selftests: bpf: Make reuseport test output more legible
[linux-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
217bc319
KH
202enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 204 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
207 NR_CHARGE_TYPE,
208};
209
8c7c6e34 210/* for encoding cft->private value on file */
86ae53e1
GC
211enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
510fc4e1 215 _KMEM,
d55f90bf 216 _TCP,
86ae53e1
GC
217};
218
a0db00fc
KS
219#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 221#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
222/* Used for OOM nofiier */
223#define OOM_CONTROL (0)
8c7c6e34 224
b05706f1
KT
225/*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230#define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235#define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
7775face
TH
240static inline bool should_force_charge(void)
241{
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244}
245
70ddf637
AV
246/* Some nice accessors for the vmpressure. */
247struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248{
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252}
253
254struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255{
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257}
258
84c07d11 259#ifdef CONFIG_MEMCG_KMEM
55007d84 260/*
f7ce3190 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
55007d84 267 *
dbcf73e2
VD
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
55007d84 270 */
dbcf73e2
VD
271static DEFINE_IDA(memcg_cache_ida);
272int memcg_nr_cache_ids;
749c5415 273
05257a1a
VD
274/* Protects memcg_nr_cache_ids */
275static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277void memcg_get_cache_ids(void)
278{
279 down_read(&memcg_cache_ids_sem);
280}
281
282void memcg_put_cache_ids(void)
283{
284 up_read(&memcg_cache_ids_sem);
285}
286
55007d84
GC
287/*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
b8627835 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
297 * increase ours as well if it increases.
298 */
299#define MEMCG_CACHES_MIN_SIZE 4
b8627835 300#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 301
d7f25f8a
GC
302/*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
ef12947c 308DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 309EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 310
17cc4dfe 311struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 312#endif
17cc4dfe 313
0a4465d3
KT
314static int memcg_shrinker_map_size;
315static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318{
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320}
321
322static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324{
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350}
351
352static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353{
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368}
369
370static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371{
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392}
393
394int memcg_expand_shrinker_maps(int new_id)
395{
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret)
413 goto unlock;
414 }
415unlock:
416 if (!ret)
417 memcg_shrinker_map_size = size;
418 mutex_unlock(&memcg_shrinker_map_mutex);
419 return ret;
420}
fae91d6d
KT
421
422void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
423{
424 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
425 struct memcg_shrinker_map *map;
426
427 rcu_read_lock();
428 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
429 /* Pairs with smp mb in shrink_slab() */
430 smp_mb__before_atomic();
fae91d6d
KT
431 set_bit(shrinker_id, map->map);
432 rcu_read_unlock();
433 }
434}
435
ad7fa852
TH
436/**
437 * mem_cgroup_css_from_page - css of the memcg associated with a page
438 * @page: page of interest
439 *
440 * If memcg is bound to the default hierarchy, css of the memcg associated
441 * with @page is returned. The returned css remains associated with @page
442 * until it is released.
443 *
444 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
445 * is returned.
ad7fa852
TH
446 */
447struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
448{
449 struct mem_cgroup *memcg;
450
ad7fa852
TH
451 memcg = page->mem_cgroup;
452
9e10a130 453 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
454 memcg = root_mem_cgroup;
455
ad7fa852
TH
456 return &memcg->css;
457}
458
2fc04524
VD
459/**
460 * page_cgroup_ino - return inode number of the memcg a page is charged to
461 * @page: the page
462 *
463 * Look up the closest online ancestor of the memory cgroup @page is charged to
464 * and return its inode number or 0 if @page is not charged to any cgroup. It
465 * is safe to call this function without holding a reference to @page.
466 *
467 * Note, this function is inherently racy, because there is nothing to prevent
468 * the cgroup inode from getting torn down and potentially reallocated a moment
469 * after page_cgroup_ino() returns, so it only should be used by callers that
470 * do not care (such as procfs interfaces).
471 */
472ino_t page_cgroup_ino(struct page *page)
473{
474 struct mem_cgroup *memcg;
475 unsigned long ino = 0;
476
477 rcu_read_lock();
221ec5c0 478 if (PageSlab(page) && !PageTail(page))
4d96ba35
RG
479 memcg = memcg_from_slab_page(page);
480 else
481 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
482 while (memcg && !(memcg->css.flags & CSS_ONLINE))
483 memcg = parent_mem_cgroup(memcg);
484 if (memcg)
485 ino = cgroup_ino(memcg->css.cgroup);
486 rcu_read_unlock();
487 return ino;
488}
489
ef8f2327
MG
490static struct mem_cgroup_per_node *
491mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 492{
97a6c37b 493 int nid = page_to_nid(page);
f64c3f54 494
ef8f2327 495 return memcg->nodeinfo[nid];
f64c3f54
BS
496}
497
ef8f2327
MG
498static struct mem_cgroup_tree_per_node *
499soft_limit_tree_node(int nid)
bb4cc1a8 500{
ef8f2327 501 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
502}
503
ef8f2327 504static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
505soft_limit_tree_from_page(struct page *page)
506{
507 int nid = page_to_nid(page);
bb4cc1a8 508
ef8f2327 509 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
510}
511
ef8f2327
MG
512static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
513 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 514 unsigned long new_usage_in_excess)
bb4cc1a8
AM
515{
516 struct rb_node **p = &mctz->rb_root.rb_node;
517 struct rb_node *parent = NULL;
ef8f2327 518 struct mem_cgroup_per_node *mz_node;
fa90b2fd 519 bool rightmost = true;
bb4cc1a8
AM
520
521 if (mz->on_tree)
522 return;
523
524 mz->usage_in_excess = new_usage_in_excess;
525 if (!mz->usage_in_excess)
526 return;
527 while (*p) {
528 parent = *p;
ef8f2327 529 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 530 tree_node);
fa90b2fd 531 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 532 p = &(*p)->rb_left;
fa90b2fd
DB
533 rightmost = false;
534 }
535
bb4cc1a8
AM
536 /*
537 * We can't avoid mem cgroups that are over their soft
538 * limit by the same amount
539 */
540 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
541 p = &(*p)->rb_right;
542 }
fa90b2fd
DB
543
544 if (rightmost)
545 mctz->rb_rightmost = &mz->tree_node;
546
bb4cc1a8
AM
547 rb_link_node(&mz->tree_node, parent, p);
548 rb_insert_color(&mz->tree_node, &mctz->rb_root);
549 mz->on_tree = true;
550}
551
ef8f2327
MG
552static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
553 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
554{
555 if (!mz->on_tree)
556 return;
fa90b2fd
DB
557
558 if (&mz->tree_node == mctz->rb_rightmost)
559 mctz->rb_rightmost = rb_prev(&mz->tree_node);
560
bb4cc1a8
AM
561 rb_erase(&mz->tree_node, &mctz->rb_root);
562 mz->on_tree = false;
563}
564
ef8f2327
MG
565static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
566 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 567{
0a31bc97
JW
568 unsigned long flags;
569
570 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 571 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 572 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
573}
574
3e32cb2e
JW
575static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
576{
577 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 578 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
579 unsigned long excess = 0;
580
581 if (nr_pages > soft_limit)
582 excess = nr_pages - soft_limit;
583
584 return excess;
585}
bb4cc1a8
AM
586
587static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
588{
3e32cb2e 589 unsigned long excess;
ef8f2327
MG
590 struct mem_cgroup_per_node *mz;
591 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 592
e231875b 593 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
594 if (!mctz)
595 return;
bb4cc1a8
AM
596 /*
597 * Necessary to update all ancestors when hierarchy is used.
598 * because their event counter is not touched.
599 */
600 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 601 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 602 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
603 /*
604 * We have to update the tree if mz is on RB-tree or
605 * mem is over its softlimit.
606 */
607 if (excess || mz->on_tree) {
0a31bc97
JW
608 unsigned long flags;
609
610 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
611 /* if on-tree, remove it */
612 if (mz->on_tree)
cf2c8127 613 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
614 /*
615 * Insert again. mz->usage_in_excess will be updated.
616 * If excess is 0, no tree ops.
617 */
cf2c8127 618 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 619 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
620 }
621 }
622}
623
624static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
625{
ef8f2327
MG
626 struct mem_cgroup_tree_per_node *mctz;
627 struct mem_cgroup_per_node *mz;
628 int nid;
bb4cc1a8 629
e231875b 630 for_each_node(nid) {
ef8f2327
MG
631 mz = mem_cgroup_nodeinfo(memcg, nid);
632 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
633 if (mctz)
634 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
635 }
636}
637
ef8f2327
MG
638static struct mem_cgroup_per_node *
639__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 640{
ef8f2327 641 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
642
643retry:
644 mz = NULL;
fa90b2fd 645 if (!mctz->rb_rightmost)
bb4cc1a8
AM
646 goto done; /* Nothing to reclaim from */
647
fa90b2fd
DB
648 mz = rb_entry(mctz->rb_rightmost,
649 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
650 /*
651 * Remove the node now but someone else can add it back,
652 * we will to add it back at the end of reclaim to its correct
653 * position in the tree.
654 */
cf2c8127 655 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 656 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 657 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
658 goto retry;
659done:
660 return mz;
661}
662
ef8f2327
MG
663static struct mem_cgroup_per_node *
664mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 665{
ef8f2327 666 struct mem_cgroup_per_node *mz;
bb4cc1a8 667
0a31bc97 668 spin_lock_irq(&mctz->lock);
bb4cc1a8 669 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 670 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
671 return mz;
672}
673
db9adbcb
JW
674/**
675 * __mod_memcg_state - update cgroup memory statistics
676 * @memcg: the memory cgroup
677 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
678 * @val: delta to add to the counter, can be negative
679 */
680void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
681{
682 long x;
683
684 if (mem_cgroup_disabled())
685 return;
686
687 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
688 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
689 struct mem_cgroup *mi;
690
766a4c19
YS
691 /*
692 * Batch local counters to keep them in sync with
693 * the hierarchical ones.
694 */
695 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
696 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
697 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
698 x = 0;
699 }
700 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
701}
702
42a30035
JW
703static struct mem_cgroup_per_node *
704parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
705{
706 struct mem_cgroup *parent;
707
708 parent = parent_mem_cgroup(pn->memcg);
709 if (!parent)
710 return NULL;
711 return mem_cgroup_nodeinfo(parent, nid);
712}
713
db9adbcb
JW
714/**
715 * __mod_lruvec_state - update lruvec memory statistics
716 * @lruvec: the lruvec
717 * @idx: the stat item
718 * @val: delta to add to the counter, can be negative
719 *
720 * The lruvec is the intersection of the NUMA node and a cgroup. This
721 * function updates the all three counters that are affected by a
722 * change of state at this level: per-node, per-cgroup, per-lruvec.
723 */
724void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
725 int val)
726{
42a30035 727 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 728 struct mem_cgroup_per_node *pn;
42a30035 729 struct mem_cgroup *memcg;
db9adbcb
JW
730 long x;
731
732 /* Update node */
42a30035 733 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
734
735 if (mem_cgroup_disabled())
736 return;
737
738 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 739 memcg = pn->memcg;
db9adbcb
JW
740
741 /* Update memcg */
42a30035 742 __mod_memcg_state(memcg, idx, val);
db9adbcb 743
b4c46484
RG
744 /* Update lruvec */
745 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
746
db9adbcb
JW
747 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
748 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
749 struct mem_cgroup_per_node *pi;
750
42a30035
JW
751 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
752 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
753 x = 0;
754 }
755 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
756}
757
ec9f0238
RG
758void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
759{
760 struct page *page = virt_to_head_page(p);
761 pg_data_t *pgdat = page_pgdat(page);
762 struct mem_cgroup *memcg;
763 struct lruvec *lruvec;
764
765 rcu_read_lock();
766 memcg = memcg_from_slab_page(page);
767
768 /* Untracked pages have no memcg, no lruvec. Update only the node */
769 if (!memcg || memcg == root_mem_cgroup) {
770 __mod_node_page_state(pgdat, idx, val);
771 } else {
867e5e1d 772 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
773 __mod_lruvec_state(lruvec, idx, val);
774 }
775 rcu_read_unlock();
776}
777
db9adbcb
JW
778/**
779 * __count_memcg_events - account VM events in a cgroup
780 * @memcg: the memory cgroup
781 * @idx: the event item
782 * @count: the number of events that occured
783 */
784void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
785 unsigned long count)
786{
787 unsigned long x;
788
789 if (mem_cgroup_disabled())
790 return;
791
792 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
793 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
794 struct mem_cgroup *mi;
795
766a4c19
YS
796 /*
797 * Batch local counters to keep them in sync with
798 * the hierarchical ones.
799 */
800 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
801 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
802 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
803 x = 0;
804 }
805 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
806}
807
42a30035 808static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 809{
871789d4 810 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
811}
812
42a30035
JW
813static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
814{
815744d7
JW
815 long x = 0;
816 int cpu;
817
818 for_each_possible_cpu(cpu)
819 x += per_cpu(memcg->vmstats_local->events[event], cpu);
820 return x;
42a30035
JW
821}
822
c0ff4b85 823static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 824 struct page *page,
f627c2f5 825 bool compound, int nr_pages)
d52aa412 826{
b2402857
KH
827 /*
828 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
829 * counted as CACHE even if it's on ANON LRU.
830 */
0a31bc97 831 if (PageAnon(page))
c9019e9b 832 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 833 else {
c9019e9b 834 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 835 if (PageSwapBacked(page))
c9019e9b 836 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 837 }
55e462b0 838
f627c2f5
KS
839 if (compound) {
840 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 841 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 842 }
b070e65c 843
e401f176
KH
844 /* pagein of a big page is an event. So, ignore page size */
845 if (nr_pages > 0)
c9019e9b 846 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 847 else {
c9019e9b 848 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
849 nr_pages = -nr_pages; /* for event */
850 }
e401f176 851
871789d4 852 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
853}
854
f53d7ce3
JW
855static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
856 enum mem_cgroup_events_target target)
7a159cc9
JW
857{
858 unsigned long val, next;
859
871789d4
CD
860 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
861 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 862 /* from time_after() in jiffies.h */
6a1a8b80 863 if ((long)(next - val) < 0) {
f53d7ce3
JW
864 switch (target) {
865 case MEM_CGROUP_TARGET_THRESH:
866 next = val + THRESHOLDS_EVENTS_TARGET;
867 break;
bb4cc1a8
AM
868 case MEM_CGROUP_TARGET_SOFTLIMIT:
869 next = val + SOFTLIMIT_EVENTS_TARGET;
870 break;
f53d7ce3
JW
871 default:
872 break;
873 }
871789d4 874 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 875 return true;
7a159cc9 876 }
f53d7ce3 877 return false;
d2265e6f
KH
878}
879
880/*
881 * Check events in order.
882 *
883 */
c0ff4b85 884static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
885{
886 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
887 if (unlikely(mem_cgroup_event_ratelimit(memcg,
888 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 889 bool do_softlimit;
f53d7ce3 890
bb4cc1a8
AM
891 do_softlimit = mem_cgroup_event_ratelimit(memcg,
892 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 893 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
894 if (unlikely(do_softlimit))
895 mem_cgroup_update_tree(memcg, page);
0a31bc97 896 }
d2265e6f
KH
897}
898
cf475ad2 899struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 900{
31a78f23
BS
901 /*
902 * mm_update_next_owner() may clear mm->owner to NULL
903 * if it races with swapoff, page migration, etc.
904 * So this can be called with p == NULL.
905 */
906 if (unlikely(!p))
907 return NULL;
908
073219e9 909 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 910}
33398cf2 911EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 912
d46eb14b
SB
913/**
914 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
915 * @mm: mm from which memcg should be extracted. It can be NULL.
916 *
917 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
918 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
919 * returned.
920 */
921struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 922{
d46eb14b
SB
923 struct mem_cgroup *memcg;
924
925 if (mem_cgroup_disabled())
926 return NULL;
0b7f569e 927
54595fe2
KH
928 rcu_read_lock();
929 do {
6f6acb00
MH
930 /*
931 * Page cache insertions can happen withou an
932 * actual mm context, e.g. during disk probing
933 * on boot, loopback IO, acct() writes etc.
934 */
935 if (unlikely(!mm))
df381975 936 memcg = root_mem_cgroup;
6f6acb00
MH
937 else {
938 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
939 if (unlikely(!memcg))
940 memcg = root_mem_cgroup;
941 }
00d484f3 942 } while (!css_tryget(&memcg->css));
54595fe2 943 rcu_read_unlock();
c0ff4b85 944 return memcg;
54595fe2 945}
d46eb14b
SB
946EXPORT_SYMBOL(get_mem_cgroup_from_mm);
947
f745c6f5
SB
948/**
949 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
950 * @page: page from which memcg should be extracted.
951 *
952 * Obtain a reference on page->memcg and returns it if successful. Otherwise
953 * root_mem_cgroup is returned.
954 */
955struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
956{
957 struct mem_cgroup *memcg = page->mem_cgroup;
958
959 if (mem_cgroup_disabled())
960 return NULL;
961
962 rcu_read_lock();
963 if (!memcg || !css_tryget_online(&memcg->css))
964 memcg = root_mem_cgroup;
965 rcu_read_unlock();
966 return memcg;
967}
968EXPORT_SYMBOL(get_mem_cgroup_from_page);
969
d46eb14b
SB
970/**
971 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
972 */
973static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
974{
975 if (unlikely(current->active_memcg)) {
976 struct mem_cgroup *memcg = root_mem_cgroup;
977
978 rcu_read_lock();
979 if (css_tryget_online(&current->active_memcg->css))
980 memcg = current->active_memcg;
981 rcu_read_unlock();
982 return memcg;
983 }
984 return get_mem_cgroup_from_mm(current->mm);
985}
54595fe2 986
5660048c
JW
987/**
988 * mem_cgroup_iter - iterate over memory cgroup hierarchy
989 * @root: hierarchy root
990 * @prev: previously returned memcg, NULL on first invocation
991 * @reclaim: cookie for shared reclaim walks, NULL for full walks
992 *
993 * Returns references to children of the hierarchy below @root, or
994 * @root itself, or %NULL after a full round-trip.
995 *
996 * Caller must pass the return value in @prev on subsequent
997 * invocations for reference counting, or use mem_cgroup_iter_break()
998 * to cancel a hierarchy walk before the round-trip is complete.
999 *
b213b54f 1000 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1001 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1002 * reclaimers operating on the same node and priority.
5660048c 1003 */
694fbc0f 1004struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1005 struct mem_cgroup *prev,
694fbc0f 1006 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1007{
33398cf2 1008 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1009 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1010 struct mem_cgroup *memcg = NULL;
5ac8fb31 1011 struct mem_cgroup *pos = NULL;
711d3d2c 1012
694fbc0f
AM
1013 if (mem_cgroup_disabled())
1014 return NULL;
5660048c 1015
9f3a0d09
JW
1016 if (!root)
1017 root = root_mem_cgroup;
7d74b06f 1018
9f3a0d09 1019 if (prev && !reclaim)
5ac8fb31 1020 pos = prev;
14067bb3 1021
9f3a0d09
JW
1022 if (!root->use_hierarchy && root != root_mem_cgroup) {
1023 if (prev)
5ac8fb31 1024 goto out;
694fbc0f 1025 return root;
9f3a0d09 1026 }
14067bb3 1027
542f85f9 1028 rcu_read_lock();
5f578161 1029
5ac8fb31 1030 if (reclaim) {
ef8f2327 1031 struct mem_cgroup_per_node *mz;
5ac8fb31 1032
ef8f2327 1033 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1034 iter = &mz->iter;
5ac8fb31
JW
1035
1036 if (prev && reclaim->generation != iter->generation)
1037 goto out_unlock;
1038
6df38689 1039 while (1) {
4db0c3c2 1040 pos = READ_ONCE(iter->position);
6df38689
VD
1041 if (!pos || css_tryget(&pos->css))
1042 break;
5ac8fb31 1043 /*
6df38689
VD
1044 * css reference reached zero, so iter->position will
1045 * be cleared by ->css_released. However, we should not
1046 * rely on this happening soon, because ->css_released
1047 * is called from a work queue, and by busy-waiting we
1048 * might block it. So we clear iter->position right
1049 * away.
5ac8fb31 1050 */
6df38689
VD
1051 (void)cmpxchg(&iter->position, pos, NULL);
1052 }
5ac8fb31
JW
1053 }
1054
1055 if (pos)
1056 css = &pos->css;
1057
1058 for (;;) {
1059 css = css_next_descendant_pre(css, &root->css);
1060 if (!css) {
1061 /*
1062 * Reclaimers share the hierarchy walk, and a
1063 * new one might jump in right at the end of
1064 * the hierarchy - make sure they see at least
1065 * one group and restart from the beginning.
1066 */
1067 if (!prev)
1068 continue;
1069 break;
527a5ec9 1070 }
7d74b06f 1071
5ac8fb31
JW
1072 /*
1073 * Verify the css and acquire a reference. The root
1074 * is provided by the caller, so we know it's alive
1075 * and kicking, and don't take an extra reference.
1076 */
1077 memcg = mem_cgroup_from_css(css);
14067bb3 1078
5ac8fb31
JW
1079 if (css == &root->css)
1080 break;
14067bb3 1081
0b8f73e1
JW
1082 if (css_tryget(css))
1083 break;
9f3a0d09 1084
5ac8fb31 1085 memcg = NULL;
9f3a0d09 1086 }
5ac8fb31
JW
1087
1088 if (reclaim) {
5ac8fb31 1089 /*
6df38689
VD
1090 * The position could have already been updated by a competing
1091 * thread, so check that the value hasn't changed since we read
1092 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1093 */
6df38689
VD
1094 (void)cmpxchg(&iter->position, pos, memcg);
1095
5ac8fb31
JW
1096 if (pos)
1097 css_put(&pos->css);
1098
1099 if (!memcg)
1100 iter->generation++;
1101 else if (!prev)
1102 reclaim->generation = iter->generation;
9f3a0d09 1103 }
5ac8fb31 1104
542f85f9
MH
1105out_unlock:
1106 rcu_read_unlock();
5ac8fb31 1107out:
c40046f3
MH
1108 if (prev && prev != root)
1109 css_put(&prev->css);
1110
9f3a0d09 1111 return memcg;
14067bb3 1112}
7d74b06f 1113
5660048c
JW
1114/**
1115 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1116 * @root: hierarchy root
1117 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1118 */
1119void mem_cgroup_iter_break(struct mem_cgroup *root,
1120 struct mem_cgroup *prev)
9f3a0d09
JW
1121{
1122 if (!root)
1123 root = root_mem_cgroup;
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1126}
7d74b06f 1127
54a83d6b
MC
1128static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1129 struct mem_cgroup *dead_memcg)
6df38689 1130{
6df38689 1131 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1132 struct mem_cgroup_per_node *mz;
1133 int nid;
6df38689 1134
54a83d6b
MC
1135 for_each_node(nid) {
1136 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1137 iter = &mz->iter;
1138 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1139 }
1140}
1141
54a83d6b
MC
1142static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1143{
1144 struct mem_cgroup *memcg = dead_memcg;
1145 struct mem_cgroup *last;
1146
1147 do {
1148 __invalidate_reclaim_iterators(memcg, dead_memcg);
1149 last = memcg;
1150 } while ((memcg = parent_mem_cgroup(memcg)));
1151
1152 /*
1153 * When cgruop1 non-hierarchy mode is used,
1154 * parent_mem_cgroup() does not walk all the way up to the
1155 * cgroup root (root_mem_cgroup). So we have to handle
1156 * dead_memcg from cgroup root separately.
1157 */
1158 if (last != root_mem_cgroup)
1159 __invalidate_reclaim_iterators(root_mem_cgroup,
1160 dead_memcg);
1161}
1162
7c5f64f8
VD
1163/**
1164 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1165 * @memcg: hierarchy root
1166 * @fn: function to call for each task
1167 * @arg: argument passed to @fn
1168 *
1169 * This function iterates over tasks attached to @memcg or to any of its
1170 * descendants and calls @fn for each task. If @fn returns a non-zero
1171 * value, the function breaks the iteration loop and returns the value.
1172 * Otherwise, it will iterate over all tasks and return 0.
1173 *
1174 * This function must not be called for the root memory cgroup.
1175 */
1176int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1177 int (*fn)(struct task_struct *, void *), void *arg)
1178{
1179 struct mem_cgroup *iter;
1180 int ret = 0;
1181
1182 BUG_ON(memcg == root_mem_cgroup);
1183
1184 for_each_mem_cgroup_tree(iter, memcg) {
1185 struct css_task_iter it;
1186 struct task_struct *task;
1187
f168a9a5 1188 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1189 while (!ret && (task = css_task_iter_next(&it)))
1190 ret = fn(task, arg);
1191 css_task_iter_end(&it);
1192 if (ret) {
1193 mem_cgroup_iter_break(memcg, iter);
1194 break;
1195 }
1196 }
1197 return ret;
1198}
1199
925b7673 1200/**
dfe0e773 1201 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1202 * @page: the page
f144c390 1203 * @pgdat: pgdat of the page
dfe0e773
JW
1204 *
1205 * This function is only safe when following the LRU page isolation
1206 * and putback protocol: the LRU lock must be held, and the page must
1207 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1208 */
599d0c95 1209struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1210{
ef8f2327 1211 struct mem_cgroup_per_node *mz;
925b7673 1212 struct mem_cgroup *memcg;
bea8c150 1213 struct lruvec *lruvec;
6d12e2d8 1214
bea8c150 1215 if (mem_cgroup_disabled()) {
867e5e1d 1216 lruvec = &pgdat->__lruvec;
bea8c150
HD
1217 goto out;
1218 }
925b7673 1219
1306a85a 1220 memcg = page->mem_cgroup;
7512102c 1221 /*
dfe0e773 1222 * Swapcache readahead pages are added to the LRU - and
29833315 1223 * possibly migrated - before they are charged.
7512102c 1224 */
29833315
JW
1225 if (!memcg)
1226 memcg = root_mem_cgroup;
7512102c 1227
ef8f2327 1228 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1229 lruvec = &mz->lruvec;
1230out:
1231 /*
1232 * Since a node can be onlined after the mem_cgroup was created,
1233 * we have to be prepared to initialize lruvec->zone here;
1234 * and if offlined then reonlined, we need to reinitialize it.
