2841 READ_ONCE(memcg->memory.high);
2842 swap_high = page_counter_read(&memcg->swap) >
2843 READ_ONCE(memcg->swap.high);
2844
2845 /* Don't bother a random interrupted task */
086f694a 2846 if (!in_task()) {
4b82ab4f 2847 if (mem_high) {
f7e1cb6e
JW
2848 schedule_work(&memcg->high_work);
2849 break;
2850 }
4b82ab4f
JK
2851 continue;
2852 }
2853
2854 if (mem_high || swap_high) {
2855 /*
2856 * The allocating tasks in this cgroup will need to do
2857 * reclaim or be throttled to prevent further growth
2858 * of the memory or swap footprints.
2859 *
2860 * Target some best-effort fairness between the tasks,
2861 * and distribute reclaim work and delay penalties
2862 * based on how much each task is actually allocating.
2863 */
9516a18a 2864 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2865 set_notify_resume(current);
2866 break;
2867 }
241994ed 2868 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2869
c9afe31e
SB
2870 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2871 !(current->flags & PF_MEMALLOC) &&
2872 gfpflags_allow_blocking(gfp_mask)) {
9ea9cb00 2873 mem_cgroup_handle_over_high(gfp_mask);
c9afe31e 2874 }
10d53c74 2875 return 0;
7a81b88c 2876}
8a9f3ccd 2877
c5c8b16b
MS
2878static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2879 unsigned int nr_pages)
2880{
2881 if (mem_cgroup_is_root(memcg))
2882 return 0;
2883
2884 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2885}
2886
4b569387
NP
2887/**
2888 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2889 * @memcg: memcg previously charged.
2890 * @nr_pages: number of pages previously charged.
2891 */
2892void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2893{
ce00a967
JW
2894 if (mem_cgroup_is_root(memcg))
2895 return;
2896
3e32cb2e 2897 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2898 if (do_memsw_account())
3e32cb2e 2899 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2900}
2901
118f2875 2902static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2903{
118f2875 2904 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2905 /*
a5eb011a 2906 * Any of the following ensures page's memcg stability:
0a31bc97 2907 *
a0b5b414
JW
2908 * - the page lock
2909 * - LRU isolation
6c77b607 2910 * - folio_memcg_lock()
a0b5b414 2911 * - exclusive reference
018ee47f 2912 * - mem_cgroup_trylock_pages()
0a31bc97 2913 */
118f2875 2914 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2915}
66e1707b 2916
4b569387
NP
2917/**
2918 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2919 * @folio: folio to commit the charge to.
2920 * @memcg: memcg previously charged.
2921 */
2922void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2923{
2924 css_get(&memcg->css);
2925 commit_charge(folio, memcg);
2926
2927 local_irq_disable();
2928 mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2929 memcg_check_events(memcg, folio_nid(folio));
2930 local_irq_enable();
2931}
2932
84c07d11 2933#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2934/*
2935 * The allocated objcg pointers array is not accounted directly.
2936 * Moreover, it should not come from DMA buffer and is not readily
2937 * reclaimable. So those GFP bits should be masked off.
2938 */
2939#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2940
a7ebf564
WL
2941/*
2942 * mod_objcg_mlstate() may be called with irq enabled, so
2943 * mod_memcg_lruvec_state() should be used.
2944 */
2945static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2946 struct pglist_data *pgdat,
2947 enum node_stat_item idx, int nr)
2948{
2949 struct mem_cgroup *memcg;
2950 struct lruvec *lruvec;
2951
2952 rcu_read_lock();
2953 memcg = obj_cgroup_memcg(objcg);
2954 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2955 mod_memcg_lruvec_state(lruvec, idx, nr);
2956 rcu_read_unlock();
2957}
2958
4b5f8d9a
VB
2959int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2960 gfp_t gfp, bool new_slab)
10befea9 2961{
4b5f8d9a 2962 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2963 unsigned long memcg_data;
10befea9
RG
2964 void *vec;
2965
41eb5df1 2966 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2967 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2968 slab_nid(slab));
10befea9
RG
2969 if (!vec)
2970 return -ENOMEM;
2971
2e9bd483 2972 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2973 if (new_slab) {
2e9bd483 2974 /*
4b5f8d9a
VB
2975 * If the slab is brand new and nobody can yet access its
2976 * memcg_data, no synchronization is required and memcg_data can
2977 * be simply assigned.
2e9bd483 2978 */
4b5f8d9a
VB
2979 slab->memcg_data = memcg_data;
2980 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2981 /*
4b5f8d9a
VB
2982 * If the slab is already in use, somebody can allocate and
2983 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2984 * objcg vector should be reused.
2985 */
10befea9 2986 kfree(vec);
2e9bd483
RG
2987 return 0;
2988 }
10befea9 2989
2e9bd483 2990 kmemleak_not_leak(vec);
10befea9
RG
2991 return 0;
2992}
2993
fc4db90f
RG
2994static __always_inline
2995struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2996{
8380ce47 2997 /*
9855609b
RG
2998 * Slab objects are accounted individually, not per-page.
2999 * Memcg membership data for each individual object is saved in
4b5f8d9a 3000 * slab->memcg_data.
8380ce47 3001 */
4b5f8d9a
VB
3002 if (folio_test_slab(folio)) {
3003 struct obj_cgroup **objcgs;
3004 struct slab *slab;
9855609b
RG
3005 unsigned int off;
3006
4b5f8d9a
VB
3007 slab = folio_slab(folio);
3008 objcgs = slab_objcgs(slab);
3009 if (!objcgs)
3010 return NULL;
3011
3012 off = obj_to_index(slab->slab_cache, slab, p);
3013 if (objcgs[off])
3014 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
3015
3016 return NULL;
9855609b 3017 }
8380ce47 3018
bcfe06bf 3019 /*
becacb04 3020 * folio_memcg_check() is used here, because in theory we can encounter
4b5f8d9a
VB
3021 * a folio where the slab flag has been cleared already, but
3022 * slab->memcg_data has not been freed yet
becacb04 3023 * folio_memcg_check() will guarantee that a proper memory
bcfe06bf
RG
3024 * cgroup pointer or NULL will be returned.
3025 */
becacb04 3026 return folio_memcg_check(folio);
8380ce47
RG
3027}
3028
fc4db90f
RG
3029/*
3030 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3031 *
3032 * A passed kernel object can be a slab object, vmalloc object or a generic
3033 * kernel page, so different mechanisms for getting the memory cgroup pointer
3034 * should be used.
3035 *
3036 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3037 * can not know for sure how the kernel object is implemented.
3038 * mem_cgroup_from_obj() can be safely used in such cases.
3039 *
3040 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3041 * cgroup_mutex, etc.
3042 */
3043struct mem_cgroup *mem_cgroup_from_obj(void *p)
3044{
3045 struct folio *folio;
3046
3047 if (mem_cgroup_disabled())
3048 return NULL;
3049
3050 if (unlikely(is_vmalloc_addr(p)))
3051 folio = page_folio(vmalloc_to_page(p));
3052 else
3053 folio = virt_to_folio(p);
3054
3055 return mem_cgroup_from_obj_folio(folio, p);
3056}
3057
3058/*
3059 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3060 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3061 * allocated using vmalloc().
3062 *
3063 * A passed kernel object must be a slab object or a generic kernel page.
3064 *
3065 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3066 * cgroup_mutex, etc.
3067 */
3068struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3069{
3070 if (mem_cgroup_disabled())
3071 return NULL;
3072
3073 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3074}
3075
f4840ccf
JW
3076static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3077{
3078 struct obj_cgroup *objcg = NULL;
3079
7848ed62 3080 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf 3081 objcg = rcu_dereference(memcg->objcg);
7d0715d0 3082 if (likely(objcg && obj_cgroup_tryget(objcg)))
f4840ccf
JW
3083 break;
3084 objcg = NULL;
3085 }
3086 return objcg;
3087}
3088
1aacbd35
RG
3089static struct obj_cgroup *current_objcg_update(void)
3090{
3091 struct mem_cgroup *memcg;
3092 struct obj_cgroup *old, *objcg = NULL;
3093
3094 do {
3095 /* Atomically drop the update bit. */
3096 old = xchg(&current->objcg, NULL);
3097 if (old) {
3098 old = (struct obj_cgroup *)
3099 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3100 if (old)
3101 obj_cgroup_put(old);
3102
3103 old = NULL;
3104 }
3105
3106 /* If new objcg is NULL, no reason for the second atomic update. */
3107 if (!current->mm || (current->flags & PF_KTHREAD))
3108 return NULL;
3109
3110 /*
3111 * Release the objcg pointer from the previous iteration,
3112 * if try_cmpxcg() below fails.
3113 */
3114 if (unlikely(objcg)) {
3115 obj_cgroup_put(objcg);
3116 objcg = NULL;
3117 }
3118
3119 /*
3120 * Obtain the new objcg pointer. The current task can be
3121 * asynchronously moved to another memcg and the previous
3122 * memcg can be offlined. So let's get the memcg pointer
3123 * and try get a reference to objcg under a rcu read lock.
3124 */
3125
3126 rcu_read_lock();
3127 memcg = mem_cgroup_from_task(current);
3128 objcg = __get_obj_cgroup_from_memcg(memcg);
3129 rcu_read_unlock();
3130
3131 /*
3132 * Try set up a new objcg pointer atomically. If it
3133 * fails, it means the update flag was set concurrently, so
3134 * the whole procedure should be repeated.
3135 */
3136 } while (!try_cmpxchg(&current->objcg, &old, objcg));
3137
3138 return objcg;
3139}
3140
e86828e5
RG
3141__always_inline struct obj_cgroup *current_obj_cgroup(void)
3142{
3143 struct mem_cgroup *memcg;
3144 struct obj_cgroup *objcg;
3145
3146 if (in_task()) {
3147 memcg = current->active_memcg;
3148 if (unlikely(memcg))
3149 goto from_memcg;
3150
3151 objcg = READ_ONCE(current->objcg);
3152 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3153 objcg = current_objcg_update();
3154 /*
3155 * Objcg reference is kept by the task, so it's safe
3156 * to use the objcg by the current task.
3157 */
3158 return objcg;
3159 }
3160
3161 memcg = this_cpu_read(int_active_memcg);
3162 if (unlikely(memcg))
3163 goto from_memcg;
3164
3165 return NULL;
3166
3167from_memcg:
3168 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3169 /*
3170 * Memcg pointer is protected by scope (see set_active_memcg())
3171 * and is pinning the corresponding objcg, so objcg can't go
3172 * away and can be used within the scope without any additional
3173 * protection.
3174 */
3175 objcg = rcu_dereference_check(memcg->objcg, 1);
3176 if (likely(objcg))
3177 break;
3178 objcg = NULL;
3179 }
3180
3181 return objcg;
3182}
3183
074e3e26 3184struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
f4840ccf
JW
3185{
3186 struct obj_cgroup *objcg;
3187
f7a449f7 3188 if (!memcg_kmem_online())
f4840ccf
JW
3189 return NULL;
3190
074e3e26
MWO
3191 if (folio_memcg_kmem(folio)) {
3192 objcg = __folio_objcg(folio);
f4840ccf
JW
3193 obj_cgroup_get(objcg);
3194 } else {
3195 struct mem_cgroup *memcg;
bf4f0599 3196
f4840ccf 3197 rcu_read_lock();
074e3e26 3198 memcg = __folio_memcg(folio);
f4840ccf
JW
3199 if (memcg)
3200 objcg = __get_obj_cgroup_from_memcg(memcg);
3201 else
3202 objcg = NULL;
3203 rcu_read_unlock();
3204 }
bf4f0599
RG
3205 return objcg;
3206}
3207
a8c49af3
YA
3208static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3209{
3210 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3211 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3212 if (nr_pages > 0)
3213 page_counter_charge(&memcg->kmem, nr_pages);
3214 else
3215 page_counter_uncharge(&memcg->kmem, -nr_pages);
3216 }
3217}
3218
3219
f1286fae
MS
3220/*
3221 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3222 * @objcg: object cgroup to uncharge
3223 * @nr_pages: number of pages to uncharge
3224 */
e74d2259
MS
3225static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3226 unsigned int nr_pages)
3227{
3228 struct mem_cgroup *memcg;
3229
3230 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3231
a8c49af3 3232 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3233 refill_stock(memcg, nr_pages);
e74d2259 3234
e74d2259 3235 css_put(&memcg->css);
e74d2259
MS
3236}
3237
f1286fae
MS
3238/*
3239 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3240 * @objcg: object cgroup to charge
45264778 3241 * @gfp: reclaim mode
92d0510c 3242 * @nr_pages: number of pages to charge
45264778
VD
3243 *
3244 * Returns 0 on success, an error code on failure.
3245 */
f1286fae
MS
3246static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3247 unsigned int nr_pages)
7ae1e1d0 3248{
f1286fae 3249 struct mem_cgroup *memcg;
7ae1e1d0
GC
3250 int ret;
3251
f1286fae
MS
3252 memcg = get_mem_cgroup_from_objcg(objcg);
3253
c5c8b16b 3254 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3255 if (ret)
f1286fae 3256 goto out;
52c29b04 3257
a8c49af3 3258 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3259out:
3260 css_put(&memcg->css);
4b13f64d 3261
f1286fae 3262 return ret;
4b13f64d
RG
3263}
3264
45264778 3265/**
f4b00eab 3266 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3267 * @page: page to charge
3268 * @gfp: reclaim mode
3269 * @order: allocation order
3270 *
3271 * Returns 0 on success, an error code on failure.
3272 */
f4b00eab 3273int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3274{
b4e0b68f 3275 struct obj_cgroup *objcg;
fcff7d7e 3276 int ret = 0;
7ae1e1d0 3277
e86828e5 3278 objcg = current_obj_cgroup();
b4e0b68f
MS
3279 if (objcg) {
3280 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3281 if (!ret) {
e86828e5 3282 obj_cgroup_get(objcg);
b4e0b68f 3283 page->memcg_data = (unsigned long)objcg |
18b2db3b 3284 MEMCG_DATA_KMEM;
1a3e1f40 3285 return 0;
4d96ba35 3286 }
c4159a75 3287 }
d05e83a6 3288 return ret;
7ae1e1d0 3289}
49a18eae 3290
45264778 3291/**
f4b00eab 3292 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3293 * @page: page to uncharge
3294 * @order: allocation order
3295 */
f4b00eab 3296void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3297{
1b7e4464 3298 struct folio *folio = page_folio(page);
b4e0b68f 3299 struct obj_cgroup *objcg;
f3ccb2c4 3300 unsigned int nr_pages = 1 << order;
7ae1e1d0 3301
1b7e4464 3302 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3303 return;
3304
1b7e4464 3305 objcg = __folio_objcg(folio);
b4e0b68f 3306 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3307 folio->memcg_data = 0;
b4e0b68f 3308 obj_cgroup_put(objcg);
60d3fd32 3309}
bf4f0599 3310
68ac5b3c
WL
3311void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3312 enum node_stat_item idx, int nr)
3313{
fead2b86 3314 struct memcg_stock_pcp *stock;
56751146 3315 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3316 unsigned long flags;
3317 int *bytes;
3318
56751146 3319 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3320 stock = this_cpu_ptr(&memcg_stock);
3321
68ac5b3c
WL
3322 /*
3323 * Save vmstat data in stock and skip vmstat array update unless
3324 * accumulating over a page of vmstat data or when pgdat or idx
3325 * changes.
3326 */
3b8abb32 3327 if (READ_ONCE(stock->cached_objcg) != objcg) {
56751146 3328 old = drain_obj_stock(stock);
68ac5b3c
WL
3329 obj_cgroup_get(objcg);
3330 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3331 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3b8abb32 3332 WRITE_ONCE(stock->cached_objcg, objcg);
68ac5b3c
WL
3333 stock->cached_pgdat = pgdat;
3334 } else if (stock->cached_pgdat != pgdat) {
3335 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3336 struct pglist_data *oldpg = stock->cached_pgdat;
3337
68ac5b3c 3338 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3339 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3340 stock->nr_slab_reclaimable_b);
3341 stock->nr_slab_reclaimable_b = 0;
3342 }
3343 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3344 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3345 stock->nr_slab_unreclaimable_b);
3346 stock->nr_slab_unreclaimable_b = 0;
3347 }
3348 stock->cached_pgdat = pgdat;
3349 }
3350
3351 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3352 : &stock->nr_slab_unreclaimable_b;
3353 /*
3354 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3355 * cached locally at least once before pushing it out.
3356 */
3357 if (!*bytes) {
3358 *bytes = nr;
3359 nr = 0;
3360 } else {
3361 *bytes += nr;
3362 if (abs(*bytes) > PAGE_SIZE) {
3363 nr = *bytes;
3364 *bytes = 0;
3365 } else {
3366 nr = 0;
3367 }
3368 }
3369 if (nr)
3370 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3371
56751146
SAS
3372 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3373 if (old)
3374 obj_cgroup_put(old);
68ac5b3c
WL
3375}
3376
bf4f0599
RG
3377static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3378{
fead2b86 3379 struct memcg_stock_pcp *stock;
bf4f0599
RG
3380 unsigned long flags;
3381 bool ret = false;
3382
56751146 3383 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3384
3385 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3386 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
bf4f0599
RG
3387 stock->nr_bytes -= nr_bytes;
3388 ret = true;
3389 }
3390
56751146 3391 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3392
3393 return ret;
3394}
3395
56751146 3396static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 3397{
3b8abb32 3398 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3399
3400 if (!old)
56751146 3401 return NULL;
bf4f0599
RG
3402
3403 if (stock->nr_bytes) {
3404 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3405 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3406
af9a3b69
JW
3407 if (nr_pages) {
3408 struct mem_cgroup *memcg;
3409
3410 memcg = get_mem_cgroup_from_objcg(old);
3411
3412 memcg_account_kmem(memcg, -nr_pages);
3413 __refill_stock(memcg, nr_pages);
3414
3415 css_put(&memcg->css);
3416 }
bf4f0599
RG
3417
3418 /*
3419 * The leftover is flushed to the centralized per-memcg value.
3420 * On the next attempt to refill obj stock it will be moved
3421 * to a per-cpu stock (probably, on an other CPU), see
3422 * refill_obj_stock().
3423 *
3424 * How often it's flushed is a trade-off between the memory
3425 * limit enforcement accuracy and potential CPU contention,
3426 * so it might be changed in the future.
3427 */
3428 atomic_add(nr_bytes, &old->nr_charged_bytes);
3429 stock->nr_bytes = 0;
3430 }
3431
68ac5b3c
WL
3432 /*
3433 * Flush the vmstat data in current stock
3434 */
3435 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3436 if (stock->nr_slab_reclaimable_b) {
3437 mod_objcg_mlstate(old, stock->cached_pgdat,
3438 NR_SLAB_RECLAIMABLE_B,
3439 stock->nr_slab_reclaimable_b);
3440 stock->nr_slab_reclaimable_b = 0;
3441 }
3442 if (stock->nr_slab_unreclaimable_b) {
3443 mod_objcg_mlstate(old, stock->cached_pgdat,
3444 NR_SLAB_UNRECLAIMABLE_B,
3445 stock->nr_slab_unreclaimable_b);
3446 stock->nr_slab_unreclaimable_b = 0;
3447 }
3448 stock->cached_pgdat = NULL;
3449 }
3450
3b8abb32 3451 WRITE_ONCE(stock->cached_objcg, NULL);
56751146
SAS
3452 /*
3453 * The `old' objects needs to be released by the caller via
3454 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3455 */
3456 return old;
bf4f0599
RG
3457}
3458
3459static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3460 struct mem_cgroup *root_memcg)
3461{
3b8abb32 3462 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
bf4f0599
RG
3463 struct mem_cgroup *memcg;
3464
3b8abb32
RG
3465 if (objcg) {
3466 memcg = obj_cgroup_memcg(objcg);
bf4f0599
RG
3467 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3468 return true;
3469 }
3470
3471 return false;
3472}
3473
5387c904
WL
3474static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3475 bool allow_uncharge)
bf4f0599 3476{
fead2b86 3477 struct memcg_stock_pcp *stock;
56751146 3478 struct obj_cgroup *old = NULL;
bf4f0599 3479 unsigned long flags;
5387c904 3480 unsigned int nr_pages = 0;
bf4f0599 3481
56751146 3482 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3483
3484 stock = this_cpu_ptr(&memcg_stock);
3b8abb32 3485 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
56751146 3486 old = drain_obj_stock(stock);
bf4f0599 3487 obj_cgroup_get(objcg);
3b8abb32 3488 WRITE_ONCE(stock->cached_objcg, objcg);
5387c904
WL
3489 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3490 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3491 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3492 }
3493 stock->nr_bytes += nr_bytes;
3494
5387c904
WL
3495 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3496 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3497 stock->nr_bytes &= (PAGE_SIZE - 1);
3498 }
bf4f0599 3499
56751146
SAS
3500 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3501 if (old)
3502 obj_cgroup_put(old);
5387c904
WL
3503
3504 if (nr_pages)
3505 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3506}
3507
3508int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3509{
bf4f0599
RG
3510 unsigned int nr_pages, nr_bytes;
3511 int ret;
3512
3513 if (consume_obj_stock(objcg, size))
3514 return 0;
3515
3516 /*
5387c904 3517 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3518 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3519 * flushing objcg->nr_charged_bytes requires two atomic
3520 * operations, and objcg->nr_charged_bytes can't be big.
