mm/cgroup: avoid panic when init with low memory
[linux-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
af7c4b0e
JW
103static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
b070e65c 106 "rss_huge",
af7c4b0e 107 "mapped_file",
c4843a75 108 "dirty",
3ea67d06 109 "writeback",
af7c4b0e
JW
110 "swap",
111};
112
af7c4b0e
JW
113static const char * const mem_cgroup_events_names[] = {
114 "pgpgin",
115 "pgpgout",
116 "pgfault",
117 "pgmajfault",
118};
119
58cf188e
SZ
120static const char * const mem_cgroup_lru_names[] = {
121 "inactive_anon",
122 "active_anon",
123 "inactive_file",
124 "active_file",
125 "unevictable",
126};
127
a0db00fc
KS
128#define THRESHOLDS_EVENTS_TARGET 128
129#define SOFTLIMIT_EVENTS_TARGET 1024
130#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 131
bb4cc1a8
AM
132/*
133 * Cgroups above their limits are maintained in a RB-Tree, independent of
134 * their hierarchy representation
135 */
136
ef8f2327 137struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
138 struct rb_root rb_root;
139 spinlock_t lock;
140};
141
bb4cc1a8
AM
142struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144};
145
146static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
9490ff27
KH
148/* for OOM */
149struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152};
2e72b634 153
79bd9814
TH
154/*
155 * cgroup_event represents events which userspace want to receive.
156 */
3bc942f3 157struct mem_cgroup_event {
79bd9814 158 /*
59b6f873 159 * memcg which the event belongs to.
79bd9814 160 */
59b6f873 161 struct mem_cgroup *memcg;
79bd9814
TH
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
fba94807
TH
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
59b6f873 175 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 176 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
59b6f873 182 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 183 struct eventfd_ctx *eventfd);
79bd9814
TH
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192};
193
c0ff4b85
R
194static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 196
7dc74be0
DN
197/* Stuffs for move charges at task migration. */
198/*
1dfab5ab 199 * Types of charges to be moved.
7dc74be0 200 */
1dfab5ab
JW
201#define MOVE_ANON 0x1U
202#define MOVE_FILE 0x2U
203#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 204
4ffef5fe
DN
205/* "mc" and its members are protected by cgroup_mutex */
206static struct move_charge_struct {
b1dd693e 207 spinlock_t lock; /* for from, to */
264a0ae1 208 struct mm_struct *mm;
4ffef5fe
DN
209 struct mem_cgroup *from;
210 struct mem_cgroup *to;
1dfab5ab 211 unsigned long flags;
4ffef5fe 212 unsigned long precharge;
854ffa8d 213 unsigned long moved_charge;
483c30b5 214 unsigned long moved_swap;
8033b97c
DN
215 struct task_struct *moving_task; /* a task moving charges */
216 wait_queue_head_t waitq; /* a waitq for other context */
217} mc = {
2bd9bb20 218 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
219 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
220};
4ffef5fe 221
4e416953
BS
222/*
223 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
224 * limit reclaim to prevent infinite loops, if they ever occur.
225 */
a0db00fc 226#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 227#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 228
217bc319
KH
229enum charge_type {
230 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 231 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 232 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 233 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
234 NR_CHARGE_TYPE,
235};
236
8c7c6e34 237/* for encoding cft->private value on file */
86ae53e1
GC
238enum res_type {
239 _MEM,
240 _MEMSWAP,
241 _OOM_TYPE,
510fc4e1 242 _KMEM,
d55f90bf 243 _TCP,
86ae53e1
GC
244};
245
a0db00fc
KS
246#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
247#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 248#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
249/* Used for OOM nofiier */
250#define OOM_CONTROL (0)
8c7c6e34 251
70ddf637
AV
252/* Some nice accessors for the vmpressure. */
253struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
254{
255 if (!memcg)
256 memcg = root_mem_cgroup;
257 return &memcg->vmpressure;
258}
259
260struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
261{
262 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
263}
264
7ffc0edc
MH
265static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
266{
267 return (memcg == root_mem_cgroup);
268}
269
127424c8 270#ifndef CONFIG_SLOB
55007d84 271/*
f7ce3190 272 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
273 * The main reason for not using cgroup id for this:
274 * this works better in sparse environments, where we have a lot of memcgs,
275 * but only a few kmem-limited. Or also, if we have, for instance, 200
276 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
277 * 200 entry array for that.
55007d84 278 *
dbcf73e2
VD
279 * The current size of the caches array is stored in memcg_nr_cache_ids. It
280 * will double each time we have to increase it.
55007d84 281 */
dbcf73e2
VD
282static DEFINE_IDA(memcg_cache_ida);
283int memcg_nr_cache_ids;
749c5415 284
05257a1a
VD
285/* Protects memcg_nr_cache_ids */
286static DECLARE_RWSEM(memcg_cache_ids_sem);
287
288void memcg_get_cache_ids(void)
289{
290 down_read(&memcg_cache_ids_sem);
291}
292
293void memcg_put_cache_ids(void)
294{
295 up_read(&memcg_cache_ids_sem);
296}
297
55007d84
GC
298/*
299 * MIN_SIZE is different than 1, because we would like to avoid going through
300 * the alloc/free process all the time. In a small machine, 4 kmem-limited
301 * cgroups is a reasonable guess. In the future, it could be a parameter or
302 * tunable, but that is strictly not necessary.
303 *
b8627835 304 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
305 * this constant directly from cgroup, but it is understandable that this is
306 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 307 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
308 * increase ours as well if it increases.
309 */
310#define MEMCG_CACHES_MIN_SIZE 4
b8627835 311#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 312
d7f25f8a
GC
313/*
314 * A lot of the calls to the cache allocation functions are expected to be
315 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
316 * conditional to this static branch, we'll have to allow modules that does
317 * kmem_cache_alloc and the such to see this symbol as well
318 */
ef12947c 319DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 320EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 321
17cc4dfe
TH
322struct workqueue_struct *memcg_kmem_cache_wq;
323
127424c8 324#endif /* !CONFIG_SLOB */
a8964b9b 325
ad7fa852
TH
326/**
327 * mem_cgroup_css_from_page - css of the memcg associated with a page
328 * @page: page of interest
329 *
330 * If memcg is bound to the default hierarchy, css of the memcg associated
331 * with @page is returned. The returned css remains associated with @page
332 * until it is released.
333 *
334 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
335 * is returned.
ad7fa852
TH
336 */
337struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
338{
339 struct mem_cgroup *memcg;
340
ad7fa852
TH
341 memcg = page->mem_cgroup;
342
9e10a130 343 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
344 memcg = root_mem_cgroup;
345
ad7fa852
TH
346 return &memcg->css;
347}
348
2fc04524
VD
349/**
350 * page_cgroup_ino - return inode number of the memcg a page is charged to
351 * @page: the page
352 *
353 * Look up the closest online ancestor of the memory cgroup @page is charged to
354 * and return its inode number or 0 if @page is not charged to any cgroup. It
355 * is safe to call this function without holding a reference to @page.
356 *
357 * Note, this function is inherently racy, because there is nothing to prevent
358 * the cgroup inode from getting torn down and potentially reallocated a moment
359 * after page_cgroup_ino() returns, so it only should be used by callers that
360 * do not care (such as procfs interfaces).
361 */
362ino_t page_cgroup_ino(struct page *page)
363{
364 struct mem_cgroup *memcg;
365 unsigned long ino = 0;
366
367 rcu_read_lock();
368 memcg = READ_ONCE(page->mem_cgroup);
369 while (memcg && !(memcg->css.flags & CSS_ONLINE))
370 memcg = parent_mem_cgroup(memcg);
371 if (memcg)
372 ino = cgroup_ino(memcg->css.cgroup);
373 rcu_read_unlock();
374 return ino;
375}
376
ef8f2327
MG
377static struct mem_cgroup_per_node *
378mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 379{
97a6c37b 380 int nid = page_to_nid(page);
f64c3f54 381
ef8f2327 382 return memcg->nodeinfo[nid];
f64c3f54
BS
383}
384
ef8f2327
MG
385static struct mem_cgroup_tree_per_node *
386soft_limit_tree_node(int nid)
bb4cc1a8 387{
ef8f2327 388 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
389}
390
ef8f2327 391static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
392soft_limit_tree_from_page(struct page *page)
393{
394 int nid = page_to_nid(page);
bb4cc1a8 395
ef8f2327 396 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
397}
398
ef8f2327
MG
399static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
400 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 401 unsigned long new_usage_in_excess)
bb4cc1a8
AM
402{
403 struct rb_node **p = &mctz->rb_root.rb_node;
404 struct rb_node *parent = NULL;
ef8f2327 405 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
406
407 if (mz->on_tree)
408 return;
409
410 mz->usage_in_excess = new_usage_in_excess;
411 if (!mz->usage_in_excess)
412 return;
413 while (*p) {
414 parent = *p;
ef8f2327 415 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
416 tree_node);
417 if (mz->usage_in_excess < mz_node->usage_in_excess)
418 p = &(*p)->rb_left;
419 /*
420 * We can't avoid mem cgroups that are over their soft
421 * limit by the same amount
422 */
423 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
424 p = &(*p)->rb_right;
425 }
426 rb_link_node(&mz->tree_node, parent, p);
427 rb_insert_color(&mz->tree_node, &mctz->rb_root);
428 mz->on_tree = true;
429}
430
ef8f2327
MG
431static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
432 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
433{
434 if (!mz->on_tree)
435 return;
436 rb_erase(&mz->tree_node, &mctz->rb_root);
437 mz->on_tree = false;
438}
439
ef8f2327
MG
440static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
441 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 442{
0a31bc97
JW
443 unsigned long flags;
444
445 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 446 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 447 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
448}
449
3e32cb2e
JW
450static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
451{
452 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 453 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
454 unsigned long excess = 0;
455
456 if (nr_pages > soft_limit)
457 excess = nr_pages - soft_limit;
458
459 return excess;
460}
bb4cc1a8
AM
461
462static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
463{
3e32cb2e 464 unsigned long excess;
ef8f2327
MG
465 struct mem_cgroup_per_node *mz;
466 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 467
e231875b 468 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
469 if (!mctz)
470 return;
bb4cc1a8
AM
471 /*
472 * Necessary to update all ancestors when hierarchy is used.
473 * because their event counter is not touched.
474 */
475 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 476 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 477 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
478 /*
479 * We have to update the tree if mz is on RB-tree or
480 * mem is over its softlimit.
481 */
482 if (excess || mz->on_tree) {
0a31bc97
JW
483 unsigned long flags;
484
485 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
486 /* if on-tree, remove it */
487 if (mz->on_tree)
cf2c8127 488 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
489 /*
490 * Insert again. mz->usage_in_excess will be updated.
491 * If excess is 0, no tree ops.
492 */
cf2c8127 493 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 494 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
495 }
496 }
497}
498
499static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
500{
ef8f2327
MG
501 struct mem_cgroup_tree_per_node *mctz;
502 struct mem_cgroup_per_node *mz;
503 int nid;
bb4cc1a8 504
e231875b 505 for_each_node(nid) {
ef8f2327
MG
506 mz = mem_cgroup_nodeinfo(memcg, nid);
507 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
508 if (mctz)
509 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
510 }
511}
512
ef8f2327
MG
513static struct mem_cgroup_per_node *
514__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
515{
516 struct rb_node *rightmost = NULL;
ef8f2327 517 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
518
519retry:
520 mz = NULL;
521 rightmost = rb_last(&mctz->rb_root);
522 if (!rightmost)
523 goto done; /* Nothing to reclaim from */
524
ef8f2327 525 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
526 /*
527 * Remove the node now but someone else can add it back,
528 * we will to add it back at the end of reclaim to its correct
529 * position in the tree.
530 */
cf2c8127 531 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 532 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 533 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
534 goto retry;
535done:
536 return mz;
537}
538
ef8f2327
MG
539static struct mem_cgroup_per_node *
540mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 541{
ef8f2327 542 struct mem_cgroup_per_node *mz;
bb4cc1a8 543
0a31bc97 544 spin_lock_irq(&mctz->lock);
bb4cc1a8 545 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 546 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
547 return mz;
548}
549
711d3d2c 550/*
484ebb3b
GT
551 * Return page count for single (non recursive) @memcg.
552 *
711d3d2c
KH
553 * Implementation Note: reading percpu statistics for memcg.
554 *
555 * Both of vmstat[] and percpu_counter has threshold and do periodic
556 * synchronization to implement "quick" read. There are trade-off between
557 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 558 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
559 *
560 * But this _read() function is used for user interface now. The user accounts
561 * memory usage by memory cgroup and he _always_ requires exact value because
562 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
563 * have to visit all online cpus and make sum. So, for now, unnecessary
564 * synchronization is not implemented. (just implemented for cpu hotplug)
565 *
566 * If there are kernel internal actions which can make use of some not-exact
567 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 568 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
569 * implemented.
570 */
484ebb3b
GT
571static unsigned long
572mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 573{
7a159cc9 574 long val = 0;
c62b1a3b 575 int cpu;
c62b1a3b 576
484ebb3b 577 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 578 for_each_possible_cpu(cpu)
c0ff4b85 579 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
580 /*
581 * Summing races with updates, so val may be negative. Avoid exposing
582 * transient negative values.
583 */
584 if (val < 0)
585 val = 0;
c62b1a3b
KH
586 return val;
587}
588
c0ff4b85 589static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
590 enum mem_cgroup_events_index idx)
591{
592 unsigned long val = 0;
593 int cpu;
594
733a572e 595 for_each_possible_cpu(cpu)
c0ff4b85 596 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
597 return val;
598}
599
c0ff4b85 600static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 601 struct page *page,
f627c2f5 602 bool compound, int nr_pages)
d52aa412 603{
b2402857
KH
604 /*
605 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
606 * counted as CACHE even if it's on ANON LRU.
607 */
0a31bc97 608 if (PageAnon(page))
b2402857 609 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 610 nr_pages);
d52aa412 611 else
b2402857 612 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 613 nr_pages);
55e462b0 614
f627c2f5
KS
615 if (compound) {
616 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
617 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
618 nr_pages);
f627c2f5 619 }
b070e65c 620
e401f176
KH
621 /* pagein of a big page is an event. So, ignore page size */
622 if (nr_pages > 0)
c0ff4b85 623 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 624 else {
c0ff4b85 625 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
626 nr_pages = -nr_pages; /* for event */
627 }
e401f176 628
13114716 629 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
630}
631
0a6b76dd
VD
632unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
633 int nid, unsigned int lru_mask)
bb2a0de9 634{
b4536f0c 635 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 636 unsigned long nr = 0;
ef8f2327 637 enum lru_list lru;
889976db 638
e231875b 639 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 640
ef8f2327
MG
641 for_each_lru(lru) {
642 if (!(BIT(lru) & lru_mask))
643 continue;
b4536f0c 644 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
645 }
646 return nr;
889976db 647}
bb2a0de9 648
c0ff4b85 649static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 650 unsigned int lru_mask)
6d12e2d8 651{
e231875b 652 unsigned long nr = 0;
889976db 653 int nid;
6d12e2d8 654
31aaea4a 655 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
656 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
657 return nr;
d52aa412
KH
658}
659
f53d7ce3
JW
660static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
661 enum mem_cgroup_events_target target)
7a159cc9
JW
662{
663 unsigned long val, next;
664
13114716 665 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 666 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 667 /* from time_after() in jiffies.h */
f53d7ce3
JW
668 if ((long)next - (long)val < 0) {
669 switch (target) {
670 case MEM_CGROUP_TARGET_THRESH:
671 next = val + THRESHOLDS_EVENTS_TARGET;
672 break;
bb4cc1a8
AM
673 case MEM_CGROUP_TARGET_SOFTLIMIT:
674 next = val + SOFTLIMIT_EVENTS_TARGET;
675 break;
f53d7ce3
JW
676 case MEM_CGROUP_TARGET_NUMAINFO:
677 next = val + NUMAINFO_EVENTS_TARGET;
678 break;
679 default:
680 break;
681 }
682 __this_cpu_write(memcg->stat->targets[target], next);
683 return true;
7a159cc9 684 }
f53d7ce3 685 return false;
d2265e6f
KH
686}
687
688/*
689 * Check events in order.
690 *
691 */
c0ff4b85 692static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
693{
694 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
695 if (unlikely(mem_cgroup_event_ratelimit(memcg,
696 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 697 bool do_softlimit;
82b3f2a7 698 bool do_numainfo __maybe_unused;
f53d7ce3 699
bb4cc1a8
AM
700 do_softlimit = mem_cgroup_event_ratelimit(memcg,
701 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
702#if MAX_NUMNODES > 1
703 do_numainfo = mem_cgroup_event_ratelimit(memcg,
704 MEM_CGROUP_TARGET_NUMAINFO);
705#endif
c0ff4b85 706 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
707 if (unlikely(do_softlimit))
708 mem_cgroup_update_tree(memcg, page);
453a9bf3 709#if MAX_NUMNODES > 1
f53d7ce3 710 if (unlikely(do_numainfo))
c0ff4b85 711 atomic_inc(&memcg->numainfo_events);
453a9bf3 712#endif
0a31bc97 713 }
d2265e6f
KH
714}
715
cf475ad2 716struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 717{
31a78f23
BS
718 /*
719 * mm_update_next_owner() may clear mm->owner to NULL
720 * if it races with swapoff, page migration, etc.
721 * So this can be called with p == NULL.
722 */
723 if (unlikely(!p))
724 return NULL;
725
073219e9 726 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 727}
33398cf2 728EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 729
df381975 730static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 731{
c0ff4b85 732 struct mem_cgroup *memcg = NULL;
0b7f569e 733
54595fe2
KH
734 rcu_read_lock();
735 do {
6f6acb00
MH
736 /*
737 * Page cache insertions can happen withou an
738 * actual mm context, e.g. during disk probing
739 * on boot, loopback IO, acct() writes etc.
740 */
741 if (unlikely(!mm))
df381975 742 memcg = root_mem_cgroup;
6f6acb00
MH
743 else {
744 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
745 if (unlikely(!memcg))
746 memcg = root_mem_cgroup;
747 }
ec903c0c 748 } while (!css_tryget_online(&memcg->css));
54595fe2 749 rcu_read_unlock();
c0ff4b85 750 return memcg;
54595fe2
KH
751}
752
5660048c
JW
753/**
754 * mem_cgroup_iter - iterate over memory cgroup hierarchy
755 * @root: hierarchy root
756 * @prev: previously returned memcg, NULL on first invocation
757 * @reclaim: cookie for shared reclaim walks, NULL for full walks
758 *
759 * Returns references to children of the hierarchy below @root, or
760 * @root itself, or %NULL after a full round-trip.
761 *
762 * Caller must pass the return value in @prev on subsequent
763 * invocations for reference counting, or use mem_cgroup_iter_break()
764 * to cancel a hierarchy walk before the round-trip is complete.
765 *
766 * Reclaimers can specify a zone and a priority level in @reclaim to
767 * divide up the memcgs in the hierarchy among all concurrent
768 * reclaimers operating on the same zone and priority.
769 */
694fbc0f 770struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 771 struct mem_cgroup *prev,
694fbc0f 772 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 773{
33398cf2 774 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 775 struct cgroup_subsys_state *css = NULL;
9f3a0d09 776 struct mem_cgroup *memcg = NULL;
5ac8fb31 777 struct mem_cgroup *pos = NULL;
711d3d2c 778
694fbc0f
AM
779 if (mem_cgroup_disabled())
780 return NULL;
5660048c 781
9f3a0d09
JW
782 if (!root)
783 root = root_mem_cgroup;
7d74b06f 784
9f3a0d09 785 if (prev && !reclaim)
5ac8fb31 786 pos = prev;
14067bb3 787
9f3a0d09
JW
788 if (!root->use_hierarchy && root != root_mem_cgroup) {
789 if (prev)
5ac8fb31 790 goto out;
694fbc0f 791 return root;
9f3a0d09 792 }
14067bb3 793
542f85f9 794 rcu_read_lock();
5f578161 795
5ac8fb31 796 if (reclaim) {
ef8f2327 797 struct mem_cgroup_per_node *mz;
5ac8fb31 798
ef8f2327 799 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
800 iter = &mz->iter[reclaim->priority];
801
802 if (prev && reclaim->generation != iter->generation)
803 goto out_unlock;
804
6df38689 805 while (1) {
4db0c3c2 806 pos = READ_ONCE(iter->position);
6df38689
VD
807 if (!pos || css_tryget(&pos->css))
808 break;
5ac8fb31 809 /*
6df38689
VD
810 * css reference reached zero, so iter->position will
811 * be cleared by ->css_released. However, we should not
812 * rely on this happening soon, because ->css_released
813 * is called from a work queue, and by busy-waiting we
814 * might block it. So we clear iter->position right
815 * away.
5ac8fb31 816 */
6df38689
VD
817 (void)cmpxchg(&iter->position, pos, NULL);
818 }
5ac8fb31
JW
819 }
820
821 if (pos)
822 css = &pos->css;
823
824 for (;;) {
825 css = css_next_descendant_pre(css, &root->css);
826 if (!css) {
827 /*
828 * Reclaimers share the hierarchy walk, and a
829 * new one might jump in right at the end of
830 * the hierarchy - make sure they see at least
831 * one group and restart from the beginning.
832 */
833 if (!prev)
834 continue;
835 break;
527a5ec9 836 }
7d74b06f 837
5ac8fb31
JW
838 /*
839 * Verify the css and acquire a reference. The root
840 * is provided by the caller, so we know it's alive
841 * and kicking, and don't take an extra reference.
842 */
843 memcg = mem_cgroup_from_css(css);
14067bb3 844
5ac8fb31
JW
845 if (css == &root->css)
846 break;
14067bb3 847
0b8f73e1
JW
848 if (css_tryget(css))
849 break;
9f3a0d09 850
5ac8fb31 851 memcg = NULL;
9f3a0d09 852 }
5ac8fb31
JW
853
854 if (reclaim) {
5ac8fb31 855 /*
6df38689
VD
856 * The position could have already been updated by a competing
857 * thread, so check that the value hasn't changed since we read
858 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 859 */
6df38689
VD
860 (void)cmpxchg(&iter->position, pos, memcg);
861
5ac8fb31
JW
862 if (pos)
863 css_put(&pos->css);
864
865 if (!memcg)
866 iter->generation++;
867 else if (!prev)
868 reclaim->generation = iter->generation;
9f3a0d09 869 }
5ac8fb31 870
542f85f9
MH
871out_unlock:
872 rcu_read_unlock();
5ac8fb31 873out:
c40046f3
MH
874 if (prev && prev != root)
875 css_put(&prev->css);
876
9f3a0d09 877 return memcg;
14067bb3 878}
7d74b06f 879
5660048c
JW
880/**
881 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
882 * @root: hierarchy root
883 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
884 */
885void mem_cgroup_iter_break(struct mem_cgroup *root,
886 struct mem_cgroup *prev)
9f3a0d09
JW
887{
888 if (!root)
889 root = root_mem_cgroup;
890 if (prev && prev != root)
891 css_put(&prev->css);
892}
7d74b06f 893
6df38689
VD
894static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
895{
896 struct mem_cgroup *memcg = dead_memcg;
897 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
898 struct mem_cgroup_per_node *mz;
899 int nid;
6df38689
VD
900 int i;
901
902 while ((memcg = parent_mem_cgroup(memcg))) {
903 for_each_node(nid) {
ef8f2327
MG
904 mz = mem_cgroup_nodeinfo(memcg, nid);
905 for (i = 0; i <= DEF_PRIORITY; i++) {
906 iter = &mz->iter[i];
907 cmpxchg(&iter->position,
908 dead_memcg, NULL);
6df38689
VD
909 }
910 }
911 }
912}
913
9f3a0d09
JW
914/*
915 * Iteration constructs for visiting all cgroups (under a tree). If
916 * loops are exited prematurely (break), mem_cgroup_iter_break() must
917 * be used for reference counting.