1235 */
599d0c95
MG
1236 if (unlikely(lruvec->pgdat != pgdat))
1237 lruvec->pgdat = pgdat;
bea8c150 1238 return lruvec;
08e552c6 1239}
b69408e8 1240
925b7673 1241/**
fa9add64
HD
1242 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1243 * @lruvec: mem_cgroup per zone lru vector
1244 * @lru: index of lru list the page is sitting on
b4536f0c 1245 * @zid: zone id of the accounted pages
fa9add64 1246 * @nr_pages: positive when adding or negative when removing
925b7673 1247 *
ca707239
HD
1248 * This function must be called under lru_lock, just before a page is added
1249 * to or just after a page is removed from an lru list (that ordering being
1250 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1251 */
fa9add64 1252void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1253 int zid, int nr_pages)
3f58a829 1254{
ef8f2327 1255 struct mem_cgroup_per_node *mz;
fa9add64 1256 unsigned long *lru_size;
ca707239 1257 long size;
3f58a829
MK
1258
1259 if (mem_cgroup_disabled())
1260 return;
1261
ef8f2327 1262 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1263 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1264
1265 if (nr_pages < 0)
1266 *lru_size += nr_pages;
1267
1268 size = *lru_size;
b4536f0c
MH
1269 if (WARN_ONCE(size < 0,
1270 "%s(%p, %d, %d): lru_size %ld\n",
1271 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1272 VM_BUG_ON(1);
1273 *lru_size = 0;
1274 }
1275
1276 if (nr_pages > 0)
1277 *lru_size += nr_pages;
08e552c6 1278}
544122e5 1279
19942822 1280/**
9d11ea9f 1281 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1282 * @memcg: the memory cgroup
19942822 1283 *
9d11ea9f 1284 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1285 * pages.
19942822 1286 */
c0ff4b85 1287static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1288{
3e32cb2e
JW
1289 unsigned long margin = 0;
1290 unsigned long count;
1291 unsigned long limit;
9d11ea9f 1292
3e32cb2e 1293 count = page_counter_read(&memcg->memory);
bbec2e15 1294 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1295 if (count < limit)
1296 margin = limit - count;
1297
7941d214 1298 if (do_memsw_account()) {
3e32cb2e 1299 count = page_counter_read(&memcg->memsw);
bbec2e15 1300 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1301 if (count <= limit)
1302 margin = min(margin, limit - count);
cbedbac3
LR
1303 else
1304 margin = 0;
3e32cb2e
JW
1305 }
1306
1307 return margin;
19942822
JW
1308}
1309
32047e2a 1310/*
bdcbb659 1311 * A routine for checking "mem" is under move_account() or not.
32047e2a 1312 *
bdcbb659
QH
1313 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1314 * moving cgroups. This is for waiting at high-memory pressure
1315 * caused by "move".
32047e2a 1316 */
c0ff4b85 1317static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1318{
2bd9bb20
KH
1319 struct mem_cgroup *from;
1320 struct mem_cgroup *to;
4b534334 1321 bool ret = false;
2bd9bb20
KH
1322 /*
1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1325 */
1326 spin_lock(&mc.lock);
1327 from = mc.from;
1328 to = mc.to;
1329 if (!from)
1330 goto unlock;
3e92041d 1331
2314b42d
JW
1332 ret = mem_cgroup_is_descendant(from, memcg) ||
1333 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1334unlock:
1335 spin_unlock(&mc.lock);
4b534334
KH
1336 return ret;
1337}
1338
c0ff4b85 1339static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1340{
1341 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1342 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1343 DEFINE_WAIT(wait);
1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 /* moving charge context might have finished. */
1346 if (mc.moving_task)
1347 schedule();
1348 finish_wait(&mc.waitq, &wait);
1349 return true;
1350 }
1351 }
1352 return false;
1353}
1354
c8713d0b
JW
1355static char *memory_stat_format(struct mem_cgroup *memcg)
1356{
1357 struct seq_buf s;
1358 int i;
71cd3113 1359
c8713d0b
JW
1360 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1361 if (!s.buffer)
1362 return NULL;
1363
1364 /*
1365 * Provide statistics on the state of the memory subsystem as
1366 * well as cumulative event counters that show past behavior.
1367 *
1368 * This list is ordered following a combination of these gradients:
1369 * 1) generic big picture -> specifics and details
1370 * 2) reflecting userspace activity -> reflecting kernel heuristics
1371 *
1372 * Current memory state:
1373 */
1374
1375 seq_buf_printf(&s, "anon %llu\n",
1376 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1377 PAGE_SIZE);
1378 seq_buf_printf(&s, "file %llu\n",
1379 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1380 PAGE_SIZE);
1381 seq_buf_printf(&s, "kernel_stack %llu\n",
1382 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1383 1024);
1384 seq_buf_printf(&s, "slab %llu\n",
1385 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1386 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1387 PAGE_SIZE);
1388 seq_buf_printf(&s, "sock %llu\n",
1389 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1390 PAGE_SIZE);
1391
1392 seq_buf_printf(&s, "shmem %llu\n",
1393 (u64)memcg_page_state(memcg, NR_SHMEM) *
1394 PAGE_SIZE);
1395 seq_buf_printf(&s, "file_mapped %llu\n",
1396 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1397 PAGE_SIZE);
1398 seq_buf_printf(&s, "file_dirty %llu\n",
1399 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1400 PAGE_SIZE);
1401 seq_buf_printf(&s, "file_writeback %llu\n",
1402 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1403 PAGE_SIZE);
1404
1405 /*
1406 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1407 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1408 * arse because it requires migrating the work out of rmap to a place
1409 * where the page->mem_cgroup is set up and stable.
1410 */
1411 seq_buf_printf(&s, "anon_thp %llu\n",
1412 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1413 PAGE_SIZE);
1414
1415 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1416 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1417 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1418 PAGE_SIZE);
1419
1420 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1421 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1422 PAGE_SIZE);
1423 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1424 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1425 PAGE_SIZE);
1426
1427 /* Accumulated memory events */
1428
ebc5d83d
KK
1429 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1430 memcg_events(memcg, PGFAULT));
1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1432 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1433
1434 seq_buf_printf(&s, "workingset_refault %lu\n",
1435 memcg_page_state(memcg, WORKINGSET_REFAULT));
1436 seq_buf_printf(&s, "workingset_activate %lu\n",
1437 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1438 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1439 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1440
ebc5d83d
KK
1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1442 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1443 seq_buf_printf(&s, "pgscan %lu\n",
1444 memcg_events(memcg, PGSCAN_KSWAPD) +
1445 memcg_events(memcg, PGSCAN_DIRECT));
1446 seq_buf_printf(&s, "pgsteal %lu\n",
1447 memcg_events(memcg, PGSTEAL_KSWAPD) +
1448 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1449 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1450 memcg_events(memcg, PGACTIVATE));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1452 memcg_events(memcg, PGDEACTIVATE));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1454 memcg_events(memcg, PGLAZYFREE));
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1456 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1457
1458#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1459 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1460 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1462 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1463#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1464
1465 /* The above should easily fit into one page */
1466 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1467
1468 return s.buffer;
1469}
71cd3113 1470
58cf188e 1471#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1472/**
f0c867d9 1473 * mem_cgroup_print_oom_context: Print OOM information relevant to
1474 * memory controller.
e222432b
BS
1475 * @memcg: The memory cgroup that went over limit
1476 * @p: Task that is going to be killed
1477 *
1478 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1479 * enabled
1480 */
f0c867d9 1481void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1482{
e222432b
BS
1483 rcu_read_lock();
1484
f0c867d9 1485 if (memcg) {
1486 pr_cont(",oom_memcg=");
1487 pr_cont_cgroup_path(memcg->css.cgroup);
1488 } else
1489 pr_cont(",global_oom");
2415b9f5 1490 if (p) {
f0c867d9 1491 pr_cont(",task_memcg=");
2415b9f5 1492 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1493 }
e222432b 1494 rcu_read_unlock();
f0c867d9 1495}
1496
1497/**
1498 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1499 * memory controller.
1500 * @memcg: The memory cgroup that went over limit
1501 */
1502void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1503{
c8713d0b 1504 char *buf;
e222432b 1505
3e32cb2e
JW
1506 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1507 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1508 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1509 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1510 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 K((u64)page_counter_read(&memcg->swap)),
1512 K((u64)memcg->swap.max), memcg->swap.failcnt);
1513 else {
1514 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1515 K((u64)page_counter_read(&memcg->memsw)),
1516 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1517 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1518 K((u64)page_counter_read(&memcg->kmem)),
1519 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1520 }
c8713d0b
JW
1521
1522 pr_info("Memory cgroup stats for ");
1523 pr_cont_cgroup_path(memcg->css.cgroup);
1524 pr_cont(":");
1525 buf = memory_stat_format(memcg);
1526 if (!buf)
1527 return;
1528 pr_info("%s", buf);
1529 kfree(buf);
e222432b
BS
1530}
1531
a63d83f4
DR
1532/*
1533 * Return the memory (and swap, if configured) limit for a memcg.
1534 */
bbec2e15 1535unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1536{
bbec2e15 1537 unsigned long max;
f3e8eb70 1538
bbec2e15 1539 max = memcg->memory.max;
9a5a8f19 1540 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1541 unsigned long memsw_max;
1542 unsigned long swap_max;
9a5a8f19 1543
bbec2e15
RG
1544 memsw_max = memcg->memsw.max;
1545 swap_max = memcg->swap.max;
1546 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1547 max = min(max + swap_max, memsw_max);
9a5a8f19 1548 }
bbec2e15 1549 return max;
a63d83f4
DR
1550}
1551
9783aa99
CD
1552unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1553{
1554 return page_counter_read(&memcg->memory);
1555}
1556
b6e6edcf 1557static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1558 int order)
9cbb78bb 1559{
6e0fc46d
DR
1560 struct oom_control oc = {
1561 .zonelist = NULL,
1562 .nodemask = NULL,
2a966b77 1563 .memcg = memcg,
6e0fc46d
DR
1564 .gfp_mask = gfp_mask,
1565 .order = order,
6e0fc46d 1566 };
7c5f64f8 1567 bool ret;
9cbb78bb 1568
7775face
TH
1569 if (mutex_lock_killable(&oom_lock))
1570 return true;
1571 /*
1572 * A few threads which were not waiting at mutex_lock_killable() can
1573 * fail to bail out. Therefore, check again after holding oom_lock.
1574 */
1575 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1576 mutex_unlock(&oom_lock);
7c5f64f8 1577 return ret;
9cbb78bb
DR
1578}
1579
0608f43d 1580static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1581 pg_data_t *pgdat,
0608f43d
AM
1582 gfp_t gfp_mask,
1583 unsigned long *total_scanned)
1584{
1585 struct mem_cgroup *victim = NULL;
1586 int total = 0;
1587 int loop = 0;
1588 unsigned long excess;
1589 unsigned long nr_scanned;
1590 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1591 .pgdat = pgdat,
0608f43d
AM
1592 };
1593
3e32cb2e 1594 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1595
1596 while (1) {
1597 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1598 if (!victim) {
1599 loop++;
1600 if (loop >= 2) {
1601 /*
1602 * If we have not been able to reclaim
1603 * anything, it might because there are
1604 * no reclaimable pages under this hierarchy
1605 */
1606 if (!total)
1607 break;
1608 /*
1609 * We want to do more targeted reclaim.
1610 * excess >> 2 is not to excessive so as to
1611 * reclaim too much, nor too less that we keep
1612 * coming back to reclaim from this cgroup
1613 */
1614 if (total >= (excess >> 2) ||
1615 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1616 break;
1617 }
1618 continue;
1619 }
a9dd0a83 1620 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1621 pgdat, &nr_scanned);
0608f43d 1622 *total_scanned += nr_scanned;
3e32cb2e 1623 if (!soft_limit_excess(root_memcg))
0608f43d 1624 break;
6d61ef40 1625 }
0608f43d
AM
1626 mem_cgroup_iter_break(root_memcg, victim);
1627 return total;
6d61ef40
BS
1628}
1629
0056f4e6
JW
1630#ifdef CONFIG_LOCKDEP
1631static struct lockdep_map memcg_oom_lock_dep_map = {
1632 .name = "memcg_oom_lock",
1633};
1634#endif
1635
fb2a6fc5
JW
1636static DEFINE_SPINLOCK(memcg_oom_lock);
1637
867578cb
KH
1638/*
1639 * Check OOM-Killer is already running under our hierarchy.
1640 * If someone is running, return false.
1641 */
fb2a6fc5 1642static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1643{
79dfdacc 1644 struct mem_cgroup *iter, *failed = NULL;
a636b327 1645
fb2a6fc5
JW
1646 spin_lock(&memcg_oom_lock);
1647
9f3a0d09 1648 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1649 if (iter->oom_lock) {
79dfdacc
MH
1650 /*
1651 * this subtree of our hierarchy is already locked
1652 * so we cannot give a lock.
1653 */
79dfdacc 1654 failed = iter;
9f3a0d09
JW
1655 mem_cgroup_iter_break(memcg, iter);
1656 break;
23751be0
JW
1657 } else
1658 iter->oom_lock = true;
7d74b06f 1659 }
867578cb 1660
fb2a6fc5
JW
1661 if (failed) {
1662 /*
1663 * OK, we failed to lock the whole subtree so we have
1664 * to clean up what we set up to the failing subtree
1665 */
1666 for_each_mem_cgroup_tree(iter, memcg) {
1667 if (iter == failed) {
1668 mem_cgroup_iter_break(memcg, iter);
1669 break;
1670 }
1671 iter->oom_lock = false;
79dfdacc 1672 }
0056f4e6
JW
1673 } else
1674 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1675
1676 spin_unlock(&memcg_oom_lock);
1677
1678 return !failed;
a636b327 1679}
0b7f569e 1680
fb2a6fc5 1681static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1682{
7d74b06f
KH
1683 struct mem_cgroup *iter;
1684
fb2a6fc5 1685 spin_lock(&memcg_oom_lock);
5facae4f 1686 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1687 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1688 iter->oom_lock = false;
fb2a6fc5 1689 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1690}
1691
c0ff4b85 1692static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1693{
1694 struct mem_cgroup *iter;
1695
c2b42d3c 1696 spin_lock(&memcg_oom_lock);
c0ff4b85 1697 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1698 iter->under_oom++;
1699 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1700}
1701
c0ff4b85 1702static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1703{
1704 struct mem_cgroup *iter;
1705
867578cb
KH
1706 /*
1707 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1708 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1709 */
c2b42d3c 1710 spin_lock(&memcg_oom_lock);
c0ff4b85 1711 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1712 if (iter->under_oom > 0)
1713 iter->under_oom--;
1714 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1715}
1716
867578cb
KH
1717static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1718
dc98df5a 1719struct oom_wait_info {
d79154bb 1720 struct mem_cgroup *memcg;
ac6424b9 1721 wait_queue_entry_t wait;
dc98df5a
KH
1722};
1723
ac6424b9 1724static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1725 unsigned mode, int sync, void *arg)
1726{
d79154bb
HD
1727 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1728 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1729 struct oom_wait_info *oom_wait_info;
1730
1731 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1732 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1733
2314b42d
JW
1734 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1735 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1736 return 0;
dc98df5a
KH
1737 return autoremove_wake_function(wait, mode, sync, arg);
1738}
1739
c0ff4b85 1740static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1741{
c2b42d3c
TH
1742 /*
1743 * For the following lockless ->under_oom test, the only required
1744 * guarantee is that it must see the state asserted by an OOM when
1745 * this function is called as a result of userland actions
1746 * triggered by the notification of the OOM. This is trivially
1747 * achieved by invoking mem_cgroup_mark_under_oom() before
1748 * triggering notification.
1749 */
1750 if (memcg && memcg->under_oom)
f4b90b70 1751 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1752}
1753
29ef680a
MH
1754enum oom_status {
1755 OOM_SUCCESS,
1756 OOM_FAILED,
1757 OOM_ASYNC,
1758 OOM_SKIPPED
1759};
1760
1761static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1762{
7056d3a3
MH
1763 enum oom_status ret;
1764 bool locked;
1765
29ef680a
MH
1766 if (order > PAGE_ALLOC_COSTLY_ORDER)
1767 return OOM_SKIPPED;
1768
7a1adfdd
RG
1769 memcg_memory_event(memcg, MEMCG_OOM);
1770
867578cb 1771 /*
49426420
JW
1772 * We are in the middle of the charge context here, so we
1773 * don't want to block when potentially sitting on a callstack
1774 * that holds all kinds of filesystem and mm locks.
1775 *
29ef680a
MH
1776 * cgroup1 allows disabling the OOM killer and waiting for outside
1777 * handling until the charge can succeed; remember the context and put
1778 * the task to sleep at the end of the page fault when all locks are
1779 * released.
49426420 1780 *
29ef680a
MH
1781 * On the other hand, in-kernel OOM killer allows for an async victim
1782 * memory reclaim (oom_reaper) and that means that we are not solely
1783 * relying on the oom victim to make a forward progress and we can
1784 * invoke the oom killer here.
1785 *
1786 * Please note that mem_cgroup_out_of_memory might fail to find a
1787 * victim and then we have to bail out from the charge path.
867578cb 1788 */
29ef680a
MH
1789 if (memcg->oom_kill_disable) {
1790 if (!current->in_user_fault)
1791 return OOM_SKIPPED;
1792 css_get(&memcg->css);
1793 current->memcg_in_oom = memcg;
1794 current->memcg_oom_gfp_mask = mask;
1795 current->memcg_oom_order = order;
1796
1797 return OOM_ASYNC;
1798 }
1799
7056d3a3
MH
1800 mem_cgroup_mark_under_oom(memcg);
1801
1802 locked = mem_cgroup_oom_trylock(memcg);
1803
1804 if (locked)
1805 mem_cgroup_oom_notify(memcg);
1806
1807 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1808 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1809 ret = OOM_SUCCESS;
1810 else
1811 ret = OOM_FAILED;
1812
1813 if (locked)
1814 mem_cgroup_oom_unlock(memcg);
29ef680a 1815
7056d3a3 1816 return ret;
3812c8c8
JW
1817}
1818
1819/**
1820 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1821 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1822 *
49426420
JW
1823 * This has to be called at the end of a page fault if the memcg OOM
1824 * handler was enabled.
3812c8c8 1825 *
49426420 1826 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1827 * sleep on a waitqueue until the userspace task resolves the
1828 * situation. Sleeping directly in the charge context with all kinds
1829 * of locks held is not a good idea, instead we remember an OOM state
1830 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1831 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1832 *
1833 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1834 * completed, %false otherwise.
3812c8c8 1835 */
49426420 1836bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1837{
626ebc41 1838 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1839 struct oom_wait_info owait;
49426420 1840 bool locked;
3812c8c8
JW
1841
1842 /* OOM is global, do not handle */
3812c8c8 1843 if (!memcg)
49426420 1844 return false;
3812c8c8 1845
7c5f64f8 1846 if (!handle)
49426420 1847 goto cleanup;
3812c8c8
JW
1848
1849 owait.memcg = memcg;
1850 owait.wait.flags = 0;
1851 owait.wait.func = memcg_oom_wake_function;
1852 owait.wait.private = current;
2055da97 1853 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1854
3812c8c8 1855 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1856 mem_cgroup_mark_under_oom(memcg);
1857
1858 locked = mem_cgroup_oom_trylock(memcg);
1859
1860 if (locked)
1861 mem_cgroup_oom_notify(memcg);
1862
1863 if (locked && !memcg->oom_kill_disable) {
1864 mem_cgroup_unmark_under_oom(memcg);
1865 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1866 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1867 current->memcg_oom_order);
49426420 1868 } else {
3812c8c8 1869 schedule();
49426420
JW
1870 mem_cgroup_unmark_under_oom(memcg);
1871 finish_wait(&memcg_oom_waitq, &owait.wait);
1872 }
1873
1874 if (locked) {
fb2a6fc5
JW
1875 mem_cgroup_oom_unlock(memcg);
1876 /*
1877 * There is no guarantee that an OOM-lock contender
1878 * sees the wakeups triggered by the OOM kill
1879 * uncharges. Wake any sleepers explicitely.
1880 */
1881 memcg_oom_recover(memcg);
1882 }
49426420 1883cleanup:
626ebc41 1884 current->memcg_in_oom = NULL;
3812c8c8 1885 css_put(&memcg->css);
867578cb 1886 return true;
0b7f569e
KH
1887}
1888
3d8b38eb
RG
1889/**
1890 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1891 * @victim: task to be killed by the OOM killer
1892 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1893 *
1894 * Returns a pointer to a memory cgroup, which has to be cleaned up
1895 * by killing all belonging OOM-killable tasks.
1896 *
1897 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1898 */
1899struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1900 struct mem_cgroup *oom_domain)
1901{
1902 struct mem_cgroup *oom_group = NULL;
1903 struct mem_cgroup *memcg;
1904
1905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1906 return NULL;
1907
1908 if (!oom_domain)
1909 oom_domain = root_mem_cgroup;
1910
1911 rcu_read_lock();
1912
1913 memcg = mem_cgroup_from_task(victim);
1914 if (memcg == root_mem_cgroup)
1915 goto out;
1916
1917 /*
1918 * Traverse the memory cgroup hierarchy from the victim task's
1919 * cgroup up to the OOMing cgroup (or root) to find the
1920 * highest-level memory cgroup with oom.group set.
1921 */
1922 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1923 if (memcg->oom_group)
1924 oom_group = memcg;
1925
1926 if (memcg == oom_domain)
1927 break;
1928 }
1929
1930 if (oom_group)
1931 css_get(&oom_group->css);
1932out:
1933 rcu_read_unlock();
1934
1935 return oom_group;
1936}
1937
1938void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1939{
1940 pr_info("Tasks in ");
1941 pr_cont_cgroup_path(memcg->css.cgroup);
1942 pr_cont(" are going to be killed due to memory.oom.group set\n");
1943}
1944
d7365e78 1945/**
81f8c3a4
JW
1946 * lock_page_memcg - lock a page->mem_cgroup binding
1947 * @page: the page
32047e2a 1948 *
81f8c3a4 1949 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1950 * another cgroup.
1951 *
1952 * It ensures lifetime of the returned memcg. Caller is responsible
1953 * for the lifetime of the page; __unlock_page_memcg() is available
1954 * when @page might get freed inside the locked section.
d69b042f 1955 */
739f79fc 1956struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1957{
1958 struct mem_cgroup *memcg;
6de22619 1959 unsigned long flags;
89c06bd5 1960
6de22619
JW
1961 /*
1962 * The RCU lock is held throughout the transaction. The fast
1963 * path can get away without acquiring the memcg->move_lock
1964 * because page moving starts with an RCU grace period.
739f79fc
JW
1965 *
1966 * The RCU lock also protects the memcg from being freed when
1967 * the page state that is going to change is the only thing
1968 * preventing the page itself from being freed. E.g. writeback
1969 * doesn't hold a page reference and relies on PG_writeback to
1970 * keep off truncation, migration and so forth.
1971 */
d7365e78
JW
1972 rcu_read_lock();
1973
1974 if (mem_cgroup_disabled())
739f79fc 1975 return NULL;
89c06bd5 1976again:
1306a85a 1977 memcg = page->mem_cgroup;
29833315 1978 if (unlikely(!memcg))
739f79fc 1979 return NULL;
d7365e78 1980
bdcbb659 1981 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1982 return memcg;
89c06bd5 1983
6de22619 1984 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1985 if (memcg != page->mem_cgroup) {
6de22619 1986 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1987 goto again;
1988 }
6de22619
JW
1989
1990 /*
1991 * When charge migration first begins, we can have locked and
1992 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1993 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1994 */
1995 memcg->move_lock_task = current;
1996 memcg->move_lock_flags = flags;
d7365e78 1997
739f79fc 1998 return memcg;
89c06bd5 1999}
81f8c3a4 2000EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2001
d7365e78 2002/**
739f79fc
JW
2003 * __unlock_page_memcg - unlock and unpin a memcg
2004 * @memcg: the memcg
2005 *
2006 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2007 */
739f79fc 2008void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2009{
6de22619
JW
2010 if (memcg && memcg->move_lock_task == current) {
2011 unsigned long flags = memcg->move_lock_flags;
2012
2013 memcg->move_lock_task = NULL;
2014 memcg->move_lock_flags = 0;
2015
2016 spin_unlock_irqrestore(&memcg->move_lock, flags);
2017 }
89c06bd5 2018
d7365e78 2019 rcu_read_unlock();
89c06bd5 2020}
739f79fc
JW
2021
2022/**
2023 * unlock_page_memcg - unlock a page->mem_cgroup binding
2024 * @page: the page
2025 */
2026void unlock_page_memcg(struct page *page)
2027{
2028 __unlock_page_memcg(page->mem_cgroup);
2029}
81f8c3a4 2030EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2031
cdec2e42
KH
2032struct memcg_stock_pcp {
2033 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2034 unsigned int nr_pages;
cdec2e42 2035 struct work_struct work;
26fe6168 2036 unsigned long flags;
a0db00fc 2037#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2038};
2039static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2040static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2041
a0956d54
SS
2042/**
2043 * consume_stock: Try to consume stocked charge on this cpu.
2044 * @memcg: memcg to consume from.
2045 * @nr_pages: how many pages to charge.
2046 *
2047 * The charges will only happen if @memcg matches the current cpu's memcg
2048 * stock, and at least @nr_pages are available in that stock. Failure to
2049 * service an allocation will refill the stock.
2050 *
2051 * returns true if successful, false otherwise.
cdec2e42 2052 */
a0956d54 2053static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2054{
2055 struct memcg_stock_pcp *stock;
db2ba40c 2056 unsigned long flags;
3e32cb2e 2057 bool ret = false;
cdec2e42 2058
a983b5eb 2059 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2060 return ret;
a0956d54 2061
db2ba40c
JW
2062 local_irq_save(flags);
2063
2064 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2065 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2066 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2067 ret = true;
2068 }
db2ba40c
JW
2069
2070 local_irq_restore(flags);
2071
cdec2e42
KH
2072 return ret;
2073}
2074
2075/*
3e32cb2e 2076 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2077 */
2078static void drain_stock(struct memcg_stock_pcp *stock)
2079{
2080 struct mem_cgroup *old = stock->cached;
2081
11c9ea4e 2082 if (stock->nr_pages) {
3e32cb2e 2083 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2084 if (do_memsw_account())
3e32cb2e 2085 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2086 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2087 stock->nr_pages = 0;
cdec2e42
KH
2088 }
2089 stock->cached = NULL;
cdec2e42
KH
2090}
2091
cdec2e42
KH
2092static void drain_local_stock(struct work_struct *dummy)
2093{
db2ba40c
JW
2094 struct memcg_stock_pcp *stock;
2095 unsigned long flags;
2096
72f0184c
MH
2097 /*
2098 * The only protection from memory hotplug vs. drain_stock races is
2099 * that we always operate on local CPU stock here with IRQ disabled
2100 */
db2ba40c
JW
2101 local_irq_save(flags);
2102
2103 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2104 drain_stock(stock);
26fe6168 2105 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2106
2107 local_irq_restore(flags);
cdec2e42
KH
2108}
2109
2110/*
3e32cb2e 2111 * Cache charges(val) to local per_cpu area.