3521 * The shared objcg->nr_charged_bytes can also become a
3522 * performance bottleneck if all tasks of the same memcg are
3523 * trying to update it. So it's better to ignore it and try
3524 * grab some new pages. The stock's nr_bytes will be flushed to
3525 * objcg->nr_charged_bytes later on when objcg changes.
3526 *
3527 * The stock's nr_bytes may contain enough pre-charged bytes
3528 * to allow one less page from being charged, but we can't rely
3529 * on the pre-charged bytes not being changed outside of
3530 * consume_obj_stock() or refill_obj_stock(). So ignore those
3531 * pre-charged bytes as well when charging pages. To avoid a
3532 * page uncharge right after a page charge, we set the
3533 * allow_uncharge flag to false when calling refill_obj_stock()
3534 * to temporarily allow the pre-charged bytes to exceed the page
3535 * size limit. The maximum reachable value of the pre-charged
3536 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3537 * race.
bf4f0599 3538 */
bf4f0599
RG
3539 nr_pages = size >> PAGE_SHIFT;
3540 nr_bytes = size & (PAGE_SIZE - 1);
3541
3542 if (nr_bytes)
3543 nr_pages += 1;
3544
e74d2259 3545 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3546 if (!ret && nr_bytes)
5387c904 3547 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3548
bf4f0599
RG
3549 return ret;
3550}
3551
3552void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3553{
5387c904 3554 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3555}
3556
84c07d11 3557#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3558
ca3e0214 3559/*
be6c8982 3560 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3561 */
be6c8982 3562void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3563{
1b7e4464
MWO
3564 struct folio *folio = page_folio(head);
3565 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3566 int i;
ca3e0214 3567
be6c8982 3568 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3569 return;
b070e65c 3570
be6c8982 3571 for (i = 1; i < nr; i++)
1b7e4464 3572 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3573
1b7e4464
MWO
3574 if (folio_memcg_kmem(folio))
3575 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3576 else
3577 css_get_many(&memcg->css, nr - 1);
ca3e0214 3578}
ca3e0214 3579
e55b9f96 3580#ifdef CONFIG_SWAP
02491447
DN
3581/**
3582 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3583 * @entry: swap entry to be moved
3584 * @from: mem_cgroup which the entry is moved from
3585 * @to: mem_cgroup which the entry is moved to
3586 *
3587 * It succeeds only when the swap_cgroup's record for this entry is the same
3588 * as the mem_cgroup's id of @from.
3589 *
3590 * Returns 0 on success, -EINVAL on failure.
3591 *
3e32cb2e 3592 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3593 * both res and memsw, and called css_get().
3594 */
3595static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3596 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3597{
3598 unsigned short old_id, new_id;
3599
34c00c31
LZ
3600 old_id = mem_cgroup_id(from);
3601 new_id = mem_cgroup_id(to);
02491447
DN
3602
3603 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3604 mod_memcg_state(from, MEMCG_SWAP, -1);
3605 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3606 return 0;
3607 }
3608 return -EINVAL;
3609}
3610#else
3611static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3612 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3613{
3614 return -EINVAL;
3615}
8c7c6e34 3616#endif
d13d1443 3617
bbec2e15 3618static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3619
bbec2e15
RG
3620static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3621 unsigned long max, bool memsw)
628f4235 3622{
3e32cb2e 3623 bool enlarge = false;
bb4a7ea2 3624 bool drained = false;
3e32cb2e 3625 int ret;
c054a78c
YZ
3626 bool limits_invariant;
3627 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3628
3e32cb2e 3629 do {
628f4235
KH
3630 if (signal_pending(current)) {
3631 ret = -EINTR;
3632 break;
3633 }
3e32cb2e 3634
bbec2e15 3635 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3636 /*
3637 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3638 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3639 */
15b42562 3640 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3641 max <= memcg->memsw.max;
c054a78c 3642 if (!limits_invariant) {
bbec2e15 3643 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3644 ret = -EINVAL;
8c7c6e34
KH
3645 break;
3646 }
bbec2e15 3647 if (max > counter->max)
3e32cb2e 3648 enlarge = true;
bbec2e15
RG
3649 ret = page_counter_set_max(counter, max);
3650 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3651
3652 if (!ret)
3653 break;
3654
bb4a7ea2
SB
3655 if (!drained) {
3656 drain_all_stock(memcg);
3657 drained = true;
3658 continue;
3659 }
3660
73b73bac 3661 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3662 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3663 ret = -EBUSY;
3664 break;
3665 }
3666 } while (true);
3e32cb2e 3667
3c11ecf4
KH
3668 if (!ret && enlarge)
3669 memcg_oom_recover(memcg);
3e32cb2e 3670
628f4235
KH
3671 return ret;
3672}
3673
ef8f2327 3674unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3675 gfp_t gfp_mask,
3676 unsigned long *total_scanned)
3677{
3678 unsigned long nr_reclaimed = 0;
ef8f2327 3679 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3680 unsigned long reclaimed;
3681 int loop = 0;
ef8f2327 3682 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3683 unsigned long excess;
0608f43d 3684
e4dde56c
YZ
3685 if (lru_gen_enabled())
3686 return 0;
3687
0608f43d
AM
3688 if (order > 0)
3689 return 0;
3690
2ab082ba 3691 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3692
3693 /*
3694 * Do not even bother to check the largest node if the root
3695 * is empty. Do it lockless to prevent lock bouncing. Races
3696 * are acceptable as soft limit is best effort anyway.
3697 */
bfc7228b 3698 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3699 return 0;
3700
0608f43d
AM
3701 /*
3702 * This loop can run a while, specially if mem_cgroup's continuously
3703 * keep exceeding their soft limit and putting the system under
3704 * pressure
3705 */
3706 do {
3707 if (next_mz)
3708 mz = next_mz;
3709 else
3710 mz = mem_cgroup_largest_soft_limit_node(mctz);
3711 if (!mz)
3712 break;
3713
ef8f2327 3714 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3715 gfp_mask, total_scanned);
0608f43d 3716 nr_reclaimed += reclaimed;
0a31bc97 3717 spin_lock_irq(&mctz->lock);
0608f43d
AM
3718
3719 /*
3720 * If we failed to reclaim anything from this memory cgroup
3721 * it is time to move on to the next cgroup
3722 */
3723 next_mz = NULL;
bc2f2e7f
VD
3724 if (!reclaimed)
3725 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3726
3e32cb2e 3727 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3728 /*
3729 * One school of thought says that we should not add
3730 * back the node to the tree if reclaim returns 0.
3731 * But our reclaim could return 0, simply because due
3732 * to priority we are exposing a smaller subset of
3733 * memory to reclaim from. Consider this as a longer
3734 * term TODO.
3735 */
3736 /* If excess == 0, no tree ops */
cf2c8127 3737 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3738 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3739 css_put(&mz->memcg->css);
3740 loop++;
3741 /*
3742 * Could not reclaim anything and there are no more
3743 * mem cgroups to try or we seem to be looping without
3744 * reclaiming anything.
3745 */
3746 if (!nr_reclaimed &&
3747 (next_mz == NULL ||
3748 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3749 break;
3750 } while (!nr_reclaimed);
3751 if (next_mz)
3752 css_put(&next_mz->memcg->css);
3753 return nr_reclaimed;
3754}
3755
c26251f9 3756/*
51038171 3757 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3758 *
3759 * Caller is responsible for holding css reference for memcg.
3760 */
3761static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3762{
d977aa93 3763 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3764
c1e862c1
KH
3765 /* we call try-to-free pages for make this cgroup empty */
3766 lru_add_drain_all();
d12c60f6
JS
3767
3768 drain_all_stock(memcg);
3769
f817ed48 3770 /* try to free all pages in this cgroup */
3e32cb2e 3771 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3772 if (signal_pending(current))
3773 return -EINTR;
3774
73b73bac 3775 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3776 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3777 nr_retries--;
f817ed48 3778 }
ab5196c2
MH
3779
3780 return 0;
cc847582
KH
3781}
3782
6770c64e
TH
3783static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3784 char *buf, size_t nbytes,
3785 loff_t off)
c1e862c1 3786{
6770c64e 3787 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3788
d8423011
MH
3789 if (mem_cgroup_is_root(memcg))
3790 return -EINVAL;
6770c64e 3791 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3792}
3793
182446d0
TH
3794static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3795 struct cftype *cft)
18f59ea7 3796{
bef8620c 3797 return 1;
18f59ea7
BS
3798}
3799
182446d0
TH
3800static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3801 struct cftype *cft, u64 val)
18f59ea7 3802{
bef8620c 3803 if (val == 1)
0b8f73e1 3804 return 0;
567fb435 3805
bef8620c
RG
3806 pr_warn_once("Non-hierarchical mode is deprecated. "
3807 "Please report your usecase to linux-mm@kvack.org if you "
3808 "depend on this functionality.\n");
567fb435 3809
bef8620c 3810 return -EINVAL;
18f59ea7
BS
3811}
3812
6f646156 3813static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3814{
42a30035 3815 unsigned long val;
ce00a967 3816
3e32cb2e 3817 if (mem_cgroup_is_root(memcg)) {
a2174e95 3818 /*
f82a7a86
YA
3819 * Approximate root's usage from global state. This isn't
3820 * perfect, but the root usage was always an approximation.
a2174e95 3821 */
f82a7a86
YA
3822 val = global_node_page_state(NR_FILE_PAGES) +
3823 global_node_page_state(NR_ANON_MAPPED);
42a30035 3824 if (swap)
f82a7a86 3825 val += total_swap_pages - get_nr_swap_pages();
3e32cb2e 3826 } else {
ce00a967 3827 if (!swap)
3e32cb2e 3828 val = page_counter_read(&memcg->memory);
ce00a967 3829 else
3e32cb2e 3830 val = page_counter_read(&memcg->memsw);
ce00a967 3831 }
c12176d3 3832 return val;
ce00a967
JW
3833}
3834
3e32cb2e
JW
3835enum {
3836 RES_USAGE,
3837 RES_LIMIT,
3838 RES_MAX_USAGE,
3839 RES_FAILCNT,
3840 RES_SOFT_LIMIT,
3841};
ce00a967 3842
791badbd 3843static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3844 struct cftype *cft)
8cdea7c0 3845{
182446d0 3846 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3847 struct page_counter *counter;
af36f906 3848
3e32cb2e 3849 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3850 case _MEM:
3e32cb2e
JW
3851 counter = &memcg->memory;
3852 break;
8c7c6e34 3853 case _MEMSWAP:
3e32cb2e
JW
3854 counter = &memcg->memsw;
3855 break;
510fc4e1 3856 case _KMEM:
3e32cb2e 3857 counter = &memcg->kmem;
510fc4e1 3858 break;
d55f90bf 3859 case _TCP:
0db15298 3860 counter = &memcg->tcpmem;
d55f90bf 3861 break;
8c7c6e34
KH
3862 default:
3863 BUG();
8c7c6e34 3864 }
3e32cb2e
JW
3865
3866 switch (MEMFILE_ATTR(cft->private)) {
3867 case RES_USAGE:
3868 if (counter == &memcg->memory)
c12176d3 3869 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3870 if (counter == &memcg->memsw)
c12176d3 3871 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3872 return (u64)page_counter_read(counter) * PAGE_SIZE;
3873 case RES_LIMIT:
bbec2e15 3874 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3875 case RES_MAX_USAGE:
3876 return (u64)counter->watermark * PAGE_SIZE;
3877 case RES_FAILCNT:
3878 return counter->failcnt;
3879 case RES_SOFT_LIMIT:
2178e20c 3880 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3e32cb2e
JW
3881 default:
3882 BUG();
3883 }
8cdea7c0 3884}
510fc4e1 3885
6b0ba2ab
FS
3886/*
3887 * This function doesn't do anything useful. Its only job is to provide a read
3888 * handler for a file so that cgroup_file_mode() will add read permissions.
3889 */
3890static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3891 __always_unused void *v)
3892{
3893 return -EINVAL;
3894}
3895
84c07d11 3896#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3897static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3898{
bf4f0599 3899 struct obj_cgroup *objcg;
d6441637 3900
9c94bef9 3901 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3902 return 0;
3903
da0efe30
MS
3904 if (unlikely(mem_cgroup_is_root(memcg)))
3905 return 0;
d6441637 3906
bf4f0599 3907 objcg = obj_cgroup_alloc();
f9c69d63 3908 if (!objcg)
bf4f0599 3909 return -ENOMEM;
f9c69d63 3910
bf4f0599
RG
3911 objcg->memcg = memcg;
3912 rcu_assign_pointer(memcg->objcg, objcg);
675d6c9b
RG
3913 obj_cgroup_get(objcg);
3914 memcg->orig_objcg = objcg;
bf4f0599 3915
f7a449f7 3916 static_branch_enable(&memcg_kmem_online_key);
d648bcc7 3917
f9c69d63 3918 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3919
3920 return 0;
d6441637
VD
3921}
3922
8e0a8912
JW
3923static void memcg_offline_kmem(struct mem_cgroup *memcg)
3924{
64268868 3925 struct mem_cgroup *parent;
8e0a8912 3926
9c94bef9 3927 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3928 return;
3929
3930 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3931 return;
9855609b 3932
8e0a8912
JW
3933 parent = parent_mem_cgroup(memcg);
3934 if (!parent)
3935 parent = root_mem_cgroup;
3936
bf4f0599 3937 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3938
8e0a8912 3939 /*
64268868
MS
3940 * After we have finished memcg_reparent_objcgs(), all list_lrus
3941 * corresponding to this cgroup are guaranteed to remain empty.
3942 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3943 * memcg_reparent_list_lrus().
8e0a8912 3944 */
1f391eb2 3945 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3946}
d6441637 3947#else
0b8f73e1 3948static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3949{
3950 return 0;
3951}
3952static void memcg_offline_kmem(struct mem_cgroup *memcg)
3953{
3954}
84c07d11 3955#endif /* CONFIG_MEMCG_KMEM */
127424c8 3956
bbec2e15 3957static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3958{
3959 int ret;
3960
bbec2e15 3961 mutex_lock(&memcg_max_mutex);
d55f90bf 3962
bbec2e15 3963 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3964 if (ret)
3965 goto out;
3966
0db15298 3967 if (!memcg->tcpmem_active) {
d55f90bf
VD
3968 /*
3969 * The active flag needs to be written after the static_key
3970 * update. This is what guarantees that the socket activation
2d758073
JW
3971 * function is the last one to run. See mem_cgroup_sk_alloc()
3972 * for details, and note that we don't mark any socket as
3973 * belonging to this memcg until that flag is up.
d55f90bf
VD
3974 *
3975 * We need to do this, because static_keys will span multiple
3976 * sites, but we can't control their order. If we mark a socket
3977 * as accounted, but the accounting functions are not patched in
3978 * yet, we'll lose accounting.
3979 *
2d758073 3980 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3981 * because when this value change, the code to process it is not
3982 * patched in yet.
3983 */
3984 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3985 memcg->tcpmem_active = true;
d55f90bf
VD
3986 }
3987out:
bbec2e15 3988 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3989 return ret;
3990}
d55f90bf 3991
628f4235
KH
3992/*
3993 * The user of this function is...
3994 * RES_LIMIT.
3995 */
451af504
TH
3996static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3997 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3998{
451af504 3999 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4000 unsigned long nr_pages;
628f4235
KH
4001 int ret;
4002
451af504 4003 buf = strstrip(buf);
650c5e56 4004 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
4005 if (ret)
4006 return ret;
af36f906 4007
3e32cb2e 4008 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 4009 case RES_LIMIT:
4b3bde4c
BS
4010 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4011 ret = -EINVAL;
4012 break;
4013 }
3e32cb2e
JW
4014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4015 case _MEM:
bbec2e15 4016 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 4017 break;
3e32cb2e 4018 case _MEMSWAP:
bbec2e15 4019 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 4020 break;
4597648f
MH
4021 case _KMEM:
4022 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4023 "Writing any value to this file has no effect. "
4024 "Please report your usecase to linux-mm@kvack.org if you "
4025 "depend on this functionality.\n");
4026 ret = 0;
4027 break;
d55f90bf 4028 case _TCP:
bbec2e15 4029 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 4030 break;
3e32cb2e 4031 }
296c81d8 4032 break;
3e32cb2e 4033 case RES_SOFT_LIMIT:
2343e88d
SAS
4034 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4035 ret = -EOPNOTSUPP;
4036 } else {
2178e20c 4037 WRITE_ONCE(memcg->soft_limit, nr_pages);
2343e88d
SAS
4038 ret = 0;
4039 }
628f4235
KH
4040 break;
4041 }
451af504 4042 return ret ?: nbytes;
8cdea7c0
BS
4043}
4044
6770c64e
TH
4045static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4046 size_t nbytes, loff_t off)
c84872e1 4047{
6770c64e 4048 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4049 struct page_counter *counter;
c84872e1 4050
3e32cb2e
JW
4051 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4052 case _MEM:
4053 counter = &memcg->memory;
4054 break;
4055 case _MEMSWAP:
4056 counter = &memcg->memsw;
4057 break;
4058 case _KMEM:
4059 counter = &memcg->kmem;
4060 break;
d55f90bf 4061 case _TCP:
0db15298 4062 counter = &memcg->tcpmem;
d55f90bf 4063 break;
3e32cb2e
JW
4064 default:
4065 BUG();
4066 }
af36f906 4067
3e32cb2e 4068 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 4069 case RES_MAX_USAGE:
3e32cb2e 4070 page_counter_reset_watermark(counter);
29f2a4da
PE
4071 break;
4072 case RES_FAILCNT:
3e32cb2e 4073 counter->failcnt = 0;
29f2a4da 4074 break;
3e32cb2e
JW
4075 default:
4076 BUG();
29f2a4da 4077 }
f64c3f54 4078
6770c64e 4079 return nbytes;
c84872e1
PE
4080}
4081
182446d0 4082static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4083 struct cftype *cft)
4084{
182446d0 4085 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4086}
4087
02491447 4088#ifdef CONFIG_MMU
182446d0 4089static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4090 struct cftype *cft, u64 val)
4091{
182446d0 4092 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 4093
da34a848
JW
4094 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4095 "Please report your usecase to linux-mm@kvack.org if you "
4096 "depend on this functionality.\n");
4097
1dfab5ab 4098 if (val & ~MOVE_MASK)
7dc74be0 4099 return -EINVAL;
ee5e8472 4100
7dc74be0 4101 /*
ee5e8472
GC
4102 * No kind of locking is needed in here, because ->can_attach() will
4103 * check this value once in the beginning of the process, and then carry
4104 * on with stale data. This means that changes to this value will only
4105 * affect task migrations starting after the change.