918 */
919#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 920 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 921 iter != NULL; \
527a5ec9 922 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 923
9f3a0d09 924#define for_each_mem_cgroup(iter) \
527a5ec9 925 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 926 iter != NULL; \
527a5ec9 927 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 928
7c5f64f8
VD
929/**
930 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
931 * @memcg: hierarchy root
932 * @fn: function to call for each task
933 * @arg: argument passed to @fn
934 *
935 * This function iterates over tasks attached to @memcg or to any of its
936 * descendants and calls @fn for each task. If @fn returns a non-zero
937 * value, the function breaks the iteration loop and returns the value.
938 * Otherwise, it will iterate over all tasks and return 0.
939 *
940 * This function must not be called for the root memory cgroup.
941 */
942int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
943 int (*fn)(struct task_struct *, void *), void *arg)
944{
945 struct mem_cgroup *iter;
946 int ret = 0;
947
948 BUG_ON(memcg == root_mem_cgroup);
949
950 for_each_mem_cgroup_tree(iter, memcg) {
951 struct css_task_iter it;
952 struct task_struct *task;
953
954 css_task_iter_start(&iter->css, &it);
955 while (!ret && (task = css_task_iter_next(&it)))
956 ret = fn(task, arg);
957 css_task_iter_end(&it);
958 if (ret) {
959 mem_cgroup_iter_break(memcg, iter);
960 break;
961 }
962 }
963 return ret;
964}
965
925b7673 966/**
dfe0e773 967 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 968 * @page: the page
fa9add64 969 * @zone: zone of the page
dfe0e773
JW
970 *
971 * This function is only safe when following the LRU page isolation
972 * and putback protocol: the LRU lock must be held, and the page must
973 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 974 */
599d0c95 975struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 976{
ef8f2327 977 struct mem_cgroup_per_node *mz;
925b7673 978 struct mem_cgroup *memcg;
bea8c150 979 struct lruvec *lruvec;
6d12e2d8 980
bea8c150 981 if (mem_cgroup_disabled()) {
599d0c95 982 lruvec = &pgdat->lruvec;
bea8c150
HD
983 goto out;
984 }
925b7673 985
1306a85a 986 memcg = page->mem_cgroup;
7512102c 987 /*
dfe0e773 988 * Swapcache readahead pages are added to the LRU - and
29833315 989 * possibly migrated - before they are charged.
7512102c 990 */
29833315
JW
991 if (!memcg)
992 memcg = root_mem_cgroup;
7512102c 993
ef8f2327 994 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
995 lruvec = &mz->lruvec;
996out:
997 /*
998 * Since a node can be onlined after the mem_cgroup was created,
999 * we have to be prepared to initialize lruvec->zone here;
1000 * and if offlined then reonlined, we need to reinitialize it.
1001 */
599d0c95
MG
1002 if (unlikely(lruvec->pgdat != pgdat))
1003 lruvec->pgdat = pgdat;
bea8c150 1004 return lruvec;
08e552c6 1005}
b69408e8 1006
925b7673 1007/**
fa9add64
HD
1008 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1009 * @lruvec: mem_cgroup per zone lru vector
1010 * @lru: index of lru list the page is sitting on
b4536f0c 1011 * @zid: zone id of the accounted pages
fa9add64 1012 * @nr_pages: positive when adding or negative when removing
925b7673 1013 *
ca707239
HD
1014 * This function must be called under lru_lock, just before a page is added
1015 * to or just after a page is removed from an lru list (that ordering being
1016 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1017 */
fa9add64 1018void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1019 int zid, int nr_pages)
3f58a829 1020{
ef8f2327 1021 struct mem_cgroup_per_node *mz;
fa9add64 1022 unsigned long *lru_size;
ca707239 1023 long size;
3f58a829
MK
1024
1025 if (mem_cgroup_disabled())
1026 return;
1027
ef8f2327 1028 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1029 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1030
1031 if (nr_pages < 0)
1032 *lru_size += nr_pages;
1033
1034 size = *lru_size;
b4536f0c
MH
1035 if (WARN_ONCE(size < 0,
1036 "%s(%p, %d, %d): lru_size %ld\n",
1037 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1038 VM_BUG_ON(1);
1039 *lru_size = 0;
1040 }
1041
1042 if (nr_pages > 0)
1043 *lru_size += nr_pages;
08e552c6 1044}
544122e5 1045
2314b42d 1046bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1047{
2314b42d 1048 struct mem_cgroup *task_memcg;
158e0a2d 1049 struct task_struct *p;
ffbdccf5 1050 bool ret;
4c4a2214 1051
158e0a2d 1052 p = find_lock_task_mm(task);
de077d22 1053 if (p) {
2314b42d 1054 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1055 task_unlock(p);
1056 } else {
1057 /*
1058 * All threads may have already detached their mm's, but the oom
1059 * killer still needs to detect if they have already been oom
1060 * killed to prevent needlessly killing additional tasks.
1061 */
ffbdccf5 1062 rcu_read_lock();
2314b42d
JW
1063 task_memcg = mem_cgroup_from_task(task);
1064 css_get(&task_memcg->css);
ffbdccf5 1065 rcu_read_unlock();
de077d22 1066 }
2314b42d
JW
1067 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1068 css_put(&task_memcg->css);
4c4a2214
DR
1069 return ret;
1070}
1071
19942822 1072/**
9d11ea9f 1073 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1074 * @memcg: the memory cgroup
19942822 1075 *
9d11ea9f 1076 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1077 * pages.
19942822 1078 */
c0ff4b85 1079static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1080{
3e32cb2e
JW
1081 unsigned long margin = 0;
1082 unsigned long count;
1083 unsigned long limit;
9d11ea9f 1084
3e32cb2e 1085 count = page_counter_read(&memcg->memory);
4db0c3c2 1086 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1087 if (count < limit)
1088 margin = limit - count;
1089
7941d214 1090 if (do_memsw_account()) {
3e32cb2e 1091 count = page_counter_read(&memcg->memsw);
4db0c3c2 1092 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1093 if (count <= limit)
1094 margin = min(margin, limit - count);
cbedbac3
LR
1095 else
1096 margin = 0;
3e32cb2e
JW
1097 }
1098
1099 return margin;
19942822
JW
1100}
1101
32047e2a 1102/*
bdcbb659 1103 * A routine for checking "mem" is under move_account() or not.
32047e2a 1104 *
bdcbb659
QH
1105 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1106 * moving cgroups. This is for waiting at high-memory pressure
1107 * caused by "move".
32047e2a 1108 */
c0ff4b85 1109static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1110{
2bd9bb20
KH
1111 struct mem_cgroup *from;
1112 struct mem_cgroup *to;
4b534334 1113 bool ret = false;
2bd9bb20
KH
1114 /*
1115 * Unlike task_move routines, we access mc.to, mc.from not under
1116 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1117 */
1118 spin_lock(&mc.lock);
1119 from = mc.from;
1120 to = mc.to;
1121 if (!from)
1122 goto unlock;
3e92041d 1123
2314b42d
JW
1124 ret = mem_cgroup_is_descendant(from, memcg) ||
1125 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1126unlock:
1127 spin_unlock(&mc.lock);
4b534334
KH
1128 return ret;
1129}
1130
c0ff4b85 1131static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1132{
1133 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1134 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1135 DEFINE_WAIT(wait);
1136 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1137 /* moving charge context might have finished. */
1138 if (mc.moving_task)
1139 schedule();
1140 finish_wait(&mc.waitq, &wait);
1141 return true;
1142 }
1143 }
1144 return false;
1145}
1146
58cf188e 1147#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1148/**
58cf188e 1149 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1150 * @memcg: The memory cgroup that went over limit
1151 * @p: Task that is going to be killed
1152 *
1153 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1154 * enabled
1155 */
1156void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1157{
58cf188e
SZ
1158 struct mem_cgroup *iter;
1159 unsigned int i;
e222432b 1160
e222432b
BS
1161 rcu_read_lock();
1162
2415b9f5
BV
1163 if (p) {
1164 pr_info("Task in ");
1165 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1166 pr_cont(" killed as a result of limit of ");
1167 } else {
1168 pr_info("Memory limit reached of cgroup ");
1169 }
1170
e61734c5 1171 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1172 pr_cont("\n");
e222432b 1173
e222432b
BS
1174 rcu_read_unlock();
1175
3e32cb2e
JW
1176 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1177 K((u64)page_counter_read(&memcg->memory)),
1178 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1179 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1180 K((u64)page_counter_read(&memcg->memsw)),
1181 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1182 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1183 K((u64)page_counter_read(&memcg->kmem)),
1184 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1185
1186 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1187 pr_info("Memory cgroup stats for ");
1188 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1189 pr_cont(":");
1190
1191 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1192 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1193 continue;
484ebb3b 1194 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1195 K(mem_cgroup_read_stat(iter, i)));
1196 }
1197
1198 for (i = 0; i < NR_LRU_LISTS; i++)
1199 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1200 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1201
1202 pr_cont("\n");
1203 }
e222432b
BS
1204}
1205
81d39c20
KH
1206/*
1207 * This function returns the number of memcg under hierarchy tree. Returns
1208 * 1(self count) if no children.
1209 */
c0ff4b85 1210static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1211{
1212 int num = 0;
7d74b06f
KH
1213 struct mem_cgroup *iter;
1214
c0ff4b85 1215 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1216 num++;
81d39c20
KH
1217 return num;
1218}
1219
a63d83f4
DR
1220/*
1221 * Return the memory (and swap, if configured) limit for a memcg.
1222 */
7c5f64f8 1223unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1224{
3e32cb2e 1225 unsigned long limit;
f3e8eb70 1226
3e32cb2e 1227 limit = memcg->memory.limit;
9a5a8f19 1228 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1229 unsigned long memsw_limit;
37e84351 1230 unsigned long swap_limit;
9a5a8f19 1231
3e32cb2e 1232 memsw_limit = memcg->memsw.limit;
37e84351
VD
1233 swap_limit = memcg->swap.limit;
1234 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1236 }
9a5a8f19 1237 return limit;
a63d83f4
DR
1238}
1239
b6e6edcf 1240static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1241 int order)
9cbb78bb 1242{
6e0fc46d
DR
1243 struct oom_control oc = {
1244 .zonelist = NULL,
1245 .nodemask = NULL,
2a966b77 1246 .memcg = memcg,
6e0fc46d
DR
1247 .gfp_mask = gfp_mask,
1248 .order = order,
6e0fc46d 1249 };
7c5f64f8 1250 bool ret;
9cbb78bb 1251
dc56401f 1252 mutex_lock(&oom_lock);
7c5f64f8 1253 ret = out_of_memory(&oc);
dc56401f 1254 mutex_unlock(&oom_lock);
7c5f64f8 1255 return ret;
9cbb78bb
DR
1256}
1257
ae6e71d3
MC
1258#if MAX_NUMNODES > 1
1259
4d0c066d
KH
1260/**
1261 * test_mem_cgroup_node_reclaimable
dad7557e 1262 * @memcg: the target memcg
4d0c066d
KH
1263 * @nid: the node ID to be checked.
1264 * @noswap : specify true here if the user wants flle only information.
1265 *
1266 * This function returns whether the specified memcg contains any
1267 * reclaimable pages on a node. Returns true if there are any reclaimable
1268 * pages in the node.
1269 */
c0ff4b85 1270static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1271 int nid, bool noswap)
1272{
c0ff4b85 1273 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1274 return true;
1275 if (noswap || !total_swap_pages)
1276 return false;
c0ff4b85 1277 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1278 return true;
1279 return false;
1280
1281}
889976db
YH
1282
1283/*
1284 * Always updating the nodemask is not very good - even if we have an empty
1285 * list or the wrong list here, we can start from some node and traverse all
1286 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1287 *
1288 */
c0ff4b85 1289static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1290{
1291 int nid;
453a9bf3
KH
1292 /*
1293 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1294 * pagein/pageout changes since the last update.
1295 */
c0ff4b85 1296 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1297 return;
c0ff4b85 1298 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1299 return;
1300
889976db 1301 /* make a nodemask where this memcg uses memory from */
31aaea4a 1302 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1303
31aaea4a 1304 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1305
c0ff4b85
R
1306 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1307 node_clear(nid, memcg->scan_nodes);
889976db 1308 }
453a9bf3 1309
c0ff4b85
R
1310 atomic_set(&memcg->numainfo_events, 0);
1311 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1312}
1313
1314/*
1315 * Selecting a node where we start reclaim from. Because what we need is just
1316 * reducing usage counter, start from anywhere is O,K. Considering
1317 * memory reclaim from current node, there are pros. and cons.
1318 *
1319 * Freeing memory from current node means freeing memory from a node which
1320 * we'll use or we've used. So, it may make LRU bad. And if several threads
1321 * hit limits, it will see a contention on a node. But freeing from remote
1322 * node means more costs for memory reclaim because of memory latency.
1323 *
1324 * Now, we use round-robin. Better algorithm is welcomed.
1325 */
c0ff4b85 1326int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1327{
1328 int node;
1329
c0ff4b85
R
1330 mem_cgroup_may_update_nodemask(memcg);
1331 node = memcg->last_scanned_node;
889976db 1332
0edaf86c 1333 node = next_node_in(node, memcg->scan_nodes);
889976db 1334 /*
fda3d69b
MH
1335 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1336 * last time it really checked all the LRUs due to rate limiting.
1337 * Fallback to the current node in that case for simplicity.
889976db
YH
1338 */
1339 if (unlikely(node == MAX_NUMNODES))
1340 node = numa_node_id();
1341
c0ff4b85 1342 memcg->last_scanned_node = node;
889976db
YH
1343 return node;
1344}
889976db 1345#else
c0ff4b85 1346int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1347{
1348 return 0;
1349}
1350#endif
1351
0608f43d 1352static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1353 pg_data_t *pgdat,
0608f43d
AM
1354 gfp_t gfp_mask,
1355 unsigned long *total_scanned)
1356{
1357 struct mem_cgroup *victim = NULL;
1358 int total = 0;
1359 int loop = 0;
1360 unsigned long excess;
1361 unsigned long nr_scanned;
1362 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1363 .pgdat = pgdat,
0608f43d
AM
1364 .priority = 0,
1365 };
1366
3e32cb2e 1367 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1368
1369 while (1) {
1370 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1371 if (!victim) {
1372 loop++;
1373 if (loop >= 2) {
1374 /*
1375 * If we have not been able to reclaim
1376 * anything, it might because there are
1377 * no reclaimable pages under this hierarchy
1378 */
1379 if (!total)
1380 break;
1381 /*
1382 * We want to do more targeted reclaim.
1383 * excess >> 2 is not to excessive so as to
1384 * reclaim too much, nor too less that we keep
1385 * coming back to reclaim from this cgroup
1386 */
1387 if (total >= (excess >> 2) ||
1388 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1389 break;
1390 }
1391 continue;
1392 }
a9dd0a83 1393 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1394 pgdat, &nr_scanned);
0608f43d 1395 *total_scanned += nr_scanned;
3e32cb2e 1396 if (!soft_limit_excess(root_memcg))
0608f43d 1397 break;
6d61ef40 1398 }
0608f43d
AM
1399 mem_cgroup_iter_break(root_memcg, victim);
1400 return total;
6d61ef40
BS
1401}
1402
0056f4e6
JW
1403#ifdef CONFIG_LOCKDEP
1404static struct lockdep_map memcg_oom_lock_dep_map = {
1405 .name = "memcg_oom_lock",
1406};
1407#endif
1408
fb2a6fc5
JW
1409static DEFINE_SPINLOCK(memcg_oom_lock);
1410
867578cb
KH
1411/*
1412 * Check OOM-Killer is already running under our hierarchy.
1413 * If someone is running, return false.
1414 */
fb2a6fc5 1415static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1416{
79dfdacc 1417 struct mem_cgroup *iter, *failed = NULL;
a636b327 1418
fb2a6fc5
JW
1419 spin_lock(&memcg_oom_lock);
1420
9f3a0d09 1421 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1422 if (iter->oom_lock) {
79dfdacc
MH
1423 /*
1424 * this subtree of our hierarchy is already locked
1425 * so we cannot give a lock.
1426 */
79dfdacc 1427 failed = iter;
9f3a0d09
JW
1428 mem_cgroup_iter_break(memcg, iter);
1429 break;
23751be0
JW
1430 } else
1431 iter->oom_lock = true;
7d74b06f 1432 }
867578cb 1433
fb2a6fc5
JW
1434 if (failed) {
1435 /*
1436 * OK, we failed to lock the whole subtree so we have
1437 * to clean up what we set up to the failing subtree
1438 */
1439 for_each_mem_cgroup_tree(iter, memcg) {
1440 if (iter == failed) {
1441 mem_cgroup_iter_break(memcg, iter);
1442 break;
1443 }
1444 iter->oom_lock = false;
79dfdacc 1445 }
0056f4e6
JW
1446 } else
1447 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1448
1449 spin_unlock(&memcg_oom_lock);
1450
1451 return !failed;
a636b327 1452}
0b7f569e 1453
fb2a6fc5 1454static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1455{
7d74b06f
KH
1456 struct mem_cgroup *iter;
1457
fb2a6fc5 1458 spin_lock(&memcg_oom_lock);
0056f4e6 1459 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1460 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1461 iter->oom_lock = false;
fb2a6fc5 1462 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1463}
1464
c0ff4b85 1465static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1466{
1467 struct mem_cgroup *iter;
1468
c2b42d3c 1469 spin_lock(&memcg_oom_lock);
c0ff4b85 1470 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1471 iter->under_oom++;
1472 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1473}
1474
c0ff4b85 1475static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1476{
1477 struct mem_cgroup *iter;
1478
867578cb
KH
1479 /*
1480 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1481 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1482 */
c2b42d3c 1483 spin_lock(&memcg_oom_lock);
c0ff4b85 1484 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1485 if (iter->under_oom > 0)
1486 iter->under_oom--;
1487 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1488}
1489
867578cb
KH
1490static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1491
dc98df5a 1492struct oom_wait_info {
d79154bb 1493 struct mem_cgroup *memcg;
dc98df5a
KH
1494 wait_queue_t wait;
1495};
1496
1497static int memcg_oom_wake_function(wait_queue_t *wait,
1498 unsigned mode, int sync, void *arg)
1499{
d79154bb
HD
1500 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1501 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1502 struct oom_wait_info *oom_wait_info;
1503
1504 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1505 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1506
2314b42d
JW
1507 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1508 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1509 return 0;
dc98df5a
KH
1510 return autoremove_wake_function(wait, mode, sync, arg);
1511}
1512
c0ff4b85 1513static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1514{
c2b42d3c
TH
1515 /*
1516 * For the following lockless ->under_oom test, the only required
1517 * guarantee is that it must see the state asserted by an OOM when
1518 * this function is called as a result of userland actions
1519 * triggered by the notification of the OOM. This is trivially
1520 * achieved by invoking mem_cgroup_mark_under_oom() before
1521 * triggering notification.
1522 */
1523 if (memcg && memcg->under_oom)
f4b90b70 1524 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1525}
1526
3812c8c8 1527static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1528{
d0db7afa 1529 if (!current->memcg_may_oom)
3812c8c8 1530 return;
867578cb 1531 /*
49426420
JW
1532 * We are in the middle of the charge context here, so we
1533 * don't want to block when potentially sitting on a callstack
1534 * that holds all kinds of filesystem and mm locks.
1535 *
1536 * Also, the caller may handle a failed allocation gracefully
1537 * (like optional page cache readahead) and so an OOM killer
1538 * invocation might not even be necessary.
1539 *
1540 * That's why we don't do anything here except remember the
1541 * OOM context and then deal with it at the end of the page
1542 * fault when the stack is unwound, the locks are released,
1543 * and when we know whether the fault was overall successful.
867578cb 1544 */
49426420 1545 css_get(&memcg->css);
626ebc41
TH
1546 current->memcg_in_oom = memcg;
1547 current->memcg_oom_gfp_mask = mask;
1548 current->memcg_oom_order = order;
3812c8c8
JW
1549}
1550
1551/**
1552 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1553 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1554 *
49426420
JW
1555 * This has to be called at the end of a page fault if the memcg OOM
1556 * handler was enabled.
3812c8c8 1557 *
49426420 1558 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1559 * sleep on a waitqueue until the userspace task resolves the
1560 * situation. Sleeping directly in the charge context with all kinds
1561 * of locks held is not a good idea, instead we remember an OOM state
1562 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1563 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1564 *
1565 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1566 * completed, %false otherwise.
3812c8c8 1567 */
49426420 1568bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1569{
626ebc41 1570 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1571 struct oom_wait_info owait;
49426420 1572 bool locked;
3812c8c8
JW
1573
1574 /* OOM is global, do not handle */
3812c8c8 1575 if (!memcg)
49426420 1576 return false;
3812c8c8 1577
7c5f64f8 1578 if (!handle)
49426420 1579 goto cleanup;
3812c8c8
JW
1580
1581 owait.memcg = memcg;
1582 owait.wait.flags = 0;
1583 owait.wait.func = memcg_oom_wake_function;
1584 owait.wait.private = current;
1585 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1586
3812c8c8 1587 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1588 mem_cgroup_mark_under_oom(memcg);
1589
1590 locked = mem_cgroup_oom_trylock(memcg);
1591
1592 if (locked)
1593 mem_cgroup_oom_notify(memcg);
1594
1595 if (locked && !memcg->oom_kill_disable) {
1596 mem_cgroup_unmark_under_oom(memcg);
1597 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1598 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1599 current->memcg_oom_order);
49426420 1600 } else {
3812c8c8 1601 schedule();
49426420
JW
1602 mem_cgroup_unmark_under_oom(memcg);
1603 finish_wait(&memcg_oom_waitq, &owait.wait);
1604 }
1605
1606 if (locked) {
fb2a6fc5
JW
1607 mem_cgroup_oom_unlock(memcg);
1608 /*
1609 * There is no guarantee that an OOM-lock contender
1610 * sees the wakeups triggered by the OOM kill
1611 * uncharges. Wake any sleepers explicitely.
1612 */
1613 memcg_oom_recover(memcg);
1614 }
49426420 1615cleanup:
626ebc41 1616 current->memcg_in_oom = NULL;
3812c8c8 1617 css_put(&memcg->css);
867578cb 1618 return true;
0b7f569e
KH
1619}
1620
d7365e78 1621/**
81f8c3a4
JW
1622 * lock_page_memcg - lock a page->mem_cgroup binding
1623 * @page: the page
32047e2a 1624 *
81f8c3a4
JW
1625 * This function protects unlocked LRU pages from being moved to
1626 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1627 */
62cccb8c 1628void lock_page_memcg(struct page *page)
89c06bd5
KH
1629{
1630 struct mem_cgroup *memcg;
6de22619 1631 unsigned long flags;
89c06bd5 1632
6de22619
JW
1633 /*
1634 * The RCU lock is held throughout the transaction. The fast
1635 * path can get away without acquiring the memcg->move_lock
1636 * because page moving starts with an RCU grace period.
