media: sun6i-csi: Move hardware control to the bridge
[linux-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
014bb1de 70#include "swap.h"
8cdea7c0 71
7c0f6ba6 72#include <linux/uaccess.h>
8697d331 73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
7d828602
JW
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
37d5985c
RG
81/* Active memory cgroup to use from an interrupt context */
82DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 83EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 84
f7e1cb6e 85/* Socket memory accounting disabled? */
0f0cace3 86static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 87
04823c83 88/* Kernel memory accounting disabled? */
17c17367 89static bool cgroup_memory_nokmem __ro_after_init;
04823c83 90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
b25806dc 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
8c7c6e34 202/* for encoding cft->private value on file */
86ae53e1
GC
203enum res_type {
204 _MEM,
205 _MEMSWAP,
510fc4e1 206 _KMEM,
d55f90bf 207 _TCP,
86ae53e1
GC
208};
209
a0db00fc
KS
210#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
211#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
212#define MEMFILE_ATTR(val) ((val) & 0xffff)
213
b05706f1
KT
214/*
215 * Iteration constructs for visiting all cgroups (under a tree). If
216 * loops are exited prematurely (break), mem_cgroup_iter_break() must
217 * be used for reference counting.
218 */
219#define for_each_mem_cgroup_tree(iter, root) \
220 for (iter = mem_cgroup_iter(root, NULL, NULL); \
221 iter != NULL; \
222 iter = mem_cgroup_iter(root, iter, NULL))
223
224#define for_each_mem_cgroup(iter) \
225 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(NULL, iter, NULL))
228
a4ebf1b6 229static inline bool task_is_dying(void)
7775face
TH
230{
231 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
232 (current->flags & PF_EXITING);
233}
234
70ddf637
AV
235/* Some nice accessors for the vmpressure. */
236struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237{
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241}
242
9647875b 243struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 244{
9647875b 245 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
246}
247
84c07d11 248#ifdef CONFIG_MEMCG_KMEM
0764db9b 249static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 250
4d5c8aed
RG
251bool mem_cgroup_kmem_disabled(void)
252{
253 return cgroup_memory_nokmem;
254}
255
f1286fae
MS
256static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
257 unsigned int nr_pages);
c1a660de 258
bf4f0599
RG
259static void obj_cgroup_release(struct percpu_ref *ref)
260{
261 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
bf4f0599 290 if (nr_pages)
f1286fae 291 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 292
0764db9b 293 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 294 list_del(&objcg->list);
0764db9b 295 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
296
297 percpu_ref_exit(ref);
298 kfree_rcu(objcg, rcu);
299}
300
301static struct obj_cgroup *obj_cgroup_alloc(void)
302{
303 struct obj_cgroup *objcg;
304 int ret;
305
306 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
307 if (!objcg)
308 return NULL;
309
310 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
311 GFP_KERNEL);
312 if (ret) {
313 kfree(objcg);
314 return NULL;
315 }
316 INIT_LIST_HEAD(&objcg->list);
317 return objcg;
318}
319
320static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
321 struct mem_cgroup *parent)
322{
323 struct obj_cgroup *objcg, *iter;
324
325 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
326
0764db9b 327 spin_lock_irq(&objcg_lock);
bf4f0599 328
9838354e
MS
329 /* 1) Ready to reparent active objcg. */
330 list_add(&objcg->list, &memcg->objcg_list);
331 /* 2) Reparent active objcg and already reparented objcgs to parent. */
332 list_for_each_entry(iter, &memcg->objcg_list, list)
333 WRITE_ONCE(iter->memcg, parent);
334 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
335 list_splice(&memcg->objcg_list, &parent->objcg_list);
336
0764db9b 337 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
338
339 percpu_ref_kill(&objcg->refcnt);
340}
341
d7f25f8a
GC
342/*
343 * A lot of the calls to the cache allocation functions are expected to be
272911a4 344 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
345 * conditional to this static branch, we'll have to allow modules that does
346 * kmem_cache_alloc and the such to see this symbol as well
347 */
ef12947c 348DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 349EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 350#endif
17cc4dfe 351
ad7fa852
TH
352/**
353 * mem_cgroup_css_from_page - css of the memcg associated with a page
354 * @page: page of interest
355 *
356 * If memcg is bound to the default hierarchy, css of the memcg associated
357 * with @page is returned. The returned css remains associated with @page
358 * until it is released.
359 *
360 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
361 * is returned.
ad7fa852
TH
362 */
363struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
364{
365 struct mem_cgroup *memcg;
366
bcfe06bf 367 memcg = page_memcg(page);
ad7fa852 368
9e10a130 369 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
370 memcg = root_mem_cgroup;
371
ad7fa852
TH
372 return &memcg->css;
373}
374
2fc04524
VD
375/**
376 * page_cgroup_ino - return inode number of the memcg a page is charged to
377 * @page: the page
378 *
379 * Look up the closest online ancestor of the memory cgroup @page is charged to
380 * and return its inode number or 0 if @page is not charged to any cgroup. It
381 * is safe to call this function without holding a reference to @page.
382 *
383 * Note, this function is inherently racy, because there is nothing to prevent
384 * the cgroup inode from getting torn down and potentially reallocated a moment
385 * after page_cgroup_ino() returns, so it only should be used by callers that
386 * do not care (such as procfs interfaces).
387 */
388ino_t page_cgroup_ino(struct page *page)
389{
390 struct mem_cgroup *memcg;
391 unsigned long ino = 0;
392
393 rcu_read_lock();
bcfe06bf 394 memcg = page_memcg_check(page);
286e04b8 395
2fc04524
VD
396 while (memcg && !(memcg->css.flags & CSS_ONLINE))
397 memcg = parent_mem_cgroup(memcg);
398 if (memcg)
399 ino = cgroup_ino(memcg->css.cgroup);
400 rcu_read_unlock();
401 return ino;
402}
403
ef8f2327
MG
404static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
405 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 406 unsigned long new_usage_in_excess)
bb4cc1a8
AM
407{
408 struct rb_node **p = &mctz->rb_root.rb_node;
409 struct rb_node *parent = NULL;
ef8f2327 410 struct mem_cgroup_per_node *mz_node;
fa90b2fd 411 bool rightmost = true;
bb4cc1a8
AM
412
413 if (mz->on_tree)
414 return;
415
416 mz->usage_in_excess = new_usage_in_excess;
417 if (!mz->usage_in_excess)
418 return;
419 while (*p) {
420 parent = *p;
ef8f2327 421 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 422 tree_node);
fa90b2fd 423 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 424 p = &(*p)->rb_left;
fa90b2fd 425 rightmost = false;
378876b0 426 } else {
bb4cc1a8 427 p = &(*p)->rb_right;
378876b0 428 }
bb4cc1a8 429 }
fa90b2fd
DB
430
431 if (rightmost)
432 mctz->rb_rightmost = &mz->tree_node;
433
bb4cc1a8
AM
434 rb_link_node(&mz->tree_node, parent, p);
435 rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = true;
437}
438
ef8f2327
MG
439static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
441{
442 if (!mz->on_tree)
443 return;
fa90b2fd
DB
444
445 if (&mz->tree_node == mctz->rb_rightmost)
446 mctz->rb_rightmost = rb_prev(&mz->tree_node);
447
bb4cc1a8
AM
448 rb_erase(&mz->tree_node, &mctz->rb_root);
449 mz->on_tree = false;
450}
451
ef8f2327
MG
452static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
453 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 454{
0a31bc97
JW
455 unsigned long flags;
456
457 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 458 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 459 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
460}
461
3e32cb2e
JW
462static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463{
464 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 465 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
466 unsigned long excess = 0;
467
468 if (nr_pages > soft_limit)
469 excess = nr_pages - soft_limit;
470
471 return excess;
472}
bb4cc1a8 473
658b69c9 474static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 475{
3e32cb2e 476 unsigned long excess;
ef8f2327
MG
477 struct mem_cgroup_per_node *mz;
478 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 479
2ab082ba 480 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
481 if (!mctz)
482 return;
bb4cc1a8
AM
483 /*
484 * Necessary to update all ancestors when hierarchy is used.
485 * because their event counter is not touched.
486 */
487 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 488 mz = memcg->nodeinfo[nid];
3e32cb2e 489 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
490 /*
491 * We have to update the tree if mz is on RB-tree or
492 * mem is over its softlimit.
493 */
494 if (excess || mz->on_tree) {
0a31bc97
JW
495 unsigned long flags;
496
497 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
498 /* if on-tree, remove it */
499 if (mz->on_tree)
cf2c8127 500 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
501 /*
502 * Insert again. mz->usage_in_excess will be updated.
503 * If excess is 0, no tree ops.
504 */
cf2c8127 505 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 506 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
507 }
508 }
509}
510
511static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
512{
ef8f2327
MG
513 struct mem_cgroup_tree_per_node *mctz;
514 struct mem_cgroup_per_node *mz;
515 int nid;
bb4cc1a8 516
e231875b 517 for_each_node(nid) {
a3747b53 518 mz = memcg->nodeinfo[nid];
2ab082ba 519 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
520 if (mctz)
521 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
522 }
523}
524
ef8f2327
MG
525static struct mem_cgroup_per_node *
526__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 527{
ef8f2327 528 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
529
530retry:
531 mz = NULL;
fa90b2fd 532 if (!mctz->rb_rightmost)
bb4cc1a8
AM
533 goto done; /* Nothing to reclaim from */
534
fa90b2fd
DB
535 mz = rb_entry(mctz->rb_rightmost,
536 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
537 /*
538 * Remove the node now but someone else can add it back,
539 * we will to add it back at the end of reclaim to its correct
540 * position in the tree.
541 */
cf2c8127 542 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 543 if (!soft_limit_excess(mz->memcg) ||
8965aa28 544 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
545 goto retry;
546done:
547 return mz;
548}
549
ef8f2327
MG
550static struct mem_cgroup_per_node *
551mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 552{
ef8f2327 553 struct mem_cgroup_per_node *mz;
bb4cc1a8 554
0a31bc97 555 spin_lock_irq(&mctz->lock);
bb4cc1a8 556 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 557 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
558 return mz;
559}
560
11192d9c
SB
561/*
562 * memcg and lruvec stats flushing
563 *
564 * Many codepaths leading to stats update or read are performance sensitive and
565 * adding stats flushing in such codepaths is not desirable. So, to optimize the
566 * flushing the kernel does:
567 *
568 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
569 * rstat update tree grow unbounded.
570 *
571 * 2) Flush the stats synchronously on reader side only when there are more than
572 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
573 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
574 * only for 2 seconds due to (1).
575 */
576static void flush_memcg_stats_dwork(struct work_struct *w);
577static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
578static DEFINE_SPINLOCK(stats_flush_lock);
579static DEFINE_PER_CPU(unsigned int, stats_updates);
580static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
581static u64 flush_next_time;
582
583#define FLUSH_TIME (2UL*HZ)
11192d9c 584
be3e67b5
SAS
585/*
586 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
587 * not rely on this as part of an acquired spinlock_t lock. These functions are
588 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
589 * is sufficient.
590 */
591static void memcg_stats_lock(void)
592{
e575d401
TG
593 preempt_disable_nested();
594 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
595}
596
597static void __memcg_stats_lock(void)
598{
e575d401 599 preempt_disable_nested();
be3e67b5
SAS
600}
601
602static void memcg_stats_unlock(void)
603{
e575d401 604 preempt_enable_nested();
be3e67b5
SAS
605}
606
5b3be698 607static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 608{
5b3be698
SB
609 unsigned int x;
610
11192d9c 611 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
612
613 x = __this_cpu_add_return(stats_updates, abs(val));
614 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
615 /*
616 * If stats_flush_threshold exceeds the threshold
617 * (>num_online_cpus()), cgroup stats update will be triggered
618 * in __mem_cgroup_flush_stats(). Increasing this var further
619 * is redundant and simply adds overhead in atomic update.
620 */
621 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
622 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
623 __this_cpu_write(stats_updates, 0);
624 }
11192d9c
SB
625}
626
627static void __mem_cgroup_flush_stats(void)
628{
fd25a9e0
SB
629 unsigned long flag;
630
631 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
11192d9c
SB
632 return;
633
9b301615 634 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
11192d9c
SB
635 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
636 atomic_set(&stats_flush_threshold, 0);
fd25a9e0 637 spin_unlock_irqrestore(&stats_flush_lock, flag);
11192d9c
SB
638}
639
640void mem_cgroup_flush_stats(void)
641{
642 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
643 __mem_cgroup_flush_stats();
644}
645
9b301615
SB
646void mem_cgroup_flush_stats_delayed(void)
647{
648 if (time_after64(jiffies_64, flush_next_time))
649 mem_cgroup_flush_stats();
650}
651
11192d9c
SB
652static void flush_memcg_stats_dwork(struct work_struct *w)
653{
5b3be698 654 __mem_cgroup_flush_stats();
9b301615 655 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
656}
657
d396def5
SB
658/* Subset of vm_event_item to report for memcg event stats */
659static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
660 PGPGIN,
661 PGPGOUT,
d396def5
SB
662 PGSCAN_KSWAPD,
663 PGSCAN_DIRECT,
664 PGSTEAL_KSWAPD,
665 PGSTEAL_DIRECT,
666 PGFAULT,
667 PGMAJFAULT,
668 PGREFILL,
669 PGACTIVATE,
670 PGDEACTIVATE,
671 PGLAZYFREE,
672 PGLAZYFREED,
673#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
674 ZSWPIN,
675 ZSWPOUT,
676#endif
677#ifdef CONFIG_TRANSPARENT_HUGEPAGE
678 THP_FAULT_ALLOC,
679 THP_COLLAPSE_ALLOC,
680#endif
681};
682
8278f1c7
SB
683#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
684static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
685
686static void init_memcg_events(void)
687{
688 int i;
689
690 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
691 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
692}
693
694static inline int memcg_events_index(enum vm_event_item idx)
695{
696 return mem_cgroup_events_index[idx] - 1;
697}
698
410f8e82
SB
699struct memcg_vmstats_percpu {
700 /* Local (CPU and cgroup) page state & events */
701 long state[MEMCG_NR_STAT];
8278f1c7 702 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
703
704 /* Delta calculation for lockless upward propagation */
705 long state_prev[MEMCG_NR_STAT];
8278f1c7 706 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
707
708 /* Cgroup1: threshold notifications & softlimit tree updates */
709 unsigned long nr_page_events;
710 unsigned long targets[MEM_CGROUP_NTARGETS];
711};
712
713struct memcg_vmstats {
714 /* Aggregated (CPU and subtree) page state & events */
715 long state[MEMCG_NR_STAT];
8278f1c7 716 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
717
718 /* Pending child counts during tree propagation */
719 long state_pending[MEMCG_NR_STAT];
8278f1c7 720 unsigned long events_pending[NR_MEMCG_EVENTS];
410f8e82
SB
721};
722
723unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
724{
725 long x = READ_ONCE(memcg->vmstats->state[idx]);
726#ifdef CONFIG_SMP
727 if (x < 0)
728 x = 0;
729#endif
730 return x;
731}
732
db9adbcb
JW
733/**
734 * __mod_memcg_state - update cgroup memory statistics
735 * @memcg: the memory cgroup
736 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
737 * @val: delta to add to the counter, can be negative
738 */
739void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
740{
db9adbcb
JW
741 if (mem_cgroup_disabled())
742 return;
743
2d146aa3 744 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
5b3be698 745 memcg_rstat_updated(memcg, val);
db9adbcb
JW
746}
747
2d146aa3 748/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
749static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
750{
751 long x = 0;
752 int cpu;
753
754 for_each_possible_cpu(cpu)
2d146aa3 755 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
756#ifdef CONFIG_SMP
757 if (x < 0)
758 x = 0;
759#endif
760 return x;
761}
762
eedc4e5a
RG
763void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
764 int val)
db9adbcb
JW
765{
766 struct mem_cgroup_per_node *pn;
42a30035 767 struct mem_cgroup *memcg;
db9adbcb 768
db9adbcb 769 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 770 memcg = pn->memcg;
db9adbcb 771
be3e67b5
SAS
772 /*
773 * The caller from rmap relay on disabled preemption becase they never
774 * update their counter from in-interrupt context. For these two
775 * counters we check that the update is never performed from an
776 * interrupt context while other caller need to have disabled interrupt.
777 */
778 __memcg_stats_lock();
e575d401 779 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
780 switch (idx) {
781 case NR_ANON_MAPPED:
782 case NR_FILE_MAPPED:
783 case NR_ANON_THPS:
784 case NR_SHMEM_PMDMAPPED:
785 case NR_FILE_PMDMAPPED:
786 WARN_ON_ONCE(!in_task());
787 break;
788 default:
e575d401 789 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
790 }
791 }
792
db9adbcb 793 /* Update memcg */
11192d9c 794 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 795
b4c46484 796 /* Update lruvec */
7e1c0d6f 797 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 798
5b3be698 799 memcg_rstat_updated(memcg, val);
be3e67b5 800 memcg_stats_unlock();
db9adbcb
JW
801}
802
eedc4e5a
RG
803/**
804 * __mod_lruvec_state - update lruvec memory statistics
805 * @lruvec: the lruvec
806 * @idx: the stat item
807 * @val: delta to add to the counter, can be negative
808 *
809 * The lruvec is the intersection of the NUMA node and a cgroup. This
810 * function updates the all three counters that are affected by a
811 * change of state at this level: per-node, per-cgroup, per-lruvec.
812 */
813void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
814 int val)
815{
816 /* Update node */
817 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
818
819 /* Update memcg and lruvec */
820 if (!mem_cgroup_disabled())
821 __mod_memcg_lruvec_state(lruvec, idx, val);
822}
823
c47d5032
SB
824void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
825 int val)
826{
827 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 828 struct mem_cgroup *memcg;
c47d5032
SB
829 pg_data_t *pgdat = page_pgdat(page);
830 struct lruvec *lruvec;
831
b4e0b68f
MS
832 rcu_read_lock();
833 memcg = page_memcg(head);
c47d5032 834 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 835 if (!memcg) {
b4e0b68f 836 rcu_read_unlock();
c47d5032
SB
837 __mod_node_page_state(pgdat, idx, val);
838 return;
839 }
840
d635a69d 841 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 842 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 843 rcu_read_unlock();
c47d5032 844}
f0c0c115 845EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 846
da3ceeff 847void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 848{
4f103c63 849 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
850 struct mem_cgroup *memcg;
851 struct lruvec *lruvec;
852
853 rcu_read_lock();
fc4db90f 854 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 855
8faeb1ff
MS
856 /*
857 * Untracked pages have no memcg, no lruvec. Update only the
858 * node. If we reparent the slab objects to the root memcg,
859 * when we free the slab object, we need to update the per-memcg
860 * vmstats to keep it correct for the root memcg.
861 */
862 if (!memcg) {
ec9f0238
RG
863 __mod_node_page_state(pgdat, idx, val);
864 } else {
867e5e1d 865 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
866 __mod_lruvec_state(lruvec, idx, val);
867 }
868 rcu_read_unlock();
869}
870
db9adbcb
JW
871/**
872 * __count_memcg_events - account VM events in a cgroup
873 * @memcg: the memory cgroup
874 * @idx: the event item
f0953a1b 875 * @count: the number of events that occurred
db9adbcb
JW
876 */
877void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
878 unsigned long count)
879{
8278f1c7
SB
880 int index = memcg_events_index(idx);
881
882 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
883 return;
884
be3e67b5 885 memcg_stats_lock();
8278f1c7 886 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 887 memcg_rstat_updated(memcg, count);
be3e67b5 888 memcg_stats_unlock();
db9adbcb
JW
889}
890
42a30035 891static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 892{
8278f1c7
SB
893 int index = memcg_events_index(event);
894
895 if (index < 0)
896 return 0;
897 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
898}
899
42a30035
JW
900static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
901{
815744d7
JW
902 long x = 0;
903 int cpu;
8278f1c7
SB
904 int index = memcg_events_index(event);
905
906 if (index < 0)
907 return 0;
815744d7
JW
908
909 for_each_possible_cpu(cpu)
8278f1c7 910 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
815744d7 911 return x;
42a30035
JW
912}
913
c0ff4b85 914static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 915 int nr_pages)
d52aa412 916{
e401f176
KH
917 /* pagein of a big page is an event. So, ignore page size */
918 if (nr_pages > 0)
c9019e9b 919 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 920 else {
c9019e9b 921 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
922 nr_pages = -nr_pages; /* for event */
923 }
e401f176 924
871789d4 925 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
926}
927
f53d7ce3
JW
928static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
929 enum mem_cgroup_events_target target)
7a159cc9
JW
930{
931 unsigned long val, next;
932
871789d4
CD
933 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
934 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 935 /* from time_after() in jiffies.h */
6a1a8b80 936 if ((long)(next - val) < 0) {
f53d7ce3
JW
937 switch (target) {
938 case MEM_CGROUP_TARGET_THRESH:
939 next = val + THRESHOLDS_EVENTS_TARGET;
940 break;
bb4cc1a8
AM
941 case MEM_CGROUP_TARGET_SOFTLIMIT:
942 next = val + SOFTLIMIT_EVENTS_TARGET;
943 break;
f53d7ce3
JW
944 default:
945 break;
946 }
871789d4 947 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 948 return true;
7a159cc9 949 }
f53d7ce3 950 return false;
d2265e6f
KH
951}
952
953/*
954 * Check events in order.
955 *
956 */
8e88bd2d 957static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 958{
2343e88d
SAS
959 if (IS_ENABLED(CONFIG_PREEMPT_RT))
960 return;
961
d2265e6f 962 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
963 if (unlikely(mem_cgroup_event_ratelimit(memcg,
964 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 965 bool do_softlimit;
f53d7ce3 966
bb4cc1a8
AM
967 do_softlimit = mem_cgroup_event_ratelimit(memcg,
968 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 969 mem_cgroup_threshold(memcg);
bb4cc1a8 970 if (unlikely(do_softlimit))
8e88bd2d 971 mem_cgroup_update_tree(memcg, nid);
0a31bc97 972 }
d2265e6f
KH
973}
974
cf475ad2 975struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 976{
31a78f23
BS
977 /*
978 * mm_update_next_owner() may clear mm->owner to NULL
979 * if it races with swapoff, page migration, etc.
980 * So this can be called with p == NULL.
981 */
982 if (unlikely(!p))
983 return NULL;
984
073219e9 985 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 986}
33398cf2 987EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 988
04f94e3f
DS
989static __always_inline struct mem_cgroup *active_memcg(void)
990{
55a68c82 991 if (!in_task())
04f94e3f
DS
992 return this_cpu_read(int_active_memcg);
993 else
994 return current->active_memcg;
995}
996
d46eb14b
SB
997/**
998 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
999 * @mm: mm from which memcg should be extracted. It can be NULL.
1000 *
04f94e3f
DS
1001 * Obtain a reference on mm->memcg and returns it if successful. If mm
1002 * is NULL, then the memcg is chosen as follows:
1003 * 1) The active memcg, if set.
1004 * 2) current->mm->memcg, if available
1005 * 3) root memcg
1006 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1007 */
1008struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1009{
d46eb14b
SB
1010 struct mem_cgroup *memcg;
1011
1012 if (mem_cgroup_disabled())
1013 return NULL;
0b7f569e 1014
2884b6b7
MS
1015 /*
1016 * Page cache insertions can happen without an
1017 * actual mm context, e.g. during disk probing
1018 * on boot, loopback IO, acct() writes etc.
1019 *
1020 * No need to css_get on root memcg as the reference
1021 * counting is disabled on the root level in the
1022 * cgroup core. See CSS_NO_REF.
1023 */
04f94e3f
DS
1024 if (unlikely(!mm)) {
1025 memcg = active_memcg();
1026 if (unlikely(memcg)) {
1027 /* remote memcg must hold a ref */
1028 css_get(&memcg->css);
1029 return memcg;
1030 }
1031 mm = current->mm;
1032 if (unlikely(!mm))
1033 return root_mem_cgroup;
1034 }
2884b6b7 1035
54595fe2
KH
1036 rcu_read_lock();
1037 do {
2884b6b7
MS
1038 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1039 if (unlikely(!memcg))
df381975 1040 memcg = root_mem_cgroup;
00d484f3 1041 } while (!css_tryget(&memcg->css));
54595fe2 1042 rcu_read_unlock();
c0ff4b85 1043 return memcg;
54595fe2 1044}
d46eb14b
SB
1045EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1046
4127c650
RG
1047static __always_inline bool memcg_kmem_bypass(void)
1048{
1049 /* Allow remote memcg charging from any context. */
1050 if (unlikely(active_memcg()))
1051 return false;
1052
1053 /* Memcg to charge can't be determined. */
6126891c 1054 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
1055 return true;
1056
1057 return false;
1058}
1059
5660048c
JW
1060/**
1061 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1062 * @root: hierarchy root
1063 * @prev: previously returned memcg, NULL on first invocation
1064 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1065 *
1066 * Returns references to children of the hierarchy below @root, or
1067 * @root itself, or %NULL after a full round-trip.
1068 *
1069 * Caller must pass the return value in @prev on subsequent
1070 * invocations for reference counting, or use mem_cgroup_iter_break()
1071 * to cancel a hierarchy walk before the round-trip is complete.
1072 *
05bdc520
ML
1073 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1074 * in the hierarchy among all concurrent reclaimers operating on the
1075 * same node.
5660048c 1076 */
694fbc0f 1077struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1078 struct mem_cgroup *prev,
694fbc0f 1079 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1080{
3f649ab7 1081 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1082 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1083 struct mem_cgroup *memcg = NULL;
5ac8fb31 1084 struct mem_cgroup *pos = NULL;
711d3d2c 1085
694fbc0f
AM
1086 if (mem_cgroup_disabled())
1087 return NULL;
5660048c 1088
9f3a0d09
JW
1089 if (!root)
1090 root = root_mem_cgroup;
7d74b06f 1091
542f85f9 1092 rcu_read_lock();
5f578161 1093
5ac8fb31 1094 if (reclaim) {
ef8f2327 1095 struct mem_cgroup_per_node *mz;
5ac8fb31 1096
a3747b53 1097 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1098 iter = &mz->iter;
5ac8fb31 1099
a9320aae
WY
1100 /*
1101 * On start, join the current reclaim iteration cycle.
1102 * Exit when a concurrent walker completes it.
1103 */
1104 if (!prev)
1105 reclaim->generation = iter->generation;
1106 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1107 goto out_unlock;
1108
6df38689 1109 while (1) {
4db0c3c2 1110 pos = READ_ONCE(iter->position);
6df38689
VD
1111 if (!pos || css_tryget(&pos->css))
1112 break;
5ac8fb31 1113 /*
6df38689
VD
1114 * css reference reached zero, so iter->position will
1115 * be cleared by ->css_released. However, we should not
1116 * rely on this happening soon, because ->css_released
1117 * is called from a work queue, and by busy-waiting we
1118 * might block it. So we clear iter->position right
1119 * away.
5ac8fb31 1120 */
6df38689
VD
1121 (void)cmpxchg(&iter->position, pos, NULL);
1122 }
89d8330c
WY
1123 } else if (prev) {
1124 pos = prev;
5ac8fb31
JW
1125 }
1126
1127 if (pos)
1128 css = &pos->css;
1129
1130 for (;;) {
1131 css = css_next_descendant_pre(css, &root->css);
1132 if (!css) {
1133 /*
1134 * Reclaimers share the hierarchy walk, and a
1135 * new one might jump in right at the end of
1136 * the hierarchy - make sure they see at least
1137 * one group and restart from the beginning.
1138 */
1139 if (!prev)
1140 continue;
1141 break;
527a5ec9 1142 }
7d74b06f 1143
5ac8fb31
JW
1144 /*
1145 * Verify the css and acquire a reference. The root
1146 * is provided by the caller, so we know it's alive
1147 * and kicking, and don't take an extra reference.
1148 */
41555dad
WY
1149 if (css == &root->css || css_tryget(css)) {
1150 memcg = mem_cgroup_from_css(css);
0b8f73e1 1151 break;
41555dad 1152 }
9f3a0d09 1153 }
5ac8fb31
JW
1154
1155 if (reclaim) {
5ac8fb31 1156 /*
6df38689
VD
1157 * The position could have already been updated by a competing
1158 * thread, so check that the value hasn't changed since we read
1159 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1160 */
6df38689
VD
1161 (void)cmpxchg(&iter->position, pos, memcg);
1162
5ac8fb31
JW
1163 if (pos)
1164 css_put(&pos->css);
1165
1166 if (!memcg)
1167 iter->generation++;
9f3a0d09 1168 }
5ac8fb31 1169
542f85f9
MH
1170out_unlock:
1171 rcu_read_unlock();
c40046f3
MH
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
9f3a0d09 1175 return memcg;
14067bb3 1176}
7d74b06f 1177
5660048c
JW
1178/**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
9f3a0d09
JW
1185{
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190}
7d74b06f 1191
54a83d6b
MC
1192static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1193 struct mem_cgroup *dead_memcg)
6df38689 1194{
6df38689 1195 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1196 struct mem_cgroup_per_node *mz;
1197 int nid;
6df38689 1198
54a83d6b 1199 for_each_node(nid) {
a3747b53 1200 mz = from->nodeinfo[nid];
9da83f3f
YS
1201 iter = &mz->iter;
1202 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1203 }
1204}
1205
54a83d6b
MC
1206static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1207{
1208 struct mem_cgroup *memcg = dead_memcg;
1209 struct mem_cgroup *last;
1210
1211 do {
1212 __invalidate_reclaim_iterators(memcg, dead_memcg);
1213 last = memcg;
1214 } while ((memcg = parent_mem_cgroup(memcg)));
1215
1216 /*
b8dd3ee9 1217 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1218 * parent_mem_cgroup() does not walk all the way up to the
1219 * cgroup root (root_mem_cgroup). So we have to handle
1220 * dead_memcg from cgroup root separately.