320cc51d 2112 * This will be consumed by consume_stock() function, later.
cdec2e42 2113 */
c0ff4b85 2114static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2115{
db2ba40c
JW
2116 struct memcg_stock_pcp *stock;
2117 unsigned long flags;
2118
2119 local_irq_save(flags);
cdec2e42 2120
db2ba40c 2121 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2122 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2123 drain_stock(stock);
c0ff4b85 2124 stock->cached = memcg;
cdec2e42 2125 }
11c9ea4e 2126 stock->nr_pages += nr_pages;
db2ba40c 2127
a983b5eb 2128 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2129 drain_stock(stock);
2130
db2ba40c 2131 local_irq_restore(flags);
cdec2e42
KH
2132}
2133
2134/*
c0ff4b85 2135 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2136 * of the hierarchy under it.
cdec2e42 2137 */
6d3d6aa2 2138static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2139{
26fe6168 2140 int cpu, curcpu;
d38144b7 2141
6d3d6aa2
JW
2142 /* If someone's already draining, avoid adding running more workers. */
2143 if (!mutex_trylock(&percpu_charge_mutex))
2144 return;
72f0184c
MH
2145 /*
2146 * Notify other cpus that system-wide "drain" is running
2147 * We do not care about races with the cpu hotplug because cpu down
2148 * as well as workers from this path always operate on the local
2149 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2150 */
5af12d0e 2151 curcpu = get_cpu();
cdec2e42
KH
2152 for_each_online_cpu(cpu) {
2153 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2154 struct mem_cgroup *memcg;
e1a366be 2155 bool flush = false;
26fe6168 2156
e1a366be 2157 rcu_read_lock();
c0ff4b85 2158 memcg = stock->cached;
e1a366be
RG
2159 if (memcg && stock->nr_pages &&
2160 mem_cgroup_is_descendant(memcg, root_memcg))
2161 flush = true;
2162 rcu_read_unlock();
2163
2164 if (flush &&
2165 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2166 if (cpu == curcpu)
2167 drain_local_stock(&stock->work);
2168 else
2169 schedule_work_on(cpu, &stock->work);
2170 }
cdec2e42 2171 }
5af12d0e 2172 put_cpu();
9f50fad6 2173 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2174}
2175
308167fc 2176static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2177{
cdec2e42 2178 struct memcg_stock_pcp *stock;
42a30035 2179 struct mem_cgroup *memcg, *mi;
cdec2e42 2180
cdec2e42
KH
2181 stock = &per_cpu(memcg_stock, cpu);
2182 drain_stock(stock);
a983b5eb
JW
2183
2184 for_each_mem_cgroup(memcg) {
2185 int i;
2186
2187 for (i = 0; i < MEMCG_NR_STAT; i++) {
2188 int nid;
2189 long x;
2190
871789d4 2191 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2192 if (x)
42a30035
JW
2193 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2194 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2195
2196 if (i >= NR_VM_NODE_STAT_ITEMS)
2197 continue;
2198
2199 for_each_node(nid) {
2200 struct mem_cgroup_per_node *pn;
2201
2202 pn = mem_cgroup_nodeinfo(memcg, nid);
2203 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2204 if (x)
42a30035
JW
2205 do {
2206 atomic_long_add(x, &pn->lruvec_stat[i]);
2207 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2208 }
2209 }
2210
e27be240 2211 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2212 long x;
2213
871789d4 2214 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2215 if (x)
42a30035
JW
2216 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2217 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2218 }
2219 }
2220
308167fc 2221 return 0;
cdec2e42
KH
2222}
2223
f7e1cb6e
JW
2224static void reclaim_high(struct mem_cgroup *memcg,
2225 unsigned int nr_pages,
2226 gfp_t gfp_mask)
2227{
2228 do {
2229 if (page_counter_read(&memcg->memory) <= memcg->high)
2230 continue;
e27be240 2231 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2232 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2233 } while ((memcg = parent_mem_cgroup(memcg)));
2234}
2235
2236static void high_work_func(struct work_struct *work)
2237{
2238 struct mem_cgroup *memcg;
2239
2240 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2241 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2242}
2243
0e4b01df
CD
2244/*
2245 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2246 * enough to still cause a significant slowdown in most cases, while still
2247 * allowing diagnostics and tracing to proceed without becoming stuck.
2248 */
2249#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2250
2251/*
2252 * When calculating the delay, we use these either side of the exponentiation to
2253 * maintain precision and scale to a reasonable number of jiffies (see the table
2254 * below.
2255 *
2256 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2257 * overage ratio to a delay.
2258 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2259 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2260 * to produce a reasonable delay curve.
2261 *
2262 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2263 * reasonable delay curve compared to precision-adjusted overage, not
2264 * penalising heavily at first, but still making sure that growth beyond the
2265 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2266 * example, with a high of 100 megabytes:
2267 *
2268 * +-------+------------------------+
2269 * | usage | time to allocate in ms |
2270 * +-------+------------------------+
2271 * | 100M | 0 |
2272 * | 101M | 6 |
2273 * | 102M | 25 |
2274 * | 103M | 57 |
2275 * | 104M | 102 |
2276 * | 105M | 159 |
2277 * | 106M | 230 |
2278 * | 107M | 313 |
2279 * | 108M | 409 |
2280 * | 109M | 518 |
2281 * | 110M | 639 |
2282 * | 111M | 774 |
2283 * | 112M | 921 |
2284 * | 113M | 1081 |
2285 * | 114M | 1254 |
2286 * | 115M | 1439 |
2287 * | 116M | 1638 |
2288 * | 117M | 1849 |
2289 * | 118M | 2000 |
2290 * | 119M | 2000 |
2291 * | 120M | 2000 |
2292 * +-------+------------------------+
2293 */
2294 #define MEMCG_DELAY_PRECISION_SHIFT 20
2295 #define MEMCG_DELAY_SCALING_SHIFT 14
2296
b23afb93
TH
2297/*
2298 * Scheduled by try_charge() to be executed from the userland return path
2299 * and reclaims memory over the high limit.
2300 */
2301void mem_cgroup_handle_over_high(void)
2302{
0e4b01df
CD
2303 unsigned long usage, high, clamped_high;
2304 unsigned long pflags;
2305 unsigned long penalty_jiffies, overage;
b23afb93 2306 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2307 struct mem_cgroup *memcg;
b23afb93
TH
2308
2309 if (likely(!nr_pages))
2310 return;
2311
f7e1cb6e
JW
2312 memcg = get_mem_cgroup_from_mm(current->mm);
2313 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93 2314 current->memcg_nr_pages_over_high = 0;
0e4b01df
CD
2315
2316 /*
2317 * memory.high is breached and reclaim is unable to keep up. Throttle
2318 * allocators proactively to slow down excessive growth.
2319 *
2320 * We use overage compared to memory.high to calculate the number of
2321 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2322 * fairly lenient on small overages, and increasingly harsh when the
2323 * memcg in question makes it clear that it has no intention of stopping
2324 * its crazy behaviour, so we exponentially increase the delay based on
2325 * overage amount.
2326 */
2327
2328 usage = page_counter_read(&memcg->memory);
2329 high = READ_ONCE(memcg->high);
2330
2331 if (usage <= high)
2332 goto out;
2333
2334 /*
2335 * Prevent division by 0 in overage calculation by acting as if it was a
2336 * threshold of 1 page
2337 */
2338 clamped_high = max(high, 1UL);
2339
2340 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2341 clamped_high);
2342
2343 penalty_jiffies = ((u64)overage * overage * HZ)
2344 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2345
2346 /*
2347 * Factor in the task's own contribution to the overage, such that four
2348 * N-sized allocations are throttled approximately the same as one
2349 * 4N-sized allocation.
2350 *
2351 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2352 * larger the current charge patch is than that.
2353 */
2354 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2355
2356 /*
2357 * Clamp the max delay per usermode return so as to still keep the
2358 * application moving forwards and also permit diagnostics, albeit
2359 * extremely slowly.
2360 */
2361 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2362
2363 /*
2364 * Don't sleep if the amount of jiffies this memcg owes us is so low
2365 * that it's not even worth doing, in an attempt to be nice to those who
2366 * go only a small amount over their memory.high value and maybe haven't
2367 * been aggressively reclaimed enough yet.
2368 */
2369 if (penalty_jiffies <= HZ / 100)
2370 goto out;
2371
2372 /*
2373 * If we exit early, we're guaranteed to die (since
2374 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2375 * need to account for any ill-begotten jiffies to pay them off later.
2376 */
2377 psi_memstall_enter(&pflags);
2378 schedule_timeout_killable(penalty_jiffies);
2379 psi_memstall_leave(&pflags);
2380
2381out:
2382 css_put(&memcg->css);
b23afb93
TH
2383}
2384
00501b53
JW
2385static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2386 unsigned int nr_pages)
8a9f3ccd 2387{
a983b5eb 2388 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2389 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2390 struct mem_cgroup *mem_over_limit;
3e32cb2e 2391 struct page_counter *counter;
6539cc05 2392 unsigned long nr_reclaimed;
b70a2a21
JW
2393 bool may_swap = true;
2394 bool drained = false;
29ef680a 2395 enum oom_status oom_status;
a636b327 2396
ce00a967 2397 if (mem_cgroup_is_root(memcg))
10d53c74 2398 return 0;
6539cc05 2399retry:
b6b6cc72 2400 if (consume_stock(memcg, nr_pages))
10d53c74 2401 return 0;
8a9f3ccd 2402
7941d214 2403 if (!do_memsw_account() ||
6071ca52
JW
2404 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2405 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2406 goto done_restock;
7941d214 2407 if (do_memsw_account())
3e32cb2e
JW
2408 page_counter_uncharge(&memcg->memsw, batch);
2409 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2410 } else {
3e32cb2e 2411 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2412 may_swap = false;
3fbe7244 2413 }
7a81b88c 2414
6539cc05
JW
2415 if (batch > nr_pages) {
2416 batch = nr_pages;
2417 goto retry;
2418 }
6d61ef40 2419
869712fd
JW
2420 /*
2421 * Memcg doesn't have a dedicated reserve for atomic
2422 * allocations. But like the global atomic pool, we need to
2423 * put the burden of reclaim on regular allocation requests
2424 * and let these go through as privileged allocations.
2425 */
2426 if (gfp_mask & __GFP_ATOMIC)
2427 goto force;
2428
06b078fc
JW
2429 /*
2430 * Unlike in global OOM situations, memcg is not in a physical
2431 * memory shortage. Allow dying and OOM-killed tasks to
2432 * bypass the last charges so that they can exit quickly and
2433 * free their memory.
2434 */
7775face 2435 if (unlikely(should_force_charge()))
10d53c74 2436 goto force;
06b078fc 2437
89a28483
JW
2438 /*
2439 * Prevent unbounded recursion when reclaim operations need to
2440 * allocate memory. This might exceed the limits temporarily,
2441 * but we prefer facilitating memory reclaim and getting back
2442 * under the limit over triggering OOM kills in these cases.
2443 */
2444 if (unlikely(current->flags & PF_MEMALLOC))
2445 goto force;
2446
06b078fc
JW
2447 if (unlikely(task_in_memcg_oom(current)))
2448 goto nomem;
2449
d0164adc 2450 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2451 goto nomem;
4b534334 2452
e27be240 2453 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2454
b70a2a21
JW
2455 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2456 gfp_mask, may_swap);
6539cc05 2457
61e02c74 2458 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2459 goto retry;
28c34c29 2460
b70a2a21 2461 if (!drained) {
6d3d6aa2 2462 drain_all_stock(mem_over_limit);
b70a2a21
JW
2463 drained = true;
2464 goto retry;
2465 }
2466
28c34c29
JW
2467 if (gfp_mask & __GFP_NORETRY)
2468 goto nomem;
6539cc05
JW
2469 /*
2470 * Even though the limit is exceeded at this point, reclaim
2471 * may have been able to free some pages. Retry the charge
2472 * before killing the task.
2473 *
2474 * Only for regular pages, though: huge pages are rather
2475 * unlikely to succeed so close to the limit, and we fall back
2476 * to regular pages anyway in case of failure.
2477 */
61e02c74 2478 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2479 goto retry;
2480 /*
2481 * At task move, charge accounts can be doubly counted. So, it's
2482 * better to wait until the end of task_move if something is going on.
2483 */
2484 if (mem_cgroup_wait_acct_move(mem_over_limit))
2485 goto retry;
2486
9b130619
JW
2487 if (nr_retries--)
2488 goto retry;
2489
38d38493 2490 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2491 goto nomem;
2492
06b078fc 2493 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2494 goto force;
06b078fc 2495
6539cc05 2496 if (fatal_signal_pending(current))
10d53c74 2497 goto force;
6539cc05 2498
29ef680a
MH
2499 /*
2500 * keep retrying as long as the memcg oom killer is able to make
2501 * a forward progress or bypass the charge if the oom killer
2502 * couldn't make any progress.
2503 */
2504 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2505 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2506 switch (oom_status) {
2507 case OOM_SUCCESS:
2508 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2509 goto retry;
2510 case OOM_FAILED:
2511 goto force;
2512 default:
2513 goto nomem;
2514 }
7a81b88c 2515nomem:
6d1fdc48 2516 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2517 return -ENOMEM;
10d53c74
TH
2518force:
2519 /*
2520 * The allocation either can't fail or will lead to more memory
2521 * being freed very soon. Allow memory usage go over the limit
2522 * temporarily by force charging it.
2523 */
2524 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2525 if (do_memsw_account())
10d53c74
TH
2526 page_counter_charge(&memcg->memsw, nr_pages);
2527 css_get_many(&memcg->css, nr_pages);
2528
2529 return 0;
6539cc05
JW
2530
2531done_restock:
e8ea14cc 2532 css_get_many(&memcg->css, batch);
6539cc05
JW
2533 if (batch > nr_pages)
2534 refill_stock(memcg, batch - nr_pages);
b23afb93 2535
241994ed 2536 /*
b23afb93
TH
2537 * If the hierarchy is above the normal consumption range, schedule
2538 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2539 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2540 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2541 * not recorded as it most likely matches current's and won't
2542 * change in the meantime. As high limit is checked again before
2543 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2544 */
2545 do {
b23afb93 2546 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2547 /* Don't bother a random interrupted task */
2548 if (in_interrupt()) {
2549 schedule_work(&memcg->high_work);
2550 break;
2551 }
9516a18a 2552 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2553 set_notify_resume(current);
2554 break;
2555 }
241994ed 2556 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2557
2558 return 0;
7a81b88c 2559}
8a9f3ccd 2560
00501b53 2561static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2562{
ce00a967
JW
2563 if (mem_cgroup_is_root(memcg))
2564 return;
2565
3e32cb2e 2566 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2567 if (do_memsw_account())
3e32cb2e 2568 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2569
e8ea14cc 2570 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2571}
2572
0a31bc97
JW
2573static void lock_page_lru(struct page *page, int *isolated)
2574{
f4b7e272 2575 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2576
f4b7e272 2577 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2578 if (PageLRU(page)) {
2579 struct lruvec *lruvec;
2580
f4b7e272 2581 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2582 ClearPageLRU(page);
2583 del_page_from_lru_list(page, lruvec, page_lru(page));
2584 *isolated = 1;
2585 } else
2586 *isolated = 0;
2587}
2588
2589static void unlock_page_lru(struct page *page, int isolated)
2590{
f4b7e272 2591 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2592
2593 if (isolated) {
2594 struct lruvec *lruvec;
2595
f4b7e272 2596 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2597 VM_BUG_ON_PAGE(PageLRU(page), page);
2598 SetPageLRU(page);
2599 add_page_to_lru_list(page, lruvec, page_lru(page));
2600 }
f4b7e272 2601 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2602}
2603
00501b53 2604static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2605 bool lrucare)
7a81b88c 2606{
0a31bc97 2607 int isolated;
9ce70c02 2608
1306a85a 2609 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2610
2611 /*
2612 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2613 * may already be on some other mem_cgroup's LRU. Take care of it.
2614 */
0a31bc97
JW
2615 if (lrucare)
2616 lock_page_lru(page, &isolated);
9ce70c02 2617
0a31bc97
JW
2618 /*
2619 * Nobody should be changing or seriously looking at
1306a85a 2620 * page->mem_cgroup at this point:
0a31bc97
JW
2621 *
2622 * - the page is uncharged
2623 *
2624 * - the page is off-LRU
2625 *
2626 * - an anonymous fault has exclusive page access, except for
2627 * a locked page table
2628 *
2629 * - a page cache insertion, a swapin fault, or a migration
2630 * have the page locked
2631 */
1306a85a 2632 page->mem_cgroup = memcg;
9ce70c02 2633
0a31bc97
JW
2634 if (lrucare)
2635 unlock_page_lru(page, isolated);
7a81b88c 2636}
66e1707b 2637
84c07d11 2638#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2639static int memcg_alloc_cache_id(void)
55007d84 2640{
f3bb3043
VD
2641 int id, size;
2642 int err;
2643
dbcf73e2 2644 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2645 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2646 if (id < 0)
2647 return id;
55007d84 2648
dbcf73e2 2649 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2650 return id;
2651
2652 /*
2653 * There's no space for the new id in memcg_caches arrays,
2654 * so we have to grow them.
2655 */
05257a1a 2656 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2657
2658 size = 2 * (id + 1);
55007d84
GC
2659 if (size < MEMCG_CACHES_MIN_SIZE)
2660 size = MEMCG_CACHES_MIN_SIZE;
2661 else if (size > MEMCG_CACHES_MAX_SIZE)
2662 size = MEMCG_CACHES_MAX_SIZE;
2663
f3bb3043 2664 err = memcg_update_all_caches(size);
60d3fd32
VD
2665 if (!err)
2666 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2667 if (!err)
2668 memcg_nr_cache_ids = size;
2669
2670 up_write(&memcg_cache_ids_sem);
2671
f3bb3043 2672 if (err) {
dbcf73e2 2673 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2674 return err;
2675 }
2676 return id;
2677}
2678
2679static void memcg_free_cache_id(int id)
2680{
dbcf73e2 2681 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2682}
2683
d5b3cf71 2684struct memcg_kmem_cache_create_work {
5722d094
VD
2685 struct mem_cgroup *memcg;
2686 struct kmem_cache *cachep;
2687 struct work_struct work;
2688};
2689
d5b3cf71 2690static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2691{
d5b3cf71
VD
2692 struct memcg_kmem_cache_create_work *cw =
2693 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2694 struct mem_cgroup *memcg = cw->memcg;
2695 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2696
d5b3cf71 2697 memcg_create_kmem_cache(memcg, cachep);
bd673145 2698
5722d094 2699 css_put(&memcg->css);
d7f25f8a
GC
2700 kfree(cw);
2701}
2702
2703/*
2704 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2705 */
85cfb245 2706static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2707 struct kmem_cache *cachep)
d7f25f8a 2708{
d5b3cf71 2709 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2710
f0a3a24b
RG
2711 if (!css_tryget_online(&memcg->css))
2712 return;
2713
c892fd82 2714 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2715 if (!cw)
d7f25f8a 2716 return;
8135be5a 2717
d7f25f8a
GC
2718 cw->memcg = memcg;
2719 cw->cachep = cachep;
d5b3cf71 2720 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2721
17cc4dfe 2722 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2723}
2724
45264778
VD
2725static inline bool memcg_kmem_bypass(void)
2726{
2727 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2728 return true;
2729 return false;
2730}
2731
2732/**
2733 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2734 * @cachep: the original global kmem cache
2735 *
d7f25f8a
GC
2736 * Return the kmem_cache we're supposed to use for a slab allocation.
2737 * We try to use the current memcg's version of the cache.
2738 *
45264778
VD
2739 * If the cache does not exist yet, if we are the first user of it, we
2740 * create it asynchronously in a workqueue and let the current allocation
2741 * go through with the original cache.
d7f25f8a 2742 *
45264778
VD
2743 * This function takes a reference to the cache it returns to assure it
2744 * won't get destroyed while we are working with it. Once the caller is
2745 * done with it, memcg_kmem_put_cache() must be called to release the
2746 * reference.
d7f25f8a 2747 */
45264778 2748struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2749{
2750 struct mem_cgroup *memcg;
959c8963 2751 struct kmem_cache *memcg_cachep;
f0a3a24b 2752 struct memcg_cache_array *arr;
2a4db7eb 2753 int kmemcg_id;
d7f25f8a 2754
f7ce3190 2755 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2756
45264778 2757 if (memcg_kmem_bypass())
230e9fc2
VD
2758 return cachep;
2759
f0a3a24b
RG
2760 rcu_read_lock();
2761
2762 if (unlikely(current->active_memcg))
2763 memcg = current->active_memcg;
2764 else
2765 memcg = mem_cgroup_from_task(current);
2766
2767 if (!memcg || memcg == root_mem_cgroup)
2768 goto out_unlock;
2769
4db0c3c2 2770 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2771 if (kmemcg_id < 0)
f0a3a24b 2772 goto out_unlock;
d7f25f8a 2773
f0a3a24b
RG
2774 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2775
2776 /*
2777 * Make sure we will access the up-to-date value. The code updating
2778 * memcg_caches issues a write barrier to match the data dependency
2779 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2780 */
2781 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2782
2783 /*
2784 * If we are in a safe context (can wait, and not in interrupt
2785 * context), we could be be predictable and return right away.
2786 * This would guarantee that the allocation being performed
2787 * already belongs in the new cache.
2788 *
2789 * However, there are some clashes that can arrive from locking.
2790 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2791 * memcg_create_kmem_cache, this means no further allocation
2792 * could happen with the slab_mutex held. So it's better to
2793 * defer everything.
f0a3a24b
RG
2794 *
2795 * If the memcg is dying or memcg_cache is about to be released,
2796 * don't bother creating new kmem_caches. Because memcg_cachep
2797 * is ZEROed as the fist step of kmem offlining, we don't need
2798 * percpu_ref_tryget_live() here. css_tryget_online() check in
2799 * memcg_schedule_kmem_cache_create() will prevent us from
2800 * creation of a new kmem_cache.
ca0dde97 2801 */
f0a3a24b
RG
2802 if (unlikely(!memcg_cachep))
2803 memcg_schedule_kmem_cache_create(memcg, cachep);
2804 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2805 cachep = memcg_cachep;
2806out_unlock:
2807 rcu_read_unlock();
ca0dde97 2808 return cachep;
d7f25f8a 2809}
d7f25f8a 2810
45264778
VD
2811/**
2812 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2813 * @cachep: the cache returned by memcg_kmem_get_cache
2814 */
2815void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2816{
2817 if (!is_root_cache(cachep))
f0a3a24b 2818 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2819}
2820
45264778 2821/**
60cd4bcd 2822 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2823 * @page: page to charge
2824 * @gfp: reclaim mode
2825 * @order: allocation order
2826 * @memcg: memory cgroup to charge
2827 *
2828 * Returns 0 on success, an error code on failure.
2829 */
60cd4bcd 2830int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2831 struct mem_cgroup *memcg)
7ae1e1d0 2832{
f3ccb2c4
VD
2833 unsigned int nr_pages = 1 << order;
2834 struct page_counter *counter;
7ae1e1d0
GC
2835 int ret;
2836
f3ccb2c4 2837 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2838 if (ret)
f3ccb2c4 2839 return ret;
52c29b04
JW
2840
2841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2842 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2843
2844 /*
2845 * Enforce __GFP_NOFAIL allocation because callers are not
2846 * prepared to see failures and likely do not have any failure
2847 * handling code.
2848 */
2849 if (gfp & __GFP_NOFAIL) {
2850 page_counter_charge(&memcg->kmem, nr_pages);
2851 return 0;
2852 }
52c29b04
JW
2853 cancel_charge(memcg, nr_pages);
2854 return -ENOMEM;
7ae1e1d0 2855 }
f3ccb2c4 2856 return 0;
7ae1e1d0
GC
2857}
2858
45264778 2859/**
60cd4bcd 2860 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2861 * @page: page to charge
2862 * @gfp: reclaim mode
2863 * @order: allocation order
2864 *
2865 * Returns 0 on success, an error code on failure.
2866 */
60cd4bcd 2867int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2868{
f3ccb2c4 2869 struct mem_cgroup *memcg;
fcff7d7e 2870 int ret = 0;
7ae1e1d0 2871
60cd4bcd 2872 if (memcg_kmem_bypass())
45264778
VD
2873 return 0;
2874
d46eb14b 2875 memcg = get_mem_cgroup_from_current();
c4159a75 2876 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2877 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2878 if (!ret) {
2879 page->mem_cgroup = memcg;
c4159a75 2880 __SetPageKmemcg(page);
4d96ba35 2881 }
c4159a75 2882 }
7ae1e1d0 2883 css_put(&memcg->css);
d05e83a6 2884 return ret;
7ae1e1d0 2885}
49a18eae
RG
2886
2887/**
2888 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2889 * @memcg: memcg to uncharge
2890 * @nr_pages: number of pages to uncharge
2891 */
2892void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2893 unsigned int nr_pages)
2894{
2895 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2896 page_counter_uncharge(&memcg->kmem, nr_pages);
2897
2898 page_counter_uncharge(&memcg->memory, nr_pages);
2899 if (do_memsw_account())
2900 page_counter_uncharge(&memcg->memsw, nr_pages);
2901}
45264778 2902/**
60cd4bcd 2903 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2904 * @page: page to uncharge
2905 * @order: allocation order
2906 */
60cd4bcd 2907void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2908{
1306a85a 2909 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2910 unsigned int nr_pages = 1 << order;
7ae1e1d0 2911
7ae1e1d0
GC
2912 if (!memcg)
2913 return;
2914
309381fe 2915 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 2916 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 2917 page->mem_cgroup = NULL;
c4159a75
VD
2918
2919 /* slab pages do not have PageKmemcg flag set */
2920 if (PageKmemcg(page))
2921 __ClearPageKmemcg(page);
2922
f3ccb2c4 2923 css_put_many(&memcg->css, nr_pages);
60d3fd32 2924}
84c07d11 2925#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2926
ca3e0214
KH
2927#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2928
ca3e0214
KH
2929/*
2930 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2931 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2932 */
e94c8a9c 2933void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2934{
e94c8a9c 2935 int i;
ca3e0214 2936
3d37c4a9
KH
2937 if (mem_cgroup_disabled())
2938 return;
b070e65c 2939
29833315 2940 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2941 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2942
c9019e9b 2943 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2944}
12d27107 2945#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2946
c255a458 2947#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2948/**
2949 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2950 * @entry: swap entry to be moved
2951 * @from: mem_cgroup which the entry is moved from
2952 * @to: mem_cgroup which the entry is moved to
2953 *
2954 * It succeeds only when the swap_cgroup's record for this entry is the same
2955 * as the mem_cgroup's id of @from.