6de22619 1637 */
d7365e78
JW
1638 rcu_read_lock();
1639
1640 if (mem_cgroup_disabled())
62cccb8c 1641 return;
89c06bd5 1642again:
1306a85a 1643 memcg = page->mem_cgroup;
29833315 1644 if (unlikely(!memcg))
62cccb8c 1645 return;
d7365e78 1646
bdcbb659 1647 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1648 return;
89c06bd5 1649
6de22619 1650 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1651 if (memcg != page->mem_cgroup) {
6de22619 1652 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1653 goto again;
1654 }
6de22619
JW
1655
1656 /*
1657 * When charge migration first begins, we can have locked and
1658 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1659 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1660 */
1661 memcg->move_lock_task = current;
1662 memcg->move_lock_flags = flags;
d7365e78 1663
62cccb8c 1664 return;
89c06bd5 1665}
81f8c3a4 1666EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1667
d7365e78 1668/**
81f8c3a4 1669 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1670 * @page: the page
d7365e78 1671 */
62cccb8c 1672void unlock_page_memcg(struct page *page)
89c06bd5 1673{
62cccb8c
JW
1674 struct mem_cgroup *memcg = page->mem_cgroup;
1675
6de22619
JW
1676 if (memcg && memcg->move_lock_task == current) {
1677 unsigned long flags = memcg->move_lock_flags;
1678
1679 memcg->move_lock_task = NULL;
1680 memcg->move_lock_flags = 0;
1681
1682 spin_unlock_irqrestore(&memcg->move_lock, flags);
1683 }
89c06bd5 1684
d7365e78 1685 rcu_read_unlock();
89c06bd5 1686}
81f8c3a4 1687EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1688
cdec2e42
KH
1689/*
1690 * size of first charge trial. "32" comes from vmscan.c's magic value.
1691 * TODO: maybe necessary to use big numbers in big irons.
1692 */
7ec99d62 1693#define CHARGE_BATCH 32U
cdec2e42
KH
1694struct memcg_stock_pcp {
1695 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1696 unsigned int nr_pages;
cdec2e42 1697 struct work_struct work;
26fe6168 1698 unsigned long flags;
a0db00fc 1699#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1700};
1701static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1702static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1703
a0956d54
SS
1704/**
1705 * consume_stock: Try to consume stocked charge on this cpu.
1706 * @memcg: memcg to consume from.
1707 * @nr_pages: how many pages to charge.
1708 *
1709 * The charges will only happen if @memcg matches the current cpu's memcg
1710 * stock, and at least @nr_pages are available in that stock. Failure to
1711 * service an allocation will refill the stock.
1712 *
1713 * returns true if successful, false otherwise.
cdec2e42 1714 */
a0956d54 1715static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1716{
1717 struct memcg_stock_pcp *stock;
db2ba40c 1718 unsigned long flags;
3e32cb2e 1719 bool ret = false;
cdec2e42 1720
a0956d54 1721 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1722 return ret;
a0956d54 1723
db2ba40c
JW
1724 local_irq_save(flags);
1725
1726 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1727 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1728 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1729 ret = true;
1730 }
db2ba40c
JW
1731
1732 local_irq_restore(flags);
1733
cdec2e42
KH
1734 return ret;
1735}
1736
1737/*
3e32cb2e 1738 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1739 */
1740static void drain_stock(struct memcg_stock_pcp *stock)
1741{
1742 struct mem_cgroup *old = stock->cached;
1743
11c9ea4e 1744 if (stock->nr_pages) {
3e32cb2e 1745 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1746 if (do_memsw_account())
3e32cb2e 1747 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1748 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1749 stock->nr_pages = 0;
cdec2e42
KH
1750 }
1751 stock->cached = NULL;
cdec2e42
KH
1752}
1753
cdec2e42
KH
1754static void drain_local_stock(struct work_struct *dummy)
1755{
db2ba40c
JW
1756 struct memcg_stock_pcp *stock;
1757 unsigned long flags;
1758
1759 local_irq_save(flags);
1760
1761 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1762 drain_stock(stock);
26fe6168 1763 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1764
1765 local_irq_restore(flags);
cdec2e42
KH
1766}
1767
1768/*
3e32cb2e 1769 * Cache charges(val) to local per_cpu area.
320cc51d 1770 * This will be consumed by consume_stock() function, later.
cdec2e42 1771 */
c0ff4b85 1772static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1773{
db2ba40c
JW
1774 struct memcg_stock_pcp *stock;
1775 unsigned long flags;
1776
1777 local_irq_save(flags);
cdec2e42 1778
db2ba40c 1779 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1780 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1781 drain_stock(stock);
c0ff4b85 1782 stock->cached = memcg;
cdec2e42 1783 }
11c9ea4e 1784 stock->nr_pages += nr_pages;
db2ba40c
JW
1785
1786 local_irq_restore(flags);
cdec2e42
KH
1787}
1788
1789/*
c0ff4b85 1790 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1791 * of the hierarchy under it.
cdec2e42 1792 */
6d3d6aa2 1793static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1794{
26fe6168 1795 int cpu, curcpu;
d38144b7 1796
6d3d6aa2
JW
1797 /* If someone's already draining, avoid adding running more workers. */
1798 if (!mutex_trylock(&percpu_charge_mutex))
1799 return;
cdec2e42 1800 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1801 get_online_cpus();
5af12d0e 1802 curcpu = get_cpu();
cdec2e42
KH
1803 for_each_online_cpu(cpu) {
1804 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1805 struct mem_cgroup *memcg;
26fe6168 1806
c0ff4b85
R
1807 memcg = stock->cached;
1808 if (!memcg || !stock->nr_pages)
26fe6168 1809 continue;
2314b42d 1810 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1811 continue;
d1a05b69
MH
1812 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1813 if (cpu == curcpu)
1814 drain_local_stock(&stock->work);
1815 else
1816 schedule_work_on(cpu, &stock->work);
1817 }
cdec2e42 1818 }
5af12d0e 1819 put_cpu();
f894ffa8 1820 put_online_cpus();
9f50fad6 1821 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1822}
1823
308167fc 1824static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1825{
cdec2e42
KH
1826 struct memcg_stock_pcp *stock;
1827
cdec2e42
KH
1828 stock = &per_cpu(memcg_stock, cpu);
1829 drain_stock(stock);
308167fc 1830 return 0;
cdec2e42
KH
1831}
1832
f7e1cb6e
JW
1833static void reclaim_high(struct mem_cgroup *memcg,
1834 unsigned int nr_pages,
1835 gfp_t gfp_mask)
1836{
1837 do {
1838 if (page_counter_read(&memcg->memory) <= memcg->high)
1839 continue;
1840 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1841 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1842 } while ((memcg = parent_mem_cgroup(memcg)));
1843}
1844
1845static void high_work_func(struct work_struct *work)
1846{
1847 struct mem_cgroup *memcg;
1848
1849 memcg = container_of(work, struct mem_cgroup, high_work);
1850 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1851}
1852
b23afb93
TH
1853/*
1854 * Scheduled by try_charge() to be executed from the userland return path
1855 * and reclaims memory over the high limit.
1856 */
1857void mem_cgroup_handle_over_high(void)
1858{
1859 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1860 struct mem_cgroup *memcg;
b23afb93
TH
1861
1862 if (likely(!nr_pages))
1863 return;
1864
f7e1cb6e
JW
1865 memcg = get_mem_cgroup_from_mm(current->mm);
1866 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1867 css_put(&memcg->css);
1868 current->memcg_nr_pages_over_high = 0;
1869}
1870
00501b53
JW
1871static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1872 unsigned int nr_pages)
8a9f3ccd 1873{
7ec99d62 1874 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1875 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1876 struct mem_cgroup *mem_over_limit;
3e32cb2e 1877 struct page_counter *counter;
6539cc05 1878 unsigned long nr_reclaimed;
b70a2a21
JW
1879 bool may_swap = true;
1880 bool drained = false;
a636b327 1881
ce00a967 1882 if (mem_cgroup_is_root(memcg))
10d53c74 1883 return 0;
6539cc05 1884retry:
b6b6cc72 1885 if (consume_stock(memcg, nr_pages))
10d53c74 1886 return 0;
8a9f3ccd 1887
7941d214 1888 if (!do_memsw_account() ||
6071ca52
JW
1889 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1890 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1891 goto done_restock;
7941d214 1892 if (do_memsw_account())
3e32cb2e
JW
1893 page_counter_uncharge(&memcg->memsw, batch);
1894 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1895 } else {
3e32cb2e 1896 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1897 may_swap = false;
3fbe7244 1898 }
7a81b88c 1899
6539cc05
JW
1900 if (batch > nr_pages) {
1901 batch = nr_pages;
1902 goto retry;
1903 }
6d61ef40 1904
06b078fc
JW
1905 /*
1906 * Unlike in global OOM situations, memcg is not in a physical
1907 * memory shortage. Allow dying and OOM-killed tasks to
1908 * bypass the last charges so that they can exit quickly and
1909 * free their memory.
1910 */
1911 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1912 fatal_signal_pending(current) ||
1913 current->flags & PF_EXITING))
10d53c74 1914 goto force;
06b078fc 1915
89a28483
JW
1916 /*
1917 * Prevent unbounded recursion when reclaim operations need to
1918 * allocate memory. This might exceed the limits temporarily,
1919 * but we prefer facilitating memory reclaim and getting back
1920 * under the limit over triggering OOM kills in these cases.
1921 */
1922 if (unlikely(current->flags & PF_MEMALLOC))
1923 goto force;
1924
06b078fc
JW
1925 if (unlikely(task_in_memcg_oom(current)))
1926 goto nomem;
1927
d0164adc 1928 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1929 goto nomem;
4b534334 1930
241994ed
JW
1931 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1932
b70a2a21
JW
1933 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1934 gfp_mask, may_swap);
6539cc05 1935
61e02c74 1936 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1937 goto retry;
28c34c29 1938
b70a2a21 1939 if (!drained) {
6d3d6aa2 1940 drain_all_stock(mem_over_limit);
b70a2a21
JW
1941 drained = true;
1942 goto retry;
1943 }
1944
28c34c29
JW
1945 if (gfp_mask & __GFP_NORETRY)
1946 goto nomem;
6539cc05
JW
1947 /*
1948 * Even though the limit is exceeded at this point, reclaim
1949 * may have been able to free some pages. Retry the charge
1950 * before killing the task.
1951 *
1952 * Only for regular pages, though: huge pages are rather
1953 * unlikely to succeed so close to the limit, and we fall back
1954 * to regular pages anyway in case of failure.
1955 */
61e02c74 1956 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1957 goto retry;
1958 /*
1959 * At task move, charge accounts can be doubly counted. So, it's
1960 * better to wait until the end of task_move if something is going on.
1961 */
1962 if (mem_cgroup_wait_acct_move(mem_over_limit))
1963 goto retry;
1964
9b130619
JW
1965 if (nr_retries--)
1966 goto retry;
1967
06b078fc 1968 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1969 goto force;
06b078fc 1970
6539cc05 1971 if (fatal_signal_pending(current))
10d53c74 1972 goto force;
6539cc05 1973
241994ed
JW
1974 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1975
3608de07
JM
1976 mem_cgroup_oom(mem_over_limit, gfp_mask,
1977 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1978nomem:
6d1fdc48 1979 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1980 return -ENOMEM;
10d53c74
TH
1981force:
1982 /*
1983 * The allocation either can't fail or will lead to more memory
1984 * being freed very soon. Allow memory usage go over the limit
1985 * temporarily by force charging it.
1986 */
1987 page_counter_charge(&memcg->memory, nr_pages);
7941d214 1988 if (do_memsw_account())
10d53c74
TH
1989 page_counter_charge(&memcg->memsw, nr_pages);
1990 css_get_many(&memcg->css, nr_pages);
1991
1992 return 0;
6539cc05
JW
1993
1994done_restock:
e8ea14cc 1995 css_get_many(&memcg->css, batch);
6539cc05
JW
1996 if (batch > nr_pages)
1997 refill_stock(memcg, batch - nr_pages);
b23afb93 1998
241994ed 1999 /*
b23afb93
TH
2000 * If the hierarchy is above the normal consumption range, schedule
2001 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2002 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2003 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2004 * not recorded as it most likely matches current's and won't
2005 * change in the meantime. As high limit is checked again before
2006 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2007 */
2008 do {
b23afb93 2009 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2010 /* Don't bother a random interrupted task */
2011 if (in_interrupt()) {
2012 schedule_work(&memcg->high_work);
2013 break;
2014 }
9516a18a 2015 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2016 set_notify_resume(current);
2017 break;
2018 }
241994ed 2019 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2020
2021 return 0;
7a81b88c 2022}
8a9f3ccd 2023
00501b53 2024static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2025{
ce00a967
JW
2026 if (mem_cgroup_is_root(memcg))
2027 return;
2028
3e32cb2e 2029 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2030 if (do_memsw_account())
3e32cb2e 2031 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2032
e8ea14cc 2033 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2034}
2035
0a31bc97
JW
2036static void lock_page_lru(struct page *page, int *isolated)
2037{
2038 struct zone *zone = page_zone(page);
2039
a52633d8 2040 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2041 if (PageLRU(page)) {
2042 struct lruvec *lruvec;
2043
599d0c95 2044 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2045 ClearPageLRU(page);
2046 del_page_from_lru_list(page, lruvec, page_lru(page));
2047 *isolated = 1;
2048 } else
2049 *isolated = 0;
2050}
2051
2052static void unlock_page_lru(struct page *page, int isolated)
2053{
2054 struct zone *zone = page_zone(page);
2055
2056 if (isolated) {
2057 struct lruvec *lruvec;
2058
599d0c95 2059 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2060 VM_BUG_ON_PAGE(PageLRU(page), page);
2061 SetPageLRU(page);
2062 add_page_to_lru_list(page, lruvec, page_lru(page));
2063 }
a52633d8 2064 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2065}
2066
00501b53 2067static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2068 bool lrucare)
7a81b88c 2069{
0a31bc97 2070 int isolated;
9ce70c02 2071
1306a85a 2072 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2073
2074 /*
2075 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2076 * may already be on some other mem_cgroup's LRU. Take care of it.
2077 */
0a31bc97
JW
2078 if (lrucare)
2079 lock_page_lru(page, &isolated);
9ce70c02 2080
0a31bc97
JW
2081 /*
2082 * Nobody should be changing or seriously looking at
1306a85a 2083 * page->mem_cgroup at this point:
0a31bc97
JW
2084 *
2085 * - the page is uncharged
2086 *
2087 * - the page is off-LRU
2088 *
2089 * - an anonymous fault has exclusive page access, except for
2090 * a locked page table
2091 *
2092 * - a page cache insertion, a swapin fault, or a migration
2093 * have the page locked
2094 */
1306a85a 2095 page->mem_cgroup = memcg;
9ce70c02 2096
0a31bc97
JW
2097 if (lrucare)
2098 unlock_page_lru(page, isolated);
7a81b88c 2099}
66e1707b 2100
127424c8 2101#ifndef CONFIG_SLOB
f3bb3043 2102static int memcg_alloc_cache_id(void)
55007d84 2103{
f3bb3043
VD
2104 int id, size;
2105 int err;
2106
dbcf73e2 2107 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2108 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2109 if (id < 0)
2110 return id;
55007d84 2111
dbcf73e2 2112 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2113 return id;
2114
2115 /*
2116 * There's no space for the new id in memcg_caches arrays,
2117 * so we have to grow them.
2118 */
05257a1a 2119 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2120
2121 size = 2 * (id + 1);
55007d84
GC
2122 if (size < MEMCG_CACHES_MIN_SIZE)
2123 size = MEMCG_CACHES_MIN_SIZE;
2124 else if (size > MEMCG_CACHES_MAX_SIZE)
2125 size = MEMCG_CACHES_MAX_SIZE;
2126
f3bb3043 2127 err = memcg_update_all_caches(size);
60d3fd32
VD
2128 if (!err)
2129 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2130 if (!err)
2131 memcg_nr_cache_ids = size;
2132
2133 up_write(&memcg_cache_ids_sem);
2134
f3bb3043 2135 if (err) {
dbcf73e2 2136 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2137 return err;
2138 }
2139 return id;
2140}
2141
2142static void memcg_free_cache_id(int id)
2143{
dbcf73e2 2144 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2145}
2146
d5b3cf71 2147struct memcg_kmem_cache_create_work {
5722d094
VD
2148 struct mem_cgroup *memcg;
2149 struct kmem_cache *cachep;
2150 struct work_struct work;
2151};
2152
d5b3cf71 2153static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2154{
d5b3cf71
VD
2155 struct memcg_kmem_cache_create_work *cw =
2156 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2157 struct mem_cgroup *memcg = cw->memcg;
2158 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2159
d5b3cf71 2160 memcg_create_kmem_cache(memcg, cachep);
bd673145 2161
5722d094 2162 css_put(&memcg->css);
d7f25f8a
GC
2163 kfree(cw);
2164}
2165
2166/*
2167 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2168 */
d5b3cf71
VD
2169static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2170 struct kmem_cache *cachep)
d7f25f8a 2171{
d5b3cf71 2172 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2173
776ed0f0 2174 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2175 if (!cw)
d7f25f8a 2176 return;
8135be5a
VD
2177
2178 css_get(&memcg->css);
d7f25f8a
GC
2179
2180 cw->memcg = memcg;
2181 cw->cachep = cachep;
d5b3cf71 2182 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2183
17cc4dfe 2184 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2185}
2186
d5b3cf71
VD
2187static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2188 struct kmem_cache *cachep)
0e9d92f2
GC
2189{
2190 /*
2191 * We need to stop accounting when we kmalloc, because if the
2192 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2193 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2194 *
2195 * However, it is better to enclose the whole function. Depending on
2196 * the debugging options enabled, INIT_WORK(), for instance, can
2197 * trigger an allocation. This too, will make us recurse. Because at
2198 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2199 * the safest choice is to do it like this, wrapping the whole function.
2200 */
6f185c29 2201 current->memcg_kmem_skip_account = 1;
d5b3cf71 2202 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2203 current->memcg_kmem_skip_account = 0;
0e9d92f2 2204}
c67a8a68 2205
45264778
VD
2206static inline bool memcg_kmem_bypass(void)
2207{
2208 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2209 return true;
2210 return false;
2211}
2212
2213/**
2214 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2215 * @cachep: the original global kmem cache
2216 *
d7f25f8a
GC
2217 * Return the kmem_cache we're supposed to use for a slab allocation.
2218 * We try to use the current memcg's version of the cache.
2219 *
45264778
VD
2220 * If the cache does not exist yet, if we are the first user of it, we
2221 * create it asynchronously in a workqueue and let the current allocation
2222 * go through with the original cache.
d7f25f8a 2223 *
45264778
VD
2224 * This function takes a reference to the cache it returns to assure it
2225 * won't get destroyed while we are working with it. Once the caller is
2226 * done with it, memcg_kmem_put_cache() must be called to release the
2227 * reference.
d7f25f8a 2228 */
45264778 2229struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2230{
2231 struct mem_cgroup *memcg;
959c8963 2232 struct kmem_cache *memcg_cachep;
2a4db7eb 2233 int kmemcg_id;
d7f25f8a 2234
f7ce3190 2235 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2236
45264778 2237 if (memcg_kmem_bypass())
230e9fc2
VD
2238 return cachep;
2239
9d100c5e 2240 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2241 return cachep;
2242
8135be5a 2243 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2244 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2245 if (kmemcg_id < 0)
ca0dde97 2246 goto out;
d7f25f8a 2247
2a4db7eb 2248 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2249 if (likely(memcg_cachep))
2250 return memcg_cachep;
ca0dde97
LZ
2251
2252 /*
2253 * If we are in a safe context (can wait, and not in interrupt
2254 * context), we could be be predictable and return right away.
2255 * This would guarantee that the allocation being performed
2256 * already belongs in the new cache.
2257 *
2258 * However, there are some clashes that can arrive from locking.
2259 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2260 * memcg_create_kmem_cache, this means no further allocation
2261 * could happen with the slab_mutex held. So it's better to
2262 * defer everything.
ca0dde97 2263 */
d5b3cf71 2264 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2265out:
8135be5a 2266 css_put(&memcg->css);
ca0dde97 2267 return cachep;
d7f25f8a 2268}
d7f25f8a 2269
45264778
VD
2270/**
2271 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2272 * @cachep: the cache returned by memcg_kmem_get_cache
2273 */
2274void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2275{
2276 if (!is_root_cache(cachep))
f7ce3190 2277 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2278}
2279
45264778
VD
2280/**
2281 * memcg_kmem_charge: charge a kmem page
2282 * @page: page to charge
2283 * @gfp: reclaim mode
2284 * @order: allocation order
2285 * @memcg: memory cgroup to charge
2286 *
2287 * Returns 0 on success, an error code on failure.
2288 */
2289int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2290 struct mem_cgroup *memcg)
7ae1e1d0 2291{
f3ccb2c4
VD
2292 unsigned int nr_pages = 1 << order;
2293 struct page_counter *counter;
7ae1e1d0
GC
2294 int ret;
2295
f3ccb2c4 2296 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2297 if (ret)
f3ccb2c4 2298 return ret;
52c29b04
JW
2299
2300 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2301 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2302 cancel_charge(memcg, nr_pages);
2303 return -ENOMEM;
7ae1e1d0
GC
2304 }
2305
f3ccb2c4 2306 page->mem_cgroup = memcg;
7ae1e1d0 2307
f3ccb2c4 2308 return 0;
7ae1e1d0
GC
2309}
2310
45264778
VD
2311/**
2312 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2313 * @page: page to charge
2314 * @gfp: reclaim mode
2315 * @order: allocation order
2316 *
2317 * Returns 0 on success, an error code on failure.
2318 */
2319int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2320{
f3ccb2c4 2321 struct mem_cgroup *memcg;
fcff7d7e 2322 int ret = 0;
7ae1e1d0 2323
45264778
VD
2324 if (memcg_kmem_bypass())
2325 return 0;
2326
f3ccb2c4 2327 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2328 if (!mem_cgroup_is_root(memcg)) {
45264778 2329 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2330 if (!ret)
2331 __SetPageKmemcg(page);
2332 }
7ae1e1d0 2333 css_put(&memcg->css);
d05e83a6 2334 return ret;
7ae1e1d0 2335}
45264778
VD
2336/**
2337 * memcg_kmem_uncharge: uncharge a kmem page
2338 * @page: page to uncharge
2339 * @order: allocation order
2340 */
2341void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2342{
1306a85a 2343 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2344 unsigned int nr_pages = 1 << order;
7ae1e1d0 2345
7ae1e1d0
GC
2346 if (!memcg)
2347 return;
2348
309381fe 2349 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2350
52c29b04
JW
2351 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2352 page_counter_uncharge(&memcg->kmem, nr_pages);
2353
f3ccb2c4 2354 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2355 if (do_memsw_account())
f3ccb2c4 2356 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2357
1306a85a 2358 page->mem_cgroup = NULL;
c4159a75
VD
2359
2360 /* slab pages do not have PageKmemcg flag set */
2361 if (PageKmemcg(page))
2362 __ClearPageKmemcg(page);
2363
f3ccb2c4 2364 css_put_many(&memcg->css, nr_pages);
60d3fd32 2365}
127424c8 2366#endif /* !CONFIG_SLOB */
7ae1e1d0 2367
ca3e0214
KH
2368#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2369
ca3e0214
KH
2370/*
2371 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2372 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2373 */
e94c8a9c 2374void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2375{
e94c8a9c 2376 int i;
ca3e0214 2377
3d37c4a9
KH
2378 if (mem_cgroup_disabled())
2379 return;
b070e65c 2380
29833315 2381 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2382 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2383
1306a85a 2384 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2385 HPAGE_PMD_NR);
ca3e0214 2386}
12d27107 2387#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2388
c255a458 2389#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2390static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2391 bool charge)
d13d1443 2392{
0a31bc97
JW
2393 int val = (charge) ? 1 : -1;
2394 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2395}
02491447
DN
2396
2397/**
2398 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2399 * @entry: swap entry to be moved
2400 * @from: mem_cgroup which the entry is moved from
2401 * @to: mem_cgroup which the entry is moved to
2402 *
2403 * It succeeds only when the swap_cgroup's record for this entry is the same
2404 * as the mem_cgroup's id of @from.