1221 */
1222 if (last != root_mem_cgroup)
1223 __invalidate_reclaim_iterators(root_mem_cgroup,
1224 dead_memcg);
1225}
1226
7c5f64f8
VD
1227/**
1228 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1229 * @memcg: hierarchy root
1230 * @fn: function to call for each task
1231 * @arg: argument passed to @fn
1232 *
1233 * This function iterates over tasks attached to @memcg or to any of its
1234 * descendants and calls @fn for each task. If @fn returns a non-zero
1235 * value, the function breaks the iteration loop and returns the value.
1236 * Otherwise, it will iterate over all tasks and return 0.
1237 *
1238 * This function must not be called for the root memory cgroup.
1239 */
1240int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1241 int (*fn)(struct task_struct *, void *), void *arg)
1242{
1243 struct mem_cgroup *iter;
1244 int ret = 0;
1245
1246 BUG_ON(memcg == root_mem_cgroup);
1247
1248 for_each_mem_cgroup_tree(iter, memcg) {
1249 struct css_task_iter it;
1250 struct task_struct *task;
1251
f168a9a5 1252 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1253 while (!ret && (task = css_task_iter_next(&it)))
1254 ret = fn(task, arg);
1255 css_task_iter_end(&it);
1256 if (ret) {
1257 mem_cgroup_iter_break(memcg, iter);
1258 break;
1259 }
1260 }
1261 return ret;
1262}
1263
6168d0da 1264#ifdef CONFIG_DEBUG_VM
e809c3fe 1265void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1266{
1267 struct mem_cgroup *memcg;
1268
1269 if (mem_cgroup_disabled())
1270 return;
1271
e809c3fe 1272 memcg = folio_memcg(folio);
6168d0da
AS
1273
1274 if (!memcg)
e809c3fe 1275 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
6168d0da 1276 else
e809c3fe 1277 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1278}
1279#endif
1280
6168d0da 1281/**
e809c3fe
MWO
1282 * folio_lruvec_lock - Lock the lruvec for a folio.
1283 * @folio: Pointer to the folio.
6168d0da 1284 *
d7e3aba5 1285 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1286 * - folio locked
1287 * - folio_test_lru false
1288 * - folio_memcg_lock()
1289 * - folio frozen (refcount of 0)
1290 *
1291 * Return: The lruvec this folio is on with its lock held.
6168d0da 1292 */
e809c3fe 1293struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1294{
e809c3fe 1295 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1296
6168d0da 1297 spin_lock(&lruvec->lru_lock);
e809c3fe 1298 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1299
1300 return lruvec;
1301}
1302
e809c3fe
MWO
1303/**
1304 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1305 * @folio: Pointer to the folio.
1306 *
1307 * These functions are safe to use under any of the following conditions:
1308 * - folio locked
1309 * - folio_test_lru false
1310 * - folio_memcg_lock()
1311 * - folio frozen (refcount of 0)
1312 *
1313 * Return: The lruvec this folio is on with its lock held and interrupts
1314 * disabled.
1315 */
1316struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1317{
e809c3fe 1318 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1319
6168d0da 1320 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1321 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1322
1323 return lruvec;
1324}
1325
e809c3fe
MWO
1326/**
1327 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1328 * @folio: Pointer to the folio.
1329 * @flags: Pointer to irqsave flags.
1330 *
1331 * These functions are safe to use under any of the following conditions:
1332 * - folio locked
1333 * - folio_test_lru false
1334 * - folio_memcg_lock()
1335 * - folio frozen (refcount of 0)
1336 *
1337 * Return: The lruvec this folio is on with its lock held and interrupts
1338 * disabled.
1339 */
1340struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1341 unsigned long *flags)
6168d0da 1342{
e809c3fe 1343 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1344
6168d0da 1345 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1346 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1347
1348 return lruvec;
1349}
1350
925b7673 1351/**
fa9add64
HD
1352 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1353 * @lruvec: mem_cgroup per zone lru vector
1354 * @lru: index of lru list the page is sitting on
b4536f0c 1355 * @zid: zone id of the accounted pages
fa9add64 1356 * @nr_pages: positive when adding or negative when removing
925b7673 1357 *
ca707239 1358 * This function must be called under lru_lock, just before a page is added
07ca7606 1359 * to or just after a page is removed from an lru list.
3f58a829 1360 */
fa9add64 1361void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1362 int zid, int nr_pages)
3f58a829 1363{
ef8f2327 1364 struct mem_cgroup_per_node *mz;
fa9add64 1365 unsigned long *lru_size;
ca707239 1366 long size;
3f58a829
MK
1367
1368 if (mem_cgroup_disabled())
1369 return;
1370
ef8f2327 1371 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1372 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1373
1374 if (nr_pages < 0)
1375 *lru_size += nr_pages;
1376
1377 size = *lru_size;
b4536f0c
MH
1378 if (WARN_ONCE(size < 0,
1379 "%s(%p, %d, %d): lru_size %ld\n",
1380 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1381 VM_BUG_ON(1);
1382 *lru_size = 0;
1383 }
1384
1385 if (nr_pages > 0)
1386 *lru_size += nr_pages;
08e552c6 1387}
544122e5 1388
19942822 1389/**
9d11ea9f 1390 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1391 * @memcg: the memory cgroup
19942822 1392 *
9d11ea9f 1393 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1394 * pages.
19942822 1395 */
c0ff4b85 1396static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1397{
3e32cb2e
JW
1398 unsigned long margin = 0;
1399 unsigned long count;
1400 unsigned long limit;
9d11ea9f 1401
3e32cb2e 1402 count = page_counter_read(&memcg->memory);
bbec2e15 1403 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1404 if (count < limit)
1405 margin = limit - count;
1406
7941d214 1407 if (do_memsw_account()) {
3e32cb2e 1408 count = page_counter_read(&memcg->memsw);
bbec2e15 1409 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1410 if (count < limit)
3e32cb2e 1411 margin = min(margin, limit - count);
cbedbac3
LR
1412 else
1413 margin = 0;
3e32cb2e
JW
1414 }
1415
1416 return margin;
19942822
JW
1417}
1418
32047e2a 1419/*
bdcbb659 1420 * A routine for checking "mem" is under move_account() or not.
32047e2a 1421 *
bdcbb659
QH
1422 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1423 * moving cgroups. This is for waiting at high-memory pressure
1424 * caused by "move".
32047e2a 1425 */
c0ff4b85 1426static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1427{
2bd9bb20
KH
1428 struct mem_cgroup *from;
1429 struct mem_cgroup *to;
4b534334 1430 bool ret = false;
2bd9bb20
KH
1431 /*
1432 * Unlike task_move routines, we access mc.to, mc.from not under
1433 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1434 */
1435 spin_lock(&mc.lock);
1436 from = mc.from;
1437 to = mc.to;
1438 if (!from)
1439 goto unlock;
3e92041d 1440
2314b42d
JW
1441 ret = mem_cgroup_is_descendant(from, memcg) ||
1442 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1443unlock:
1444 spin_unlock(&mc.lock);
4b534334
KH
1445 return ret;
1446}
1447
c0ff4b85 1448static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1449{
1450 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1451 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1452 DEFINE_WAIT(wait);
1453 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1454 /* moving charge context might have finished. */
1455 if (mc.moving_task)
1456 schedule();
1457 finish_wait(&mc.waitq, &wait);
1458 return true;
1459 }
1460 }
1461 return false;
1462}
1463
5f9a4f4a
MS
1464struct memory_stat {
1465 const char *name;
5f9a4f4a
MS
1466 unsigned int idx;
1467};
1468
57b2847d 1469static const struct memory_stat memory_stats[] = {
fff66b79
MS
1470 { "anon", NR_ANON_MAPPED },
1471 { "file", NR_FILE_PAGES },
a8c49af3 1472 { "kernel", MEMCG_KMEM },
fff66b79
MS
1473 { "kernel_stack", NR_KERNEL_STACK_KB },
1474 { "pagetables", NR_PAGETABLE },
ebc97a52 1475 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1476 { "percpu", MEMCG_PERCPU_B },
1477 { "sock", MEMCG_SOCK },
4e5aa1f4 1478 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1479 { "shmem", NR_SHMEM },
f4840ccf
JW
1480#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1481 { "zswap", MEMCG_ZSWAP_B },
1482 { "zswapped", MEMCG_ZSWAPPED },
1483#endif
fff66b79
MS
1484 { "file_mapped", NR_FILE_MAPPED },
1485 { "file_dirty", NR_FILE_DIRTY },
1486 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1487#ifdef CONFIG_SWAP
1488 { "swapcached", NR_SWAPCACHE },
1489#endif
5f9a4f4a 1490#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1491 { "anon_thp", NR_ANON_THPS },
1492 { "file_thp", NR_FILE_THPS },
1493 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1494#endif
fff66b79
MS
1495 { "inactive_anon", NR_INACTIVE_ANON },
1496 { "active_anon", NR_ACTIVE_ANON },
1497 { "inactive_file", NR_INACTIVE_FILE },
1498 { "active_file", NR_ACTIVE_FILE },
1499 { "unevictable", NR_UNEVICTABLE },
1500 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1501 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1502
1503 /* The memory events */
fff66b79
MS
1504 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1505 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1506 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1507 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1508 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1509 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1510 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1511};
1512
fff66b79
MS
1513/* Translate stat items to the correct unit for memory.stat output */
1514static int memcg_page_state_unit(int item)
1515{
1516 switch (item) {
1517 case MEMCG_PERCPU_B:
f4840ccf 1518 case MEMCG_ZSWAP_B:
fff66b79
MS
1519 case NR_SLAB_RECLAIMABLE_B:
1520 case NR_SLAB_UNRECLAIMABLE_B:
1521 case WORKINGSET_REFAULT_ANON:
1522 case WORKINGSET_REFAULT_FILE:
1523 case WORKINGSET_ACTIVATE_ANON:
1524 case WORKINGSET_ACTIVATE_FILE:
1525 case WORKINGSET_RESTORE_ANON:
1526 case WORKINGSET_RESTORE_FILE:
1527 case WORKINGSET_NODERECLAIM:
1528 return 1;
1529 case NR_KERNEL_STACK_KB:
1530 return SZ_1K;
1531 default:
1532 return PAGE_SIZE;
1533 }
1534}
1535
1536static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1537 int item)
1538{
1539 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1540}
1541
68aaee14 1542static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
c8713d0b
JW
1543{
1544 struct seq_buf s;
1545 int i;
71cd3113 1546
68aaee14 1547 seq_buf_init(&s, buf, bufsize);
c8713d0b
JW
1548
1549 /*
1550 * Provide statistics on the state of the memory subsystem as
1551 * well as cumulative event counters that show past behavior.
1552 *
1553 * This list is ordered following a combination of these gradients:
1554 * 1) generic big picture -> specifics and details
1555 * 2) reflecting userspace activity -> reflecting kernel heuristics
1556 *
1557 * Current memory state:
1558 */
fd25a9e0 1559 mem_cgroup_flush_stats();
c8713d0b 1560
5f9a4f4a
MS
1561 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1562 u64 size;
c8713d0b 1563
fff66b79 1564 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1565 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1566
5f9a4f4a 1567 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1568 size += memcg_page_state_output(memcg,
1569 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1570 seq_buf_printf(&s, "slab %llu\n", size);
1571 }
1572 }
c8713d0b
JW
1573
1574 /* Accumulated memory events */
c8713d0b
JW
1575 seq_buf_printf(&s, "pgscan %lu\n",
1576 memcg_events(memcg, PGSCAN_KSWAPD) +
1577 memcg_events(memcg, PGSCAN_DIRECT));
1578 seq_buf_printf(&s, "pgsteal %lu\n",
1579 memcg_events(memcg, PGSTEAL_KSWAPD) +
1580 memcg_events(memcg, PGSTEAL_DIRECT));
c8713d0b 1581
8278f1c7
SB
1582 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1583 if (memcg_vm_event_stat[i] == PGPGIN ||
1584 memcg_vm_event_stat[i] == PGPGOUT)
1585 continue;
1586
673520f8
QZ
1587 seq_buf_printf(&s, "%s %lu\n",
1588 vm_event_name(memcg_vm_event_stat[i]),
1589 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1590 }
c8713d0b
JW
1591
1592 /* The above should easily fit into one page */
1593 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
c8713d0b 1594}
71cd3113 1595
58cf188e 1596#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1597/**
f0c867d9 1598 * mem_cgroup_print_oom_context: Print OOM information relevant to
1599 * memory controller.
e222432b
BS
1600 * @memcg: The memory cgroup that went over limit
1601 * @p: Task that is going to be killed
1602 *
1603 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1604 * enabled
1605 */
f0c867d9 1606void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1607{
e222432b
BS
1608 rcu_read_lock();
1609
f0c867d9 1610 if (memcg) {
1611 pr_cont(",oom_memcg=");
1612 pr_cont_cgroup_path(memcg->css.cgroup);
1613 } else
1614 pr_cont(",global_oom");
2415b9f5 1615 if (p) {
f0c867d9 1616 pr_cont(",task_memcg=");
2415b9f5 1617 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1618 }
e222432b 1619 rcu_read_unlock();
f0c867d9 1620}
1621
1622/**
1623 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1624 * memory controller.
1625 * @memcg: The memory cgroup that went over limit
1626 */
1627void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1628{
68aaee14
TH
1629 /* Use static buffer, for the caller is holding oom_lock. */
1630 static char buf[PAGE_SIZE];
1631
1632 lockdep_assert_held(&oom_lock);
e222432b 1633
3e32cb2e
JW
1634 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1635 K((u64)page_counter_read(&memcg->memory)),
15b42562 1636 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1637 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1638 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1639 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1640 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1641 else {
1642 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1643 K((u64)page_counter_read(&memcg->memsw)),
1644 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1645 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1646 K((u64)page_counter_read(&memcg->kmem)),
1647 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1648 }
c8713d0b
JW
1649
1650 pr_info("Memory cgroup stats for ");
1651 pr_cont_cgroup_path(memcg->css.cgroup);
1652 pr_cont(":");
68aaee14 1653 memory_stat_format(memcg, buf, sizeof(buf));
c8713d0b 1654 pr_info("%s", buf);
e222432b
BS
1655}
1656
a63d83f4
DR
1657/*
1658 * Return the memory (and swap, if configured) limit for a memcg.
1659 */
bbec2e15 1660unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1661{
8d387a5f
WL
1662 unsigned long max = READ_ONCE(memcg->memory.max);
1663
b94c4e94 1664 if (do_memsw_account()) {
8d387a5f
WL
1665 if (mem_cgroup_swappiness(memcg)) {
1666 /* Calculate swap excess capacity from memsw limit */
1667 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1668
1669 max += min(swap, (unsigned long)total_swap_pages);
1670 }
b94c4e94
JW
1671 } else {
1672 if (mem_cgroup_swappiness(memcg))
1673 max += min(READ_ONCE(memcg->swap.max),
1674 (unsigned long)total_swap_pages);
9a5a8f19 1675 }
bbec2e15 1676 return max;
a63d83f4
DR
1677}
1678
9783aa99
CD
1679unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1680{
1681 return page_counter_read(&memcg->memory);
1682}
1683
b6e6edcf 1684static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1685 int order)
9cbb78bb 1686{
6e0fc46d
DR
1687 struct oom_control oc = {
1688 .zonelist = NULL,
1689 .nodemask = NULL,
2a966b77 1690 .memcg = memcg,
6e0fc46d
DR
1691 .gfp_mask = gfp_mask,
1692 .order = order,
6e0fc46d 1693 };
1378b37d 1694 bool ret = true;
9cbb78bb 1695
7775face
TH
1696 if (mutex_lock_killable(&oom_lock))
1697 return true;
1378b37d
YS
1698
1699 if (mem_cgroup_margin(memcg) >= (1 << order))
1700 goto unlock;
1701
7775face
TH
1702 /*
1703 * A few threads which were not waiting at mutex_lock_killable() can
1704 * fail to bail out. Therefore, check again after holding oom_lock.
1705 */
a4ebf1b6 1706 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1707
1708unlock:
dc56401f 1709 mutex_unlock(&oom_lock);
7c5f64f8 1710 return ret;
9cbb78bb
DR
1711}
1712
0608f43d 1713static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1714 pg_data_t *pgdat,
0608f43d
AM
1715 gfp_t gfp_mask,
1716 unsigned long *total_scanned)
1717{
1718 struct mem_cgroup *victim = NULL;
1719 int total = 0;
1720 int loop = 0;
1721 unsigned long excess;
1722 unsigned long nr_scanned;
1723 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1724 .pgdat = pgdat,
0608f43d
AM
1725 };
1726
3e32cb2e 1727 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1728
1729 while (1) {
1730 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1731 if (!victim) {
1732 loop++;
1733 if (loop >= 2) {
1734 /*
1735 * If we have not been able to reclaim
1736 * anything, it might because there are
1737 * no reclaimable pages under this hierarchy
1738 */
1739 if (!total)
1740 break;
1741 /*
1742 * We want to do more targeted reclaim.
1743 * excess >> 2 is not to excessive so as to
1744 * reclaim too much, nor too less that we keep
1745 * coming back to reclaim from this cgroup
1746 */
1747 if (total >= (excess >> 2) ||
1748 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1749 break;
1750 }
1751 continue;
1752 }
a9dd0a83 1753 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1754 pgdat, &nr_scanned);
0608f43d 1755 *total_scanned += nr_scanned;
3e32cb2e 1756 if (!soft_limit_excess(root_memcg))
0608f43d 1757 break;
6d61ef40 1758 }
0608f43d
AM
1759 mem_cgroup_iter_break(root_memcg, victim);
1760 return total;
6d61ef40
BS
1761}
1762
0056f4e6
JW
1763#ifdef CONFIG_LOCKDEP
1764static struct lockdep_map memcg_oom_lock_dep_map = {
1765 .name = "memcg_oom_lock",
1766};
1767#endif
1768
fb2a6fc5
JW
1769static DEFINE_SPINLOCK(memcg_oom_lock);
1770
867578cb
KH
1771/*
1772 * Check OOM-Killer is already running under our hierarchy.
1773 * If someone is running, return false.
1774 */
fb2a6fc5 1775static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1776{
79dfdacc 1777 struct mem_cgroup *iter, *failed = NULL;
a636b327 1778
fb2a6fc5
JW
1779 spin_lock(&memcg_oom_lock);
1780
9f3a0d09 1781 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1782 if (iter->oom_lock) {
79dfdacc
MH
1783 /*
1784 * this subtree of our hierarchy is already locked
1785 * so we cannot give a lock.
1786 */
79dfdacc 1787 failed = iter;
9f3a0d09
JW
1788 mem_cgroup_iter_break(memcg, iter);
1789 break;
23751be0
JW
1790 } else
1791 iter->oom_lock = true;
7d74b06f 1792 }
867578cb 1793
fb2a6fc5
JW
1794 if (failed) {
1795 /*
1796 * OK, we failed to lock the whole subtree so we have
1797 * to clean up what we set up to the failing subtree
1798 */
1799 for_each_mem_cgroup_tree(iter, memcg) {
1800 if (iter == failed) {
1801 mem_cgroup_iter_break(memcg, iter);
1802 break;
1803 }
1804 iter->oom_lock = false;
79dfdacc 1805 }
0056f4e6
JW
1806 } else
1807 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1808
1809 spin_unlock(&memcg_oom_lock);
1810
1811 return !failed;
a636b327 1812}
0b7f569e 1813
fb2a6fc5 1814static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1815{
7d74b06f
KH
1816 struct mem_cgroup *iter;
1817
fb2a6fc5 1818 spin_lock(&memcg_oom_lock);
5facae4f 1819 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1820 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1821 iter->oom_lock = false;
fb2a6fc5 1822 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1823}
1824
c0ff4b85 1825static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1826{
1827 struct mem_cgroup *iter;
1828
c2b42d3c 1829 spin_lock(&memcg_oom_lock);
c0ff4b85 1830 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1831 iter->under_oom++;
1832 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1833}
1834
c0ff4b85 1835static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1836{
1837 struct mem_cgroup *iter;
1838
867578cb 1839 /*
f0953a1b 1840 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1841 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1842 */
c2b42d3c 1843 spin_lock(&memcg_oom_lock);
c0ff4b85 1844 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1845 if (iter->under_oom > 0)
1846 iter->under_oom--;
1847 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1848}
1849
867578cb
KH
1850static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1851
dc98df5a 1852struct oom_wait_info {
d79154bb 1853 struct mem_cgroup *memcg;
ac6424b9 1854 wait_queue_entry_t wait;
dc98df5a
KH
1855};
1856
ac6424b9 1857static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1858 unsigned mode, int sync, void *arg)
1859{
d79154bb
HD
1860 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1861 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1862 struct oom_wait_info *oom_wait_info;
1863
1864 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1865 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1866
2314b42d
JW
1867 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1868 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1869 return 0;
dc98df5a
KH
1870 return autoremove_wake_function(wait, mode, sync, arg);
1871}
1872
c0ff4b85 1873static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1874{
c2b42d3c
TH
1875 /*
1876 * For the following lockless ->under_oom test, the only required
1877 * guarantee is that it must see the state asserted by an OOM when
1878 * this function is called as a result of userland actions
1879 * triggered by the notification of the OOM. This is trivially
1880 * achieved by invoking mem_cgroup_mark_under_oom() before
1881 * triggering notification.
1882 */
1883 if (memcg && memcg->under_oom)
f4b90b70 1884 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1885}
1886
becdf89d
SB
1887/*
1888 * Returns true if successfully killed one or more processes. Though in some
1889 * corner cases it can return true even without killing any process.
1890 */
1891static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1892{
becdf89d 1893 bool locked, ret;
7056d3a3 1894
29ef680a 1895 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1896 return false;
29ef680a 1897
7a1adfdd
RG
1898 memcg_memory_event(memcg, MEMCG_OOM);
1899
867578cb 1900 /*
49426420
JW
1901 * We are in the middle of the charge context here, so we
1902 * don't want to block when potentially sitting on a callstack
1903 * that holds all kinds of filesystem and mm locks.
1904 *
29ef680a
MH
1905 * cgroup1 allows disabling the OOM killer and waiting for outside
1906 * handling until the charge can succeed; remember the context and put
1907 * the task to sleep at the end of the page fault when all locks are
1908 * released.
49426420 1909 *
29ef680a
MH
1910 * On the other hand, in-kernel OOM killer allows for an async victim
1911 * memory reclaim (oom_reaper) and that means that we are not solely
1912 * relying on the oom victim to make a forward progress and we can
1913 * invoke the oom killer here.
1914 *
1915 * Please note that mem_cgroup_out_of_memory might fail to find a
1916 * victim and then we have to bail out from the charge path.
867578cb 1917 */
29ef680a 1918 if (memcg->oom_kill_disable) {
becdf89d
SB
1919 if (current->in_user_fault) {
1920 css_get(&memcg->css);
1921 current->memcg_in_oom = memcg;
1922 current->memcg_oom_gfp_mask = mask;
1923 current->memcg_oom_order = order;
1924 }
1925 return false;
29ef680a
MH
1926 }
1927
7056d3a3
MH
1928 mem_cgroup_mark_under_oom(memcg);
1929
1930 locked = mem_cgroup_oom_trylock(memcg);
1931
1932 if (locked)
1933 mem_cgroup_oom_notify(memcg);
1934
1935 mem_cgroup_unmark_under_oom(memcg);
becdf89d 1936 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
1937
1938 if (locked)
1939 mem_cgroup_oom_unlock(memcg);
29ef680a 1940
7056d3a3 1941 return ret;
3812c8c8
JW
1942}
1943
1944/**
1945 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1946 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1947 *
49426420
JW
1948 * This has to be called at the end of a page fault if the memcg OOM
1949 * handler was enabled.
3812c8c8 1950 *
49426420 1951 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1952 * sleep on a waitqueue until the userspace task resolves the
1953 * situation. Sleeping directly in the charge context with all kinds
1954 * of locks held is not a good idea, instead we remember an OOM state
1955 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1956 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1957 *
1958 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1959 * completed, %false otherwise.
3812c8c8 1960 */
49426420 1961bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1962{
626ebc41 1963 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1964 struct oom_wait_info owait;
49426420 1965 bool locked;
3812c8c8
JW
1966
1967 /* OOM is global, do not handle */
3812c8c8 1968 if (!memcg)
49426420 1969 return false;
3812c8c8 1970
7c5f64f8 1971 if (!handle)
49426420 1972 goto cleanup;
3812c8c8
JW
1973
1974 owait.memcg = memcg;
1975 owait.wait.flags = 0;
1976 owait.wait.func = memcg_oom_wake_function;
1977 owait.wait.private = current;
2055da97 1978 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1979
3812c8c8 1980 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1981 mem_cgroup_mark_under_oom(memcg);
1982
1983 locked = mem_cgroup_oom_trylock(memcg);
1984
1985 if (locked)
1986 mem_cgroup_oom_notify(memcg);
1987
1988 if (locked && !memcg->oom_kill_disable) {
1989 mem_cgroup_unmark_under_oom(memcg);
1990 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1991 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1992 current->memcg_oom_order);
49426420 1993 } else {
3812c8c8 1994 schedule();
49426420
JW
1995 mem_cgroup_unmark_under_oom(memcg);
1996 finish_wait(&memcg_oom_waitq, &owait.wait);
1997 }
1998
1999 if (locked) {
fb2a6fc5
JW
2000 mem_cgroup_oom_unlock(memcg);
2001 /*
2002 * There is no guarantee that an OOM-lock contender
2003 * sees the wakeups triggered by the OOM kill
f0953a1b 2004 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
2005 */
2006 memcg_oom_recover(memcg);
2007 }
49426420 2008cleanup:
626ebc41 2009 current->memcg_in_oom = NULL;
3812c8c8 2010 css_put(&memcg->css);
867578cb 2011 return true;
0b7f569e
KH
2012}
2013
3d8b38eb
RG
2014/**
2015 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2016 * @victim: task to be killed by the OOM killer
2017 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2018 *
2019 * Returns a pointer to a memory cgroup, which has to be cleaned up
2020 * by killing all belonging OOM-killable tasks.
2021 *
2022 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2023 */
2024struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2025 struct mem_cgroup *oom_domain)
2026{
2027 struct mem_cgroup *oom_group = NULL;
2028 struct mem_cgroup *memcg;
2029
2030 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2031 return NULL;
2032
2033 if (!oom_domain)
2034 oom_domain = root_mem_cgroup;
2035
2036 rcu_read_lock();
2037
2038 memcg = mem_cgroup_from_task(victim);
2039 if (memcg == root_mem_cgroup)
2040 goto out;
2041
48fe267c
RG
2042 /*
2043 * If the victim task has been asynchronously moved to a different
2044 * memory cgroup, we might end up killing tasks outside oom_domain.
2045 * In this case it's better to ignore memory.group.oom.
2046 */
2047 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2048 goto out;
2049
3d8b38eb
RG
2050 /*
2051 * Traverse the memory cgroup hierarchy from the victim task's
2052 * cgroup up to the OOMing cgroup (or root) to find the
2053 * highest-level memory cgroup with oom.group set.
2054 */
2055 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2056 if (memcg->oom_group)
2057 oom_group = memcg;
2058
2059 if (memcg == oom_domain)
2060 break;
2061 }
2062
2063 if (oom_group)
2064 css_get(&oom_group->css);
2065out:
2066 rcu_read_unlock();
2067
2068 return oom_group;
2069}
2070
2071void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2072{
2073 pr_info("Tasks in ");
2074 pr_cont_cgroup_path(memcg->css.cgroup);
2075 pr_cont(" are going to be killed due to memory.oom.group set\n");
2076}
2077
d7365e78 2078/**
f70ad448
MWO
2079 * folio_memcg_lock - Bind a folio to its memcg.
2080 * @folio: The folio.
32047e2a 2081 *
f70ad448 2082 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2083 * another cgroup.
2084 *
f70ad448
MWO
2085 * It ensures lifetime of the bound memcg. The caller is responsible
2086 * for the lifetime of the folio.
d69b042f 2087 */
f70ad448 2088void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2089{
2090 struct mem_cgroup *memcg;
6de22619 2091 unsigned long flags;
89c06bd5 2092
6de22619
JW
2093 /*
2094 * The RCU lock is held throughout the transaction. The fast
2095 * path can get away without acquiring the memcg->move_lock
2096 * because page moving starts with an RCU grace period.
739f79fc 2097 */
d7365e78
JW
2098 rcu_read_lock();
2099
2100 if (mem_cgroup_disabled())
1c824a68 2101 return;
89c06bd5 2102again:
f70ad448 2103 memcg = folio_memcg(folio);
29833315 2104 if (unlikely(!memcg))
1c824a68 2105 return;
d7365e78 2106
20ad50d6
AS
2107#ifdef CONFIG_PROVE_LOCKING
2108 local_irq_save(flags);
2109 might_lock(&memcg->move_lock);
2110 local_irq_restore(flags);
2111#endif
2112
bdcbb659 2113 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2114 return;
89c06bd5 2115
6de22619 2116 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2117 if (memcg != folio_memcg(folio)) {
6de22619 2118 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2119 goto again;
2120 }
6de22619
JW
2121
2122 /*
1c824a68
JW
2123 * When charge migration first begins, we can have multiple
2124 * critical sections holding the fast-path RCU lock and one
2125 * holding the slowpath move_lock. Track the task who has the
2126 * move_lock for unlock_page_memcg().