7dc74be0 4106 */
c0ff4b85 4107 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4108 return 0;
4109}
02491447 4110#else
182446d0 4111static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4112 struct cftype *cft, u64 val)
4113{
4114 return -ENOSYS;
4115}
4116#endif
7dc74be0 4117
406eb0c9 4118#ifdef CONFIG_NUMA
113b7dfd
JW
4119
4120#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4121#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4122#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4123
4124static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 4125 int nid, unsigned int lru_mask, bool tree)
113b7dfd 4126{
867e5e1d 4127 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
4128 unsigned long nr = 0;
4129 enum lru_list lru;
4130
4131 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4132
4133 for_each_lru(lru) {
4134 if (!(BIT(lru) & lru_mask))
4135 continue;
dd8657b6
SB
4136 if (tree)
4137 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4138 else
4139 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
4140 }
4141 return nr;
4142}
4143
4144static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
4145 unsigned int lru_mask,
4146 bool tree)
113b7dfd
JW
4147{
4148 unsigned long nr = 0;
4149 enum lru_list lru;
4150
4151 for_each_lru(lru) {
4152 if (!(BIT(lru) & lru_mask))
4153 continue;
dd8657b6
SB
4154 if (tree)
4155 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4156 else
4157 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
4158 }
4159 return nr;
4160}
4161
2da8ca82 4162static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4163{
25485de6
GT
4164 struct numa_stat {
4165 const char *name;
4166 unsigned int lru_mask;
4167 };
4168
4169 static const struct numa_stat stats[] = {
4170 { "total", LRU_ALL },
4171 { "file", LRU_ALL_FILE },
4172 { "anon", LRU_ALL_ANON },
4173 { "unevictable", BIT(LRU_UNEVICTABLE) },
4174 };
4175 const struct numa_stat *stat;
406eb0c9 4176 int nid;
aa9694bb 4177 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4178
fd25a9e0 4179 mem_cgroup_flush_stats();
2d146aa3 4180
25485de6 4181 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4182 seq_printf(m, "%s=%lu", stat->name,
4183 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4184 false));
4185 for_each_node_state(nid, N_MEMORY)
4186 seq_printf(m, " N%d=%lu", nid,
4187 mem_cgroup_node_nr_lru_pages(memcg, nid,
4188 stat->lru_mask, false));
25485de6 4189 seq_putc(m, '\n');
406eb0c9 4190 }
406eb0c9 4191
071aee13 4192 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4193
4194 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4195 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4196 true));
4197 for_each_node_state(nid, N_MEMORY)
4198 seq_printf(m, " N%d=%lu", nid,
4199 mem_cgroup_node_nr_lru_pages(memcg, nid,
4200 stat->lru_mask, true));
071aee13 4201 seq_putc(m, '\n');
406eb0c9 4202 }
406eb0c9 4203
406eb0c9
YH
4204 return 0;
4205}
4206#endif /* CONFIG_NUMA */
4207
c8713d0b 4208static const unsigned int memcg1_stats[] = {
0d1c2072 4209 NR_FILE_PAGES,
be5d0a74 4210 NR_ANON_MAPPED,
468c3982
JW
4211#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4212 NR_ANON_THPS,
4213#endif
c8713d0b
JW
4214 NR_SHMEM,
4215 NR_FILE_MAPPED,
4216 NR_FILE_DIRTY,
4217 NR_WRITEBACK,
e09b0b61
YS
4218 WORKINGSET_REFAULT_ANON,
4219 WORKINGSET_REFAULT_FILE,
72a14e82 4220#ifdef CONFIG_SWAP
c8713d0b 4221 MEMCG_SWAP,
72a14e82
LS
4222 NR_SWAPCACHE,
4223#endif
c8713d0b
JW
4224};
4225
4226static const char *const memcg1_stat_names[] = {
4227 "cache",
4228 "rss",
468c3982 4229#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4230 "rss_huge",
468c3982 4231#endif
c8713d0b
JW
4232 "shmem",
4233 "mapped_file",
4234 "dirty",
4235 "writeback",
e09b0b61
YS
4236 "workingset_refault_anon",
4237 "workingset_refault_file",
72a14e82 4238#ifdef CONFIG_SWAP
c8713d0b 4239 "swap",
72a14e82
LS
4240 "swapcached",
4241#endif
c8713d0b
JW
4242};
4243
df0e53d0 4244/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4245static const unsigned int memcg1_events[] = {
df0e53d0
JW
4246 PGPGIN,
4247 PGPGOUT,
4248 PGFAULT,
4249 PGMAJFAULT,
4250};
4251
dddb44ff 4252static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
d2ceb9b7 4253{
3e32cb2e 4254 unsigned long memory, memsw;
af7c4b0e
JW
4255 struct mem_cgroup *mi;
4256 unsigned int i;
406eb0c9 4257
71cd3113 4258 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4259
fd25a9e0 4260 mem_cgroup_flush_stats();
2d146aa3 4261
71cd3113 4262 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4263 unsigned long nr;
4264
ff841a06
YA
4265 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4266 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
1dd3a273 4267 }
7b854121 4268
df0e53d0 4269 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4270 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4271 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4272
4273 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4274 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4275 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4276 PAGE_SIZE);
af7c4b0e 4277
14067bb3 4278 /* Hierarchical information */
3e32cb2e
JW
4279 memory = memsw = PAGE_COUNTER_MAX;
4280 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4281 memory = min(memory, READ_ONCE(mi->memory.max));
4282 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4283 }
dddb44ff
YA
4284 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4285 (u64)memory * PAGE_SIZE);
840ea53a
LS
4286 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4287 (u64)memsw * PAGE_SIZE);
7f016ee8 4288
8de7ecc6 4289 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4290 unsigned long nr;
4291
ff841a06 4292 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
dddb44ff 4293 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
ff841a06 4294 (u64)nr);
af7c4b0e
JW
4295 }
4296
8de7ecc6 4297 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
dddb44ff
YA
4298 seq_buf_printf(s, "total_%s %llu\n",
4299 vm_event_name(memcg1_events[i]),
4300 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4301
8de7ecc6 4302 for (i = 0; i < NR_LRU_LISTS; i++)
dddb44ff
YA
4303 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4304 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4305 PAGE_SIZE);
14067bb3 4306
7f016ee8 4307#ifdef CONFIG_DEBUG_VM
7f016ee8 4308 {
ef8f2327
MG
4309 pg_data_t *pgdat;
4310 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4311 unsigned long anon_cost = 0;
4312 unsigned long file_cost = 0;
7f016ee8 4313
ef8f2327 4314 for_each_online_pgdat(pgdat) {
a3747b53 4315 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4316
1431d4d1
JW
4317 anon_cost += mz->lruvec.anon_cost;
4318 file_cost += mz->lruvec.file_cost;
ef8f2327 4319 }
dddb44ff
YA
4320 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4321 seq_buf_printf(s, "file_cost %lu\n", file_cost);
7f016ee8
KM
4322 }
4323#endif
d2ceb9b7
KH
4324}
4325
182446d0
TH
4326static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4327 struct cftype *cft)
a7885eb8 4328{
182446d0 4329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4330
1f4c025b 4331 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4332}
4333
182446d0
TH
4334static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4335 struct cftype *cft, u64 val)
a7885eb8 4336{
182446d0 4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4338
37bc3cb9 4339 if (val > 200)
a7885eb8
KM
4340 return -EINVAL;
4341
a4792030 4342 if (!mem_cgroup_is_root(memcg))
82b3aa26 4343 WRITE_ONCE(memcg->swappiness, val);
3dae7fec 4344 else
82b3aa26 4345 WRITE_ONCE(vm_swappiness, val);
068b38c1 4346
a7885eb8
KM
4347 return 0;
4348}
4349
2e72b634
KS
4350static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4351{
4352 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4353 unsigned long usage;
2e72b634
KS
4354 int i;
4355
4356 rcu_read_lock();
4357 if (!swap)
2c488db2 4358 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4359 else
2c488db2 4360 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4361
4362 if (!t)
4363 goto unlock;
4364
ce00a967 4365 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4366
4367 /*
748dad36 4368 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4369 * If it's not true, a threshold was crossed after last
4370 * call of __mem_cgroup_threshold().
4371 */
5407a562 4372 i = t->current_threshold;
2e72b634
KS
4373
4374 /*
4375 * Iterate backward over array of thresholds starting from
4376 * current_threshold and check if a threshold is crossed.
4377 * If none of thresholds below usage is crossed, we read
4378 * only one element of the array here.
4379 */
4380 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4381 eventfd_signal(t->entries[i].eventfd, 1);
4382
4383 /* i = current_threshold + 1 */
4384 i++;
4385
4386 /*
4387 * Iterate forward over array of thresholds starting from
4388 * current_threshold+1 and check if a threshold is crossed.
4389 * If none of thresholds above usage is crossed, we read
4390 * only one element of the array here.
4391 */
4392 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4393 eventfd_signal(t->entries[i].eventfd, 1);
4394
4395 /* Update current_threshold */
5407a562 4396 t->current_threshold = i - 1;
2e72b634
KS
4397unlock:
4398 rcu_read_unlock();
4399}
4400
4401static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4402{
ad4ca5f4
KS
4403 while (memcg) {
4404 __mem_cgroup_threshold(memcg, false);
7941d214 4405 if (do_memsw_account())
ad4ca5f4
KS
4406 __mem_cgroup_threshold(memcg, true);
4407
4408 memcg = parent_mem_cgroup(memcg);
4409 }
2e72b634
KS
4410}
4411
4412static int compare_thresholds(const void *a, const void *b)
4413{
4414 const struct mem_cgroup_threshold *_a = a;
4415 const struct mem_cgroup_threshold *_b = b;
4416
2bff24a3
GT
4417 if (_a->threshold > _b->threshold)
4418 return 1;
4419
4420 if (_a->threshold < _b->threshold)
4421 return -1;
4422
4423 return 0;
2e72b634
KS
4424}
4425
c0ff4b85 4426static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4427{
4428 struct mem_cgroup_eventfd_list *ev;
4429
2bcf2e92
MH
4430 spin_lock(&memcg_oom_lock);
4431
c0ff4b85 4432 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4433 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4434
4435 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4436 return 0;
4437}
4438
c0ff4b85 4439static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4440{
7d74b06f
KH
4441 struct mem_cgroup *iter;
4442
c0ff4b85 4443 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4444 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4445}
4446
59b6f873 4447static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4448 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4449{
2c488db2
KS
4450 struct mem_cgroup_thresholds *thresholds;
4451 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4452 unsigned long threshold;
4453 unsigned long usage;
2c488db2 4454 int i, size, ret;
2e72b634 4455
650c5e56 4456 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4457 if (ret)
4458 return ret;
4459
4460 mutex_lock(&memcg->thresholds_lock);
2c488db2 4461
05b84301 4462 if (type == _MEM) {
2c488db2 4463 thresholds = &memcg->thresholds;
ce00a967 4464 usage = mem_cgroup_usage(memcg, false);
05b84301 4465 } else if (type == _MEMSWAP) {
2c488db2 4466 thresholds = &memcg->memsw_thresholds;
ce00a967 4467 usage = mem_cgroup_usage(memcg, true);
05b84301 4468 } else
2e72b634
KS
4469 BUG();
4470
2e72b634 4471 /* Check if a threshold crossed before adding a new one */
2c488db2 4472 if (thresholds->primary)
2e72b634
KS
4473 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4474
2c488db2 4475 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4476
4477 /* Allocate memory for new array of thresholds */
67b8046f 4478 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4479 if (!new) {
2e72b634
KS
4480 ret = -ENOMEM;
4481 goto unlock;
4482 }
2c488db2 4483 new->size = size;
2e72b634
KS
4484
4485 /* Copy thresholds (if any) to new array */
e90342e6
GS
4486 if (thresholds->primary)
4487 memcpy(new->entries, thresholds->primary->entries,
4488 flex_array_size(new, entries, size - 1));
2c488db2 4489
2e72b634 4490 /* Add new threshold */
2c488db2
KS
4491 new->entries[size - 1].eventfd = eventfd;
4492 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4493
4494 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4495 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4496 compare_thresholds, NULL);
4497
4498 /* Find current threshold */
2c488db2 4499 new->current_threshold = -1;
2e72b634 4500 for (i = 0; i < size; i++) {
748dad36 4501 if (new->entries[i].threshold <= usage) {
2e72b634 4502 /*
2c488db2
KS
4503 * new->current_threshold will not be used until
4504 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4505 * it here.
4506 */
2c488db2 4507 ++new->current_threshold;
748dad36
SZ
4508 } else
4509 break;
2e72b634
KS
4510 }
4511
2c488db2
KS
4512 /* Free old spare buffer and save old primary buffer as spare */
4513 kfree(thresholds->spare);
4514 thresholds->spare = thresholds->primary;
4515
4516 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4517
907860ed 4518 /* To be sure that nobody uses thresholds */
2e72b634
KS
4519 synchronize_rcu();
4520
2e72b634
KS
4521unlock:
4522 mutex_unlock(&memcg->thresholds_lock);
4523
4524 return ret;
4525}
4526
59b6f873 4527static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4528 struct eventfd_ctx *eventfd, const char *args)
4529{
59b6f873 4530 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4531}
4532
59b6f873 4533static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4534 struct eventfd_ctx *eventfd, const char *args)
4535{
59b6f873 4536 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4537}
4538
59b6f873 4539static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4540 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4541{
2c488db2
KS
4542 struct mem_cgroup_thresholds *thresholds;
4543 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4544 unsigned long usage;
7d36665a 4545 int i, j, size, entries;
2e72b634
KS
4546
4547 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4548
4549 if (type == _MEM) {
2c488db2 4550 thresholds = &memcg->thresholds;
ce00a967 4551 usage = mem_cgroup_usage(memcg, false);
05b84301 4552 } else if (type == _MEMSWAP) {
2c488db2 4553 thresholds = &memcg->memsw_thresholds;
ce00a967 4554 usage = mem_cgroup_usage(memcg, true);
05b84301 4555 } else
2e72b634
KS
4556 BUG();
4557
371528ca
AV
4558 if (!thresholds->primary)
4559 goto unlock;
4560
2e72b634
KS
4561 /* Check if a threshold crossed before removing */
4562 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4563
4564 /* Calculate new number of threshold */
7d36665a 4565 size = entries = 0;
2c488db2
KS
4566 for (i = 0; i < thresholds->primary->size; i++) {
4567 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4568 size++;
7d36665a
CX
4569 else
4570 entries++;
2e72b634
KS
4571 }
4572
2c488db2 4573 new = thresholds->spare;
907860ed 4574
7d36665a
CX
4575 /* If no items related to eventfd have been cleared, nothing to do */
4576 if (!entries)
4577 goto unlock;
4578
2e72b634
KS
4579 /* Set thresholds array to NULL if we don't have thresholds */
4580 if (!size) {
2c488db2
KS
4581 kfree(new);
4582 new = NULL;
907860ed 4583 goto swap_buffers;
2e72b634
KS
4584 }
4585
2c488db2 4586 new->size = size;
2e72b634
KS
4587
4588 /* Copy thresholds and find current threshold */
2c488db2
KS
4589 new->current_threshold = -1;
4590 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4591 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4592 continue;
4593
2c488db2 4594 new->entries[j] = thresholds->primary->entries[i];
748dad36 4595 if (new->entries[j].threshold <= usage) {
2e72b634 4596 /*
2c488db2 4597 * new->current_threshold will not be used
2e72b634
KS
4598 * until rcu_assign_pointer(), so it's safe to increment
4599 * it here.
4600 */
2c488db2 4601 ++new->current_threshold;
2e72b634
KS
4602 }
4603 j++;
4604 }
4605
907860ed 4606swap_buffers:
2c488db2
KS
4607 /* Swap primary and spare array */
4608 thresholds->spare = thresholds->primary;
8c757763 4609
2c488db2 4610 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4611
907860ed 4612 /* To be sure that nobody uses thresholds */
2e72b634 4613 synchronize_rcu();
6611d8d7
MC
4614
4615 /* If all events are unregistered, free the spare array */
4616 if (!new) {
4617 kfree(thresholds->spare);
4618 thresholds->spare = NULL;
4619 }
371528ca 4620unlock:
2e72b634 4621 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4622}
c1e862c1 4623
59b6f873 4624static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4625 struct eventfd_ctx *eventfd)
4626{
59b6f873 4627 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4628}
4629
59b6f873 4630static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4631 struct eventfd_ctx *eventfd)
4632{
59b6f873 4633 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4634}
4635
59b6f873 4636static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4637 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4638{
9490ff27 4639 struct mem_cgroup_eventfd_list *event;
9490ff27 4640
9490ff27
KH
4641 event = kmalloc(sizeof(*event), GFP_KERNEL);
4642 if (!event)
4643 return -ENOMEM;
4644
1af8efe9 4645 spin_lock(&memcg_oom_lock);
9490ff27
KH
4646
4647 event->eventfd = eventfd;
4648 list_add(&event->list, &memcg->oom_notify);
4649
4650 /* already in OOM ? */
c2b42d3c 4651 if (memcg->under_oom)
9490ff27 4652 eventfd_signal(eventfd, 1);
1af8efe9 4653 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4654
4655 return 0;
4656}
4657
59b6f873 4658static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4659 struct eventfd_ctx *eventfd)
9490ff27 4660{
9490ff27 4661 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4662
1af8efe9 4663 spin_lock(&memcg_oom_lock);
9490ff27 4664
c0ff4b85 4665 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4666 if (ev->eventfd == eventfd) {
4667 list_del(&ev->list);
4668 kfree(ev);
4669 }
4670 }
4671
1af8efe9 4672 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4673}
4674
2da8ca82 4675static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4676{
aa9694bb 4677 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4678
17c56de6 4679 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
c2b42d3c 4680 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4681 seq_printf(sf, "oom_kill %lu\n",
4682 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4683 return 0;
4684}
4685
182446d0 4686static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4687 struct cftype *cft, u64 val)
4688{
182446d0 4689 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4690
4691 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4692 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4693 return -EINVAL;
4694
17c56de6 4695 WRITE_ONCE(memcg->oom_kill_disable, val);
4d845ebf 4696 if (!val)
c0ff4b85 4697 memcg_oom_recover(memcg);
3dae7fec 4698
3c11ecf4
KH
4699 return 0;
4700}
4701
52ebea74
TH
4702#ifdef CONFIG_CGROUP_WRITEBACK
4703
3a8e9ac8
TH
4704#include <trace/events/writeback.h>
4705
841710aa
TH
4706static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4707{
4708 return wb_domain_init(&memcg->cgwb_domain, gfp);
4709}
4710
4711static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4712{
4713 wb_domain_exit(&memcg->cgwb_domain);
4714}
4715
2529bb3a
TH
4716static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4717{
4718 wb_domain_size_changed(&memcg->cgwb_domain);
4719}
4720
841710aa
TH
4721struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4722{
4723 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4724
4725 if (!memcg->css.parent)
4726 return NULL;
4727
4728 return &memcg->cgwb_domain;
4729}
4730
c2aa723a
TH
4731/**
4732 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4733 * @wb: bdi_writeback in question
c5edf9cd
TH
4734 * @pfilepages: out parameter for number of file pages
4735 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4736 * @pdirty: out parameter for number of dirty pages
4737 * @pwriteback: out parameter for number of pages under writeback
4738 *
c5edf9cd
TH
4739 * Determine the numbers of file, headroom, dirty, and writeback pages in
4740 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4741 * is a bit more involved.
c2aa723a 4742 *
c5edf9cd
TH
4743 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4744 * headroom is calculated as the lowest headroom of itself and the
4745 * ancestors. Note that this doesn't consider the actual amount of
4746 * available memory in the system. The caller should further cap
4747 * *@pheadroom accordingly.
c2aa723a 4748 */
c5edf9cd
TH
4749void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4750 unsigned long *pheadroom, unsigned long *pdirty,
4751 unsigned long *pwriteback)
c2aa723a
TH
4752{
4753 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4754 struct mem_cgroup *parent;
c2aa723a 4755
190409ca 4756 mem_cgroup_flush_stats();
c2aa723a 4757
2d146aa3
JW
4758 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4759 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4760 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4761 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4762
2d146aa3 4763 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4764 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4765 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4766 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4767 unsigned long used = page_counter_read(&memcg->memory);
4768
c5edf9cd 4769 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4770 memcg = parent;
4771 }
c2aa723a
TH
4772}
4773
97b27821
TH
4774/*
4775 * Foreign dirty flushing
4776 *
4777 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4778 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4779 * deliberate design decision because honoring per-page ownership in the
4780 * writeback path is complicated, may lead to higher CPU and IO overheads
4781 * and deemed unnecessary given that write-sharing an inode across
4782 * different cgroups isn't a common use-case.
4783 *
4784 * Combined with inode majority-writer ownership switching, this works well
4785 * enough in most cases but there are some pathological cases. For
4786 * example, let's say there are two cgroups A and B which keep writing to
4787 * different but confined parts of the same inode. B owns the inode and
4788 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4789 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4790 * triggering background writeback. A will be slowed down without a way to
4791 * make writeback of the dirty pages happen.
4792 *
f0953a1b 4793 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4794 * severely throttled after making some progress after each
f0953a1b 4795 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4796 * completely idle.
4797 *
4798 * Solving this problem completely requires matching the ownership tracking
4799 * granularities between memcg and writeback in either direction. However,
4800 * the more egregious behaviors can be avoided by simply remembering the
4801 * most recent foreign dirtying events and initiating remote flushes on
4802 * them when local writeback isn't enough to keep the memory clean enough.
4803 *
4804 * The following two functions implement such mechanism. When a foreign
4805 * page - a page whose memcg and writeback ownerships don't match - is
4806 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4807 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4808 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4809 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4810 * foreign bdi_writebacks which haven't expired. Both the numbers of
4811 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4812 * limited to MEMCG_CGWB_FRN_CNT.
4813 *
4814 * The mechanism only remembers IDs and doesn't hold any object references.
4815 * As being wrong occasionally doesn't matter, updates and accesses to the
4816 * records are lockless and racy.
4817 */
9d8053fc 4818void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4819 struct bdi_writeback *wb)
4820{
9d8053fc 4821 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4822 struct memcg_cgwb_frn *frn;
4823 u64 now = get_jiffies_64();
4824 u64 oldest_at = now;
4825 int oldest = -1;
4826 int i;
4827
9d8053fc 4828 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4829
97b27821
TH
4830 /*
4831 * Pick the slot to use. If there is already a slot for @wb, keep
4832 * using it. If not replace the oldest one which isn't being
4833 * written out.
4834 */
4835 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4836 frn = &memcg->cgwb_frn[i];
4837 if (frn->bdi_id == wb->bdi->id &&
4838 frn->memcg_id == wb->memcg_css->id)
4839 break;
4840 if (time_before64(frn->at, oldest_at) &&
4841 atomic_read(&frn->done.cnt) == 1) {
4842 oldest = i;
4843 oldest_at = frn->at;
4844 }
4845 }
4846
4847 if (i < MEMCG_CGWB_FRN_CNT) {
4848 /*
4849 * Re-using an existing one. Update timestamp lazily to
4850 * avoid making the cacheline hot. We want them to be
4851 * reasonably up-to-date and significantly shorter than
4852 * dirty_expire_interval as that's what expires the record.
4853 * Use the shorter of 1s and dirty_expire_interval / 8.
4854 */
4855 unsigned long update_intv =
4856 min_t(unsigned long, HZ,
4857 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4858
4859 if (time_before64(frn->at, now - update_intv))
4860 frn->at = now;
4861 } else if (oldest >= 0) {
4862 /* replace the oldest free one */
4863 frn = &memcg->cgwb_frn[oldest];
4864 frn->bdi_id = wb->bdi->id;
4865 frn->memcg_id = wb->memcg_css->id;
4866 frn->at = now;
4867 }
4868}
4869
4870/* issue foreign writeback flushes for recorded foreign dirtying events */
4871void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4872{
4873 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4874 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4875 u64 now = jiffies_64;
4876 int i;
4877
4878 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4879 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4880
4881 /*
4882 * If the record is older than dirty_expire_interval,
4883 * writeback on it has already started. No need to kick it
4884 * off again. Also, don't start a new one if there's
4885 * already one in flight.