2405 *
2406 * Returns 0 on success, -EINVAL on failure.
2407 *
3e32cb2e 2408 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2409 * both res and memsw, and called css_get().
2410 */
2411static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2412 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2413{
2414 unsigned short old_id, new_id;
2415
34c00c31
LZ
2416 old_id = mem_cgroup_id(from);
2417 new_id = mem_cgroup_id(to);
02491447
DN
2418
2419 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2420 mem_cgroup_swap_statistics(from, false);
483c30b5 2421 mem_cgroup_swap_statistics(to, true);
02491447
DN
2422 return 0;
2423 }
2424 return -EINVAL;
2425}
2426#else
2427static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2428 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2429{
2430 return -EINVAL;
2431}
8c7c6e34 2432#endif
d13d1443 2433
3e32cb2e 2434static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2435
d38d2a75 2436static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2437 unsigned long limit)
628f4235 2438{
3e32cb2e
JW
2439 unsigned long curusage;
2440 unsigned long oldusage;
2441 bool enlarge = false;
81d39c20 2442 int retry_count;
3e32cb2e 2443 int ret;
81d39c20
KH
2444
2445 /*
2446 * For keeping hierarchical_reclaim simple, how long we should retry
2447 * is depends on callers. We set our retry-count to be function
2448 * of # of children which we should visit in this loop.
2449 */
3e32cb2e
JW
2450 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2451 mem_cgroup_count_children(memcg);
81d39c20 2452
3e32cb2e 2453 oldusage = page_counter_read(&memcg->memory);
628f4235 2454
3e32cb2e 2455 do {
628f4235
KH
2456 if (signal_pending(current)) {
2457 ret = -EINTR;
2458 break;
2459 }
3e32cb2e
JW
2460
2461 mutex_lock(&memcg_limit_mutex);
2462 if (limit > memcg->memsw.limit) {
2463 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2464 ret = -EINVAL;
628f4235
KH
2465 break;
2466 }
3e32cb2e
JW
2467 if (limit > memcg->memory.limit)
2468 enlarge = true;
2469 ret = page_counter_limit(&memcg->memory, limit);
2470 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2471
2472 if (!ret)
2473 break;
2474
b70a2a21
JW
2475 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2476
3e32cb2e 2477 curusage = page_counter_read(&memcg->memory);
81d39c20 2478 /* Usage is reduced ? */
f894ffa8 2479 if (curusage >= oldusage)
81d39c20
KH
2480 retry_count--;
2481 else
2482 oldusage = curusage;
3e32cb2e
JW
2483 } while (retry_count);
2484
3c11ecf4
KH
2485 if (!ret && enlarge)
2486 memcg_oom_recover(memcg);
14797e23 2487
8c7c6e34
KH
2488 return ret;
2489}
2490
338c8431 2491static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2492 unsigned long limit)
8c7c6e34 2493{
3e32cb2e
JW
2494 unsigned long curusage;
2495 unsigned long oldusage;
2496 bool enlarge = false;
81d39c20 2497 int retry_count;
3e32cb2e 2498 int ret;
8c7c6e34 2499
81d39c20 2500 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2501 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2502 mem_cgroup_count_children(memcg);
2503
2504 oldusage = page_counter_read(&memcg->memsw);
2505
2506 do {
8c7c6e34
KH
2507 if (signal_pending(current)) {
2508 ret = -EINTR;
2509 break;
2510 }
3e32cb2e
JW
2511
2512 mutex_lock(&memcg_limit_mutex);
2513 if (limit < memcg->memory.limit) {
2514 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2515 ret = -EINVAL;
8c7c6e34
KH
2516 break;
2517 }
3e32cb2e
JW
2518 if (limit > memcg->memsw.limit)
2519 enlarge = true;
2520 ret = page_counter_limit(&memcg->memsw, limit);
2521 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2522
2523 if (!ret)
2524 break;
2525
b70a2a21
JW
2526 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2527
3e32cb2e 2528 curusage = page_counter_read(&memcg->memsw);
81d39c20 2529 /* Usage is reduced ? */
8c7c6e34 2530 if (curusage >= oldusage)
628f4235 2531 retry_count--;
81d39c20
KH
2532 else
2533 oldusage = curusage;
3e32cb2e
JW
2534 } while (retry_count);
2535
3c11ecf4
KH
2536 if (!ret && enlarge)
2537 memcg_oom_recover(memcg);
3e32cb2e 2538
628f4235
KH
2539 return ret;
2540}
2541
ef8f2327 2542unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2543 gfp_t gfp_mask,
2544 unsigned long *total_scanned)
2545{
2546 unsigned long nr_reclaimed = 0;
ef8f2327 2547 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2548 unsigned long reclaimed;
2549 int loop = 0;
ef8f2327 2550 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2551 unsigned long excess;
0608f43d
AM
2552 unsigned long nr_scanned;
2553
2554 if (order > 0)
2555 return 0;
2556
ef8f2327 2557 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2558
2559 /*
2560 * Do not even bother to check the largest node if the root
2561 * is empty. Do it lockless to prevent lock bouncing. Races
2562 * are acceptable as soft limit is best effort anyway.
2563 */
bfc7228b 2564 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2565 return 0;
2566
0608f43d
AM
2567 /*
2568 * This loop can run a while, specially if mem_cgroup's continuously
2569 * keep exceeding their soft limit and putting the system under
2570 * pressure
2571 */
2572 do {
2573 if (next_mz)
2574 mz = next_mz;
2575 else
2576 mz = mem_cgroup_largest_soft_limit_node(mctz);
2577 if (!mz)
2578 break;
2579
2580 nr_scanned = 0;
ef8f2327 2581 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2582 gfp_mask, &nr_scanned);
2583 nr_reclaimed += reclaimed;
2584 *total_scanned += nr_scanned;
0a31bc97 2585 spin_lock_irq(&mctz->lock);
bc2f2e7f 2586 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2587
2588 /*
2589 * If we failed to reclaim anything from this memory cgroup
2590 * it is time to move on to the next cgroup
2591 */
2592 next_mz = NULL;
bc2f2e7f
VD
2593 if (!reclaimed)
2594 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2595
3e32cb2e 2596 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2597 /*
2598 * One school of thought says that we should not add
2599 * back the node to the tree if reclaim returns 0.
2600 * But our reclaim could return 0, simply because due
2601 * to priority we are exposing a smaller subset of
2602 * memory to reclaim from. Consider this as a longer
2603 * term TODO.
2604 */
2605 /* If excess == 0, no tree ops */
cf2c8127 2606 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2607 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2608 css_put(&mz->memcg->css);
2609 loop++;
2610 /*
2611 * Could not reclaim anything and there are no more
2612 * mem cgroups to try or we seem to be looping without
2613 * reclaiming anything.
2614 */
2615 if (!nr_reclaimed &&
2616 (next_mz == NULL ||
2617 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2618 break;
2619 } while (!nr_reclaimed);
2620 if (next_mz)
2621 css_put(&next_mz->memcg->css);
2622 return nr_reclaimed;
2623}
2624
ea280e7b
TH
2625/*
2626 * Test whether @memcg has children, dead or alive. Note that this
2627 * function doesn't care whether @memcg has use_hierarchy enabled and
2628 * returns %true if there are child csses according to the cgroup
2629 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2630 */
b5f99b53
GC
2631static inline bool memcg_has_children(struct mem_cgroup *memcg)
2632{
ea280e7b
TH
2633 bool ret;
2634
ea280e7b
TH
2635 rcu_read_lock();
2636 ret = css_next_child(NULL, &memcg->css);
2637 rcu_read_unlock();
2638 return ret;
b5f99b53
GC
2639}
2640
c26251f9 2641/*
51038171 2642 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2643 *
2644 * Caller is responsible for holding css reference for memcg.
2645 */
2646static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2647{
2648 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2649
c1e862c1
KH
2650 /* we call try-to-free pages for make this cgroup empty */
2651 lru_add_drain_all();
f817ed48 2652 /* try to free all pages in this cgroup */
3e32cb2e 2653 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2654 int progress;
c1e862c1 2655
c26251f9
MH
2656 if (signal_pending(current))
2657 return -EINTR;
2658
b70a2a21
JW
2659 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2660 GFP_KERNEL, true);
c1e862c1 2661 if (!progress) {
f817ed48 2662 nr_retries--;
c1e862c1 2663 /* maybe some writeback is necessary */
8aa7e847 2664 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2665 }
f817ed48
KH
2666
2667 }
ab5196c2
MH
2668
2669 return 0;
cc847582
KH
2670}
2671
6770c64e
TH
2672static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2673 char *buf, size_t nbytes,
2674 loff_t off)
c1e862c1 2675{
6770c64e 2676 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2677
d8423011
MH
2678 if (mem_cgroup_is_root(memcg))
2679 return -EINVAL;
6770c64e 2680 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2681}
2682
182446d0
TH
2683static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2684 struct cftype *cft)
18f59ea7 2685{
182446d0 2686 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2687}
2688
182446d0
TH
2689static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2690 struct cftype *cft, u64 val)
18f59ea7
BS
2691{
2692 int retval = 0;
182446d0 2693 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2694 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2695
567fb435 2696 if (memcg->use_hierarchy == val)
0b8f73e1 2697 return 0;
567fb435 2698
18f59ea7 2699 /*
af901ca1 2700 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2701 * in the child subtrees. If it is unset, then the change can
2702 * occur, provided the current cgroup has no children.
2703 *
2704 * For the root cgroup, parent_mem is NULL, we allow value to be
2705 * set if there are no children.
2706 */
c0ff4b85 2707 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2708 (val == 1 || val == 0)) {
ea280e7b 2709 if (!memcg_has_children(memcg))
c0ff4b85 2710 memcg->use_hierarchy = val;
18f59ea7
BS
2711 else
2712 retval = -EBUSY;
2713 } else
2714 retval = -EINVAL;
567fb435 2715
18f59ea7
BS
2716 return retval;
2717}
2718
72b54e73 2719static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2720{
2721 struct mem_cgroup *iter;
72b54e73 2722 int i;
ce00a967 2723
72b54e73 2724 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2725
72b54e73
VD
2726 for_each_mem_cgroup_tree(iter, memcg) {
2727 for (i = 0; i < MEMCG_NR_STAT; i++)
2728 stat[i] += mem_cgroup_read_stat(iter, i);
2729 }
ce00a967
JW
2730}
2731
72b54e73 2732static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2733{
2734 struct mem_cgroup *iter;
72b54e73 2735 int i;
587d9f72 2736
72b54e73 2737 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2738
72b54e73
VD
2739 for_each_mem_cgroup_tree(iter, memcg) {
2740 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2741 events[i] += mem_cgroup_read_events(iter, i);
2742 }
587d9f72
JW
2743}
2744
6f646156 2745static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2746{
72b54e73 2747 unsigned long val = 0;
ce00a967 2748
3e32cb2e 2749 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2750 struct mem_cgroup *iter;
2751
2752 for_each_mem_cgroup_tree(iter, memcg) {
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_CACHE);
2755 val += mem_cgroup_read_stat(iter,
2756 MEM_CGROUP_STAT_RSS);
2757 if (swap)
2758 val += mem_cgroup_read_stat(iter,
2759 MEM_CGROUP_STAT_SWAP);
2760 }
3e32cb2e 2761 } else {
ce00a967 2762 if (!swap)
3e32cb2e 2763 val = page_counter_read(&memcg->memory);
ce00a967 2764 else
3e32cb2e 2765 val = page_counter_read(&memcg->memsw);
ce00a967 2766 }
c12176d3 2767 return val;
ce00a967
JW
2768}
2769
3e32cb2e
JW
2770enum {
2771 RES_USAGE,
2772 RES_LIMIT,
2773 RES_MAX_USAGE,
2774 RES_FAILCNT,
2775 RES_SOFT_LIMIT,
2776};
ce00a967 2777
791badbd 2778static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2779 struct cftype *cft)
8cdea7c0 2780{
182446d0 2781 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2782 struct page_counter *counter;
af36f906 2783
3e32cb2e 2784 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2785 case _MEM:
3e32cb2e
JW
2786 counter = &memcg->memory;
2787 break;
8c7c6e34 2788 case _MEMSWAP:
3e32cb2e
JW
2789 counter = &memcg->memsw;
2790 break;
510fc4e1 2791 case _KMEM:
3e32cb2e 2792 counter = &memcg->kmem;
510fc4e1 2793 break;
d55f90bf 2794 case _TCP:
0db15298 2795 counter = &memcg->tcpmem;
d55f90bf 2796 break;
8c7c6e34
KH
2797 default:
2798 BUG();
8c7c6e34 2799 }
3e32cb2e
JW
2800
2801 switch (MEMFILE_ATTR(cft->private)) {
2802 case RES_USAGE:
2803 if (counter == &memcg->memory)
c12176d3 2804 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2805 if (counter == &memcg->memsw)
c12176d3 2806 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2807 return (u64)page_counter_read(counter) * PAGE_SIZE;
2808 case RES_LIMIT:
2809 return (u64)counter->limit * PAGE_SIZE;
2810 case RES_MAX_USAGE:
2811 return (u64)counter->watermark * PAGE_SIZE;
2812 case RES_FAILCNT:
2813 return counter->failcnt;
2814 case RES_SOFT_LIMIT:
2815 return (u64)memcg->soft_limit * PAGE_SIZE;
2816 default:
2817 BUG();
2818 }
8cdea7c0 2819}
510fc4e1 2820
127424c8 2821#ifndef CONFIG_SLOB
567e9ab2 2822static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2823{
d6441637
VD
2824 int memcg_id;
2825
b313aeee
VD
2826 if (cgroup_memory_nokmem)
2827 return 0;
2828
2a4db7eb 2829 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2830 BUG_ON(memcg->kmem_state);
d6441637 2831
f3bb3043 2832 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2833 if (memcg_id < 0)
2834 return memcg_id;
d6441637 2835
ef12947c 2836 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2837 /*
567e9ab2 2838 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2839 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2840 * guarantee no one starts accounting before all call sites are
2841 * patched.
2842 */
900a38f0 2843 memcg->kmemcg_id = memcg_id;
567e9ab2 2844 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2845 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2846
2847 return 0;
d6441637
VD
2848}
2849
8e0a8912
JW
2850static void memcg_offline_kmem(struct mem_cgroup *memcg)
2851{
2852 struct cgroup_subsys_state *css;
2853 struct mem_cgroup *parent, *child;
2854 int kmemcg_id;
2855
2856 if (memcg->kmem_state != KMEM_ONLINE)
2857 return;
2858 /*
2859 * Clear the online state before clearing memcg_caches array
2860 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2861 * guarantees that no cache will be created for this cgroup
2862 * after we are done (see memcg_create_kmem_cache()).
2863 */
2864 memcg->kmem_state = KMEM_ALLOCATED;
2865
2866 memcg_deactivate_kmem_caches(memcg);
2867
2868 kmemcg_id = memcg->kmemcg_id;
2869 BUG_ON(kmemcg_id < 0);
2870
2871 parent = parent_mem_cgroup(memcg);
2872 if (!parent)
2873 parent = root_mem_cgroup;
2874
2875 /*
2876 * Change kmemcg_id of this cgroup and all its descendants to the
2877 * parent's id, and then move all entries from this cgroup's list_lrus
2878 * to ones of the parent. After we have finished, all list_lrus
2879 * corresponding to this cgroup are guaranteed to remain empty. The
2880 * ordering is imposed by list_lru_node->lock taken by
2881 * memcg_drain_all_list_lrus().
2882 */
3a06bb78 2883 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2884 css_for_each_descendant_pre(css, &memcg->css) {
2885 child = mem_cgroup_from_css(css);
2886 BUG_ON(child->kmemcg_id != kmemcg_id);
2887 child->kmemcg_id = parent->kmemcg_id;
2888 if (!memcg->use_hierarchy)
2889 break;
2890 }
3a06bb78
TH
2891 rcu_read_unlock();
2892
8e0a8912
JW
2893 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2894
2895 memcg_free_cache_id(kmemcg_id);
2896}
2897
2898static void memcg_free_kmem(struct mem_cgroup *memcg)
2899{
0b8f73e1
JW
2900 /* css_alloc() failed, offlining didn't happen */
2901 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2902 memcg_offline_kmem(memcg);
2903
8e0a8912
JW
2904 if (memcg->kmem_state == KMEM_ALLOCATED) {
2905 memcg_destroy_kmem_caches(memcg);
2906 static_branch_dec(&memcg_kmem_enabled_key);
2907 WARN_ON(page_counter_read(&memcg->kmem));
2908 }
8e0a8912 2909}
d6441637 2910#else
0b8f73e1 2911static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2912{
2913 return 0;
2914}
2915static void memcg_offline_kmem(struct mem_cgroup *memcg)
2916{
2917}
2918static void memcg_free_kmem(struct mem_cgroup *memcg)
2919{
2920}
2921#endif /* !CONFIG_SLOB */
2922
d6441637 2923static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2924 unsigned long limit)
d6441637 2925{
b313aeee 2926 int ret;
127424c8
JW
2927
2928 mutex_lock(&memcg_limit_mutex);
127424c8 2929 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2930 mutex_unlock(&memcg_limit_mutex);
2931 return ret;
d6441637 2932}
510fc4e1 2933
d55f90bf
VD
2934static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2935{
2936 int ret;
2937
2938 mutex_lock(&memcg_limit_mutex);
2939
0db15298 2940 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2941 if (ret)
2942 goto out;
2943
0db15298 2944 if (!memcg->tcpmem_active) {
d55f90bf
VD
2945 /*
2946 * The active flag needs to be written after the static_key
2947 * update. This is what guarantees that the socket activation
2d758073
JW
2948 * function is the last one to run. See mem_cgroup_sk_alloc()
2949 * for details, and note that we don't mark any socket as
2950 * belonging to this memcg until that flag is up.
d55f90bf
VD
2951 *
2952 * We need to do this, because static_keys will span multiple
2953 * sites, but we can't control their order. If we mark a socket
2954 * as accounted, but the accounting functions are not patched in
2955 * yet, we'll lose accounting.
2956 *
2d758073 2957 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2958 * because when this value change, the code to process it is not
2959 * patched in yet.
2960 */
2961 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2962 memcg->tcpmem_active = true;
d55f90bf
VD
2963 }
2964out:
2965 mutex_unlock(&memcg_limit_mutex);
2966 return ret;
2967}
d55f90bf 2968
628f4235
KH
2969/*
2970 * The user of this function is...
2971 * RES_LIMIT.
2972 */
451af504
TH
2973static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2974 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2975{
451af504 2976 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2977 unsigned long nr_pages;
628f4235
KH
2978 int ret;
2979
451af504 2980 buf = strstrip(buf);
650c5e56 2981 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2982 if (ret)
2983 return ret;
af36f906 2984
3e32cb2e 2985 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2986 case RES_LIMIT:
4b3bde4c
BS
2987 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2988 ret = -EINVAL;
2989 break;
2990 }
3e32cb2e
JW
2991 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2992 case _MEM:
2993 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2994 break;
3e32cb2e
JW
2995 case _MEMSWAP:
2996 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2997 break;
3e32cb2e
JW
2998 case _KMEM:
2999 ret = memcg_update_kmem_limit(memcg, nr_pages);
3000 break;
d55f90bf
VD
3001 case _TCP:
3002 ret = memcg_update_tcp_limit(memcg, nr_pages);
3003 break;
3e32cb2e 3004 }
296c81d8 3005 break;
3e32cb2e
JW
3006 case RES_SOFT_LIMIT:
3007 memcg->soft_limit = nr_pages;
3008 ret = 0;
628f4235
KH
3009 break;
3010 }
451af504 3011 return ret ?: nbytes;
8cdea7c0
BS
3012}
3013
6770c64e
TH
3014static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3015 size_t nbytes, loff_t off)
c84872e1 3016{
6770c64e 3017 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3018 struct page_counter *counter;
c84872e1 3019
3e32cb2e
JW
3020 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3021 case _MEM:
3022 counter = &memcg->memory;
3023 break;
3024 case _MEMSWAP:
3025 counter = &memcg->memsw;
3026 break;
3027 case _KMEM:
3028 counter = &memcg->kmem;
3029 break;
d55f90bf 3030 case _TCP:
0db15298 3031 counter = &memcg->tcpmem;
d55f90bf 3032 break;
3e32cb2e
JW
3033 default:
3034 BUG();
3035 }
af36f906 3036
3e32cb2e 3037 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3038 case RES_MAX_USAGE:
3e32cb2e 3039 page_counter_reset_watermark(counter);
29f2a4da
PE
3040 break;
3041 case RES_FAILCNT:
3e32cb2e 3042 counter->failcnt = 0;
29f2a4da 3043 break;
3e32cb2e
JW
3044 default:
3045 BUG();
29f2a4da 3046 }
f64c3f54 3047
6770c64e 3048 return nbytes;
c84872e1
PE
3049}
3050
182446d0 3051static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3052 struct cftype *cft)
3053{
182446d0 3054 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3055}
3056
02491447 3057#ifdef CONFIG_MMU
182446d0 3058static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3059 struct cftype *cft, u64 val)
3060{
182446d0 3061 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3062
1dfab5ab 3063 if (val & ~MOVE_MASK)
7dc74be0 3064 return -EINVAL;
ee5e8472 3065
7dc74be0 3066 /*
ee5e8472
GC
3067 * No kind of locking is needed in here, because ->can_attach() will
3068 * check this value once in the beginning of the process, and then carry
3069 * on with stale data. This means that changes to this value will only
3070 * affect task migrations starting after the change.