6de22619
JW
2127 */
2128 memcg->move_lock_task = current;
2129 memcg->move_lock_flags = flags;
89c06bd5 2130}
f70ad448
MWO
2131
2132void lock_page_memcg(struct page *page)
2133{
2134 folio_memcg_lock(page_folio(page));
2135}
89c06bd5 2136
f70ad448 2137static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2138{
6de22619
JW
2139 if (memcg && memcg->move_lock_task == current) {
2140 unsigned long flags = memcg->move_lock_flags;
2141
2142 memcg->move_lock_task = NULL;
2143 memcg->move_lock_flags = 0;
2144
2145 spin_unlock_irqrestore(&memcg->move_lock, flags);
2146 }
89c06bd5 2147
d7365e78 2148 rcu_read_unlock();
89c06bd5 2149}
739f79fc
JW
2150
2151/**
f70ad448
MWO
2152 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2153 * @folio: The folio.
2154 *
2155 * This releases the binding created by folio_memcg_lock(). This does
2156 * not change the accounting of this folio to its memcg, but it does
2157 * permit others to change it.
739f79fc 2158 */
f70ad448 2159void folio_memcg_unlock(struct folio *folio)
739f79fc 2160{
f70ad448
MWO
2161 __folio_memcg_unlock(folio_memcg(folio));
2162}
9da7b521 2163
f70ad448
MWO
2164void unlock_page_memcg(struct page *page)
2165{
2166 folio_memcg_unlock(page_folio(page));
739f79fc 2167}
89c06bd5 2168
fead2b86 2169struct memcg_stock_pcp {
56751146 2170 local_lock_t stock_lock;
fead2b86
MH
2171 struct mem_cgroup *cached; /* this never be root cgroup */
2172 unsigned int nr_pages;
2173
bf4f0599
RG
2174#ifdef CONFIG_MEMCG_KMEM
2175 struct obj_cgroup *cached_objcg;
68ac5b3c 2176 struct pglist_data *cached_pgdat;
bf4f0599 2177 unsigned int nr_bytes;
68ac5b3c
WL
2178 int nr_slab_reclaimable_b;
2179 int nr_slab_unreclaimable_b;
bf4f0599
RG
2180#endif
2181
cdec2e42 2182 struct work_struct work;
26fe6168 2183 unsigned long flags;
a0db00fc 2184#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2185};
56751146
SAS
2186static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2187 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2188};
9f50fad6 2189static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2190
bf4f0599 2191#ifdef CONFIG_MEMCG_KMEM
56751146 2192static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2193static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2194 struct mem_cgroup *root_memcg);
a8c49af3 2195static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2196
2197#else
56751146 2198static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2199{
56751146 2200 return NULL;
bf4f0599
RG
2201}
2202static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2203 struct mem_cgroup *root_memcg)
2204{
2205 return false;
2206}
a8c49af3
YA
2207static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2208{
2209}
bf4f0599
RG
2210#endif
2211
a0956d54
SS
2212/**
2213 * consume_stock: Try to consume stocked charge on this cpu.
2214 * @memcg: memcg to consume from.
2215 * @nr_pages: how many pages to charge.
2216 *
2217 * The charges will only happen if @memcg matches the current cpu's memcg
2218 * stock, and at least @nr_pages are available in that stock. Failure to
2219 * service an allocation will refill the stock.
2220 *
2221 * returns true if successful, false otherwise.
cdec2e42 2222 */
a0956d54 2223static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2224{
2225 struct memcg_stock_pcp *stock;
db2ba40c 2226 unsigned long flags;
3e32cb2e 2227 bool ret = false;
cdec2e42 2228
a983b5eb 2229 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2230 return ret;
a0956d54 2231
56751146 2232 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2233
2234 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2235 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2236 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2237 ret = true;
2238 }
db2ba40c 2239
56751146 2240 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2241
cdec2e42
KH
2242 return ret;
2243}
2244
2245/*
3e32cb2e 2246 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2247 */
2248static void drain_stock(struct memcg_stock_pcp *stock)
2249{
2250 struct mem_cgroup *old = stock->cached;
2251
1a3e1f40
JW
2252 if (!old)
2253 return;
2254
11c9ea4e 2255 if (stock->nr_pages) {
3e32cb2e 2256 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2257 if (do_memsw_account())
3e32cb2e 2258 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2259 stock->nr_pages = 0;
cdec2e42 2260 }
1a3e1f40
JW
2261
2262 css_put(&old->css);
cdec2e42 2263 stock->cached = NULL;
cdec2e42
KH
2264}
2265
cdec2e42
KH
2266static void drain_local_stock(struct work_struct *dummy)
2267{
db2ba40c 2268 struct memcg_stock_pcp *stock;
56751146 2269 struct obj_cgroup *old = NULL;
db2ba40c
JW
2270 unsigned long flags;
2271
72f0184c 2272 /*
5c49cf9a
MH
2273 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2274 * drain_stock races is that we always operate on local CPU stock
2275 * here with IRQ disabled
72f0184c 2276 */
56751146 2277 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2278
2279 stock = this_cpu_ptr(&memcg_stock);
56751146 2280 old = drain_obj_stock(stock);
cdec2e42 2281 drain_stock(stock);
26fe6168 2282 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2283
56751146
SAS
2284 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2285 if (old)
2286 obj_cgroup_put(old);
cdec2e42
KH
2287}
2288
2289/*
3e32cb2e 2290 * Cache charges(val) to local per_cpu area.
320cc51d 2291 * This will be consumed by consume_stock() function, later.
cdec2e42 2292 */
af9a3b69 2293static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2294{
db2ba40c 2295 struct memcg_stock_pcp *stock;
cdec2e42 2296
db2ba40c 2297 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2298 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2299 drain_stock(stock);
1a3e1f40 2300 css_get(&memcg->css);
c0ff4b85 2301 stock->cached = memcg;
cdec2e42 2302 }
11c9ea4e 2303 stock->nr_pages += nr_pages;
db2ba40c 2304
a983b5eb 2305 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2306 drain_stock(stock);
af9a3b69
JW
2307}
2308
2309static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2310{
2311 unsigned long flags;
475d0487 2312
56751146 2313 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2314 __refill_stock(memcg, nr_pages);
56751146 2315 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2316}
2317
2318/*
c0ff4b85 2319 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2320 * of the hierarchy under it.
cdec2e42 2321 */
6d3d6aa2 2322static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2323{
26fe6168 2324 int cpu, curcpu;
d38144b7 2325
6d3d6aa2
JW
2326 /* If someone's already draining, avoid adding running more workers. */
2327 if (!mutex_trylock(&percpu_charge_mutex))
2328 return;
72f0184c
MH
2329 /*
2330 * Notify other cpus that system-wide "drain" is running
2331 * We do not care about races with the cpu hotplug because cpu down
2332 * as well as workers from this path always operate on the local
2333 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2334 */
0790ed62
SAS
2335 migrate_disable();
2336 curcpu = smp_processor_id();
cdec2e42
KH
2337 for_each_online_cpu(cpu) {
2338 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2339 struct mem_cgroup *memcg;
e1a366be 2340 bool flush = false;
26fe6168 2341
e1a366be 2342 rcu_read_lock();
c0ff4b85 2343 memcg = stock->cached;
e1a366be
RG
2344 if (memcg && stock->nr_pages &&
2345 mem_cgroup_is_descendant(memcg, root_memcg))
2346 flush = true;
27fb0956 2347 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2348 flush = true;
e1a366be
RG
2349 rcu_read_unlock();
2350
2351 if (flush &&
2352 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2353 if (cpu == curcpu)
2354 drain_local_stock(&stock->work);
2355 else
2356 schedule_work_on(cpu, &stock->work);
2357 }
cdec2e42 2358 }
0790ed62 2359 migrate_enable();
9f50fad6 2360 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2361}
2362
2cd21c89
JW
2363static int memcg_hotplug_cpu_dead(unsigned int cpu)
2364{
2365 struct memcg_stock_pcp *stock;
a3d4c05a 2366
2cd21c89
JW
2367 stock = &per_cpu(memcg_stock, cpu);
2368 drain_stock(stock);
a3d4c05a 2369
308167fc 2370 return 0;
cdec2e42
KH
2371}
2372
b3ff9291
CD
2373static unsigned long reclaim_high(struct mem_cgroup *memcg,
2374 unsigned int nr_pages,
2375 gfp_t gfp_mask)
f7e1cb6e 2376{
b3ff9291
CD
2377 unsigned long nr_reclaimed = 0;
2378
f7e1cb6e 2379 do {
e22c6ed9
JW
2380 unsigned long pflags;
2381
d1663a90
JK
2382 if (page_counter_read(&memcg->memory) <=
2383 READ_ONCE(memcg->memory.high))
f7e1cb6e 2384 continue;
e22c6ed9 2385
e27be240 2386 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2387
2388 psi_memstall_enter(&pflags);
b3ff9291 2389 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac
YA
2390 gfp_mask,
2391 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2392 psi_memstall_leave(&pflags);
4bf17307
CD
2393 } while ((memcg = parent_mem_cgroup(memcg)) &&
2394 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2395
2396 return nr_reclaimed;
f7e1cb6e
JW
2397}
2398
2399static void high_work_func(struct work_struct *work)
2400{
2401 struct mem_cgroup *memcg;
2402
2403 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2404 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2405}
2406
0e4b01df
CD
2407/*
2408 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2409 * enough to still cause a significant slowdown in most cases, while still
2410 * allowing diagnostics and tracing to proceed without becoming stuck.
2411 */
2412#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2413
2414/*
2415 * When calculating the delay, we use these either side of the exponentiation to
2416 * maintain precision and scale to a reasonable number of jiffies (see the table
2417 * below.
2418 *
2419 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2420 * overage ratio to a delay.
ac5ddd0f 2421 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2422 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2423 * to produce a reasonable delay curve.
2424 *
2425 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2426 * reasonable delay curve compared to precision-adjusted overage, not
2427 * penalising heavily at first, but still making sure that growth beyond the
2428 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2429 * example, with a high of 100 megabytes:
2430 *
2431 * +-------+------------------------+
2432 * | usage | time to allocate in ms |
2433 * +-------+------------------------+
2434 * | 100M | 0 |
2435 * | 101M | 6 |
2436 * | 102M | 25 |
2437 * | 103M | 57 |
2438 * | 104M | 102 |
2439 * | 105M | 159 |
2440 * | 106M | 230 |
2441 * | 107M | 313 |
2442 * | 108M | 409 |
2443 * | 109M | 518 |
2444 * | 110M | 639 |
2445 * | 111M | 774 |
2446 * | 112M | 921 |
2447 * | 113M | 1081 |
2448 * | 114M | 1254 |
2449 * | 115M | 1439 |
2450 * | 116M | 1638 |
2451 * | 117M | 1849 |
2452 * | 118M | 2000 |
2453 * | 119M | 2000 |
2454 * | 120M | 2000 |
2455 * +-------+------------------------+
2456 */
2457 #define MEMCG_DELAY_PRECISION_SHIFT 20
2458 #define MEMCG_DELAY_SCALING_SHIFT 14
2459
8a5dbc65 2460static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2461{
8a5dbc65 2462 u64 overage;
b23afb93 2463
8a5dbc65
JK
2464 if (usage <= high)
2465 return 0;
e26733e0 2466
8a5dbc65
JK
2467 /*
2468 * Prevent division by 0 in overage calculation by acting as if
2469 * it was a threshold of 1 page
2470 */
2471 high = max(high, 1UL);
9b8b1754 2472
8a5dbc65
JK
2473 overage = usage - high;
2474 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2475 return div64_u64(overage, high);
2476}
e26733e0 2477
8a5dbc65
JK
2478static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2479{
2480 u64 overage, max_overage = 0;
e26733e0 2481
8a5dbc65
JK
2482 do {
2483 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2484 READ_ONCE(memcg->memory.high));
8a5dbc65 2485 max_overage = max(overage, max_overage);
e26733e0
CD
2486 } while ((memcg = parent_mem_cgroup(memcg)) &&
2487 !mem_cgroup_is_root(memcg));
2488
8a5dbc65
JK
2489 return max_overage;
2490}
2491
4b82ab4f
JK
2492static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2493{
2494 u64 overage, max_overage = 0;
2495
2496 do {
2497 overage = calculate_overage(page_counter_read(&memcg->swap),
2498 READ_ONCE(memcg->swap.high));
2499 if (overage)
2500 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2501 max_overage = max(overage, max_overage);
2502 } while ((memcg = parent_mem_cgroup(memcg)) &&
2503 !mem_cgroup_is_root(memcg));
2504
2505 return max_overage;
2506}
2507
8a5dbc65
JK
2508/*
2509 * Get the number of jiffies that we should penalise a mischievous cgroup which
2510 * is exceeding its memory.high by checking both it and its ancestors.
2511 */
2512static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2513 unsigned int nr_pages,
2514 u64 max_overage)
2515{
2516 unsigned long penalty_jiffies;
2517
e26733e0
CD
2518 if (!max_overage)
2519 return 0;
0e4b01df
CD
2520
2521 /*
0e4b01df
CD
2522 * We use overage compared to memory.high to calculate the number of
2523 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2524 * fairly lenient on small overages, and increasingly harsh when the
2525 * memcg in question makes it clear that it has no intention of stopping
2526 * its crazy behaviour, so we exponentially increase the delay based on
2527 * overage amount.
2528 */
e26733e0
CD
2529 penalty_jiffies = max_overage * max_overage * HZ;
2530 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2531 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2532
2533 /*
2534 * Factor in the task's own contribution to the overage, such that four
2535 * N-sized allocations are throttled approximately the same as one
2536 * 4N-sized allocation.
2537 *
2538 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2539 * larger the current charge patch is than that.
2540 */
ff144e69 2541 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2542}
2543
2544/*
2545 * Scheduled by try_charge() to be executed from the userland return path
2546 * and reclaims memory over the high limit.
2547 */
2548void mem_cgroup_handle_over_high(void)
2549{
2550 unsigned long penalty_jiffies;
2551 unsigned long pflags;
b3ff9291 2552 unsigned long nr_reclaimed;
e26733e0 2553 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2554 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2555 struct mem_cgroup *memcg;
b3ff9291 2556 bool in_retry = false;
e26733e0
CD
2557
2558 if (likely(!nr_pages))
2559 return;
2560
2561 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2562 current->memcg_nr_pages_over_high = 0;
2563
b3ff9291
CD
2564retry_reclaim:
2565 /*
2566 * The allocating task should reclaim at least the batch size, but for
2567 * subsequent retries we only want to do what's necessary to prevent oom
2568 * or breaching resource isolation.
2569 *
2570 * This is distinct from memory.max or page allocator behaviour because
2571 * memory.high is currently batched, whereas memory.max and the page
2572 * allocator run every time an allocation is made.
2573 */
2574 nr_reclaimed = reclaim_high(memcg,
2575 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2576 GFP_KERNEL);
2577
e26733e0
CD
2578 /*
2579 * memory.high is breached and reclaim is unable to keep up. Throttle
2580 * allocators proactively to slow down excessive growth.
2581 */
8a5dbc65
JK
2582 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2583 mem_find_max_overage(memcg));
0e4b01df 2584
4b82ab4f
JK
2585 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2586 swap_find_max_overage(memcg));
2587
ff144e69
JK
2588 /*
2589 * Clamp the max delay per usermode return so as to still keep the
2590 * application moving forwards and also permit diagnostics, albeit
2591 * extremely slowly.
2592 */
2593 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2594
0e4b01df
CD
2595 /*
2596 * Don't sleep if the amount of jiffies this memcg owes us is so low
2597 * that it's not even worth doing, in an attempt to be nice to those who
2598 * go only a small amount over their memory.high value and maybe haven't
2599 * been aggressively reclaimed enough yet.
2600 */
2601 if (penalty_jiffies <= HZ / 100)
2602 goto out;
2603
b3ff9291
CD
2604 /*
2605 * If reclaim is making forward progress but we're still over
2606 * memory.high, we want to encourage that rather than doing allocator
2607 * throttling.
2608 */
2609 if (nr_reclaimed || nr_retries--) {
2610 in_retry = true;
2611 goto retry_reclaim;
2612 }
2613
0e4b01df
CD
2614 /*
2615 * If we exit early, we're guaranteed to die (since
2616 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2617 * need to account for any ill-begotten jiffies to pay them off later.
2618 */
2619 psi_memstall_enter(&pflags);
2620 schedule_timeout_killable(penalty_jiffies);
2621 psi_memstall_leave(&pflags);
2622
2623out:
2624 css_put(&memcg->css);
b23afb93
TH
2625}
2626
c5c8b16b
MS
2627static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2628 unsigned int nr_pages)
8a9f3ccd 2629{
a983b5eb 2630 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2631 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2632 struct mem_cgroup *mem_over_limit;
3e32cb2e 2633 struct page_counter *counter;
6539cc05 2634 unsigned long nr_reclaimed;
a4ebf1b6 2635 bool passed_oom = false;
73b73bac 2636 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2637 bool drained = false;
d6e103a7 2638 bool raised_max_event = false;
e22c6ed9 2639 unsigned long pflags;
a636b327 2640
6539cc05 2641retry:
b6b6cc72 2642 if (consume_stock(memcg, nr_pages))
10d53c74 2643 return 0;
8a9f3ccd 2644
7941d214 2645 if (!do_memsw_account() ||
6071ca52
JW
2646 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2647 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2648 goto done_restock;
7941d214 2649 if (do_memsw_account())
3e32cb2e
JW
2650 page_counter_uncharge(&memcg->memsw, batch);
2651 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2652 } else {
3e32cb2e 2653 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2654 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2655 }
7a81b88c 2656
6539cc05
JW
2657 if (batch > nr_pages) {
2658 batch = nr_pages;
2659 goto retry;
2660 }
6d61ef40 2661
89a28483
JW
2662 /*
2663 * Prevent unbounded recursion when reclaim operations need to
2664 * allocate memory. This might exceed the limits temporarily,
2665 * but we prefer facilitating memory reclaim and getting back
2666 * under the limit over triggering OOM kills in these cases.
2667 */
2668 if (unlikely(current->flags & PF_MEMALLOC))
2669 goto force;
2670
06b078fc
JW
2671 if (unlikely(task_in_memcg_oom(current)))
2672 goto nomem;
2673
d0164adc 2674 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2675 goto nomem;
4b534334 2676
e27be240 2677 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2678 raised_max_event = true;
241994ed 2679
e22c6ed9 2680 psi_memstall_enter(&pflags);
b70a2a21 2681 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
73b73bac 2682 gfp_mask, reclaim_options);
e22c6ed9 2683 psi_memstall_leave(&pflags);
6539cc05 2684
61e02c74 2685 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2686 goto retry;
28c34c29 2687
b70a2a21 2688 if (!drained) {
6d3d6aa2 2689 drain_all_stock(mem_over_limit);
b70a2a21
JW
2690 drained = true;
2691 goto retry;
2692 }
2693
28c34c29
JW
2694 if (gfp_mask & __GFP_NORETRY)
2695 goto nomem;
6539cc05
JW
2696 /*
2697 * Even though the limit is exceeded at this point, reclaim
2698 * may have been able to free some pages. Retry the charge
2699 * before killing the task.
2700 *
2701 * Only for regular pages, though: huge pages are rather
2702 * unlikely to succeed so close to the limit, and we fall back
2703 * to regular pages anyway in case of failure.
2704 */
61e02c74 2705 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2706 goto retry;
2707 /*
2708 * At task move, charge accounts can be doubly counted. So, it's
2709 * better to wait until the end of task_move if something is going on.
2710 */
2711 if (mem_cgroup_wait_acct_move(mem_over_limit))
2712 goto retry;
2713
9b130619
JW
2714 if (nr_retries--)
2715 goto retry;
2716
38d38493 2717 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2718 goto nomem;
2719
a4ebf1b6
VA
2720 /* Avoid endless loop for tasks bypassed by the oom killer */
2721 if (passed_oom && task_is_dying())
2722 goto nomem;
6539cc05 2723
29ef680a
MH
2724 /*
2725 * keep retrying as long as the memcg oom killer is able to make
2726 * a forward progress or bypass the charge if the oom killer
2727 * couldn't make any progress.
2728 */
becdf89d
SB
2729 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2730 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2731 passed_oom = true;
d977aa93 2732 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2733 goto retry;
29ef680a 2734 }
7a81b88c 2735nomem:
1461e8c2
SB
2736 /*
2737 * Memcg doesn't have a dedicated reserve for atomic
2738 * allocations. But like the global atomic pool, we need to
2739 * put the burden of reclaim on regular allocation requests
2740 * and let these go through as privileged allocations.
2741 */
2742 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2743 return -ENOMEM;
10d53c74 2744force:
d6e103a7
RG
2745 /*
2746 * If the allocation has to be enforced, don't forget to raise
2747 * a MEMCG_MAX event.
2748 */
2749 if (!raised_max_event)
2750 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2751
10d53c74
TH
2752 /*
2753 * The allocation either can't fail or will lead to more memory
2754 * being freed very soon. Allow memory usage go over the limit
2755 * temporarily by force charging it.
2756 */
2757 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2758 if (do_memsw_account())
10d53c74 2759 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2760
2761 return 0;
6539cc05
JW
2762
2763done_restock:
2764 if (batch > nr_pages)
2765 refill_stock(memcg, batch - nr_pages);
b23afb93 2766
241994ed 2767 /*
b23afb93
TH
2768 * If the hierarchy is above the normal consumption range, schedule
2769 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2770 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2771 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2772 * not recorded as it most likely matches current's and won't
2773 * change in the meantime. As high limit is checked again before
2774 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2775 */
2776 do {
4b82ab4f
JK
2777 bool mem_high, swap_high;
2778
2779 mem_high = page_counter_read(&memcg->memory) >
2780 READ_ONCE(memcg->memory.high);
2781 swap_high = page_counter_read(&memcg->swap) >
2782 READ_ONCE(memcg->swap.high);
2783
2784 /* Don't bother a random interrupted task */
086f694a 2785 if (!in_task()) {
4b82ab4f 2786 if (mem_high) {
f7e1cb6e
JW
2787 schedule_work(&memcg->high_work);
2788 break;
2789 }
4b82ab4f
JK
2790 continue;
2791 }
2792
2793 if (mem_high || swap_high) {
2794 /*
2795 * The allocating tasks in this cgroup will need to do
2796 * reclaim or be throttled to prevent further growth
2797 * of the memory or swap footprints.
2798 *
2799 * Target some best-effort fairness between the tasks,
2800 * and distribute reclaim work and delay penalties
2801 * based on how much each task is actually allocating.
2802 */
9516a18a 2803 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2804 set_notify_resume(current);
2805 break;
2806 }
241994ed 2807 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2808
c9afe31e
SB
2809 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2810 !(current->flags & PF_MEMALLOC) &&
2811 gfpflags_allow_blocking(gfp_mask)) {
2812 mem_cgroup_handle_over_high();
2813 }
10d53c74 2814 return 0;
7a81b88c 2815}
8a9f3ccd 2816
c5c8b16b
MS
2817static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2818 unsigned int nr_pages)
2819{
2820 if (mem_cgroup_is_root(memcg))
2821 return 0;
2822
2823 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2824}
2825
58056f77 2826static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2827{
ce00a967
JW
2828 if (mem_cgroup_is_root(memcg))
2829 return;
2830
3e32cb2e 2831 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2832 if (do_memsw_account())
3e32cb2e 2833 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2834}
2835
118f2875 2836static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2837{
118f2875 2838 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2839 /*
a5eb011a 2840 * Any of the following ensures page's memcg stability:
0a31bc97 2841 *
a0b5b414
JW
2842 * - the page lock
2843 * - LRU isolation
2844 * - lock_page_memcg()
2845 * - exclusive reference
018ee47f 2846 * - mem_cgroup_trylock_pages()
0a31bc97 2847 */
118f2875 2848 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2849}
66e1707b 2850
84c07d11 2851#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2852/*
2853 * The allocated objcg pointers array is not accounted directly.
2854 * Moreover, it should not come from DMA buffer and is not readily
2855 * reclaimable. So those GFP bits should be masked off.
2856 */
2857#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2858
a7ebf564
WL
2859/*
2860 * mod_objcg_mlstate() may be called with irq enabled, so
2861 * mod_memcg_lruvec_state() should be used.
2862 */
2863static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2864 struct pglist_data *pgdat,
2865 enum node_stat_item idx, int nr)
2866{
2867 struct mem_cgroup *memcg;
2868 struct lruvec *lruvec;
2869
2870 rcu_read_lock();
2871 memcg = obj_cgroup_memcg(objcg);
2872 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2873 mod_memcg_lruvec_state(lruvec, idx, nr);
2874 rcu_read_unlock();
2875}
2876
4b5f8d9a
VB
2877int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2878 gfp_t gfp, bool new_slab)
10befea9 2879{
4b5f8d9a 2880 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2881 unsigned long memcg_data;
10befea9
RG
2882 void *vec;
2883
41eb5df1 2884 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2885 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2886 slab_nid(slab));
10befea9
RG
2887 if (!vec)
2888 return -ENOMEM;
2889
2e9bd483 2890 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2891 if (new_slab) {
2e9bd483 2892 /*
4b5f8d9a
VB
2893 * If the slab is brand new and nobody can yet access its
2894 * memcg_data, no synchronization is required and memcg_data can
2895 * be simply assigned.
2e9bd483 2896 */
4b5f8d9a
VB
2897 slab->memcg_data = memcg_data;
2898 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2899 /*
4b5f8d9a
VB
2900 * If the slab is already in use, somebody can allocate and
2901 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2902 * objcg vector should be reused.
2903 */
10befea9 2904 kfree(vec);
2e9bd483
RG
2905 return 0;
2906 }
10befea9 2907
2e9bd483 2908 kmemleak_not_leak(vec);
10befea9
RG
2909 return 0;
2910}
2911
fc4db90f
RG
2912static __always_inline
2913struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2914{
8380ce47 2915 /*
9855609b
RG
2916 * Slab objects are accounted individually, not per-page.
2917 * Memcg membership data for each individual object is saved in
4b5f8d9a 2918 * slab->memcg_data.
8380ce47 2919 */
4b5f8d9a
VB
2920 if (folio_test_slab(folio)) {
2921 struct obj_cgroup **objcgs;
2922 struct slab *slab;
9855609b
RG
2923 unsigned int off;
2924
4b5f8d9a
VB
2925 slab = folio_slab(folio);
2926 objcgs = slab_objcgs(slab);
2927 if (!objcgs)
2928 return NULL;
2929
2930 off = obj_to_index(slab->slab_cache, slab, p);
2931 if (objcgs[off])
2932 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
2933
2934 return NULL;
9855609b 2935 }
8380ce47 2936
bcfe06bf 2937 /*
4b5f8d9a
VB
2938 * page_memcg_check() is used here, because in theory we can encounter
2939 * a folio where the slab flag has been cleared already, but
2940 * slab->memcg_data has not been freed yet
bcfe06bf
RG
2941 * page_memcg_check(page) will guarantee that a proper memory
2942 * cgroup pointer or NULL will be returned.
2943 */
4b5f8d9a 2944 return page_memcg_check(folio_page(folio, 0));
8380ce47
RG
2945}
2946
fc4db90f
RG
2947/*
2948 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2949 *
2950 * A passed kernel object can be a slab object, vmalloc object or a generic
2951 * kernel page, so different mechanisms for getting the memory cgroup pointer
2952 * should be used.
2953 *
2954 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2955 * can not know for sure how the kernel object is implemented.
2956 * mem_cgroup_from_obj() can be safely used in such cases.
2957 *
2958 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2959 * cgroup_mutex, etc.
2960 */
2961struct mem_cgroup *mem_cgroup_from_obj(void *p)
2962{
2963 struct folio *folio;
2964
2965 if (mem_cgroup_disabled())
2966 return NULL;
2967
2968 if (unlikely(is_vmalloc_addr(p)))
2969 folio = page_folio(vmalloc_to_page(p));
2970 else
2971 folio = virt_to_folio(p);
2972
2973 return mem_cgroup_from_obj_folio(folio, p);
2974}
2975
2976/*
2977 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2978 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2979 * allocated using vmalloc().
2980 *
2981 * A passed kernel object must be a slab object or a generic kernel page.
2982 *
2983 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2984 * cgroup_mutex, etc.
2985 */
2986struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2987{
2988 if (mem_cgroup_disabled())
2989 return NULL;
2990
2991 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2992}
2993
f4840ccf
JW
2994static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2995{
2996 struct obj_cgroup *objcg = NULL;
2997
2998 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2999 objcg = rcu_dereference(memcg->objcg);
3000 if (objcg && obj_cgroup_tryget(objcg))
3001 break;
3002 objcg = NULL;
3003 }
3004 return objcg;
3005}
3006
bf4f0599
RG
3007__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3008{
3009 struct obj_cgroup *objcg = NULL;
3010 struct mem_cgroup *memcg;
3011
279c3393
RG
3012 if (memcg_kmem_bypass())
3013 return NULL;
3014
bf4f0599 3015 rcu_read_lock();
37d5985c
RG
3016 if (unlikely(active_memcg()))
3017 memcg = active_memcg();
bf4f0599
RG
3018 else
3019 memcg = mem_cgroup_from_task(current);
f4840ccf 3020 objcg = __get_obj_cgroup_from_memcg(memcg);
bf4f0599 3021 rcu_read_unlock();
f4840ccf
JW
3022 return objcg;
3023}
3024
3025struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3026{
3027 struct obj_cgroup *objcg;
3028
3029 if (!memcg_kmem_enabled() || memcg_kmem_bypass())
3030 return NULL;
3031
3032 if (PageMemcgKmem(page)) {
3033 objcg = __folio_objcg(page_folio(page));
3034 obj_cgroup_get(objcg);
3035 } else {
3036 struct mem_cgroup *memcg;
bf4f0599 3037
f4840ccf
JW
3038 rcu_read_lock();
3039 memcg = __folio_memcg(page_folio(page));
3040 if (memcg)
3041 objcg = __get_obj_cgroup_from_memcg(memcg);
3042 else
3043 objcg = NULL;
3044 rcu_read_unlock();
3045 }
bf4f0599
RG
3046 return objcg;
3047}
3048
a8c49af3
YA
3049static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3050{
3051 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3052 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3053 if (nr_pages > 0)
3054 page_counter_charge(&memcg->kmem, nr_pages);
3055 else
3056 page_counter_uncharge(&memcg->kmem, -nr_pages);
3057 }
3058}
3059
3060
f1286fae
MS
3061/*
3062 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3063 * @objcg: object cgroup to uncharge
3064 * @nr_pages: number of pages to uncharge
3065 */
e74d2259
MS
3066static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3067 unsigned int nr_pages)
3068{
3069 struct mem_cgroup *memcg;
3070
3071 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3072
a8c49af3 3073 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3074 refill_stock(memcg, nr_pages);
e74d2259 3075
e74d2259 3076 css_put(&memcg->css);
e74d2259
MS
3077}
3078
f1286fae
MS
3079/*
3080 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3081 * @objcg: object cgroup to charge
45264778 3082 * @gfp: reclaim mode
92d0510c 3083 * @nr_pages: number of pages to charge
45264778
VD
3084 *
3085 * Returns 0 on success, an error code on failure.