2956 *
2957 * Returns 0 on success, -EINVAL on failure.
2958 *
3e32cb2e 2959 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2960 * both res and memsw, and called css_get().
2961 */
2962static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2963 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2964{
2965 unsigned short old_id, new_id;
2966
34c00c31
LZ
2967 old_id = mem_cgroup_id(from);
2968 new_id = mem_cgroup_id(to);
02491447
DN
2969
2970 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2971 mod_memcg_state(from, MEMCG_SWAP, -1);
2972 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2973 return 0;
2974 }
2975 return -EINVAL;
2976}
2977#else
2978static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2979 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2980{
2981 return -EINVAL;
2982}
8c7c6e34 2983#endif
d13d1443 2984
bbec2e15 2985static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2986
bbec2e15
RG
2987static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2988 unsigned long max, bool memsw)
628f4235 2989{
3e32cb2e 2990 bool enlarge = false;
bb4a7ea2 2991 bool drained = false;
3e32cb2e 2992 int ret;
c054a78c
YZ
2993 bool limits_invariant;
2994 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2995
3e32cb2e 2996 do {
628f4235
KH
2997 if (signal_pending(current)) {
2998 ret = -EINTR;
2999 break;
3000 }
3e32cb2e 3001
bbec2e15 3002 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3003 /*
3004 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3005 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3006 */
bbec2e15
RG
3007 limits_invariant = memsw ? max >= memcg->memory.max :
3008 max <= memcg->memsw.max;
c054a78c 3009 if (!limits_invariant) {
bbec2e15 3010 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3011 ret = -EINVAL;
8c7c6e34
KH
3012 break;
3013 }
bbec2e15 3014 if (max > counter->max)
3e32cb2e 3015 enlarge = true;
bbec2e15
RG
3016 ret = page_counter_set_max(counter, max);
3017 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3018
3019 if (!ret)
3020 break;
3021
bb4a7ea2
SB
3022 if (!drained) {
3023 drain_all_stock(memcg);
3024 drained = true;
3025 continue;
3026 }
3027
1ab5c056
AR
3028 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3029 GFP_KERNEL, !memsw)) {
3030 ret = -EBUSY;
3031 break;
3032 }
3033 } while (true);
3e32cb2e 3034
3c11ecf4
KH
3035 if (!ret && enlarge)
3036 memcg_oom_recover(memcg);
3e32cb2e 3037
628f4235
KH
3038 return ret;
3039}
3040
ef8f2327 3041unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3042 gfp_t gfp_mask,
3043 unsigned long *total_scanned)
3044{
3045 unsigned long nr_reclaimed = 0;
ef8f2327 3046 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3047 unsigned long reclaimed;
3048 int loop = 0;
ef8f2327 3049 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3050 unsigned long excess;
0608f43d
AM
3051 unsigned long nr_scanned;
3052
3053 if (order > 0)
3054 return 0;
3055
ef8f2327 3056 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3057
3058 /*
3059 * Do not even bother to check the largest node if the root
3060 * is empty. Do it lockless to prevent lock bouncing. Races
3061 * are acceptable as soft limit is best effort anyway.
3062 */
bfc7228b 3063 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3064 return 0;
3065
0608f43d
AM
3066 /*
3067 * This loop can run a while, specially if mem_cgroup's continuously
3068 * keep exceeding their soft limit and putting the system under
3069 * pressure
3070 */
3071 do {
3072 if (next_mz)
3073 mz = next_mz;
3074 else
3075 mz = mem_cgroup_largest_soft_limit_node(mctz);
3076 if (!mz)
3077 break;
3078
3079 nr_scanned = 0;
ef8f2327 3080 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3081 gfp_mask, &nr_scanned);
3082 nr_reclaimed += reclaimed;
3083 *total_scanned += nr_scanned;
0a31bc97 3084 spin_lock_irq(&mctz->lock);
bc2f2e7f 3085 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3086
3087 /*
3088 * If we failed to reclaim anything from this memory cgroup
3089 * it is time to move on to the next cgroup
3090 */
3091 next_mz = NULL;
bc2f2e7f
VD
3092 if (!reclaimed)
3093 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3094
3e32cb2e 3095 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3096 /*
3097 * One school of thought says that we should not add
3098 * back the node to the tree if reclaim returns 0.
3099 * But our reclaim could return 0, simply because due
3100 * to priority we are exposing a smaller subset of
3101 * memory to reclaim from. Consider this as a longer
3102 * term TODO.
3103 */
3104 /* If excess == 0, no tree ops */
cf2c8127 3105 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3106 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3107 css_put(&mz->memcg->css);
3108 loop++;
3109 /*
3110 * Could not reclaim anything and there are no more
3111 * mem cgroups to try or we seem to be looping without
3112 * reclaiming anything.
3113 */
3114 if (!nr_reclaimed &&
3115 (next_mz == NULL ||
3116 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3117 break;
3118 } while (!nr_reclaimed);
3119 if (next_mz)
3120 css_put(&next_mz->memcg->css);
3121 return nr_reclaimed;
3122}
3123
ea280e7b
TH
3124/*
3125 * Test whether @memcg has children, dead or alive. Note that this
3126 * function doesn't care whether @memcg has use_hierarchy enabled and
3127 * returns %true if there are child csses according to the cgroup
3128 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3129 */
b5f99b53
GC
3130static inline bool memcg_has_children(struct mem_cgroup *memcg)
3131{
ea280e7b
TH
3132 bool ret;
3133
ea280e7b
TH
3134 rcu_read_lock();
3135 ret = css_next_child(NULL, &memcg->css);
3136 rcu_read_unlock();
3137 return ret;
b5f99b53
GC
3138}
3139
c26251f9 3140/*
51038171 3141 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3142 *
3143 * Caller is responsible for holding css reference for memcg.
3144 */
3145static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3146{
3147 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3148
c1e862c1
KH
3149 /* we call try-to-free pages for make this cgroup empty */
3150 lru_add_drain_all();
d12c60f6
JS
3151
3152 drain_all_stock(memcg);
3153
f817ed48 3154 /* try to free all pages in this cgroup */
3e32cb2e 3155 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3156 int progress;
c1e862c1 3157
c26251f9
MH
3158 if (signal_pending(current))
3159 return -EINTR;
3160
b70a2a21
JW
3161 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3162 GFP_KERNEL, true);
c1e862c1 3163 if (!progress) {
f817ed48 3164 nr_retries--;
c1e862c1 3165 /* maybe some writeback is necessary */
8aa7e847 3166 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3167 }
f817ed48
KH
3168
3169 }
ab5196c2
MH
3170
3171 return 0;
cc847582
KH
3172}
3173
6770c64e
TH
3174static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3175 char *buf, size_t nbytes,
3176 loff_t off)
c1e862c1 3177{
6770c64e 3178 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3179
d8423011
MH
3180 if (mem_cgroup_is_root(memcg))
3181 return -EINVAL;
6770c64e 3182 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3183}
3184
182446d0
TH
3185static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3186 struct cftype *cft)
18f59ea7 3187{
182446d0 3188 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3189}
3190
182446d0
TH
3191static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3192 struct cftype *cft, u64 val)
18f59ea7
BS
3193{
3194 int retval = 0;
182446d0 3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3196 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3197
567fb435 3198 if (memcg->use_hierarchy == val)
0b8f73e1 3199 return 0;
567fb435 3200
18f59ea7 3201 /*
af901ca1 3202 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3203 * in the child subtrees. If it is unset, then the change can
3204 * occur, provided the current cgroup has no children.
3205 *
3206 * For the root cgroup, parent_mem is NULL, we allow value to be
3207 * set if there are no children.
3208 */
c0ff4b85 3209 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3210 (val == 1 || val == 0)) {
ea280e7b 3211 if (!memcg_has_children(memcg))
c0ff4b85 3212 memcg->use_hierarchy = val;
18f59ea7
BS
3213 else
3214 retval = -EBUSY;
3215 } else
3216 retval = -EINVAL;
567fb435 3217
18f59ea7
BS
3218 return retval;
3219}
3220
6f646156 3221static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3222{
42a30035 3223 unsigned long val;
ce00a967 3224
3e32cb2e 3225 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3226 val = memcg_page_state(memcg, MEMCG_CACHE) +
3227 memcg_page_state(memcg, MEMCG_RSS);
3228 if (swap)
3229 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3230 } else {
ce00a967 3231 if (!swap)
3e32cb2e 3232 val = page_counter_read(&memcg->memory);
ce00a967 3233 else
3e32cb2e 3234 val = page_counter_read(&memcg->memsw);
ce00a967 3235 }
c12176d3 3236 return val;
ce00a967
JW
3237}
3238
3e32cb2e
JW
3239enum {
3240 RES_USAGE,
3241 RES_LIMIT,
3242 RES_MAX_USAGE,
3243 RES_FAILCNT,
3244 RES_SOFT_LIMIT,
3245};
ce00a967 3246
791badbd 3247static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3248 struct cftype *cft)
8cdea7c0 3249{
182446d0 3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3251 struct page_counter *counter;
af36f906 3252
3e32cb2e 3253 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3254 case _MEM:
3e32cb2e
JW
3255 counter = &memcg->memory;
3256 break;
8c7c6e34 3257 case _MEMSWAP:
3e32cb2e
JW
3258 counter = &memcg->memsw;
3259 break;
510fc4e1 3260 case _KMEM:
3e32cb2e 3261 counter = &memcg->kmem;
510fc4e1 3262 break;
d55f90bf 3263 case _TCP:
0db15298 3264 counter = &memcg->tcpmem;
d55f90bf 3265 break;
8c7c6e34
KH
3266 default:
3267 BUG();
8c7c6e34 3268 }
3e32cb2e
JW
3269
3270 switch (MEMFILE_ATTR(cft->private)) {
3271 case RES_USAGE:
3272 if (counter == &memcg->memory)
c12176d3 3273 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3274 if (counter == &memcg->memsw)
c12176d3 3275 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3276 return (u64)page_counter_read(counter) * PAGE_SIZE;
3277 case RES_LIMIT:
bbec2e15 3278 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3279 case RES_MAX_USAGE:
3280 return (u64)counter->watermark * PAGE_SIZE;
3281 case RES_FAILCNT:
3282 return counter->failcnt;
3283 case RES_SOFT_LIMIT:
3284 return (u64)memcg->soft_limit * PAGE_SIZE;
3285 default:
3286 BUG();
3287 }
8cdea7c0 3288}
510fc4e1 3289
4a87e2a2 3290static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3291{
4a87e2a2 3292 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3293 struct mem_cgroup *mi;
3294 int node, cpu, i;
c350a99e
RG
3295
3296 for_each_online_cpu(cpu)
4a87e2a2 3297 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3298 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3299
3300 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3301 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3302 atomic_long_add(stat[i], &mi->vmstats[i]);
3303
3304 for_each_node(node) {
3305 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3306 struct mem_cgroup_per_node *pi;
3307
4a87e2a2 3308 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3309 stat[i] = 0;
3310
3311 for_each_online_cpu(cpu)
4a87e2a2 3312 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3313 stat[i] += per_cpu(
3314 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3315
3316 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3317 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3318 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3319 }
3320}
3321
bb65f89b
RG
3322static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3323{
3324 unsigned long events[NR_VM_EVENT_ITEMS];
3325 struct mem_cgroup *mi;
3326 int cpu, i;
3327
3328 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3329 events[i] = 0;
3330
3331 for_each_online_cpu(cpu)
3332 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3333 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3334 cpu);
bb65f89b
RG
3335
3336 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3337 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3338 atomic_long_add(events[i], &mi->vmevents[i]);
3339}
3340
84c07d11 3341#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3342static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3343{
d6441637
VD
3344 int memcg_id;
3345
b313aeee
VD
3346 if (cgroup_memory_nokmem)
3347 return 0;
3348
2a4db7eb 3349 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3350 BUG_ON(memcg->kmem_state);
d6441637 3351
f3bb3043 3352 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3353 if (memcg_id < 0)
3354 return memcg_id;
d6441637 3355
ef12947c 3356 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3357 /*
567e9ab2 3358 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3359 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3360 * guarantee no one starts accounting before all call sites are
3361 * patched.
3362 */
900a38f0 3363 memcg->kmemcg_id = memcg_id;
567e9ab2 3364 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3365 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3366
3367 return 0;
d6441637
VD
3368}
3369
8e0a8912
JW
3370static void memcg_offline_kmem(struct mem_cgroup *memcg)
3371{
3372 struct cgroup_subsys_state *css;
3373 struct mem_cgroup *parent, *child;
3374 int kmemcg_id;
3375
3376 if (memcg->kmem_state != KMEM_ONLINE)
3377 return;
3378 /*
3379 * Clear the online state before clearing memcg_caches array
3380 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3381 * guarantees that no cache will be created for this cgroup
3382 * after we are done (see memcg_create_kmem_cache()).
3383 */
3384 memcg->kmem_state = KMEM_ALLOCATED;
3385
8e0a8912
JW
3386 parent = parent_mem_cgroup(memcg);
3387 if (!parent)
3388 parent = root_mem_cgroup;
3389
bee07b33 3390 /*
4a87e2a2 3391 * Deactivate and reparent kmem_caches.
bee07b33 3392 */
fb2f2b0a
RG
3393 memcg_deactivate_kmem_caches(memcg, parent);
3394
3395 kmemcg_id = memcg->kmemcg_id;
3396 BUG_ON(kmemcg_id < 0);
3397
8e0a8912
JW
3398 /*
3399 * Change kmemcg_id of this cgroup and all its descendants to the
3400 * parent's id, and then move all entries from this cgroup's list_lrus
3401 * to ones of the parent. After we have finished, all list_lrus
3402 * corresponding to this cgroup are guaranteed to remain empty. The
3403 * ordering is imposed by list_lru_node->lock taken by
3404 * memcg_drain_all_list_lrus().
3405 */
3a06bb78 3406 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3407 css_for_each_descendant_pre(css, &memcg->css) {
3408 child = mem_cgroup_from_css(css);
3409 BUG_ON(child->kmemcg_id != kmemcg_id);
3410 child->kmemcg_id = parent->kmemcg_id;
3411 if (!memcg->use_hierarchy)
3412 break;
3413 }
3a06bb78
TH
3414 rcu_read_unlock();
3415
9bec5c35 3416 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3417
3418 memcg_free_cache_id(kmemcg_id);
3419}
3420
3421static void memcg_free_kmem(struct mem_cgroup *memcg)
3422{
0b8f73e1
JW
3423 /* css_alloc() failed, offlining didn't happen */
3424 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3425 memcg_offline_kmem(memcg);
3426
8e0a8912 3427 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3428 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3429 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3430 }
8e0a8912 3431}
d6441637 3432#else
0b8f73e1 3433static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3434{
3435 return 0;
3436}
3437static void memcg_offline_kmem(struct mem_cgroup *memcg)
3438{
3439}
3440static void memcg_free_kmem(struct mem_cgroup *memcg)
3441{
3442}
84c07d11 3443#endif /* CONFIG_MEMCG_KMEM */
127424c8 3444
bbec2e15
RG
3445static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3446 unsigned long max)
d6441637 3447{
b313aeee 3448 int ret;
127424c8 3449
bbec2e15
RG
3450 mutex_lock(&memcg_max_mutex);
3451 ret = page_counter_set_max(&memcg->kmem, max);
3452 mutex_unlock(&memcg_max_mutex);
127424c8 3453 return ret;
d6441637 3454}
510fc4e1 3455
bbec2e15 3456static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3457{
3458 int ret;
3459
bbec2e15 3460 mutex_lock(&memcg_max_mutex);
d55f90bf 3461
bbec2e15 3462 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3463 if (ret)
3464 goto out;
3465
0db15298 3466 if (!memcg->tcpmem_active) {
d55f90bf
VD
3467 /*
3468 * The active flag needs to be written after the static_key
3469 * update. This is what guarantees that the socket activation
2d758073
JW
3470 * function is the last one to run. See mem_cgroup_sk_alloc()
3471 * for details, and note that we don't mark any socket as
3472 * belonging to this memcg until that flag is up.
d55f90bf
VD
3473 *
3474 * We need to do this, because static_keys will span multiple
3475 * sites, but we can't control their order. If we mark a socket
3476 * as accounted, but the accounting functions are not patched in
3477 * yet, we'll lose accounting.
3478 *
2d758073 3479 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3480 * because when this value change, the code to process it is not
3481 * patched in yet.
3482 */
3483 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3484 memcg->tcpmem_active = true;
d55f90bf
VD
3485 }
3486out:
bbec2e15 3487 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3488 return ret;
3489}
d55f90bf 3490
628f4235
KH
3491/*
3492 * The user of this function is...
3493 * RES_LIMIT.
3494 */
451af504
TH
3495static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3496 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3497{
451af504 3498 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3499 unsigned long nr_pages;
628f4235
KH
3500 int ret;
3501
451af504 3502 buf = strstrip(buf);
650c5e56 3503 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3504 if (ret)
3505 return ret;
af36f906 3506
3e32cb2e 3507 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3508 case RES_LIMIT:
4b3bde4c
BS
3509 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3510 ret = -EINVAL;
3511 break;
3512 }
3e32cb2e
JW
3513 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3514 case _MEM:
bbec2e15 3515 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3516 break;
3e32cb2e 3517 case _MEMSWAP:
bbec2e15 3518 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3519 break;
3e32cb2e 3520 case _KMEM:
0158115f
MH
3521 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3522 "Please report your usecase to linux-mm@kvack.org if you "
3523 "depend on this functionality.\n");
bbec2e15 3524 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3525 break;
d55f90bf 3526 case _TCP:
bbec2e15 3527 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3528 break;
3e32cb2e 3529 }
296c81d8 3530 break;
3e32cb2e
JW
3531 case RES_SOFT_LIMIT:
3532 memcg->soft_limit = nr_pages;
3533 ret = 0;
628f4235
KH
3534 break;
3535 }
451af504 3536 return ret ?: nbytes;
8cdea7c0
BS
3537}
3538
6770c64e
TH
3539static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3540 size_t nbytes, loff_t off)
c84872e1 3541{
6770c64e 3542 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3543 struct page_counter *counter;
c84872e1 3544
3e32cb2e
JW
3545 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3546 case _MEM:
3547 counter = &memcg->memory;
3548 break;
3549 case _MEMSWAP:
3550 counter = &memcg->memsw;
3551 break;
3552 case _KMEM:
3553 counter = &memcg->kmem;
3554 break;
d55f90bf 3555 case _TCP:
0db15298 3556 counter = &memcg->tcpmem;
d55f90bf 3557 break;
3e32cb2e
JW
3558 default:
3559 BUG();
3560 }
af36f906 3561
3e32cb2e 3562 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3563 case RES_MAX_USAGE:
3e32cb2e 3564 page_counter_reset_watermark(counter);
29f2a4da
PE
3565 break;
3566 case RES_FAILCNT:
3e32cb2e 3567 counter->failcnt = 0;
29f2a4da 3568 break;
3e32cb2e
JW
3569 default:
3570 BUG();
29f2a4da 3571 }
f64c3f54 3572
6770c64e 3573 return nbytes;
c84872e1
PE
3574}
3575
182446d0 3576static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3577 struct cftype *cft)
3578{
182446d0 3579 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3580}
3581
02491447 3582#ifdef CONFIG_MMU
182446d0 3583static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3584 struct cftype *cft, u64 val)
3585{
182446d0 3586 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3587
1dfab5ab 3588 if (val & ~MOVE_MASK)
7dc74be0 3589 return -EINVAL;
ee5e8472 3590
7dc74be0 3591 /*
ee5e8472
GC
3592 * No kind of locking is needed in here, because ->can_attach() will
3593 * check this value once in the beginning of the process, and then carry
3594 * on with stale data. This means that changes to this value will only
3595 * affect task migrations starting after the change.
7dc74be0 3596 */
c0ff4b85 3597 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3598 return 0;
3599}
02491447 3600#else
182446d0 3601static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3602 struct cftype *cft, u64 val)
3603{
3604 return -ENOSYS;
3605}
3606#endif
7dc74be0 3607
406eb0c9 3608#ifdef CONFIG_NUMA
113b7dfd
JW
3609
3610#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3611#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3612#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3613
3614static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3615 int nid, unsigned int lru_mask)
3616{
867e5e1d 3617 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3618 unsigned long nr = 0;
3619 enum lru_list lru;
3620
3621 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3622
3623 for_each_lru(lru) {
3624 if (!(BIT(lru) & lru_mask))
3625 continue;
205b20cc 3626 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3627 }
3628 return nr;
3629}
3630
3631static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3632 unsigned int lru_mask)
3633{
3634 unsigned long nr = 0;
3635 enum lru_list lru;
3636
3637 for_each_lru(lru) {
3638 if (!(BIT(lru) & lru_mask))
3639 continue;
205b20cc 3640 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3641 }
3642 return nr;
3643}
3644
2da8ca82 3645static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3646{
25485de6
GT
3647 struct numa_stat {
3648 const char *name;
3649 unsigned int lru_mask;
3650 };
3651
3652 static const struct numa_stat stats[] = {
3653 { "total", LRU_ALL },
3654 { "file", LRU_ALL_FILE },
3655 { "anon", LRU_ALL_ANON },
3656 { "unevictable", BIT(LRU_UNEVICTABLE) },
3657 };
3658 const struct numa_stat *stat;
406eb0c9 3659 int nid;
25485de6 3660 unsigned long nr;
aa9694bb 3661 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3662
25485de6
GT
3663 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3664 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3665 seq_printf(m, "%s=%lu", stat->name, nr);
3666 for_each_node_state(nid, N_MEMORY) {
3667 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3668 stat->lru_mask);
3669 seq_printf(m, " N%d=%lu", nid, nr);
3670 }
3671 seq_putc(m, '\n');
406eb0c9 3672 }
406eb0c9 3673
071aee13
YH
3674 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3675 struct mem_cgroup *iter;
3676
3677 nr = 0;
3678 for_each_mem_cgroup_tree(iter, memcg)
3679 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3680 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3681 for_each_node_state(nid, N_MEMORY) {
3682 nr = 0;
3683 for_each_mem_cgroup_tree(iter, memcg)
3684 nr += mem_cgroup_node_nr_lru_pages(
3685 iter, nid, stat->lru_mask);
3686 seq_printf(m, " N%d=%lu", nid, nr);
3687 }
3688 seq_putc(m, '\n');
406eb0c9 3689 }
406eb0c9 3690
406eb0c9
YH
3691 return 0;
3692}
3693#endif /* CONFIG_NUMA */
3694
c8713d0b
JW
3695static const unsigned int memcg1_stats[] = {
3696 MEMCG_CACHE,
3697 MEMCG_RSS,
3698 MEMCG_RSS_HUGE,
3699 NR_SHMEM,
3700 NR_FILE_MAPPED,
3701 NR_FILE_DIRTY,
3702 NR_WRITEBACK,
3703 MEMCG_SWAP,
3704};
3705
3706static const char *const memcg1_stat_names[] = {
3707 "cache",
3708 "rss",
3709 "rss_huge",
3710 "shmem",
3711 "mapped_file",
3712 "dirty",
3713 "writeback",
3714 "swap",
3715};
3716
df0e53d0 3717/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3718static const unsigned int memcg1_events[] = {
df0e53d0
JW
3719 PGPGIN,
3720 PGPGOUT,
3721 PGFAULT,
3722 PGMAJFAULT,
3723};
3724
2da8ca82 3725static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3726{
aa9694bb 3727 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3728 unsigned long memory, memsw;
af7c4b0e
JW
3729 struct mem_cgroup *mi;
3730 unsigned int i;
406eb0c9 3731
71cd3113 3732 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3733
71cd3113
JW
3734 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3735 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3736 continue;
71cd3113 3737 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3738 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3739 PAGE_SIZE);
1dd3a273 3740 }
7b854121 3741
df0e53d0 3742 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3743 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3744 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3745
3746 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3747 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3748 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3749 PAGE_SIZE);
af7c4b0e 3750
14067bb3 3751 /* Hierarchical information */
3e32cb2e
JW
3752 memory = memsw = PAGE_COUNTER_MAX;
3753 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3754 memory = min(memory, mi->memory.max);
3755 memsw = min(memsw, mi->memsw.max);
fee7b548 3756 }
3e32cb2e
JW
3757 seq_printf(m, "hierarchical_memory_limit %llu\n",
3758 (u64)memory * PAGE_SIZE);
7941d214 3759 if (do_memsw_account())
3e32cb2e
JW
3760 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3761 (u64)memsw * PAGE_SIZE);
7f016ee8 3762
8de7ecc6 3763 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3764 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3765 continue;
8de7ecc6 3766 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3767 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3768 PAGE_SIZE);
af7c4b0e
JW
3769 }
3770
8de7ecc6 3771 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3772 seq_printf(m, "total_%s %llu\n",
3773 vm_event_name(memcg1_events[i]),
dd923990 3774 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3775
8de7ecc6 3776 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3777 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
3778 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3779 PAGE_SIZE);
14067bb3 3780
7f016ee8 3781#ifdef CONFIG_DEBUG_VM
7f016ee8 3782 {
ef8f2327
MG
3783 pg_data_t *pgdat;
3784 struct mem_cgroup_per_node *mz;
89abfab1 3785 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3786 unsigned long recent_rotated[2] = {0, 0};
3787 unsigned long recent_scanned[2] = {0, 0};
3788
ef8f2327
MG
3789 for_each_online_pgdat(pgdat) {
3790 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3791 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3792
ef8f2327
MG
3793 recent_rotated[0] += rstat->recent_rotated[0];
3794 recent_rotated[1] += rstat->recent_rotated[1];
3795 recent_scanned[0] += rstat->recent_scanned[0];
3796 recent_scanned[1] += rstat->recent_scanned[1];
3797 }
78ccf5b5
JW
3798 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3799 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3800 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3801 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3802 }
3803#endif
3804
d2ceb9b7
KH
3805 return 0;
3806}
3807
182446d0
TH
3808static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3809 struct cftype *cft)
a7885eb8 3810{
182446d0 3811 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3812
1f4c025b 3813 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3814}
3815
182446d0
TH
3816static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3817 struct cftype *cft, u64 val)
a7885eb8 3818{
182446d0 3819 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3820
3dae7fec 3821 if (val > 100)
a7885eb8
KM
3822 return -EINVAL;
3823
14208b0e 3824 if (css->parent)
3dae7fec
JW
3825 memcg->swappiness = val;
3826 else
3827 vm_swappiness = val;
068b38c1 3828
a7885eb8
KM
3829 return 0;
3830}
3831
2e72b634
KS
3832static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3833{
3834 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3835 unsigned long usage;
2e72b634
KS
3836 int i;
3837
3838 rcu_read_lock();
3839 if (!swap)
2c488db2 3840 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3841 else
2c488db2 3842 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3843
3844 if (!t)
3845 goto unlock;
3846
ce00a967 3847 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3848
3849 /*
748dad36 3850 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3851 * If it's not true, a threshold was crossed after last
3852 * call of __mem_cgroup_threshold().