4886 */
4887 if (time_after64(frn->at, now - intv) &&
4888 atomic_read(&frn->done.cnt) == 1) {
4889 frn->at = 0;
3a8e9ac8 4890 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4891 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4892 WB_REASON_FOREIGN_FLUSH,
4893 &frn->done);
4894 }
4895 }
4896}
4897
841710aa
TH
4898#else /* CONFIG_CGROUP_WRITEBACK */
4899
4900static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4901{
4902 return 0;
4903}
4904
4905static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4906{
4907}
4908
2529bb3a
TH
4909static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4910{
4911}
4912
52ebea74
TH
4913#endif /* CONFIG_CGROUP_WRITEBACK */
4914
3bc942f3
TH
4915/*
4916 * DO NOT USE IN NEW FILES.
4917 *
4918 * "cgroup.event_control" implementation.
4919 *
4920 * This is way over-engineered. It tries to support fully configurable
4921 * events for each user. Such level of flexibility is completely
4922 * unnecessary especially in the light of the planned unified hierarchy.
4923 *
4924 * Please deprecate this and replace with something simpler if at all
4925 * possible.
4926 */
4927
79bd9814
TH
4928/*
4929 * Unregister event and free resources.
4930 *
4931 * Gets called from workqueue.
4932 */
3bc942f3 4933static void memcg_event_remove(struct work_struct *work)
79bd9814 4934{
3bc942f3
TH
4935 struct mem_cgroup_event *event =
4936 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4937 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4938
4939 remove_wait_queue(event->wqh, &event->wait);
4940
59b6f873 4941 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4942
4943 /* Notify userspace the event is going away. */
4944 eventfd_signal(event->eventfd, 1);
4945
4946 eventfd_ctx_put(event->eventfd);
4947 kfree(event);
59b6f873 4948 css_put(&memcg->css);
79bd9814
TH
4949}
4950
4951/*
a9a08845 4952 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4953 *
4954 * Called with wqh->lock held and interrupts disabled.
4955 */
ac6424b9 4956static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4957 int sync, void *key)
79bd9814 4958{
3bc942f3
TH
4959 struct mem_cgroup_event *event =
4960 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4961 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4962 __poll_t flags = key_to_poll(key);
79bd9814 4963
a9a08845 4964 if (flags & EPOLLHUP) {
79bd9814
TH
4965 /*
4966 * If the event has been detached at cgroup removal, we
4967 * can simply return knowing the other side will cleanup
4968 * for us.
4969 *
4970 * We can't race against event freeing since the other
4971 * side will require wqh->lock via remove_wait_queue(),
4972 * which we hold.
4973 */
fba94807 4974 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4975 if (!list_empty(&event->list)) {
4976 list_del_init(&event->list);
4977 /*
4978 * We are in atomic context, but cgroup_event_remove()
4979 * may sleep, so we have to call it in workqueue.
4980 */
4981 schedule_work(&event->remove);
4982 }
fba94807 4983 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4984 }
4985
4986 return 0;
4987}
4988
3bc942f3 4989static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4990 wait_queue_head_t *wqh, poll_table *pt)
4991{
3bc942f3
TH
4992 struct mem_cgroup_event *event =
4993 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4994
4995 event->wqh = wqh;
4996 add_wait_queue(wqh, &event->wait);
4997}
4998
4999/*
3bc942f3
TH
5000 * DO NOT USE IN NEW FILES.
5001 *
79bd9814
TH
5002 * Parse input and register new cgroup event handler.
5003 *
5004 * Input must be in format '<event_fd> <control_fd> <args>'.
5005 * Interpretation of args is defined by control file implementation.
5006 */
451af504
TH
5007static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5008 char *buf, size_t nbytes, loff_t off)
79bd9814 5009{
451af504 5010 struct cgroup_subsys_state *css = of_css(of);
fba94807 5011 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5012 struct mem_cgroup_event *event;
79bd9814
TH
5013 struct cgroup_subsys_state *cfile_css;
5014 unsigned int efd, cfd;
5015 struct fd efile;
5016 struct fd cfile;
4a7ba45b 5017 struct dentry *cdentry;
fba94807 5018 const char *name;
79bd9814
TH
5019 char *endp;
5020 int ret;
5021
2343e88d
SAS
5022 if (IS_ENABLED(CONFIG_PREEMPT_RT))
5023 return -EOPNOTSUPP;
5024
451af504
TH
5025 buf = strstrip(buf);
5026
5027 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5028 if (*endp != ' ')
5029 return -EINVAL;
451af504 5030 buf = endp + 1;
79bd9814 5031
451af504 5032 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5033 if ((*endp != ' ') && (*endp != '\0'))
5034 return -EINVAL;
451af504 5035 buf = endp + 1;
79bd9814
TH
5036
5037 event = kzalloc(sizeof(*event), GFP_KERNEL);
5038 if (!event)
5039 return -ENOMEM;
5040
59b6f873 5041 event->memcg = memcg;
79bd9814 5042 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5043 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5044 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5045 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5046
5047 efile = fdget(efd);
5048 if (!efile.file) {
5049 ret = -EBADF;
5050 goto out_kfree;
5051 }
5052
5053 event->eventfd = eventfd_ctx_fileget(efile.file);
5054 if (IS_ERR(event->eventfd)) {
5055 ret = PTR_ERR(event->eventfd);
5056 goto out_put_efile;
5057 }
5058
5059 cfile = fdget(cfd);
5060 if (!cfile.file) {
5061 ret = -EBADF;
5062 goto out_put_eventfd;
5063 }
5064
5065 /* the process need read permission on control file */
5066 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 5067 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
5068 if (ret < 0)
5069 goto out_put_cfile;
5070
4a7ba45b
TH
5071 /*
5072 * The control file must be a regular cgroup1 file. As a regular cgroup
5073 * file can't be renamed, it's safe to access its name afterwards.
5074 */
5075 cdentry = cfile.file->f_path.dentry;
5076 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5077 ret = -EINVAL;
5078 goto out_put_cfile;
5079 }
5080
fba94807
TH
5081 /*
5082 * Determine the event callbacks and set them in @event. This used
5083 * to be done via struct cftype but cgroup core no longer knows
5084 * about these events. The following is crude but the whole thing
5085 * is for compatibility anyway.
3bc942f3
TH
5086 *
5087 * DO NOT ADD NEW FILES.
fba94807 5088 */
4a7ba45b 5089 name = cdentry->d_name.name;
fba94807
TH
5090
5091 if (!strcmp(name, "memory.usage_in_bytes")) {
5092 event->register_event = mem_cgroup_usage_register_event;
5093 event->unregister_event = mem_cgroup_usage_unregister_event;
5094 } else if (!strcmp(name, "memory.oom_control")) {
5095 event->register_event = mem_cgroup_oom_register_event;
5096 event->unregister_event = mem_cgroup_oom_unregister_event;
5097 } else if (!strcmp(name, "memory.pressure_level")) {
5098 event->register_event = vmpressure_register_event;
5099 event->unregister_event = vmpressure_unregister_event;
5100 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5101 event->register_event = memsw_cgroup_usage_register_event;
5102 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5103 } else {
5104 ret = -EINVAL;
5105 goto out_put_cfile;
5106 }
5107
79bd9814 5108 /*
b5557c4c
TH
5109 * Verify @cfile should belong to @css. Also, remaining events are
5110 * automatically removed on cgroup destruction but the removal is
5111 * asynchronous, so take an extra ref on @css.
79bd9814 5112 */
4a7ba45b 5113 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 5114 &memory_cgrp_subsys);
79bd9814 5115 ret = -EINVAL;
5a17f543 5116 if (IS_ERR(cfile_css))
79bd9814 5117 goto out_put_cfile;
5a17f543
TH
5118 if (cfile_css != css) {
5119 css_put(cfile_css);
79bd9814 5120 goto out_put_cfile;
5a17f543 5121 }
79bd9814 5122
451af504 5123 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5124 if (ret)
5125 goto out_put_css;
5126
9965ed17 5127 vfs_poll(efile.file, &event->pt);
79bd9814 5128
4ba9515d 5129 spin_lock_irq(&memcg->event_list_lock);
fba94807 5130 list_add(&event->list, &memcg->event_list);
4ba9515d 5131 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
5132
5133 fdput(cfile);
5134 fdput(efile);
5135
451af504 5136 return nbytes;
79bd9814
TH
5137
5138out_put_css:
b5557c4c 5139 css_put(css);
79bd9814
TH
5140out_put_cfile:
5141 fdput(cfile);
5142out_put_eventfd:
5143 eventfd_ctx_put(event->eventfd);
5144out_put_efile:
5145 fdput(efile);
5146out_kfree:
5147 kfree(event);
5148
5149 return ret;
5150}
5151
c29b5b3d
MS
5152#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5153static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5154{
5155 /*
5156 * Deprecated.
df4ae285 5157 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
5158 */
5159 return 0;
5160}
5161#endif
5162
dddb44ff
YA
5163static int memory_stat_show(struct seq_file *m, void *v);
5164
241994ed 5165static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 5166 {
0eea1030 5167 .name = "usage_in_bytes",
8c7c6e34 5168 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5169 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5170 },
c84872e1
PE
5171 {
5172 .name = "max_usage_in_bytes",
8c7c6e34 5173 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5174 .write = mem_cgroup_reset,
791badbd 5175 .read_u64 = mem_cgroup_read_u64,
c84872e1 5176 },
8cdea7c0 5177 {
0eea1030 5178 .name = "limit_in_bytes",
8c7c6e34 5179 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5180 .write = mem_cgroup_write,
791badbd 5181 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5182 },
296c81d8
BS
5183 {
5184 .name = "soft_limit_in_bytes",
5185 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5186 .write = mem_cgroup_write,
791badbd 5187 .read_u64 = mem_cgroup_read_u64,
296c81d8 5188 },
8cdea7c0
BS
5189 {
5190 .name = "failcnt",
8c7c6e34 5191 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5192 .write = mem_cgroup_reset,
791badbd 5193 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5194 },
d2ceb9b7
KH
5195 {
5196 .name = "stat",
dddb44ff 5197 .seq_show = memory_stat_show,
d2ceb9b7 5198 },
c1e862c1
KH
5199 {
5200 .name = "force_empty",
6770c64e 5201 .write = mem_cgroup_force_empty_write,
c1e862c1 5202 },
18f59ea7
BS
5203 {
5204 .name = "use_hierarchy",
5205 .write_u64 = mem_cgroup_hierarchy_write,
5206 .read_u64 = mem_cgroup_hierarchy_read,
5207 },
79bd9814 5208 {
3bc942f3 5209 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5210 .write = memcg_write_event_control,
7dbdb199 5211 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5212 },
a7885eb8
KM
5213 {
5214 .name = "swappiness",
5215 .read_u64 = mem_cgroup_swappiness_read,
5216 .write_u64 = mem_cgroup_swappiness_write,
5217 },
7dc74be0
DN
5218 {
5219 .name = "move_charge_at_immigrate",
5220 .read_u64 = mem_cgroup_move_charge_read,
5221 .write_u64 = mem_cgroup_move_charge_write,
5222 },
9490ff27
KH
5223 {
5224 .name = "oom_control",
2da8ca82 5225 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5226 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5227 },
70ddf637
AV
5228 {
5229 .name = "pressure_level",
6b0ba2ab 5230 .seq_show = mem_cgroup_dummy_seq_show,
70ddf637 5231 },
406eb0c9
YH
5232#ifdef CONFIG_NUMA
5233 {
5234 .name = "numa_stat",
2da8ca82 5235 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5236 },
5237#endif
4597648f
MH
5238 {
5239 .name = "kmem.limit_in_bytes",
5240 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5241 .write = mem_cgroup_write,
5242 .read_u64 = mem_cgroup_read_u64,
5243 },
510fc4e1
GC
5244 {
5245 .name = "kmem.usage_in_bytes",
5246 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5247 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5248 },
5249 {
5250 .name = "kmem.failcnt",
5251 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5252 .write = mem_cgroup_reset,
791badbd 5253 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5254 },
5255 {
5256 .name = "kmem.max_usage_in_bytes",
5257 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5258 .write = mem_cgroup_reset,
791badbd 5259 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5260 },
a87425a3
YS
5261#if defined(CONFIG_MEMCG_KMEM) && \
5262 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5263 {
5264 .name = "kmem.slabinfo",
c29b5b3d 5265 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5266 },
5267#endif
d55f90bf
VD
5268 {
5269 .name = "kmem.tcp.limit_in_bytes",
5270 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5271 .write = mem_cgroup_write,
5272 .read_u64 = mem_cgroup_read_u64,
5273 },
5274 {
5275 .name = "kmem.tcp.usage_in_bytes",
5276 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5277 .read_u64 = mem_cgroup_read_u64,
5278 },
5279 {
5280 .name = "kmem.tcp.failcnt",
5281 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5282 .write = mem_cgroup_reset,
5283 .read_u64 = mem_cgroup_read_u64,
5284 },
5285 {
5286 .name = "kmem.tcp.max_usage_in_bytes",
5287 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5288 .write = mem_cgroup_reset,
5289 .read_u64 = mem_cgroup_read_u64,
5290 },
6bc10349 5291 { }, /* terminate */
af36f906 5292};
8c7c6e34 5293
73f576c0
JW
5294/*
5295 * Private memory cgroup IDR
5296 *
5297 * Swap-out records and page cache shadow entries need to store memcg
5298 * references in constrained space, so we maintain an ID space that is
5299 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5300 * memory-controlled cgroups to 64k.
5301 *
b8f2935f 5302 * However, there usually are many references to the offline CSS after
73f576c0
JW
5303 * the cgroup has been destroyed, such as page cache or reclaimable
5304 * slab objects, that don't need to hang on to the ID. We want to keep
5305 * those dead CSS from occupying IDs, or we might quickly exhaust the
5306 * relatively small ID space and prevent the creation of new cgroups
5307 * even when there are much fewer than 64k cgroups - possibly none.
5308 *
5309 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5310 * be freed and recycled when it's no longer needed, which is usually
5311 * when the CSS is offlined.
5312 *
5313 * The only exception to that are records of swapped out tmpfs/shmem
5314 * pages that need to be attributed to live ancestors on swapin. But
5315 * those references are manageable from userspace.
5316 */
5317
60b1e24c 5318#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
73f576c0
JW
5319static DEFINE_IDR(mem_cgroup_idr);
5320
7e97de0b
KT
5321static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5322{
5323 if (memcg->id.id > 0) {
5324 idr_remove(&mem_cgroup_idr, memcg->id.id);
5325 memcg->id.id = 0;
5326 }
5327}
5328
c1514c0a
VF
5329static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5330 unsigned int n)
73f576c0 5331{
1c2d479a 5332 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5333}
5334
615d66c3 5335static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5336{
1c2d479a 5337 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5338 mem_cgroup_id_remove(memcg);
73f576c0
JW
5339
5340 /* Memcg ID pins CSS */
5341 css_put(&memcg->css);
5342 }
5343}
5344
615d66c3
VD
5345static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5346{
5347 mem_cgroup_id_put_many(memcg, 1);
5348}
5349
73f576c0
JW
5350/**
5351 * mem_cgroup_from_id - look up a memcg from a memcg id
5352 * @id: the memcg id to look up
5353 *
5354 * Caller must hold rcu_read_lock().
5355 */
5356struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5357{
5358 WARN_ON_ONCE(!rcu_read_lock_held());
5359 return idr_find(&mem_cgroup_idr, id);
5360}
5361
c15187a4
RG
5362#ifdef CONFIG_SHRINKER_DEBUG
5363struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5364{
5365 struct cgroup *cgrp;
5366 struct cgroup_subsys_state *css;
5367 struct mem_cgroup *memcg;
5368
5369 cgrp = cgroup_get_from_id(ino);
fa7e439c 5370 if (IS_ERR(cgrp))
c0f2df49 5371 return ERR_CAST(cgrp);
c15187a4
RG
5372
5373 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5374 if (css)
5375 memcg = container_of(css, struct mem_cgroup, css);
5376 else
5377 memcg = ERR_PTR(-ENOENT);
5378
5379 cgroup_put(cgrp);
5380
5381 return memcg;
5382}
5383#endif
5384
ef8f2327 5385static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5386{
5387 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5388
5389 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5390 if (!pn)
5391 return 1;
1ecaab2b 5392
7e1c0d6f
SB
5393 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5394 GFP_KERNEL_ACCOUNT);
5395 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5396 kfree(pn);
5397 return 1;
5398 }
5399
ef8f2327 5400 lruvec_init(&pn->lruvec);
ef8f2327
MG
5401 pn->memcg = memcg;
5402
54f72fe0 5403 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5404 return 0;
5405}
5406
ef8f2327 5407static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5408{
00f3ca2c
JW
5409 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5410
4eaf431f
MH
5411 if (!pn)
5412 return;
5413
7e1c0d6f 5414 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5415 kfree(pn);
1ecaab2b
KH
5416}
5417
40e952f9 5418static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5419{
c8b2a36f 5420 int node;
59927fb9 5421
675d6c9b
RG
5422 if (memcg->orig_objcg)
5423 obj_cgroup_put(memcg->orig_objcg);
5424
c8b2a36f 5425 for_each_node(node)
ef8f2327 5426 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5427 kfree(memcg->vmstats);
871789d4 5428 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5429 kfree(memcg);
59927fb9 5430}
3afe36b1 5431
40e952f9
TE
5432static void mem_cgroup_free(struct mem_cgroup *memcg)
5433{
ec1c86b2 5434 lru_gen_exit_memcg(memcg);
40e952f9
TE
5435 memcg_wb_domain_exit(memcg);
5436 __mem_cgroup_free(memcg);
5437}
5438
0b8f73e1 5439static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5440{
d142e3e6 5441 struct mem_cgroup *memcg;
6d12e2d8 5442 int node;
97b27821 5443 int __maybe_unused i;
11d67612 5444 long error = -ENOMEM;
8cdea7c0 5445
06b2c3b0 5446 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5447 if (!memcg)
11d67612 5448 return ERR_PTR(error);
0b8f73e1 5449
73f576c0 5450 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5451 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5452 if (memcg->id.id < 0) {
5453 error = memcg->id.id;
73f576c0 5454 goto fail;
11d67612 5455 }
73f576c0 5456
410f8e82
SB
5457 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5458 if (!memcg->vmstats)
5459 goto fail;
5460
3e38e0aa
RG
5461 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5462 GFP_KERNEL_ACCOUNT);
871789d4 5463 if (!memcg->vmstats_percpu)
0b8f73e1 5464 goto fail;
78fb7466 5465
3ed28fa1 5466 for_each_node(node)
ef8f2327 5467 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5468 goto fail;
f64c3f54 5469
0b8f73e1
JW
5470 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5471 goto fail;
28dbc4b6 5472
f7e1cb6e 5473 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5474 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5475 mutex_init(&memcg->thresholds_lock);
5476 spin_lock_init(&memcg->move_lock);
70ddf637 5477 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5478 INIT_LIST_HEAD(&memcg->event_list);
5479 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5480 memcg->socket_pressure = jiffies;
84c07d11 5481#ifdef CONFIG_MEMCG_KMEM
900a38f0 5482 memcg->kmemcg_id = -1;
bf4f0599 5483 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5484#endif
52ebea74
TH
5485#ifdef CONFIG_CGROUP_WRITEBACK
5486 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5487 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5488 memcg->cgwb_frn[i].done =
5489 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5490#endif
5491#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5492 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5493 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5494 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5495#endif
ec1c86b2 5496 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5497 return memcg;
5498fail:
7e97de0b 5499 mem_cgroup_id_remove(memcg);
40e952f9 5500 __mem_cgroup_free(memcg);
11d67612 5501 return ERR_PTR(error);
d142e3e6
GC
5502}
5503
0b8f73e1
JW
5504static struct cgroup_subsys_state * __ref
5505mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5506{
0b8f73e1 5507 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5508 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5509
b87d8cef 5510 old_memcg = set_active_memcg(parent);
0b8f73e1 5511 memcg = mem_cgroup_alloc();
b87d8cef 5512 set_active_memcg(old_memcg);
11d67612
YS
5513 if (IS_ERR(memcg))
5514 return ERR_CAST(memcg);
d142e3e6 5515
d1663a90 5516 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5517 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
f4840ccf
JW
5518#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5519 memcg->zswap_max = PAGE_COUNTER_MAX;
5520#endif
4b82ab4f 5521 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1 5522 if (parent) {
82b3aa26 5523 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
17c56de6 5524 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
bef8620c 5525
3e32cb2e 5526 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5527 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5528 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5529 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5530 } else {
8278f1c7 5531 init_memcg_events();
bef8620c
RG
5532 page_counter_init(&memcg->memory, NULL);
5533 page_counter_init(&memcg->swap, NULL);
5534 page_counter_init(&memcg->kmem, NULL);
5535 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5536
0b8f73e1
JW
5537 root_mem_cgroup = memcg;
5538 return &memcg->css;
5539 }
5540
f7e1cb6e 5541 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5542 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5543
b6c1a8af
YS
5544#if defined(CONFIG_MEMCG_KMEM)
5545 if (!cgroup_memory_nobpf)
5546 static_branch_inc(&memcg_bpf_enabled_key);
5547#endif
5548
0b8f73e1 5549 return &memcg->css;
0b8f73e1
JW
5550}
5551
73f576c0 5552static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5553{
58fa2a55
VD
5554 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5555
da0efe30
MS
5556 if (memcg_online_kmem(memcg))
5557 goto remove_id;
5558
0a4465d3 5559 /*
e4262c4f 5560 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5561 * by the time the maps are allocated. So, we allocate maps
5562 * here, when for_each_mem_cgroup() can't skip it.