7dc74be0 3071 */
c0ff4b85 3072 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3073 return 0;
3074}
02491447 3075#else
182446d0 3076static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3077 struct cftype *cft, u64 val)
3078{
3079 return -ENOSYS;
3080}
3081#endif
7dc74be0 3082
406eb0c9 3083#ifdef CONFIG_NUMA
2da8ca82 3084static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3085{
25485de6
GT
3086 struct numa_stat {
3087 const char *name;
3088 unsigned int lru_mask;
3089 };
3090
3091 static const struct numa_stat stats[] = {
3092 { "total", LRU_ALL },
3093 { "file", LRU_ALL_FILE },
3094 { "anon", LRU_ALL_ANON },
3095 { "unevictable", BIT(LRU_UNEVICTABLE) },
3096 };
3097 const struct numa_stat *stat;
406eb0c9 3098 int nid;
25485de6 3099 unsigned long nr;
2da8ca82 3100 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3101
25485de6
GT
3102 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3103 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3104 seq_printf(m, "%s=%lu", stat->name, nr);
3105 for_each_node_state(nid, N_MEMORY) {
3106 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3107 stat->lru_mask);
3108 seq_printf(m, " N%d=%lu", nid, nr);
3109 }
3110 seq_putc(m, '\n');
406eb0c9 3111 }
406eb0c9 3112
071aee13
YH
3113 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114 struct mem_cgroup *iter;
3115
3116 nr = 0;
3117 for_each_mem_cgroup_tree(iter, memcg)
3118 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3119 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3120 for_each_node_state(nid, N_MEMORY) {
3121 nr = 0;
3122 for_each_mem_cgroup_tree(iter, memcg)
3123 nr += mem_cgroup_node_nr_lru_pages(
3124 iter, nid, stat->lru_mask);
3125 seq_printf(m, " N%d=%lu", nid, nr);
3126 }
3127 seq_putc(m, '\n');
406eb0c9 3128 }
406eb0c9 3129
406eb0c9
YH
3130 return 0;
3131}
3132#endif /* CONFIG_NUMA */
3133
2da8ca82 3134static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3135{
2da8ca82 3136 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3137 unsigned long memory, memsw;
af7c4b0e
JW
3138 struct mem_cgroup *mi;
3139 unsigned int i;
406eb0c9 3140
0ca44b14
GT
3141 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3142 MEM_CGROUP_STAT_NSTATS);
3143 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3144 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3145 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3146
af7c4b0e 3147 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3148 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3149 continue;
484ebb3b 3150 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3151 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3152 }
7b854121 3153
af7c4b0e
JW
3154 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3155 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3156 mem_cgroup_read_events(memcg, i));
3157
3158 for (i = 0; i < NR_LRU_LISTS; i++)
3159 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3160 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3161
14067bb3 3162 /* Hierarchical information */
3e32cb2e
JW
3163 memory = memsw = PAGE_COUNTER_MAX;
3164 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3165 memory = min(memory, mi->memory.limit);
3166 memsw = min(memsw, mi->memsw.limit);
fee7b548 3167 }
3e32cb2e
JW
3168 seq_printf(m, "hierarchical_memory_limit %llu\n",
3169 (u64)memory * PAGE_SIZE);
7941d214 3170 if (do_memsw_account())
3e32cb2e
JW
3171 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3172 (u64)memsw * PAGE_SIZE);
7f016ee8 3173
af7c4b0e 3174 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3175 unsigned long long val = 0;
af7c4b0e 3176
7941d214 3177 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3178 continue;
af7c4b0e
JW
3179 for_each_mem_cgroup_tree(mi, memcg)
3180 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3181 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3182 }
3183
3184 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3185 unsigned long long val = 0;
3186
3187 for_each_mem_cgroup_tree(mi, memcg)
3188 val += mem_cgroup_read_events(mi, i);
3189 seq_printf(m, "total_%s %llu\n",
3190 mem_cgroup_events_names[i], val);
3191 }
3192
3193 for (i = 0; i < NR_LRU_LISTS; i++) {
3194 unsigned long long val = 0;
3195
3196 for_each_mem_cgroup_tree(mi, memcg)
3197 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3198 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3199 }
14067bb3 3200
7f016ee8 3201#ifdef CONFIG_DEBUG_VM
7f016ee8 3202 {
ef8f2327
MG
3203 pg_data_t *pgdat;
3204 struct mem_cgroup_per_node *mz;
89abfab1 3205 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3206 unsigned long recent_rotated[2] = {0, 0};
3207 unsigned long recent_scanned[2] = {0, 0};
3208
ef8f2327
MG
3209 for_each_online_pgdat(pgdat) {
3210 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3211 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3212
ef8f2327
MG
3213 recent_rotated[0] += rstat->recent_rotated[0];
3214 recent_rotated[1] += rstat->recent_rotated[1];
3215 recent_scanned[0] += rstat->recent_scanned[0];
3216 recent_scanned[1] += rstat->recent_scanned[1];
3217 }
78ccf5b5
JW
3218 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3219 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3220 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3221 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3222 }
3223#endif
3224
d2ceb9b7
KH
3225 return 0;
3226}
3227
182446d0
TH
3228static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3229 struct cftype *cft)
a7885eb8 3230{
182446d0 3231 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3232
1f4c025b 3233 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3234}
3235
182446d0
TH
3236static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3237 struct cftype *cft, u64 val)
a7885eb8 3238{
182446d0 3239 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3240
3dae7fec 3241 if (val > 100)
a7885eb8
KM
3242 return -EINVAL;
3243
14208b0e 3244 if (css->parent)
3dae7fec
JW
3245 memcg->swappiness = val;
3246 else
3247 vm_swappiness = val;
068b38c1 3248
a7885eb8
KM
3249 return 0;
3250}
3251
2e72b634
KS
3252static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3253{
3254 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3255 unsigned long usage;
2e72b634
KS
3256 int i;
3257
3258 rcu_read_lock();
3259 if (!swap)
2c488db2 3260 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3261 else
2c488db2 3262 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3263
3264 if (!t)
3265 goto unlock;
3266
ce00a967 3267 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3268
3269 /*
748dad36 3270 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3271 * If it's not true, a threshold was crossed after last
3272 * call of __mem_cgroup_threshold().
3273 */
5407a562 3274 i = t->current_threshold;
2e72b634
KS
3275
3276 /*
3277 * Iterate backward over array of thresholds starting from
3278 * current_threshold and check if a threshold is crossed.
3279 * If none of thresholds below usage is crossed, we read
3280 * only one element of the array here.
3281 */
3282 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3283 eventfd_signal(t->entries[i].eventfd, 1);
3284
3285 /* i = current_threshold + 1 */
3286 i++;
3287
3288 /*
3289 * Iterate forward over array of thresholds starting from
3290 * current_threshold+1 and check if a threshold is crossed.
3291 * If none of thresholds above usage is crossed, we read
3292 * only one element of the array here.
3293 */
3294 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3295 eventfd_signal(t->entries[i].eventfd, 1);
3296
3297 /* Update current_threshold */
5407a562 3298 t->current_threshold = i - 1;
2e72b634
KS
3299unlock:
3300 rcu_read_unlock();
3301}
3302
3303static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3304{
ad4ca5f4
KS
3305 while (memcg) {
3306 __mem_cgroup_threshold(memcg, false);
7941d214 3307 if (do_memsw_account())
ad4ca5f4
KS
3308 __mem_cgroup_threshold(memcg, true);
3309
3310 memcg = parent_mem_cgroup(memcg);
3311 }
2e72b634
KS
3312}
3313
3314static int compare_thresholds(const void *a, const void *b)
3315{
3316 const struct mem_cgroup_threshold *_a = a;
3317 const struct mem_cgroup_threshold *_b = b;
3318
2bff24a3
GT
3319 if (_a->threshold > _b->threshold)
3320 return 1;
3321
3322 if (_a->threshold < _b->threshold)
3323 return -1;
3324
3325 return 0;
2e72b634
KS
3326}
3327
c0ff4b85 3328static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3329{
3330 struct mem_cgroup_eventfd_list *ev;
3331
2bcf2e92
MH
3332 spin_lock(&memcg_oom_lock);
3333
c0ff4b85 3334 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3335 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3336
3337 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3338 return 0;
3339}
3340
c0ff4b85 3341static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3342{
7d74b06f
KH
3343 struct mem_cgroup *iter;
3344
c0ff4b85 3345 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3346 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3347}
3348
59b6f873 3349static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3350 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3351{
2c488db2
KS
3352 struct mem_cgroup_thresholds *thresholds;
3353 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3354 unsigned long threshold;
3355 unsigned long usage;
2c488db2 3356 int i, size, ret;
2e72b634 3357
650c5e56 3358 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3359 if (ret)
3360 return ret;
3361
3362 mutex_lock(&memcg->thresholds_lock);
2c488db2 3363
05b84301 3364 if (type == _MEM) {
2c488db2 3365 thresholds = &memcg->thresholds;
ce00a967 3366 usage = mem_cgroup_usage(memcg, false);
05b84301 3367 } else if (type == _MEMSWAP) {
2c488db2 3368 thresholds = &memcg->memsw_thresholds;
ce00a967 3369 usage = mem_cgroup_usage(memcg, true);
05b84301 3370 } else
2e72b634
KS
3371 BUG();
3372
2e72b634 3373 /* Check if a threshold crossed before adding a new one */
2c488db2 3374 if (thresholds->primary)
2e72b634
KS
3375 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3376
2c488db2 3377 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3378
3379 /* Allocate memory for new array of thresholds */
2c488db2 3380 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3381 GFP_KERNEL);
2c488db2 3382 if (!new) {
2e72b634
KS
3383 ret = -ENOMEM;
3384 goto unlock;
3385 }
2c488db2 3386 new->size = size;
2e72b634
KS
3387
3388 /* Copy thresholds (if any) to new array */
2c488db2
KS
3389 if (thresholds->primary) {
3390 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3391 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3392 }
3393
2e72b634 3394 /* Add new threshold */
2c488db2
KS
3395 new->entries[size - 1].eventfd = eventfd;
3396 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3397
3398 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3399 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3400 compare_thresholds, NULL);
3401
3402 /* Find current threshold */
2c488db2 3403 new->current_threshold = -1;
2e72b634 3404 for (i = 0; i < size; i++) {
748dad36 3405 if (new->entries[i].threshold <= usage) {
2e72b634 3406 /*
2c488db2
KS
3407 * new->current_threshold will not be used until
3408 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3409 * it here.
3410 */
2c488db2 3411 ++new->current_threshold;
748dad36
SZ
3412 } else
3413 break;
2e72b634
KS
3414 }
3415
2c488db2
KS
3416 /* Free old spare buffer and save old primary buffer as spare */
3417 kfree(thresholds->spare);
3418 thresholds->spare = thresholds->primary;
3419
3420 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3421
907860ed 3422 /* To be sure that nobody uses thresholds */
2e72b634
KS
3423 synchronize_rcu();
3424
2e72b634
KS
3425unlock:
3426 mutex_unlock(&memcg->thresholds_lock);
3427
3428 return ret;
3429}
3430
59b6f873 3431static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3432 struct eventfd_ctx *eventfd, const char *args)
3433{
59b6f873 3434 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3435}
3436
59b6f873 3437static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3438 struct eventfd_ctx *eventfd, const char *args)
3439{
59b6f873 3440 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3441}
3442
59b6f873 3443static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3444 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3445{
2c488db2
KS
3446 struct mem_cgroup_thresholds *thresholds;
3447 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3448 unsigned long usage;
2c488db2 3449 int i, j, size;
2e72b634
KS
3450
3451 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3452
3453 if (type == _MEM) {
2c488db2 3454 thresholds = &memcg->thresholds;
ce00a967 3455 usage = mem_cgroup_usage(memcg, false);
05b84301 3456 } else if (type == _MEMSWAP) {
2c488db2 3457 thresholds = &memcg->memsw_thresholds;
ce00a967 3458 usage = mem_cgroup_usage(memcg, true);
05b84301 3459 } else
2e72b634
KS
3460 BUG();
3461
371528ca
AV
3462 if (!thresholds->primary)
3463 goto unlock;
3464
2e72b634
KS
3465 /* Check if a threshold crossed before removing */
3466 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3467
3468 /* Calculate new number of threshold */
2c488db2
KS
3469 size = 0;
3470 for (i = 0; i < thresholds->primary->size; i++) {
3471 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3472 size++;
3473 }
3474
2c488db2 3475 new = thresholds->spare;
907860ed 3476
2e72b634
KS
3477 /* Set thresholds array to NULL if we don't have thresholds */
3478 if (!size) {
2c488db2
KS
3479 kfree(new);
3480 new = NULL;
907860ed 3481 goto swap_buffers;
2e72b634
KS
3482 }
3483
2c488db2 3484 new->size = size;
2e72b634
KS
3485
3486 /* Copy thresholds and find current threshold */
2c488db2
KS
3487 new->current_threshold = -1;
3488 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3489 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3490 continue;
3491
2c488db2 3492 new->entries[j] = thresholds->primary->entries[i];
748dad36 3493 if (new->entries[j].threshold <= usage) {
2e72b634 3494 /*
2c488db2 3495 * new->current_threshold will not be used
2e72b634
KS
3496 * until rcu_assign_pointer(), so it's safe to increment
3497 * it here.
3498 */
2c488db2 3499 ++new->current_threshold;
2e72b634
KS
3500 }
3501 j++;
3502 }
3503
907860ed 3504swap_buffers:
2c488db2
KS
3505 /* Swap primary and spare array */
3506 thresholds->spare = thresholds->primary;
8c757763 3507
2c488db2 3508 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3509
907860ed 3510 /* To be sure that nobody uses thresholds */
2e72b634 3511 synchronize_rcu();
6611d8d7
MC
3512
3513 /* If all events are unregistered, free the spare array */
3514 if (!new) {
3515 kfree(thresholds->spare);
3516 thresholds->spare = NULL;
3517 }
371528ca 3518unlock:
2e72b634 3519 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3520}
c1e862c1 3521
59b6f873 3522static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3523 struct eventfd_ctx *eventfd)
3524{
59b6f873 3525 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3526}
3527
59b6f873 3528static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3529 struct eventfd_ctx *eventfd)
3530{
59b6f873 3531 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3532}
3533
59b6f873 3534static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3535 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3536{
9490ff27 3537 struct mem_cgroup_eventfd_list *event;
9490ff27 3538
9490ff27
KH
3539 event = kmalloc(sizeof(*event), GFP_KERNEL);
3540 if (!event)
3541 return -ENOMEM;
3542
1af8efe9 3543 spin_lock(&memcg_oom_lock);
9490ff27
KH
3544
3545 event->eventfd = eventfd;
3546 list_add(&event->list, &memcg->oom_notify);
3547
3548 /* already in OOM ? */
c2b42d3c 3549 if (memcg->under_oom)
9490ff27 3550 eventfd_signal(eventfd, 1);
1af8efe9 3551 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3552
3553 return 0;
3554}
3555
59b6f873 3556static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3557 struct eventfd_ctx *eventfd)
9490ff27 3558{
9490ff27 3559 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3560
1af8efe9 3561 spin_lock(&memcg_oom_lock);
9490ff27 3562
c0ff4b85 3563 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3564 if (ev->eventfd == eventfd) {
3565 list_del(&ev->list);
3566 kfree(ev);
3567 }
3568 }
3569
1af8efe9 3570 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3571}
3572
2da8ca82 3573static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3574{
2da8ca82 3575 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3576
791badbd 3577 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3578 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3579 return 0;
3580}
3581
182446d0 3582static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3583 struct cftype *cft, u64 val)
3584{
182446d0 3585 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3586
3587 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3588 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3589 return -EINVAL;
3590
c0ff4b85 3591 memcg->oom_kill_disable = val;
4d845ebf 3592 if (!val)
c0ff4b85 3593 memcg_oom_recover(memcg);
3dae7fec 3594
3c11ecf4
KH
3595 return 0;
3596}
3597
52ebea74
TH
3598#ifdef CONFIG_CGROUP_WRITEBACK
3599
3600struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3601{
3602 return &memcg->cgwb_list;
3603}
3604
841710aa
TH
3605static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3606{
3607 return wb_domain_init(&memcg->cgwb_domain, gfp);
3608}
3609
3610static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3611{
3612 wb_domain_exit(&memcg->cgwb_domain);
3613}
3614
2529bb3a
TH
3615static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3616{
3617 wb_domain_size_changed(&memcg->cgwb_domain);
3618}
3619
841710aa
TH
3620struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3621{
3622 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3623
3624 if (!memcg->css.parent)
3625 return NULL;
3626
3627 return &memcg->cgwb_domain;
3628}
3629
c2aa723a
TH
3630/**
3631 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3632 * @wb: bdi_writeback in question
c5edf9cd
TH
3633 * @pfilepages: out parameter for number of file pages
3634 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3635 * @pdirty: out parameter for number of dirty pages
3636 * @pwriteback: out parameter for number of pages under writeback
3637 *
c5edf9cd
TH
3638 * Determine the numbers of file, headroom, dirty, and writeback pages in
3639 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3640 * is a bit more involved.
c2aa723a 3641 *
c5edf9cd
TH
3642 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3643 * headroom is calculated as the lowest headroom of itself and the
3644 * ancestors. Note that this doesn't consider the actual amount of
3645 * available memory in the system. The caller should further cap
3646 * *@pheadroom accordingly.
c2aa723a 3647 */
c5edf9cd
TH
3648void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3649 unsigned long *pheadroom, unsigned long *pdirty,
3650 unsigned long *pwriteback)
c2aa723a
TH
3651{
3652 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3653 struct mem_cgroup *parent;
c2aa723a
TH
3654
3655 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3656
3657 /* this should eventually include NR_UNSTABLE_NFS */
3658 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3659 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3660 (1 << LRU_ACTIVE_FILE));
3661 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3662
c2aa723a
TH
3663 while ((parent = parent_mem_cgroup(memcg))) {
3664 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3665 unsigned long used = page_counter_read(&memcg->memory);
3666
c5edf9cd 3667 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3668 memcg = parent;
3669 }
c2aa723a
TH
3670}
3671
841710aa
TH
3672#else /* CONFIG_CGROUP_WRITEBACK */
3673
3674static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3675{
3676 return 0;
3677}
3678
3679static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3680{
3681}
3682
2529bb3a
TH
3683static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3684{
3685}
3686
52ebea74
TH
3687#endif /* CONFIG_CGROUP_WRITEBACK */
3688
3bc942f3
TH
3689/*
3690 * DO NOT USE IN NEW FILES.
3691 *
3692 * "cgroup.event_control" implementation.
3693 *
3694 * This is way over-engineered. It tries to support fully configurable
3695 * events for each user. Such level of flexibility is completely
3696 * unnecessary especially in the light of the planned unified hierarchy.
3697 *
3698 * Please deprecate this and replace with something simpler if at all
3699 * possible.
3700 */
3701
79bd9814
TH
3702/*
3703 * Unregister event and free resources.
3704 *
3705 * Gets called from workqueue.
3706 */
3bc942f3 3707static void memcg_event_remove(struct work_struct *work)
79bd9814 3708{
3bc942f3
TH
3709 struct mem_cgroup_event *event =
3710 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3711 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3712
3713 remove_wait_queue(event->wqh, &event->wait);
3714
59b6f873 3715 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3716
3717 /* Notify userspace the event is going away. */
3718 eventfd_signal(event->eventfd, 1);
3719
3720 eventfd_ctx_put(event->eventfd);
3721 kfree(event);
59b6f873 3722 css_put(&memcg->css);
79bd9814
TH
3723}
3724
3725/*
3726 * Gets called on POLLHUP on eventfd when user closes it.
3727 *
3728 * Called with wqh->lock held and interrupts disabled.
3729 */
3bc942f3
TH
3730static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3731 int sync, void *key)
79bd9814 3732{
3bc942f3
TH
3733 struct mem_cgroup_event *event =
3734 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3735 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3736 unsigned long flags = (unsigned long)key;
3737
3738 if (flags & POLLHUP) {
3739 /*
3740 * If the event has been detached at cgroup removal, we
3741 * can simply return knowing the other side will cleanup
3742 * for us.
3743 *
3744 * We can't race against event freeing since the other
3745 * side will require wqh->lock via remove_wait_queue(),
3746 * which we hold.
3747 */
fba94807 3748 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3749 if (!list_empty(&event->list)) {
3750 list_del_init(&event->list);
3751 /*
3752 * We are in atomic context, but cgroup_event_remove()
3753 * may sleep, so we have to call it in workqueue.
3754 */
3755 schedule_work(&event->remove);
3756 }
fba94807 3757 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3758 }
3759
3760 return 0;
3761}
3762
3bc942f3 3763static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3764 wait_queue_head_t *wqh, poll_table *pt)
3765{
3bc942f3
TH
3766 struct mem_cgroup_event *event =
3767 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3768
3769 event->wqh = wqh;
3770 add_wait_queue(wqh, &event->wait);
3771}
3772
3773/*
3bc942f3
TH
3774 * DO NOT USE IN NEW FILES.
3775 *
79bd9814
TH
3776 * Parse input and register new cgroup event handler.
3777 *
3778 * Input must be in format '<event_fd> <control_fd> <args>'.
3779 * Interpretation of args is defined by control file implementation.
3780 */
451af504
TH
3781static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3782 char *buf, size_t nbytes, loff_t off)
79bd9814 3783{
451af504 3784 struct cgroup_subsys_state *css = of_css(of);
fba94807 3785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3786 struct mem_cgroup_event *event;
79bd9814
TH
3787 struct cgroup_subsys_state *cfile_css;
3788 unsigned int efd, cfd;
3789 struct fd efile;
3790 struct fd cfile;
fba94807 3791 const char *name;
79bd9814
TH
3792 char *endp;
3793 int ret;
3794
451af504
TH
3795 buf = strstrip(buf);
3796
3797 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3798 if (*endp != ' ')
3799 return -EINVAL;
451af504 3800 buf = endp + 1;
79bd9814 3801
451af504 3802 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3803 if ((*endp != ' ') && (*endp != '\0'))
3804 return -EINVAL;
451af504 3805 buf = endp + 1;
79bd9814
TH
3806
3807 event = kzalloc(sizeof(*event), GFP_KERNEL);
3808 if (!event)
3809 return -ENOMEM;
3810
59b6f873 3811 event->memcg = memcg;
79bd9814 3812 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3813 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3814 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3815 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3816
3817 efile = fdget(efd);
3818 if (!efile.file) {
3819 ret = -EBADF;
3820 goto out_kfree;
3821 }
3822
3823 event->eventfd = eventfd_ctx_fileget(efile.file);
3824 if (IS_ERR(event->eventfd)) {
3825 ret = PTR_ERR(event->eventfd);
3826 goto out_put_efile;
3827 }
3828
3829 cfile = fdget(cfd);
3830 if (!cfile.file) {
3831 ret = -EBADF;
3832 goto out_put_eventfd;
3833 }
3834
3835 /* the process need read permission on control file */
3836 /* AV: shouldn't we check that it's been opened for read instead? */
3837 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3838 if (ret < 0)
3839 goto out_put_cfile;
3840
fba94807
TH
3841 /*
3842 * Determine the event callbacks and set them in @event. This used
3843 * to be done via struct cftype but cgroup core no longer knows
3844 * about these events. The following is crude but the whole thing
3845 * is for compatibility anyway.
3bc942f3
TH
3846 *
3847 * DO NOT ADD NEW FILES.
fba94807 3848 */
b583043e 3849 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3850
3851 if (!strcmp(name, "memory.usage_in_bytes")) {
3852 event->register_event = mem_cgroup_usage_register_event;
3853 event->unregister_event = mem_cgroup_usage_unregister_event;
3854 } else if (!strcmp(name, "memory.oom_control")) {
3855 event->register_event = mem_cgroup_oom_register_event;
3856 event->unregister_event = mem_cgroup_oom_unregister_event;
3857 } else if (!strcmp(name, "memory.pressure_level")) {
3858 event->register_event = vmpressure_register_event;
3859 event->unregister_event = vmpressure_unregister_event;
3860 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3861 event->register_event = memsw_cgroup_usage_register_event;
3862 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3863 } else {
3864 ret = -EINVAL;
3865 goto out_put_cfile;
3866 }
3867
79bd9814 3868 /*
b5557c4c
TH
3869 * Verify @cfile should belong to @css. Also, remaining events are
3870 * automatically removed on cgroup destruction but the removal is
3871 * asynchronous, so take an extra ref on @css.