3086 */
f1286fae
MS
3087static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3088 unsigned int nr_pages)
7ae1e1d0 3089{
f1286fae 3090 struct mem_cgroup *memcg;
7ae1e1d0
GC
3091 int ret;
3092
f1286fae
MS
3093 memcg = get_mem_cgroup_from_objcg(objcg);
3094
c5c8b16b 3095 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3096 if (ret)
f1286fae 3097 goto out;
52c29b04 3098
a8c49af3 3099 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3100out:
3101 css_put(&memcg->css);
4b13f64d 3102
f1286fae 3103 return ret;
4b13f64d
RG
3104}
3105
45264778 3106/**
f4b00eab 3107 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3108 * @page: page to charge
3109 * @gfp: reclaim mode
3110 * @order: allocation order
3111 *
3112 * Returns 0 on success, an error code on failure.
3113 */
f4b00eab 3114int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3115{
b4e0b68f 3116 struct obj_cgroup *objcg;
fcff7d7e 3117 int ret = 0;
7ae1e1d0 3118
b4e0b68f
MS
3119 objcg = get_obj_cgroup_from_current();
3120 if (objcg) {
3121 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3122 if (!ret) {
b4e0b68f 3123 page->memcg_data = (unsigned long)objcg |
18b2db3b 3124 MEMCG_DATA_KMEM;
1a3e1f40 3125 return 0;
4d96ba35 3126 }
b4e0b68f 3127 obj_cgroup_put(objcg);
c4159a75 3128 }
d05e83a6 3129 return ret;
7ae1e1d0 3130}
49a18eae 3131
45264778 3132/**
f4b00eab 3133 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3134 * @page: page to uncharge
3135 * @order: allocation order
3136 */
f4b00eab 3137void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3138{
1b7e4464 3139 struct folio *folio = page_folio(page);
b4e0b68f 3140 struct obj_cgroup *objcg;
f3ccb2c4 3141 unsigned int nr_pages = 1 << order;
7ae1e1d0 3142
1b7e4464 3143 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3144 return;
3145
1b7e4464 3146 objcg = __folio_objcg(folio);
b4e0b68f 3147 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3148 folio->memcg_data = 0;
b4e0b68f 3149 obj_cgroup_put(objcg);
60d3fd32 3150}
bf4f0599 3151
68ac5b3c
WL
3152void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3153 enum node_stat_item idx, int nr)
3154{
fead2b86 3155 struct memcg_stock_pcp *stock;
56751146 3156 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3157 unsigned long flags;
3158 int *bytes;
3159
56751146 3160 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3161 stock = this_cpu_ptr(&memcg_stock);
3162
68ac5b3c
WL
3163 /*
3164 * Save vmstat data in stock and skip vmstat array update unless
3165 * accumulating over a page of vmstat data or when pgdat or idx
3166 * changes.
3167 */
3168 if (stock->cached_objcg != objcg) {
56751146 3169 old = drain_obj_stock(stock);
68ac5b3c
WL
3170 obj_cgroup_get(objcg);
3171 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3172 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3173 stock->cached_objcg = objcg;
3174 stock->cached_pgdat = pgdat;
3175 } else if (stock->cached_pgdat != pgdat) {
3176 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3177 struct pglist_data *oldpg = stock->cached_pgdat;
3178
68ac5b3c 3179 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3180 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3181 stock->nr_slab_reclaimable_b);
3182 stock->nr_slab_reclaimable_b = 0;
3183 }
3184 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3185 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3186 stock->nr_slab_unreclaimable_b);
3187 stock->nr_slab_unreclaimable_b = 0;
3188 }
3189 stock->cached_pgdat = pgdat;
3190 }
3191
3192 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3193 : &stock->nr_slab_unreclaimable_b;
3194 /*
3195 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3196 * cached locally at least once before pushing it out.
3197 */
3198 if (!*bytes) {
3199 *bytes = nr;
3200 nr = 0;
3201 } else {
3202 *bytes += nr;
3203 if (abs(*bytes) > PAGE_SIZE) {
3204 nr = *bytes;
3205 *bytes = 0;
3206 } else {
3207 nr = 0;
3208 }
3209 }
3210 if (nr)
3211 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3212
56751146
SAS
3213 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3214 if (old)
3215 obj_cgroup_put(old);
68ac5b3c
WL
3216}
3217
bf4f0599
RG
3218static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3219{
fead2b86 3220 struct memcg_stock_pcp *stock;
bf4f0599
RG
3221 unsigned long flags;
3222 bool ret = false;
3223
56751146 3224 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3225
3226 stock = this_cpu_ptr(&memcg_stock);
bf4f0599
RG
3227 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3228 stock->nr_bytes -= nr_bytes;
3229 ret = true;
3230 }
3231
56751146 3232 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3233
3234 return ret;
3235}
3236
56751146 3237static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599
RG
3238{
3239 struct obj_cgroup *old = stock->cached_objcg;
3240
3241 if (!old)
56751146 3242 return NULL;
bf4f0599
RG
3243
3244 if (stock->nr_bytes) {
3245 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3246 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3247
af9a3b69
JW
3248 if (nr_pages) {
3249 struct mem_cgroup *memcg;
3250
3251 memcg = get_mem_cgroup_from_objcg(old);
3252
3253 memcg_account_kmem(memcg, -nr_pages);
3254 __refill_stock(memcg, nr_pages);
3255
3256 css_put(&memcg->css);
3257 }
bf4f0599
RG
3258
3259 /*
3260 * The leftover is flushed to the centralized per-memcg value.
3261 * On the next attempt to refill obj stock it will be moved
3262 * to a per-cpu stock (probably, on an other CPU), see
3263 * refill_obj_stock().
3264 *
3265 * How often it's flushed is a trade-off between the memory
3266 * limit enforcement accuracy and potential CPU contention,
3267 * so it might be changed in the future.
3268 */
3269 atomic_add(nr_bytes, &old->nr_charged_bytes);
3270 stock->nr_bytes = 0;
3271 }
3272
68ac5b3c
WL
3273 /*
3274 * Flush the vmstat data in current stock
3275 */
3276 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3277 if (stock->nr_slab_reclaimable_b) {
3278 mod_objcg_mlstate(old, stock->cached_pgdat,
3279 NR_SLAB_RECLAIMABLE_B,
3280 stock->nr_slab_reclaimable_b);
3281 stock->nr_slab_reclaimable_b = 0;
3282 }
3283 if (stock->nr_slab_unreclaimable_b) {
3284 mod_objcg_mlstate(old, stock->cached_pgdat,
3285 NR_SLAB_UNRECLAIMABLE_B,
3286 stock->nr_slab_unreclaimable_b);
3287 stock->nr_slab_unreclaimable_b = 0;
3288 }
3289 stock->cached_pgdat = NULL;
3290 }
3291
bf4f0599 3292 stock->cached_objcg = NULL;
56751146
SAS
3293 /*
3294 * The `old' objects needs to be released by the caller via
3295 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3296 */
3297 return old;
bf4f0599
RG
3298}
3299
3300static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3301 struct mem_cgroup *root_memcg)
3302{
3303 struct mem_cgroup *memcg;
3304
fead2b86
MH
3305 if (stock->cached_objcg) {
3306 memcg = obj_cgroup_memcg(stock->cached_objcg);
bf4f0599
RG
3307 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3308 return true;
3309 }
3310
3311 return false;
3312}
3313
5387c904
WL
3314static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3315 bool allow_uncharge)
bf4f0599 3316{
fead2b86 3317 struct memcg_stock_pcp *stock;
56751146 3318 struct obj_cgroup *old = NULL;
bf4f0599 3319 unsigned long flags;
5387c904 3320 unsigned int nr_pages = 0;
bf4f0599 3321
56751146 3322 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3323
3324 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 3325 if (stock->cached_objcg != objcg) { /* reset if necessary */
56751146 3326 old = drain_obj_stock(stock);
bf4f0599
RG
3327 obj_cgroup_get(objcg);
3328 stock->cached_objcg = objcg;
5387c904
WL
3329 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3330 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3331 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3332 }
3333 stock->nr_bytes += nr_bytes;
3334
5387c904
WL
3335 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3336 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3337 stock->nr_bytes &= (PAGE_SIZE - 1);
3338 }
bf4f0599 3339
56751146
SAS
3340 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3341 if (old)
3342 obj_cgroup_put(old);
5387c904
WL
3343
3344 if (nr_pages)
3345 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3346}
3347
3348int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3349{
bf4f0599
RG
3350 unsigned int nr_pages, nr_bytes;
3351 int ret;
3352
3353 if (consume_obj_stock(objcg, size))
3354 return 0;
3355
3356 /*
5387c904 3357 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3358 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3359 * flushing objcg->nr_charged_bytes requires two atomic
3360 * operations, and objcg->nr_charged_bytes can't be big.
3361 * The shared objcg->nr_charged_bytes can also become a
3362 * performance bottleneck if all tasks of the same memcg are
3363 * trying to update it. So it's better to ignore it and try
3364 * grab some new pages. The stock's nr_bytes will be flushed to
3365 * objcg->nr_charged_bytes later on when objcg changes.
3366 *
3367 * The stock's nr_bytes may contain enough pre-charged bytes
3368 * to allow one less page from being charged, but we can't rely
3369 * on the pre-charged bytes not being changed outside of
3370 * consume_obj_stock() or refill_obj_stock(). So ignore those
3371 * pre-charged bytes as well when charging pages. To avoid a
3372 * page uncharge right after a page charge, we set the
3373 * allow_uncharge flag to false when calling refill_obj_stock()
3374 * to temporarily allow the pre-charged bytes to exceed the page
3375 * size limit. The maximum reachable value of the pre-charged
3376 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3377 * race.
bf4f0599 3378 */
bf4f0599
RG
3379 nr_pages = size >> PAGE_SHIFT;
3380 nr_bytes = size & (PAGE_SIZE - 1);
3381
3382 if (nr_bytes)
3383 nr_pages += 1;
3384
e74d2259 3385 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3386 if (!ret && nr_bytes)
5387c904 3387 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3388
bf4f0599
RG
3389 return ret;
3390}
3391
3392void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3393{
5387c904 3394 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3395}
3396
84c07d11 3397#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3398
ca3e0214 3399/*
be6c8982 3400 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3401 */
be6c8982 3402void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3403{
1b7e4464
MWO
3404 struct folio *folio = page_folio(head);
3405 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3406 int i;
ca3e0214 3407
be6c8982 3408 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3409 return;
b070e65c 3410
be6c8982 3411 for (i = 1; i < nr; i++)
1b7e4464 3412 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3413
1b7e4464
MWO
3414 if (folio_memcg_kmem(folio))
3415 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3416 else
3417 css_get_many(&memcg->css, nr - 1);
ca3e0214 3418}
ca3e0214 3419
e55b9f96 3420#ifdef CONFIG_SWAP
02491447
DN
3421/**
3422 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3423 * @entry: swap entry to be moved
3424 * @from: mem_cgroup which the entry is moved from
3425 * @to: mem_cgroup which the entry is moved to
3426 *
3427 * It succeeds only when the swap_cgroup's record for this entry is the same
3428 * as the mem_cgroup's id of @from.
3429 *
3430 * Returns 0 on success, -EINVAL on failure.
3431 *
3e32cb2e 3432 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3433 * both res and memsw, and called css_get().
3434 */
3435static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3436 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3437{
3438 unsigned short old_id, new_id;
3439
34c00c31
LZ
3440 old_id = mem_cgroup_id(from);
3441 new_id = mem_cgroup_id(to);
02491447
DN
3442
3443 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3444 mod_memcg_state(from, MEMCG_SWAP, -1);
3445 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3446 return 0;
3447 }
3448 return -EINVAL;
3449}
3450#else
3451static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3452 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3453{
3454 return -EINVAL;
3455}
8c7c6e34 3456#endif
d13d1443 3457
bbec2e15 3458static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3459
bbec2e15
RG
3460static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3461 unsigned long max, bool memsw)
628f4235 3462{
3e32cb2e 3463 bool enlarge = false;
bb4a7ea2 3464 bool drained = false;
3e32cb2e 3465 int ret;
c054a78c
YZ
3466 bool limits_invariant;
3467 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3468
3e32cb2e 3469 do {
628f4235
KH
3470 if (signal_pending(current)) {
3471 ret = -EINTR;
3472 break;
3473 }
3e32cb2e 3474
bbec2e15 3475 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3476 /*
3477 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3478 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3479 */
15b42562 3480 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3481 max <= memcg->memsw.max;
c054a78c 3482 if (!limits_invariant) {
bbec2e15 3483 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3484 ret = -EINVAL;
8c7c6e34
KH
3485 break;
3486 }
bbec2e15 3487 if (max > counter->max)
3e32cb2e 3488 enlarge = true;
bbec2e15
RG
3489 ret = page_counter_set_max(counter, max);
3490 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3491
3492 if (!ret)
3493 break;
3494
bb4a7ea2
SB
3495 if (!drained) {
3496 drain_all_stock(memcg);
3497 drained = true;
3498 continue;
3499 }
3500
73b73bac
YA
3501 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3502 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3503 ret = -EBUSY;
3504 break;
3505 }
3506 } while (true);
3e32cb2e 3507
3c11ecf4
KH
3508 if (!ret && enlarge)
3509 memcg_oom_recover(memcg);
3e32cb2e 3510
628f4235
KH
3511 return ret;
3512}
3513
ef8f2327 3514unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3515 gfp_t gfp_mask,
3516 unsigned long *total_scanned)
3517{
3518 unsigned long nr_reclaimed = 0;
ef8f2327 3519 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3520 unsigned long reclaimed;
3521 int loop = 0;
ef8f2327 3522 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3523 unsigned long excess;
0608f43d
AM
3524
3525 if (order > 0)
3526 return 0;
3527
2ab082ba 3528 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3529
3530 /*
3531 * Do not even bother to check the largest node if the root
3532 * is empty. Do it lockless to prevent lock bouncing. Races
3533 * are acceptable as soft limit is best effort anyway.
3534 */
bfc7228b 3535 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3536 return 0;
3537
0608f43d
AM
3538 /*
3539 * This loop can run a while, specially if mem_cgroup's continuously
3540 * keep exceeding their soft limit and putting the system under
3541 * pressure
3542 */
3543 do {
3544 if (next_mz)
3545 mz = next_mz;
3546 else
3547 mz = mem_cgroup_largest_soft_limit_node(mctz);
3548 if (!mz)
3549 break;
3550
ef8f2327 3551 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3552 gfp_mask, total_scanned);
0608f43d 3553 nr_reclaimed += reclaimed;
0a31bc97 3554 spin_lock_irq(&mctz->lock);
0608f43d
AM
3555
3556 /*
3557 * If we failed to reclaim anything from this memory cgroup
3558 * it is time to move on to the next cgroup
3559 */
3560 next_mz = NULL;
bc2f2e7f
VD
3561 if (!reclaimed)
3562 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3563
3e32cb2e 3564 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3565 /*
3566 * One school of thought says that we should not add
3567 * back the node to the tree if reclaim returns 0.
3568 * But our reclaim could return 0, simply because due
3569 * to priority we are exposing a smaller subset of
3570 * memory to reclaim from. Consider this as a longer
3571 * term TODO.
3572 */
3573 /* If excess == 0, no tree ops */
cf2c8127 3574 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3575 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3576 css_put(&mz->memcg->css);
3577 loop++;
3578 /*
3579 * Could not reclaim anything and there are no more
3580 * mem cgroups to try or we seem to be looping without
3581 * reclaiming anything.
3582 */
3583 if (!nr_reclaimed &&
3584 (next_mz == NULL ||
3585 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3586 break;
3587 } while (!nr_reclaimed);
3588 if (next_mz)
3589 css_put(&next_mz->memcg->css);
3590 return nr_reclaimed;
3591}
3592
c26251f9 3593/*
51038171 3594 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3595 *
3596 * Caller is responsible for holding css reference for memcg.
3597 */
3598static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3599{
d977aa93 3600 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3601
c1e862c1
KH
3602 /* we call try-to-free pages for make this cgroup empty */
3603 lru_add_drain_all();
d12c60f6
JS
3604
3605 drain_all_stock(memcg);
3606
f817ed48 3607 /* try to free all pages in this cgroup */
3e32cb2e 3608 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3609 if (signal_pending(current))
3610 return -EINTR;
3611
73b73bac
YA
3612 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3613 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3614 nr_retries--;
f817ed48 3615 }
ab5196c2
MH
3616
3617 return 0;
cc847582
KH
3618}
3619
6770c64e
TH
3620static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3621 char *buf, size_t nbytes,
3622 loff_t off)
c1e862c1 3623{
6770c64e 3624 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3625
d8423011
MH
3626 if (mem_cgroup_is_root(memcg))
3627 return -EINVAL;
6770c64e 3628 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3629}
3630
182446d0
TH
3631static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3632 struct cftype *cft)
18f59ea7 3633{
bef8620c 3634 return 1;
18f59ea7
BS
3635}
3636
182446d0
TH
3637static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3638 struct cftype *cft, u64 val)
18f59ea7 3639{
bef8620c 3640 if (val == 1)
0b8f73e1 3641 return 0;
567fb435 3642
bef8620c
RG
3643 pr_warn_once("Non-hierarchical mode is deprecated. "
3644 "Please report your usecase to linux-mm@kvack.org if you "
3645 "depend on this functionality.\n");
567fb435 3646
bef8620c 3647 return -EINVAL;
18f59ea7
BS
3648}
3649
6f646156 3650static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3651{
42a30035 3652 unsigned long val;
ce00a967 3653
3e32cb2e 3654 if (mem_cgroup_is_root(memcg)) {
fd25a9e0 3655 mem_cgroup_flush_stats();
0d1c2072 3656 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3657 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3658 if (swap)
3659 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3660 } else {
ce00a967 3661 if (!swap)
3e32cb2e 3662 val = page_counter_read(&memcg->memory);
ce00a967 3663 else
3e32cb2e 3664 val = page_counter_read(&memcg->memsw);
ce00a967 3665 }
c12176d3 3666 return val;
ce00a967
JW
3667}
3668
3e32cb2e
JW
3669enum {
3670 RES_USAGE,
3671 RES_LIMIT,
3672 RES_MAX_USAGE,
3673 RES_FAILCNT,
3674 RES_SOFT_LIMIT,
3675};
ce00a967 3676
791badbd 3677static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3678 struct cftype *cft)
8cdea7c0 3679{
182446d0 3680 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3681 struct page_counter *counter;
af36f906 3682
3e32cb2e 3683 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3684 case _MEM:
3e32cb2e
JW
3685 counter = &memcg->memory;
3686 break;
8c7c6e34 3687 case _MEMSWAP:
3e32cb2e
JW
3688 counter = &memcg->memsw;
3689 break;
510fc4e1 3690 case _KMEM:
3e32cb2e 3691 counter = &memcg->kmem;
510fc4e1 3692 break;
d55f90bf 3693 case _TCP:
0db15298 3694 counter = &memcg->tcpmem;
d55f90bf 3695 break;
8c7c6e34
KH
3696 default:
3697 BUG();
8c7c6e34 3698 }
3e32cb2e
JW
3699
3700 switch (MEMFILE_ATTR(cft->private)) {
3701 case RES_USAGE:
3702 if (counter == &memcg->memory)
c12176d3 3703 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3704 if (counter == &memcg->memsw)
c12176d3 3705 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3706 return (u64)page_counter_read(counter) * PAGE_SIZE;
3707 case RES_LIMIT:
bbec2e15 3708 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3709 case RES_MAX_USAGE:
3710 return (u64)counter->watermark * PAGE_SIZE;
3711 case RES_FAILCNT:
3712 return counter->failcnt;
3713 case RES_SOFT_LIMIT:
3714 return (u64)memcg->soft_limit * PAGE_SIZE;
3715 default:
3716 BUG();
3717 }
8cdea7c0 3718}
510fc4e1 3719
84c07d11 3720#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3721static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3722{
bf4f0599 3723 struct obj_cgroup *objcg;
d6441637 3724
9c94bef9 3725 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3726 return 0;
3727
da0efe30
MS
3728 if (unlikely(mem_cgroup_is_root(memcg)))
3729 return 0;
d6441637 3730
bf4f0599 3731 objcg = obj_cgroup_alloc();
f9c69d63 3732 if (!objcg)
bf4f0599 3733 return -ENOMEM;
f9c69d63 3734
bf4f0599
RG
3735 objcg->memcg = memcg;
3736 rcu_assign_pointer(memcg->objcg, objcg);
3737
d648bcc7
RG
3738 static_branch_enable(&memcg_kmem_enabled_key);
3739
f9c69d63 3740 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3741
3742 return 0;
d6441637
VD
3743}
3744
8e0a8912
JW
3745static void memcg_offline_kmem(struct mem_cgroup *memcg)
3746{
64268868 3747 struct mem_cgroup *parent;
8e0a8912 3748
9c94bef9 3749 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3750 return;
3751
3752 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3753 return;
9855609b 3754
8e0a8912
JW
3755 parent = parent_mem_cgroup(memcg);
3756 if (!parent)
3757 parent = root_mem_cgroup;
3758
bf4f0599 3759 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3760
8e0a8912 3761 /*
64268868
MS
3762 * After we have finished memcg_reparent_objcgs(), all list_lrus
3763 * corresponding to this cgroup are guaranteed to remain empty.
3764 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3765 * memcg_reparent_list_lrus().
8e0a8912 3766 */
1f391eb2 3767 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3768}
d6441637 3769#else
0b8f73e1 3770static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3771{
3772 return 0;
3773}
3774static void memcg_offline_kmem(struct mem_cgroup *memcg)
3775{
3776}
84c07d11 3777#endif /* CONFIG_MEMCG_KMEM */
127424c8 3778
bbec2e15 3779static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3780{
3781 int ret;
3782
bbec2e15 3783 mutex_lock(&memcg_max_mutex);
d55f90bf 3784
bbec2e15 3785 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3786 if (ret)
3787 goto out;
3788
0db15298 3789 if (!memcg->tcpmem_active) {
d55f90bf
VD
3790 /*
3791 * The active flag needs to be written after the static_key
3792 * update. This is what guarantees that the socket activation
2d758073
JW
3793 * function is the last one to run. See mem_cgroup_sk_alloc()
3794 * for details, and note that we don't mark any socket as
3795 * belonging to this memcg until that flag is up.
d55f90bf
VD
3796 *
3797 * We need to do this, because static_keys will span multiple
3798 * sites, but we can't control their order. If we mark a socket
3799 * as accounted, but the accounting functions are not patched in
3800 * yet, we'll lose accounting.
3801 *
2d758073 3802 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3803 * because when this value change, the code to process it is not
3804 * patched in yet.
3805 */
3806 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3807 memcg->tcpmem_active = true;
d55f90bf
VD
3808 }
3809out:
bbec2e15 3810 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3811 return ret;
3812}
d55f90bf 3813
628f4235
KH
3814/*
3815 * The user of this function is...
3816 * RES_LIMIT.
3817 */
451af504
TH
3818static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3819 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3820{
451af504 3821 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3822 unsigned long nr_pages;
628f4235
KH
3823 int ret;
3824
451af504 3825 buf = strstrip(buf);
650c5e56 3826 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3827 if (ret)
3828 return ret;
af36f906 3829
3e32cb2e 3830 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3831 case RES_LIMIT:
4b3bde4c
BS
3832 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3833 ret = -EINVAL;
3834 break;
3835 }
3e32cb2e
JW
3836 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3837 case _MEM:
bbec2e15 3838 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3839 break;
3e32cb2e 3840 case _MEMSWAP:
bbec2e15 3841 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3842 break;
3e32cb2e 3843 case _KMEM:
58056f77
SB
3844 /* kmem.limit_in_bytes is deprecated. */
3845 ret = -EOPNOTSUPP;
3e32cb2e 3846 break;
d55f90bf 3847 case _TCP:
bbec2e15 3848 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3849 break;
3e32cb2e 3850 }
296c81d8 3851 break;
3e32cb2e 3852 case RES_SOFT_LIMIT:
2343e88d
SAS
3853 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3854 ret = -EOPNOTSUPP;
3855 } else {
3856 memcg->soft_limit = nr_pages;
3857 ret = 0;
3858 }
628f4235
KH
3859 break;
3860 }
451af504 3861 return ret ?: nbytes;
8cdea7c0
BS
3862}
3863
6770c64e
TH
3864static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3865 size_t nbytes, loff_t off)
c84872e1 3866{
6770c64e 3867 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3868 struct page_counter *counter;
c84872e1 3869
3e32cb2e
JW
3870 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3871 case _MEM:
3872 counter = &memcg->memory;
3873 break;
3874 case _MEMSWAP:
3875 counter = &memcg->memsw;
3876 break;
3877 case _KMEM:
3878 counter = &memcg->kmem;
3879 break;
d55f90bf 3880 case _TCP:
0db15298 3881 counter = &memcg->tcpmem;
d55f90bf 3882 break;
3e32cb2e
JW
3883 default:
3884 BUG();
3885 }
af36f906 3886
3e32cb2e 3887 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3888 case RES_MAX_USAGE:
3e32cb2e 3889 page_counter_reset_watermark(counter);
29f2a4da
PE
3890 break;
3891 case RES_FAILCNT:
3e32cb2e 3892 counter->failcnt = 0;
29f2a4da 3893 break;
3e32cb2e
JW
3894 default:
3895 BUG();
29f2a4da 3896 }
f64c3f54 3897
6770c64e 3898 return nbytes;
c84872e1
PE
3899}
3900
182446d0 3901static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3902 struct cftype *cft)
3903{
182446d0 3904 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3905}
3906
02491447 3907#ifdef CONFIG_MMU
182446d0 3908static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3909 struct cftype *cft, u64 val)
3910{
182446d0 3911 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3912
1dfab5ab 3913 if (val & ~MOVE_MASK)
7dc74be0 3914 return -EINVAL;
ee5e8472 3915
7dc74be0 3916 /*
ee5e8472
GC
3917 * No kind of locking is needed in here, because ->can_attach() will
3918 * check this value once in the beginning of the process, and then carry
3919 * on with stale data. This means that changes to this value will only
3920 * affect task migrations starting after the change.