5563 */
da0efe30
MS
5564 if (alloc_shrinker_info(memcg))
5565 goto offline_kmem;
0a4465d3 5566
aa48e47e
SB
5567 if (unlikely(mem_cgroup_is_root(memcg)))
5568 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
396faf88 5569 FLUSH_TIME);
e4dde56c 5570 lru_gen_online_memcg(memcg);
6f0df8e1
JW
5571
5572 /* Online state pins memcg ID, memcg ID pins CSS */
5573 refcount_set(&memcg->id.ref, 1);
5574 css_get(css);
5575
5576 /*
5577 * Ensure mem_cgroup_from_id() works once we're fully online.
5578 *
5579 * We could do this earlier and require callers to filter with
5580 * css_tryget_online(). But right now there are no users that
5581 * need earlier access, and the workingset code relies on the
5582 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5583 * publish it here at the end of onlining. This matches the
5584 * regular ID destruction during offlining.
5585 */
5586 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5587
2f7dd7a4 5588 return 0;
da0efe30
MS
5589offline_kmem:
5590 memcg_offline_kmem(memcg);
5591remove_id:
5592 mem_cgroup_id_remove(memcg);
5593 return -ENOMEM;
8cdea7c0
BS
5594}
5595
eb95419b 5596static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5597{
eb95419b 5598 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5599 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5600
5601 /*
5602 * Unregister events and notify userspace.
5603 * Notify userspace about cgroup removing only after rmdir of cgroup
5604 * directory to avoid race between userspace and kernelspace.
5605 */
4ba9515d 5606 spin_lock_irq(&memcg->event_list_lock);
fba94807 5607 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5608 list_del_init(&event->list);
5609 schedule_work(&event->remove);
5610 }
4ba9515d 5611 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5612
bf8d5d52 5613 page_counter_set_min(&memcg->memory, 0);
23067153 5614 page_counter_set_low(&memcg->memory, 0);
63677c74 5615
567e9ab2 5616 memcg_offline_kmem(memcg);
a178015c 5617 reparent_shrinker_deferred(memcg);
52ebea74 5618 wb_memcg_offline(memcg);
e4dde56c 5619 lru_gen_offline_memcg(memcg);
73f576c0 5620
591edfb1
RG
5621 drain_all_stock(memcg);
5622
73f576c0 5623 mem_cgroup_id_put(memcg);
df878fb0
KH
5624}
5625
6df38689
VD
5626static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5627{
5628 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5629
5630 invalidate_reclaim_iterators(memcg);
e4dde56c 5631 lru_gen_release_memcg(memcg);
6df38689
VD
5632}
5633
eb95419b 5634static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5635{
eb95419b 5636 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5637 int __maybe_unused i;
c268e994 5638
97b27821
TH
5639#ifdef CONFIG_CGROUP_WRITEBACK
5640 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5641 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5642#endif
f7e1cb6e 5643 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5644 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5645
0db15298 5646 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5647 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5648
b6c1a8af
YS
5649#if defined(CONFIG_MEMCG_KMEM)
5650 if (!cgroup_memory_nobpf)
5651 static_branch_dec(&memcg_bpf_enabled_key);
5652#endif
5653
0b8f73e1
JW
5654 vmpressure_cleanup(&memcg->vmpressure);
5655 cancel_work_sync(&memcg->high_work);
5656 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5657 free_shrinker_info(memcg);
0b8f73e1 5658 mem_cgroup_free(memcg);
8cdea7c0
BS
5659}
5660
1ced953b
TH
5661/**
5662 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5663 * @css: the target css
5664 *
5665 * Reset the states of the mem_cgroup associated with @css. This is
5666 * invoked when the userland requests disabling on the default hierarchy
5667 * but the memcg is pinned through dependency. The memcg should stop
5668 * applying policies and should revert to the vanilla state as it may be
5669 * made visible again.
5670 *
5671 * The current implementation only resets the essential configurations.
5672 * This needs to be expanded to cover all the visible parts.
5673 */
5674static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5675{
5676 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5677
bbec2e15
RG
5678 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5679 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5680 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5681 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5682 page_counter_set_min(&memcg->memory, 0);
23067153 5683 page_counter_set_low(&memcg->memory, 0);
d1663a90 5684 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5685 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
4b82ab4f 5686 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5687 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5688}
5689
2d146aa3
JW
5690static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5691{
5692 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5693 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5694 struct memcg_vmstats_percpu *statc;
f82e6bf9 5695 long delta, delta_cpu, v;
7e1c0d6f 5696 int i, nid;
2d146aa3
JW
5697
5698 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5699
5700 for (i = 0; i < MEMCG_NR_STAT; i++) {
5701 /*
5702 * Collect the aggregated propagation counts of groups
5703 * below us. We're in a per-cpu loop here and this is
5704 * a global counter, so the first cycle will get them.
5705 */
410f8e82 5706 delta = memcg->vmstats->state_pending[i];
2d146aa3 5707 if (delta)
410f8e82 5708 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5709
5710 /* Add CPU changes on this level since the last flush */
f82e6bf9 5711 delta_cpu = 0;
2d146aa3
JW
5712 v = READ_ONCE(statc->state[i]);
5713 if (v != statc->state_prev[i]) {
f82e6bf9
YA
5714 delta_cpu = v - statc->state_prev[i];
5715 delta += delta_cpu;
2d146aa3
JW
5716 statc->state_prev[i] = v;
5717 }
5718
2d146aa3 5719 /* Aggregate counts on this level and propagate upwards */
f82e6bf9
YA
5720 if (delta_cpu)
5721 memcg->vmstats->state_local[i] += delta_cpu;
5722
5723 if (delta) {
5724 memcg->vmstats->state[i] += delta;
5725 if (parent)
5726 parent->vmstats->state_pending[i] += delta;
5727 }
2d146aa3
JW
5728 }
5729
8278f1c7 5730 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5731 delta = memcg->vmstats->events_pending[i];
2d146aa3 5732 if (delta)
410f8e82 5733 memcg->vmstats->events_pending[i] = 0;
2d146aa3 5734
f82e6bf9 5735 delta_cpu = 0;
2d146aa3
JW
5736 v = READ_ONCE(statc->events[i]);
5737 if (v != statc->events_prev[i]) {
f82e6bf9
YA
5738 delta_cpu = v - statc->events_prev[i];
5739 delta += delta_cpu;
2d146aa3
JW
5740 statc->events_prev[i] = v;
5741 }
5742
f82e6bf9
YA
5743 if (delta_cpu)
5744 memcg->vmstats->events_local[i] += delta_cpu;
2d146aa3 5745
f82e6bf9
YA
5746 if (delta) {
5747 memcg->vmstats->events[i] += delta;
5748 if (parent)
5749 parent->vmstats->events_pending[i] += delta;
5750 }
2d146aa3 5751 }
7e1c0d6f
SB
5752
5753 for_each_node_state(nid, N_MEMORY) {
5754 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5755 struct mem_cgroup_per_node *ppn = NULL;
5756 struct lruvec_stats_percpu *lstatc;
5757
5758 if (parent)
5759 ppn = parent->nodeinfo[nid];
5760
5761 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5762
5763 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5764 delta = pn->lruvec_stats.state_pending[i];
5765 if (delta)
5766 pn->lruvec_stats.state_pending[i] = 0;
5767
f82e6bf9 5768 delta_cpu = 0;
7e1c0d6f
SB
5769 v = READ_ONCE(lstatc->state[i]);
5770 if (v != lstatc->state_prev[i]) {
f82e6bf9
YA
5771 delta_cpu = v - lstatc->state_prev[i];
5772 delta += delta_cpu;
7e1c0d6f
SB
5773 lstatc->state_prev[i] = v;
5774 }
5775
f82e6bf9
YA
5776 if (delta_cpu)
5777 pn->lruvec_stats.state_local[i] += delta_cpu;
7e1c0d6f 5778
f82e6bf9
YA
5779 if (delta) {
5780 pn->lruvec_stats.state[i] += delta;
5781 if (ppn)
5782 ppn->lruvec_stats.state_pending[i] += delta;
5783 }
7e1c0d6f
SB
5784 }
5785 }
2d146aa3
JW
5786}
5787
02491447 5788#ifdef CONFIG_MMU
7dc74be0 5789/* Handlers for move charge at task migration. */
854ffa8d 5790static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5791{
05b84301 5792 int ret;
9476db97 5793
d0164adc
MG
5794 /* Try a single bulk charge without reclaim first, kswapd may wake */
5795 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5796 if (!ret) {
854ffa8d 5797 mc.precharge += count;
854ffa8d
DN
5798 return ret;
5799 }
9476db97 5800
3674534b 5801 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5802 while (count--) {
3674534b 5803 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5804 if (ret)
38c5d72f 5805 return ret;
854ffa8d 5806 mc.precharge++;
9476db97 5807 cond_resched();
854ffa8d 5808 }
9476db97 5809 return 0;
4ffef5fe
DN
5810}
5811
4ffef5fe
DN
5812union mc_target {
5813 struct page *page;
02491447 5814 swp_entry_t ent;
4ffef5fe
DN
5815};
5816
4ffef5fe 5817enum mc_target_type {
8d32ff84 5818 MC_TARGET_NONE = 0,
4ffef5fe 5819 MC_TARGET_PAGE,
02491447 5820 MC_TARGET_SWAP,
c733a828 5821 MC_TARGET_DEVICE,
4ffef5fe
DN
5822};
5823
90254a65
DN
5824static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5825 unsigned long addr, pte_t ptent)
4ffef5fe 5826{
25b2995a 5827 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5828
58f341f7 5829 if (!page)
90254a65
DN
5830 return NULL;
5831 if (PageAnon(page)) {
1dfab5ab 5832 if (!(mc.flags & MOVE_ANON))
90254a65 5833 return NULL;
1dfab5ab
JW
5834 } else {
5835 if (!(mc.flags & MOVE_FILE))
5836 return NULL;
5837 }
58f341f7 5838 get_page(page);
90254a65
DN
5839
5840 return page;
5841}
5842
c733a828 5843#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5844static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5845 pte_t ptent, swp_entry_t *entry)
90254a65 5846{
90254a65
DN
5847 struct page *page = NULL;
5848 swp_entry_t ent = pte_to_swp_entry(ptent);
5849
9a137153 5850 if (!(mc.flags & MOVE_ANON))
90254a65 5851 return NULL;
c733a828
JG
5852
5853 /*
27674ef6
CH
5854 * Handle device private pages that are not accessible by the CPU, but
5855 * stored as special swap entries in the page table.
c733a828
JG
5856 */
5857 if (is_device_private_entry(ent)) {
af5cdaf8 5858 page = pfn_swap_entry_to_page(ent);
27674ef6 5859 if (!get_page_unless_zero(page))
c733a828
JG
5860 return NULL;
5861 return page;
5862 }
5863
9a137153
RC
5864 if (non_swap_entry(ent))
5865 return NULL;
5866
4b91355e 5867 /*
cb691e2f 5868 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5869 * we call find_get_page() with swapper_space directly.
5870 */
f6ab1f7f 5871 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5872 entry->val = ent.val;
90254a65
DN
5873
5874 return page;
5875}
4b91355e
KH
5876#else
5877static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5878 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5879{
5880 return NULL;
5881}
5882#endif
90254a65 5883
87946a72 5884static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5885 unsigned long addr, pte_t ptent)
87946a72 5886{
524984ff
MWO
5887 unsigned long index;
5888 struct folio *folio;
5889
87946a72
DN
5890 if (!vma->vm_file) /* anonymous vma */
5891 return NULL;
1dfab5ab 5892 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5893 return NULL;
5894
524984ff 5895 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5896 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
5897 index = linear_page_index(vma, addr);
5898 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
66dabbb6 5899 if (IS_ERR(folio))
524984ff
MWO
5900 return NULL;
5901 return folio_file_page(folio, index);
87946a72
DN
5902}
5903
b1b0deab
CG
5904/**
5905 * mem_cgroup_move_account - move account of the page
5906 * @page: the page
25843c2b 5907 * @compound: charge the page as compound or small page
b1b0deab
CG
5908 * @from: mem_cgroup which the page is moved from.
5909 * @to: mem_cgroup which the page is moved to. @from != @to.
5910 *
4e0cf05f 5911 * The page must be locked and not on the LRU.
b1b0deab
CG
5912 *
5913 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5914 * from old cgroup.
5915 */
5916static int mem_cgroup_move_account(struct page *page,
f627c2f5 5917 bool compound,
b1b0deab
CG
5918 struct mem_cgroup *from,
5919 struct mem_cgroup *to)
5920{
fcce4672 5921 struct folio *folio = page_folio(page);
ae8af438
KK
5922 struct lruvec *from_vec, *to_vec;
5923 struct pglist_data *pgdat;
fcce4672 5924 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5925 int nid, ret;
b1b0deab
CG
5926
5927 VM_BUG_ON(from == to);
4e0cf05f 5928 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fcce4672 5929 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5930 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab 5931
b1b0deab 5932 ret = -EINVAL;
fcce4672 5933 if (folio_memcg(folio) != from)
4e0cf05f 5934 goto out;
b1b0deab 5935
fcce4672 5936 pgdat = folio_pgdat(folio);
867e5e1d
JW
5937 from_vec = mem_cgroup_lruvec(from, pgdat);
5938 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5939
fcce4672 5940 folio_memcg_lock(folio);
b1b0deab 5941
fcce4672
MWO
5942 if (folio_test_anon(folio)) {
5943 if (folio_mapped(folio)) {
be5d0a74
JW
5944 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5945 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6199277b 5946 if (folio_test_pmd_mappable(folio)) {
69473e5d
MS
5947 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5948 -nr_pages);
5949 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5950 nr_pages);
468c3982 5951 }
be5d0a74
JW
5952 }
5953 } else {
0d1c2072
JW
5954 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5955 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5956
fcce4672 5957 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5958 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5959 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5960 }
5961
fcce4672 5962 if (folio_mapped(folio)) {
49e50d27
JW
5963 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5964 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5965 }
b1b0deab 5966
fcce4672
MWO
5967 if (folio_test_dirty(folio)) {
5968 struct address_space *mapping = folio_mapping(folio);
c4843a75 5969
f56753ac 5970 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5971 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5972 -nr_pages);
5973 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5974 nr_pages);
5975 }
c4843a75
GT
5976 }
5977 }
5978
c449deb2
HD
5979#ifdef CONFIG_SWAP
5980 if (folio_test_swapcache(folio)) {
5981 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5982 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5983 }
5984#endif
fcce4672 5985 if (folio_test_writeback(folio)) {
ae8af438
KK
5986 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5987 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5988 }
5989
5990 /*
abb242f5
JW
5991 * All state has been migrated, let's switch to the new memcg.
5992 *
bcfe06bf 5993 * It is safe to change page's memcg here because the page
abb242f5
JW
5994 * is referenced, charged, isolated, and locked: we can't race
5995 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5996 * that would rely on a stable page's memory cgroup.
abb242f5 5997 *
6c77b607 5998 * Note that folio_memcg_lock is a memcg lock, not a page lock,
bcfe06bf 5999 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
6000 * new memcg that isn't locked, the above state can change
6001 * concurrently again. Make sure we're truly done with it.
b1b0deab 6002 */
abb242f5 6003 smp_mb();
b1b0deab 6004
1a3e1f40
JW
6005 css_get(&to->css);
6006 css_put(&from->css);
6007
fcce4672 6008 folio->memcg_data = (unsigned long)to;
87eaceb3 6009
f70ad448 6010 __folio_memcg_unlock(from);
b1b0deab
CG
6011
6012 ret = 0;
fcce4672 6013 nid = folio_nid(folio);
b1b0deab
CG
6014
6015 local_irq_disable();
6e0110c2 6016 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 6017 memcg_check_events(to, nid);
6e0110c2 6018 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 6019 memcg_check_events(from, nid);
b1b0deab 6020 local_irq_enable();
b1b0deab
CG
6021out:
6022 return ret;
6023}
6024
7cf7806c
LR
6025/**
6026 * get_mctgt_type - get target type of moving charge
6027 * @vma: the vma the pte to be checked belongs
6028 * @addr: the address corresponding to the pte to be checked
6029 * @ptent: the pte to be checked
6030 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6031 *
853f62a3
MWO
6032 * Context: Called with pte lock held.
6033 * Return:
6034 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6035 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6036 * move charge. If @target is not NULL, the page is stored in target->page
6037 * with extra refcnt taken (Caller should release it).
6038 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6039 * target for charge migration. If @target is not NULL, the entry is
6040 * stored in target->ent.
6041 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6042 * thus not on the lru. For now such page is charged like a regular page
6043 * would be as it is just special memory taking the place of a regular page.
6044 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c 6045 */
8d32ff84 6046static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6047 unsigned long addr, pte_t ptent, union mc_target *target)
6048{
6049 struct page *page = NULL;
8d32ff84 6050 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6051 swp_entry_t ent = { .val = 0 };
6052
6053 if (pte_present(ptent))
6054 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
6055 else if (pte_none_mostly(ptent))
6056 /*
6057 * PTE markers should be treated as a none pte here, separated
6058 * from other swap handling below.
6059 */
6060 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 6061 else if (is_swap_pte(ptent))
48406ef8 6062 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65 6063
4e0cf05f
JW
6064 if (target && page) {
6065 if (!trylock_page(page)) {
6066 put_page(page);
6067 return ret;
6068 }
6069 /*
6070 * page_mapped() must be stable during the move. This
6071 * pte is locked, so if it's present, the page cannot
6072 * become unmapped. If it isn't, we have only partial
6073 * control over the mapped state: the page lock will
6074 * prevent new faults against pagecache and swapcache,
6075 * so an unmapped page cannot become mapped. However,
6076 * if the page is already mapped elsewhere, it can
6077 * unmap, and there is nothing we can do about it.
6078 * Alas, skip moving the page in this case.
6079 */
6080 if (!pte_present(ptent) && page_mapped(page)) {
6081 unlock_page(page);
6082 put_page(page);
6083 return ret;
6084 }
6085 }
6086
90254a65 6087 if (!page && !ent.val)
8d32ff84 6088 return ret;
02491447 6089 if (page) {
02491447 6090 /*
0a31bc97 6091 * Do only loose check w/o serialization.
1306a85a 6092 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 6093 * not under LRU exclusion.
02491447 6094 */
bcfe06bf 6095 if (page_memcg(page) == mc.from) {
02491447 6096 ret = MC_TARGET_PAGE;
f25cbb7a
AS
6097 if (is_device_private_page(page) ||
6098 is_device_coherent_page(page))
c733a828 6099 ret = MC_TARGET_DEVICE;
02491447
DN
6100 if (target)
6101 target->page = page;
6102 }
4e0cf05f
JW
6103 if (!ret || !target) {
6104 if (target)
6105 unlock_page(page);
02491447 6106 put_page(page);
4e0cf05f 6107 }
02491447 6108 }
3e14a57b
HY
6109 /*
6110 * There is a swap entry and a page doesn't exist or isn't charged.
6111 * But we cannot move a tail-page in a THP.
6112 */
6113 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 6114 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6115 ret = MC_TARGET_SWAP;
6116 if (target)
6117 target->ent = ent;
4ffef5fe 6118 }
4ffef5fe
DN
6119 return ret;
6120}
6121
12724850
NH
6122#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6123/*
d6810d73
HY
6124 * We don't consider PMD mapped swapping or file mapped pages because THP does
6125 * not support them for now.
12724850
NH
6126 * Caller should make sure that pmd_trans_huge(pmd) is true.
6127 */
6128static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6129 unsigned long addr, pmd_t pmd, union mc_target *target)
6130{
6131 struct page *page = NULL;
12724850
NH
6132 enum mc_target_type ret = MC_TARGET_NONE;
6133
84c3fc4e
ZY
6134 if (unlikely(is_swap_pmd(pmd))) {
6135 VM_BUG_ON(thp_migration_supported() &&
6136 !is_pmd_migration_entry(pmd));
6137 return ret;
6138 }
12724850 6139 page = pmd_page(pmd);
309381fe 6140 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 6141 if (!(mc.flags & MOVE_ANON))
12724850 6142 return ret;
bcfe06bf 6143 if (page_memcg(page) == mc.from) {
12724850
NH
6144 ret = MC_TARGET_PAGE;
6145 if (target) {
6146 get_page(page);
4e0cf05f
JW
6147 if (!trylock_page(page)) {
6148 put_page(page);
6149 return MC_TARGET_NONE;
6150 }
12724850
NH
6151 target->page = page;
6152 }
6153 }
6154 return ret;
6155}
6156#else
6157static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6158 unsigned long addr, pmd_t pmd, union mc_target *target)
6159{
6160 return MC_TARGET_NONE;
6161}
6162#endif
6163
4ffef5fe
DN
6164static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6165 unsigned long addr, unsigned long end,
6166 struct mm_walk *walk)
6167{
26bcd64a 6168 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6169 pte_t *pte;
6170 spinlock_t *ptl;
6171
b6ec57f4
KS
6172 ptl = pmd_trans_huge_lock(pmd, vma);
6173 if (ptl) {
c733a828
JG
6174 /*
6175 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
6176 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6177 * this might change.
c733a828 6178 */
12724850
NH
6179 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6180 mc.precharge += HPAGE_PMD_NR;
bf929152 6181 spin_unlock(ptl);
1a5a9906 6182 return 0;
12724850 6183 }
03319327 6184
4ffef5fe 6185 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
04dee9e8
HD
6186 if (!pte)
6187 return 0;
4ffef5fe 6188 for (; addr != end; pte++, addr += PAGE_SIZE)
c33c7948 6189 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
4ffef5fe
DN
6190 mc.precharge++; /* increment precharge temporarily */
6191 pte_unmap_unlock(pte - 1, ptl);
6192 cond_resched();
6193
7dc74be0
DN
6194 return 0;
6195}
6196
7b86ac33
CH
6197static const struct mm_walk_ops precharge_walk_ops = {
6198 .pmd_entry = mem_cgroup_count_precharge_pte_range,
49b06385 6199 .walk_lock = PGWALK_RDLOCK,
7b86ac33
CH
6200};
6201
4ffef5fe
DN
6202static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6203{
6204 unsigned long precharge;
4ffef5fe 6205
d8ed45c5 6206 mmap_read_lock(mm);
ba0aff8e 6207 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 6208 mmap_read_unlock(mm);
4ffef5fe
DN
6209
6210 precharge = mc.precharge;
6211 mc.precharge = 0;
6212
6213 return precharge;
6214}
6215
4ffef5fe
DN
6216static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6217{
dfe076b0
DN
6218 unsigned long precharge = mem_cgroup_count_precharge(mm);
6219
6220 VM_BUG_ON(mc.moving_task);
6221 mc.moving_task = current;
6222 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6223}
6224
dfe076b0
DN
6225/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6226static void __mem_cgroup_clear_mc(void)
4ffef5fe 6227{
2bd9bb20
KH
6228 struct mem_cgroup *from = mc.from;
6229 struct mem_cgroup *to = mc.to;
6230
4ffef5fe 6231 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6232 if (mc.precharge) {
4b569387 6233 mem_cgroup_cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6234 mc.precharge = 0;
6235 }
6236 /*
6237 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6238 * we must uncharge here.