3853 */
5407a562 3854 i = t->current_threshold;
2e72b634
KS
3855
3856 /*
3857 * Iterate backward over array of thresholds starting from
3858 * current_threshold and check if a threshold is crossed.
3859 * If none of thresholds below usage is crossed, we read
3860 * only one element of the array here.
3861 */
3862 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3863 eventfd_signal(t->entries[i].eventfd, 1);
3864
3865 /* i = current_threshold + 1 */
3866 i++;
3867
3868 /*
3869 * Iterate forward over array of thresholds starting from
3870 * current_threshold+1 and check if a threshold is crossed.
3871 * If none of thresholds above usage is crossed, we read
3872 * only one element of the array here.
3873 */
3874 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3875 eventfd_signal(t->entries[i].eventfd, 1);
3876
3877 /* Update current_threshold */
5407a562 3878 t->current_threshold = i - 1;
2e72b634
KS
3879unlock:
3880 rcu_read_unlock();
3881}
3882
3883static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3884{
ad4ca5f4
KS
3885 while (memcg) {
3886 __mem_cgroup_threshold(memcg, false);
7941d214 3887 if (do_memsw_account())
ad4ca5f4
KS
3888 __mem_cgroup_threshold(memcg, true);
3889
3890 memcg = parent_mem_cgroup(memcg);
3891 }
2e72b634
KS
3892}
3893
3894static int compare_thresholds(const void *a, const void *b)
3895{
3896 const struct mem_cgroup_threshold *_a = a;
3897 const struct mem_cgroup_threshold *_b = b;
3898
2bff24a3
GT
3899 if (_a->threshold > _b->threshold)
3900 return 1;
3901
3902 if (_a->threshold < _b->threshold)
3903 return -1;
3904
3905 return 0;
2e72b634
KS
3906}
3907
c0ff4b85 3908static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3909{
3910 struct mem_cgroup_eventfd_list *ev;
3911
2bcf2e92
MH
3912 spin_lock(&memcg_oom_lock);
3913
c0ff4b85 3914 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3915 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3916
3917 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3918 return 0;
3919}
3920
c0ff4b85 3921static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3922{
7d74b06f
KH
3923 struct mem_cgroup *iter;
3924
c0ff4b85 3925 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3926 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3927}
3928
59b6f873 3929static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3930 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3931{
2c488db2
KS
3932 struct mem_cgroup_thresholds *thresholds;
3933 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3934 unsigned long threshold;
3935 unsigned long usage;
2c488db2 3936 int i, size, ret;
2e72b634 3937
650c5e56 3938 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3939 if (ret)
3940 return ret;
3941
3942 mutex_lock(&memcg->thresholds_lock);
2c488db2 3943
05b84301 3944 if (type == _MEM) {
2c488db2 3945 thresholds = &memcg->thresholds;
ce00a967 3946 usage = mem_cgroup_usage(memcg, false);
05b84301 3947 } else if (type == _MEMSWAP) {
2c488db2 3948 thresholds = &memcg->memsw_thresholds;
ce00a967 3949 usage = mem_cgroup_usage(memcg, true);
05b84301 3950 } else
2e72b634
KS
3951 BUG();
3952
2e72b634 3953 /* Check if a threshold crossed before adding a new one */
2c488db2 3954 if (thresholds->primary)
2e72b634
KS
3955 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3956
2c488db2 3957 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3958
3959 /* Allocate memory for new array of thresholds */
67b8046f 3960 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3961 if (!new) {
2e72b634
KS
3962 ret = -ENOMEM;
3963 goto unlock;
3964 }
2c488db2 3965 new->size = size;
2e72b634
KS
3966
3967 /* Copy thresholds (if any) to new array */
2c488db2
KS
3968 if (thresholds->primary) {
3969 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3970 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3971 }
3972
2e72b634 3973 /* Add new threshold */
2c488db2
KS
3974 new->entries[size - 1].eventfd = eventfd;
3975 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3976
3977 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3978 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3979 compare_thresholds, NULL);
3980
3981 /* Find current threshold */
2c488db2 3982 new->current_threshold = -1;
2e72b634 3983 for (i = 0; i < size; i++) {
748dad36 3984 if (new->entries[i].threshold <= usage) {
2e72b634 3985 /*
2c488db2
KS
3986 * new->current_threshold will not be used until
3987 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3988 * it here.
3989 */
2c488db2 3990 ++new->current_threshold;
748dad36
SZ
3991 } else
3992 break;
2e72b634
KS
3993 }
3994
2c488db2
KS
3995 /* Free old spare buffer and save old primary buffer as spare */
3996 kfree(thresholds->spare);
3997 thresholds->spare = thresholds->primary;
3998
3999 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4000
907860ed 4001 /* To be sure that nobody uses thresholds */
2e72b634
KS
4002 synchronize_rcu();
4003
2e72b634
KS
4004unlock:
4005 mutex_unlock(&memcg->thresholds_lock);
4006
4007 return ret;
4008}
4009
59b6f873 4010static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4011 struct eventfd_ctx *eventfd, const char *args)
4012{
59b6f873 4013 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4014}
4015
59b6f873 4016static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4017 struct eventfd_ctx *eventfd, const char *args)
4018{
59b6f873 4019 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4020}
4021
59b6f873 4022static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4023 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4024{
2c488db2
KS
4025 struct mem_cgroup_thresholds *thresholds;
4026 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4027 unsigned long usage;
2c488db2 4028 int i, j, size;
2e72b634
KS
4029
4030 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4031
4032 if (type == _MEM) {
2c488db2 4033 thresholds = &memcg->thresholds;
ce00a967 4034 usage = mem_cgroup_usage(memcg, false);
05b84301 4035 } else if (type == _MEMSWAP) {
2c488db2 4036 thresholds = &memcg->memsw_thresholds;
ce00a967 4037 usage = mem_cgroup_usage(memcg, true);
05b84301 4038 } else
2e72b634
KS
4039 BUG();
4040
371528ca
AV
4041 if (!thresholds->primary)
4042 goto unlock;
4043
2e72b634
KS
4044 /* Check if a threshold crossed before removing */
4045 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4046
4047 /* Calculate new number of threshold */
2c488db2
KS
4048 size = 0;
4049 for (i = 0; i < thresholds->primary->size; i++) {
4050 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4051 size++;
4052 }
4053
2c488db2 4054 new = thresholds->spare;
907860ed 4055
2e72b634
KS
4056 /* Set thresholds array to NULL if we don't have thresholds */
4057 if (!size) {
2c488db2
KS
4058 kfree(new);
4059 new = NULL;
907860ed 4060 goto swap_buffers;
2e72b634
KS
4061 }
4062
2c488db2 4063 new->size = size;
2e72b634
KS
4064
4065 /* Copy thresholds and find current threshold */
2c488db2
KS
4066 new->current_threshold = -1;
4067 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4068 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4069 continue;
4070
2c488db2 4071 new->entries[j] = thresholds->primary->entries[i];
748dad36 4072 if (new->entries[j].threshold <= usage) {
2e72b634 4073 /*
2c488db2 4074 * new->current_threshold will not be used
2e72b634
KS
4075 * until rcu_assign_pointer(), so it's safe to increment
4076 * it here.
4077 */
2c488db2 4078 ++new->current_threshold;
2e72b634
KS
4079 }
4080 j++;
4081 }
4082
907860ed 4083swap_buffers:
2c488db2
KS
4084 /* Swap primary and spare array */
4085 thresholds->spare = thresholds->primary;
8c757763 4086
2c488db2 4087 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4088
907860ed 4089 /* To be sure that nobody uses thresholds */
2e72b634 4090 synchronize_rcu();
6611d8d7
MC
4091
4092 /* If all events are unregistered, free the spare array */
4093 if (!new) {
4094 kfree(thresholds->spare);
4095 thresholds->spare = NULL;
4096 }
371528ca 4097unlock:
2e72b634 4098 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4099}
c1e862c1 4100
59b6f873 4101static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4102 struct eventfd_ctx *eventfd)
4103{
59b6f873 4104 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4105}
4106
59b6f873 4107static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4108 struct eventfd_ctx *eventfd)
4109{
59b6f873 4110 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4111}
4112
59b6f873 4113static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4114 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4115{
9490ff27 4116 struct mem_cgroup_eventfd_list *event;
9490ff27 4117
9490ff27
KH
4118 event = kmalloc(sizeof(*event), GFP_KERNEL);
4119 if (!event)
4120 return -ENOMEM;
4121
1af8efe9 4122 spin_lock(&memcg_oom_lock);
9490ff27
KH
4123
4124 event->eventfd = eventfd;
4125 list_add(&event->list, &memcg->oom_notify);
4126
4127 /* already in OOM ? */
c2b42d3c 4128 if (memcg->under_oom)
9490ff27 4129 eventfd_signal(eventfd, 1);
1af8efe9 4130 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4131
4132 return 0;
4133}
4134
59b6f873 4135static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4136 struct eventfd_ctx *eventfd)
9490ff27 4137{
9490ff27 4138 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4139
1af8efe9 4140 spin_lock(&memcg_oom_lock);
9490ff27 4141
c0ff4b85 4142 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4143 if (ev->eventfd == eventfd) {
4144 list_del(&ev->list);
4145 kfree(ev);
4146 }
4147 }
4148
1af8efe9 4149 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4150}
4151
2da8ca82 4152static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4153{
aa9694bb 4154 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4155
791badbd 4156 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4157 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4158 seq_printf(sf, "oom_kill %lu\n",
4159 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4160 return 0;
4161}
4162
182446d0 4163static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4164 struct cftype *cft, u64 val)
4165{
182446d0 4166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4167
4168 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4169 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4170 return -EINVAL;
4171
c0ff4b85 4172 memcg->oom_kill_disable = val;
4d845ebf 4173 if (!val)
c0ff4b85 4174 memcg_oom_recover(memcg);
3dae7fec 4175
3c11ecf4
KH
4176 return 0;
4177}
4178
52ebea74
TH
4179#ifdef CONFIG_CGROUP_WRITEBACK
4180
3a8e9ac8
TH
4181#include <trace/events/writeback.h>
4182
841710aa
TH
4183static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4184{
4185 return wb_domain_init(&memcg->cgwb_domain, gfp);
4186}
4187
4188static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4189{
4190 wb_domain_exit(&memcg->cgwb_domain);
4191}
4192
2529bb3a
TH
4193static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4194{
4195 wb_domain_size_changed(&memcg->cgwb_domain);
4196}
4197
841710aa
TH
4198struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4199{
4200 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4201
4202 if (!memcg->css.parent)
4203 return NULL;
4204
4205 return &memcg->cgwb_domain;
4206}
4207
0b3d6e6f
GT
4208/*
4209 * idx can be of type enum memcg_stat_item or node_stat_item.
4210 * Keep in sync with memcg_exact_page().
4211 */
4212static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4213{
871789d4 4214 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4215 int cpu;
4216
4217 for_each_online_cpu(cpu)
871789d4 4218 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4219 if (x < 0)
4220 x = 0;
4221 return x;
4222}
4223
c2aa723a
TH
4224/**
4225 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4226 * @wb: bdi_writeback in question
c5edf9cd
TH
4227 * @pfilepages: out parameter for number of file pages
4228 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4229 * @pdirty: out parameter for number of dirty pages
4230 * @pwriteback: out parameter for number of pages under writeback
4231 *
c5edf9cd
TH
4232 * Determine the numbers of file, headroom, dirty, and writeback pages in
4233 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4234 * is a bit more involved.
c2aa723a 4235 *
c5edf9cd
TH
4236 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4237 * headroom is calculated as the lowest headroom of itself and the
4238 * ancestors. Note that this doesn't consider the actual amount of
4239 * available memory in the system. The caller should further cap
4240 * *@pheadroom accordingly.
c2aa723a 4241 */
c5edf9cd
TH
4242void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4243 unsigned long *pheadroom, unsigned long *pdirty,
4244 unsigned long *pwriteback)
c2aa723a
TH
4245{
4246 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4247 struct mem_cgroup *parent;
c2aa723a 4248
0b3d6e6f 4249 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4250
4251 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4252 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4253 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4254 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4255 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4256
c2aa723a 4257 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4258 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4259 unsigned long used = page_counter_read(&memcg->memory);
4260
c5edf9cd 4261 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4262 memcg = parent;
4263 }
c2aa723a
TH
4264}
4265
97b27821
TH
4266/*
4267 * Foreign dirty flushing
4268 *
4269 * There's an inherent mismatch between memcg and writeback. The former
4270 * trackes ownership per-page while the latter per-inode. This was a
4271 * deliberate design decision because honoring per-page ownership in the
4272 * writeback path is complicated, may lead to higher CPU and IO overheads
4273 * and deemed unnecessary given that write-sharing an inode across
4274 * different cgroups isn't a common use-case.
4275 *
4276 * Combined with inode majority-writer ownership switching, this works well
4277 * enough in most cases but there are some pathological cases. For
4278 * example, let's say there are two cgroups A and B which keep writing to
4279 * different but confined parts of the same inode. B owns the inode and
4280 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4281 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4282 * triggering background writeback. A will be slowed down without a way to
4283 * make writeback of the dirty pages happen.
4284 *
4285 * Conditions like the above can lead to a cgroup getting repatedly and
4286 * severely throttled after making some progress after each
4287 * dirty_expire_interval while the underyling IO device is almost
4288 * completely idle.
4289 *
4290 * Solving this problem completely requires matching the ownership tracking
4291 * granularities between memcg and writeback in either direction. However,
4292 * the more egregious behaviors can be avoided by simply remembering the
4293 * most recent foreign dirtying events and initiating remote flushes on
4294 * them when local writeback isn't enough to keep the memory clean enough.
4295 *
4296 * The following two functions implement such mechanism. When a foreign
4297 * page - a page whose memcg and writeback ownerships don't match - is
4298 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4299 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4300 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4301 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4302 * foreign bdi_writebacks which haven't expired. Both the numbers of
4303 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4304 * limited to MEMCG_CGWB_FRN_CNT.
4305 *
4306 * The mechanism only remembers IDs and doesn't hold any object references.
4307 * As being wrong occasionally doesn't matter, updates and accesses to the
4308 * records are lockless and racy.
4309 */
4310void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4311 struct bdi_writeback *wb)
4312{
4313 struct mem_cgroup *memcg = page->mem_cgroup;
4314 struct memcg_cgwb_frn *frn;
4315 u64 now = get_jiffies_64();
4316 u64 oldest_at = now;
4317 int oldest = -1;
4318 int i;
4319
3a8e9ac8
TH
4320 trace_track_foreign_dirty(page, wb);
4321
97b27821
TH
4322 /*
4323 * Pick the slot to use. If there is already a slot for @wb, keep
4324 * using it. If not replace the oldest one which isn't being
4325 * written out.
4326 */
4327 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4328 frn = &memcg->cgwb_frn[i];
4329 if (frn->bdi_id == wb->bdi->id &&
4330 frn->memcg_id == wb->memcg_css->id)
4331 break;
4332 if (time_before64(frn->at, oldest_at) &&
4333 atomic_read(&frn->done.cnt) == 1) {
4334 oldest = i;
4335 oldest_at = frn->at;
4336 }
4337 }
4338
4339 if (i < MEMCG_CGWB_FRN_CNT) {
4340 /*
4341 * Re-using an existing one. Update timestamp lazily to
4342 * avoid making the cacheline hot. We want them to be
4343 * reasonably up-to-date and significantly shorter than
4344 * dirty_expire_interval as that's what expires the record.
4345 * Use the shorter of 1s and dirty_expire_interval / 8.
4346 */
4347 unsigned long update_intv =
4348 min_t(unsigned long, HZ,
4349 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4350
4351 if (time_before64(frn->at, now - update_intv))
4352 frn->at = now;
4353 } else if (oldest >= 0) {
4354 /* replace the oldest free one */
4355 frn = &memcg->cgwb_frn[oldest];
4356 frn->bdi_id = wb->bdi->id;
4357 frn->memcg_id = wb->memcg_css->id;
4358 frn->at = now;
4359 }
4360}
4361
4362/* issue foreign writeback flushes for recorded foreign dirtying events */
4363void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4364{
4365 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4366 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4367 u64 now = jiffies_64;
4368 int i;
4369
4370 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4371 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4372
4373 /*
4374 * If the record is older than dirty_expire_interval,
4375 * writeback on it has already started. No need to kick it
4376 * off again. Also, don't start a new one if there's
4377 * already one in flight.
4378 */
4379 if (time_after64(frn->at, now - intv) &&
4380 atomic_read(&frn->done.cnt) == 1) {
4381 frn->at = 0;
3a8e9ac8 4382 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4383 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4384 WB_REASON_FOREIGN_FLUSH,
4385 &frn->done);
4386 }
4387 }
4388}
4389
841710aa
TH
4390#else /* CONFIG_CGROUP_WRITEBACK */
4391
4392static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4393{
4394 return 0;
4395}
4396
4397static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4398{
4399}
4400
2529bb3a
TH
4401static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4402{
4403}
4404
52ebea74
TH
4405#endif /* CONFIG_CGROUP_WRITEBACK */
4406
3bc942f3
TH
4407/*
4408 * DO NOT USE IN NEW FILES.
4409 *
4410 * "cgroup.event_control" implementation.
4411 *
4412 * This is way over-engineered. It tries to support fully configurable
4413 * events for each user. Such level of flexibility is completely
4414 * unnecessary especially in the light of the planned unified hierarchy.
4415 *
4416 * Please deprecate this and replace with something simpler if at all
4417 * possible.
4418 */
4419
79bd9814
TH
4420/*
4421 * Unregister event and free resources.
4422 *
4423 * Gets called from workqueue.
4424 */
3bc942f3 4425static void memcg_event_remove(struct work_struct *work)
79bd9814 4426{
3bc942f3
TH
4427 struct mem_cgroup_event *event =
4428 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4429 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4430
4431 remove_wait_queue(event->wqh, &event->wait);
4432
59b6f873 4433 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4434
4435 /* Notify userspace the event is going away. */
4436 eventfd_signal(event->eventfd, 1);
4437
4438 eventfd_ctx_put(event->eventfd);
4439 kfree(event);
59b6f873 4440 css_put(&memcg->css);
79bd9814
TH
4441}
4442
4443/*
a9a08845 4444 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4445 *
4446 * Called with wqh->lock held and interrupts disabled.
4447 */
ac6424b9 4448static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4449 int sync, void *key)
79bd9814 4450{
3bc942f3
TH
4451 struct mem_cgroup_event *event =
4452 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4453 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4454 __poll_t flags = key_to_poll(key);
79bd9814 4455
a9a08845 4456 if (flags & EPOLLHUP) {
79bd9814
TH
4457 /*
4458 * If the event has been detached at cgroup removal, we
4459 * can simply return knowing the other side will cleanup
4460 * for us.
4461 *
4462 * We can't race against event freeing since the other
4463 * side will require wqh->lock via remove_wait_queue(),
4464 * which we hold.
4465 */
fba94807 4466 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4467 if (!list_empty(&event->list)) {
4468 list_del_init(&event->list);
4469 /*
4470 * We are in atomic context, but cgroup_event_remove()
4471 * may sleep, so we have to call it in workqueue.
4472 */
4473 schedule_work(&event->remove);
4474 }
fba94807 4475 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4476 }
4477
4478 return 0;
4479}
4480
3bc942f3 4481static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4482 wait_queue_head_t *wqh, poll_table *pt)
4483{
3bc942f3
TH
4484 struct mem_cgroup_event *event =
4485 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4486
4487 event->wqh = wqh;
4488 add_wait_queue(wqh, &event->wait);
4489}
4490
4491/*
3bc942f3
TH
4492 * DO NOT USE IN NEW FILES.
4493 *
79bd9814
TH
4494 * Parse input and register new cgroup event handler.
4495 *
4496 * Input must be in format '<event_fd> <control_fd> <args>'.
4497 * Interpretation of args is defined by control file implementation.
4498 */
451af504
TH
4499static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4500 char *buf, size_t nbytes, loff_t off)
79bd9814 4501{
451af504 4502 struct cgroup_subsys_state *css = of_css(of);
fba94807 4503 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4504 struct mem_cgroup_event *event;
79bd9814
TH
4505 struct cgroup_subsys_state *cfile_css;
4506 unsigned int efd, cfd;
4507 struct fd efile;
4508 struct fd cfile;
fba94807 4509 const char *name;
79bd9814
TH
4510 char *endp;
4511 int ret;
4512
451af504
TH
4513 buf = strstrip(buf);
4514
4515 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4516 if (*endp != ' ')
4517 return -EINVAL;
451af504 4518 buf = endp + 1;
79bd9814 4519
451af504 4520 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4521 if ((*endp != ' ') && (*endp != '\0'))
4522 return -EINVAL;
451af504 4523 buf = endp + 1;
79bd9814
TH
4524
4525 event = kzalloc(sizeof(*event), GFP_KERNEL);
4526 if (!event)
4527 return -ENOMEM;
4528
59b6f873 4529 event->memcg = memcg;
79bd9814 4530 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4531 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4532 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4533 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4534
4535 efile = fdget(efd);
4536 if (!efile.file) {
4537 ret = -EBADF;
4538 goto out_kfree;
4539 }
4540
4541 event->eventfd = eventfd_ctx_fileget(efile.file);
4542 if (IS_ERR(event->eventfd)) {
4543 ret = PTR_ERR(event->eventfd);
4544 goto out_put_efile;
4545 }
4546
4547 cfile = fdget(cfd);
4548 if (!cfile.file) {
4549 ret = -EBADF;
4550 goto out_put_eventfd;
4551 }
4552
4553 /* the process need read permission on control file */
4554 /* AV: shouldn't we check that it's been opened for read instead? */
4555 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4556 if (ret < 0)
4557 goto out_put_cfile;
4558
fba94807
TH
4559 /*
4560 * Determine the event callbacks and set them in @event. This used
4561 * to be done via struct cftype but cgroup core no longer knows
4562 * about these events. The following is crude but the whole thing
4563 * is for compatibility anyway.
3bc942f3
TH
4564 *
4565 * DO NOT ADD NEW FILES.
fba94807 4566 */
b583043e 4567 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4568
4569 if (!strcmp(name, "memory.usage_in_bytes")) {
4570 event->register_event = mem_cgroup_usage_register_event;
4571 event->unregister_event = mem_cgroup_usage_unregister_event;
4572 } else if (!strcmp(name, "memory.oom_control")) {
4573 event->register_event = mem_cgroup_oom_register_event;
4574 event->unregister_event = mem_cgroup_oom_unregister_event;
4575 } else if (!strcmp(name, "memory.pressure_level")) {
4576 event->register_event = vmpressure_register_event;
4577 event->unregister_event = vmpressure_unregister_event;
4578 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4579 event->register_event = memsw_cgroup_usage_register_event;
4580 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4581 } else {
4582 ret = -EINVAL;
4583 goto out_put_cfile;
4584 }
4585
79bd9814 4586 /*
b5557c4c
TH
4587 * Verify @cfile should belong to @css. Also, remaining events are
4588 * automatically removed on cgroup destruction but the removal is
4589 * asynchronous, so take an extra ref on @css.