79bd9814 3872 */
b583043e 3873 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3874 &memory_cgrp_subsys);
79bd9814 3875 ret = -EINVAL;
5a17f543 3876 if (IS_ERR(cfile_css))
79bd9814 3877 goto out_put_cfile;
5a17f543
TH
3878 if (cfile_css != css) {
3879 css_put(cfile_css);
79bd9814 3880 goto out_put_cfile;
5a17f543 3881 }
79bd9814 3882
451af504 3883 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3884 if (ret)
3885 goto out_put_css;
3886
3887 efile.file->f_op->poll(efile.file, &event->pt);
3888
fba94807
TH
3889 spin_lock(&memcg->event_list_lock);
3890 list_add(&event->list, &memcg->event_list);
3891 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3892
3893 fdput(cfile);
3894 fdput(efile);
3895
451af504 3896 return nbytes;
79bd9814
TH
3897
3898out_put_css:
b5557c4c 3899 css_put(css);
79bd9814
TH
3900out_put_cfile:
3901 fdput(cfile);
3902out_put_eventfd:
3903 eventfd_ctx_put(event->eventfd);
3904out_put_efile:
3905 fdput(efile);
3906out_kfree:
3907 kfree(event);
3908
3909 return ret;
3910}
3911
241994ed 3912static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3913 {
0eea1030 3914 .name = "usage_in_bytes",
8c7c6e34 3915 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3916 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3917 },
c84872e1
PE
3918 {
3919 .name = "max_usage_in_bytes",
8c7c6e34 3920 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3921 .write = mem_cgroup_reset,
791badbd 3922 .read_u64 = mem_cgroup_read_u64,
c84872e1 3923 },
8cdea7c0 3924 {
0eea1030 3925 .name = "limit_in_bytes",
8c7c6e34 3926 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3927 .write = mem_cgroup_write,
791badbd 3928 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3929 },
296c81d8
BS
3930 {
3931 .name = "soft_limit_in_bytes",
3932 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3933 .write = mem_cgroup_write,
791badbd 3934 .read_u64 = mem_cgroup_read_u64,
296c81d8 3935 },
8cdea7c0
BS
3936 {
3937 .name = "failcnt",
8c7c6e34 3938 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3939 .write = mem_cgroup_reset,
791badbd 3940 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3941 },
d2ceb9b7
KH
3942 {
3943 .name = "stat",
2da8ca82 3944 .seq_show = memcg_stat_show,
d2ceb9b7 3945 },
c1e862c1
KH
3946 {
3947 .name = "force_empty",
6770c64e 3948 .write = mem_cgroup_force_empty_write,
c1e862c1 3949 },
18f59ea7
BS
3950 {
3951 .name = "use_hierarchy",
3952 .write_u64 = mem_cgroup_hierarchy_write,
3953 .read_u64 = mem_cgroup_hierarchy_read,
3954 },
79bd9814 3955 {
3bc942f3 3956 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3957 .write = memcg_write_event_control,
7dbdb199 3958 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3959 },
a7885eb8
KM
3960 {
3961 .name = "swappiness",
3962 .read_u64 = mem_cgroup_swappiness_read,
3963 .write_u64 = mem_cgroup_swappiness_write,
3964 },
7dc74be0
DN
3965 {
3966 .name = "move_charge_at_immigrate",
3967 .read_u64 = mem_cgroup_move_charge_read,
3968 .write_u64 = mem_cgroup_move_charge_write,
3969 },
9490ff27
KH
3970 {
3971 .name = "oom_control",
2da8ca82 3972 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3973 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3974 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3975 },
70ddf637
AV
3976 {
3977 .name = "pressure_level",
70ddf637 3978 },
406eb0c9
YH
3979#ifdef CONFIG_NUMA
3980 {
3981 .name = "numa_stat",
2da8ca82 3982 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3983 },
3984#endif
510fc4e1
GC
3985 {
3986 .name = "kmem.limit_in_bytes",
3987 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3988 .write = mem_cgroup_write,
791badbd 3989 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3990 },
3991 {
3992 .name = "kmem.usage_in_bytes",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3994 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3995 },
3996 {
3997 .name = "kmem.failcnt",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3999 .write = mem_cgroup_reset,
791badbd 4000 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4001 },
4002 {
4003 .name = "kmem.max_usage_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4005 .write = mem_cgroup_reset,
791badbd 4006 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4007 },
749c5415
GC
4008#ifdef CONFIG_SLABINFO
4009 {
4010 .name = "kmem.slabinfo",
bc2791f8
TH
4011 .seq_start = memcg_slab_start,
4012 .seq_next = memcg_slab_next,
4013 .seq_stop = memcg_slab_stop,
b047501c 4014 .seq_show = memcg_slab_show,
749c5415
GC
4015 },
4016#endif
d55f90bf
VD
4017 {
4018 .name = "kmem.tcp.limit_in_bytes",
4019 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4020 .write = mem_cgroup_write,
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.tcp.usage_in_bytes",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4026 .read_u64 = mem_cgroup_read_u64,
4027 },
4028 {
4029 .name = "kmem.tcp.failcnt",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4031 .write = mem_cgroup_reset,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 {
4035 .name = "kmem.tcp.max_usage_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4037 .write = mem_cgroup_reset,
4038 .read_u64 = mem_cgroup_read_u64,
4039 },
6bc10349 4040 { }, /* terminate */
af36f906 4041};
8c7c6e34 4042
73f576c0
JW
4043/*
4044 * Private memory cgroup IDR
4045 *
4046 * Swap-out records and page cache shadow entries need to store memcg
4047 * references in constrained space, so we maintain an ID space that is
4048 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4049 * memory-controlled cgroups to 64k.
4050 *
4051 * However, there usually are many references to the oflline CSS after
4052 * the cgroup has been destroyed, such as page cache or reclaimable
4053 * slab objects, that don't need to hang on to the ID. We want to keep
4054 * those dead CSS from occupying IDs, or we might quickly exhaust the
4055 * relatively small ID space and prevent the creation of new cgroups
4056 * even when there are much fewer than 64k cgroups - possibly none.
4057 *
4058 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4059 * be freed and recycled when it's no longer needed, which is usually
4060 * when the CSS is offlined.
4061 *
4062 * The only exception to that are records of swapped out tmpfs/shmem
4063 * pages that need to be attributed to live ancestors on swapin. But
4064 * those references are manageable from userspace.
4065 */
4066
4067static DEFINE_IDR(mem_cgroup_idr);
4068
615d66c3 4069static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4070{
58fa2a55 4071 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4072 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4073}
4074
615d66c3 4075static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4076{
58fa2a55 4077 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4078 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4079 idr_remove(&mem_cgroup_idr, memcg->id.id);
4080 memcg->id.id = 0;
4081
4082 /* Memcg ID pins CSS */
4083 css_put(&memcg->css);
4084 }
4085}
4086
615d66c3
VD
4087static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4088{
4089 mem_cgroup_id_get_many(memcg, 1);
4090}
4091
4092static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4093{
4094 mem_cgroup_id_put_many(memcg, 1);
4095}
4096
73f576c0
JW
4097/**
4098 * mem_cgroup_from_id - look up a memcg from a memcg id
4099 * @id: the memcg id to look up
4100 *
4101 * Caller must hold rcu_read_lock().
4102 */
4103struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4104{
4105 WARN_ON_ONCE(!rcu_read_lock_held());
4106 return idr_find(&mem_cgroup_idr, id);
4107}
4108
ef8f2327 4109static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4110{
4111 struct mem_cgroup_per_node *pn;
ef8f2327 4112 int tmp = node;
1ecaab2b
KH
4113 /*
4114 * This routine is called against possible nodes.
4115 * But it's BUG to call kmalloc() against offline node.
4116 *
4117 * TODO: this routine can waste much memory for nodes which will
4118 * never be onlined. It's better to use memory hotplug callback
4119 * function.
4120 */
41e3355d
KH
4121 if (!node_state(node, N_NORMAL_MEMORY))
4122 tmp = -1;
17295c88 4123 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4124 if (!pn)
4125 return 1;
1ecaab2b 4126
ef8f2327
MG
4127 lruvec_init(&pn->lruvec);
4128 pn->usage_in_excess = 0;
4129 pn->on_tree = false;
4130 pn->memcg = memcg;
4131
54f72fe0 4132 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4133 return 0;
4134}
4135
ef8f2327 4136static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4137{
54f72fe0 4138 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4139}
4140
0b8f73e1 4141static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4142{
c8b2a36f 4143 int node;
59927fb9 4144
0b8f73e1 4145 memcg_wb_domain_exit(memcg);
c8b2a36f 4146 for_each_node(node)
ef8f2327 4147 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4148 free_percpu(memcg->stat);
8ff69e2c 4149 kfree(memcg);
59927fb9 4150}
3afe36b1 4151
0b8f73e1 4152static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4153{
d142e3e6 4154 struct mem_cgroup *memcg;
0b8f73e1 4155 size_t size;
6d12e2d8 4156 int node;
8cdea7c0 4157
0b8f73e1
JW
4158 size = sizeof(struct mem_cgroup);
4159 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4160
4161 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4162 if (!memcg)
0b8f73e1
JW
4163 return NULL;
4164
73f576c0
JW
4165 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4166 1, MEM_CGROUP_ID_MAX,
4167 GFP_KERNEL);
4168 if (memcg->id.id < 0)
4169 goto fail;
4170
0b8f73e1
JW
4171 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4172 if (!memcg->stat)
4173 goto fail;
78fb7466 4174
3ed28fa1 4175 for_each_node(node)
ef8f2327 4176 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4177 goto fail;
f64c3f54 4178
0b8f73e1
JW
4179 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4180 goto fail;
28dbc4b6 4181
f7e1cb6e 4182 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4183 memcg->last_scanned_node = MAX_NUMNODES;
4184 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4185 mutex_init(&memcg->thresholds_lock);
4186 spin_lock_init(&memcg->move_lock);
70ddf637 4187 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4188 INIT_LIST_HEAD(&memcg->event_list);
4189 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4190 memcg->socket_pressure = jiffies;
127424c8 4191#ifndef CONFIG_SLOB
900a38f0 4192 memcg->kmemcg_id = -1;
900a38f0 4193#endif
52ebea74
TH
4194#ifdef CONFIG_CGROUP_WRITEBACK
4195 INIT_LIST_HEAD(&memcg->cgwb_list);
4196#endif
73f576c0 4197 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4198 return memcg;
4199fail:
73f576c0
JW
4200 if (memcg->id.id > 0)
4201 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4202 mem_cgroup_free(memcg);
4203 return NULL;
d142e3e6
GC
4204}
4205
0b8f73e1
JW
4206static struct cgroup_subsys_state * __ref
4207mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4208{
0b8f73e1
JW
4209 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4210 struct mem_cgroup *memcg;
4211 long error = -ENOMEM;
d142e3e6 4212
0b8f73e1
JW
4213 memcg = mem_cgroup_alloc();
4214 if (!memcg)
4215 return ERR_PTR(error);
d142e3e6 4216
0b8f73e1
JW
4217 memcg->high = PAGE_COUNTER_MAX;
4218 memcg->soft_limit = PAGE_COUNTER_MAX;
4219 if (parent) {
4220 memcg->swappiness = mem_cgroup_swappiness(parent);
4221 memcg->oom_kill_disable = parent->oom_kill_disable;
4222 }
4223 if (parent && parent->use_hierarchy) {
4224 memcg->use_hierarchy = true;
3e32cb2e 4225 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4226 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4227 page_counter_init(&memcg->memsw, &parent->memsw);
4228 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4229 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4230 } else {
3e32cb2e 4231 page_counter_init(&memcg->memory, NULL);
37e84351 4232 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4233 page_counter_init(&memcg->memsw, NULL);
4234 page_counter_init(&memcg->kmem, NULL);
0db15298 4235 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4236 /*
4237 * Deeper hierachy with use_hierarchy == false doesn't make
4238 * much sense so let cgroup subsystem know about this
4239 * unfortunate state in our controller.
4240 */
d142e3e6 4241 if (parent != root_mem_cgroup)
073219e9 4242 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4243 }
d6441637 4244
0b8f73e1
JW
4245 /* The following stuff does not apply to the root */
4246 if (!parent) {
4247 root_mem_cgroup = memcg;
4248 return &memcg->css;
4249 }
4250
b313aeee 4251 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4252 if (error)
4253 goto fail;
127424c8 4254
f7e1cb6e 4255 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4256 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4257
0b8f73e1
JW
4258 return &memcg->css;
4259fail:
4260 mem_cgroup_free(memcg);
ea3a9645 4261 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4262}
4263
73f576c0 4264static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4265{
58fa2a55
VD
4266 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4267
73f576c0 4268 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4269 atomic_set(&memcg->id.ref, 1);
73f576c0 4270 css_get(css);
2f7dd7a4 4271 return 0;
8cdea7c0
BS
4272}
4273
eb95419b 4274static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4275{
eb95419b 4276 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4277 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4278
4279 /*
4280 * Unregister events and notify userspace.
4281 * Notify userspace about cgroup removing only after rmdir of cgroup
4282 * directory to avoid race between userspace and kernelspace.
4283 */
fba94807
TH
4284 spin_lock(&memcg->event_list_lock);
4285 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4286 list_del_init(&event->list);
4287 schedule_work(&event->remove);
4288 }
fba94807 4289 spin_unlock(&memcg->event_list_lock);
ec64f515 4290
567e9ab2 4291 memcg_offline_kmem(memcg);
52ebea74 4292 wb_memcg_offline(memcg);
73f576c0
JW
4293
4294 mem_cgroup_id_put(memcg);
df878fb0
KH
4295}
4296
6df38689
VD
4297static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4298{
4299 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4300
4301 invalidate_reclaim_iterators(memcg);
4302}
4303
eb95419b 4304static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4305{
eb95419b 4306 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4307
f7e1cb6e 4308 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4309 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4310
0db15298 4311 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4312 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4313
0b8f73e1
JW
4314 vmpressure_cleanup(&memcg->vmpressure);
4315 cancel_work_sync(&memcg->high_work);
4316 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4317 memcg_free_kmem(memcg);
0b8f73e1 4318 mem_cgroup_free(memcg);
8cdea7c0
BS
4319}
4320
1ced953b
TH
4321/**
4322 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4323 * @css: the target css
4324 *
4325 * Reset the states of the mem_cgroup associated with @css. This is
4326 * invoked when the userland requests disabling on the default hierarchy
4327 * but the memcg is pinned through dependency. The memcg should stop
4328 * applying policies and should revert to the vanilla state as it may be
4329 * made visible again.
4330 *
4331 * The current implementation only resets the essential configurations.
4332 * This needs to be expanded to cover all the visible parts.
4333 */
4334static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4335{
4336 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4337
d334c9bc
VD
4338 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4339 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4340 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4341 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4342 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4343 memcg->low = 0;
4344 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4345 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4346 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4347}
4348
02491447 4349#ifdef CONFIG_MMU
7dc74be0 4350/* Handlers for move charge at task migration. */
854ffa8d 4351static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4352{
05b84301 4353 int ret;
9476db97 4354
d0164adc
MG
4355 /* Try a single bulk charge without reclaim first, kswapd may wake */
4356 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4357 if (!ret) {
854ffa8d 4358 mc.precharge += count;
854ffa8d
DN
4359 return ret;
4360 }
9476db97 4361
3674534b 4362 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4363 while (count--) {
3674534b 4364 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4365 if (ret)
38c5d72f 4366 return ret;
854ffa8d 4367 mc.precharge++;
9476db97 4368 cond_resched();
854ffa8d 4369 }
9476db97 4370 return 0;
4ffef5fe
DN
4371}
4372
4ffef5fe
DN
4373union mc_target {
4374 struct page *page;
02491447 4375 swp_entry_t ent;
4ffef5fe
DN
4376};
4377
4ffef5fe 4378enum mc_target_type {
8d32ff84 4379 MC_TARGET_NONE = 0,
4ffef5fe 4380 MC_TARGET_PAGE,
02491447 4381 MC_TARGET_SWAP,
4ffef5fe
DN
4382};
4383
90254a65
DN
4384static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4385 unsigned long addr, pte_t ptent)
4ffef5fe 4386{
90254a65 4387 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4388
90254a65
DN
4389 if (!page || !page_mapped(page))
4390 return NULL;
4391 if (PageAnon(page)) {
1dfab5ab 4392 if (!(mc.flags & MOVE_ANON))
90254a65 4393 return NULL;
1dfab5ab
JW
4394 } else {
4395 if (!(mc.flags & MOVE_FILE))
4396 return NULL;
4397 }
90254a65
DN
4398 if (!get_page_unless_zero(page))
4399 return NULL;
4400
4401 return page;
4402}
4403
4b91355e 4404#ifdef CONFIG_SWAP
90254a65 4405static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4406 pte_t ptent, swp_entry_t *entry)
90254a65 4407{
90254a65
DN
4408 struct page *page = NULL;
4409 swp_entry_t ent = pte_to_swp_entry(ptent);
4410
1dfab5ab 4411 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4412 return NULL;
4b91355e
KH
4413 /*
4414 * Because lookup_swap_cache() updates some statistics counter,
4415 * we call find_get_page() with swapper_space directly.
4416 */
f6ab1f7f 4417 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4418 if (do_memsw_account())
90254a65
DN
4419 entry->val = ent.val;
4420
4421 return page;
4422}
4b91355e
KH
4423#else
4424static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4425 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4426{
4427 return NULL;
4428}
4429#endif
90254a65 4430
87946a72
DN
4431static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4432 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4433{
4434 struct page *page = NULL;
87946a72
DN
4435 struct address_space *mapping;
4436 pgoff_t pgoff;
4437
4438 if (!vma->vm_file) /* anonymous vma */
4439 return NULL;
1dfab5ab 4440 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4441 return NULL;
4442
87946a72 4443 mapping = vma->vm_file->f_mapping;
0661a336 4444 pgoff = linear_page_index(vma, addr);
87946a72
DN
4445
4446 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4447#ifdef CONFIG_SWAP
4448 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4449 if (shmem_mapping(mapping)) {
4450 page = find_get_entry(mapping, pgoff);
4451 if (radix_tree_exceptional_entry(page)) {
4452 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4453 if (do_memsw_account())
139b6a6f 4454 *entry = swp;
f6ab1f7f
HY
4455 page = find_get_page(swap_address_space(swp),
4456 swp_offset(swp));
139b6a6f
JW
4457 }
4458 } else
4459 page = find_get_page(mapping, pgoff);
4460#else
4461 page = find_get_page(mapping, pgoff);
aa3b1895 4462#endif
87946a72
DN
4463 return page;
4464}
4465
b1b0deab
CG
4466/**
4467 * mem_cgroup_move_account - move account of the page
4468 * @page: the page
25843c2b 4469 * @compound: charge the page as compound or small page
b1b0deab
CG
4470 * @from: mem_cgroup which the page is moved from.
4471 * @to: mem_cgroup which the page is moved to. @from != @to.
4472 *
3ac808fd 4473 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4474 *
4475 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4476 * from old cgroup.
4477 */
4478static int mem_cgroup_move_account(struct page *page,
f627c2f5 4479 bool compound,
b1b0deab
CG
4480 struct mem_cgroup *from,
4481 struct mem_cgroup *to)
4482{
4483 unsigned long flags;
f627c2f5 4484 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4485 int ret;
c4843a75 4486 bool anon;
b1b0deab
CG
4487
4488 VM_BUG_ON(from == to);
4489 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4490 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4491
4492 /*
6a93ca8f 4493 * Prevent mem_cgroup_migrate() from looking at
45637bab 4494 * page->mem_cgroup of its source page while we change it.
b1b0deab 4495 */
f627c2f5 4496 ret = -EBUSY;
b1b0deab
CG
4497 if (!trylock_page(page))
4498 goto out;
4499
4500 ret = -EINVAL;
4501 if (page->mem_cgroup != from)
4502 goto out_unlock;
4503
c4843a75
GT
4504 anon = PageAnon(page);
4505
b1b0deab
CG
4506 spin_lock_irqsave(&from->move_lock, flags);
4507
c4843a75 4508 if (!anon && page_mapped(page)) {
b1b0deab
CG
4509 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4510 nr_pages);
4511 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4512 nr_pages);
4513 }
4514
c4843a75
GT
4515 /*
4516 * move_lock grabbed above and caller set from->moving_account, so
4517 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4518 * So mapping should be stable for dirty pages.
4519 */
4520 if (!anon && PageDirty(page)) {
4521 struct address_space *mapping = page_mapping(page);
4522
4523 if (mapping_cap_account_dirty(mapping)) {
4524 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4525 nr_pages);
4526 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4527 nr_pages);
4528 }
4529 }
4530
b1b0deab
CG
4531 if (PageWriteback(page)) {
4532 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4533 nr_pages);
4534 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4535 nr_pages);
4536 }
4537
4538 /*
4539 * It is safe to change page->mem_cgroup here because the page
4540 * is referenced, charged, and isolated - we can't race with
4541 * uncharging, charging, migration, or LRU putback.
4542 */
4543
4544 /* caller should have done css_get */
4545 page->mem_cgroup = to;
4546 spin_unlock_irqrestore(&from->move_lock, flags);
4547
4548 ret = 0;
4549
4550 local_irq_disable();
f627c2f5 4551 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4552 memcg_check_events(to, page);
f627c2f5 4553 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4554 memcg_check_events(from, page);
4555 local_irq_enable();
4556out_unlock:
4557 unlock_page(page);
4558out:
4559 return ret;
4560}
4561
7cf7806c
LR
4562/**
4563 * get_mctgt_type - get target type of moving charge
4564 * @vma: the vma the pte to be checked belongs
4565 * @addr: the address corresponding to the pte to be checked
4566 * @ptent: the pte to be checked
4567 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4568 *
4569 * Returns
4570 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4571 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4572 * move charge. if @target is not NULL, the page is stored in target->page
4573 * with extra refcnt got(Callers should handle it).
4574 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4575 * target for charge migration. if @target is not NULL, the entry is stored
4576 * in target->ent.
4577 *
4578 * Called with pte lock held.
4579 */
4580
8d32ff84 4581static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4582 unsigned long addr, pte_t ptent, union mc_target *target)
4583{
4584 struct page *page = NULL;
8d32ff84 4585 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4586 swp_entry_t ent = { .val = 0 };
4587
4588 if (pte_present(ptent))
4589 page = mc_handle_present_pte(vma, addr, ptent);
4590 else if (is_swap_pte(ptent))
48406ef8 4591 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4592 else if (pte_none(ptent))
87946a72 4593 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4594
4595 if (!page && !ent.val)
8d32ff84 4596 return ret;
02491447 4597 if (page) {
02491447 4598 /*
0a31bc97 4599 * Do only loose check w/o serialization.
1306a85a 4600 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4601 * not under LRU exclusion.
02491447 4602 */
1306a85a 4603 if (page->mem_cgroup == mc.from) {
02491447
DN
4604 ret = MC_TARGET_PAGE;
4605 if (target)
4606 target->page = page;
4607 }
4608 if (!ret || !target)
4609 put_page(page);
4610 }
90254a65
DN
4611 /* There is a swap entry and a page doesn't exist or isn't charged */
4612 if (ent.val && !ret &&
34c00c31 4613 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4614 ret = MC_TARGET_SWAP;
4615 if (target)
4616 target->ent = ent;
4ffef5fe 4617 }
4ffef5fe
DN
4618 return ret;
4619}
4620
12724850
NH
4621#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4622/*
4623 * We don't consider swapping or file mapped pages because THP does not
4624 * support them for now.