6239 */
6240 if (mc.moved_charge) {
4b569387 6241 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6242 mc.moved_charge = 0;
4ffef5fe 6243 }
483c30b5
DN
6244 /* we must fixup refcnts and charges */
6245 if (mc.moved_swap) {
483c30b5 6246 /* uncharge swap account from the old cgroup */
ce00a967 6247 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6248 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6249
615d66c3
VD
6250 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6251
05b84301 6252 /*
3e32cb2e
JW
6253 * we charged both to->memory and to->memsw, so we
6254 * should uncharge to->memory.
05b84301 6255 */
ce00a967 6256 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6257 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6258
483c30b5
DN
6259 mc.moved_swap = 0;
6260 }
dfe076b0
DN
6261 memcg_oom_recover(from);
6262 memcg_oom_recover(to);
6263 wake_up_all(&mc.waitq);
6264}
6265
6266static void mem_cgroup_clear_mc(void)
6267{
264a0ae1
TH
6268 struct mm_struct *mm = mc.mm;
6269
dfe076b0
DN
6270 /*
6271 * we must clear moving_task before waking up waiters at the end of
6272 * task migration.
6273 */
6274 mc.moving_task = NULL;
6275 __mem_cgroup_clear_mc();
2bd9bb20 6276 spin_lock(&mc.lock);
4ffef5fe
DN
6277 mc.from = NULL;
6278 mc.to = NULL;
264a0ae1 6279 mc.mm = NULL;
2bd9bb20 6280 spin_unlock(&mc.lock);
264a0ae1
TH
6281
6282 mmput(mm);
4ffef5fe
DN
6283}
6284
1f7dd3e5 6285static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6286{
1f7dd3e5 6287 struct cgroup_subsys_state *css;
eed67d75 6288 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6289 struct mem_cgroup *from;
4530eddb 6290 struct task_struct *leader, *p;
9f2115f9 6291 struct mm_struct *mm;
1dfab5ab 6292 unsigned long move_flags;
9f2115f9 6293 int ret = 0;
7dc74be0 6294
1f7dd3e5
TH
6295 /* charge immigration isn't supported on the default hierarchy */
6296 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6297 return 0;
6298
4530eddb
TH
6299 /*
6300 * Multi-process migrations only happen on the default hierarchy
6301 * where charge immigration is not used. Perform charge
6302 * immigration if @tset contains a leader and whine if there are
6303 * multiple.
6304 */
6305 p = NULL;
1f7dd3e5 6306 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6307 WARN_ON_ONCE(p);
6308 p = leader;
1f7dd3e5 6309 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6310 }
6311 if (!p)
6312 return 0;
6313
1f7dd3e5 6314 /*
f0953a1b 6315 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6316 * tunable will only affect upcoming migrations, not the current one.
6317 * So we need to save it, and keep it going.
6318 */
6319 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6320 if (!move_flags)
6321 return 0;
6322
9f2115f9
TH
6323 from = mem_cgroup_from_task(p);
6324
6325 VM_BUG_ON(from == memcg);
6326
6327 mm = get_task_mm(p);
6328 if (!mm)
6329 return 0;
6330 /* We move charges only when we move a owner of the mm */
6331 if (mm->owner == p) {
6332 VM_BUG_ON(mc.from);
6333 VM_BUG_ON(mc.to);
6334 VM_BUG_ON(mc.precharge);
6335 VM_BUG_ON(mc.moved_charge);
6336 VM_BUG_ON(mc.moved_swap);
6337
6338 spin_lock(&mc.lock);
264a0ae1 6339 mc.mm = mm;
9f2115f9
TH
6340 mc.from = from;
6341 mc.to = memcg;
6342 mc.flags = move_flags;
6343 spin_unlock(&mc.lock);
6344 /* We set mc.moving_task later */
6345
6346 ret = mem_cgroup_precharge_mc(mm);
6347 if (ret)
6348 mem_cgroup_clear_mc();
264a0ae1
TH
6349 } else {
6350 mmput(mm);
7dc74be0
DN
6351 }
6352 return ret;
6353}
6354
1f7dd3e5 6355static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6356{
4e2f245d
JW
6357 if (mc.to)
6358 mem_cgroup_clear_mc();
7dc74be0
DN
6359}
6360
4ffef5fe
DN
6361static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6362 unsigned long addr, unsigned long end,
6363 struct mm_walk *walk)
7dc74be0 6364{
4ffef5fe 6365 int ret = 0;
26bcd64a 6366 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6367 pte_t *pte;
6368 spinlock_t *ptl;
12724850
NH
6369 enum mc_target_type target_type;
6370 union mc_target target;
6371 struct page *page;
4ffef5fe 6372
b6ec57f4
KS
6373 ptl = pmd_trans_huge_lock(pmd, vma);
6374 if (ptl) {
62ade86a 6375 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6376 spin_unlock(ptl);
12724850
NH
6377 return 0;
6378 }
6379 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6380 if (target_type == MC_TARGET_PAGE) {
6381 page = target.page;
f7f9c00d 6382 if (isolate_lru_page(page)) {
f627c2f5 6383 if (!mem_cgroup_move_account(page, true,
1306a85a 6384 mc.from, mc.to)) {
12724850
NH
6385 mc.precharge -= HPAGE_PMD_NR;
6386 mc.moved_charge += HPAGE_PMD_NR;
6387 }
6388 putback_lru_page(page);
6389 }
4e0cf05f 6390 unlock_page(page);
12724850 6391 put_page(page);
c733a828
JG
6392 } else if (target_type == MC_TARGET_DEVICE) {
6393 page = target.page;
6394 if (!mem_cgroup_move_account(page, true,
6395 mc.from, mc.to)) {
6396 mc.precharge -= HPAGE_PMD_NR;
6397 mc.moved_charge += HPAGE_PMD_NR;
6398 }
4e0cf05f 6399 unlock_page(page);
c733a828 6400 put_page(page);
12724850 6401 }
bf929152 6402 spin_unlock(ptl);
1a5a9906 6403 return 0;
12724850
NH
6404 }
6405
4ffef5fe
DN
6406retry:
6407 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
04dee9e8
HD
6408 if (!pte)
6409 return 0;
4ffef5fe 6410 for (; addr != end; addr += PAGE_SIZE) {
c33c7948 6411 pte_t ptent = ptep_get(pte++);
c733a828 6412 bool device = false;
02491447 6413 swp_entry_t ent;
4ffef5fe
DN
6414
6415 if (!mc.precharge)
6416 break;
6417
8d32ff84 6418 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6419 case MC_TARGET_DEVICE:
6420 device = true;
e4a9bc58 6421 fallthrough;
4ffef5fe
DN
6422 case MC_TARGET_PAGE:
6423 page = target.page;
53f9263b
KS
6424 /*
6425 * We can have a part of the split pmd here. Moving it
6426 * can be done but it would be too convoluted so simply
6427 * ignore such a partial THP and keep it in original
6428 * memcg. There should be somebody mapping the head.
6429 */
6430 if (PageTransCompound(page))
6431 goto put;
f7f9c00d 6432 if (!device && !isolate_lru_page(page))
4ffef5fe 6433 goto put;
f627c2f5
KS
6434 if (!mem_cgroup_move_account(page, false,
6435 mc.from, mc.to)) {
4ffef5fe 6436 mc.precharge--;
854ffa8d
DN
6437 /* we uncharge from mc.from later. */
6438 mc.moved_charge++;
4ffef5fe 6439 }
c733a828
JG
6440 if (!device)
6441 putback_lru_page(page);
4e0cf05f
JW
6442put: /* get_mctgt_type() gets & locks the page */
6443 unlock_page(page);
4ffef5fe
DN
6444 put_page(page);
6445 break;
02491447
DN
6446 case MC_TARGET_SWAP:
6447 ent = target.ent;
e91cbb42 6448 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6449 mc.precharge--;
8d22a935
HD
6450 mem_cgroup_id_get_many(mc.to, 1);
6451 /* we fixup other refcnts and charges later. */
483c30b5
DN
6452 mc.moved_swap++;
6453 }
02491447 6454 break;
4ffef5fe
DN
6455 default:
6456 break;
6457 }
6458 }
6459 pte_unmap_unlock(pte - 1, ptl);
6460 cond_resched();
6461
6462 if (addr != end) {
6463 /*
6464 * We have consumed all precharges we got in can_attach().
6465 * We try charge one by one, but don't do any additional
6466 * charges to mc.to if we have failed in charge once in attach()
6467 * phase.
6468 */
854ffa8d 6469 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6470 if (!ret)
6471 goto retry;
6472 }
6473
6474 return ret;
6475}
6476
7b86ac33
CH
6477static const struct mm_walk_ops charge_walk_ops = {
6478 .pmd_entry = mem_cgroup_move_charge_pte_range,
49b06385 6479 .walk_lock = PGWALK_RDLOCK,
7b86ac33
CH
6480};
6481
264a0ae1 6482static void mem_cgroup_move_charge(void)
4ffef5fe 6483{
4ffef5fe 6484 lru_add_drain_all();
312722cb 6485 /*
6c77b607 6486 * Signal folio_memcg_lock() to take the memcg's move_lock
81f8c3a4
JW
6487 * while we're moving its pages to another memcg. Then wait
6488 * for already started RCU-only updates to finish.
312722cb
JW
6489 */
6490 atomic_inc(&mc.from->moving_account);
6491 synchronize_rcu();
dfe076b0 6492retry:
d8ed45c5 6493 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6494 /*
c1e8d7c6 6495 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6496 * waitq. So we cancel all extra charges, wake up all waiters,
6497 * and retry. Because we cancel precharges, we might not be able
6498 * to move enough charges, but moving charge is a best-effort
6499 * feature anyway, so it wouldn't be a big problem.
6500 */
6501 __mem_cgroup_clear_mc();
6502 cond_resched();
6503 goto retry;
6504 }
26bcd64a
NH
6505 /*
6506 * When we have consumed all precharges and failed in doing
6507 * additional charge, the page walk just aborts.
6508 */
ba0aff8e 6509 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6510 mmap_read_unlock(mc.mm);
312722cb 6511 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6512}
6513
264a0ae1 6514static void mem_cgroup_move_task(void)
67e465a7 6515{
264a0ae1
TH
6516 if (mc.to) {
6517 mem_cgroup_move_charge();
a433658c 6518 mem_cgroup_clear_mc();
264a0ae1 6519 }
67e465a7 6520}
1aacbd35 6521
5cfb80a7 6522#else /* !CONFIG_MMU */
1f7dd3e5 6523static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6524{
6525 return 0;
6526}
1f7dd3e5 6527static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6528{
6529}
264a0ae1 6530static void mem_cgroup_move_task(void)
5cfb80a7
DN
6531{
6532}
6533#endif
67e465a7 6534
1aacbd35
RG
6535#ifdef CONFIG_MEMCG_KMEM
6536static void mem_cgroup_fork(struct task_struct *task)
6537{
6538 /*
6539 * Set the update flag to cause task->objcg to be initialized lazily
6540 * on the first allocation. It can be done without any synchronization
6541 * because it's always performed on the current task, so does
6542 * current_objcg_update().
6543 */
6544 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6545}
6546
6547static void mem_cgroup_exit(struct task_struct *task)
6548{
6549 struct obj_cgroup *objcg = task->objcg;
6550
6551 objcg = (struct obj_cgroup *)
6552 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6553 if (objcg)
6554 obj_cgroup_put(objcg);
6555
6556 /*
6557 * Some kernel allocations can happen after this point,
6558 * but let's ignore them. It can be done without any synchronization
6559 * because it's always performed on the current task, so does
6560 * current_objcg_update().
6561 */
6562 task->objcg = NULL;
6563}
6564#endif
6565
bd74fdae 6566#ifdef CONFIG_LRU_GEN
1aacbd35 6567static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
bd74fdae
YZ
6568{
6569 struct task_struct *task;
6570 struct cgroup_subsys_state *css;
6571
6572 /* find the first leader if there is any */
6573 cgroup_taskset_for_each_leader(task, css, tset)
6574 break;
6575
6576 if (!task)
6577 return;
6578
6579 task_lock(task);
6580 if (task->mm && READ_ONCE(task->mm->owner) == task)
6581 lru_gen_migrate_mm(task->mm);
6582 task_unlock(task);
6583}
6584#else
1aacbd35
RG
6585static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6586#endif /* CONFIG_LRU_GEN */
6587
6588#ifdef CONFIG_MEMCG_KMEM
6589static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6590{
6591 struct task_struct *task;
6592 struct cgroup_subsys_state *css;
6593
6594 cgroup_taskset_for_each(task, css, tset) {
6595 /* atomically set the update bit */
6596 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6597 }
6598}
6599#else
6600static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6601#endif /* CONFIG_MEMCG_KMEM */
6602
6603#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
bd74fdae
YZ
6604static void mem_cgroup_attach(struct cgroup_taskset *tset)
6605{
1aacbd35
RG
6606 mem_cgroup_lru_gen_attach(tset);
6607 mem_cgroup_kmem_attach(tset);
bd74fdae 6608}
1aacbd35 6609#endif
bd74fdae 6610
677dc973
CD
6611static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6612{
6613 if (value == PAGE_COUNTER_MAX)
6614 seq_puts(m, "max\n");
6615 else
6616 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6617
6618 return 0;
6619}
6620
241994ed
JW
6621static u64 memory_current_read(struct cgroup_subsys_state *css,
6622 struct cftype *cft)
6623{
f5fc3c5d
JW
6624 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6625
6626 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6627}
6628
8e20d4b3
GR
6629static u64 memory_peak_read(struct cgroup_subsys_state *css,
6630 struct cftype *cft)
6631{
6632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6633
6634 return (u64)memcg->memory.watermark * PAGE_SIZE;
6635}
6636
bf8d5d52
RG
6637static int memory_min_show(struct seq_file *m, void *v)
6638{
677dc973
CD
6639 return seq_puts_memcg_tunable(m,
6640 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6641}
6642
6643static ssize_t memory_min_write(struct kernfs_open_file *of,
6644 char *buf, size_t nbytes, loff_t off)
6645{
6646 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6647 unsigned long min;
6648 int err;
6649
6650 buf = strstrip(buf);
6651 err = page_counter_memparse(buf, "max", &min);
6652 if (err)
6653 return err;
6654
6655 page_counter_set_min(&memcg->memory, min);
6656
6657 return nbytes;
6658}
6659
241994ed
JW
6660static int memory_low_show(struct seq_file *m, void *v)
6661{
677dc973
CD
6662 return seq_puts_memcg_tunable(m,
6663 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6664}
6665
6666static ssize_t memory_low_write(struct kernfs_open_file *of,
6667 char *buf, size_t nbytes, loff_t off)
6668{
6669 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6670 unsigned long low;
6671 int err;
6672
6673 buf = strstrip(buf);
d2973697 6674 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6675 if (err)
6676 return err;
6677
23067153 6678 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6679
6680 return nbytes;
6681}
6682
6683static int memory_high_show(struct seq_file *m, void *v)
6684{
d1663a90
JK
6685 return seq_puts_memcg_tunable(m,
6686 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6687}
6688
6689static ssize_t memory_high_write(struct kernfs_open_file *of,
6690 char *buf, size_t nbytes, loff_t off)
6691{
6692 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6693 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6694 bool drained = false;
241994ed
JW
6695 unsigned long high;
6696 int err;
6697
6698 buf = strstrip(buf);
d2973697 6699 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6700 if (err)
6701 return err;
6702
e82553c1
JW
6703 page_counter_set_high(&memcg->memory, high);
6704
8c8c383c
JW
6705 for (;;) {
6706 unsigned long nr_pages = page_counter_read(&memcg->memory);
6707 unsigned long reclaimed;
6708
6709 if (nr_pages <= high)
6710 break;
6711
6712 if (signal_pending(current))
6713 break;
6714
6715 if (!drained) {
6716 drain_all_stock(memcg);
6717 drained = true;
6718 continue;
6719 }
6720
6721 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
55ab834a 6722 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6723
6724 if (!reclaimed && !nr_retries--)
6725 break;
6726 }
588083bb 6727
19ce33ac 6728 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6729 return nbytes;
6730}
6731
6732static int memory_max_show(struct seq_file *m, void *v)
6733{
677dc973
CD
6734 return seq_puts_memcg_tunable(m,
6735 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6736}
6737
6738static ssize_t memory_max_write(struct kernfs_open_file *of,
6739 char *buf, size_t nbytes, loff_t off)
6740{
6741 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6742 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6743 bool drained = false;
241994ed
JW
6744 unsigned long max;
6745 int err;
6746
6747 buf = strstrip(buf);
d2973697 6748 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6749 if (err)
6750 return err;
6751
bbec2e15 6752 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6753
6754 for (;;) {
6755 unsigned long nr_pages = page_counter_read(&memcg->memory);
6756
6757 if (nr_pages <= max)
6758 break;
6759
7249c9f0 6760 if (signal_pending(current))
b6e6edcf 6761 break;
b6e6edcf
JW
6762
6763 if (!drained) {
6764 drain_all_stock(memcg);
6765 drained = true;
6766 continue;
6767 }
6768
6769 if (nr_reclaims) {
6770 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
55ab834a 6771 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6772 nr_reclaims--;
6773 continue;
6774 }
6775
e27be240 6776 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6777 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6778 break;
6779 }
241994ed 6780
2529bb3a 6781 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6782 return nbytes;
6783}
6784
1e577f97
SB
6785static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6786{
6787 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6788 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6789 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6790 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6791 seq_printf(m, "oom_kill %lu\n",
6792 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6793 seq_printf(m, "oom_group_kill %lu\n",
6794 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6795}
6796
241994ed
JW
6797static int memory_events_show(struct seq_file *m, void *v)
6798{
aa9694bb 6799 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6800
1e577f97
SB
6801 __memory_events_show(m, memcg->memory_events);
6802 return 0;
6803}
6804
6805static int memory_events_local_show(struct seq_file *m, void *v)
6806{
6807 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6808
1e577f97 6809 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6810 return 0;
6811}
6812
587d9f72
JW
6813static int memory_stat_show(struct seq_file *m, void *v)
6814{
aa9694bb 6815 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6816 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5b42360c 6817 struct seq_buf s;
1ff9e6e1 6818
c8713d0b
JW
6819 if (!buf)
6820 return -ENOMEM;
5b42360c
YA
6821 seq_buf_init(&s, buf, PAGE_SIZE);
6822 memory_stat_format(memcg, &s);
c8713d0b
JW
6823 seq_puts(m, buf);
6824 kfree(buf);
587d9f72
JW
6825 return 0;
6826}
6827
5f9a4f4a 6828#ifdef CONFIG_NUMA
fff66b79
MS
6829static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6830 int item)
6831{
ff841a06
YA
6832 return lruvec_page_state(lruvec, item) *
6833 memcg_page_state_output_unit(item);
fff66b79
MS
6834}
6835
5f9a4f4a
MS
6836static int memory_numa_stat_show(struct seq_file *m, void *v)
6837{
6838 int i;
6839 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6840
fd25a9e0 6841 mem_cgroup_flush_stats();
7e1c0d6f 6842
5f9a4f4a
MS
6843 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6844 int nid;
6845
6846 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6847 continue;
6848
6849 seq_printf(m, "%s", memory_stats[i].name);
6850 for_each_node_state(nid, N_MEMORY) {
6851 u64 size;
6852 struct lruvec *lruvec;
6853
6854 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6855 size = lruvec_page_state_output(lruvec,
6856 memory_stats[i].idx);
5f9a4f4a
MS
6857 seq_printf(m, " N%d=%llu", nid, size);
6858 }
6859 seq_putc(m, '\n');
6860 }
6861
6862 return 0;
6863}
6864#endif
6865
3d8b38eb
RG
6866static int memory_oom_group_show(struct seq_file *m, void *v)
6867{
aa9694bb 6868 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb 6869
eaf7b66b 6870 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
3d8b38eb
RG
6871
6872 return 0;
6873}
6874
6875static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6876 char *buf, size_t nbytes, loff_t off)
6877{
6878 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6879 int ret, oom_group;
6880
6881 buf = strstrip(buf);
6882 if (!buf)
6883 return -EINVAL;
6884
6885 ret = kstrtoint(buf, 0, &oom_group);
6886 if (ret)
6887 return ret;
6888
6889 if (oom_group != 0 && oom_group != 1)
6890 return -EINVAL;
6891
eaf7b66b 6892 WRITE_ONCE(memcg->oom_group, oom_group);
3d8b38eb
RG
6893
6894 return nbytes;
6895}
6896
94968384
SB
6897static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6898 size_t nbytes, loff_t off)
6899{
6900 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6901 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6902 unsigned long nr_to_reclaim, nr_reclaimed = 0;
55ab834a
MH
6903 unsigned int reclaim_options;
6904 int err;
12a5d395
MA
6905
6906 buf = strstrip(buf);
55ab834a
MH
6907 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6908 if (err)
6909 return err;
12a5d395 6910
55ab834a 6911 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6912 while (nr_reclaimed < nr_to_reclaim) {
6913 unsigned long reclaimed;
6914
6915 if (signal_pending(current))
6916 return -EINTR;
6917
6918 /*
6919 * This is the final attempt, drain percpu lru caches in the
6920 * hope of introducing more evictable pages for
6921 * try_to_free_mem_cgroup_pages().