7dc74be0 3921 */
c0ff4b85 3922 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3923 return 0;
3924}
02491447 3925#else
182446d0 3926static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3927 struct cftype *cft, u64 val)
3928{
3929 return -ENOSYS;
3930}
3931#endif
7dc74be0 3932
406eb0c9 3933#ifdef CONFIG_NUMA
113b7dfd
JW
3934
3935#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3936#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3937#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3938
3939static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3940 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3941{
867e5e1d 3942 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3943 unsigned long nr = 0;
3944 enum lru_list lru;
3945
3946 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3947
3948 for_each_lru(lru) {
3949 if (!(BIT(lru) & lru_mask))
3950 continue;
dd8657b6
SB
3951 if (tree)
3952 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3953 else
3954 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3955 }
3956 return nr;
3957}
3958
3959static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3960 unsigned int lru_mask,
3961 bool tree)
113b7dfd
JW
3962{
3963 unsigned long nr = 0;
3964 enum lru_list lru;
3965
3966 for_each_lru(lru) {
3967 if (!(BIT(lru) & lru_mask))
3968 continue;
dd8657b6
SB
3969 if (tree)
3970 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3971 else
3972 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3973 }
3974 return nr;
3975}
3976
2da8ca82 3977static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3978{
25485de6
GT
3979 struct numa_stat {
3980 const char *name;
3981 unsigned int lru_mask;
3982 };
3983
3984 static const struct numa_stat stats[] = {
3985 { "total", LRU_ALL },
3986 { "file", LRU_ALL_FILE },
3987 { "anon", LRU_ALL_ANON },
3988 { "unevictable", BIT(LRU_UNEVICTABLE) },
3989 };
3990 const struct numa_stat *stat;
406eb0c9 3991 int nid;
aa9694bb 3992 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3993
fd25a9e0 3994 mem_cgroup_flush_stats();
2d146aa3 3995
25485de6 3996 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3997 seq_printf(m, "%s=%lu", stat->name,
3998 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3999 false));
4000 for_each_node_state(nid, N_MEMORY)
4001 seq_printf(m, " N%d=%lu", nid,
4002 mem_cgroup_node_nr_lru_pages(memcg, nid,
4003 stat->lru_mask, false));
25485de6 4004 seq_putc(m, '\n');
406eb0c9 4005 }
406eb0c9 4006
071aee13 4007 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4008
4009 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4010 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4011 true));
4012 for_each_node_state(nid, N_MEMORY)
4013 seq_printf(m, " N%d=%lu", nid,
4014 mem_cgroup_node_nr_lru_pages(memcg, nid,
4015 stat->lru_mask, true));
071aee13 4016 seq_putc(m, '\n');
406eb0c9 4017 }
406eb0c9 4018
406eb0c9
YH
4019 return 0;
4020}
4021#endif /* CONFIG_NUMA */
4022
c8713d0b 4023static const unsigned int memcg1_stats[] = {
0d1c2072 4024 NR_FILE_PAGES,
be5d0a74 4025 NR_ANON_MAPPED,
468c3982
JW
4026#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4027 NR_ANON_THPS,
4028#endif
c8713d0b
JW
4029 NR_SHMEM,
4030 NR_FILE_MAPPED,
4031 NR_FILE_DIRTY,
4032 NR_WRITEBACK,
e09b0b61
YS
4033 WORKINGSET_REFAULT_ANON,
4034 WORKINGSET_REFAULT_FILE,
c8713d0b
JW
4035 MEMCG_SWAP,
4036};
4037
4038static const char *const memcg1_stat_names[] = {
4039 "cache",
4040 "rss",
468c3982 4041#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4042 "rss_huge",
468c3982 4043#endif
c8713d0b
JW
4044 "shmem",
4045 "mapped_file",
4046 "dirty",
4047 "writeback",
e09b0b61
YS
4048 "workingset_refault_anon",
4049 "workingset_refault_file",
c8713d0b
JW
4050 "swap",
4051};
4052
df0e53d0 4053/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4054static const unsigned int memcg1_events[] = {
df0e53d0
JW
4055 PGPGIN,
4056 PGPGOUT,
4057 PGFAULT,
4058 PGMAJFAULT,
4059};
4060
2da8ca82 4061static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4062{
aa9694bb 4063 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4064 unsigned long memory, memsw;
af7c4b0e
JW
4065 struct mem_cgroup *mi;
4066 unsigned int i;
406eb0c9 4067
71cd3113 4068 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4069
fd25a9e0 4070 mem_cgroup_flush_stats();
2d146aa3 4071
71cd3113 4072 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4073 unsigned long nr;
4074
71cd3113 4075 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4076 continue;
468c3982 4077 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
e09b0b61
YS
4078 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4079 nr * memcg_page_state_unit(memcg1_stats[i]));
1dd3a273 4080 }
7b854121 4081
df0e53d0 4082 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4083 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4084 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4085
4086 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4087 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4088 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4089 PAGE_SIZE);
af7c4b0e 4090
14067bb3 4091 /* Hierarchical information */
3e32cb2e
JW
4092 memory = memsw = PAGE_COUNTER_MAX;
4093 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4094 memory = min(memory, READ_ONCE(mi->memory.max));
4095 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4096 }
3e32cb2e
JW
4097 seq_printf(m, "hierarchical_memory_limit %llu\n",
4098 (u64)memory * PAGE_SIZE);
7941d214 4099 if (do_memsw_account())
3e32cb2e
JW
4100 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4101 (u64)memsw * PAGE_SIZE);
7f016ee8 4102
8de7ecc6 4103 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4104 unsigned long nr;
4105
71cd3113 4106 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4107 continue;
7de2e9f1 4108 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4109 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
e09b0b61 4110 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
af7c4b0e
JW
4111 }
4112
8de7ecc6 4113 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4114 seq_printf(m, "total_%s %llu\n",
4115 vm_event_name(memcg1_events[i]),
dd923990 4116 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4117
8de7ecc6 4118 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4119 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4120 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4121 PAGE_SIZE);
14067bb3 4122
7f016ee8 4123#ifdef CONFIG_DEBUG_VM
7f016ee8 4124 {
ef8f2327
MG
4125 pg_data_t *pgdat;
4126 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4127 unsigned long anon_cost = 0;
4128 unsigned long file_cost = 0;
7f016ee8 4129
ef8f2327 4130 for_each_online_pgdat(pgdat) {
a3747b53 4131 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4132
1431d4d1
JW
4133 anon_cost += mz->lruvec.anon_cost;
4134 file_cost += mz->lruvec.file_cost;
ef8f2327 4135 }
1431d4d1
JW
4136 seq_printf(m, "anon_cost %lu\n", anon_cost);
4137 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4138 }
4139#endif
4140
d2ceb9b7
KH
4141 return 0;
4142}
4143
182446d0
TH
4144static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4145 struct cftype *cft)
a7885eb8 4146{
182446d0 4147 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4148
1f4c025b 4149 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4150}
4151
182446d0
TH
4152static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4153 struct cftype *cft, u64 val)
a7885eb8 4154{
182446d0 4155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4156
37bc3cb9 4157 if (val > 200)
a7885eb8
KM
4158 return -EINVAL;
4159
a4792030 4160 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4161 memcg->swappiness = val;
4162 else
4163 vm_swappiness = val;
068b38c1 4164
a7885eb8
KM
4165 return 0;
4166}
4167
2e72b634
KS
4168static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4169{
4170 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4171 unsigned long usage;
2e72b634
KS
4172 int i;
4173
4174 rcu_read_lock();
4175 if (!swap)
2c488db2 4176 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4177 else
2c488db2 4178 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4179
4180 if (!t)
4181 goto unlock;
4182
ce00a967 4183 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4184
4185 /*
748dad36 4186 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4187 * If it's not true, a threshold was crossed after last
4188 * call of __mem_cgroup_threshold().
4189 */
5407a562 4190 i = t->current_threshold;
2e72b634
KS
4191
4192 /*
4193 * Iterate backward over array of thresholds starting from
4194 * current_threshold and check if a threshold is crossed.
4195 * If none of thresholds below usage is crossed, we read
4196 * only one element of the array here.
4197 */
4198 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4199 eventfd_signal(t->entries[i].eventfd, 1);
4200
4201 /* i = current_threshold + 1 */
4202 i++;
4203
4204 /*
4205 * Iterate forward over array of thresholds starting from
4206 * current_threshold+1 and check if a threshold is crossed.
4207 * If none of thresholds above usage is crossed, we read
4208 * only one element of the array here.
4209 */
4210 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4211 eventfd_signal(t->entries[i].eventfd, 1);
4212
4213 /* Update current_threshold */
5407a562 4214 t->current_threshold = i - 1;
2e72b634
KS
4215unlock:
4216 rcu_read_unlock();
4217}
4218
4219static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4220{
ad4ca5f4
KS
4221 while (memcg) {
4222 __mem_cgroup_threshold(memcg, false);
7941d214 4223 if (do_memsw_account())
ad4ca5f4
KS
4224 __mem_cgroup_threshold(memcg, true);
4225
4226 memcg = parent_mem_cgroup(memcg);
4227 }
2e72b634
KS
4228}
4229
4230static int compare_thresholds(const void *a, const void *b)
4231{
4232 const struct mem_cgroup_threshold *_a = a;
4233 const struct mem_cgroup_threshold *_b = b;
4234
2bff24a3
GT
4235 if (_a->threshold > _b->threshold)
4236 return 1;
4237
4238 if (_a->threshold < _b->threshold)
4239 return -1;
4240
4241 return 0;
2e72b634
KS
4242}
4243
c0ff4b85 4244static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4245{
4246 struct mem_cgroup_eventfd_list *ev;
4247
2bcf2e92
MH
4248 spin_lock(&memcg_oom_lock);
4249
c0ff4b85 4250 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4251 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4252
4253 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4254 return 0;
4255}
4256
c0ff4b85 4257static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4258{
7d74b06f
KH
4259 struct mem_cgroup *iter;
4260
c0ff4b85 4261 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4262 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4263}
4264
59b6f873 4265static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4266 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4267{
2c488db2
KS
4268 struct mem_cgroup_thresholds *thresholds;
4269 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4270 unsigned long threshold;
4271 unsigned long usage;
2c488db2 4272 int i, size, ret;
2e72b634 4273
650c5e56 4274 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4275 if (ret)
4276 return ret;
4277
4278 mutex_lock(&memcg->thresholds_lock);
2c488db2 4279
05b84301 4280 if (type == _MEM) {
2c488db2 4281 thresholds = &memcg->thresholds;
ce00a967 4282 usage = mem_cgroup_usage(memcg, false);
05b84301 4283 } else if (type == _MEMSWAP) {
2c488db2 4284 thresholds = &memcg->memsw_thresholds;
ce00a967 4285 usage = mem_cgroup_usage(memcg, true);
05b84301 4286 } else
2e72b634
KS
4287 BUG();
4288
2e72b634 4289 /* Check if a threshold crossed before adding a new one */
2c488db2 4290 if (thresholds->primary)
2e72b634
KS
4291 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4292
2c488db2 4293 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4294
4295 /* Allocate memory for new array of thresholds */
67b8046f 4296 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4297 if (!new) {
2e72b634
KS
4298 ret = -ENOMEM;
4299 goto unlock;
4300 }
2c488db2 4301 new->size = size;
2e72b634
KS
4302
4303 /* Copy thresholds (if any) to new array */
e90342e6
GS
4304 if (thresholds->primary)
4305 memcpy(new->entries, thresholds->primary->entries,
4306 flex_array_size(new, entries, size - 1));
2c488db2 4307
2e72b634 4308 /* Add new threshold */
2c488db2
KS
4309 new->entries[size - 1].eventfd = eventfd;
4310 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4311
4312 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4313 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4314 compare_thresholds, NULL);
4315
4316 /* Find current threshold */
2c488db2 4317 new->current_threshold = -1;
2e72b634 4318 for (i = 0; i < size; i++) {
748dad36 4319 if (new->entries[i].threshold <= usage) {
2e72b634 4320 /*
2c488db2
KS
4321 * new->current_threshold will not be used until
4322 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4323 * it here.
4324 */
2c488db2 4325 ++new->current_threshold;
748dad36
SZ
4326 } else
4327 break;
2e72b634
KS
4328 }
4329
2c488db2
KS
4330 /* Free old spare buffer and save old primary buffer as spare */
4331 kfree(thresholds->spare);
4332 thresholds->spare = thresholds->primary;
4333
4334 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4335
907860ed 4336 /* To be sure that nobody uses thresholds */
2e72b634
KS
4337 synchronize_rcu();
4338
2e72b634
KS
4339unlock:
4340 mutex_unlock(&memcg->thresholds_lock);
4341
4342 return ret;
4343}
4344
59b6f873 4345static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4346 struct eventfd_ctx *eventfd, const char *args)
4347{
59b6f873 4348 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4349}
4350
59b6f873 4351static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4352 struct eventfd_ctx *eventfd, const char *args)
4353{
59b6f873 4354 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4355}
4356
59b6f873 4357static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4358 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4359{
2c488db2
KS
4360 struct mem_cgroup_thresholds *thresholds;
4361 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4362 unsigned long usage;
7d36665a 4363 int i, j, size, entries;
2e72b634
KS
4364
4365 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4366
4367 if (type == _MEM) {
2c488db2 4368 thresholds = &memcg->thresholds;
ce00a967 4369 usage = mem_cgroup_usage(memcg, false);
05b84301 4370 } else if (type == _MEMSWAP) {
2c488db2 4371 thresholds = &memcg->memsw_thresholds;
ce00a967 4372 usage = mem_cgroup_usage(memcg, true);
05b84301 4373 } else
2e72b634
KS
4374 BUG();
4375
371528ca
AV
4376 if (!thresholds->primary)
4377 goto unlock;
4378
2e72b634
KS
4379 /* Check if a threshold crossed before removing */
4380 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4381
4382 /* Calculate new number of threshold */
7d36665a 4383 size = entries = 0;
2c488db2
KS
4384 for (i = 0; i < thresholds->primary->size; i++) {
4385 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4386 size++;
7d36665a
CX
4387 else
4388 entries++;
2e72b634
KS
4389 }
4390
2c488db2 4391 new = thresholds->spare;
907860ed 4392
7d36665a
CX
4393 /* If no items related to eventfd have been cleared, nothing to do */
4394 if (!entries)
4395 goto unlock;
4396
2e72b634
KS
4397 /* Set thresholds array to NULL if we don't have thresholds */
4398 if (!size) {
2c488db2
KS
4399 kfree(new);
4400 new = NULL;
907860ed 4401 goto swap_buffers;
2e72b634
KS
4402 }
4403
2c488db2 4404 new->size = size;
2e72b634
KS
4405
4406 /* Copy thresholds and find current threshold */
2c488db2
KS
4407 new->current_threshold = -1;
4408 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4409 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4410 continue;
4411
2c488db2 4412 new->entries[j] = thresholds->primary->entries[i];
748dad36 4413 if (new->entries[j].threshold <= usage) {
2e72b634 4414 /*
2c488db2 4415 * new->current_threshold will not be used
2e72b634
KS
4416 * until rcu_assign_pointer(), so it's safe to increment
4417 * it here.
4418 */
2c488db2 4419 ++new->current_threshold;
2e72b634
KS
4420 }
4421 j++;
4422 }
4423
907860ed 4424swap_buffers:
2c488db2
KS
4425 /* Swap primary and spare array */
4426 thresholds->spare = thresholds->primary;
8c757763 4427
2c488db2 4428 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4429
907860ed 4430 /* To be sure that nobody uses thresholds */
2e72b634 4431 synchronize_rcu();
6611d8d7
MC
4432
4433 /* If all events are unregistered, free the spare array */
4434 if (!new) {
4435 kfree(thresholds->spare);
4436 thresholds->spare = NULL;
4437 }
371528ca 4438unlock:
2e72b634 4439 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4440}
c1e862c1 4441
59b6f873 4442static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4443 struct eventfd_ctx *eventfd)
4444{
59b6f873 4445 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4446}
4447
59b6f873 4448static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4449 struct eventfd_ctx *eventfd)
4450{
59b6f873 4451 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4452}
4453
59b6f873 4454static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4455 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4456{
9490ff27 4457 struct mem_cgroup_eventfd_list *event;
9490ff27 4458
9490ff27
KH
4459 event = kmalloc(sizeof(*event), GFP_KERNEL);
4460 if (!event)
4461 return -ENOMEM;
4462
1af8efe9 4463 spin_lock(&memcg_oom_lock);
9490ff27
KH
4464
4465 event->eventfd = eventfd;
4466 list_add(&event->list, &memcg->oom_notify);
4467
4468 /* already in OOM ? */
c2b42d3c 4469 if (memcg->under_oom)
9490ff27 4470 eventfd_signal(eventfd, 1);
1af8efe9 4471 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4472
4473 return 0;
4474}
4475
59b6f873 4476static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4477 struct eventfd_ctx *eventfd)
9490ff27 4478{
9490ff27 4479 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4480
1af8efe9 4481 spin_lock(&memcg_oom_lock);
9490ff27 4482
c0ff4b85 4483 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4484 if (ev->eventfd == eventfd) {
4485 list_del(&ev->list);
4486 kfree(ev);
4487 }
4488 }
4489
1af8efe9 4490 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4491}
4492
2da8ca82 4493static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4494{
aa9694bb 4495 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4496
791badbd 4497 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4498 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4499 seq_printf(sf, "oom_kill %lu\n",
4500 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4501 return 0;
4502}
4503
182446d0 4504static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4505 struct cftype *cft, u64 val)
4506{
182446d0 4507 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4508
4509 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4510 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4511 return -EINVAL;
4512
c0ff4b85 4513 memcg->oom_kill_disable = val;
4d845ebf 4514 if (!val)
c0ff4b85 4515 memcg_oom_recover(memcg);
3dae7fec 4516
3c11ecf4
KH
4517 return 0;
4518}
4519
52ebea74
TH
4520#ifdef CONFIG_CGROUP_WRITEBACK
4521
3a8e9ac8
TH
4522#include <trace/events/writeback.h>
4523
841710aa
TH
4524static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4525{
4526 return wb_domain_init(&memcg->cgwb_domain, gfp);
4527}
4528
4529static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4530{
4531 wb_domain_exit(&memcg->cgwb_domain);
4532}
4533
2529bb3a
TH
4534static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4535{
4536 wb_domain_size_changed(&memcg->cgwb_domain);
4537}
4538
841710aa
TH
4539struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4540{
4541 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4542
4543 if (!memcg->css.parent)
4544 return NULL;
4545
4546 return &memcg->cgwb_domain;
4547}
4548
c2aa723a
TH
4549/**
4550 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4551 * @wb: bdi_writeback in question
c5edf9cd
TH
4552 * @pfilepages: out parameter for number of file pages
4553 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4554 * @pdirty: out parameter for number of dirty pages
4555 * @pwriteback: out parameter for number of pages under writeback
4556 *
c5edf9cd
TH
4557 * Determine the numbers of file, headroom, dirty, and writeback pages in
4558 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4559 * is a bit more involved.
c2aa723a 4560 *
c5edf9cd
TH
4561 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4562 * headroom is calculated as the lowest headroom of itself and the
4563 * ancestors. Note that this doesn't consider the actual amount of
4564 * available memory in the system. The caller should further cap
4565 * *@pheadroom accordingly.
c2aa723a 4566 */
c5edf9cd
TH
4567void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4568 unsigned long *pheadroom, unsigned long *pdirty,
4569 unsigned long *pwriteback)
c2aa723a
TH
4570{
4571 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4572 struct mem_cgroup *parent;
c2aa723a 4573
fd25a9e0 4574 mem_cgroup_flush_stats();
c2aa723a 4575
2d146aa3
JW
4576 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4577 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4578 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4579 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4580
2d146aa3 4581 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4582 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4583 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4584 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4585 unsigned long used = page_counter_read(&memcg->memory);
4586
c5edf9cd 4587 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4588 memcg = parent;
4589 }
c2aa723a
TH
4590}
4591
97b27821
TH
4592/*
4593 * Foreign dirty flushing
4594 *
4595 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4596 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4597 * deliberate design decision because honoring per-page ownership in the
4598 * writeback path is complicated, may lead to higher CPU and IO overheads
4599 * and deemed unnecessary given that write-sharing an inode across
4600 * different cgroups isn't a common use-case.
4601 *
4602 * Combined with inode majority-writer ownership switching, this works well
4603 * enough in most cases but there are some pathological cases. For
4604 * example, let's say there are two cgroups A and B which keep writing to
4605 * different but confined parts of the same inode. B owns the inode and
4606 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4607 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4608 * triggering background writeback. A will be slowed down without a way to
4609 * make writeback of the dirty pages happen.
4610 *
f0953a1b 4611 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4612 * severely throttled after making some progress after each
f0953a1b 4613 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4614 * completely idle.
4615 *
4616 * Solving this problem completely requires matching the ownership tracking
4617 * granularities between memcg and writeback in either direction. However,
4618 * the more egregious behaviors can be avoided by simply remembering the
4619 * most recent foreign dirtying events and initiating remote flushes on
4620 * them when local writeback isn't enough to keep the memory clean enough.
4621 *
4622 * The following two functions implement such mechanism. When a foreign
4623 * page - a page whose memcg and writeback ownerships don't match - is
4624 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4625 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4626 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4627 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4628 * foreign bdi_writebacks which haven't expired. Both the numbers of
4629 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4630 * limited to MEMCG_CGWB_FRN_CNT.
4631 *
4632 * The mechanism only remembers IDs and doesn't hold any object references.
4633 * As being wrong occasionally doesn't matter, updates and accesses to the
4634 * records are lockless and racy.
4635 */
9d8053fc 4636void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4637 struct bdi_writeback *wb)
4638{
9d8053fc 4639 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4640 struct memcg_cgwb_frn *frn;
4641 u64 now = get_jiffies_64();
4642 u64 oldest_at = now;
4643 int oldest = -1;
4644 int i;
4645
9d8053fc 4646 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4647
97b27821
TH
4648 /*
4649 * Pick the slot to use. If there is already a slot for @wb, keep
4650 * using it. If not replace the oldest one which isn't being
4651 * written out.
4652 */
4653 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4654 frn = &memcg->cgwb_frn[i];
4655 if (frn->bdi_id == wb->bdi->id &&
4656 frn->memcg_id == wb->memcg_css->id)
4657 break;
4658 if (time_before64(frn->at, oldest_at) &&
4659 atomic_read(&frn->done.cnt) == 1) {
4660 oldest = i;
4661 oldest_at = frn->at;
4662 }
4663 }
4664
4665 if (i < MEMCG_CGWB_FRN_CNT) {
4666 /*
4667 * Re-using an existing one. Update timestamp lazily to
4668 * avoid making the cacheline hot. We want them to be
4669 * reasonably up-to-date and significantly shorter than
4670 * dirty_expire_interval as that's what expires the record.
4671 * Use the shorter of 1s and dirty_expire_interval / 8.
4672 */
4673 unsigned long update_intv =
4674 min_t(unsigned long, HZ,
4675 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4676
4677 if (time_before64(frn->at, now - update_intv))
4678 frn->at = now;
4679 } else if (oldest >= 0) {
4680 /* replace the oldest free one */
4681 frn = &memcg->cgwb_frn[oldest];
4682 frn->bdi_id = wb->bdi->id;
4683 frn->memcg_id = wb->memcg_css->id;
4684 frn->at = now;
4685 }
4686}
4687
4688/* issue foreign writeback flushes for recorded foreign dirtying events */
4689void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4690{
4691 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4692 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4693 u64 now = jiffies_64;
4694 int i;
4695
4696 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4697 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4698
4699 /*
4700 * If the record is older than dirty_expire_interval,
4701 * writeback on it has already started. No need to kick it
4702 * off again. Also, don't start a new one if there's
4703 * already one in flight.
4704 */
4705 if (time_after64(frn->at, now - intv) &&
4706 atomic_read(&frn->done.cnt) == 1) {
4707 frn->at = 0;
3a8e9ac8 4708 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4709 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4710 WB_REASON_FOREIGN_FLUSH,
4711 &frn->done);
4712 }
4713 }
4714}
4715
841710aa
TH
4716#else /* CONFIG_CGROUP_WRITEBACK */
4717
4718static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4719{
4720 return 0;
4721}
4722
4723static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4724{
4725}
4726
2529bb3a
TH
4727static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4728{
4729}
4730
52ebea74
TH
4731#endif /* CONFIG_CGROUP_WRITEBACK */
4732
3bc942f3
TH
4733/*
4734 * DO NOT USE IN NEW FILES.
4735 *
4736 * "cgroup.event_control" implementation.
4737 *
4738 * This is way over-engineered. It tries to support fully configurable
4739 * events for each user. Such level of flexibility is completely
4740 * unnecessary especially in the light of the planned unified hierarchy.
4741 *
4742 * Please deprecate this and replace with something simpler if at all
4743 * possible.
4744 */
4745
79bd9814
TH
4746/*
4747 * Unregister event and free resources.
4748 *
4749 * Gets called from workqueue.
4750 */
3bc942f3 4751static void memcg_event_remove(struct work_struct *work)
79bd9814 4752{
3bc942f3
TH
4753 struct mem_cgroup_event *event =
4754 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4755 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4756
4757 remove_wait_queue(event->wqh, &event->wait);
4758
59b6f873 4759 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4760
4761 /* Notify userspace the event is going away. */
4762 eventfd_signal(event->eventfd, 1);
4763
4764 eventfd_ctx_put(event->eventfd);
4765 kfree(event);
59b6f873 4766 css_put(&memcg->css);
79bd9814
TH
4767}
4768
4769/*
a9a08845 4770 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4771 *
4772 * Called with wqh->lock held and interrupts disabled.
4773 */
ac6424b9 4774static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4775 int sync, void *key)
79bd9814 4776{
3bc942f3
TH
4777 struct mem_cgroup_event *event =
4778 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4779 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4780 __poll_t flags = key_to_poll(key);
79bd9814 4781
a9a08845 4782 if (flags & EPOLLHUP) {
79bd9814
TH
4783 /*
4784 * If the event has been detached at cgroup removal, we
4785 * can simply return knowing the other side will cleanup
4786 * for us.
4787 *
4788 * We can't race against event freeing since the other
4789 * side will require wqh->lock via remove_wait_queue(),
4790 * which we hold.
4791 */
fba94807 4792 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4793 if (!list_empty(&event->list)) {
4794 list_del_init(&event->list);
4795 /*
4796 * We are in atomic context, but cgroup_event_remove()
4797 * may sleep, so we have to call it in workqueue.
4798 */
4799 schedule_work(&event->remove);
4800 }
fba94807 4801 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4802 }
4803
4804 return 0;
4805}
4806
3bc942f3 4807static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4808 wait_queue_head_t *wqh, poll_table *pt)
4809{
3bc942f3
TH
4810 struct mem_cgroup_event *event =
4811 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4812
4813 event->wqh = wqh;
4814 add_wait_queue(wqh, &event->wait);
4815}
4816
4817/*
3bc942f3
TH
4818 * DO NOT USE IN NEW FILES.
4819 *
79bd9814
TH
4820 * Parse input and register new cgroup event handler.
4821 *
4822 * Input must be in format '<event_fd> <control_fd> <args>'.
4823 * Interpretation of args is defined by control file implementation.
4824 */
451af504
TH
4825static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4826 char *buf, size_t nbytes, loff_t off)
79bd9814 4827{
451af504 4828 struct cgroup_subsys_state *css = of_css(of);
fba94807 4829 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4830 struct mem_cgroup_event *event;
79bd9814
TH
4831 struct cgroup_subsys_state *cfile_css;
4832 unsigned int efd, cfd;
4833 struct fd efile;
4834 struct fd cfile;
fba94807 4835 const char *name;
79bd9814
TH
4836 char *endp;
4837 int ret;
4838
2343e88d
SAS
4839 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4840 return -EOPNOTSUPP;
4841
451af504
TH
4842 buf = strstrip(buf);
4843
4844 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4845 if (*endp != ' ')
4846 return -EINVAL;
451af504 4847 buf = endp + 1;
79bd9814 4848
451af504 4849 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4850 if ((*endp != ' ') && (*endp != '\0'))
4851 return -EINVAL;
451af504 4852 buf = endp + 1;
79bd9814
TH
4853
4854 event = kzalloc(sizeof(*event), GFP_KERNEL);
4855 if (!event)
4856 return -ENOMEM;
4857
59b6f873 4858 event->memcg = memcg;
79bd9814 4859 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4860 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4861 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4862 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4863
4864 efile = fdget(efd);
4865 if (!efile.file) {
4866 ret = -EBADF;
4867 goto out_kfree;
4868 }
4869
4870 event->eventfd = eventfd_ctx_fileget(efile.file);
4871 if (IS_ERR(event->eventfd)) {
4872 ret = PTR_ERR(event->eventfd);
4873 goto out_put_efile;
4874 }
4875
4876 cfile = fdget(cfd);
4877 if (!cfile.file) {
4878 ret = -EBADF;
4879 goto out_put_eventfd;
4880 }
4881
4882 /* the process need read permission on control file */
4883 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4884 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4885 if (ret < 0)
4886 goto out_put_cfile;
4887
fba94807
TH
4888 /*
4889 * Determine the event callbacks and set them in @event. This used
4890 * to be done via struct cftype but cgroup core no longer knows
4891 * about these events. The following is crude but the whole thing
4892 * is for compatibility anyway.
3bc942f3
TH
4893 *
4894 * DO NOT ADD NEW FILES.
fba94807 4895 */
b583043e 4896 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4897
4898 if (!strcmp(name, "memory.usage_in_bytes")) {
4899 event->register_event = mem_cgroup_usage_register_event;
4900 event->unregister_event = mem_cgroup_usage_unregister_event;
4901 } else if (!strcmp(name, "memory.oom_control")) {
4902 event->register_event = mem_cgroup_oom_register_event;
4903 event->unregister_event = mem_cgroup_oom_unregister_event;
4904 } else if (!strcmp(name, "memory.pressure_level")) {
4905 event->register_event = vmpressure_register_event;
4906 event->unregister_event = vmpressure_unregister_event;
4907 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4908 event->register_event = memsw_cgroup_usage_register_event;
4909 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4910 } else {
4911 ret = -EINVAL;
4912 goto out_put_cfile;
4913 }
4914
79bd9814 4915 /*
b5557c4c
TH
4916 * Verify @cfile should belong to @css. Also, remaining events are
4917 * automatically removed on cgroup destruction but the removal is
4918 * asynchronous, so take an extra ref on @css.