79bd9814 4590 */
b583043e 4591 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4592 &memory_cgrp_subsys);
79bd9814 4593 ret = -EINVAL;
5a17f543 4594 if (IS_ERR(cfile_css))
79bd9814 4595 goto out_put_cfile;
5a17f543
TH
4596 if (cfile_css != css) {
4597 css_put(cfile_css);
79bd9814 4598 goto out_put_cfile;
5a17f543 4599 }
79bd9814 4600
451af504 4601 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4602 if (ret)
4603 goto out_put_css;
4604
9965ed17 4605 vfs_poll(efile.file, &event->pt);
79bd9814 4606
fba94807
TH
4607 spin_lock(&memcg->event_list_lock);
4608 list_add(&event->list, &memcg->event_list);
4609 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4610
4611 fdput(cfile);
4612 fdput(efile);
4613
451af504 4614 return nbytes;
79bd9814
TH
4615
4616out_put_css:
b5557c4c 4617 css_put(css);
79bd9814
TH
4618out_put_cfile:
4619 fdput(cfile);
4620out_put_eventfd:
4621 eventfd_ctx_put(event->eventfd);
4622out_put_efile:
4623 fdput(efile);
4624out_kfree:
4625 kfree(event);
4626
4627 return ret;
4628}
4629
241994ed 4630static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4631 {
0eea1030 4632 .name = "usage_in_bytes",
8c7c6e34 4633 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4634 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4635 },
c84872e1
PE
4636 {
4637 .name = "max_usage_in_bytes",
8c7c6e34 4638 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4639 .write = mem_cgroup_reset,
791badbd 4640 .read_u64 = mem_cgroup_read_u64,
c84872e1 4641 },
8cdea7c0 4642 {
0eea1030 4643 .name = "limit_in_bytes",
8c7c6e34 4644 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4645 .write = mem_cgroup_write,
791badbd 4646 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4647 },
296c81d8
BS
4648 {
4649 .name = "soft_limit_in_bytes",
4650 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4651 .write = mem_cgroup_write,
791badbd 4652 .read_u64 = mem_cgroup_read_u64,
296c81d8 4653 },
8cdea7c0
BS
4654 {
4655 .name = "failcnt",
8c7c6e34 4656 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4657 .write = mem_cgroup_reset,
791badbd 4658 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4659 },
d2ceb9b7
KH
4660 {
4661 .name = "stat",
2da8ca82 4662 .seq_show = memcg_stat_show,
d2ceb9b7 4663 },
c1e862c1
KH
4664 {
4665 .name = "force_empty",
6770c64e 4666 .write = mem_cgroup_force_empty_write,
c1e862c1 4667 },
18f59ea7
BS
4668 {
4669 .name = "use_hierarchy",
4670 .write_u64 = mem_cgroup_hierarchy_write,
4671 .read_u64 = mem_cgroup_hierarchy_read,
4672 },
79bd9814 4673 {
3bc942f3 4674 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4675 .write = memcg_write_event_control,
7dbdb199 4676 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4677 },
a7885eb8
KM
4678 {
4679 .name = "swappiness",
4680 .read_u64 = mem_cgroup_swappiness_read,
4681 .write_u64 = mem_cgroup_swappiness_write,
4682 },
7dc74be0
DN
4683 {
4684 .name = "move_charge_at_immigrate",
4685 .read_u64 = mem_cgroup_move_charge_read,
4686 .write_u64 = mem_cgroup_move_charge_write,
4687 },
9490ff27
KH
4688 {
4689 .name = "oom_control",
2da8ca82 4690 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4691 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4692 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4693 },
70ddf637
AV
4694 {
4695 .name = "pressure_level",
70ddf637 4696 },
406eb0c9
YH
4697#ifdef CONFIG_NUMA
4698 {
4699 .name = "numa_stat",
2da8ca82 4700 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4701 },
4702#endif
510fc4e1
GC
4703 {
4704 .name = "kmem.limit_in_bytes",
4705 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4706 .write = mem_cgroup_write,
791badbd 4707 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4708 },
4709 {
4710 .name = "kmem.usage_in_bytes",
4711 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4712 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4713 },
4714 {
4715 .name = "kmem.failcnt",
4716 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4717 .write = mem_cgroup_reset,
791badbd 4718 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4719 },
4720 {
4721 .name = "kmem.max_usage_in_bytes",
4722 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4723 .write = mem_cgroup_reset,
791badbd 4724 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4725 },
5b365771 4726#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4727 {
4728 .name = "kmem.slabinfo",
bc2791f8
TH
4729 .seq_start = memcg_slab_start,
4730 .seq_next = memcg_slab_next,
4731 .seq_stop = memcg_slab_stop,
b047501c 4732 .seq_show = memcg_slab_show,
749c5415
GC
4733 },
4734#endif
d55f90bf
VD
4735 {
4736 .name = "kmem.tcp.limit_in_bytes",
4737 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4738 .write = mem_cgroup_write,
4739 .read_u64 = mem_cgroup_read_u64,
4740 },
4741 {
4742 .name = "kmem.tcp.usage_in_bytes",
4743 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4744 .read_u64 = mem_cgroup_read_u64,
4745 },
4746 {
4747 .name = "kmem.tcp.failcnt",
4748 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4749 .write = mem_cgroup_reset,
4750 .read_u64 = mem_cgroup_read_u64,
4751 },
4752 {
4753 .name = "kmem.tcp.max_usage_in_bytes",
4754 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4755 .write = mem_cgroup_reset,
4756 .read_u64 = mem_cgroup_read_u64,
4757 },
6bc10349 4758 { }, /* terminate */
af36f906 4759};
8c7c6e34 4760
73f576c0
JW
4761/*
4762 * Private memory cgroup IDR
4763 *
4764 * Swap-out records and page cache shadow entries need to store memcg
4765 * references in constrained space, so we maintain an ID space that is
4766 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4767 * memory-controlled cgroups to 64k.
4768 *
4769 * However, there usually are many references to the oflline CSS after
4770 * the cgroup has been destroyed, such as page cache or reclaimable
4771 * slab objects, that don't need to hang on to the ID. We want to keep
4772 * those dead CSS from occupying IDs, or we might quickly exhaust the
4773 * relatively small ID space and prevent the creation of new cgroups
4774 * even when there are much fewer than 64k cgroups - possibly none.
4775 *
4776 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4777 * be freed and recycled when it's no longer needed, which is usually
4778 * when the CSS is offlined.
4779 *
4780 * The only exception to that are records of swapped out tmpfs/shmem
4781 * pages that need to be attributed to live ancestors on swapin. But
4782 * those references are manageable from userspace.
4783 */
4784
4785static DEFINE_IDR(mem_cgroup_idr);
4786
7e97de0b
KT
4787static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4788{
4789 if (memcg->id.id > 0) {
4790 idr_remove(&mem_cgroup_idr, memcg->id.id);
4791 memcg->id.id = 0;
4792 }
4793}
4794
615d66c3 4795static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4796{
1c2d479a 4797 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4798}
4799
615d66c3 4800static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4801{
1c2d479a 4802 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4803 mem_cgroup_id_remove(memcg);
73f576c0
JW
4804
4805 /* Memcg ID pins CSS */
4806 css_put(&memcg->css);
4807 }
4808}
4809
615d66c3
VD
4810static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4811{
4812 mem_cgroup_id_put_many(memcg, 1);
4813}
4814
73f576c0
JW
4815/**
4816 * mem_cgroup_from_id - look up a memcg from a memcg id
4817 * @id: the memcg id to look up
4818 *
4819 * Caller must hold rcu_read_lock().
4820 */
4821struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4822{
4823 WARN_ON_ONCE(!rcu_read_lock_held());
4824 return idr_find(&mem_cgroup_idr, id);
4825}
4826
ef8f2327 4827static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4828{
4829 struct mem_cgroup_per_node *pn;
ef8f2327 4830 int tmp = node;
1ecaab2b
KH
4831 /*
4832 * This routine is called against possible nodes.
4833 * But it's BUG to call kmalloc() against offline node.
4834 *
4835 * TODO: this routine can waste much memory for nodes which will
4836 * never be onlined. It's better to use memory hotplug callback
4837 * function.
4838 */
41e3355d
KH
4839 if (!node_state(node, N_NORMAL_MEMORY))
4840 tmp = -1;
17295c88 4841 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4842 if (!pn)
4843 return 1;
1ecaab2b 4844
815744d7
JW
4845 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4846 if (!pn->lruvec_stat_local) {
4847 kfree(pn);
4848 return 1;
4849 }
4850
a983b5eb
JW
4851 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4852 if (!pn->lruvec_stat_cpu) {
815744d7 4853 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4854 kfree(pn);
4855 return 1;
4856 }
4857
ef8f2327
MG
4858 lruvec_init(&pn->lruvec);
4859 pn->usage_in_excess = 0;
4860 pn->on_tree = false;
4861 pn->memcg = memcg;
4862
54f72fe0 4863 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4864 return 0;
4865}
4866
ef8f2327 4867static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4868{
00f3ca2c
JW
4869 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4870
4eaf431f
MH
4871 if (!pn)
4872 return;
4873
a983b5eb 4874 free_percpu(pn->lruvec_stat_cpu);
815744d7 4875 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4876 kfree(pn);
1ecaab2b
KH
4877}
4878
40e952f9 4879static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4880{
c8b2a36f 4881 int node;
59927fb9 4882
c8b2a36f 4883 for_each_node(node)
ef8f2327 4884 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4885 free_percpu(memcg->vmstats_percpu);
815744d7 4886 free_percpu(memcg->vmstats_local);
8ff69e2c 4887 kfree(memcg);
59927fb9 4888}
3afe36b1 4889
40e952f9
TE
4890static void mem_cgroup_free(struct mem_cgroup *memcg)
4891{
4892 memcg_wb_domain_exit(memcg);
7961eee3
SB
4893 /*
4894 * Flush percpu vmstats and vmevents to guarantee the value correctness
4895 * on parent's and all ancestor levels.
4896 */
4a87e2a2 4897 memcg_flush_percpu_vmstats(memcg);
7961eee3 4898 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
4899 __mem_cgroup_free(memcg);
4900}
4901
0b8f73e1 4902static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4903{
d142e3e6 4904 struct mem_cgroup *memcg;
b9726c26 4905 unsigned int size;
6d12e2d8 4906 int node;
97b27821 4907 int __maybe_unused i;
8cdea7c0 4908
0b8f73e1
JW
4909 size = sizeof(struct mem_cgroup);
4910 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4911
4912 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4913 if (!memcg)
0b8f73e1
JW
4914 return NULL;
4915
73f576c0
JW
4916 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4917 1, MEM_CGROUP_ID_MAX,
4918 GFP_KERNEL);
4919 if (memcg->id.id < 0)
4920 goto fail;
4921
815744d7
JW
4922 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4923 if (!memcg->vmstats_local)
4924 goto fail;
4925
871789d4
CD
4926 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4927 if (!memcg->vmstats_percpu)
0b8f73e1 4928 goto fail;
78fb7466 4929
3ed28fa1 4930 for_each_node(node)
ef8f2327 4931 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4932 goto fail;
f64c3f54 4933
0b8f73e1
JW
4934 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4935 goto fail;
28dbc4b6 4936
f7e1cb6e 4937 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 4938 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4939 mutex_init(&memcg->thresholds_lock);
4940 spin_lock_init(&memcg->move_lock);
70ddf637 4941 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4942 INIT_LIST_HEAD(&memcg->event_list);
4943 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4944 memcg->socket_pressure = jiffies;
84c07d11 4945#ifdef CONFIG_MEMCG_KMEM
900a38f0 4946 memcg->kmemcg_id = -1;
900a38f0 4947#endif
52ebea74
TH
4948#ifdef CONFIG_CGROUP_WRITEBACK
4949 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
4950 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4951 memcg->cgwb_frn[i].done =
4952 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
4953#endif
4954#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4955 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4956 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4957 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 4958#endif
73f576c0 4959 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4960 return memcg;
4961fail:
7e97de0b 4962 mem_cgroup_id_remove(memcg);
40e952f9 4963 __mem_cgroup_free(memcg);
0b8f73e1 4964 return NULL;
d142e3e6
GC
4965}
4966
0b8f73e1
JW
4967static struct cgroup_subsys_state * __ref
4968mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4969{
0b8f73e1
JW
4970 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4971 struct mem_cgroup *memcg;
4972 long error = -ENOMEM;
d142e3e6 4973
0b8f73e1
JW
4974 memcg = mem_cgroup_alloc();
4975 if (!memcg)
4976 return ERR_PTR(error);
d142e3e6 4977
0b8f73e1
JW
4978 memcg->high = PAGE_COUNTER_MAX;
4979 memcg->soft_limit = PAGE_COUNTER_MAX;
4980 if (parent) {
4981 memcg->swappiness = mem_cgroup_swappiness(parent);
4982 memcg->oom_kill_disable = parent->oom_kill_disable;
4983 }
4984 if (parent && parent->use_hierarchy) {
4985 memcg->use_hierarchy = true;
3e32cb2e 4986 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4987 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4988 page_counter_init(&memcg->memsw, &parent->memsw);
4989 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4990 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4991 } else {
3e32cb2e 4992 page_counter_init(&memcg->memory, NULL);
37e84351 4993 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4994 page_counter_init(&memcg->memsw, NULL);
4995 page_counter_init(&memcg->kmem, NULL);
0db15298 4996 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4997 /*
4998 * Deeper hierachy with use_hierarchy == false doesn't make
4999 * much sense so let cgroup subsystem know about this
5000 * unfortunate state in our controller.
5001 */
d142e3e6 5002 if (parent != root_mem_cgroup)
073219e9 5003 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5004 }
d6441637 5005
0b8f73e1
JW
5006 /* The following stuff does not apply to the root */
5007 if (!parent) {
fb2f2b0a
RG
5008#ifdef CONFIG_MEMCG_KMEM
5009 INIT_LIST_HEAD(&memcg->kmem_caches);
5010#endif
0b8f73e1
JW
5011 root_mem_cgroup = memcg;
5012 return &memcg->css;
5013 }
5014
b313aeee 5015 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5016 if (error)
5017 goto fail;
127424c8 5018
f7e1cb6e 5019 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5020 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5021
0b8f73e1
JW
5022 return &memcg->css;
5023fail:
7e97de0b 5024 mem_cgroup_id_remove(memcg);
0b8f73e1 5025 mem_cgroup_free(memcg);
ea3a9645 5026 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
5027}
5028
73f576c0 5029static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5030{
58fa2a55
VD
5031 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5032
0a4465d3
KT
5033 /*
5034 * A memcg must be visible for memcg_expand_shrinker_maps()
5035 * by the time the maps are allocated. So, we allocate maps
5036 * here, when for_each_mem_cgroup() can't skip it.
5037 */
5038 if (memcg_alloc_shrinker_maps(memcg)) {
5039 mem_cgroup_id_remove(memcg);
5040 return -ENOMEM;
5041 }
5042
73f576c0 5043 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5044 refcount_set(&memcg->id.ref, 1);
73f576c0 5045 css_get(css);
2f7dd7a4 5046 return 0;
8cdea7c0
BS
5047}
5048
eb95419b 5049static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5050{
eb95419b 5051 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5052 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5053
5054 /*
5055 * Unregister events and notify userspace.
5056 * Notify userspace about cgroup removing only after rmdir of cgroup
5057 * directory to avoid race between userspace and kernelspace.
5058 */
fba94807
TH
5059 spin_lock(&memcg->event_list_lock);
5060 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5061 list_del_init(&event->list);
5062 schedule_work(&event->remove);
5063 }
fba94807 5064 spin_unlock(&memcg->event_list_lock);
ec64f515 5065
bf8d5d52 5066 page_counter_set_min(&memcg->memory, 0);
23067153 5067 page_counter_set_low(&memcg->memory, 0);
63677c74 5068
567e9ab2 5069 memcg_offline_kmem(memcg);
52ebea74 5070 wb_memcg_offline(memcg);
73f576c0 5071
591edfb1
RG
5072 drain_all_stock(memcg);
5073
73f576c0 5074 mem_cgroup_id_put(memcg);
df878fb0
KH
5075}
5076
6df38689
VD
5077static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5078{
5079 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5080
5081 invalidate_reclaim_iterators(memcg);
5082}
5083
eb95419b 5084static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5085{
eb95419b 5086 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5087 int __maybe_unused i;
c268e994 5088
97b27821
TH
5089#ifdef CONFIG_CGROUP_WRITEBACK
5090 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5091 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5092#endif
f7e1cb6e 5093 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5094 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5095
0db15298 5096 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5097 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5098
0b8f73e1
JW
5099 vmpressure_cleanup(&memcg->vmpressure);
5100 cancel_work_sync(&memcg->high_work);
5101 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5102 memcg_free_shrinker_maps(memcg);
d886f4e4 5103 memcg_free_kmem(memcg);
0b8f73e1 5104 mem_cgroup_free(memcg);
8cdea7c0
BS
5105}
5106
1ced953b
TH
5107/**
5108 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5109 * @css: the target css
5110 *
5111 * Reset the states of the mem_cgroup associated with @css. This is
5112 * invoked when the userland requests disabling on the default hierarchy
5113 * but the memcg is pinned through dependency. The memcg should stop
5114 * applying policies and should revert to the vanilla state as it may be
5115 * made visible again.
5116 *
5117 * The current implementation only resets the essential configurations.
5118 * This needs to be expanded to cover all the visible parts.
5119 */
5120static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5121{
5122 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5123
bbec2e15
RG
5124 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5125 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5126 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5127 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5128 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5129 page_counter_set_min(&memcg->memory, 0);
23067153 5130 page_counter_set_low(&memcg->memory, 0);
241994ed 5131 memcg->high = PAGE_COUNTER_MAX;
24d404dc 5132 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 5133 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5134}
5135
02491447 5136#ifdef CONFIG_MMU
7dc74be0 5137/* Handlers for move charge at task migration. */
854ffa8d 5138static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5139{
05b84301 5140 int ret;
9476db97 5141
d0164adc
MG
5142 /* Try a single bulk charge without reclaim first, kswapd may wake */
5143 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5144 if (!ret) {
854ffa8d 5145 mc.precharge += count;
854ffa8d
DN
5146 return ret;
5147 }
9476db97 5148
3674534b 5149 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5150 while (count--) {
3674534b 5151 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5152 if (ret)
38c5d72f 5153 return ret;
854ffa8d 5154 mc.precharge++;
9476db97 5155 cond_resched();
854ffa8d 5156 }
9476db97 5157 return 0;
4ffef5fe
DN
5158}
5159
4ffef5fe
DN
5160union mc_target {
5161 struct page *page;
02491447 5162 swp_entry_t ent;
4ffef5fe
DN
5163};
5164
4ffef5fe 5165enum mc_target_type {
8d32ff84 5166 MC_TARGET_NONE = 0,
4ffef5fe 5167 MC_TARGET_PAGE,
02491447 5168 MC_TARGET_SWAP,
c733a828 5169 MC_TARGET_DEVICE,
4ffef5fe
DN
5170};
5171
90254a65
DN
5172static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5173 unsigned long addr, pte_t ptent)
4ffef5fe 5174{
25b2995a 5175 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5176
90254a65
DN
5177 if (!page || !page_mapped(page))
5178 return NULL;
5179 if (PageAnon(page)) {
1dfab5ab 5180 if (!(mc.flags & MOVE_ANON))
90254a65 5181 return NULL;
1dfab5ab
JW
5182 } else {
5183 if (!(mc.flags & MOVE_FILE))
5184 return NULL;
5185 }
90254a65
DN
5186 if (!get_page_unless_zero(page))
5187 return NULL;
5188
5189 return page;
5190}
5191
c733a828 5192#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5193static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5194 pte_t ptent, swp_entry_t *entry)
90254a65 5195{
90254a65
DN
5196 struct page *page = NULL;
5197 swp_entry_t ent = pte_to_swp_entry(ptent);
5198
1dfab5ab 5199 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5200 return NULL;
c733a828
JG
5201
5202 /*
5203 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5204 * a device and because they are not accessible by CPU they are store
5205 * as special swap entry in the CPU page table.
5206 */
5207 if (is_device_private_entry(ent)) {
5208 page = device_private_entry_to_page(ent);
5209 /*
5210 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5211 * a refcount of 1 when free (unlike normal page)
5212 */
5213 if (!page_ref_add_unless(page, 1, 1))
5214 return NULL;
5215 return page;
5216 }
5217
4b91355e
KH
5218 /*
5219 * Because lookup_swap_cache() updates some statistics counter,
5220 * we call find_get_page() with swapper_space directly.
5221 */
f6ab1f7f 5222 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5223 if (do_memsw_account())
90254a65
DN
5224 entry->val = ent.val;
5225
5226 return page;
5227}
4b91355e
KH
5228#else
5229static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5230 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5231{
5232 return NULL;
5233}
5234#endif
90254a65 5235
87946a72
DN
5236static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5237 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5238{
5239 struct page *page = NULL;
87946a72
DN
5240 struct address_space *mapping;
5241 pgoff_t pgoff;
5242
5243 if (!vma->vm_file) /* anonymous vma */
5244 return NULL;
1dfab5ab 5245 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5246 return NULL;
5247
87946a72 5248 mapping = vma->vm_file->f_mapping;
0661a336 5249 pgoff = linear_page_index(vma, addr);
87946a72
DN
5250
5251 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5252#ifdef CONFIG_SWAP
5253 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5254 if (shmem_mapping(mapping)) {
5255 page = find_get_entry(mapping, pgoff);
3159f943 5256 if (xa_is_value(page)) {
139b6a6f 5257 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5258 if (do_memsw_account())
139b6a6f 5259 *entry = swp;
f6ab1f7f
HY
5260 page = find_get_page(swap_address_space(swp),
5261 swp_offset(swp));
139b6a6f
JW
5262 }
5263 } else
5264 page = find_get_page(mapping, pgoff);
5265#else
5266 page = find_get_page(mapping, pgoff);
aa3b1895 5267#endif
87946a72
DN
5268 return page;
5269}
5270
b1b0deab
CG
5271/**
5272 * mem_cgroup_move_account - move account of the page
5273 * @page: the page
25843c2b 5274 * @compound: charge the page as compound or small page
b1b0deab
CG
5275 * @from: mem_cgroup which the page is moved from.
5276 * @to: mem_cgroup which the page is moved to. @from != @to.
5277 *
3ac808fd 5278 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5279 *
5280 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5281 * from old cgroup.
5282 */
5283static int mem_cgroup_move_account(struct page *page,
f627c2f5 5284 bool compound,
b1b0deab
CG
5285 struct mem_cgroup *from,
5286 struct mem_cgroup *to)
5287{
ae8af438
KK
5288 struct lruvec *from_vec, *to_vec;
5289 struct pglist_data *pgdat;
b1b0deab 5290 unsigned long flags;
f627c2f5 5291 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5292 int ret;
c4843a75 5293 bool anon;
b1b0deab
CG
5294
5295 VM_BUG_ON(from == to);
5296 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5297 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5298
5299 /*
6a93ca8f 5300 * Prevent mem_cgroup_migrate() from looking at
45637bab 5301 * page->mem_cgroup of its source page while we change it.
b1b0deab 5302 */
f627c2f5 5303 ret = -EBUSY;
b1b0deab
CG
5304 if (!trylock_page(page))
5305 goto out;
5306
5307 ret = -EINVAL;
5308 if (page->mem_cgroup != from)
5309 goto out_unlock;
5310
c4843a75
GT
5311 anon = PageAnon(page);
5312
ae8af438 5313 pgdat = page_pgdat(page);
867e5e1d
JW
5314 from_vec = mem_cgroup_lruvec(from, pgdat);
5315 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5316
b1b0deab
CG
5317 spin_lock_irqsave(&from->move_lock, flags);
5318
c4843a75 5319 if (!anon && page_mapped(page)) {
ae8af438
KK
5320 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5321 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5322 }
5323
c4843a75
GT
5324 /*
5325 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5326 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5327 * So mapping should be stable for dirty pages.
5328 */
5329 if (!anon && PageDirty(page)) {
5330 struct address_space *mapping = page_mapping(page);
5331
5332 if (mapping_cap_account_dirty(mapping)) {
ae8af438
KK
5333 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5334 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5335 }
5336 }
5337
b1b0deab 5338 if (PageWriteback(page)) {
ae8af438
KK
5339 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5340 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5341 }
5342
87eaceb3
YS
5343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5344 if (compound && !list_empty(page_deferred_list(page))) {
5345 spin_lock(&from->deferred_split_queue.split_queue_lock);
5346 list_del_init(page_deferred_list(page));
5347 from->deferred_split_queue.split_queue_len--;
5348 spin_unlock(&from->deferred_split_queue.split_queue_lock);
5349 }
5350#endif
b1b0deab
CG
5351 /*
5352 * It is safe to change page->mem_cgroup here because the page
5353 * is referenced, charged, and isolated - we can't race with
5354 * uncharging, charging, migration, or LRU putback.
5355 */
5356
5357 /* caller should have done css_get */
5358 page->mem_cgroup = to;
87eaceb3
YS
5359
5360#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5361 if (compound && list_empty(page_deferred_list(page))) {
5362 spin_lock(&to->deferred_split_queue.split_queue_lock);
5363 list_add_tail(page_deferred_list(page),
5364 &to->deferred_split_queue.split_queue);
5365 to->deferred_split_queue.split_queue_len++;
5366 spin_unlock(&to->deferred_split_queue.split_queue_lock);
5367 }
5368#endif
5369
b1b0deab
CG
5370 spin_unlock_irqrestore(&from->move_lock, flags);
5371
5372 ret = 0;
5373
5374 local_irq_disable();
f627c2f5 5375 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5376 memcg_check_events(to, page);
f627c2f5 5377 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5378 memcg_check_events(from, page);
5379 local_irq_enable();
5380out_unlock:
5381 unlock_page(page);
5382out:
5383 return ret;
5384}
5385
7cf7806c
LR
5386/**
5387 * get_mctgt_type - get target type of moving charge
5388 * @vma: the vma the pte to be checked belongs
5389 * @addr: the address corresponding to the pte to be checked
5390 * @ptent: the pte to be checked
5391 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5392 *
5393 * Returns
5394 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5395 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5396 * move charge. if @target is not NULL, the page is stored in target->page
5397 * with extra refcnt got(Callers should handle it).
5398 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5399 * target for charge migration. if @target is not NULL, the entry is stored
5400 * in target->ent.
25b2995a
CH
5401 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5402 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5403 * For now we such page is charge like a regular page would be as for all
5404 * intent and purposes it is just special memory taking the place of a
5405 * regular page.
c733a828
JG
5406 *
5407 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5408 *
5409 * Called with pte lock held.
5410 */
5411
8d32ff84 5412static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5413 unsigned long addr, pte_t ptent, union mc_target *target)
5414{
5415 struct page *page = NULL;
8d32ff84 5416 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5417 swp_entry_t ent = { .val = 0 };
5418
5419 if (pte_present(ptent))
5420 page = mc_handle_present_pte(vma, addr, ptent);
5421 else if (is_swap_pte(ptent))
48406ef8 5422 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5423 else if (pte_none(ptent))
87946a72 5424 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5425
5426 if (!page && !ent.val)
8d32ff84 5427 return ret;
02491447 5428 if (page) {
02491447 5429 /*
0a31bc97 5430 * Do only loose check w/o serialization.
1306a85a 5431 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5432 * not under LRU exclusion.
02491447 5433 */
1306a85a 5434 if (page->mem_cgroup == mc.from) {
02491447 5435 ret = MC_TARGET_PAGE;
25b2995a 5436 if (is_device_private_page(page))
c733a828 5437 ret = MC_TARGET_DEVICE;
02491447
DN
5438 if (target)
5439 target->page = page;
5440 }
5441 if (!ret || !target)
5442 put_page(page);
5443 }
3e14a57b
HY
5444 /*
5445 * There is a swap entry and a page doesn't exist or isn't charged.
5446 * But we cannot move a tail-page in a THP.
5447 */
5448 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5449 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5450 ret = MC_TARGET_SWAP;
5451 if (target)
5452 target->ent = ent;
4ffef5fe 5453 }
4ffef5fe
DN
5454 return ret;
5455}
5456
12724850
NH
5457#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5458/*
d6810d73
HY
5459 * We don't consider PMD mapped swapping or file mapped pages because THP does
5460 * not support them for now.
12724850
NH
5461 * Caller should make sure that pmd_trans_huge(pmd) is true.