6922 */
6923 if (!nr_retries)
6924 lru_add_drain_all();
6925
6926 reclaimed = try_to_free_mem_cgroup_pages(memcg,
0388536a
EY
6927 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6928 GFP_KERNEL, reclaim_options);
94968384
SB
6929
6930 if (!reclaimed && !nr_retries--)
6931 return -EAGAIN;
6932
6933 nr_reclaimed += reclaimed;
6934 }
6935
6936 return nbytes;
6937}
6938
241994ed
JW
6939static struct cftype memory_files[] = {
6940 {
6941 .name = "current",
f5fc3c5d 6942 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6943 .read_u64 = memory_current_read,
6944 },
8e20d4b3
GR
6945 {
6946 .name = "peak",
6947 .flags = CFTYPE_NOT_ON_ROOT,
6948 .read_u64 = memory_peak_read,
6949 },
bf8d5d52
RG
6950 {
6951 .name = "min",
6952 .flags = CFTYPE_NOT_ON_ROOT,
6953 .seq_show = memory_min_show,
6954 .write = memory_min_write,
6955 },
241994ed
JW
6956 {
6957 .name = "low",
6958 .flags = CFTYPE_NOT_ON_ROOT,
6959 .seq_show = memory_low_show,
6960 .write = memory_low_write,
6961 },
6962 {
6963 .name = "high",
6964 .flags = CFTYPE_NOT_ON_ROOT,
6965 .seq_show = memory_high_show,
6966 .write = memory_high_write,
6967 },
6968 {
6969 .name = "max",
6970 .flags = CFTYPE_NOT_ON_ROOT,
6971 .seq_show = memory_max_show,
6972 .write = memory_max_write,
6973 },
6974 {
6975 .name = "events",
6976 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6977 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6978 .seq_show = memory_events_show,
6979 },
1e577f97
SB
6980 {
6981 .name = "events.local",
6982 .flags = CFTYPE_NOT_ON_ROOT,
6983 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6984 .seq_show = memory_events_local_show,
6985 },
587d9f72
JW
6986 {
6987 .name = "stat",
587d9f72
JW
6988 .seq_show = memory_stat_show,
6989 },
5f9a4f4a
MS
6990#ifdef CONFIG_NUMA
6991 {
6992 .name = "numa_stat",
6993 .seq_show = memory_numa_stat_show,
6994 },
6995#endif
3d8b38eb
RG
6996 {
6997 .name = "oom.group",
6998 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6999 .seq_show = memory_oom_group_show,
7000 .write = memory_oom_group_write,
7001 },
94968384
SB
7002 {
7003 .name = "reclaim",
7004 .flags = CFTYPE_NS_DELEGATABLE,
7005 .write = memory_reclaim,
7006 },
241994ed
JW
7007 { } /* terminate */
7008};
7009
073219e9 7010struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7011 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7012 .css_online = mem_cgroup_css_online,
92fb9748 7013 .css_offline = mem_cgroup_css_offline,
6df38689 7014 .css_released = mem_cgroup_css_released,
92fb9748 7015 .css_free = mem_cgroup_css_free,
1ced953b 7016 .css_reset = mem_cgroup_css_reset,
2d146aa3 7017 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 7018 .can_attach = mem_cgroup_can_attach,
1aacbd35 7019#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
bd74fdae 7020 .attach = mem_cgroup_attach,
1aacbd35 7021#endif
7dc74be0 7022 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 7023 .post_attach = mem_cgroup_move_task,
1aacbd35
RG
7024#ifdef CONFIG_MEMCG_KMEM
7025 .fork = mem_cgroup_fork,
7026 .exit = mem_cgroup_exit,
7027#endif
241994ed
JW
7028 .dfl_cftypes = memory_files,
7029 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 7030 .early_init = 0,
8cdea7c0 7031};
c077719b 7032
bc50bcc6
JW
7033/*
7034 * This function calculates an individual cgroup's effective
7035 * protection which is derived from its own memory.min/low, its
7036 * parent's and siblings' settings, as well as the actual memory
7037 * distribution in the tree.
7038 *
7039 * The following rules apply to the effective protection values:
7040 *
7041 * 1. At the first level of reclaim, effective protection is equal to
7042 * the declared protection in memory.min and memory.low.
7043 *
7044 * 2. To enable safe delegation of the protection configuration, at
7045 * subsequent levels the effective protection is capped to the
7046 * parent's effective protection.
7047 *
7048 * 3. To make complex and dynamic subtrees easier to configure, the
7049 * user is allowed to overcommit the declared protection at a given
7050 * level. If that is the case, the parent's effective protection is
7051 * distributed to the children in proportion to how much protection
7052 * they have declared and how much of it they are utilizing.
7053 *
7054 * This makes distribution proportional, but also work-conserving:
7055 * if one cgroup claims much more protection than it uses memory,
7056 * the unused remainder is available to its siblings.
7057 *
7058 * 4. Conversely, when the declared protection is undercommitted at a
7059 * given level, the distribution of the larger parental protection
7060 * budget is NOT proportional. A cgroup's protection from a sibling
7061 * is capped to its own memory.min/low setting.
7062 *
8a931f80
JW
7063 * 5. However, to allow protecting recursive subtrees from each other
7064 * without having to declare each individual cgroup's fixed share
7065 * of the ancestor's claim to protection, any unutilized -
7066 * "floating" - protection from up the tree is distributed in
7067 * proportion to each cgroup's *usage*. This makes the protection
7068 * neutral wrt sibling cgroups and lets them compete freely over
7069 * the shared parental protection budget, but it protects the
7070 * subtree as a whole from neighboring subtrees.
7071 *
7072 * Note that 4. and 5. are not in conflict: 4. is about protecting
7073 * against immediate siblings whereas 5. is about protecting against
7074 * neighboring subtrees.
bc50bcc6
JW
7075 */
7076static unsigned long effective_protection(unsigned long usage,
8a931f80 7077 unsigned long parent_usage,
bc50bcc6
JW
7078 unsigned long setting,
7079 unsigned long parent_effective,
7080 unsigned long siblings_protected)
7081{
7082 unsigned long protected;
8a931f80 7083 unsigned long ep;
bc50bcc6
JW
7084
7085 protected = min(usage, setting);
7086 /*
7087 * If all cgroups at this level combined claim and use more
08e0f49e 7088 * protection than what the parent affords them, distribute
bc50bcc6
JW
7089 * shares in proportion to utilization.
7090 *
7091 * We are using actual utilization rather than the statically
7092 * claimed protection in order to be work-conserving: claimed
7093 * but unused protection is available to siblings that would
7094 * otherwise get a smaller chunk than what they claimed.
7095 */
7096 if (siblings_protected > parent_effective)
7097 return protected * parent_effective / siblings_protected;
7098
7099 /*
7100 * Ok, utilized protection of all children is within what the
7101 * parent affords them, so we know whatever this child claims
7102 * and utilizes is effectively protected.
7103 *
7104 * If there is unprotected usage beyond this value, reclaim
7105 * will apply pressure in proportion to that amount.
7106 *
7107 * If there is unutilized protection, the cgroup will be fully
7108 * shielded from reclaim, but we do return a smaller value for
7109 * protection than what the group could enjoy in theory. This
7110 * is okay. With the overcommit distribution above, effective
7111 * protection is always dependent on how memory is actually
7112 * consumed among the siblings anyway.
7113 */
8a931f80
JW
7114 ep = protected;
7115
7116 /*
7117 * If the children aren't claiming (all of) the protection
7118 * afforded to them by the parent, distribute the remainder in
7119 * proportion to the (unprotected) memory of each cgroup. That
7120 * way, cgroups that aren't explicitly prioritized wrt each
7121 * other compete freely over the allowance, but they are
7122 * collectively protected from neighboring trees.
7123 *
7124 * We're using unprotected memory for the weight so that if
7125 * some cgroups DO claim explicit protection, we don't protect
7126 * the same bytes twice.
cd324edc
JW
7127 *
7128 * Check both usage and parent_usage against the respective
7129 * protected values. One should imply the other, but they
7130 * aren't read atomically - make sure the division is sane.
8a931f80
JW
7131 */
7132 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7133 return ep;
cd324edc
JW
7134 if (parent_effective > siblings_protected &&
7135 parent_usage > siblings_protected &&
7136 usage > protected) {
8a931f80
JW
7137 unsigned long unclaimed;
7138
7139 unclaimed = parent_effective - siblings_protected;
7140 unclaimed *= usage - protected;
7141 unclaimed /= parent_usage - siblings_protected;
7142
7143 ep += unclaimed;
7144 }
7145
7146 return ep;
bc50bcc6
JW
7147}
7148
241994ed 7149/**
05395718 7150 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 7151 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
7152 * @memcg: the memory cgroup to check
7153 *
23067153
RG
7154 * WARNING: This function is not stateless! It can only be used as part
7155 * of a top-down tree iteration, not for isolated queries.
241994ed 7156 */
45c7f7e1
CD
7157void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7158 struct mem_cgroup *memcg)
241994ed 7159{
8a931f80 7160 unsigned long usage, parent_usage;
23067153
RG
7161 struct mem_cgroup *parent;
7162
241994ed 7163 if (mem_cgroup_disabled())
45c7f7e1 7164 return;
241994ed 7165
34c81057
SC
7166 if (!root)
7167 root = root_mem_cgroup;
22f7496f
YS
7168
7169 /*
7170 * Effective values of the reclaim targets are ignored so they
7171 * can be stale. Have a look at mem_cgroup_protection for more
7172 * details.
7173 * TODO: calculation should be more robust so that we do not need
7174 * that special casing.
7175 */
34c81057 7176 if (memcg == root)
45c7f7e1 7177 return;
241994ed 7178
23067153 7179 usage = page_counter_read(&memcg->memory);
bf8d5d52 7180 if (!usage)
45c7f7e1 7181 return;
bf8d5d52 7182
bf8d5d52 7183 parent = parent_mem_cgroup(memcg);
df2a4196 7184
bc50bcc6 7185 if (parent == root) {
c3d53200 7186 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 7187 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 7188 return;
bf8d5d52
RG
7189 }
7190
8a931f80
JW
7191 parent_usage = page_counter_read(&parent->memory);
7192
b3a7822e 7193 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
7194 READ_ONCE(memcg->memory.min),
7195 READ_ONCE(parent->memory.emin),
b3a7822e 7196 atomic_long_read(&parent->memory.children_min_usage)));
23067153 7197
b3a7822e 7198 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
7199 READ_ONCE(memcg->memory.low),
7200 READ_ONCE(parent->memory.elow),
b3a7822e 7201 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
7202}
7203
8f425e4e
MWO
7204static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7205 gfp_t gfp)
0add0c77 7206{
0add0c77
SB
7207 int ret;
7208
4b569387 7209 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
0add0c77
SB
7210 if (ret)
7211 goto out;
7212
4b569387 7213 mem_cgroup_commit_charge(folio, memcg);
0add0c77
SB
7214out:
7215 return ret;
7216}
7217
8f425e4e 7218int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 7219{
0add0c77
SB
7220 struct mem_cgroup *memcg;
7221 int ret;
00501b53 7222
0add0c77 7223 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 7224 ret = charge_memcg(folio, memcg, gfp);
0add0c77 7225 css_put(&memcg->css);
2d1c4980 7226
0add0c77
SB
7227 return ret;
7228}
e993d905 7229
8cba9576
NP
7230/**
7231 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7232 * @memcg: memcg to charge.
7233 * @gfp: reclaim mode.
7234 * @nr_pages: number of pages to charge.
7235 *
7236 * This function is called when allocating a huge page folio to determine if
7237 * the memcg has the capacity for it. It does not commit the charge yet,
7238 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7239 *
7240 * Once we have obtained the hugetlb folio, we can call
7241 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7242 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7243 * of try_charge().
7244 *
7245 * Returns 0 on success. Otherwise, an error code is returned.
7246 */
7247int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7248 long nr_pages)
7249{
7250 /*
7251 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7252 * but do not attempt to commit charge later (or cancel on error) either.
7253 */
7254 if (mem_cgroup_disabled() || !memcg ||
7255 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7256 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7257 return -EOPNOTSUPP;
7258
7259 if (try_charge(memcg, gfp, nr_pages))
7260 return -ENOMEM;
7261
7262 return 0;
7263}
7264
0add0c77 7265/**
65995918
MWO
7266 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7267 * @folio: folio to charge.
0add0c77
SB
7268 * @mm: mm context of the victim
7269 * @gfp: reclaim mode
65995918 7270 * @entry: swap entry for which the folio is allocated
0add0c77 7271 *
65995918
MWO
7272 * This function charges a folio allocated for swapin. Please call this before
7273 * adding the folio to the swapcache.
0add0c77
SB
7274 *
7275 * Returns 0 on success. Otherwise, an error code is returned.
7276 */
65995918 7277int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
7278 gfp_t gfp, swp_entry_t entry)
7279{
7280 struct mem_cgroup *memcg;
7281 unsigned short id;
7282 int ret;
00501b53 7283
0add0c77
SB
7284 if (mem_cgroup_disabled())
7285 return 0;
00501b53 7286
0add0c77
SB
7287 id = lookup_swap_cgroup_id(entry);
7288 rcu_read_lock();
7289 memcg = mem_cgroup_from_id(id);
7290 if (!memcg || !css_tryget_online(&memcg->css))
7291 memcg = get_mem_cgroup_from_mm(mm);
7292 rcu_read_unlock();
00501b53 7293
8f425e4e 7294 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 7295
0add0c77
SB
7296 css_put(&memcg->css);
7297 return ret;
7298}
00501b53 7299
0add0c77
SB
7300/*
7301 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7302 * @entry: swap entry for which the page is charged
7303 *
7304 * Call this function after successfully adding the charged page to swapcache.
7305 *
7306 * Note: This function assumes the page for which swap slot is being uncharged
7307 * is order 0 page.
7308 */
7309void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7310{
cae3af62
MS
7311 /*
7312 * Cgroup1's unified memory+swap counter has been charged with the
7313 * new swapcache page, finish the transfer by uncharging the swap
7314 * slot. The swap slot would also get uncharged when it dies, but
7315 * it can stick around indefinitely and we'd count the page twice
7316 * the entire time.
7317 *
7318 * Cgroup2 has separate resource counters for memory and swap,
7319 * so this is a non-issue here. Memory and swap charge lifetimes
7320 * correspond 1:1 to page and swap slot lifetimes: we charge the
7321 * page to memory here, and uncharge swap when the slot is freed.
7322 */
0add0c77 7323 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
7324 /*
7325 * The swap entry might not get freed for a long time,
7326 * let's not wait for it. The page already received a
7327 * memory+swap charge, drop the swap entry duplicate.
7328 */
0add0c77 7329 mem_cgroup_uncharge_swap(entry, 1);
00501b53 7330 }
3fea5a49
JW
7331}
7332
a9d5adee
JG
7333struct uncharge_gather {
7334 struct mem_cgroup *memcg;
b4e0b68f 7335 unsigned long nr_memory;
a9d5adee 7336 unsigned long pgpgout;
a9d5adee 7337 unsigned long nr_kmem;
8e88bd2d 7338 int nid;
a9d5adee
JG
7339};
7340
7341static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7342{
a9d5adee
JG
7343 memset(ug, 0, sizeof(*ug));
7344}
7345
7346static void uncharge_batch(const struct uncharge_gather *ug)
7347{
747db954
JW
7348 unsigned long flags;
7349
b4e0b68f
MS
7350 if (ug->nr_memory) {
7351 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7352 if (do_memsw_account())
b4e0b68f 7353 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7354 if (ug->nr_kmem)
7355 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7356 memcg_oom_recover(ug->memcg);
ce00a967 7357 }
747db954
JW
7358
7359 local_irq_save(flags);
c9019e9b 7360 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7361 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7362 memcg_check_events(ug->memcg, ug->nid);
747db954 7363 local_irq_restore(flags);
f1796544 7364
c4ed6ebf 7365 /* drop reference from uncharge_folio */
f1796544 7366 css_put(&ug->memcg->css);
a9d5adee
JG
7367}
7368
c4ed6ebf 7369static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7370{
c4ed6ebf 7371 long nr_pages;
b4e0b68f
MS
7372 struct mem_cgroup *memcg;
7373 struct obj_cgroup *objcg;
9f762dbe 7374
c4ed6ebf 7375 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7376
a9d5adee
JG
7377 /*
7378 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7379 * folio memcg or objcg at this point, we have fully
7380 * exclusive access to the folio.
a9d5adee 7381 */
fead2b86 7382 if (folio_memcg_kmem(folio)) {
1b7e4464 7383 objcg = __folio_objcg(folio);
b4e0b68f
MS
7384 /*
7385 * This get matches the put at the end of the function and
7386 * kmem pages do not hold memcg references anymore.
7387 */
7388 memcg = get_mem_cgroup_from_objcg(objcg);
7389 } else {
1b7e4464 7390 memcg = __folio_memcg(folio);
b4e0b68f 7391 }
a9d5adee 7392
b4e0b68f
MS
7393 if (!memcg)
7394 return;
7395
7396 if (ug->memcg != memcg) {
a9d5adee
JG
7397 if (ug->memcg) {
7398 uncharge_batch(ug);
7399 uncharge_gather_clear(ug);
7400 }
b4e0b68f 7401 ug->memcg = memcg;
c4ed6ebf 7402 ug->nid = folio_nid(folio);
f1796544
MH
7403
7404 /* pairs with css_put in uncharge_batch */
b4e0b68f 7405 css_get(&memcg->css);
a9d5adee
JG
7406 }
7407
c4ed6ebf 7408 nr_pages = folio_nr_pages(folio);
a9d5adee 7409
fead2b86 7410 if (folio_memcg_kmem(folio)) {
b4e0b68f 7411 ug->nr_memory += nr_pages;
9f762dbe 7412 ug->nr_kmem += nr_pages;
b4e0b68f 7413
c4ed6ebf 7414 folio->memcg_data = 0;
b4e0b68f
MS
7415 obj_cgroup_put(objcg);
7416 } else {
7417 /* LRU pages aren't accounted at the root level */
7418 if (!mem_cgroup_is_root(memcg))
7419 ug->nr_memory += nr_pages;
18b2db3b 7420 ug->pgpgout++;
a9d5adee 7421
c4ed6ebf 7422 folio->memcg_data = 0;
b4e0b68f
MS
7423 }
7424
7425 css_put(&memcg->css);
747db954
JW
7426}
7427
bbc6b703 7428void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7429{
a9d5adee
JG
7430 struct uncharge_gather ug;
7431
bbc6b703
MWO
7432 /* Don't touch folio->lru of any random page, pre-check: */
7433 if (!folio_memcg(folio))
0a31bc97
JW
7434 return;
7435
a9d5adee 7436 uncharge_gather_clear(&ug);
bbc6b703 7437 uncharge_folio(folio, &ug);
a9d5adee 7438 uncharge_batch(&ug);
747db954 7439}
0a31bc97 7440
747db954 7441/**
2c8d8f97 7442 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7443 * @page_list: list of pages to uncharge
7444 *
7445 * Uncharge a list of pages previously charged with
2c8d8f97 7446 * __mem_cgroup_charge().
747db954 7447 */
2c8d8f97 7448void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7449{
c41a40b6 7450 struct uncharge_gather ug;
c4ed6ebf 7451 struct folio *folio;
c41a40b6 7452
c41a40b6 7453 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7454 list_for_each_entry(folio, page_list, lru)
7455 uncharge_folio(folio, &ug);
c41a40b6
MS
7456 if (ug.memcg)
7457 uncharge_batch(&ug);
0a31bc97
JW
7458}
7459
7460/**
85ce2c51 7461 * mem_cgroup_replace_folio - Charge a folio's replacement.
d21bba2b
MWO
7462 * @old: Currently circulating folio.
7463 * @new: Replacement folio.
0a31bc97 7464 *
d21bba2b 7465 * Charge @new as a replacement folio for @old. @old will
85ce2c51
NP
7466 * be uncharged upon free. This is only used by the page cache
7467 * (in replace_page_cache_folio()).