79bd9814 4919 */
b583043e 4920 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4921 &memory_cgrp_subsys);
79bd9814 4922 ret = -EINVAL;
5a17f543 4923 if (IS_ERR(cfile_css))
79bd9814 4924 goto out_put_cfile;
5a17f543
TH
4925 if (cfile_css != css) {
4926 css_put(cfile_css);
79bd9814 4927 goto out_put_cfile;
5a17f543 4928 }
79bd9814 4929
451af504 4930 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4931 if (ret)
4932 goto out_put_css;
4933
9965ed17 4934 vfs_poll(efile.file, &event->pt);
79bd9814 4935
4ba9515d 4936 spin_lock_irq(&memcg->event_list_lock);
fba94807 4937 list_add(&event->list, &memcg->event_list);
4ba9515d 4938 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4939
4940 fdput(cfile);
4941 fdput(efile);
4942
451af504 4943 return nbytes;
79bd9814
TH
4944
4945out_put_css:
b5557c4c 4946 css_put(css);
79bd9814
TH
4947out_put_cfile:
4948 fdput(cfile);
4949out_put_eventfd:
4950 eventfd_ctx_put(event->eventfd);
4951out_put_efile:
4952 fdput(efile);
4953out_kfree:
4954 kfree(event);
4955
4956 return ret;
4957}
4958
c29b5b3d
MS
4959#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4960static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4961{
4962 /*
4963 * Deprecated.
df4ae285 4964 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
4965 */
4966 return 0;
4967}
4968#endif
4969
241994ed 4970static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4971 {
0eea1030 4972 .name = "usage_in_bytes",
8c7c6e34 4973 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4974 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4975 },
c84872e1
PE
4976 {
4977 .name = "max_usage_in_bytes",
8c7c6e34 4978 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4979 .write = mem_cgroup_reset,
791badbd 4980 .read_u64 = mem_cgroup_read_u64,
c84872e1 4981 },
8cdea7c0 4982 {
0eea1030 4983 .name = "limit_in_bytes",
8c7c6e34 4984 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4985 .write = mem_cgroup_write,
791badbd 4986 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4987 },
296c81d8
BS
4988 {
4989 .name = "soft_limit_in_bytes",
4990 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4991 .write = mem_cgroup_write,
791badbd 4992 .read_u64 = mem_cgroup_read_u64,
296c81d8 4993 },
8cdea7c0
BS
4994 {
4995 .name = "failcnt",
8c7c6e34 4996 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4997 .write = mem_cgroup_reset,
791badbd 4998 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4999 },
d2ceb9b7
KH
5000 {
5001 .name = "stat",
2da8ca82 5002 .seq_show = memcg_stat_show,
d2ceb9b7 5003 },
c1e862c1
KH
5004 {
5005 .name = "force_empty",
6770c64e 5006 .write = mem_cgroup_force_empty_write,
c1e862c1 5007 },
18f59ea7
BS
5008 {
5009 .name = "use_hierarchy",
5010 .write_u64 = mem_cgroup_hierarchy_write,
5011 .read_u64 = mem_cgroup_hierarchy_read,
5012 },
79bd9814 5013 {
3bc942f3 5014 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5015 .write = memcg_write_event_control,
7dbdb199 5016 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5017 },
a7885eb8
KM
5018 {
5019 .name = "swappiness",
5020 .read_u64 = mem_cgroup_swappiness_read,
5021 .write_u64 = mem_cgroup_swappiness_write,
5022 },
7dc74be0
DN
5023 {
5024 .name = "move_charge_at_immigrate",
5025 .read_u64 = mem_cgroup_move_charge_read,
5026 .write_u64 = mem_cgroup_move_charge_write,
5027 },
9490ff27
KH
5028 {
5029 .name = "oom_control",
2da8ca82 5030 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5031 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5032 },
70ddf637
AV
5033 {
5034 .name = "pressure_level",
70ddf637 5035 },
406eb0c9
YH
5036#ifdef CONFIG_NUMA
5037 {
5038 .name = "numa_stat",
2da8ca82 5039 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5040 },
5041#endif
510fc4e1
GC
5042 {
5043 .name = "kmem.limit_in_bytes",
5044 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5045 .write = mem_cgroup_write,
791badbd 5046 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5047 },
5048 {
5049 .name = "kmem.usage_in_bytes",
5050 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5051 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5052 },
5053 {
5054 .name = "kmem.failcnt",
5055 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5056 .write = mem_cgroup_reset,
791badbd 5057 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5058 },
5059 {
5060 .name = "kmem.max_usage_in_bytes",
5061 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5062 .write = mem_cgroup_reset,
791badbd 5063 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5064 },
a87425a3
YS
5065#if defined(CONFIG_MEMCG_KMEM) && \
5066 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5067 {
5068 .name = "kmem.slabinfo",
c29b5b3d 5069 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5070 },
5071#endif
d55f90bf
VD
5072 {
5073 .name = "kmem.tcp.limit_in_bytes",
5074 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5075 .write = mem_cgroup_write,
5076 .read_u64 = mem_cgroup_read_u64,
5077 },
5078 {
5079 .name = "kmem.tcp.usage_in_bytes",
5080 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5081 .read_u64 = mem_cgroup_read_u64,
5082 },
5083 {
5084 .name = "kmem.tcp.failcnt",
5085 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5086 .write = mem_cgroup_reset,
5087 .read_u64 = mem_cgroup_read_u64,
5088 },
5089 {
5090 .name = "kmem.tcp.max_usage_in_bytes",
5091 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5092 .write = mem_cgroup_reset,
5093 .read_u64 = mem_cgroup_read_u64,
5094 },
6bc10349 5095 { }, /* terminate */
af36f906 5096};
8c7c6e34 5097
73f576c0
JW
5098/*
5099 * Private memory cgroup IDR
5100 *
5101 * Swap-out records and page cache shadow entries need to store memcg
5102 * references in constrained space, so we maintain an ID space that is
5103 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5104 * memory-controlled cgroups to 64k.
5105 *
b8f2935f 5106 * However, there usually are many references to the offline CSS after
73f576c0
JW
5107 * the cgroup has been destroyed, such as page cache or reclaimable
5108 * slab objects, that don't need to hang on to the ID. We want to keep
5109 * those dead CSS from occupying IDs, or we might quickly exhaust the
5110 * relatively small ID space and prevent the creation of new cgroups
5111 * even when there are much fewer than 64k cgroups - possibly none.
5112 *
5113 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5114 * be freed and recycled when it's no longer needed, which is usually
5115 * when the CSS is offlined.
5116 *
5117 * The only exception to that are records of swapped out tmpfs/shmem
5118 * pages that need to be attributed to live ancestors on swapin. But
5119 * those references are manageable from userspace.
5120 */
5121
5122static DEFINE_IDR(mem_cgroup_idr);
5123
7e97de0b
KT
5124static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5125{
5126 if (memcg->id.id > 0) {
5127 idr_remove(&mem_cgroup_idr, memcg->id.id);
5128 memcg->id.id = 0;
5129 }
5130}
5131
c1514c0a
VF
5132static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5133 unsigned int n)
73f576c0 5134{
1c2d479a 5135 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5136}
5137
615d66c3 5138static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5139{
1c2d479a 5140 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5141 mem_cgroup_id_remove(memcg);
73f576c0
JW
5142
5143 /* Memcg ID pins CSS */
5144 css_put(&memcg->css);
5145 }
5146}
5147
615d66c3
VD
5148static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5149{
5150 mem_cgroup_id_put_many(memcg, 1);
5151}
5152
73f576c0
JW
5153/**
5154 * mem_cgroup_from_id - look up a memcg from a memcg id
5155 * @id: the memcg id to look up
5156 *
5157 * Caller must hold rcu_read_lock().
5158 */
5159struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5160{
5161 WARN_ON_ONCE(!rcu_read_lock_held());
5162 return idr_find(&mem_cgroup_idr, id);
5163}
5164
c15187a4
RG
5165#ifdef CONFIG_SHRINKER_DEBUG
5166struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5167{
5168 struct cgroup *cgrp;
5169 struct cgroup_subsys_state *css;
5170 struct mem_cgroup *memcg;
5171
5172 cgrp = cgroup_get_from_id(ino);
fa7e439c 5173 if (IS_ERR(cgrp))
c0f2df49 5174 return ERR_CAST(cgrp);
c15187a4
RG
5175
5176 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5177 if (css)
5178 memcg = container_of(css, struct mem_cgroup, css);
5179 else
5180 memcg = ERR_PTR(-ENOENT);
5181
5182 cgroup_put(cgrp);
5183
5184 return memcg;
5185}
5186#endif
5187
ef8f2327 5188static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5189{
5190 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5191
5192 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5193 if (!pn)
5194 return 1;
1ecaab2b 5195
7e1c0d6f
SB
5196 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5197 GFP_KERNEL_ACCOUNT);
5198 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5199 kfree(pn);
5200 return 1;
5201 }
5202
ef8f2327 5203 lruvec_init(&pn->lruvec);
ef8f2327
MG
5204 pn->memcg = memcg;
5205
54f72fe0 5206 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5207 return 0;
5208}
5209
ef8f2327 5210static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5211{
00f3ca2c
JW
5212 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5213
4eaf431f
MH
5214 if (!pn)
5215 return;
5216
7e1c0d6f 5217 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5218 kfree(pn);
1ecaab2b
KH
5219}
5220
40e952f9 5221static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5222{
c8b2a36f 5223 int node;
59927fb9 5224
c8b2a36f 5225 for_each_node(node)
ef8f2327 5226 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5227 kfree(memcg->vmstats);
871789d4 5228 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5229 kfree(memcg);
59927fb9 5230}
3afe36b1 5231
40e952f9
TE
5232static void mem_cgroup_free(struct mem_cgroup *memcg)
5233{
ec1c86b2 5234 lru_gen_exit_memcg(memcg);
40e952f9
TE
5235 memcg_wb_domain_exit(memcg);
5236 __mem_cgroup_free(memcg);
5237}
5238
0b8f73e1 5239static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5240{
d142e3e6 5241 struct mem_cgroup *memcg;
6d12e2d8 5242 int node;
97b27821 5243 int __maybe_unused i;
11d67612 5244 long error = -ENOMEM;
8cdea7c0 5245
06b2c3b0 5246 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5247 if (!memcg)
11d67612 5248 return ERR_PTR(error);
0b8f73e1 5249
73f576c0 5250 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5251 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5252 if (memcg->id.id < 0) {
5253 error = memcg->id.id;
73f576c0 5254 goto fail;
11d67612 5255 }
73f576c0 5256
410f8e82
SB
5257 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5258 if (!memcg->vmstats)
5259 goto fail;
5260
3e38e0aa
RG
5261 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5262 GFP_KERNEL_ACCOUNT);
871789d4 5263 if (!memcg->vmstats_percpu)
0b8f73e1 5264 goto fail;
78fb7466 5265
3ed28fa1 5266 for_each_node(node)
ef8f2327 5267 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5268 goto fail;
f64c3f54 5269
0b8f73e1
JW
5270 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5271 goto fail;
28dbc4b6 5272
f7e1cb6e 5273 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5274 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5275 mutex_init(&memcg->thresholds_lock);
5276 spin_lock_init(&memcg->move_lock);
70ddf637 5277 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5278 INIT_LIST_HEAD(&memcg->event_list);
5279 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5280 memcg->socket_pressure = jiffies;
84c07d11 5281#ifdef CONFIG_MEMCG_KMEM
900a38f0 5282 memcg->kmemcg_id = -1;
bf4f0599 5283 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5284#endif
52ebea74
TH
5285#ifdef CONFIG_CGROUP_WRITEBACK
5286 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5287 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5288 memcg->cgwb_frn[i].done =
5289 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5290#endif
5291#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5292 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5293 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5294 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5295#endif
73f576c0 5296 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
ec1c86b2 5297 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5298 return memcg;
5299fail:
7e97de0b 5300 mem_cgroup_id_remove(memcg);
40e952f9 5301 __mem_cgroup_free(memcg);
11d67612 5302 return ERR_PTR(error);
d142e3e6
GC
5303}
5304
0b8f73e1
JW
5305static struct cgroup_subsys_state * __ref
5306mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5307{
0b8f73e1 5308 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5309 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5310
b87d8cef 5311 old_memcg = set_active_memcg(parent);
0b8f73e1 5312 memcg = mem_cgroup_alloc();
b87d8cef 5313 set_active_memcg(old_memcg);
11d67612
YS
5314 if (IS_ERR(memcg))
5315 return ERR_CAST(memcg);
d142e3e6 5316
d1663a90 5317 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5318 memcg->soft_limit = PAGE_COUNTER_MAX;
f4840ccf
JW
5319#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5320 memcg->zswap_max = PAGE_COUNTER_MAX;
5321#endif
4b82ab4f 5322 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5323 if (parent) {
5324 memcg->swappiness = mem_cgroup_swappiness(parent);
5325 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5326
3e32cb2e 5327 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5328 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5329 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5330 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5331 } else {
8278f1c7 5332 init_memcg_events();
bef8620c
RG
5333 page_counter_init(&memcg->memory, NULL);
5334 page_counter_init(&memcg->swap, NULL);
5335 page_counter_init(&memcg->kmem, NULL);
5336 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5337
0b8f73e1
JW
5338 root_mem_cgroup = memcg;
5339 return &memcg->css;
5340 }
5341
f7e1cb6e 5342 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5343 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5344
0b8f73e1 5345 return &memcg->css;
0b8f73e1
JW
5346}
5347
73f576c0 5348static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5349{
58fa2a55
VD
5350 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5351
da0efe30
MS
5352 if (memcg_online_kmem(memcg))
5353 goto remove_id;
5354
0a4465d3 5355 /*
e4262c4f 5356 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5357 * by the time the maps are allocated. So, we allocate maps
5358 * here, when for_each_mem_cgroup() can't skip it.
5359 */
da0efe30
MS
5360 if (alloc_shrinker_info(memcg))
5361 goto offline_kmem;
0a4465d3 5362
73f576c0 5363 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5364 refcount_set(&memcg->id.ref, 1);
73f576c0 5365 css_get(css);
aa48e47e
SB
5366
5367 if (unlikely(mem_cgroup_is_root(memcg)))
5368 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5369 2UL*HZ);
2f7dd7a4 5370 return 0;
da0efe30
MS
5371offline_kmem:
5372 memcg_offline_kmem(memcg);
5373remove_id:
5374 mem_cgroup_id_remove(memcg);
5375 return -ENOMEM;
8cdea7c0
BS
5376}
5377
eb95419b 5378static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5379{
eb95419b 5380 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5381 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5382
5383 /*
5384 * Unregister events and notify userspace.
5385 * Notify userspace about cgroup removing only after rmdir of cgroup
5386 * directory to avoid race between userspace and kernelspace.
5387 */
4ba9515d 5388 spin_lock_irq(&memcg->event_list_lock);
fba94807 5389 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5390 list_del_init(&event->list);
5391 schedule_work(&event->remove);
5392 }
4ba9515d 5393 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5394
bf8d5d52 5395 page_counter_set_min(&memcg->memory, 0);
23067153 5396 page_counter_set_low(&memcg->memory, 0);
63677c74 5397
567e9ab2 5398 memcg_offline_kmem(memcg);
a178015c 5399 reparent_shrinker_deferred(memcg);
52ebea74 5400 wb_memcg_offline(memcg);
73f576c0 5401
591edfb1
RG
5402 drain_all_stock(memcg);
5403
73f576c0 5404 mem_cgroup_id_put(memcg);
df878fb0
KH
5405}
5406
6df38689
VD
5407static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5408{
5409 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5410
5411 invalidate_reclaim_iterators(memcg);
5412}
5413
eb95419b 5414static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5415{
eb95419b 5416 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5417 int __maybe_unused i;
c268e994 5418
97b27821
TH
5419#ifdef CONFIG_CGROUP_WRITEBACK
5420 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5421 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5422#endif
f7e1cb6e 5423 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5424 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5425
0db15298 5426 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5427 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5428
0b8f73e1
JW
5429 vmpressure_cleanup(&memcg->vmpressure);
5430 cancel_work_sync(&memcg->high_work);
5431 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5432 free_shrinker_info(memcg);
0b8f73e1 5433 mem_cgroup_free(memcg);
8cdea7c0
BS
5434}
5435
1ced953b
TH
5436/**
5437 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5438 * @css: the target css
5439 *
5440 * Reset the states of the mem_cgroup associated with @css. This is
5441 * invoked when the userland requests disabling on the default hierarchy
5442 * but the memcg is pinned through dependency. The memcg should stop
5443 * applying policies and should revert to the vanilla state as it may be
5444 * made visible again.
5445 *
5446 * The current implementation only resets the essential configurations.
5447 * This needs to be expanded to cover all the visible parts.
5448 */
5449static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5450{
5451 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5452
bbec2e15
RG
5453 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5454 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5455 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5456 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5457 page_counter_set_min(&memcg->memory, 0);
23067153 5458 page_counter_set_low(&memcg->memory, 0);
d1663a90 5459 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5460 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5461 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5462 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5463}
5464
2d146aa3
JW
5465static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5466{
5467 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5468 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5469 struct memcg_vmstats_percpu *statc;
5470 long delta, v;
7e1c0d6f 5471 int i, nid;
2d146aa3
JW
5472
5473 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5474
5475 for (i = 0; i < MEMCG_NR_STAT; i++) {
5476 /*
5477 * Collect the aggregated propagation counts of groups
5478 * below us. We're in a per-cpu loop here and this is
5479 * a global counter, so the first cycle will get them.
5480 */
410f8e82 5481 delta = memcg->vmstats->state_pending[i];
2d146aa3 5482 if (delta)
410f8e82 5483 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5484
5485 /* Add CPU changes on this level since the last flush */
5486 v = READ_ONCE(statc->state[i]);
5487 if (v != statc->state_prev[i]) {
5488 delta += v - statc->state_prev[i];
5489 statc->state_prev[i] = v;
5490 }
5491
5492 if (!delta)
5493 continue;
5494
5495 /* Aggregate counts on this level and propagate upwards */
410f8e82 5496 memcg->vmstats->state[i] += delta;
2d146aa3 5497 if (parent)
410f8e82 5498 parent->vmstats->state_pending[i] += delta;
2d146aa3
JW
5499 }
5500
8278f1c7 5501 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5502 delta = memcg->vmstats->events_pending[i];
2d146aa3 5503 if (delta)
410f8e82 5504 memcg->vmstats->events_pending[i] = 0;
2d146aa3
JW
5505
5506 v = READ_ONCE(statc->events[i]);
5507 if (v != statc->events_prev[i]) {
5508 delta += v - statc->events_prev[i];
5509 statc->events_prev[i] = v;
5510 }
5511
5512 if (!delta)
5513 continue;
5514
410f8e82 5515 memcg->vmstats->events[i] += delta;
2d146aa3 5516 if (parent)
410f8e82 5517 parent->vmstats->events_pending[i] += delta;
2d146aa3 5518 }
7e1c0d6f
SB
5519
5520 for_each_node_state(nid, N_MEMORY) {
5521 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5522 struct mem_cgroup_per_node *ppn = NULL;
5523 struct lruvec_stats_percpu *lstatc;
5524
5525 if (parent)
5526 ppn = parent->nodeinfo[nid];
5527
5528 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5529
5530 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5531 delta = pn->lruvec_stats.state_pending[i];
5532 if (delta)
5533 pn->lruvec_stats.state_pending[i] = 0;
5534
5535 v = READ_ONCE(lstatc->state[i]);
5536 if (v != lstatc->state_prev[i]) {
5537 delta += v - lstatc->state_prev[i];
5538 lstatc->state_prev[i] = v;
5539 }
5540
5541 if (!delta)
5542 continue;
5543
5544 pn->lruvec_stats.state[i] += delta;
5545 if (ppn)
5546 ppn->lruvec_stats.state_pending[i] += delta;
5547 }
5548 }
2d146aa3
JW
5549}
5550
02491447 5551#ifdef CONFIG_MMU
7dc74be0 5552/* Handlers for move charge at task migration. */
854ffa8d 5553static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5554{
05b84301 5555 int ret;
9476db97 5556
d0164adc
MG
5557 /* Try a single bulk charge without reclaim first, kswapd may wake */
5558 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5559 if (!ret) {
854ffa8d 5560 mc.precharge += count;
854ffa8d
DN
5561 return ret;
5562 }
9476db97 5563
3674534b 5564 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5565 while (count--) {
3674534b 5566 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5567 if (ret)
38c5d72f 5568 return ret;
854ffa8d 5569 mc.precharge++;
9476db97 5570 cond_resched();
854ffa8d 5571 }
9476db97 5572 return 0;
4ffef5fe
DN
5573}
5574
4ffef5fe
DN
5575union mc_target {
5576 struct page *page;
02491447 5577 swp_entry_t ent;
4ffef5fe
DN
5578};
5579
4ffef5fe 5580enum mc_target_type {
8d32ff84 5581 MC_TARGET_NONE = 0,
4ffef5fe 5582 MC_TARGET_PAGE,
02491447 5583 MC_TARGET_SWAP,
c733a828 5584 MC_TARGET_DEVICE,
4ffef5fe
DN
5585};
5586
90254a65
DN
5587static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5588 unsigned long addr, pte_t ptent)
4ffef5fe 5589{
25b2995a 5590 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5591
90254a65
DN
5592 if (!page || !page_mapped(page))
5593 return NULL;
5594 if (PageAnon(page)) {
1dfab5ab 5595 if (!(mc.flags & MOVE_ANON))
90254a65 5596 return NULL;
1dfab5ab
JW
5597 } else {
5598 if (!(mc.flags & MOVE_FILE))
5599 return NULL;
5600 }
90254a65
DN
5601 if (!get_page_unless_zero(page))
5602 return NULL;
5603
5604 return page;
5605}
5606
c733a828 5607#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5608static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5609 pte_t ptent, swp_entry_t *entry)
90254a65 5610{
90254a65
DN
5611 struct page *page = NULL;
5612 swp_entry_t ent = pte_to_swp_entry(ptent);
5613
9a137153 5614 if (!(mc.flags & MOVE_ANON))
90254a65 5615 return NULL;
c733a828
JG
5616
5617 /*
27674ef6
CH
5618 * Handle device private pages that are not accessible by the CPU, but
5619 * stored as special swap entries in the page table.
c733a828
JG
5620 */
5621 if (is_device_private_entry(ent)) {
af5cdaf8 5622 page = pfn_swap_entry_to_page(ent);
27674ef6 5623 if (!get_page_unless_zero(page))
c733a828
JG
5624 return NULL;
5625 return page;
5626 }
5627
9a137153
RC
5628 if (non_swap_entry(ent))
5629 return NULL;
5630
4b91355e 5631 /*
cb691e2f 5632 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5633 * we call find_get_page() with swapper_space directly.
5634 */
f6ab1f7f 5635 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5636 entry->val = ent.val;
90254a65
DN
5637
5638 return page;
5639}
4b91355e
KH
5640#else
5641static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5642 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5643{
5644 return NULL;
5645}
5646#endif
90254a65 5647
87946a72 5648static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5649 unsigned long addr, pte_t ptent)
87946a72 5650{
87946a72
DN
5651 if (!vma->vm_file) /* anonymous vma */
5652 return NULL;
1dfab5ab 5653 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5654 return NULL;
5655
87946a72 5656 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5657 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5658 return find_get_incore_page(vma->vm_file->f_mapping,
5659 linear_page_index(vma, addr));
87946a72
DN
5660}
5661
b1b0deab
CG
5662/**
5663 * mem_cgroup_move_account - move account of the page
5664 * @page: the page
25843c2b 5665 * @compound: charge the page as compound or small page
b1b0deab
CG
5666 * @from: mem_cgroup which the page is moved from.
5667 * @to: mem_cgroup which the page is moved to. @from != @to.
5668 *
3ac808fd 5669 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5670 *
5671 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5672 * from old cgroup.
5673 */
5674static int mem_cgroup_move_account(struct page *page,
f627c2f5 5675 bool compound,
b1b0deab
CG
5676 struct mem_cgroup *from,
5677 struct mem_cgroup *to)
5678{
fcce4672 5679 struct folio *folio = page_folio(page);
ae8af438
KK
5680 struct lruvec *from_vec, *to_vec;
5681 struct pglist_data *pgdat;
fcce4672 5682 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5683 int nid, ret;
b1b0deab
CG
5684
5685 VM_BUG_ON(from == to);
fcce4672 5686 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5687 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab
CG
5688
5689 /*
6a93ca8f 5690 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5691 * page's memory cgroup of its source page while we change it.
b1b0deab 5692 */
f627c2f5 5693 ret = -EBUSY;
fcce4672 5694 if (!folio_trylock(folio))
b1b0deab
CG
5695 goto out;
5696
5697 ret = -EINVAL;
fcce4672 5698 if (folio_memcg(folio) != from)
b1b0deab
CG
5699 goto out_unlock;
5700
fcce4672 5701 pgdat = folio_pgdat(folio);
867e5e1d
JW
5702 from_vec = mem_cgroup_lruvec(from, pgdat);
5703 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5704
fcce4672 5705 folio_memcg_lock(folio);
b1b0deab 5706
fcce4672
MWO
5707 if (folio_test_anon(folio)) {
5708 if (folio_mapped(folio)) {
be5d0a74
JW
5709 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5710 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5711 if (folio_test_transhuge(folio)) {
69473e5d
MS
5712 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5713 -nr_pages);
5714 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5715 nr_pages);
468c3982 5716 }
be5d0a74
JW
5717 }
5718 } else {
0d1c2072
JW
5719 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5720 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5721
fcce4672 5722 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5723 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5724 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5725 }
5726
fcce4672 5727 if (folio_mapped(folio)) {
49e50d27
JW
5728 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5729 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5730 }
b1b0deab 5731
fcce4672
MWO
5732 if (folio_test_dirty(folio)) {
5733 struct address_space *mapping = folio_mapping(folio);
c4843a75 5734
f56753ac 5735 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5736 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5737 -nr_pages);
5738 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5739 nr_pages);
5740 }
c4843a75
GT
5741 }
5742 }
5743
fcce4672 5744 if (folio_test_writeback(folio)) {
ae8af438
KK
5745 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5746 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5747 }
5748
5749 /*
abb242f5
JW
5750 * All state has been migrated, let's switch to the new memcg.
5751 *
bcfe06bf 5752 * It is safe to change page's memcg here because the page
abb242f5
JW
5753 * is referenced, charged, isolated, and locked: we can't race
5754 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5755 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5756 *
5757 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5758 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5759 * new memcg that isn't locked, the above state can change
5760 * concurrently again. Make sure we're truly done with it.
b1b0deab 5761 */
abb242f5 5762 smp_mb();
b1b0deab 5763
1a3e1f40
JW
5764 css_get(&to->css);
5765 css_put(&from->css);
5766
fcce4672 5767 folio->memcg_data = (unsigned long)to;
87eaceb3 5768
f70ad448 5769 __folio_memcg_unlock(from);
b1b0deab
CG
5770
5771 ret = 0;
fcce4672 5772 nid = folio_nid(folio);
b1b0deab
CG
5773
5774 local_irq_disable();
6e0110c2 5775 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5776 memcg_check_events(to, nid);
6e0110c2 5777 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5778 memcg_check_events(from, nid);
b1b0deab
CG
5779 local_irq_enable();
5780out_unlock:
fcce4672 5781 folio_unlock(folio);
b1b0deab
CG
5782out:
5783 return ret;
5784}
5785
7cf7806c
LR
5786/**
5787 * get_mctgt_type - get target type of moving charge
5788 * @vma: the vma the pte to be checked belongs
5789 * @addr: the address corresponding to the pte to be checked
5790 * @ptent: the pte to be checked
5791 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5792 *
5793 * Returns
5794 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5795 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5796 * move charge. if @target is not NULL, the page is stored in target->page
5797 * with extra refcnt got(Callers should handle it).
5798 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5799 * target for charge migration. if @target is not NULL, the entry is stored
5800 * in target->ent.
f25cbb7a
AS
5801 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5802 * thus not on the lru.
df6ad698
JG
5803 * For now we such page is charge like a regular page would be as for all
5804 * intent and purposes it is just special memory taking the place of a
5805 * regular page.
c733a828
JG
5806 *
5807 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5808 *
5809 * Called with pte lock held.
5810 */
5811
8d32ff84 5812static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5813 unsigned long addr, pte_t ptent, union mc_target *target)
5814{
5815 struct page *page = NULL;
8d32ff84 5816 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5817 swp_entry_t ent = { .val = 0 };
5818
5819 if (pte_present(ptent))
5820 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
5821 else if (pte_none_mostly(ptent))
5822 /*
5823 * PTE markers should be treated as a none pte here, separated
5824 * from other swap handling below.
5825 */
5826 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 5827 else if (is_swap_pte(ptent))
48406ef8 5828 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65
DN
5829
5830 if (!page && !ent.val)
8d32ff84 5831 return ret;
02491447 5832 if (page) {
02491447 5833 /*
0a31bc97 5834 * Do only loose check w/o serialization.
1306a85a 5835 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5836 * not under LRU exclusion.
02491447 5837 */
bcfe06bf 5838 if (page_memcg(page) == mc.from) {
02491447 5839 ret = MC_TARGET_PAGE;
f25cbb7a
AS
5840 if (is_device_private_page(page) ||
5841 is_device_coherent_page(page))
c733a828 5842 ret = MC_TARGET_DEVICE;
02491447
DN
5843 if (target)
5844 target->page = page;
5845 }
5846 if (!ret || !target)
5847 put_page(page);
5848 }
3e14a57b
HY
5849 /*
5850 * There is a swap entry and a page doesn't exist or isn't charged.
5851 * But we cannot move a tail-page in a THP.
5852 */
5853 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5854 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5855 ret = MC_TARGET_SWAP;
5856 if (target)
5857 target->ent = ent;
4ffef5fe 5858 }
4ffef5fe
DN
5859 return ret;
5860}
5861
12724850
NH
5862#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5863/*
d6810d73
HY
5864 * We don't consider PMD mapped swapping or file mapped pages because THP does
5865 * not support them for now.
12724850
NH
5866 * Caller should make sure that pmd_trans_huge(pmd) is true.