4625 * Caller should make sure that pmd_trans_huge(pmd) is true.
4626 */
4627static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4628 unsigned long addr, pmd_t pmd, union mc_target *target)
4629{
4630 struct page *page = NULL;
12724850
NH
4631 enum mc_target_type ret = MC_TARGET_NONE;
4632
4633 page = pmd_page(pmd);
309381fe 4634 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4635 if (!(mc.flags & MOVE_ANON))
12724850 4636 return ret;
1306a85a 4637 if (page->mem_cgroup == mc.from) {
12724850
NH
4638 ret = MC_TARGET_PAGE;
4639 if (target) {
4640 get_page(page);
4641 target->page = page;
4642 }
4643 }
4644 return ret;
4645}
4646#else
4647static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4648 unsigned long addr, pmd_t pmd, union mc_target *target)
4649{
4650 return MC_TARGET_NONE;
4651}
4652#endif
4653
4ffef5fe
DN
4654static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4655 unsigned long addr, unsigned long end,
4656 struct mm_walk *walk)
4657{
26bcd64a 4658 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4659 pte_t *pte;
4660 spinlock_t *ptl;
4661
b6ec57f4
KS
4662 ptl = pmd_trans_huge_lock(pmd, vma);
4663 if (ptl) {
12724850
NH
4664 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4665 mc.precharge += HPAGE_PMD_NR;
bf929152 4666 spin_unlock(ptl);
1a5a9906 4667 return 0;
12724850 4668 }
03319327 4669
45f83cef
AA
4670 if (pmd_trans_unstable(pmd))
4671 return 0;
4ffef5fe
DN
4672 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4673 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4674 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4675 mc.precharge++; /* increment precharge temporarily */
4676 pte_unmap_unlock(pte - 1, ptl);
4677 cond_resched();
4678
7dc74be0
DN
4679 return 0;
4680}
4681
4ffef5fe
DN
4682static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4683{
4684 unsigned long precharge;
4ffef5fe 4685
26bcd64a
NH
4686 struct mm_walk mem_cgroup_count_precharge_walk = {
4687 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4688 .mm = mm,
4689 };
dfe076b0 4690 down_read(&mm->mmap_sem);
0247f3f4
JM
4691 walk_page_range(0, mm->highest_vm_end,
4692 &mem_cgroup_count_precharge_walk);
dfe076b0 4693 up_read(&mm->mmap_sem);
4ffef5fe
DN
4694
4695 precharge = mc.precharge;
4696 mc.precharge = 0;
4697
4698 return precharge;
4699}
4700
4ffef5fe
DN
4701static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4702{
dfe076b0
DN
4703 unsigned long precharge = mem_cgroup_count_precharge(mm);
4704
4705 VM_BUG_ON(mc.moving_task);
4706 mc.moving_task = current;
4707 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4708}
4709
dfe076b0
DN
4710/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4711static void __mem_cgroup_clear_mc(void)
4ffef5fe 4712{
2bd9bb20
KH
4713 struct mem_cgroup *from = mc.from;
4714 struct mem_cgroup *to = mc.to;
4715
4ffef5fe 4716 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4717 if (mc.precharge) {
00501b53 4718 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4719 mc.precharge = 0;
4720 }
4721 /*
4722 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4723 * we must uncharge here.
4724 */
4725 if (mc.moved_charge) {
00501b53 4726 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4727 mc.moved_charge = 0;
4ffef5fe 4728 }
483c30b5
DN
4729 /* we must fixup refcnts and charges */
4730 if (mc.moved_swap) {
483c30b5 4731 /* uncharge swap account from the old cgroup */
ce00a967 4732 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4733 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4734
615d66c3
VD
4735 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4736
05b84301 4737 /*
3e32cb2e
JW
4738 * we charged both to->memory and to->memsw, so we
4739 * should uncharge to->memory.
05b84301 4740 */
ce00a967 4741 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4742 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4743
615d66c3
VD
4744 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4745 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4746
483c30b5
DN
4747 mc.moved_swap = 0;
4748 }
dfe076b0
DN
4749 memcg_oom_recover(from);
4750 memcg_oom_recover(to);
4751 wake_up_all(&mc.waitq);
4752}
4753
4754static void mem_cgroup_clear_mc(void)
4755{
264a0ae1
TH
4756 struct mm_struct *mm = mc.mm;
4757
dfe076b0
DN
4758 /*
4759 * we must clear moving_task before waking up waiters at the end of
4760 * task migration.
4761 */
4762 mc.moving_task = NULL;
4763 __mem_cgroup_clear_mc();
2bd9bb20 4764 spin_lock(&mc.lock);
4ffef5fe
DN
4765 mc.from = NULL;
4766 mc.to = NULL;
264a0ae1 4767 mc.mm = NULL;
2bd9bb20 4768 spin_unlock(&mc.lock);
264a0ae1
TH
4769
4770 mmput(mm);
4ffef5fe
DN
4771}
4772
1f7dd3e5 4773static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4774{
1f7dd3e5 4775 struct cgroup_subsys_state *css;
eed67d75 4776 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4777 struct mem_cgroup *from;
4530eddb 4778 struct task_struct *leader, *p;
9f2115f9 4779 struct mm_struct *mm;
1dfab5ab 4780 unsigned long move_flags;
9f2115f9 4781 int ret = 0;
7dc74be0 4782
1f7dd3e5
TH
4783 /* charge immigration isn't supported on the default hierarchy */
4784 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4785 return 0;
4786
4530eddb
TH
4787 /*
4788 * Multi-process migrations only happen on the default hierarchy
4789 * where charge immigration is not used. Perform charge
4790 * immigration if @tset contains a leader and whine if there are
4791 * multiple.
4792 */
4793 p = NULL;
1f7dd3e5 4794 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4795 WARN_ON_ONCE(p);
4796 p = leader;
1f7dd3e5 4797 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4798 }
4799 if (!p)
4800 return 0;
4801
1f7dd3e5
TH
4802 /*
4803 * We are now commited to this value whatever it is. Changes in this
4804 * tunable will only affect upcoming migrations, not the current one.
4805 * So we need to save it, and keep it going.
4806 */
4807 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4808 if (!move_flags)
4809 return 0;
4810
9f2115f9
TH
4811 from = mem_cgroup_from_task(p);
4812
4813 VM_BUG_ON(from == memcg);
4814
4815 mm = get_task_mm(p);
4816 if (!mm)
4817 return 0;
4818 /* We move charges only when we move a owner of the mm */
4819 if (mm->owner == p) {
4820 VM_BUG_ON(mc.from);
4821 VM_BUG_ON(mc.to);
4822 VM_BUG_ON(mc.precharge);
4823 VM_BUG_ON(mc.moved_charge);
4824 VM_BUG_ON(mc.moved_swap);
4825
4826 spin_lock(&mc.lock);
264a0ae1 4827 mc.mm = mm;
9f2115f9
TH
4828 mc.from = from;
4829 mc.to = memcg;
4830 mc.flags = move_flags;
4831 spin_unlock(&mc.lock);
4832 /* We set mc.moving_task later */
4833
4834 ret = mem_cgroup_precharge_mc(mm);
4835 if (ret)
4836 mem_cgroup_clear_mc();
264a0ae1
TH
4837 } else {
4838 mmput(mm);
7dc74be0
DN
4839 }
4840 return ret;
4841}
4842
1f7dd3e5 4843static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4844{
4e2f245d
JW
4845 if (mc.to)
4846 mem_cgroup_clear_mc();
7dc74be0
DN
4847}
4848
4ffef5fe
DN
4849static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4850 unsigned long addr, unsigned long end,
4851 struct mm_walk *walk)
7dc74be0 4852{
4ffef5fe 4853 int ret = 0;
26bcd64a 4854 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4855 pte_t *pte;
4856 spinlock_t *ptl;
12724850
NH
4857 enum mc_target_type target_type;
4858 union mc_target target;
4859 struct page *page;
4ffef5fe 4860
b6ec57f4
KS
4861 ptl = pmd_trans_huge_lock(pmd, vma);
4862 if (ptl) {
62ade86a 4863 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4864 spin_unlock(ptl);
12724850
NH
4865 return 0;
4866 }
4867 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4868 if (target_type == MC_TARGET_PAGE) {
4869 page = target.page;
4870 if (!isolate_lru_page(page)) {
f627c2f5 4871 if (!mem_cgroup_move_account(page, true,
1306a85a 4872 mc.from, mc.to)) {
12724850
NH
4873 mc.precharge -= HPAGE_PMD_NR;
4874 mc.moved_charge += HPAGE_PMD_NR;
4875 }
4876 putback_lru_page(page);
4877 }
4878 put_page(page);
4879 }
bf929152 4880 spin_unlock(ptl);
1a5a9906 4881 return 0;
12724850
NH
4882 }
4883
45f83cef
AA
4884 if (pmd_trans_unstable(pmd))
4885 return 0;
4ffef5fe
DN
4886retry:
4887 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4888 for (; addr != end; addr += PAGE_SIZE) {
4889 pte_t ptent = *(pte++);
02491447 4890 swp_entry_t ent;
4ffef5fe
DN
4891
4892 if (!mc.precharge)
4893 break;
4894
8d32ff84 4895 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4896 case MC_TARGET_PAGE:
4897 page = target.page;
53f9263b
KS
4898 /*
4899 * We can have a part of the split pmd here. Moving it
4900 * can be done but it would be too convoluted so simply
4901 * ignore such a partial THP and keep it in original
4902 * memcg. There should be somebody mapping the head.
4903 */
4904 if (PageTransCompound(page))
4905 goto put;
4ffef5fe
DN
4906 if (isolate_lru_page(page))
4907 goto put;
f627c2f5
KS
4908 if (!mem_cgroup_move_account(page, false,
4909 mc.from, mc.to)) {
4ffef5fe 4910 mc.precharge--;
854ffa8d
DN
4911 /* we uncharge from mc.from later. */
4912 mc.moved_charge++;
4ffef5fe
DN
4913 }
4914 putback_lru_page(page);
8d32ff84 4915put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4916 put_page(page);
4917 break;
02491447
DN
4918 case MC_TARGET_SWAP:
4919 ent = target.ent;
e91cbb42 4920 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4921 mc.precharge--;
483c30b5
DN
4922 /* we fixup refcnts and charges later. */
4923 mc.moved_swap++;
4924 }
02491447 4925 break;
4ffef5fe
DN
4926 default:
4927 break;
4928 }
4929 }
4930 pte_unmap_unlock(pte - 1, ptl);
4931 cond_resched();
4932
4933 if (addr != end) {
4934 /*
4935 * We have consumed all precharges we got in can_attach().
4936 * We try charge one by one, but don't do any additional
4937 * charges to mc.to if we have failed in charge once in attach()
4938 * phase.
4939 */
854ffa8d 4940 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4941 if (!ret)
4942 goto retry;
4943 }
4944
4945 return ret;
4946}
4947
264a0ae1 4948static void mem_cgroup_move_charge(void)
4ffef5fe 4949{
26bcd64a
NH
4950 struct mm_walk mem_cgroup_move_charge_walk = {
4951 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4952 .mm = mc.mm,
26bcd64a 4953 };
4ffef5fe
DN
4954
4955 lru_add_drain_all();
312722cb 4956 /*
81f8c3a4
JW
4957 * Signal lock_page_memcg() to take the memcg's move_lock
4958 * while we're moving its pages to another memcg. Then wait
4959 * for already started RCU-only updates to finish.
312722cb
JW
4960 */
4961 atomic_inc(&mc.from->moving_account);
4962 synchronize_rcu();
dfe076b0 4963retry:
264a0ae1 4964 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4965 /*
4966 * Someone who are holding the mmap_sem might be waiting in
4967 * waitq. So we cancel all extra charges, wake up all waiters,
4968 * and retry. Because we cancel precharges, we might not be able
4969 * to move enough charges, but moving charge is a best-effort
4970 * feature anyway, so it wouldn't be a big problem.
4971 */
4972 __mem_cgroup_clear_mc();
4973 cond_resched();
4974 goto retry;
4975 }
26bcd64a
NH
4976 /*
4977 * When we have consumed all precharges and failed in doing
4978 * additional charge, the page walk just aborts.
4979 */
0247f3f4
JM
4980 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4981
264a0ae1 4982 up_read(&mc.mm->mmap_sem);
312722cb 4983 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4984}
4985
264a0ae1 4986static void mem_cgroup_move_task(void)
67e465a7 4987{
264a0ae1
TH
4988 if (mc.to) {
4989 mem_cgroup_move_charge();
a433658c 4990 mem_cgroup_clear_mc();
264a0ae1 4991 }
67e465a7 4992}
5cfb80a7 4993#else /* !CONFIG_MMU */
1f7dd3e5 4994static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4995{
4996 return 0;
4997}
1f7dd3e5 4998static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4999{
5000}
264a0ae1 5001static void mem_cgroup_move_task(void)
5cfb80a7
DN
5002{
5003}
5004#endif
67e465a7 5005
f00baae7
TH
5006/*
5007 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5008 * to verify whether we're attached to the default hierarchy on each mount
5009 * attempt.
f00baae7 5010 */
eb95419b 5011static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5012{
5013 /*
aa6ec29b 5014 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5015 * guarantees that @root doesn't have any children, so turning it
5016 * on for the root memcg is enough.
5017 */
9e10a130 5018 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5019 root_mem_cgroup->use_hierarchy = true;
5020 else
5021 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5022}
5023
241994ed
JW
5024static u64 memory_current_read(struct cgroup_subsys_state *css,
5025 struct cftype *cft)
5026{
f5fc3c5d
JW
5027 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5028
5029 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5030}
5031
5032static int memory_low_show(struct seq_file *m, void *v)
5033{
5034 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5035 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5036
5037 if (low == PAGE_COUNTER_MAX)
d2973697 5038 seq_puts(m, "max\n");
241994ed
JW
5039 else
5040 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5041
5042 return 0;
5043}
5044
5045static ssize_t memory_low_write(struct kernfs_open_file *of,
5046 char *buf, size_t nbytes, loff_t off)
5047{
5048 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5049 unsigned long low;
5050 int err;
5051
5052 buf = strstrip(buf);
d2973697 5053 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5054 if (err)
5055 return err;
5056
5057 memcg->low = low;
5058
5059 return nbytes;
5060}
5061
5062static int memory_high_show(struct seq_file *m, void *v)
5063{
5064 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5065 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5066
5067 if (high == PAGE_COUNTER_MAX)
d2973697 5068 seq_puts(m, "max\n");
241994ed
JW
5069 else
5070 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5071
5072 return 0;
5073}
5074
5075static ssize_t memory_high_write(struct kernfs_open_file *of,
5076 char *buf, size_t nbytes, loff_t off)
5077{
5078 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5079 unsigned long nr_pages;
241994ed
JW
5080 unsigned long high;
5081 int err;
5082
5083 buf = strstrip(buf);
d2973697 5084 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5085 if (err)
5086 return err;
5087
5088 memcg->high = high;
5089
588083bb
JW
5090 nr_pages = page_counter_read(&memcg->memory);
5091 if (nr_pages > high)
5092 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5093 GFP_KERNEL, true);
5094
2529bb3a 5095 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5096 return nbytes;
5097}
5098
5099static int memory_max_show(struct seq_file *m, void *v)
5100{
5101 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5102 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5103
5104 if (max == PAGE_COUNTER_MAX)
d2973697 5105 seq_puts(m, "max\n");
241994ed
JW
5106 else
5107 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5108
5109 return 0;
5110}
5111
5112static ssize_t memory_max_write(struct kernfs_open_file *of,
5113 char *buf, size_t nbytes, loff_t off)
5114{
5115 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5116 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5117 bool drained = false;
241994ed
JW
5118 unsigned long max;
5119 int err;
5120
5121 buf = strstrip(buf);
d2973697 5122 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5123 if (err)
5124 return err;
5125
b6e6edcf
JW
5126 xchg(&memcg->memory.limit, max);
5127
5128 for (;;) {
5129 unsigned long nr_pages = page_counter_read(&memcg->memory);
5130
5131 if (nr_pages <= max)
5132 break;
5133
5134 if (signal_pending(current)) {
5135 err = -EINTR;
5136 break;
5137 }
5138
5139 if (!drained) {
5140 drain_all_stock(memcg);
5141 drained = true;
5142 continue;
5143 }
5144
5145 if (nr_reclaims) {
5146 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5147 GFP_KERNEL, true))
5148 nr_reclaims--;
5149 continue;
5150 }
5151
5152 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5153 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5154 break;
5155 }
241994ed 5156
2529bb3a 5157 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5158 return nbytes;
5159}
5160
5161static int memory_events_show(struct seq_file *m, void *v)
5162{
5163 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5164
5165 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5166 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5167 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5168 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5169
5170 return 0;
5171}
5172
587d9f72
JW
5173static int memory_stat_show(struct seq_file *m, void *v)
5174{
5175 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5176 unsigned long stat[MEMCG_NR_STAT];
5177 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5178 int i;
5179
5180 /*
5181 * Provide statistics on the state of the memory subsystem as
5182 * well as cumulative event counters that show past behavior.
5183 *
5184 * This list is ordered following a combination of these gradients:
5185 * 1) generic big picture -> specifics and details
5186 * 2) reflecting userspace activity -> reflecting kernel heuristics
5187 *
5188 * Current memory state:
5189 */
5190
72b54e73
VD
5191 tree_stat(memcg, stat);
5192 tree_events(memcg, events);
5193
587d9f72 5194 seq_printf(m, "anon %llu\n",
72b54e73 5195 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5196 seq_printf(m, "file %llu\n",
72b54e73 5197 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5198 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5199 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5200 seq_printf(m, "slab %llu\n",
5201 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5202 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5203 seq_printf(m, "sock %llu\n",
72b54e73 5204 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5205
5206 seq_printf(m, "file_mapped %llu\n",
72b54e73 5207 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5208 seq_printf(m, "file_dirty %llu\n",
72b54e73 5209 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5210 seq_printf(m, "file_writeback %llu\n",
72b54e73 5211 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5212
5213 for (i = 0; i < NR_LRU_LISTS; i++) {
5214 struct mem_cgroup *mi;
5215 unsigned long val = 0;
5216
5217 for_each_mem_cgroup_tree(mi, memcg)
5218 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5219 seq_printf(m, "%s %llu\n",
5220 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5221 }
5222
27ee57c9
VD
5223 seq_printf(m, "slab_reclaimable %llu\n",
5224 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5225 seq_printf(m, "slab_unreclaimable %llu\n",
5226 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5227
587d9f72
JW
5228 /* Accumulated memory events */
5229
5230 seq_printf(m, "pgfault %lu\n",
72b54e73 5231 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5232 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5233 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5234
5235 return 0;
5236}
5237
241994ed
JW
5238static struct cftype memory_files[] = {
5239 {
5240 .name = "current",
f5fc3c5d 5241 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5242 .read_u64 = memory_current_read,
5243 },
5244 {
5245 .name = "low",
5246 .flags = CFTYPE_NOT_ON_ROOT,
5247 .seq_show = memory_low_show,
5248 .write = memory_low_write,
5249 },
5250 {
5251 .name = "high",
5252 .flags = CFTYPE_NOT_ON_ROOT,
5253 .seq_show = memory_high_show,
5254 .write = memory_high_write,
5255 },
5256 {
5257 .name = "max",
5258 .flags = CFTYPE_NOT_ON_ROOT,
5259 .seq_show = memory_max_show,
5260 .write = memory_max_write,
5261 },
5262 {
5263 .name = "events",
5264 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5265 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5266 .seq_show = memory_events_show,
5267 },
587d9f72
JW
5268 {
5269 .name = "stat",
5270 .flags = CFTYPE_NOT_ON_ROOT,
5271 .seq_show = memory_stat_show,
5272 },
241994ed
JW
5273 { } /* terminate */
5274};
5275
073219e9 5276struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5277 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5278 .css_online = mem_cgroup_css_online,
92fb9748 5279 .css_offline = mem_cgroup_css_offline,
6df38689 5280 .css_released = mem_cgroup_css_released,
92fb9748 5281 .css_free = mem_cgroup_css_free,
1ced953b 5282 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5283 .can_attach = mem_cgroup_can_attach,
5284 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5285 .post_attach = mem_cgroup_move_task,
f00baae7 5286 .bind = mem_cgroup_bind,
241994ed
JW
5287 .dfl_cftypes = memory_files,
5288 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5289 .early_init = 0,
8cdea7c0 5290};
c077719b 5291
241994ed
JW
5292/**
5293 * mem_cgroup_low - check if memory consumption is below the normal range
5294 * @root: the highest ancestor to consider
5295 * @memcg: the memory cgroup to check
5296 *
5297 * Returns %true if memory consumption of @memcg, and that of all
5298 * configurable ancestors up to @root, is below the normal range.
5299 */
5300bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5301{
5302 if (mem_cgroup_disabled())
5303 return false;
5304
5305 /*
5306 * The toplevel group doesn't have a configurable range, so
5307 * it's never low when looked at directly, and it is not
5308 * considered an ancestor when assessing the hierarchy.
5309 */
5310
5311 if (memcg == root_mem_cgroup)
5312 return false;
5313
4e54dede 5314 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5315 return false;
5316
5317 while (memcg != root) {
5318 memcg = parent_mem_cgroup(memcg);
5319
5320 if (memcg == root_mem_cgroup)
5321 break;
5322
4e54dede 5323 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5324 return false;
5325 }
5326 return true;
5327}
5328
00501b53
JW
5329/**
5330 * mem_cgroup_try_charge - try charging a page
5331 * @page: page to charge
5332 * @mm: mm context of the victim
5333 * @gfp_mask: reclaim mode
5334 * @memcgp: charged memcg return
25843c2b 5335 * @compound: charge the page as compound or small page
00501b53
JW
5336 *
5337 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5338 * pages according to @gfp_mask if necessary.
5339 *
5340 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5341 * Otherwise, an error code is returned.
5342 *
5343 * After page->mapping has been set up, the caller must finalize the
5344 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5345 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5346 */
5347int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5348 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5349 bool compound)
00501b53
JW
5350{
5351 struct mem_cgroup *memcg = NULL;
f627c2f5 5352 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5353 int ret = 0;
5354
5355 if (mem_cgroup_disabled())
5356 goto out;
5357
5358 if (PageSwapCache(page)) {
00501b53
JW
5359 /*
5360 * Every swap fault against a single page tries to charge the
5361 * page, bail as early as possible. shmem_unuse() encounters
5362 * already charged pages, too. The USED bit is protected by
5363 * the page lock, which serializes swap cache removal, which
5364 * in turn serializes uncharging.