5462 */
5463static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5464 unsigned long addr, pmd_t pmd, union mc_target *target)
5465{
5466 struct page *page = NULL;
12724850
NH
5467 enum mc_target_type ret = MC_TARGET_NONE;
5468
84c3fc4e
ZY
5469 if (unlikely(is_swap_pmd(pmd))) {
5470 VM_BUG_ON(thp_migration_supported() &&
5471 !is_pmd_migration_entry(pmd));
5472 return ret;
5473 }
12724850 5474 page = pmd_page(pmd);
309381fe 5475 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5476 if (!(mc.flags & MOVE_ANON))
12724850 5477 return ret;
1306a85a 5478 if (page->mem_cgroup == mc.from) {
12724850
NH
5479 ret = MC_TARGET_PAGE;
5480 if (target) {
5481 get_page(page);
5482 target->page = page;
5483 }
5484 }
5485 return ret;
5486}
5487#else
5488static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5489 unsigned long addr, pmd_t pmd, union mc_target *target)
5490{
5491 return MC_TARGET_NONE;
5492}
5493#endif
5494
4ffef5fe
DN
5495static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5496 unsigned long addr, unsigned long end,
5497 struct mm_walk *walk)
5498{
26bcd64a 5499 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5500 pte_t *pte;
5501 spinlock_t *ptl;
5502
b6ec57f4
KS
5503 ptl = pmd_trans_huge_lock(pmd, vma);
5504 if (ptl) {
c733a828
JG
5505 /*
5506 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5507 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5508 * this might change.
c733a828 5509 */
12724850
NH
5510 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5511 mc.precharge += HPAGE_PMD_NR;
bf929152 5512 spin_unlock(ptl);
1a5a9906 5513 return 0;
12724850 5514 }
03319327 5515
45f83cef
AA
5516 if (pmd_trans_unstable(pmd))
5517 return 0;
4ffef5fe
DN
5518 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5519 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5520 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5521 mc.precharge++; /* increment precharge temporarily */
5522 pte_unmap_unlock(pte - 1, ptl);
5523 cond_resched();
5524
7dc74be0
DN
5525 return 0;
5526}
5527
7b86ac33
CH
5528static const struct mm_walk_ops precharge_walk_ops = {
5529 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5530};
5531
4ffef5fe
DN
5532static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5533{
5534 unsigned long precharge;
4ffef5fe 5535
dfe076b0 5536 down_read(&mm->mmap_sem);
7b86ac33 5537 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5538 up_read(&mm->mmap_sem);
4ffef5fe
DN
5539
5540 precharge = mc.precharge;
5541 mc.precharge = 0;
5542
5543 return precharge;
5544}
5545
4ffef5fe
DN
5546static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5547{
dfe076b0
DN
5548 unsigned long precharge = mem_cgroup_count_precharge(mm);
5549
5550 VM_BUG_ON(mc.moving_task);
5551 mc.moving_task = current;
5552 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5553}
5554
dfe076b0
DN
5555/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5556static void __mem_cgroup_clear_mc(void)
4ffef5fe 5557{
2bd9bb20
KH
5558 struct mem_cgroup *from = mc.from;
5559 struct mem_cgroup *to = mc.to;
5560
4ffef5fe 5561 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5562 if (mc.precharge) {
00501b53 5563 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5564 mc.precharge = 0;
5565 }
5566 /*
5567 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5568 * we must uncharge here.
5569 */
5570 if (mc.moved_charge) {
00501b53 5571 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5572 mc.moved_charge = 0;
4ffef5fe 5573 }
483c30b5
DN
5574 /* we must fixup refcnts and charges */
5575 if (mc.moved_swap) {
483c30b5 5576 /* uncharge swap account from the old cgroup */
ce00a967 5577 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5578 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5579
615d66c3
VD
5580 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5581
05b84301 5582 /*
3e32cb2e
JW
5583 * we charged both to->memory and to->memsw, so we
5584 * should uncharge to->memory.
05b84301 5585 */
ce00a967 5586 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5587 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5588
615d66c3
VD
5589 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5590 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5591
483c30b5
DN
5592 mc.moved_swap = 0;
5593 }
dfe076b0
DN
5594 memcg_oom_recover(from);
5595 memcg_oom_recover(to);
5596 wake_up_all(&mc.waitq);
5597}
5598
5599static void mem_cgroup_clear_mc(void)
5600{
264a0ae1
TH
5601 struct mm_struct *mm = mc.mm;
5602
dfe076b0
DN
5603 /*
5604 * we must clear moving_task before waking up waiters at the end of
5605 * task migration.
5606 */
5607 mc.moving_task = NULL;
5608 __mem_cgroup_clear_mc();
2bd9bb20 5609 spin_lock(&mc.lock);
4ffef5fe
DN
5610 mc.from = NULL;
5611 mc.to = NULL;
264a0ae1 5612 mc.mm = NULL;
2bd9bb20 5613 spin_unlock(&mc.lock);
264a0ae1
TH
5614
5615 mmput(mm);
4ffef5fe
DN
5616}
5617
1f7dd3e5 5618static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5619{
1f7dd3e5 5620 struct cgroup_subsys_state *css;
eed67d75 5621 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5622 struct mem_cgroup *from;
4530eddb 5623 struct task_struct *leader, *p;
9f2115f9 5624 struct mm_struct *mm;
1dfab5ab 5625 unsigned long move_flags;
9f2115f9 5626 int ret = 0;
7dc74be0 5627
1f7dd3e5
TH
5628 /* charge immigration isn't supported on the default hierarchy */
5629 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5630 return 0;
5631
4530eddb
TH
5632 /*
5633 * Multi-process migrations only happen on the default hierarchy
5634 * where charge immigration is not used. Perform charge
5635 * immigration if @tset contains a leader and whine if there are
5636 * multiple.
5637 */
5638 p = NULL;
1f7dd3e5 5639 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5640 WARN_ON_ONCE(p);
5641 p = leader;
1f7dd3e5 5642 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5643 }
5644 if (!p)
5645 return 0;
5646
1f7dd3e5
TH
5647 /*
5648 * We are now commited to this value whatever it is. Changes in this
5649 * tunable will only affect upcoming migrations, not the current one.
5650 * So we need to save it, and keep it going.
5651 */
5652 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5653 if (!move_flags)
5654 return 0;
5655
9f2115f9
TH
5656 from = mem_cgroup_from_task(p);
5657
5658 VM_BUG_ON(from == memcg);
5659
5660 mm = get_task_mm(p);
5661 if (!mm)
5662 return 0;
5663 /* We move charges only when we move a owner of the mm */
5664 if (mm->owner == p) {
5665 VM_BUG_ON(mc.from);
5666 VM_BUG_ON(mc.to);
5667 VM_BUG_ON(mc.precharge);
5668 VM_BUG_ON(mc.moved_charge);
5669 VM_BUG_ON(mc.moved_swap);
5670
5671 spin_lock(&mc.lock);
264a0ae1 5672 mc.mm = mm;
9f2115f9
TH
5673 mc.from = from;
5674 mc.to = memcg;
5675 mc.flags = move_flags;
5676 spin_unlock(&mc.lock);
5677 /* We set mc.moving_task later */
5678
5679 ret = mem_cgroup_precharge_mc(mm);
5680 if (ret)
5681 mem_cgroup_clear_mc();
264a0ae1
TH
5682 } else {
5683 mmput(mm);
7dc74be0
DN
5684 }
5685 return ret;
5686}
5687
1f7dd3e5 5688static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5689{
4e2f245d
JW
5690 if (mc.to)
5691 mem_cgroup_clear_mc();
7dc74be0
DN
5692}
5693
4ffef5fe
DN
5694static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5695 unsigned long addr, unsigned long end,
5696 struct mm_walk *walk)
7dc74be0 5697{
4ffef5fe 5698 int ret = 0;
26bcd64a 5699 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5700 pte_t *pte;
5701 spinlock_t *ptl;
12724850
NH
5702 enum mc_target_type target_type;
5703 union mc_target target;
5704 struct page *page;
4ffef5fe 5705
b6ec57f4
KS
5706 ptl = pmd_trans_huge_lock(pmd, vma);
5707 if (ptl) {
62ade86a 5708 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5709 spin_unlock(ptl);
12724850
NH
5710 return 0;
5711 }
5712 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5713 if (target_type == MC_TARGET_PAGE) {
5714 page = target.page;
5715 if (!isolate_lru_page(page)) {
f627c2f5 5716 if (!mem_cgroup_move_account(page, true,
1306a85a 5717 mc.from, mc.to)) {
12724850
NH
5718 mc.precharge -= HPAGE_PMD_NR;
5719 mc.moved_charge += HPAGE_PMD_NR;
5720 }
5721 putback_lru_page(page);
5722 }
5723 put_page(page);
c733a828
JG
5724 } else if (target_type == MC_TARGET_DEVICE) {
5725 page = target.page;
5726 if (!mem_cgroup_move_account(page, true,
5727 mc.from, mc.to)) {
5728 mc.precharge -= HPAGE_PMD_NR;
5729 mc.moved_charge += HPAGE_PMD_NR;
5730 }
5731 put_page(page);
12724850 5732 }
bf929152 5733 spin_unlock(ptl);
1a5a9906 5734 return 0;
12724850
NH
5735 }
5736
45f83cef
AA
5737 if (pmd_trans_unstable(pmd))
5738 return 0;
4ffef5fe
DN
5739retry:
5740 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5741 for (; addr != end; addr += PAGE_SIZE) {
5742 pte_t ptent = *(pte++);
c733a828 5743 bool device = false;
02491447 5744 swp_entry_t ent;
4ffef5fe
DN
5745
5746 if (!mc.precharge)
5747 break;
5748
8d32ff84 5749 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5750 case MC_TARGET_DEVICE:
5751 device = true;
5752 /* fall through */
4ffef5fe
DN
5753 case MC_TARGET_PAGE:
5754 page = target.page;
53f9263b
KS
5755 /*
5756 * We can have a part of the split pmd here. Moving it
5757 * can be done but it would be too convoluted so simply
5758 * ignore such a partial THP and keep it in original
5759 * memcg. There should be somebody mapping the head.
5760 */
5761 if (PageTransCompound(page))
5762 goto put;
c733a828 5763 if (!device && isolate_lru_page(page))
4ffef5fe 5764 goto put;
f627c2f5
KS
5765 if (!mem_cgroup_move_account(page, false,
5766 mc.from, mc.to)) {
4ffef5fe 5767 mc.precharge--;
854ffa8d
DN
5768 /* we uncharge from mc.from later. */
5769 mc.moved_charge++;
4ffef5fe 5770 }
c733a828
JG
5771 if (!device)
5772 putback_lru_page(page);
8d32ff84 5773put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5774 put_page(page);
5775 break;
02491447
DN
5776 case MC_TARGET_SWAP:
5777 ent = target.ent;
e91cbb42 5778 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5779 mc.precharge--;
483c30b5
DN
5780 /* we fixup refcnts and charges later. */
5781 mc.moved_swap++;
5782 }
02491447 5783 break;
4ffef5fe
DN
5784 default:
5785 break;
5786 }
5787 }
5788 pte_unmap_unlock(pte - 1, ptl);
5789 cond_resched();
5790
5791 if (addr != end) {
5792 /*
5793 * We have consumed all precharges we got in can_attach().
5794 * We try charge one by one, but don't do any additional
5795 * charges to mc.to if we have failed in charge once in attach()
5796 * phase.
5797 */
854ffa8d 5798 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5799 if (!ret)
5800 goto retry;
5801 }
5802
5803 return ret;
5804}
5805
7b86ac33
CH
5806static const struct mm_walk_ops charge_walk_ops = {
5807 .pmd_entry = mem_cgroup_move_charge_pte_range,
5808};
5809
264a0ae1 5810static void mem_cgroup_move_charge(void)
4ffef5fe 5811{
4ffef5fe 5812 lru_add_drain_all();
312722cb 5813 /*
81f8c3a4
JW
5814 * Signal lock_page_memcg() to take the memcg's move_lock
5815 * while we're moving its pages to another memcg. Then wait
5816 * for already started RCU-only updates to finish.
312722cb
JW
5817 */
5818 atomic_inc(&mc.from->moving_account);
5819 synchronize_rcu();
dfe076b0 5820retry:
264a0ae1 5821 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5822 /*
5823 * Someone who are holding the mmap_sem might be waiting in
5824 * waitq. So we cancel all extra charges, wake up all waiters,
5825 * and retry. Because we cancel precharges, we might not be able
5826 * to move enough charges, but moving charge is a best-effort
5827 * feature anyway, so it wouldn't be a big problem.
5828 */
5829 __mem_cgroup_clear_mc();
5830 cond_resched();
5831 goto retry;
5832 }
26bcd64a
NH
5833 /*
5834 * When we have consumed all precharges and failed in doing
5835 * additional charge, the page walk just aborts.
5836 */
7b86ac33
CH
5837 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5838 NULL);
0247f3f4 5839
264a0ae1 5840 up_read(&mc.mm->mmap_sem);
312722cb 5841 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5842}
5843
264a0ae1 5844static void mem_cgroup_move_task(void)
67e465a7 5845{
264a0ae1
TH
5846 if (mc.to) {
5847 mem_cgroup_move_charge();
a433658c 5848 mem_cgroup_clear_mc();
264a0ae1 5849 }
67e465a7 5850}
5cfb80a7 5851#else /* !CONFIG_MMU */
1f7dd3e5 5852static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5853{
5854 return 0;
5855}
1f7dd3e5 5856static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5857{
5858}
264a0ae1 5859static void mem_cgroup_move_task(void)
5cfb80a7
DN
5860{
5861}
5862#endif
67e465a7 5863
f00baae7
TH
5864/*
5865 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5866 * to verify whether we're attached to the default hierarchy on each mount
5867 * attempt.
f00baae7 5868 */
eb95419b 5869static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5870{
5871 /*
aa6ec29b 5872 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5873 * guarantees that @root doesn't have any children, so turning it
5874 * on for the root memcg is enough.
5875 */
9e10a130 5876 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5877 root_mem_cgroup->use_hierarchy = true;
5878 else
5879 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5880}
5881
677dc973
CD
5882static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5883{
5884 if (value == PAGE_COUNTER_MAX)
5885 seq_puts(m, "max\n");
5886 else
5887 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5888
5889 return 0;
5890}
5891
241994ed
JW
5892static u64 memory_current_read(struct cgroup_subsys_state *css,
5893 struct cftype *cft)
5894{
f5fc3c5d
JW
5895 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5896
5897 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5898}
5899
bf8d5d52
RG
5900static int memory_min_show(struct seq_file *m, void *v)
5901{
677dc973
CD
5902 return seq_puts_memcg_tunable(m,
5903 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5904}
5905
5906static ssize_t memory_min_write(struct kernfs_open_file *of,
5907 char *buf, size_t nbytes, loff_t off)
5908{
5909 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5910 unsigned long min;
5911 int err;
5912
5913 buf = strstrip(buf);
5914 err = page_counter_memparse(buf, "max", &min);
5915 if (err)
5916 return err;
5917
5918 page_counter_set_min(&memcg->memory, min);
5919
5920 return nbytes;
5921}
5922
241994ed
JW
5923static int memory_low_show(struct seq_file *m, void *v)
5924{
677dc973
CD
5925 return seq_puts_memcg_tunable(m,
5926 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5927}
5928
5929static ssize_t memory_low_write(struct kernfs_open_file *of,
5930 char *buf, size_t nbytes, loff_t off)
5931{
5932 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5933 unsigned long low;
5934 int err;
5935
5936 buf = strstrip(buf);
d2973697 5937 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5938 if (err)
5939 return err;
5940
23067153 5941 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5942
5943 return nbytes;
5944}
5945
5946static int memory_high_show(struct seq_file *m, void *v)
5947{
677dc973 5948 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5949}
5950
5951static ssize_t memory_high_write(struct kernfs_open_file *of,
5952 char *buf, size_t nbytes, loff_t off)
5953{
5954 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8c8c383c
JW
5955 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5956 bool drained = false;
241994ed
JW
5957 unsigned long high;
5958 int err;
5959
5960 buf = strstrip(buf);
d2973697 5961 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5962 if (err)
5963 return err;
5964
5965 memcg->high = high;
5966
8c8c383c
JW
5967 for (;;) {
5968 unsigned long nr_pages = page_counter_read(&memcg->memory);
5969 unsigned long reclaimed;
5970
5971 if (nr_pages <= high)
5972 break;
5973
5974 if (signal_pending(current))
5975 break;
5976
5977 if (!drained) {
5978 drain_all_stock(memcg);
5979 drained = true;
5980 continue;
5981 }
5982
5983 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5984 GFP_KERNEL, true);
5985
5986 if (!reclaimed && !nr_retries--)
5987 break;
5988 }
588083bb 5989
241994ed
JW
5990 return nbytes;
5991}
5992
5993static int memory_max_show(struct seq_file *m, void *v)
5994{
677dc973
CD
5995 return seq_puts_memcg_tunable(m,
5996 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
5997}
5998
5999static ssize_t memory_max_write(struct kernfs_open_file *of,
6000 char *buf, size_t nbytes, loff_t off)
6001{
6002 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6003 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6004 bool drained = false;
241994ed
JW
6005 unsigned long max;
6006 int err;
6007
6008 buf = strstrip(buf);
d2973697 6009 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6010 if (err)
6011 return err;
6012
bbec2e15 6013 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6014
6015 for (;;) {
6016 unsigned long nr_pages = page_counter_read(&memcg->memory);
6017
6018 if (nr_pages <= max)
6019 break;
6020
7249c9f0 6021 if (signal_pending(current))
b6e6edcf 6022 break;
b6e6edcf
JW
6023
6024 if (!drained) {
6025 drain_all_stock(memcg);
6026 drained = true;
6027 continue;
6028 }
6029
6030 if (nr_reclaims) {
6031 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6032 GFP_KERNEL, true))
6033 nr_reclaims--;
6034 continue;
6035 }
6036
e27be240 6037 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6038 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6039 break;
6040 }
241994ed 6041
2529bb3a 6042 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6043 return nbytes;
6044}
6045
1e577f97
SB
6046static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6047{
6048 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6049 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6050 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6051 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6052 seq_printf(m, "oom_kill %lu\n",
6053 atomic_long_read(&events[MEMCG_OOM_KILL]));
6054}
6055
241994ed
JW
6056static int memory_events_show(struct seq_file *m, void *v)
6057{
aa9694bb 6058 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6059
1e577f97
SB
6060 __memory_events_show(m, memcg->memory_events);
6061 return 0;
6062}
6063
6064static int memory_events_local_show(struct seq_file *m, void *v)
6065{
6066 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6067
1e577f97 6068 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6069 return 0;
6070}
6071
587d9f72
JW
6072static int memory_stat_show(struct seq_file *m, void *v)
6073{
aa9694bb 6074 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6075 char *buf;
1ff9e6e1 6076
c8713d0b
JW
6077 buf = memory_stat_format(memcg);
6078 if (!buf)
6079 return -ENOMEM;
6080 seq_puts(m, buf);
6081 kfree(buf);
587d9f72
JW
6082 return 0;
6083}
6084
3d8b38eb
RG
6085static int memory_oom_group_show(struct seq_file *m, void *v)
6086{
aa9694bb 6087 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6088
6089 seq_printf(m, "%d\n", memcg->oom_group);
6090
6091 return 0;
6092}
6093
6094static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6095 char *buf, size_t nbytes, loff_t off)
6096{
6097 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6098 int ret, oom_group;
6099
6100 buf = strstrip(buf);
6101 if (!buf)
6102 return -EINVAL;
6103
6104 ret = kstrtoint(buf, 0, &oom_group);
6105 if (ret)
6106 return ret;
6107
6108 if (oom_group != 0 && oom_group != 1)
6109 return -EINVAL;
6110
6111 memcg->oom_group = oom_group;
6112
6113 return nbytes;
6114}
6115
241994ed
JW
6116static struct cftype memory_files[] = {
6117 {
6118 .name = "current",
f5fc3c5d 6119 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6120 .read_u64 = memory_current_read,
6121 },
bf8d5d52
RG
6122 {
6123 .name = "min",
6124 .flags = CFTYPE_NOT_ON_ROOT,
6125 .seq_show = memory_min_show,
6126 .write = memory_min_write,
6127 },
241994ed
JW
6128 {
6129 .name = "low",
6130 .flags = CFTYPE_NOT_ON_ROOT,
6131 .seq_show = memory_low_show,
6132 .write = memory_low_write,
6133 },
6134 {
6135 .name = "high",
6136 .flags = CFTYPE_NOT_ON_ROOT,
6137 .seq_show = memory_high_show,
6138 .write = memory_high_write,
6139 },
6140 {
6141 .name = "max",
6142 .flags = CFTYPE_NOT_ON_ROOT,
6143 .seq_show = memory_max_show,
6144 .write = memory_max_write,
6145 },
6146 {
6147 .name = "events",
6148 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6149 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6150 .seq_show = memory_events_show,
6151 },
1e577f97
SB
6152 {
6153 .name = "events.local",
6154 .flags = CFTYPE_NOT_ON_ROOT,
6155 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6156 .seq_show = memory_events_local_show,
6157 },
587d9f72
JW
6158 {
6159 .name = "stat",
6160 .flags = CFTYPE_NOT_ON_ROOT,
6161 .seq_show = memory_stat_show,
6162 },
3d8b38eb
RG
6163 {
6164 .name = "oom.group",
6165 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6166 .seq_show = memory_oom_group_show,
6167 .write = memory_oom_group_write,
6168 },
241994ed
JW
6169 { } /* terminate */
6170};
6171
073219e9 6172struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6173 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6174 .css_online = mem_cgroup_css_online,
92fb9748 6175 .css_offline = mem_cgroup_css_offline,
6df38689 6176 .css_released = mem_cgroup_css_released,
92fb9748 6177 .css_free = mem_cgroup_css_free,
1ced953b 6178 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6179 .can_attach = mem_cgroup_can_attach,
6180 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6181 .post_attach = mem_cgroup_move_task,
f00baae7 6182 .bind = mem_cgroup_bind,
241994ed
JW
6183 .dfl_cftypes = memory_files,
6184 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6185 .early_init = 0,
8cdea7c0 6186};
c077719b 6187
241994ed 6188/**
bf8d5d52 6189 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6190 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6191 * @memcg: the memory cgroup to check
6192 *
23067153
RG
6193 * WARNING: This function is not stateless! It can only be used as part
6194 * of a top-down tree iteration, not for isolated queries.
34c81057 6195 *
bf8d5d52
RG
6196 * Returns one of the following:
6197 * MEMCG_PROT_NONE: cgroup memory is not protected
6198 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6199 * an unprotected supply of reclaimable memory from other cgroups.
6200 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 6201 *
bf8d5d52 6202 * @root is exclusive; it is never protected when looked at directly
34c81057 6203 *
bf8d5d52
RG
6204 * To provide a proper hierarchical behavior, effective memory.min/low values
6205 * are used. Below is the description of how effective memory.low is calculated.
6206 * Effective memory.min values is calculated in the same way.
34c81057 6207 *
23067153
RG
6208 * Effective memory.low is always equal or less than the original memory.low.
6209 * If there is no memory.low overcommittment (which is always true for
6210 * top-level memory cgroups), these two values are equal.
6211 * Otherwise, it's a part of parent's effective memory.low,
6212 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6213 * memory.low usages, where memory.low usage is the size of actually
6214 * protected memory.
34c81057 6215 *
23067153
RG
6216 * low_usage
6217 * elow = min( memory.low, parent->elow * ------------------ ),
6218 * siblings_low_usage
34c81057 6219 *
23067153
RG
6220 * | memory.current, if memory.current < memory.low
6221 * low_usage = |
82ede7ee 6222 * | 0, otherwise.
34c81057 6223 *
23067153
RG
6224 *
6225 * Such definition of the effective memory.low provides the expected
6226 * hierarchical behavior: parent's memory.low value is limiting
6227 * children, unprotected memory is reclaimed first and cgroups,
6228 * which are not using their guarantee do not affect actual memory
6229 * distribution.
6230 *
6231 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6232 *
6233 * A A/memory.low = 2G, A/memory.current = 6G
6234 * //\\
6235 * BC DE B/memory.low = 3G B/memory.current = 2G
6236 * C/memory.low = 1G C/memory.current = 2G
6237 * D/memory.low = 0 D/memory.current = 2G
6238 * E/memory.low = 10G E/memory.current = 0
6239 *
6240 * and the memory pressure is applied, the following memory distribution
6241 * is expected (approximately):
6242 *
6243 * A/memory.current = 2G
6244 *
6245 * B/memory.current = 1.3G
6246 * C/memory.current = 0.6G
6247 * D/memory.current = 0
6248 * E/memory.current = 0
6249 *
6250 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
6251 * (see propagate_protected_usage()), as well as recursive calculation of
6252 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
6253 * path for each memory cgroup top-down from the reclaim,
6254 * it's possible to optimize this part, and save calculated elow
6255 * for next usage. This part is intentionally racy, but it's ok,
6256 * as memory.low is a best-effort mechanism.