5867 */
5868static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5869 unsigned long addr, pmd_t pmd, union mc_target *target)
5870{
5871 struct page *page = NULL;
12724850
NH
5872 enum mc_target_type ret = MC_TARGET_NONE;
5873
84c3fc4e
ZY
5874 if (unlikely(is_swap_pmd(pmd))) {
5875 VM_BUG_ON(thp_migration_supported() &&
5876 !is_pmd_migration_entry(pmd));
5877 return ret;
5878 }
12724850 5879 page = pmd_page(pmd);
309381fe 5880 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5881 if (!(mc.flags & MOVE_ANON))
12724850 5882 return ret;
bcfe06bf 5883 if (page_memcg(page) == mc.from) {
12724850
NH
5884 ret = MC_TARGET_PAGE;
5885 if (target) {
5886 get_page(page);
5887 target->page = page;
5888 }
5889 }
5890 return ret;
5891}
5892#else
5893static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5894 unsigned long addr, pmd_t pmd, union mc_target *target)
5895{
5896 return MC_TARGET_NONE;
5897}
5898#endif
5899
4ffef5fe
DN
5900static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5901 unsigned long addr, unsigned long end,
5902 struct mm_walk *walk)
5903{
26bcd64a 5904 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5905 pte_t *pte;
5906 spinlock_t *ptl;
5907
b6ec57f4
KS
5908 ptl = pmd_trans_huge_lock(pmd, vma);
5909 if (ptl) {
c733a828
JG
5910 /*
5911 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5912 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5913 * this might change.
c733a828 5914 */
12724850
NH
5915 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5916 mc.precharge += HPAGE_PMD_NR;
bf929152 5917 spin_unlock(ptl);
1a5a9906 5918 return 0;
12724850 5919 }
03319327 5920
45f83cef
AA
5921 if (pmd_trans_unstable(pmd))
5922 return 0;
4ffef5fe
DN
5923 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5924 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5925 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5926 mc.precharge++; /* increment precharge temporarily */
5927 pte_unmap_unlock(pte - 1, ptl);
5928 cond_resched();
5929
7dc74be0
DN
5930 return 0;
5931}
5932
7b86ac33
CH
5933static const struct mm_walk_ops precharge_walk_ops = {
5934 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5935};
5936
4ffef5fe
DN
5937static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5938{
5939 unsigned long precharge;
4ffef5fe 5940
d8ed45c5 5941 mmap_read_lock(mm);
ba0aff8e 5942 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 5943 mmap_read_unlock(mm);
4ffef5fe
DN
5944
5945 precharge = mc.precharge;
5946 mc.precharge = 0;
5947
5948 return precharge;
5949}
5950
4ffef5fe
DN
5951static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5952{
dfe076b0
DN
5953 unsigned long precharge = mem_cgroup_count_precharge(mm);
5954
5955 VM_BUG_ON(mc.moving_task);
5956 mc.moving_task = current;
5957 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5958}
5959
dfe076b0
DN
5960/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5961static void __mem_cgroup_clear_mc(void)
4ffef5fe 5962{
2bd9bb20
KH
5963 struct mem_cgroup *from = mc.from;
5964 struct mem_cgroup *to = mc.to;
5965
4ffef5fe 5966 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5967 if (mc.precharge) {
00501b53 5968 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5969 mc.precharge = 0;
5970 }
5971 /*
5972 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5973 * we must uncharge here.
5974 */
5975 if (mc.moved_charge) {
00501b53 5976 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5977 mc.moved_charge = 0;
4ffef5fe 5978 }
483c30b5
DN
5979 /* we must fixup refcnts and charges */
5980 if (mc.moved_swap) {
483c30b5 5981 /* uncharge swap account from the old cgroup */
ce00a967 5982 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5983 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5984
615d66c3
VD
5985 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5986
05b84301 5987 /*
3e32cb2e
JW
5988 * we charged both to->memory and to->memsw, so we
5989 * should uncharge to->memory.
05b84301 5990 */
ce00a967 5991 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5992 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5993
483c30b5
DN
5994 mc.moved_swap = 0;
5995 }
dfe076b0
DN
5996 memcg_oom_recover(from);
5997 memcg_oom_recover(to);
5998 wake_up_all(&mc.waitq);
5999}
6000
6001static void mem_cgroup_clear_mc(void)
6002{
264a0ae1
TH
6003 struct mm_struct *mm = mc.mm;
6004
dfe076b0
DN
6005 /*
6006 * we must clear moving_task before waking up waiters at the end of
6007 * task migration.
6008 */
6009 mc.moving_task = NULL;
6010 __mem_cgroup_clear_mc();
2bd9bb20 6011 spin_lock(&mc.lock);
4ffef5fe
DN
6012 mc.from = NULL;
6013 mc.to = NULL;
264a0ae1 6014 mc.mm = NULL;
2bd9bb20 6015 spin_unlock(&mc.lock);
264a0ae1
TH
6016
6017 mmput(mm);
4ffef5fe
DN
6018}
6019
1f7dd3e5 6020static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6021{
1f7dd3e5 6022 struct cgroup_subsys_state *css;
eed67d75 6023 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6024 struct mem_cgroup *from;
4530eddb 6025 struct task_struct *leader, *p;
9f2115f9 6026 struct mm_struct *mm;
1dfab5ab 6027 unsigned long move_flags;
9f2115f9 6028 int ret = 0;
7dc74be0 6029
1f7dd3e5
TH
6030 /* charge immigration isn't supported on the default hierarchy */
6031 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6032 return 0;
6033
4530eddb
TH
6034 /*
6035 * Multi-process migrations only happen on the default hierarchy
6036 * where charge immigration is not used. Perform charge
6037 * immigration if @tset contains a leader and whine if there are
6038 * multiple.
6039 */
6040 p = NULL;
1f7dd3e5 6041 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6042 WARN_ON_ONCE(p);
6043 p = leader;
1f7dd3e5 6044 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6045 }
6046 if (!p)
6047 return 0;
6048
1f7dd3e5 6049 /*
f0953a1b 6050 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6051 * tunable will only affect upcoming migrations, not the current one.
6052 * So we need to save it, and keep it going.
6053 */
6054 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6055 if (!move_flags)
6056 return 0;
6057
9f2115f9
TH
6058 from = mem_cgroup_from_task(p);
6059
6060 VM_BUG_ON(from == memcg);
6061
6062 mm = get_task_mm(p);
6063 if (!mm)
6064 return 0;
6065 /* We move charges only when we move a owner of the mm */
6066 if (mm->owner == p) {
6067 VM_BUG_ON(mc.from);
6068 VM_BUG_ON(mc.to);
6069 VM_BUG_ON(mc.precharge);
6070 VM_BUG_ON(mc.moved_charge);
6071 VM_BUG_ON(mc.moved_swap);
6072
6073 spin_lock(&mc.lock);
264a0ae1 6074 mc.mm = mm;
9f2115f9
TH
6075 mc.from = from;
6076 mc.to = memcg;
6077 mc.flags = move_flags;
6078 spin_unlock(&mc.lock);
6079 /* We set mc.moving_task later */
6080
6081 ret = mem_cgroup_precharge_mc(mm);
6082 if (ret)
6083 mem_cgroup_clear_mc();
264a0ae1
TH
6084 } else {
6085 mmput(mm);
7dc74be0
DN
6086 }
6087 return ret;
6088}
6089
1f7dd3e5 6090static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6091{
4e2f245d
JW
6092 if (mc.to)
6093 mem_cgroup_clear_mc();
7dc74be0
DN
6094}
6095
4ffef5fe
DN
6096static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6097 unsigned long addr, unsigned long end,
6098 struct mm_walk *walk)
7dc74be0 6099{
4ffef5fe 6100 int ret = 0;
26bcd64a 6101 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6102 pte_t *pte;
6103 spinlock_t *ptl;
12724850
NH
6104 enum mc_target_type target_type;
6105 union mc_target target;
6106 struct page *page;
4ffef5fe 6107
b6ec57f4
KS
6108 ptl = pmd_trans_huge_lock(pmd, vma);
6109 if (ptl) {
62ade86a 6110 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6111 spin_unlock(ptl);
12724850
NH
6112 return 0;
6113 }
6114 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6115 if (target_type == MC_TARGET_PAGE) {
6116 page = target.page;
6117 if (!isolate_lru_page(page)) {
f627c2f5 6118 if (!mem_cgroup_move_account(page, true,
1306a85a 6119 mc.from, mc.to)) {
12724850
NH
6120 mc.precharge -= HPAGE_PMD_NR;
6121 mc.moved_charge += HPAGE_PMD_NR;
6122 }
6123 putback_lru_page(page);
6124 }
6125 put_page(page);
c733a828
JG
6126 } else if (target_type == MC_TARGET_DEVICE) {
6127 page = target.page;
6128 if (!mem_cgroup_move_account(page, true,
6129 mc.from, mc.to)) {
6130 mc.precharge -= HPAGE_PMD_NR;
6131 mc.moved_charge += HPAGE_PMD_NR;
6132 }
6133 put_page(page);
12724850 6134 }
bf929152 6135 spin_unlock(ptl);
1a5a9906 6136 return 0;
12724850
NH
6137 }
6138
45f83cef
AA
6139 if (pmd_trans_unstable(pmd))
6140 return 0;
4ffef5fe
DN
6141retry:
6142 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6143 for (; addr != end; addr += PAGE_SIZE) {
6144 pte_t ptent = *(pte++);
c733a828 6145 bool device = false;
02491447 6146 swp_entry_t ent;
4ffef5fe
DN
6147
6148 if (!mc.precharge)
6149 break;
6150
8d32ff84 6151 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6152 case MC_TARGET_DEVICE:
6153 device = true;
e4a9bc58 6154 fallthrough;
4ffef5fe
DN
6155 case MC_TARGET_PAGE:
6156 page = target.page;
53f9263b
KS
6157 /*
6158 * We can have a part of the split pmd here. Moving it
6159 * can be done but it would be too convoluted so simply
6160 * ignore such a partial THP and keep it in original
6161 * memcg. There should be somebody mapping the head.
6162 */
6163 if (PageTransCompound(page))
6164 goto put;
c733a828 6165 if (!device && isolate_lru_page(page))
4ffef5fe 6166 goto put;
f627c2f5
KS
6167 if (!mem_cgroup_move_account(page, false,
6168 mc.from, mc.to)) {
4ffef5fe 6169 mc.precharge--;
854ffa8d
DN
6170 /* we uncharge from mc.from later. */
6171 mc.moved_charge++;
4ffef5fe 6172 }
c733a828
JG
6173 if (!device)
6174 putback_lru_page(page);
8d32ff84 6175put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6176 put_page(page);
6177 break;
02491447
DN
6178 case MC_TARGET_SWAP:
6179 ent = target.ent;
e91cbb42 6180 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6181 mc.precharge--;
8d22a935
HD
6182 mem_cgroup_id_get_many(mc.to, 1);
6183 /* we fixup other refcnts and charges later. */
483c30b5
DN
6184 mc.moved_swap++;
6185 }
02491447 6186 break;
4ffef5fe
DN
6187 default:
6188 break;
6189 }
6190 }
6191 pte_unmap_unlock(pte - 1, ptl);
6192 cond_resched();
6193
6194 if (addr != end) {
6195 /*
6196 * We have consumed all precharges we got in can_attach().
6197 * We try charge one by one, but don't do any additional
6198 * charges to mc.to if we have failed in charge once in attach()
6199 * phase.
6200 */
854ffa8d 6201 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6202 if (!ret)
6203 goto retry;
6204 }
6205
6206 return ret;
6207}
6208
7b86ac33
CH
6209static const struct mm_walk_ops charge_walk_ops = {
6210 .pmd_entry = mem_cgroup_move_charge_pte_range,
6211};
6212
264a0ae1 6213static void mem_cgroup_move_charge(void)
4ffef5fe 6214{
4ffef5fe 6215 lru_add_drain_all();
312722cb 6216 /*
81f8c3a4
JW
6217 * Signal lock_page_memcg() to take the memcg's move_lock
6218 * while we're moving its pages to another memcg. Then wait
6219 * for already started RCU-only updates to finish.
312722cb
JW
6220 */
6221 atomic_inc(&mc.from->moving_account);
6222 synchronize_rcu();
dfe076b0 6223retry:
d8ed45c5 6224 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6225 /*
c1e8d7c6 6226 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6227 * waitq. So we cancel all extra charges, wake up all waiters,
6228 * and retry. Because we cancel precharges, we might not be able
6229 * to move enough charges, but moving charge is a best-effort
6230 * feature anyway, so it wouldn't be a big problem.
6231 */
6232 __mem_cgroup_clear_mc();
6233 cond_resched();
6234 goto retry;
6235 }
26bcd64a
NH
6236 /*
6237 * When we have consumed all precharges and failed in doing
6238 * additional charge, the page walk just aborts.
6239 */
ba0aff8e 6240 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6241 mmap_read_unlock(mc.mm);
312722cb 6242 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6243}
6244
264a0ae1 6245static void mem_cgroup_move_task(void)
67e465a7 6246{
264a0ae1
TH
6247 if (mc.to) {
6248 mem_cgroup_move_charge();
a433658c 6249 mem_cgroup_clear_mc();
264a0ae1 6250 }
67e465a7 6251}
5cfb80a7 6252#else /* !CONFIG_MMU */
1f7dd3e5 6253static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6254{
6255 return 0;
6256}
1f7dd3e5 6257static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6258{
6259}
264a0ae1 6260static void mem_cgroup_move_task(void)
5cfb80a7
DN
6261{
6262}
6263#endif
67e465a7 6264
bd74fdae
YZ
6265#ifdef CONFIG_LRU_GEN
6266static void mem_cgroup_attach(struct cgroup_taskset *tset)
6267{
6268 struct task_struct *task;
6269 struct cgroup_subsys_state *css;
6270
6271 /* find the first leader if there is any */
6272 cgroup_taskset_for_each_leader(task, css, tset)
6273 break;
6274
6275 if (!task)
6276 return;
6277
6278 task_lock(task);
6279 if (task->mm && READ_ONCE(task->mm->owner) == task)
6280 lru_gen_migrate_mm(task->mm);
6281 task_unlock(task);
6282}
6283#else
6284static void mem_cgroup_attach(struct cgroup_taskset *tset)
6285{
6286}
6287#endif /* CONFIG_LRU_GEN */
6288
677dc973
CD
6289static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6290{
6291 if (value == PAGE_COUNTER_MAX)
6292 seq_puts(m, "max\n");
6293 else
6294 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6295
6296 return 0;
6297}
6298
241994ed
JW
6299static u64 memory_current_read(struct cgroup_subsys_state *css,
6300 struct cftype *cft)
6301{
f5fc3c5d
JW
6302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6303
6304 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6305}
6306
8e20d4b3
GR
6307static u64 memory_peak_read(struct cgroup_subsys_state *css,
6308 struct cftype *cft)
6309{
6310 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6311
6312 return (u64)memcg->memory.watermark * PAGE_SIZE;
6313}
6314
bf8d5d52
RG
6315static int memory_min_show(struct seq_file *m, void *v)
6316{
677dc973
CD
6317 return seq_puts_memcg_tunable(m,
6318 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6319}
6320
6321static ssize_t memory_min_write(struct kernfs_open_file *of,
6322 char *buf, size_t nbytes, loff_t off)
6323{
6324 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6325 unsigned long min;
6326 int err;
6327
6328 buf = strstrip(buf);
6329 err = page_counter_memparse(buf, "max", &min);
6330 if (err)
6331 return err;
6332
6333 page_counter_set_min(&memcg->memory, min);
6334
6335 return nbytes;
6336}
6337
241994ed
JW
6338static int memory_low_show(struct seq_file *m, void *v)
6339{
677dc973
CD
6340 return seq_puts_memcg_tunable(m,
6341 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6342}
6343
6344static ssize_t memory_low_write(struct kernfs_open_file *of,
6345 char *buf, size_t nbytes, loff_t off)
6346{
6347 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6348 unsigned long low;
6349 int err;
6350
6351 buf = strstrip(buf);
d2973697 6352 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6353 if (err)
6354 return err;
6355
23067153 6356 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6357
6358 return nbytes;
6359}
6360
6361static int memory_high_show(struct seq_file *m, void *v)
6362{
d1663a90
JK
6363 return seq_puts_memcg_tunable(m,
6364 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6365}
6366
6367static ssize_t memory_high_write(struct kernfs_open_file *of,
6368 char *buf, size_t nbytes, loff_t off)
6369{
6370 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6371 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6372 bool drained = false;
241994ed
JW
6373 unsigned long high;
6374 int err;
6375
6376 buf = strstrip(buf);
d2973697 6377 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6378 if (err)
6379 return err;
6380
e82553c1
JW
6381 page_counter_set_high(&memcg->memory, high);
6382
8c8c383c
JW
6383 for (;;) {
6384 unsigned long nr_pages = page_counter_read(&memcg->memory);
6385 unsigned long reclaimed;
6386
6387 if (nr_pages <= high)
6388 break;
6389
6390 if (signal_pending(current))
6391 break;
6392
6393 if (!drained) {
6394 drain_all_stock(memcg);
6395 drained = true;
6396 continue;
6397 }
6398
6399 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
73b73bac 6400 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6401
6402 if (!reclaimed && !nr_retries--)
6403 break;
6404 }
588083bb 6405
19ce33ac 6406 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6407 return nbytes;
6408}
6409
6410static int memory_max_show(struct seq_file *m, void *v)
6411{
677dc973
CD
6412 return seq_puts_memcg_tunable(m,
6413 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6414}
6415
6416static ssize_t memory_max_write(struct kernfs_open_file *of,
6417 char *buf, size_t nbytes, loff_t off)
6418{
6419 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6420 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6421 bool drained = false;
241994ed
JW
6422 unsigned long max;
6423 int err;
6424
6425 buf = strstrip(buf);
d2973697 6426 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6427 if (err)
6428 return err;
6429
bbec2e15 6430 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6431
6432 for (;;) {
6433 unsigned long nr_pages = page_counter_read(&memcg->memory);
6434
6435 if (nr_pages <= max)
6436 break;
6437
7249c9f0 6438 if (signal_pending(current))
b6e6edcf 6439 break;
b6e6edcf
JW
6440
6441 if (!drained) {
6442 drain_all_stock(memcg);
6443 drained = true;
6444 continue;
6445 }
6446
6447 if (nr_reclaims) {
6448 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
73b73bac 6449 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6450 nr_reclaims--;
6451 continue;
6452 }
6453
e27be240 6454 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6455 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6456 break;
6457 }
241994ed 6458
2529bb3a 6459 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6460 return nbytes;
6461}
6462
1e577f97
SB
6463static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6464{
6465 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6466 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6467 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6468 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6469 seq_printf(m, "oom_kill %lu\n",
6470 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6471 seq_printf(m, "oom_group_kill %lu\n",
6472 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6473}
6474
241994ed
JW
6475static int memory_events_show(struct seq_file *m, void *v)
6476{
aa9694bb 6477 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6478
1e577f97
SB
6479 __memory_events_show(m, memcg->memory_events);
6480 return 0;
6481}
6482
6483static int memory_events_local_show(struct seq_file *m, void *v)
6484{
6485 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6486
1e577f97 6487 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6488 return 0;
6489}
6490
587d9f72
JW
6491static int memory_stat_show(struct seq_file *m, void *v)
6492{
aa9694bb 6493 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6494 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1ff9e6e1 6495
c8713d0b
JW
6496 if (!buf)
6497 return -ENOMEM;
68aaee14 6498 memory_stat_format(memcg, buf, PAGE_SIZE);
c8713d0b
JW
6499 seq_puts(m, buf);
6500 kfree(buf);
587d9f72
JW
6501 return 0;
6502}
6503
5f9a4f4a 6504#ifdef CONFIG_NUMA
fff66b79
MS
6505static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6506 int item)
6507{
6508 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6509}
6510
5f9a4f4a
MS
6511static int memory_numa_stat_show(struct seq_file *m, void *v)
6512{
6513 int i;
6514 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6515
fd25a9e0 6516 mem_cgroup_flush_stats();
7e1c0d6f 6517
5f9a4f4a
MS
6518 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6519 int nid;
6520
6521 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6522 continue;
6523
6524 seq_printf(m, "%s", memory_stats[i].name);
6525 for_each_node_state(nid, N_MEMORY) {
6526 u64 size;
6527 struct lruvec *lruvec;
6528
6529 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6530 size = lruvec_page_state_output(lruvec,
6531 memory_stats[i].idx);
5f9a4f4a
MS
6532 seq_printf(m, " N%d=%llu", nid, size);
6533 }
6534 seq_putc(m, '\n');
6535 }
6536
6537 return 0;
6538}
6539#endif
6540
3d8b38eb
RG
6541static int memory_oom_group_show(struct seq_file *m, void *v)
6542{
aa9694bb 6543 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6544
6545 seq_printf(m, "%d\n", memcg->oom_group);
6546
6547 return 0;
6548}
6549
6550static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6551 char *buf, size_t nbytes, loff_t off)
6552{
6553 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6554 int ret, oom_group;
6555
6556 buf = strstrip(buf);
6557 if (!buf)
6558 return -EINVAL;
6559
6560 ret = kstrtoint(buf, 0, &oom_group);
6561 if (ret)
6562 return ret;
6563
6564 if (oom_group != 0 && oom_group != 1)
6565 return -EINVAL;
6566
6567 memcg->oom_group = oom_group;
6568
6569 return nbytes;
6570}
6571
94968384
SB
6572static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6573 size_t nbytes, loff_t off)
6574{
6575 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6576 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6577 unsigned long nr_to_reclaim, nr_reclaimed = 0;
73b73bac 6578 unsigned int reclaim_options;
94968384
SB
6579 int err;
6580
6581 buf = strstrip(buf);
6582 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6583 if (err)
6584 return err;
6585
73b73bac 6586 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6587 while (nr_reclaimed < nr_to_reclaim) {
6588 unsigned long reclaimed;
6589
6590 if (signal_pending(current))
6591 return -EINTR;
6592
6593 /*
6594 * This is the final attempt, drain percpu lru caches in the
6595 * hope of introducing more evictable pages for
6596 * try_to_free_mem_cgroup_pages().
6597 */
6598 if (!nr_retries)
6599 lru_add_drain_all();
6600
6601 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6602 nr_to_reclaim - nr_reclaimed,
73b73bac 6603 GFP_KERNEL, reclaim_options);
94968384
SB
6604
6605 if (!reclaimed && !nr_retries--)
6606 return -EAGAIN;
6607
6608 nr_reclaimed += reclaimed;
6609 }
6610
6611 return nbytes;
6612}
6613
241994ed
JW
6614static struct cftype memory_files[] = {
6615 {
6616 .name = "current",
f5fc3c5d 6617 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6618 .read_u64 = memory_current_read,
6619 },
8e20d4b3
GR
6620 {
6621 .name = "peak",
6622 .flags = CFTYPE_NOT_ON_ROOT,
6623 .read_u64 = memory_peak_read,
6624 },
bf8d5d52
RG
6625 {
6626 .name = "min",
6627 .flags = CFTYPE_NOT_ON_ROOT,
6628 .seq_show = memory_min_show,
6629 .write = memory_min_write,
6630 },
241994ed
JW
6631 {
6632 .name = "low",
6633 .flags = CFTYPE_NOT_ON_ROOT,
6634 .seq_show = memory_low_show,
6635 .write = memory_low_write,
6636 },
6637 {
6638 .name = "high",
6639 .flags = CFTYPE_NOT_ON_ROOT,
6640 .seq_show = memory_high_show,
6641 .write = memory_high_write,
6642 },
6643 {
6644 .name = "max",
6645 .flags = CFTYPE_NOT_ON_ROOT,
6646 .seq_show = memory_max_show,
6647 .write = memory_max_write,
6648 },
6649 {
6650 .name = "events",
6651 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6652 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6653 .seq_show = memory_events_show,
6654 },
1e577f97
SB
6655 {
6656 .name = "events.local",
6657 .flags = CFTYPE_NOT_ON_ROOT,
6658 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6659 .seq_show = memory_events_local_show,
6660 },
587d9f72
JW
6661 {
6662 .name = "stat",
587d9f72
JW
6663 .seq_show = memory_stat_show,
6664 },
5f9a4f4a
MS
6665#ifdef CONFIG_NUMA
6666 {
6667 .name = "numa_stat",
6668 .seq_show = memory_numa_stat_show,
6669 },
6670#endif
3d8b38eb
RG
6671 {
6672 .name = "oom.group",
6673 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6674 .seq_show = memory_oom_group_show,
6675 .write = memory_oom_group_write,
6676 },
94968384
SB
6677 {
6678 .name = "reclaim",
6679 .flags = CFTYPE_NS_DELEGATABLE,
6680 .write = memory_reclaim,
6681 },
241994ed
JW
6682 { } /* terminate */
6683};
6684
073219e9 6685struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6686 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6687 .css_online = mem_cgroup_css_online,
92fb9748 6688 .css_offline = mem_cgroup_css_offline,
6df38689 6689 .css_released = mem_cgroup_css_released,
92fb9748 6690 .css_free = mem_cgroup_css_free,
1ced953b 6691 .css_reset = mem_cgroup_css_reset,
2d146aa3 6692 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 6693 .can_attach = mem_cgroup_can_attach,
bd74fdae 6694 .attach = mem_cgroup_attach,
7dc74be0 6695 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6696 .post_attach = mem_cgroup_move_task,
241994ed
JW
6697 .dfl_cftypes = memory_files,
6698 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6699 .early_init = 0,
8cdea7c0 6700};
c077719b 6701
bc50bcc6
JW
6702/*
6703 * This function calculates an individual cgroup's effective
6704 * protection which is derived from its own memory.min/low, its
6705 * parent's and siblings' settings, as well as the actual memory
6706 * distribution in the tree.
6707 *
6708 * The following rules apply to the effective protection values:
6709 *
6710 * 1. At the first level of reclaim, effective protection is equal to
6711 * the declared protection in memory.min and memory.low.
6712 *
6713 * 2. To enable safe delegation of the protection configuration, at
6714 * subsequent levels the effective protection is capped to the
6715 * parent's effective protection.
6716 *
6717 * 3. To make complex and dynamic subtrees easier to configure, the
6718 * user is allowed to overcommit the declared protection at a given
6719 * level. If that is the case, the parent's effective protection is
6720 * distributed to the children in proportion to how much protection
6721 * they have declared and how much of it they are utilizing.
6722 *
6723 * This makes distribution proportional, but also work-conserving:
6724 * if one cgroup claims much more protection than it uses memory,
6725 * the unused remainder is available to its siblings.
6726 *
6727 * 4. Conversely, when the declared protection is undercommitted at a
6728 * given level, the distribution of the larger parental protection
6729 * budget is NOT proportional. A cgroup's protection from a sibling
6730 * is capped to its own memory.min/low setting.
6731 *
8a931f80
JW
6732 * 5. However, to allow protecting recursive subtrees from each other
6733 * without having to declare each individual cgroup's fixed share
6734 * of the ancestor's claim to protection, any unutilized -
6735 * "floating" - protection from up the tree is distributed in
6736 * proportion to each cgroup's *usage*. This makes the protection
6737 * neutral wrt sibling cgroups and lets them compete freely over
6738 * the shared parental protection budget, but it protects the
6739 * subtree as a whole from neighboring subtrees.
6740 *
6741 * Note that 4. and 5. are not in conflict: 4. is about protecting
6742 * against immediate siblings whereas 5. is about protecting against
6743 * neighboring subtrees.
bc50bcc6
JW
6744 */
6745static unsigned long effective_protection(unsigned long usage,
8a931f80 6746 unsigned long parent_usage,
bc50bcc6
JW
6747 unsigned long setting,
6748 unsigned long parent_effective,
6749 unsigned long siblings_protected)
6750{
6751 unsigned long protected;
8a931f80 6752 unsigned long ep;
bc50bcc6
JW
6753
6754 protected = min(usage, setting);
6755 /*
6756 * If all cgroups at this level combined claim and use more
6757 * protection then what the parent affords them, distribute
6758 * shares in proportion to utilization.
6759 *
6760 * We are using actual utilization rather than the statically
6761 * claimed protection in order to be work-conserving: claimed
6762 * but unused protection is available to siblings that would
6763 * otherwise get a smaller chunk than what they claimed.
6764 */
6765 if (siblings_protected > parent_effective)
6766 return protected * parent_effective / siblings_protected;
6767
6768 /*
6769 * Ok, utilized protection of all children is within what the
6770 * parent affords them, so we know whatever this child claims
6771 * and utilizes is effectively protected.
6772 *
6773 * If there is unprotected usage beyond this value, reclaim
6774 * will apply pressure in proportion to that amount.
6775 *
6776 * If there is unutilized protection, the cgroup will be fully
6777 * shielded from reclaim, but we do return a smaller value for
6778 * protection than what the group could enjoy in theory. This
6779 * is okay. With the overcommit distribution above, effective
6780 * protection is always dependent on how memory is actually
6781 * consumed among the siblings anyway.
6782 */
8a931f80
JW
6783 ep = protected;
6784
6785 /*
6786 * If the children aren't claiming (all of) the protection
6787 * afforded to them by the parent, distribute the remainder in
6788 * proportion to the (unprotected) memory of each cgroup. That
6789 * way, cgroups that aren't explicitly prioritized wrt each
6790 * other compete freely over the allowance, but they are
6791 * collectively protected from neighboring trees.
6792 *
6793 * We're using unprotected memory for the weight so that if
6794 * some cgroups DO claim explicit protection, we don't protect
6795 * the same bytes twice.
cd324edc
JW
6796 *
6797 * Check both usage and parent_usage against the respective
6798 * protected values. One should imply the other, but they
6799 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6800 */
6801 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6802 return ep;
cd324edc
JW
6803 if (parent_effective > siblings_protected &&
6804 parent_usage > siblings_protected &&
6805 usage > protected) {
8a931f80
JW
6806 unsigned long unclaimed;
6807
6808 unclaimed = parent_effective - siblings_protected;
6809 unclaimed *= usage - protected;
6810 unclaimed /= parent_usage - siblings_protected;
6811
6812 ep += unclaimed;
6813 }
6814
6815 return ep;
bc50bcc6
JW
6816}
6817
241994ed 6818/**
05395718 6819 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6820 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6821 * @memcg: the memory cgroup to check
6822 *
23067153
RG
6823 * WARNING: This function is not stateless! It can only be used as part
6824 * of a top-down tree iteration, not for isolated queries.
241994ed 6825 */
45c7f7e1
CD
6826void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6827 struct mem_cgroup *memcg)
241994ed 6828{
8a931f80 6829 unsigned long usage, parent_usage;
23067153
RG
6830 struct mem_cgroup *parent;
6831
241994ed 6832 if (mem_cgroup_disabled())
45c7f7e1 6833 return;
241994ed 6834
34c81057
SC
6835 if (!root)
6836 root = root_mem_cgroup;
22f7496f
YS
6837
6838 /*
6839 * Effective values of the reclaim targets are ignored so they
6840 * can be stale. Have a look at mem_cgroup_protection for more
6841 * details.