5365 */
e993d905 5366 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5367 if (page->mem_cgroup)
00501b53 5368 goto out;
e993d905 5369
37e84351 5370 if (do_swap_account) {
e993d905
VD
5371 swp_entry_t ent = { .val = page_private(page), };
5372 unsigned short id = lookup_swap_cgroup_id(ent);
5373
5374 rcu_read_lock();
5375 memcg = mem_cgroup_from_id(id);
5376 if (memcg && !css_tryget_online(&memcg->css))
5377 memcg = NULL;
5378 rcu_read_unlock();
5379 }
00501b53
JW
5380 }
5381
00501b53
JW
5382 if (!memcg)
5383 memcg = get_mem_cgroup_from_mm(mm);
5384
5385 ret = try_charge(memcg, gfp_mask, nr_pages);
5386
5387 css_put(&memcg->css);
00501b53
JW
5388out:
5389 *memcgp = memcg;
5390 return ret;
5391}
5392
5393/**
5394 * mem_cgroup_commit_charge - commit a page charge
5395 * @page: page to charge
5396 * @memcg: memcg to charge the page to
5397 * @lrucare: page might be on LRU already
25843c2b 5398 * @compound: charge the page as compound or small page
00501b53
JW
5399 *
5400 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5401 * after page->mapping has been set up. This must happen atomically
5402 * as part of the page instantiation, i.e. under the page table lock
5403 * for anonymous pages, under the page lock for page and swap cache.
5404 *
5405 * In addition, the page must not be on the LRU during the commit, to
5406 * prevent racing with task migration. If it might be, use @lrucare.
5407 *
5408 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5409 */
5410void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5411 bool lrucare, bool compound)
00501b53 5412{
f627c2f5 5413 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5414
5415 VM_BUG_ON_PAGE(!page->mapping, page);
5416 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5417
5418 if (mem_cgroup_disabled())
5419 return;
5420 /*
5421 * Swap faults will attempt to charge the same page multiple
5422 * times. But reuse_swap_page() might have removed the page
5423 * from swapcache already, so we can't check PageSwapCache().
5424 */
5425 if (!memcg)
5426 return;
5427
6abb5a86
JW
5428 commit_charge(page, memcg, lrucare);
5429
6abb5a86 5430 local_irq_disable();
f627c2f5 5431 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5432 memcg_check_events(memcg, page);
5433 local_irq_enable();
00501b53 5434
7941d214 5435 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5436 swp_entry_t entry = { .val = page_private(page) };
5437 /*
5438 * The swap entry might not get freed for a long time,
5439 * let's not wait for it. The page already received a
5440 * memory+swap charge, drop the swap entry duplicate.
5441 */
5442 mem_cgroup_uncharge_swap(entry);
5443 }
5444}
5445
5446/**
5447 * mem_cgroup_cancel_charge - cancel a page charge
5448 * @page: page to charge
5449 * @memcg: memcg to charge the page to
25843c2b 5450 * @compound: charge the page as compound or small page
00501b53
JW
5451 *
5452 * Cancel a charge transaction started by mem_cgroup_try_charge().
5453 */
f627c2f5
KS
5454void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5455 bool compound)
00501b53 5456{
f627c2f5 5457 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5458
5459 if (mem_cgroup_disabled())
5460 return;
5461 /*
5462 * Swap faults will attempt to charge the same page multiple
5463 * times. But reuse_swap_page() might have removed the page
5464 * from swapcache already, so we can't check PageSwapCache().
5465 */
5466 if (!memcg)
5467 return;
5468
00501b53
JW
5469 cancel_charge(memcg, nr_pages);
5470}
5471
747db954 5472static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5473 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5474 unsigned long nr_huge, unsigned long nr_kmem,
5475 struct page *dummy_page)
747db954 5476{
5e8d35f8 5477 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5478 unsigned long flags;
5479
ce00a967 5480 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5481 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5482 if (do_memsw_account())
18eca2e6 5483 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5484 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5485 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5486 memcg_oom_recover(memcg);
5487 }
747db954
JW
5488
5489 local_irq_save(flags);
5490 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5491 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5492 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5493 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5494 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5495 memcg_check_events(memcg, dummy_page);
5496 local_irq_restore(flags);
e8ea14cc
JW
5497
5498 if (!mem_cgroup_is_root(memcg))
18eca2e6 5499 css_put_many(&memcg->css, nr_pages);
747db954
JW
5500}
5501
5502static void uncharge_list(struct list_head *page_list)
5503{
5504 struct mem_cgroup *memcg = NULL;
747db954
JW
5505 unsigned long nr_anon = 0;
5506 unsigned long nr_file = 0;
5507 unsigned long nr_huge = 0;
5e8d35f8 5508 unsigned long nr_kmem = 0;
747db954 5509 unsigned long pgpgout = 0;
747db954
JW
5510 struct list_head *next;
5511 struct page *page;
5512
8b592656
JW
5513 /*
5514 * Note that the list can be a single page->lru; hence the
5515 * do-while loop instead of a simple list_for_each_entry().
5516 */
747db954
JW
5517 next = page_list->next;
5518 do {
747db954
JW
5519 page = list_entry(next, struct page, lru);
5520 next = page->lru.next;
5521
5522 VM_BUG_ON_PAGE(PageLRU(page), page);
5523 VM_BUG_ON_PAGE(page_count(page), page);
5524
1306a85a 5525 if (!page->mem_cgroup)
747db954
JW
5526 continue;
5527
5528 /*
5529 * Nobody should be changing or seriously looking at
1306a85a 5530 * page->mem_cgroup at this point, we have fully
29833315 5531 * exclusive access to the page.
747db954
JW
5532 */
5533
1306a85a 5534 if (memcg != page->mem_cgroup) {
747db954 5535 if (memcg) {
18eca2e6 5536 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5537 nr_huge, nr_kmem, page);
5538 pgpgout = nr_anon = nr_file =
5539 nr_huge = nr_kmem = 0;
747db954 5540 }
1306a85a 5541 memcg = page->mem_cgroup;
747db954
JW
5542 }
5543
5e8d35f8
VD
5544 if (!PageKmemcg(page)) {
5545 unsigned int nr_pages = 1;
747db954 5546
5e8d35f8
VD
5547 if (PageTransHuge(page)) {
5548 nr_pages <<= compound_order(page);
5e8d35f8
VD
5549 nr_huge += nr_pages;
5550 }
5551 if (PageAnon(page))
5552 nr_anon += nr_pages;
5553 else
5554 nr_file += nr_pages;
5555 pgpgout++;
c4159a75 5556 } else {
5e8d35f8 5557 nr_kmem += 1 << compound_order(page);
c4159a75
VD
5558 __ClearPageKmemcg(page);
5559 }
747db954 5560
1306a85a 5561 page->mem_cgroup = NULL;
747db954
JW
5562 } while (next != page_list);
5563
5564 if (memcg)
18eca2e6 5565 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5566 nr_huge, nr_kmem, page);
747db954
JW
5567}
5568
0a31bc97
JW
5569/**
5570 * mem_cgroup_uncharge - uncharge a page
5571 * @page: page to uncharge
5572 *
5573 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5574 * mem_cgroup_commit_charge().
5575 */
5576void mem_cgroup_uncharge(struct page *page)
5577{
0a31bc97
JW
5578 if (mem_cgroup_disabled())
5579 return;
5580
747db954 5581 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5582 if (!page->mem_cgroup)
0a31bc97
JW
5583 return;
5584
747db954
JW
5585 INIT_LIST_HEAD(&page->lru);
5586 uncharge_list(&page->lru);
5587}
0a31bc97 5588
747db954
JW
5589/**
5590 * mem_cgroup_uncharge_list - uncharge a list of page
5591 * @page_list: list of pages to uncharge
5592 *
5593 * Uncharge a list of pages previously charged with
5594 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5595 */
5596void mem_cgroup_uncharge_list(struct list_head *page_list)
5597{
5598 if (mem_cgroup_disabled())
5599 return;
0a31bc97 5600
747db954
JW
5601 if (!list_empty(page_list))
5602 uncharge_list(page_list);
0a31bc97
JW
5603}
5604
5605/**
6a93ca8f
JW
5606 * mem_cgroup_migrate - charge a page's replacement
5607 * @oldpage: currently circulating page
5608 * @newpage: replacement page
0a31bc97 5609 *
6a93ca8f
JW
5610 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5611 * be uncharged upon free.
0a31bc97
JW
5612 *
5613 * Both pages must be locked, @newpage->mapping must be set up.
5614 */
6a93ca8f 5615void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5616{
29833315 5617 struct mem_cgroup *memcg;
44b7a8d3
JW
5618 unsigned int nr_pages;
5619 bool compound;
d93c4130 5620 unsigned long flags;
0a31bc97
JW
5621
5622 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5623 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5624 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5625 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5626 newpage);
0a31bc97
JW
5627
5628 if (mem_cgroup_disabled())
5629 return;
5630
5631 /* Page cache replacement: new page already charged? */
1306a85a 5632 if (newpage->mem_cgroup)
0a31bc97
JW
5633 return;
5634
45637bab 5635 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5636 memcg = oldpage->mem_cgroup;
29833315 5637 if (!memcg)
0a31bc97
JW
5638 return;
5639
44b7a8d3
JW
5640 /* Force-charge the new page. The old one will be freed soon */
5641 compound = PageTransHuge(newpage);
5642 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5643
5644 page_counter_charge(&memcg->memory, nr_pages);
5645 if (do_memsw_account())
5646 page_counter_charge(&memcg->memsw, nr_pages);
5647 css_get_many(&memcg->css, nr_pages);
0a31bc97 5648
9cf7666a 5649 commit_charge(newpage, memcg, false);
44b7a8d3 5650
d93c4130 5651 local_irq_save(flags);
44b7a8d3
JW
5652 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5653 memcg_check_events(memcg, newpage);
d93c4130 5654 local_irq_restore(flags);
0a31bc97
JW
5655}
5656
ef12947c 5657DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5658EXPORT_SYMBOL(memcg_sockets_enabled_key);
5659
2d758073 5660void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5661{
5662 struct mem_cgroup *memcg;
5663
2d758073
JW
5664 if (!mem_cgroup_sockets_enabled)
5665 return;
5666
5667 /*
5668 * Socket cloning can throw us here with sk_memcg already
11092087
JW
5669 * filled. It won't however, necessarily happen from
5670 * process context. So the test for root memcg given
5671 * the current task's memcg won't help us in this case.
5672 *
5673 * Respecting the original socket's memcg is a better
5674 * decision in this case.
5675 */
5676 if (sk->sk_memcg) {
5677 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5678 css_get(&sk->sk_memcg->css);
5679 return;
5680 }
5681
5682 rcu_read_lock();
5683 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5684 if (memcg == root_mem_cgroup)
5685 goto out;
0db15298 5686 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5687 goto out;
f7e1cb6e 5688 if (css_tryget_online(&memcg->css))
11092087 5689 sk->sk_memcg = memcg;
f7e1cb6e 5690out:
11092087
JW
5691 rcu_read_unlock();
5692}
11092087 5693
2d758073 5694void mem_cgroup_sk_free(struct sock *sk)
11092087 5695{
2d758073
JW
5696 if (sk->sk_memcg)
5697 css_put(&sk->sk_memcg->css);
11092087
JW
5698}
5699
5700/**
5701 * mem_cgroup_charge_skmem - charge socket memory
5702 * @memcg: memcg to charge
5703 * @nr_pages: number of pages to charge
5704 *
5705 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5706 * @memcg's configured limit, %false if the charge had to be forced.
5707 */
5708bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5709{
f7e1cb6e 5710 gfp_t gfp_mask = GFP_KERNEL;
11092087 5711
f7e1cb6e 5712 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5713 struct page_counter *fail;
f7e1cb6e 5714
0db15298
JW
5715 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5716 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5717 return true;
5718 }
0db15298
JW
5719 page_counter_charge(&memcg->tcpmem, nr_pages);
5720 memcg->tcpmem_pressure = 1;
f7e1cb6e 5721 return false;
11092087 5722 }
d886f4e4 5723
f7e1cb6e
JW
5724 /* Don't block in the packet receive path */
5725 if (in_softirq())
5726 gfp_mask = GFP_NOWAIT;
5727
b2807f07
JW
5728 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5729
f7e1cb6e
JW
5730 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5731 return true;
5732
5733 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5734 return false;
5735}
5736
5737/**
5738 * mem_cgroup_uncharge_skmem - uncharge socket memory
5739 * @memcg - memcg to uncharge
5740 * @nr_pages - number of pages to uncharge
5741 */
5742void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5743{
f7e1cb6e 5744 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5745 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5746 return;
5747 }
d886f4e4 5748
b2807f07
JW
5749 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5750
f7e1cb6e
JW
5751 page_counter_uncharge(&memcg->memory, nr_pages);
5752 css_put_many(&memcg->css, nr_pages);
11092087
JW
5753}
5754
f7e1cb6e
JW
5755static int __init cgroup_memory(char *s)
5756{
5757 char *token;
5758
5759 while ((token = strsep(&s, ",")) != NULL) {
5760 if (!*token)
5761 continue;
5762 if (!strcmp(token, "nosocket"))
5763 cgroup_memory_nosocket = true;
04823c83
VD
5764 if (!strcmp(token, "nokmem"))
5765 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5766 }
5767 return 0;
5768}
5769__setup("cgroup.memory=", cgroup_memory);
11092087 5770
2d11085e 5771/*
1081312f
MH
5772 * subsys_initcall() for memory controller.
5773 *
308167fc
SAS
5774 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5775 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5776 * basically everything that doesn't depend on a specific mem_cgroup structure
5777 * should be initialized from here.
2d11085e
MH
5778 */
5779static int __init mem_cgroup_init(void)
5780{
95a045f6
JW
5781 int cpu, node;
5782
13583c3d
VD
5783#ifndef CONFIG_SLOB
5784 /*
5785 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
5786 * so use a workqueue with limited concurrency to avoid stalling
5787 * all worker threads in case lots of cgroups are created and
5788 * destroyed simultaneously.
13583c3d 5789 */
17cc4dfe
TH
5790 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5791 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
5792#endif
5793
308167fc
SAS
5794 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5795 memcg_hotplug_cpu_dead);
95a045f6
JW
5796
5797 for_each_possible_cpu(cpu)
5798 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5799 drain_local_stock);
5800
5801 for_each_node(node) {
5802 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5803
5804 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5805 node_online(node) ? node : NUMA_NO_NODE);
5806
ef8f2327
MG
5807 rtpn->rb_root = RB_ROOT;
5808 spin_lock_init(&rtpn->lock);
95a045f6
JW
5809 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5810 }
5811
2d11085e
MH
5812 return 0;
5813}
5814subsys_initcall(mem_cgroup_init);
21afa38e
JW
5815
5816#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5817static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5818{
5819 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5820 /*
5821 * The root cgroup cannot be destroyed, so it's refcount must
5822 * always be >= 1.
5823 */
5824 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5825 VM_BUG_ON(1);
5826 break;
5827 }
5828 memcg = parent_mem_cgroup(memcg);
5829 if (!memcg)
5830 memcg = root_mem_cgroup;
5831 }
5832 return memcg;
5833}
5834
21afa38e
JW
5835/**
5836 * mem_cgroup_swapout - transfer a memsw charge to swap
5837 * @page: page whose memsw charge to transfer
5838 * @entry: swap entry to move the charge to
5839 *
5840 * Transfer the memsw charge of @page to @entry.
5841 */
5842void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5843{
1f47b61f 5844 struct mem_cgroup *memcg, *swap_memcg;
21afa38e
JW
5845 unsigned short oldid;
5846
5847 VM_BUG_ON_PAGE(PageLRU(page), page);
5848 VM_BUG_ON_PAGE(page_count(page), page);
5849
7941d214 5850 if (!do_memsw_account())
21afa38e
JW
5851 return;
5852
5853 memcg = page->mem_cgroup;
5854
5855 /* Readahead page, never charged */
5856 if (!memcg)
5857 return;
5858
1f47b61f
VD
5859 /*
5860 * In case the memcg owning these pages has been offlined and doesn't
5861 * have an ID allocated to it anymore, charge the closest online
5862 * ancestor for the swap instead and transfer the memory+swap charge.
5863 */
5864 swap_memcg = mem_cgroup_id_get_online(memcg);
5865 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
21afa38e 5866 VM_BUG_ON_PAGE(oldid, page);
1f47b61f 5867 mem_cgroup_swap_statistics(swap_memcg, true);
21afa38e
JW
5868
5869 page->mem_cgroup = NULL;
5870
5871 if (!mem_cgroup_is_root(memcg))
5872 page_counter_uncharge(&memcg->memory, 1);
5873
1f47b61f
VD
5874 if (memcg != swap_memcg) {
5875 if (!mem_cgroup_is_root(swap_memcg))
5876 page_counter_charge(&swap_memcg->memsw, 1);
5877 page_counter_uncharge(&memcg->memsw, 1);
5878 }
5879
ce9ce665
SAS
5880 /*
5881 * Interrupts should be disabled here because the caller holds the
5882 * mapping->tree_lock lock which is taken with interrupts-off. It is
5883 * important here to have the interrupts disabled because it is the
5884 * only synchronisation we have for udpating the per-CPU variables.
5885 */
5886 VM_BUG_ON(!irqs_disabled());
f627c2f5 5887 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5888 memcg_check_events(memcg, page);
73f576c0
JW
5889
5890 if (!mem_cgroup_is_root(memcg))
5891 css_put(&memcg->css);
21afa38e
JW
5892}
5893
37e84351
VD
5894/*
5895 * mem_cgroup_try_charge_swap - try charging a swap entry
5896 * @page: page being added to swap
5897 * @entry: swap entry to charge
5898 *
5899 * Try to charge @entry to the memcg that @page belongs to.
5900 *
5901 * Returns 0 on success, -ENOMEM on failure.
5902 */
5903int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5904{
5905 struct mem_cgroup *memcg;
5906 struct page_counter *counter;
5907 unsigned short oldid;
5908
5909 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5910 return 0;
5911
5912 memcg = page->mem_cgroup;
5913
5914 /* Readahead page, never charged */
5915 if (!memcg)
5916 return 0;
5917
1f47b61f
VD
5918 memcg = mem_cgroup_id_get_online(memcg);
5919
37e84351 5920 if (!mem_cgroup_is_root(memcg) &&
1f47b61f
VD
5921 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5922 mem_cgroup_id_put(memcg);
37e84351 5923 return -ENOMEM;
1f47b61f 5924 }
37e84351
VD
5925
5926 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5927 VM_BUG_ON_PAGE(oldid, page);
5928 mem_cgroup_swap_statistics(memcg, true);
5929
37e84351
VD
5930 return 0;
5931}
5932
21afa38e
JW
5933/**
5934 * mem_cgroup_uncharge_swap - uncharge a swap entry
5935 * @entry: swap entry to uncharge
5936 *
37e84351 5937 * Drop the swap charge associated with @entry.
21afa38e
JW
5938 */
5939void mem_cgroup_uncharge_swap(swp_entry_t entry)
5940{
5941 struct mem_cgroup *memcg;
5942 unsigned short id;
5943
37e84351 5944 if (!do_swap_account)
21afa38e
JW
5945 return;
5946
5947 id = swap_cgroup_record(entry, 0);
5948 rcu_read_lock();
adbe427b 5949 memcg = mem_cgroup_from_id(id);
21afa38e 5950 if (memcg) {
37e84351
VD
5951 if (!mem_cgroup_is_root(memcg)) {
5952 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5953 page_counter_uncharge(&memcg->swap, 1);
5954 else
5955 page_counter_uncharge(&memcg->memsw, 1);
5956 }
21afa38e 5957 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5958 mem_cgroup_id_put(memcg);
21afa38e
JW
5959 }
5960 rcu_read_unlock();
5961}
5962
d8b38438
VD
5963long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5964{
5965 long nr_swap_pages = get_nr_swap_pages();
5966
5967 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5968 return nr_swap_pages;
5969 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5970 nr_swap_pages = min_t(long, nr_swap_pages,
5971 READ_ONCE(memcg->swap.limit) -
5972 page_counter_read(&memcg->swap));
5973 return nr_swap_pages;
5974}
5975
5ccc5aba
VD
5976bool mem_cgroup_swap_full(struct page *page)
5977{
5978 struct mem_cgroup *memcg;
5979
5980 VM_BUG_ON_PAGE(!PageLocked(page), page);
5981
5982 if (vm_swap_full())
5983 return true;
5984 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5985 return false;
5986
5987 memcg = page->mem_cgroup;
5988 if (!memcg)
5989 return false;
5990
5991 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5992 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5993 return true;
5994
5995 return false;
5996}
5997
21afa38e
JW
5998/* for remember boot option*/
5999#ifdef CONFIG_MEMCG_SWAP_ENABLED
6000static int really_do_swap_account __initdata = 1;
6001#else
6002static int really_do_swap_account __initdata;
6003#endif
6004
6005static int __init enable_swap_account(char *s)
6006{
6007 if (!strcmp(s, "1"))
6008 really_do_swap_account = 1;
6009 else if (!strcmp(s, "0"))
6010 really_do_swap_account = 0;
6011 return 1;
6012}
6013__setup("swapaccount=", enable_swap_account);
6014
37e84351
VD
6015static u64 swap_current_read(struct cgroup_subsys_state *css,
6016 struct cftype *cft)
6017{
6018 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6019
6020 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6021}
6022
6023static int swap_max_show(struct seq_file *m, void *v)
6024{
6025 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6026 unsigned long max = READ_ONCE(memcg->swap.limit);
6027
6028 if (max == PAGE_COUNTER_MAX)
6029 seq_puts(m, "max\n");
6030 else
6031 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6032
6033 return 0;
6034}
6035
6036static ssize_t swap_max_write(struct kernfs_open_file *of,
6037 char *buf, size_t nbytes, loff_t off)
6038{
6039 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6040 unsigned long max;
6041 int err;
6042
6043 buf = strstrip(buf);
6044 err = page_counter_memparse(buf, "max", &max);
6045 if (err)
6046 return err;
6047
6048 mutex_lock(&memcg_limit_mutex);
6049 err = page_counter_limit(&memcg->swap, max);
6050 mutex_unlock(&memcg_limit_mutex);
6051 if (err)
6052 return err;
6053
6054 return nbytes;
6055}
6056
6057static struct cftype swap_files[] = {
6058 {
6059 .name = "swap.current",
6060 .flags = CFTYPE_NOT_ON_ROOT,
6061 .read_u64 = swap_current_read,
6062 },
6063 {
6064 .name = "swap.max",
6065 .flags = CFTYPE_NOT_ON_ROOT,
6066 .seq_show = swap_max_show,
6067 .write = swap_max_write,
6068 },
6069 { } /* terminate */
6070};
6071
21afa38e
JW
6072static struct cftype memsw_cgroup_files[] = {
6073 {
6074 .name = "memsw.usage_in_bytes",
6075 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6076 .read_u64 = mem_cgroup_read_u64,
6077 },
6078 {
6079 .name = "memsw.max_usage_in_bytes",
6080 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6081 .write = mem_cgroup_reset,
6082 .read_u64 = mem_cgroup_read_u64,
6083 },
6084 {
6085 .name = "memsw.limit_in_bytes",
6086 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6087 .write = mem_cgroup_write,
6088 .read_u64 = mem_cgroup_read_u64,
6089 },
6090 {
6091 .name = "memsw.failcnt",
6092 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6093 .write = mem_cgroup_reset,
6094 .read_u64 = mem_cgroup_read_u64,
6095 },
6096 { }, /* terminate */
6097};
6098
6099static int __init mem_cgroup_swap_init(void)
6100{
6101 if (!mem_cgroup_disabled() && really_do_swap_account) {
6102 do_swap_account = 1;
37e84351
VD
6103 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6104 swap_files));
21afa38e
JW
6105 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6106 memsw_cgroup_files));
6107 }
6108 return 0;
6109}
6110subsys_initcall(mem_cgroup_swap_init);
6111
6112#endif /* CONFIG_MEMCG_SWAP */