241994ed 6257 */
bf8d5d52
RG
6258enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6259 struct mem_cgroup *memcg)
241994ed 6260{
23067153 6261 struct mem_cgroup *parent;
bf8d5d52
RG
6262 unsigned long emin, parent_emin;
6263 unsigned long elow, parent_elow;
6264 unsigned long usage;
23067153 6265
241994ed 6266 if (mem_cgroup_disabled())
bf8d5d52 6267 return MEMCG_PROT_NONE;
241994ed 6268
34c81057
SC
6269 if (!root)
6270 root = root_mem_cgroup;
6271 if (memcg == root)
bf8d5d52 6272 return MEMCG_PROT_NONE;
241994ed 6273
23067153 6274 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6275 if (!usage)
6276 return MEMCG_PROT_NONE;
6277
6278 emin = memcg->memory.min;
6279 elow = memcg->memory.low;
34c81057 6280
bf8d5d52 6281 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6282 /* No parent means a non-hierarchical mode on v1 memcg */
6283 if (!parent)
6284 return MEMCG_PROT_NONE;
6285
23067153
RG
6286 if (parent == root)
6287 goto exit;
6288
bf8d5d52
RG
6289 parent_emin = READ_ONCE(parent->memory.emin);
6290 emin = min(emin, parent_emin);
6291 if (emin && parent_emin) {
6292 unsigned long min_usage, siblings_min_usage;
6293
6294 min_usage = min(usage, memcg->memory.min);
6295 siblings_min_usage = atomic_long_read(
6296 &parent->memory.children_min_usage);
6297
6298 if (min_usage && siblings_min_usage)
6299 emin = min(emin, parent_emin * min_usage /
6300 siblings_min_usage);
6301 }
6302
23067153
RG
6303 parent_elow = READ_ONCE(parent->memory.elow);
6304 elow = min(elow, parent_elow);
bf8d5d52
RG
6305 if (elow && parent_elow) {
6306 unsigned long low_usage, siblings_low_usage;
23067153 6307
bf8d5d52
RG
6308 low_usage = min(usage, memcg->memory.low);
6309 siblings_low_usage = atomic_long_read(
6310 &parent->memory.children_low_usage);
23067153 6311
bf8d5d52
RG
6312 if (low_usage && siblings_low_usage)
6313 elow = min(elow, parent_elow * low_usage /
6314 siblings_low_usage);
6315 }
23067153 6316
23067153 6317exit:
bf8d5d52 6318 memcg->memory.emin = emin;
23067153 6319 memcg->memory.elow = elow;
bf8d5d52
RG
6320
6321 if (usage <= emin)
6322 return MEMCG_PROT_MIN;
6323 else if (usage <= elow)
6324 return MEMCG_PROT_LOW;
6325 else
6326 return MEMCG_PROT_NONE;
241994ed
JW
6327}
6328
00501b53
JW
6329/**
6330 * mem_cgroup_try_charge - try charging a page
6331 * @page: page to charge
6332 * @mm: mm context of the victim
6333 * @gfp_mask: reclaim mode
6334 * @memcgp: charged memcg return
25843c2b 6335 * @compound: charge the page as compound or small page
00501b53
JW
6336 *
6337 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6338 * pages according to @gfp_mask if necessary.
6339 *
6340 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6341 * Otherwise, an error code is returned.
6342 *
6343 * After page->mapping has been set up, the caller must finalize the
6344 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6345 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6346 */
6347int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6348 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6349 bool compound)
00501b53
JW
6350{
6351 struct mem_cgroup *memcg = NULL;
f627c2f5 6352 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6353 int ret = 0;
6354
6355 if (mem_cgroup_disabled())
6356 goto out;
6357
6358 if (PageSwapCache(page)) {
00501b53
JW
6359 /*
6360 * Every swap fault against a single page tries to charge the
6361 * page, bail as early as possible. shmem_unuse() encounters
6362 * already charged pages, too. The USED bit is protected by
6363 * the page lock, which serializes swap cache removal, which
6364 * in turn serializes uncharging.
6365 */
e993d905 6366 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6367 if (compound_head(page)->mem_cgroup)
00501b53 6368 goto out;
e993d905 6369
37e84351 6370 if (do_swap_account) {
e993d905
VD
6371 swp_entry_t ent = { .val = page_private(page), };
6372 unsigned short id = lookup_swap_cgroup_id(ent);
6373
6374 rcu_read_lock();
6375 memcg = mem_cgroup_from_id(id);
6376 if (memcg && !css_tryget_online(&memcg->css))
6377 memcg = NULL;
6378 rcu_read_unlock();
6379 }
00501b53
JW
6380 }
6381
00501b53
JW
6382 if (!memcg)
6383 memcg = get_mem_cgroup_from_mm(mm);
6384
6385 ret = try_charge(memcg, gfp_mask, nr_pages);
6386
6387 css_put(&memcg->css);
00501b53
JW
6388out:
6389 *memcgp = memcg;
6390 return ret;
6391}
6392
2cf85583
TH
6393int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6394 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6395 bool compound)
6396{
6397 struct mem_cgroup *memcg;
6398 int ret;
6399
6400 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6401 memcg = *memcgp;
6402 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6403 return ret;
6404}
6405
00501b53
JW
6406/**
6407 * mem_cgroup_commit_charge - commit a page charge
6408 * @page: page to charge
6409 * @memcg: memcg to charge the page to
6410 * @lrucare: page might be on LRU already
25843c2b 6411 * @compound: charge the page as compound or small page
00501b53
JW
6412 *
6413 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6414 * after page->mapping has been set up. This must happen atomically
6415 * as part of the page instantiation, i.e. under the page table lock
6416 * for anonymous pages, under the page lock for page and swap cache.
6417 *
6418 * In addition, the page must not be on the LRU during the commit, to
6419 * prevent racing with task migration. If it might be, use @lrucare.
6420 *
6421 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6422 */
6423void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6424 bool lrucare, bool compound)
00501b53 6425{
f627c2f5 6426 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6427
6428 VM_BUG_ON_PAGE(!page->mapping, page);
6429 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6430
6431 if (mem_cgroup_disabled())
6432 return;
6433 /*
6434 * Swap faults will attempt to charge the same page multiple
6435 * times. But reuse_swap_page() might have removed the page
6436 * from swapcache already, so we can't check PageSwapCache().
6437 */
6438 if (!memcg)
6439 return;
6440
6abb5a86
JW
6441 commit_charge(page, memcg, lrucare);
6442
6abb5a86 6443 local_irq_disable();
f627c2f5 6444 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6445 memcg_check_events(memcg, page);
6446 local_irq_enable();
00501b53 6447
7941d214 6448 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6449 swp_entry_t entry = { .val = page_private(page) };
6450 /*
6451 * The swap entry might not get freed for a long time,
6452 * let's not wait for it. The page already received a
6453 * memory+swap charge, drop the swap entry duplicate.
6454 */
38d8b4e6 6455 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6456 }
6457}
6458
6459/**
6460 * mem_cgroup_cancel_charge - cancel a page charge
6461 * @page: page to charge
6462 * @memcg: memcg to charge the page to
25843c2b 6463 * @compound: charge the page as compound or small page
00501b53
JW
6464 *
6465 * Cancel a charge transaction started by mem_cgroup_try_charge().
6466 */
f627c2f5
KS
6467void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6468 bool compound)
00501b53 6469{
f627c2f5 6470 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6471
6472 if (mem_cgroup_disabled())
6473 return;
6474 /*
6475 * Swap faults will attempt to charge the same page multiple
6476 * times. But reuse_swap_page() might have removed the page
6477 * from swapcache already, so we can't check PageSwapCache().
6478 */
6479 if (!memcg)
6480 return;
6481
00501b53
JW
6482 cancel_charge(memcg, nr_pages);
6483}
6484
a9d5adee
JG
6485struct uncharge_gather {
6486 struct mem_cgroup *memcg;
6487 unsigned long pgpgout;
6488 unsigned long nr_anon;
6489 unsigned long nr_file;
6490 unsigned long nr_kmem;
6491 unsigned long nr_huge;
6492 unsigned long nr_shmem;
6493 struct page *dummy_page;
6494};
6495
6496static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6497{
a9d5adee
JG
6498 memset(ug, 0, sizeof(*ug));
6499}
6500
6501static void uncharge_batch(const struct uncharge_gather *ug)
6502{
6503 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6504 unsigned long flags;
6505
a9d5adee
JG
6506 if (!mem_cgroup_is_root(ug->memcg)) {
6507 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6508 if (do_memsw_account())
a9d5adee
JG
6509 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6510 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6511 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6512 memcg_oom_recover(ug->memcg);
ce00a967 6513 }
747db954
JW
6514
6515 local_irq_save(flags);
c9019e9b
JW
6516 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6517 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6518 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6519 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6520 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6521 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6522 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6523 local_irq_restore(flags);
e8ea14cc 6524
a9d5adee
JG
6525 if (!mem_cgroup_is_root(ug->memcg))
6526 css_put_many(&ug->memcg->css, nr_pages);
6527}
6528
6529static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6530{
6531 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6532 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6533 !PageHWPoison(page) , page);
a9d5adee
JG
6534
6535 if (!page->mem_cgroup)
6536 return;
6537
6538 /*
6539 * Nobody should be changing or seriously looking at
6540 * page->mem_cgroup at this point, we have fully
6541 * exclusive access to the page.
6542 */
6543
6544 if (ug->memcg != page->mem_cgroup) {
6545 if (ug->memcg) {
6546 uncharge_batch(ug);
6547 uncharge_gather_clear(ug);
6548 }
6549 ug->memcg = page->mem_cgroup;
6550 }
6551
6552 if (!PageKmemcg(page)) {
6553 unsigned int nr_pages = 1;
6554
6555 if (PageTransHuge(page)) {
d8c6546b 6556 nr_pages = compound_nr(page);
a9d5adee
JG
6557 ug->nr_huge += nr_pages;
6558 }
6559 if (PageAnon(page))
6560 ug->nr_anon += nr_pages;
6561 else {
6562 ug->nr_file += nr_pages;
6563 if (PageSwapBacked(page))
6564 ug->nr_shmem += nr_pages;
6565 }
6566 ug->pgpgout++;
6567 } else {
d8c6546b 6568 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6569 __ClearPageKmemcg(page);
6570 }
6571
6572 ug->dummy_page = page;
6573 page->mem_cgroup = NULL;
747db954
JW
6574}
6575
6576static void uncharge_list(struct list_head *page_list)
6577{
a9d5adee 6578 struct uncharge_gather ug;
747db954 6579 struct list_head *next;
a9d5adee
JG
6580
6581 uncharge_gather_clear(&ug);
747db954 6582
8b592656
JW
6583 /*
6584 * Note that the list can be a single page->lru; hence the
6585 * do-while loop instead of a simple list_for_each_entry().
6586 */
747db954
JW
6587 next = page_list->next;
6588 do {
a9d5adee
JG
6589 struct page *page;
6590
747db954
JW
6591 page = list_entry(next, struct page, lru);
6592 next = page->lru.next;
6593
a9d5adee 6594 uncharge_page(page, &ug);
747db954
JW
6595 } while (next != page_list);
6596
a9d5adee
JG
6597 if (ug.memcg)
6598 uncharge_batch(&ug);
747db954
JW
6599}
6600
0a31bc97
JW
6601/**
6602 * mem_cgroup_uncharge - uncharge a page
6603 * @page: page to uncharge
6604 *
6605 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6606 * mem_cgroup_commit_charge().
6607 */
6608void mem_cgroup_uncharge(struct page *page)
6609{
a9d5adee
JG
6610 struct uncharge_gather ug;
6611
0a31bc97
JW
6612 if (mem_cgroup_disabled())
6613 return;
6614
747db954 6615 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6616 if (!page->mem_cgroup)
0a31bc97
JW
6617 return;
6618
a9d5adee
JG
6619 uncharge_gather_clear(&ug);
6620 uncharge_page(page, &ug);
6621 uncharge_batch(&ug);
747db954 6622}
0a31bc97 6623
747db954
JW
6624/**
6625 * mem_cgroup_uncharge_list - uncharge a list of page
6626 * @page_list: list of pages to uncharge
6627 *
6628 * Uncharge a list of pages previously charged with
6629 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6630 */
6631void mem_cgroup_uncharge_list(struct list_head *page_list)
6632{
6633 if (mem_cgroup_disabled())
6634 return;
0a31bc97 6635
747db954
JW
6636 if (!list_empty(page_list))
6637 uncharge_list(page_list);
0a31bc97
JW
6638}
6639
6640/**
6a93ca8f
JW
6641 * mem_cgroup_migrate - charge a page's replacement
6642 * @oldpage: currently circulating page
6643 * @newpage: replacement page
0a31bc97 6644 *
6a93ca8f
JW
6645 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6646 * be uncharged upon free.
0a31bc97
JW
6647 *
6648 * Both pages must be locked, @newpage->mapping must be set up.
6649 */
6a93ca8f 6650void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6651{
29833315 6652 struct mem_cgroup *memcg;
44b7a8d3
JW
6653 unsigned int nr_pages;
6654 bool compound;
d93c4130 6655 unsigned long flags;
0a31bc97
JW
6656
6657 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6658 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6659 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6660 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6661 newpage);
0a31bc97
JW
6662
6663 if (mem_cgroup_disabled())
6664 return;
6665
6666 /* Page cache replacement: new page already charged? */
1306a85a 6667 if (newpage->mem_cgroup)
0a31bc97
JW
6668 return;
6669
45637bab 6670 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6671 memcg = oldpage->mem_cgroup;
29833315 6672 if (!memcg)
0a31bc97
JW
6673 return;
6674
44b7a8d3
JW
6675 /* Force-charge the new page. The old one will be freed soon */
6676 compound = PageTransHuge(newpage);
6677 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6678
6679 page_counter_charge(&memcg->memory, nr_pages);
6680 if (do_memsw_account())
6681 page_counter_charge(&memcg->memsw, nr_pages);
6682 css_get_many(&memcg->css, nr_pages);
0a31bc97 6683
9cf7666a 6684 commit_charge(newpage, memcg, false);
44b7a8d3 6685
d93c4130 6686 local_irq_save(flags);
44b7a8d3
JW
6687 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6688 memcg_check_events(memcg, newpage);
d93c4130 6689 local_irq_restore(flags);
0a31bc97
JW
6690}
6691
ef12947c 6692DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6693EXPORT_SYMBOL(memcg_sockets_enabled_key);
6694
2d758073 6695void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6696{
6697 struct mem_cgroup *memcg;
6698
2d758073
JW
6699 if (!mem_cgroup_sockets_enabled)
6700 return;
6701
edbe69ef
RG
6702 /*
6703 * Socket cloning can throw us here with sk_memcg already
6704 * filled. It won't however, necessarily happen from
6705 * process context. So the test for root memcg given
6706 * the current task's memcg won't help us in this case.
6707 *
6708 * Respecting the original socket's memcg is a better
6709 * decision in this case.
6710 */
6711 if (sk->sk_memcg) {
6712 css_get(&sk->sk_memcg->css);
6713 return;
6714 }
6715
11092087
JW
6716 rcu_read_lock();
6717 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6718 if (memcg == root_mem_cgroup)
6719 goto out;
0db15298 6720 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6721 goto out;
f7e1cb6e 6722 if (css_tryget_online(&memcg->css))
11092087 6723 sk->sk_memcg = memcg;
f7e1cb6e 6724out:
11092087
JW
6725 rcu_read_unlock();
6726}
11092087 6727
2d758073 6728void mem_cgroup_sk_free(struct sock *sk)
11092087 6729{
2d758073
JW
6730 if (sk->sk_memcg)
6731 css_put(&sk->sk_memcg->css);
11092087
JW
6732}
6733
6734/**
6735 * mem_cgroup_charge_skmem - charge socket memory
6736 * @memcg: memcg to charge
6737 * @nr_pages: number of pages to charge
6738 *
6739 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6740 * @memcg's configured limit, %false if the charge had to be forced.
6741 */
6742bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6743{
f7e1cb6e 6744 gfp_t gfp_mask = GFP_KERNEL;
11092087 6745
f7e1cb6e 6746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6747 struct page_counter *fail;
f7e1cb6e 6748
0db15298
JW
6749 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6750 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6751 return true;
6752 }
0db15298
JW
6753 page_counter_charge(&memcg->tcpmem, nr_pages);
6754 memcg->tcpmem_pressure = 1;
f7e1cb6e 6755 return false;
11092087 6756 }
d886f4e4 6757
f7e1cb6e
JW
6758 /* Don't block in the packet receive path */
6759 if (in_softirq())
6760 gfp_mask = GFP_NOWAIT;
6761
c9019e9b 6762 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6763
f7e1cb6e
JW
6764 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6765 return true;
6766
6767 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6768 return false;
6769}
6770
6771/**
6772 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6773 * @memcg: memcg to uncharge
6774 * @nr_pages: number of pages to uncharge
11092087
JW
6775 */
6776void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6777{
f7e1cb6e 6778 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6779 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6780 return;
6781 }
d886f4e4 6782
c9019e9b 6783 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6784
475d0487 6785 refill_stock(memcg, nr_pages);
11092087
JW
6786}
6787
f7e1cb6e
JW
6788static int __init cgroup_memory(char *s)
6789{
6790 char *token;
6791
6792 while ((token = strsep(&s, ",")) != NULL) {
6793 if (!*token)
6794 continue;
6795 if (!strcmp(token, "nosocket"))
6796 cgroup_memory_nosocket = true;
04823c83
VD
6797 if (!strcmp(token, "nokmem"))
6798 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6799 }
6800 return 0;
6801}
6802__setup("cgroup.memory=", cgroup_memory);
11092087 6803
2d11085e 6804/*
1081312f
MH
6805 * subsys_initcall() for memory controller.
6806 *
308167fc
SAS
6807 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6808 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6809 * basically everything that doesn't depend on a specific mem_cgroup structure
6810 * should be initialized from here.
2d11085e
MH
6811 */
6812static int __init mem_cgroup_init(void)
6813{
95a045f6
JW
6814 int cpu, node;
6815
84c07d11 6816#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6817 /*
6818 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6819 * so use a workqueue with limited concurrency to avoid stalling
6820 * all worker threads in case lots of cgroups are created and
6821 * destroyed simultaneously.
13583c3d 6822 */
17cc4dfe
TH
6823 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6824 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6825#endif
6826
308167fc
SAS
6827 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6828 memcg_hotplug_cpu_dead);
95a045f6
JW
6829
6830 for_each_possible_cpu(cpu)
6831 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6832 drain_local_stock);
6833
6834 for_each_node(node) {
6835 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6836
6837 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6838 node_online(node) ? node : NUMA_NO_NODE);
6839
ef8f2327 6840 rtpn->rb_root = RB_ROOT;
fa90b2fd 6841 rtpn->rb_rightmost = NULL;
ef8f2327 6842 spin_lock_init(&rtpn->lock);
95a045f6
JW
6843 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6844 }
6845
2d11085e
MH
6846 return 0;
6847}
6848subsys_initcall(mem_cgroup_init);
21afa38e
JW
6849
6850#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6851static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6852{
1c2d479a 6853 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6854 /*
6855 * The root cgroup cannot be destroyed, so it's refcount must
6856 * always be >= 1.
6857 */
6858 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6859 VM_BUG_ON(1);
6860 break;
6861 }
6862 memcg = parent_mem_cgroup(memcg);
6863 if (!memcg)
6864 memcg = root_mem_cgroup;
6865 }
6866 return memcg;
6867}
6868
21afa38e
JW
6869/**
6870 * mem_cgroup_swapout - transfer a memsw charge to swap
6871 * @page: page whose memsw charge to transfer
6872 * @entry: swap entry to move the charge to
6873 *
6874 * Transfer the memsw charge of @page to @entry.
6875 */
6876void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6877{
1f47b61f 6878 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6879 unsigned int nr_entries;
21afa38e
JW
6880 unsigned short oldid;
6881
6882 VM_BUG_ON_PAGE(PageLRU(page), page);
6883 VM_BUG_ON_PAGE(page_count(page), page);
6884
7941d214 6885 if (!do_memsw_account())
21afa38e
JW
6886 return;
6887
6888 memcg = page->mem_cgroup;
6889
6890 /* Readahead page, never charged */
6891 if (!memcg)
6892 return;
6893
1f47b61f
VD
6894 /*
6895 * In case the memcg owning these pages has been offlined and doesn't
6896 * have an ID allocated to it anymore, charge the closest online
6897 * ancestor for the swap instead and transfer the memory+swap charge.
6898 */
6899 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6900 nr_entries = hpage_nr_pages(page);
6901 /* Get references for the tail pages, too */
6902 if (nr_entries > 1)
6903 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6904 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6905 nr_entries);
21afa38e 6906 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6907 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6908
6909 page->mem_cgroup = NULL;
6910
6911 if (!mem_cgroup_is_root(memcg))
d6810d73 6912 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6913
1f47b61f
VD
6914 if (memcg != swap_memcg) {
6915 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6916 page_counter_charge(&swap_memcg->memsw, nr_entries);
6917 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6918 }
6919
ce9ce665
SAS
6920 /*
6921 * Interrupts should be disabled here because the caller holds the
b93b0163 6922 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6923 * important here to have the interrupts disabled because it is the
b93b0163 6924 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6925 */
6926 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6927 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6928 -nr_entries);
21afa38e 6929 memcg_check_events(memcg, page);
73f576c0
JW
6930
6931 if (!mem_cgroup_is_root(memcg))
d08afa14 6932 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6933}
6934
38d8b4e6
HY
6935/**
6936 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6937 * @page: page being added to swap
6938 * @entry: swap entry to charge
6939 *
38d8b4e6 6940 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6941 *
6942 * Returns 0 on success, -ENOMEM on failure.
6943 */
6944int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6945{
38d8b4e6 6946 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6947 struct page_counter *counter;
38d8b4e6 6948 struct mem_cgroup *memcg;
37e84351
VD
6949 unsigned short oldid;
6950
6951 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6952 return 0;
6953
6954 memcg = page->mem_cgroup;
6955
6956 /* Readahead page, never charged */
6957 if (!memcg)
6958 return 0;
6959
f3a53a3a
TH
6960 if (!entry.val) {
6961 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6962 return 0;
f3a53a3a 6963 }
bb98f2c5 6964
1f47b61f
VD
6965 memcg = mem_cgroup_id_get_online(memcg);
6966
37e84351 6967 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6968 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6969 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6970 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6971 mem_cgroup_id_put(memcg);
37e84351 6972 return -ENOMEM;
1f47b61f 6973 }
37e84351 6974
38d8b4e6
HY
6975 /* Get references for the tail pages, too */
6976 if (nr_pages > 1)
6977 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6978 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6979 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6980 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6981
37e84351
VD
6982 return 0;
6983}
6984
21afa38e 6985/**
38d8b4e6 6986 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6987 * @entry: swap entry to uncharge
38d8b4e6 6988 * @nr_pages: the amount of swap space to uncharge
21afa38e 6989 */
38d8b4e6 6990void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6991{
6992 struct mem_cgroup *memcg;
6993 unsigned short id;
6994
37e84351 6995 if (!do_swap_account)
21afa38e
JW
6996 return;
6997
38d8b4e6 6998 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6999 rcu_read_lock();
adbe427b 7000 memcg = mem_cgroup_from_id(id);
21afa38e 7001 if (memcg) {
37e84351
VD
7002 if (!mem_cgroup_is_root(memcg)) {
7003 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7004 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7005 else
38d8b4e6 7006 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7007 }
c9019e9b 7008 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7009 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7010 }
7011 rcu_read_unlock();
7012}
7013
d8b38438
VD
7014long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7015{
7016 long nr_swap_pages = get_nr_swap_pages();
7017
7018 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7019 return nr_swap_pages;
7020 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7021 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7022 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7023 page_counter_read(&memcg->swap));
7024 return nr_swap_pages;
7025}
7026
5ccc5aba
VD
7027bool mem_cgroup_swap_full(struct page *page)
7028{
7029 struct mem_cgroup *memcg;
7030
7031 VM_BUG_ON_PAGE(!PageLocked(page), page);
7032
7033 if (vm_swap_full())
7034 return true;
7035 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7036 return false;
7037
7038 memcg = page->mem_cgroup;
7039 if (!memcg)
7040 return false;
7041
7042 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 7043 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
7044 return true;
7045
7046 return false;
7047}
7048
21afa38e
JW
7049/* for remember boot option*/
7050#ifdef CONFIG_MEMCG_SWAP_ENABLED
7051static int really_do_swap_account __initdata = 1;
7052#else
7053static int really_do_swap_account __initdata;
7054#endif
7055
7056static int __init enable_swap_account(char *s)
7057{
7058 if (!strcmp(s, "1"))
7059 really_do_swap_account = 1;
7060 else if (!strcmp(s, "0"))
7061 really_do_swap_account = 0;
7062 return 1;
7063}
7064__setup("swapaccount=", enable_swap_account);
7065
37e84351
VD
7066static u64 swap_current_read(struct cgroup_subsys_state *css,
7067 struct cftype *cft)
7068{
7069 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7070
7071 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7072}
7073
7074static int swap_max_show(struct seq_file *m, void *v)
7075{
677dc973
CD
7076 return seq_puts_memcg_tunable(m,
7077 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7078}
7079
7080static ssize_t swap_max_write(struct kernfs_open_file *of,
7081 char *buf, size_t nbytes, loff_t off)
7082{
7083 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7084 unsigned long max;
7085 int err;
7086
7087 buf = strstrip(buf);
7088 err = page_counter_memparse(buf, "max", &max);
7089 if (err)
7090 return err;
7091
be09102b 7092 xchg(&memcg->swap.max, max);
37e84351
VD
7093
7094 return nbytes;
7095}
7096
f3a53a3a
TH
7097static int swap_events_show(struct seq_file *m, void *v)
7098{
aa9694bb 7099 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
7100
7101 seq_printf(m, "max %lu\n",
7102 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7103 seq_printf(m, "fail %lu\n",
7104 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7105
7106 return 0;
7107}
7108
37e84351
VD
7109static struct cftype swap_files[] = {
7110 {
7111 .name = "swap.current",
7112 .flags = CFTYPE_NOT_ON_ROOT,
7113 .read_u64 = swap_current_read,
7114 },
7115 {
7116 .name = "swap.max",
7117 .flags = CFTYPE_NOT_ON_ROOT,
7118 .seq_show = swap_max_show,
7119 .write = swap_max_write,
7120 },
f3a53a3a
TH
7121 {
7122 .name = "swap.events",
7123 .flags = CFTYPE_NOT_ON_ROOT,
7124 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7125 .seq_show = swap_events_show,
7126 },
37e84351
VD
7127 { } /* terminate */
7128};
7129
21afa38e
JW
7130static struct cftype memsw_cgroup_files[] = {
7131 {
7132 .name = "memsw.usage_in_bytes",
7133 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7134 .read_u64 = mem_cgroup_read_u64,
7135 },
7136 {
7137 .name = "memsw.max_usage_in_bytes",
7138 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7139 .write = mem_cgroup_reset,
7140 .read_u64 = mem_cgroup_read_u64,
7141 },
7142 {
7143 .name = "memsw.limit_in_bytes",
7144 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7145 .write = mem_cgroup_write,
7146 .read_u64 = mem_cgroup_read_u64,
7147 },
7148 {
7149 .name = "memsw.failcnt",
7150 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7151 .write = mem_cgroup_reset,
7152 .read_u64 = mem_cgroup_read_u64,
7153 },
7154 { }, /* terminate */
7155};
7156
7157static int __init mem_cgroup_swap_init(void)
7158{
7159 if (!mem_cgroup_disabled() && really_do_swap_account) {
7160 do_swap_account = 1;
37e84351
VD
7161 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7162 swap_files));
21afa38e
JW
7163 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7164 memsw_cgroup_files));
7165 }
7166 return 0;
7167}
7168subsys_initcall(mem_cgroup_swap_init);
7169
7170#endif /* CONFIG_MEMCG_SWAP */