6842 * TODO: calculation should be more robust so that we do not need
6843 * that special casing.
6844 */
34c81057 6845 if (memcg == root)
45c7f7e1 6846 return;
241994ed 6847
23067153 6848 usage = page_counter_read(&memcg->memory);
bf8d5d52 6849 if (!usage)
45c7f7e1 6850 return;
bf8d5d52 6851
bf8d5d52 6852 parent = parent_mem_cgroup(memcg);
df2a4196 6853
bc50bcc6 6854 if (parent == root) {
c3d53200 6855 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6856 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6857 return;
bf8d5d52
RG
6858 }
6859
8a931f80
JW
6860 parent_usage = page_counter_read(&parent->memory);
6861
b3a7822e 6862 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6863 READ_ONCE(memcg->memory.min),
6864 READ_ONCE(parent->memory.emin),
b3a7822e 6865 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6866
b3a7822e 6867 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6868 READ_ONCE(memcg->memory.low),
6869 READ_ONCE(parent->memory.elow),
b3a7822e 6870 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6871}
6872
8f425e4e
MWO
6873static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6874 gfp_t gfp)
0add0c77 6875{
118f2875 6876 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
6877 int ret;
6878
6879 ret = try_charge(memcg, gfp, nr_pages);
6880 if (ret)
6881 goto out;
6882
6883 css_get(&memcg->css);
118f2875 6884 commit_charge(folio, memcg);
0add0c77
SB
6885
6886 local_irq_disable();
6e0110c2 6887 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 6888 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
6889 local_irq_enable();
6890out:
6891 return ret;
6892}
6893
8f425e4e 6894int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 6895{
0add0c77
SB
6896 struct mem_cgroup *memcg;
6897 int ret;
00501b53 6898
0add0c77 6899 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 6900 ret = charge_memcg(folio, memcg, gfp);
0add0c77 6901 css_put(&memcg->css);
2d1c4980 6902
0add0c77
SB
6903 return ret;
6904}
e993d905 6905
0add0c77 6906/**
65995918
MWO
6907 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6908 * @folio: folio to charge.
0add0c77
SB
6909 * @mm: mm context of the victim
6910 * @gfp: reclaim mode
65995918 6911 * @entry: swap entry for which the folio is allocated
0add0c77 6912 *
65995918
MWO
6913 * This function charges a folio allocated for swapin. Please call this before
6914 * adding the folio to the swapcache.
0add0c77
SB
6915 *
6916 * Returns 0 on success. Otherwise, an error code is returned.
6917 */
65995918 6918int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
6919 gfp_t gfp, swp_entry_t entry)
6920{
6921 struct mem_cgroup *memcg;
6922 unsigned short id;
6923 int ret;
00501b53 6924
0add0c77
SB
6925 if (mem_cgroup_disabled())
6926 return 0;
00501b53 6927
0add0c77
SB
6928 id = lookup_swap_cgroup_id(entry);
6929 rcu_read_lock();
6930 memcg = mem_cgroup_from_id(id);
6931 if (!memcg || !css_tryget_online(&memcg->css))
6932 memcg = get_mem_cgroup_from_mm(mm);
6933 rcu_read_unlock();
00501b53 6934
8f425e4e 6935 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 6936
0add0c77
SB
6937 css_put(&memcg->css);
6938 return ret;
6939}
00501b53 6940
0add0c77
SB
6941/*
6942 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6943 * @entry: swap entry for which the page is charged
6944 *
6945 * Call this function after successfully adding the charged page to swapcache.
6946 *
6947 * Note: This function assumes the page for which swap slot is being uncharged
6948 * is order 0 page.
6949 */
6950void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6951{
cae3af62
MS
6952 /*
6953 * Cgroup1's unified memory+swap counter has been charged with the
6954 * new swapcache page, finish the transfer by uncharging the swap
6955 * slot. The swap slot would also get uncharged when it dies, but
6956 * it can stick around indefinitely and we'd count the page twice
6957 * the entire time.
6958 *
6959 * Cgroup2 has separate resource counters for memory and swap,
6960 * so this is a non-issue here. Memory and swap charge lifetimes
6961 * correspond 1:1 to page and swap slot lifetimes: we charge the
6962 * page to memory here, and uncharge swap when the slot is freed.
6963 */
0add0c77 6964 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6965 /*
6966 * The swap entry might not get freed for a long time,
6967 * let's not wait for it. The page already received a
6968 * memory+swap charge, drop the swap entry duplicate.
6969 */
0add0c77 6970 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6971 }
3fea5a49
JW
6972}
6973
a9d5adee
JG
6974struct uncharge_gather {
6975 struct mem_cgroup *memcg;
b4e0b68f 6976 unsigned long nr_memory;
a9d5adee 6977 unsigned long pgpgout;
a9d5adee 6978 unsigned long nr_kmem;
8e88bd2d 6979 int nid;
a9d5adee
JG
6980};
6981
6982static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6983{
a9d5adee
JG
6984 memset(ug, 0, sizeof(*ug));
6985}
6986
6987static void uncharge_batch(const struct uncharge_gather *ug)
6988{
747db954
JW
6989 unsigned long flags;
6990
b4e0b68f
MS
6991 if (ug->nr_memory) {
6992 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 6993 if (do_memsw_account())
b4e0b68f 6994 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
6995 if (ug->nr_kmem)
6996 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 6997 memcg_oom_recover(ug->memcg);
ce00a967 6998 }
747db954
JW
6999
7000 local_irq_save(flags);
c9019e9b 7001 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7002 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7003 memcg_check_events(ug->memcg, ug->nid);
747db954 7004 local_irq_restore(flags);
f1796544 7005
c4ed6ebf 7006 /* drop reference from uncharge_folio */
f1796544 7007 css_put(&ug->memcg->css);
a9d5adee
JG
7008}
7009
c4ed6ebf 7010static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7011{
c4ed6ebf 7012 long nr_pages;
b4e0b68f
MS
7013 struct mem_cgroup *memcg;
7014 struct obj_cgroup *objcg;
9f762dbe 7015
c4ed6ebf 7016 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7017
a9d5adee
JG
7018 /*
7019 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7020 * folio memcg or objcg at this point, we have fully
7021 * exclusive access to the folio.
a9d5adee 7022 */
fead2b86 7023 if (folio_memcg_kmem(folio)) {
1b7e4464 7024 objcg = __folio_objcg(folio);
b4e0b68f
MS
7025 /*
7026 * This get matches the put at the end of the function and
7027 * kmem pages do not hold memcg references anymore.
7028 */
7029 memcg = get_mem_cgroup_from_objcg(objcg);
7030 } else {
1b7e4464 7031 memcg = __folio_memcg(folio);
b4e0b68f 7032 }
a9d5adee 7033
b4e0b68f
MS
7034 if (!memcg)
7035 return;
7036
7037 if (ug->memcg != memcg) {
a9d5adee
JG
7038 if (ug->memcg) {
7039 uncharge_batch(ug);
7040 uncharge_gather_clear(ug);
7041 }
b4e0b68f 7042 ug->memcg = memcg;
c4ed6ebf 7043 ug->nid = folio_nid(folio);
f1796544
MH
7044
7045 /* pairs with css_put in uncharge_batch */
b4e0b68f 7046 css_get(&memcg->css);
a9d5adee
JG
7047 }
7048
c4ed6ebf 7049 nr_pages = folio_nr_pages(folio);
a9d5adee 7050
fead2b86 7051 if (folio_memcg_kmem(folio)) {
b4e0b68f 7052 ug->nr_memory += nr_pages;
9f762dbe 7053 ug->nr_kmem += nr_pages;
b4e0b68f 7054
c4ed6ebf 7055 folio->memcg_data = 0;
b4e0b68f
MS
7056 obj_cgroup_put(objcg);
7057 } else {
7058 /* LRU pages aren't accounted at the root level */
7059 if (!mem_cgroup_is_root(memcg))
7060 ug->nr_memory += nr_pages;
18b2db3b 7061 ug->pgpgout++;
a9d5adee 7062
c4ed6ebf 7063 folio->memcg_data = 0;
b4e0b68f
MS
7064 }
7065
7066 css_put(&memcg->css);
747db954
JW
7067}
7068
bbc6b703 7069void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7070{
a9d5adee
JG
7071 struct uncharge_gather ug;
7072
bbc6b703
MWO
7073 /* Don't touch folio->lru of any random page, pre-check: */
7074 if (!folio_memcg(folio))
0a31bc97
JW
7075 return;
7076
a9d5adee 7077 uncharge_gather_clear(&ug);
bbc6b703 7078 uncharge_folio(folio, &ug);
a9d5adee 7079 uncharge_batch(&ug);
747db954 7080}
0a31bc97 7081
747db954 7082/**
2c8d8f97 7083 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7084 * @page_list: list of pages to uncharge
7085 *
7086 * Uncharge a list of pages previously charged with
2c8d8f97 7087 * __mem_cgroup_charge().
747db954 7088 */
2c8d8f97 7089void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7090{
c41a40b6 7091 struct uncharge_gather ug;
c4ed6ebf 7092 struct folio *folio;
c41a40b6 7093
c41a40b6 7094 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7095 list_for_each_entry(folio, page_list, lru)
7096 uncharge_folio(folio, &ug);
c41a40b6
MS
7097 if (ug.memcg)
7098 uncharge_batch(&ug);
0a31bc97
JW
7099}
7100
7101/**
d21bba2b
MWO
7102 * mem_cgroup_migrate - Charge a folio's replacement.
7103 * @old: Currently circulating folio.
7104 * @new: Replacement folio.
0a31bc97 7105 *
d21bba2b 7106 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 7107 * be uncharged upon free.
0a31bc97 7108 *
d21bba2b 7109 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7110 */
d21bba2b 7111void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 7112{
29833315 7113 struct mem_cgroup *memcg;
d21bba2b 7114 long nr_pages = folio_nr_pages(new);
d93c4130 7115 unsigned long flags;
0a31bc97 7116
d21bba2b
MWO
7117 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7118 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7119 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7120 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7121
7122 if (mem_cgroup_disabled())
7123 return;
7124
d21bba2b
MWO
7125 /* Page cache replacement: new folio already charged? */
7126 if (folio_memcg(new))
0a31bc97
JW
7127 return;
7128
d21bba2b
MWO
7129 memcg = folio_memcg(old);
7130 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7131 if (!memcg)
0a31bc97
JW
7132 return;
7133
44b7a8d3 7134 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7135 if (!mem_cgroup_is_root(memcg)) {
7136 page_counter_charge(&memcg->memory, nr_pages);
7137 if (do_memsw_account())
7138 page_counter_charge(&memcg->memsw, nr_pages);
7139 }
0a31bc97 7140
1a3e1f40 7141 css_get(&memcg->css);
d21bba2b 7142 commit_charge(new, memcg);
44b7a8d3 7143
d93c4130 7144 local_irq_save(flags);
6e0110c2 7145 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7146 memcg_check_events(memcg, folio_nid(new));
d93c4130 7147 local_irq_restore(flags);
0a31bc97
JW
7148}
7149
ef12947c 7150DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7151EXPORT_SYMBOL(memcg_sockets_enabled_key);
7152
2d758073 7153void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7154{
7155 struct mem_cgroup *memcg;
7156
2d758073
JW
7157 if (!mem_cgroup_sockets_enabled)
7158 return;
7159
e876ecc6 7160 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7161 if (!in_task())
e876ecc6
SB
7162 return;
7163
11092087
JW
7164 rcu_read_lock();
7165 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
7166 if (memcg == root_mem_cgroup)
7167 goto out;
0db15298 7168 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7169 goto out;
8965aa28 7170 if (css_tryget(&memcg->css))
11092087 7171 sk->sk_memcg = memcg;
f7e1cb6e 7172out:
11092087
JW
7173 rcu_read_unlock();
7174}
11092087 7175
2d758073 7176void mem_cgroup_sk_free(struct sock *sk)
11092087 7177{
2d758073
JW
7178 if (sk->sk_memcg)
7179 css_put(&sk->sk_memcg->css);
11092087
JW
7180}
7181
7182/**
7183 * mem_cgroup_charge_skmem - charge socket memory
7184 * @memcg: memcg to charge
7185 * @nr_pages: number of pages to charge
4b1327be 7186 * @gfp_mask: reclaim mode
11092087
JW
7187 *
7188 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7189 * @memcg's configured limit, %false if it doesn't.
11092087 7190 */
4b1327be
WW
7191bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7192 gfp_t gfp_mask)
11092087 7193{
f7e1cb6e 7194 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7195 struct page_counter *fail;
f7e1cb6e 7196
0db15298
JW
7197 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7198 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7199 return true;
7200 }
0db15298 7201 memcg->tcpmem_pressure = 1;
4b1327be
WW
7202 if (gfp_mask & __GFP_NOFAIL) {
7203 page_counter_charge(&memcg->tcpmem, nr_pages);
7204 return true;
7205 }
f7e1cb6e 7206 return false;
11092087 7207 }
d886f4e4 7208
4b1327be
WW
7209 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7210 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7211 return true;
4b1327be 7212 }
f7e1cb6e 7213
11092087
JW
7214 return false;
7215}
7216
7217/**
7218 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7219 * @memcg: memcg to uncharge
7220 * @nr_pages: number of pages to uncharge
11092087
JW
7221 */
7222void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7223{
f7e1cb6e 7224 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7225 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7226 return;
7227 }
d886f4e4 7228
c9019e9b 7229 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7230
475d0487 7231 refill_stock(memcg, nr_pages);
11092087
JW
7232}
7233
f7e1cb6e
JW
7234static int __init cgroup_memory(char *s)
7235{
7236 char *token;
7237
7238 while ((token = strsep(&s, ",")) != NULL) {
7239 if (!*token)
7240 continue;
7241 if (!strcmp(token, "nosocket"))
7242 cgroup_memory_nosocket = true;
04823c83
VD
7243 if (!strcmp(token, "nokmem"))
7244 cgroup_memory_nokmem = true;
f7e1cb6e 7245 }
460a79e1 7246 return 1;
f7e1cb6e
JW
7247}
7248__setup("cgroup.memory=", cgroup_memory);
11092087 7249
2d11085e 7250/*
1081312f
MH
7251 * subsys_initcall() for memory controller.
7252 *
308167fc
SAS
7253 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7254 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7255 * basically everything that doesn't depend on a specific mem_cgroup structure
7256 * should be initialized from here.
2d11085e
MH
7257 */
7258static int __init mem_cgroup_init(void)
7259{
95a045f6
JW
7260 int cpu, node;
7261
f3344adf
MS
7262 /*
7263 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7264 * used for per-memcg-per-cpu caching of per-node statistics. In order
7265 * to work fine, we should make sure that the overfill threshold can't
7266 * exceed S32_MAX / PAGE_SIZE.
7267 */
7268 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7269
308167fc
SAS
7270 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7271 memcg_hotplug_cpu_dead);
95a045f6
JW
7272
7273 for_each_possible_cpu(cpu)
7274 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7275 drain_local_stock);
7276
7277 for_each_node(node) {
7278 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7279
7280 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7281 node_online(node) ? node : NUMA_NO_NODE);
7282
ef8f2327 7283 rtpn->rb_root = RB_ROOT;
fa90b2fd 7284 rtpn->rb_rightmost = NULL;
ef8f2327 7285 spin_lock_init(&rtpn->lock);
95a045f6
JW
7286 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7287 }
7288
2d11085e
MH
7289 return 0;
7290}
7291subsys_initcall(mem_cgroup_init);
21afa38e 7292
e55b9f96 7293#ifdef CONFIG_SWAP
358c07fc
AB
7294static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7295{
1c2d479a 7296 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7297 /*
7298 * The root cgroup cannot be destroyed, so it's refcount must
7299 * always be >= 1.
7300 */
7301 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7302 VM_BUG_ON(1);
7303 break;
7304 }
7305 memcg = parent_mem_cgroup(memcg);
7306 if (!memcg)
7307 memcg = root_mem_cgroup;
7308 }
7309 return memcg;
7310}
7311
21afa38e
JW
7312/**
7313 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7314 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7315 * @entry: swap entry to move the charge to
7316 *
3ecb0087 7317 * Transfer the memsw charge of @folio to @entry.
21afa38e 7318 */
3ecb0087 7319void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7320{
1f47b61f 7321 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7322 unsigned int nr_entries;
21afa38e
JW
7323 unsigned short oldid;
7324
3ecb0087
MWO
7325 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7326 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7327
76358ab5
AS
7328 if (mem_cgroup_disabled())
7329 return;
7330
b94c4e94 7331 if (!do_memsw_account())
21afa38e
JW
7332 return;
7333
3ecb0087 7334 memcg = folio_memcg(folio);
21afa38e 7335
3ecb0087 7336 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7337 if (!memcg)
7338 return;
7339
1f47b61f
VD
7340 /*
7341 * In case the memcg owning these pages has been offlined and doesn't
7342 * have an ID allocated to it anymore, charge the closest online
7343 * ancestor for the swap instead and transfer the memory+swap charge.
7344 */
7345 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7346 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7347 /* Get references for the tail pages, too */
7348 if (nr_entries > 1)
7349 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7350 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7351 nr_entries);
3ecb0087 7352 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7353 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7354
3ecb0087 7355 folio->memcg_data = 0;
21afa38e
JW
7356
7357 if (!mem_cgroup_is_root(memcg))
d6810d73 7358 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7359
b25806dc 7360 if (memcg != swap_memcg) {
1f47b61f 7361 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7362 page_counter_charge(&swap_memcg->memsw, nr_entries);
7363 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7364 }
7365
ce9ce665
SAS
7366 /*
7367 * Interrupts should be disabled here because the caller holds the
b93b0163 7368 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7369 * important here to have the interrupts disabled because it is the
b93b0163 7370 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7371 */
be3e67b5 7372 memcg_stats_lock();
6e0110c2 7373 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7374 memcg_stats_unlock();
3ecb0087 7375 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7376
1a3e1f40 7377 css_put(&memcg->css);
21afa38e
JW
7378}
7379
38d8b4e6 7380/**
e2e3fdc7
MWO
7381 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7382 * @folio: folio being added to swap
37e84351
VD
7383 * @entry: swap entry to charge
7384 *
e2e3fdc7 7385 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7386 *
7387 * Returns 0 on success, -ENOMEM on failure.
7388 */
e2e3fdc7 7389int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7390{
e2e3fdc7 7391 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7392 struct page_counter *counter;
38d8b4e6 7393 struct mem_cgroup *memcg;
37e84351
VD
7394 unsigned short oldid;
7395
b94c4e94 7396 if (do_memsw_account())
37e84351
VD
7397 return 0;
7398
e2e3fdc7 7399 memcg = folio_memcg(folio);
37e84351 7400
e2e3fdc7 7401 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7402 if (!memcg)
7403 return 0;
7404
f3a53a3a
TH
7405 if (!entry.val) {
7406 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7407 return 0;
f3a53a3a 7408 }
bb98f2c5 7409
1f47b61f
VD
7410 memcg = mem_cgroup_id_get_online(memcg);
7411
b25806dc 7412 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7413 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7414 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7415 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7416 mem_cgroup_id_put(memcg);
37e84351 7417 return -ENOMEM;
1f47b61f 7418 }
37e84351 7419
38d8b4e6
HY
7420 /* Get references for the tail pages, too */
7421 if (nr_pages > 1)
7422 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7423 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7424 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7425 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7426
37e84351
VD
7427 return 0;
7428}
7429
21afa38e 7430/**
01c4b28c 7431 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7432 * @entry: swap entry to uncharge
38d8b4e6 7433 * @nr_pages: the amount of swap space to uncharge
21afa38e 7434 */
01c4b28c 7435void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7436{
7437 struct mem_cgroup *memcg;
7438 unsigned short id;
7439
c91bdc93
JW
7440 if (mem_cgroup_disabled())
7441 return;
7442
38d8b4e6 7443 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7444 rcu_read_lock();
adbe427b 7445 memcg = mem_cgroup_from_id(id);
21afa38e 7446 if (memcg) {
b25806dc 7447 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7448 if (do_memsw_account())
38d8b4e6 7449 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7450 else
7451 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7452 }
c9019e9b 7453 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7454 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7455 }
7456 rcu_read_unlock();
7457}
7458
d8b38438
VD
7459long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7460{
7461 long nr_swap_pages = get_nr_swap_pages();
7462
b25806dc 7463 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438
VD
7464 return nr_swap_pages;
7465 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7466 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7467 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7468 page_counter_read(&memcg->swap));
7469 return nr_swap_pages;
7470}
7471
9202d527 7472bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7473{
7474 struct mem_cgroup *memcg;
7475
9202d527 7476 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7477
7478 if (vm_swap_full())
7479 return true;
b25806dc 7480 if (do_memsw_account())
5ccc5aba
VD
7481 return false;
7482
9202d527 7483 memcg = folio_memcg(folio);
5ccc5aba
VD
7484 if (!memcg)
7485 return false;
7486
4b82ab4f
JK
7487 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7488 unsigned long usage = page_counter_read(&memcg->swap);
7489
7490 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7491 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7492 return true;
4b82ab4f 7493 }
5ccc5aba
VD
7494
7495 return false;
7496}
7497
eccb52e7 7498static int __init setup_swap_account(char *s)
21afa38e 7499{
b25806dc
JW
7500 pr_warn_once("The swapaccount= commandline option is deprecated. "
7501 "Please report your usecase to linux-mm@kvack.org if you "
7502 "depend on this functionality.\n");
21afa38e
JW
7503 return 1;
7504}
eccb52e7 7505__setup("swapaccount=", setup_swap_account);
21afa38e 7506
37e84351
VD
7507static u64 swap_current_read(struct cgroup_subsys_state *css,
7508 struct cftype *cft)
7509{
7510 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7511
7512 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7513}
7514
4b82ab4f
JK
7515static int swap_high_show(struct seq_file *m, void *v)
7516{
7517 return seq_puts_memcg_tunable(m,
7518 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7519}
7520
7521static ssize_t swap_high_write(struct kernfs_open_file *of,
7522 char *buf, size_t nbytes, loff_t off)
7523{
7524 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7525 unsigned long high;
7526 int err;
7527
7528 buf = strstrip(buf);
7529 err = page_counter_memparse(buf, "max", &high);
7530 if (err)
7531 return err;
7532
7533 page_counter_set_high(&memcg->swap, high);
7534
7535 return nbytes;
7536}
7537
37e84351
VD
7538static int swap_max_show(struct seq_file *m, void *v)
7539{
677dc973
CD
7540 return seq_puts_memcg_tunable(m,
7541 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7542}
7543
7544static ssize_t swap_max_write(struct kernfs_open_file *of,
7545 char *buf, size_t nbytes, loff_t off)
7546{
7547 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7548 unsigned long max;
7549 int err;
7550
7551 buf = strstrip(buf);
7552 err = page_counter_memparse(buf, "max", &max);
7553 if (err)
7554 return err;
7555
be09102b 7556 xchg(&memcg->swap.max, max);
37e84351
VD
7557
7558 return nbytes;
7559}
7560
f3a53a3a
TH
7561static int swap_events_show(struct seq_file *m, void *v)
7562{
aa9694bb 7563 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7564
4b82ab4f
JK
7565 seq_printf(m, "high %lu\n",
7566 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7567 seq_printf(m, "max %lu\n",
7568 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7569 seq_printf(m, "fail %lu\n",
7570 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7571
7572 return 0;
7573}
7574
37e84351
VD
7575static struct cftype swap_files[] = {
7576 {
7577 .name = "swap.current",
7578 .flags = CFTYPE_NOT_ON_ROOT,
7579 .read_u64 = swap_current_read,
7580 },
4b82ab4f
JK
7581 {
7582 .name = "swap.high",
7583 .flags = CFTYPE_NOT_ON_ROOT,
7584 .seq_show = swap_high_show,
7585 .write = swap_high_write,
7586 },
37e84351
VD
7587 {
7588 .name = "swap.max",
7589 .flags = CFTYPE_NOT_ON_ROOT,
7590 .seq_show = swap_max_show,
7591 .write = swap_max_write,
7592 },
f3a53a3a
TH
7593 {
7594 .name = "swap.events",
7595 .flags = CFTYPE_NOT_ON_ROOT,
7596 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7597 .seq_show = swap_events_show,
7598 },
37e84351
VD
7599 { } /* terminate */
7600};
7601
eccb52e7 7602static struct cftype memsw_files[] = {
21afa38e
JW
7603 {
7604 .name = "memsw.usage_in_bytes",
7605 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7606 .read_u64 = mem_cgroup_read_u64,
7607 },
7608 {
7609 .name = "memsw.max_usage_in_bytes",
7610 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7611 .write = mem_cgroup_reset,
7612 .read_u64 = mem_cgroup_read_u64,
7613 },
7614 {
7615 .name = "memsw.limit_in_bytes",
7616 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7617 .write = mem_cgroup_write,
7618 .read_u64 = mem_cgroup_read_u64,
7619 },
7620 {
7621 .name = "memsw.failcnt",
7622 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7623 .write = mem_cgroup_reset,
7624 .read_u64 = mem_cgroup_read_u64,
7625 },
7626 { }, /* terminate */
7627};
7628
f4840ccf
JW
7629#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7630/**
7631 * obj_cgroup_may_zswap - check if this cgroup can zswap
7632 * @objcg: the object cgroup
7633 *
7634 * Check if the hierarchical zswap limit has been reached.
7635 *
7636 * This doesn't check for specific headroom, and it is not atomic
7637 * either. But with zswap, the size of the allocation is only known
7638 * once compression has occured, and this optimistic pre-check avoids
7639 * spending cycles on compression when there is already no room left
7640 * or zswap is disabled altogether somewhere in the hierarchy.
7641 */
7642bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7643{
7644 struct mem_cgroup *memcg, *original_memcg;
7645 bool ret = true;
7646
7647 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7648 return true;
7649
7650 original_memcg = get_mem_cgroup_from_objcg(objcg);
7651 for (memcg = original_memcg; memcg != root_mem_cgroup;
7652 memcg = parent_mem_cgroup(memcg)) {
7653 unsigned long max = READ_ONCE(memcg->zswap_max);
7654 unsigned long pages;
7655
7656 if (max == PAGE_COUNTER_MAX)
7657 continue;
7658 if (max == 0) {
7659 ret = false;
7660 break;
7661 }
7662
7663 cgroup_rstat_flush(memcg->css.cgroup);
7664 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7665 if (pages < max)
7666 continue;
7667 ret = false;
7668 break;
7669 }
7670 mem_cgroup_put(original_memcg);
7671 return ret;
7672}
7673
7674/**
7675 * obj_cgroup_charge_zswap - charge compression backend memory
7676 * @objcg: the object cgroup
7677 * @size: size of compressed object
7678 *
7679 * This forces the charge after obj_cgroup_may_swap() allowed
7680 * compression and storage in zwap for this cgroup to go ahead.
7681 */
7682void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7683{
7684 struct mem_cgroup *memcg;
7685
7686 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7687 return;
7688
7689 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7690
7691 /* PF_MEMALLOC context, charging must succeed */
7692 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7693 VM_WARN_ON_ONCE(1);
7694
7695 rcu_read_lock();
7696 memcg = obj_cgroup_memcg(objcg);
7697 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7698 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7699 rcu_read_unlock();
7700}
7701
7702/**
7703 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7704 * @objcg: the object cgroup
7705 * @size: size of compressed object
7706 *
7707 * Uncharges zswap memory on page in.
7708 */
7709void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7710{
7711 struct mem_cgroup *memcg;
7712
7713 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7714 return;
7715
7716 obj_cgroup_uncharge(objcg, size);
7717
7718 rcu_read_lock();
7719 memcg = obj_cgroup_memcg(objcg);
7720 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7721 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7722 rcu_read_unlock();
7723}
7724
7725static u64 zswap_current_read(struct cgroup_subsys_state *css,
7726 struct cftype *cft)
7727{
7728 cgroup_rstat_flush(css->cgroup);
7729 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7730}
7731
7732static int zswap_max_show(struct seq_file *m, void *v)
7733{
7734 return seq_puts_memcg_tunable(m,
7735 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7736}
7737
7738static ssize_t zswap_max_write(struct kernfs_open_file *of,
7739 char *buf, size_t nbytes, loff_t off)
7740{
7741 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7742 unsigned long max;
7743 int err;
7744
7745 buf = strstrip(buf);
7746 err = page_counter_memparse(buf, "max", &max);
7747 if (err)
7748 return err;
7749
7750 xchg(&memcg->zswap_max, max);
7751
7752 return nbytes;
7753}
7754
7755static struct cftype zswap_files[] = {
7756 {
7757 .name = "zswap.current",
7758 .flags = CFTYPE_NOT_ON_ROOT,
7759 .read_u64 = zswap_current_read,
7760 },
7761 {
7762 .name = "zswap.max",
7763 .flags = CFTYPE_NOT_ON_ROOT,
7764 .seq_show = zswap_max_show,
7765 .write = zswap_max_write,
7766 },
7767 { } /* terminate */
7768};
7769#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7770
21afa38e
JW
7771static int __init mem_cgroup_swap_init(void)
7772{
2d1c4980 7773 if (mem_cgroup_disabled())
eccb52e7
JW
7774 return 0;
7775
7776 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7777 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
7778#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7779 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7780#endif
21afa38e
JW
7781 return 0;
7782}
b25806dc 7783subsys_initcall(mem_cgroup_swap_init);
21afa38e 7784
e55b9f96 7785#endif /* CONFIG_SWAP */