0a31bc97 7468 *
d21bba2b 7469 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7470 */
85ce2c51 7471void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
0a31bc97 7472{
29833315 7473 struct mem_cgroup *memcg;
d21bba2b 7474 long nr_pages = folio_nr_pages(new);
d93c4130 7475 unsigned long flags;
0a31bc97 7476
d21bba2b
MWO
7477 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7478 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7479 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7480 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7481
7482 if (mem_cgroup_disabled())
7483 return;
7484
d21bba2b
MWO
7485 /* Page cache replacement: new folio already charged? */
7486 if (folio_memcg(new))
0a31bc97
JW
7487 return;
7488
d21bba2b
MWO
7489 memcg = folio_memcg(old);
7490 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7491 if (!memcg)
0a31bc97
JW
7492 return;
7493
44b7a8d3 7494 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7495 if (!mem_cgroup_is_root(memcg)) {
7496 page_counter_charge(&memcg->memory, nr_pages);
7497 if (do_memsw_account())
7498 page_counter_charge(&memcg->memsw, nr_pages);
7499 }
0a31bc97 7500
1a3e1f40 7501 css_get(&memcg->css);
d21bba2b 7502 commit_charge(new, memcg);
44b7a8d3 7503
d93c4130 7504 local_irq_save(flags);
6e0110c2 7505 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7506 memcg_check_events(memcg, folio_nid(new));
d93c4130 7507 local_irq_restore(flags);
0a31bc97
JW
7508}
7509
85ce2c51
NP
7510/**
7511 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7512 * @old: Currently circulating folio.
7513 * @new: Replacement folio.
7514 *
7515 * Transfer the memcg data from the old folio to the new folio for migration.
7516 * The old folio's data info will be cleared. Note that the memory counters
7517 * will remain unchanged throughout the process.
7518 *
7519 * Both folios must be locked, @new->mapping must be set up.
7520 */
7521void mem_cgroup_migrate(struct folio *old, struct folio *new)
7522{
7523 struct mem_cgroup *memcg;
7524
7525 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7526 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7527 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7528 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7529
7530 if (mem_cgroup_disabled())
7531 return;
7532
7533 memcg = folio_memcg(old);
8cba9576
NP
7534 /*
7535 * Note that it is normal to see !memcg for a hugetlb folio.
7536 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7537 * was not selected.
7538 */
7539 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
85ce2c51
NP
7540 if (!memcg)
7541 return;
7542
7543 /* Transfer the charge and the css ref */
7544 commit_charge(new, memcg);
7545 old->memcg_data = 0;
7546}
7547
ef12947c 7548DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7549EXPORT_SYMBOL(memcg_sockets_enabled_key);
7550
2d758073 7551void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7552{
7553 struct mem_cgroup *memcg;
7554
2d758073
JW
7555 if (!mem_cgroup_sockets_enabled)
7556 return;
7557
e876ecc6 7558 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7559 if (!in_task())
e876ecc6
SB
7560 return;
7561
11092087
JW
7562 rcu_read_lock();
7563 memcg = mem_cgroup_from_task(current);
7848ed62 7564 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7565 goto out;
0db15298 7566 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7567 goto out;
8965aa28 7568 if (css_tryget(&memcg->css))
11092087 7569 sk->sk_memcg = memcg;
f7e1cb6e 7570out:
11092087
JW
7571 rcu_read_unlock();
7572}
11092087 7573
2d758073 7574void mem_cgroup_sk_free(struct sock *sk)
11092087 7575{
2d758073
JW
7576 if (sk->sk_memcg)
7577 css_put(&sk->sk_memcg->css);
11092087
JW
7578}
7579
7580/**
7581 * mem_cgroup_charge_skmem - charge socket memory
7582 * @memcg: memcg to charge
7583 * @nr_pages: number of pages to charge
4b1327be 7584 * @gfp_mask: reclaim mode
11092087
JW
7585 *
7586 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7587 * @memcg's configured limit, %false if it doesn't.
11092087 7588 */
4b1327be
WW
7589bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7590 gfp_t gfp_mask)
11092087 7591{
f7e1cb6e 7592 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7593 struct page_counter *fail;
f7e1cb6e 7594
0db15298
JW
7595 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7596 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7597 return true;
7598 }
0db15298 7599 memcg->tcpmem_pressure = 1;
4b1327be
WW
7600 if (gfp_mask & __GFP_NOFAIL) {
7601 page_counter_charge(&memcg->tcpmem, nr_pages);
7602 return true;
7603 }
f7e1cb6e 7604 return false;
11092087 7605 }
d886f4e4 7606
4b1327be
WW
7607 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7608 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7609 return true;
4b1327be 7610 }
f7e1cb6e 7611
11092087
JW
7612 return false;
7613}
7614
7615/**
7616 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7617 * @memcg: memcg to uncharge
7618 * @nr_pages: number of pages to uncharge
11092087
JW
7619 */
7620void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7621{
f7e1cb6e 7622 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7623 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7624 return;
7625 }
d886f4e4 7626
c9019e9b 7627 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7628
475d0487 7629 refill_stock(memcg, nr_pages);
11092087
JW
7630}
7631
f7e1cb6e
JW
7632static int __init cgroup_memory(char *s)
7633{
7634 char *token;
7635
7636 while ((token = strsep(&s, ",")) != NULL) {
7637 if (!*token)
7638 continue;
7639 if (!strcmp(token, "nosocket"))
7640 cgroup_memory_nosocket = true;
04823c83
VD
7641 if (!strcmp(token, "nokmem"))
7642 cgroup_memory_nokmem = true;
b6c1a8af
YS
7643 if (!strcmp(token, "nobpf"))
7644 cgroup_memory_nobpf = true;
f7e1cb6e 7645 }
460a79e1 7646 return 1;
f7e1cb6e
JW
7647}
7648__setup("cgroup.memory=", cgroup_memory);
11092087 7649
2d11085e 7650/*
1081312f
MH
7651 * subsys_initcall() for memory controller.
7652 *
308167fc
SAS
7653 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7654 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7655 * basically everything that doesn't depend on a specific mem_cgroup structure
7656 * should be initialized from here.
2d11085e
MH
7657 */
7658static int __init mem_cgroup_init(void)
7659{
95a045f6
JW
7660 int cpu, node;
7661
f3344adf
MS
7662 /*
7663 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7664 * used for per-memcg-per-cpu caching of per-node statistics. In order
7665 * to work fine, we should make sure that the overfill threshold can't
7666 * exceed S32_MAX / PAGE_SIZE.
7667 */
7668 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7669
308167fc
SAS
7670 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7671 memcg_hotplug_cpu_dead);
95a045f6
JW
7672
7673 for_each_possible_cpu(cpu)
7674 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7675 drain_local_stock);
7676
7677 for_each_node(node) {
7678 struct mem_cgroup_tree_per_node *rtpn;
95a045f6 7679
91f0dcce 7680 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
95a045f6 7681
ef8f2327 7682 rtpn->rb_root = RB_ROOT;
fa90b2fd 7683 rtpn->rb_rightmost = NULL;
ef8f2327 7684 spin_lock_init(&rtpn->lock);
95a045f6
JW
7685 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7686 }
7687
2d11085e
MH
7688 return 0;
7689}
7690subsys_initcall(mem_cgroup_init);
21afa38e 7691
e55b9f96 7692#ifdef CONFIG_SWAP
358c07fc
AB
7693static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7694{
1c2d479a 7695 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7696 /*
7697 * The root cgroup cannot be destroyed, so it's refcount must
7698 * always be >= 1.
7699 */
7848ed62 7700 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7701 VM_BUG_ON(1);
7702 break;
7703 }
7704 memcg = parent_mem_cgroup(memcg);
7705 if (!memcg)
7706 memcg = root_mem_cgroup;
7707 }
7708 return memcg;
7709}
7710
21afa38e
JW
7711/**
7712 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7713 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7714 * @entry: swap entry to move the charge to
7715 *
3ecb0087 7716 * Transfer the memsw charge of @folio to @entry.
21afa38e 7717 */
3ecb0087 7718void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7719{
1f47b61f 7720 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7721 unsigned int nr_entries;
21afa38e
JW
7722 unsigned short oldid;
7723
3ecb0087
MWO
7724 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7725 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7726
76358ab5
AS
7727 if (mem_cgroup_disabled())
7728 return;
7729
b94c4e94 7730 if (!do_memsw_account())
21afa38e
JW
7731 return;
7732
3ecb0087 7733 memcg = folio_memcg(folio);
21afa38e 7734
3ecb0087 7735 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7736 if (!memcg)
7737 return;
7738
1f47b61f
VD
7739 /*
7740 * In case the memcg owning these pages has been offlined and doesn't
7741 * have an ID allocated to it anymore, charge the closest online
7742 * ancestor for the swap instead and transfer the memory+swap charge.
7743 */
7744 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7745 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7746 /* Get references for the tail pages, too */
7747 if (nr_entries > 1)
7748 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7749 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7750 nr_entries);
3ecb0087 7751 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7752 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7753
3ecb0087 7754 folio->memcg_data = 0;
21afa38e
JW
7755
7756 if (!mem_cgroup_is_root(memcg))
d6810d73 7757 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7758
b25806dc 7759 if (memcg != swap_memcg) {
1f47b61f 7760 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7761 page_counter_charge(&swap_memcg->memsw, nr_entries);
7762 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7763 }
7764
ce9ce665
SAS
7765 /*
7766 * Interrupts should be disabled here because the caller holds the
b93b0163 7767 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7768 * important here to have the interrupts disabled because it is the
b93b0163 7769 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7770 */
be3e67b5 7771 memcg_stats_lock();
6e0110c2 7772 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7773 memcg_stats_unlock();
3ecb0087 7774 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7775
1a3e1f40 7776 css_put(&memcg->css);
21afa38e
JW
7777}
7778
38d8b4e6 7779/**
e2e3fdc7
MWO
7780 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7781 * @folio: folio being added to swap
37e84351
VD
7782 * @entry: swap entry to charge
7783 *
e2e3fdc7 7784 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7785 *
7786 * Returns 0 on success, -ENOMEM on failure.
7787 */
e2e3fdc7 7788int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7789{
e2e3fdc7 7790 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7791 struct page_counter *counter;
38d8b4e6 7792 struct mem_cgroup *memcg;
37e84351
VD
7793 unsigned short oldid;
7794
b94c4e94 7795 if (do_memsw_account())
37e84351
VD
7796 return 0;
7797
e2e3fdc7 7798 memcg = folio_memcg(folio);
37e84351 7799
e2e3fdc7 7800 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7801 if (!memcg)
7802 return 0;
7803
f3a53a3a
TH
7804 if (!entry.val) {
7805 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7806 return 0;
f3a53a3a 7807 }
bb98f2c5 7808
1f47b61f
VD
7809 memcg = mem_cgroup_id_get_online(memcg);
7810
b25806dc 7811 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7812 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7813 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7814 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7815 mem_cgroup_id_put(memcg);
37e84351 7816 return -ENOMEM;
1f47b61f 7817 }
37e84351 7818
38d8b4e6
HY
7819 /* Get references for the tail pages, too */
7820 if (nr_pages > 1)
7821 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7822 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7823 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7824 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7825
37e84351
VD
7826 return 0;
7827}
7828
21afa38e 7829/**
01c4b28c 7830 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7831 * @entry: swap entry to uncharge
38d8b4e6 7832 * @nr_pages: the amount of swap space to uncharge
21afa38e 7833 */
01c4b28c 7834void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7835{
7836 struct mem_cgroup *memcg;
7837 unsigned short id;
7838
38d8b4e6 7839 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7840 rcu_read_lock();
adbe427b 7841 memcg = mem_cgroup_from_id(id);
21afa38e 7842 if (memcg) {
b25806dc 7843 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7844 if (do_memsw_account())
38d8b4e6 7845 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7846 else
7847 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7848 }
c9019e9b 7849 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7850 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7851 }
7852 rcu_read_unlock();
7853}
7854
d8b38438
VD
7855long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7856{
7857 long nr_swap_pages = get_nr_swap_pages();
7858
b25806dc 7859 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 7860 return nr_swap_pages;
7848ed62 7861 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 7862 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7863 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7864 page_counter_read(&memcg->swap));
7865 return nr_swap_pages;
7866}
7867
9202d527 7868bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7869{
7870 struct mem_cgroup *memcg;
7871
9202d527 7872 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7873
7874 if (vm_swap_full())
7875 return true;
b25806dc 7876 if (do_memsw_account())
5ccc5aba
VD
7877 return false;
7878
9202d527 7879 memcg = folio_memcg(folio);
5ccc5aba
VD
7880 if (!memcg)
7881 return false;
7882
7848ed62 7883 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
7884 unsigned long usage = page_counter_read(&memcg->swap);
7885
7886 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7887 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7888 return true;
4b82ab4f 7889 }
5ccc5aba
VD
7890
7891 return false;
7892}
7893
eccb52e7 7894static int __init setup_swap_account(char *s)
21afa38e 7895{
b25806dc
JW
7896 pr_warn_once("The swapaccount= commandline option is deprecated. "
7897 "Please report your usecase to linux-mm@kvack.org if you "
7898 "depend on this functionality.\n");
21afa38e
JW
7899 return 1;
7900}
eccb52e7 7901__setup("swapaccount=", setup_swap_account);
21afa38e 7902
37e84351
VD
7903static u64 swap_current_read(struct cgroup_subsys_state *css,
7904 struct cftype *cft)
7905{
7906 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7907
7908 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7909}
7910
e0e0b412
LD
7911static u64 swap_peak_read(struct cgroup_subsys_state *css,
7912 struct cftype *cft)
7913{
7914 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7915
7916 return (u64)memcg->swap.watermark * PAGE_SIZE;
7917}
7918
4b82ab4f
JK
7919static int swap_high_show(struct seq_file *m, void *v)
7920{
7921 return seq_puts_memcg_tunable(m,
7922 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7923}
7924
7925static ssize_t swap_high_write(struct kernfs_open_file *of,
7926 char *buf, size_t nbytes, loff_t off)
7927{
7928 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7929 unsigned long high;
7930 int err;
7931
7932 buf = strstrip(buf);
7933 err = page_counter_memparse(buf, "max", &high);
7934 if (err)
7935 return err;
7936
7937 page_counter_set_high(&memcg->swap, high);
7938
7939 return nbytes;
7940}
7941
37e84351
VD
7942static int swap_max_show(struct seq_file *m, void *v)
7943{
677dc973
CD
7944 return seq_puts_memcg_tunable(m,
7945 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7946}
7947
7948static ssize_t swap_max_write(struct kernfs_open_file *of,
7949 char *buf, size_t nbytes, loff_t off)
7950{
7951 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7952 unsigned long max;
7953 int err;
7954
7955 buf = strstrip(buf);
7956 err = page_counter_memparse(buf, "max", &max);
7957 if (err)
7958 return err;
7959
be09102b 7960 xchg(&memcg->swap.max, max);
37e84351
VD
7961
7962 return nbytes;
7963}
7964
f3a53a3a
TH
7965static int swap_events_show(struct seq_file *m, void *v)
7966{
aa9694bb 7967 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7968
4b82ab4f
JK
7969 seq_printf(m, "high %lu\n",
7970 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7971 seq_printf(m, "max %lu\n",
7972 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7973 seq_printf(m, "fail %lu\n",
7974 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7975
7976 return 0;
7977}
7978
37e84351
VD
7979static struct cftype swap_files[] = {
7980 {
7981 .name = "swap.current",
7982 .flags = CFTYPE_NOT_ON_ROOT,
7983 .read_u64 = swap_current_read,
7984 },
4b82ab4f
JK
7985 {
7986 .name = "swap.high",
7987 .flags = CFTYPE_NOT_ON_ROOT,
7988 .seq_show = swap_high_show,
7989 .write = swap_high_write,
7990 },
37e84351
VD
7991 {
7992 .name = "swap.max",
7993 .flags = CFTYPE_NOT_ON_ROOT,
7994 .seq_show = swap_max_show,
7995 .write = swap_max_write,
7996 },
e0e0b412
LD
7997 {
7998 .name = "swap.peak",
7999 .flags = CFTYPE_NOT_ON_ROOT,
8000 .read_u64 = swap_peak_read,
8001 },
f3a53a3a
TH
8002 {
8003 .name = "swap.events",
8004 .flags = CFTYPE_NOT_ON_ROOT,
8005 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
8006 .seq_show = swap_events_show,
8007 },
37e84351
VD
8008 { } /* terminate */
8009};
8010
eccb52e7 8011static struct cftype memsw_files[] = {
21afa38e
JW
8012 {
8013 .name = "memsw.usage_in_bytes",
8014 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8015 .read_u64 = mem_cgroup_read_u64,
8016 },
8017 {
8018 .name = "memsw.max_usage_in_bytes",
8019 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8020 .write = mem_cgroup_reset,
8021 .read_u64 = mem_cgroup_read_u64,
8022 },
8023 {
8024 .name = "memsw.limit_in_bytes",
8025 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8026 .write = mem_cgroup_write,
8027 .read_u64 = mem_cgroup_read_u64,
8028 },
8029 {
8030 .name = "memsw.failcnt",
8031 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8032 .write = mem_cgroup_reset,
8033 .read_u64 = mem_cgroup_read_u64,
8034 },
8035 { }, /* terminate */
8036};
8037
f4840ccf
JW
8038#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8039/**
8040 * obj_cgroup_may_zswap - check if this cgroup can zswap
8041 * @objcg: the object cgroup
8042 *
8043 * Check if the hierarchical zswap limit has been reached.
8044 *
8045 * This doesn't check for specific headroom, and it is not atomic
8046 * either. But with zswap, the size of the allocation is only known
be16dd76 8047 * once compression has occurred, and this optimistic pre-check avoids
f4840ccf
JW
8048 * spending cycles on compression when there is already no room left
8049 * or zswap is disabled altogether somewhere in the hierarchy.
8050 */
8051bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8052{
8053 struct mem_cgroup *memcg, *original_memcg;
8054 bool ret = true;
8055
8056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8057 return true;
8058
8059 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 8060 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
8061 memcg = parent_mem_cgroup(memcg)) {
8062 unsigned long max = READ_ONCE(memcg->zswap_max);
8063 unsigned long pages;
8064
8065 if (max == PAGE_COUNTER_MAX)
8066 continue;
8067 if (max == 0) {
8068 ret = false;
8069 break;
8070 }
8071
8072 cgroup_rstat_flush(memcg->css.cgroup);
8073 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8074 if (pages < max)
8075 continue;
8076 ret = false;
8077 break;
8078 }
8079 mem_cgroup_put(original_memcg);
8080 return ret;
8081}
8082
8083/**
8084 * obj_cgroup_charge_zswap - charge compression backend memory
8085 * @objcg: the object cgroup
8086 * @size: size of compressed object
8087 *
3a1060c2 8088 * This forces the charge after obj_cgroup_may_zswap() allowed
f4840ccf
JW
8089 * compression and storage in zwap for this cgroup to go ahead.
8090 */
8091void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8092{
8093 struct mem_cgroup *memcg;
8094
8095 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8096 return;
8097
8098 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8099
8100 /* PF_MEMALLOC context, charging must succeed */
8101 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8102 VM_WARN_ON_ONCE(1);
8103
8104 rcu_read_lock();
8105 memcg = obj_cgroup_memcg(objcg);
8106 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8107 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8108 rcu_read_unlock();
8109}
8110
8111/**
8112 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8113 * @objcg: the object cgroup
8114 * @size: size of compressed object
8115 *
8116 * Uncharges zswap memory on page in.
8117 */
8118void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8119{
8120 struct mem_cgroup *memcg;
8121
8122 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8123 return;
8124
8125 obj_cgroup_uncharge(objcg, size);
8126
8127 rcu_read_lock();
8128 memcg = obj_cgroup_memcg(objcg);
8129 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8130 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8131 rcu_read_unlock();
8132}
8133
8134static u64 zswap_current_read(struct cgroup_subsys_state *css,
8135 struct cftype *cft)
8136{
8137 cgroup_rstat_flush(css->cgroup);
8138 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
8139}
8140
8141static int zswap_max_show(struct seq_file *m, void *v)
8142{
8143 return seq_puts_memcg_tunable(m,
8144 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8145}
8146
8147static ssize_t zswap_max_write(struct kernfs_open_file *of,
8148 char *buf, size_t nbytes, loff_t off)
8149{
8150 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8151 unsigned long max;
8152 int err;
8153
8154 buf = strstrip(buf);
8155 err = page_counter_memparse(buf, "max", &max);
8156 if (err)
8157 return err;
8158
8159 xchg(&memcg->zswap_max, max);
8160
8161 return nbytes;
8162}
8163
8164static struct cftype zswap_files[] = {
8165 {
8166 .name = "zswap.current",
8167 .flags = CFTYPE_NOT_ON_ROOT,
8168 .read_u64 = zswap_current_read,
8169 },
8170 {
8171 .name = "zswap.max",
8172 .flags = CFTYPE_NOT_ON_ROOT,
8173 .seq_show = zswap_max_show,
8174 .write = zswap_max_write,
8175 },
8176 { } /* terminate */
8177};
8178#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8179
21afa38e
JW
8180static int __init mem_cgroup_swap_init(void)
8181{
2d1c4980 8182 if (mem_cgroup_disabled())
eccb52e7
JW
8183 return 0;
8184
8185 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8186 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
8187#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8188 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8189#endif
21afa38e
JW
8190 return 0;
8191}
b25806dc 8192subsys_initcall(mem_cgroup_swap_init);
21afa38e 8193
e55b9f96 8194#endif /* CONFIG_SWAP */