Merge tag 'drm-next-2019-07-16' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
78fb7466 28#include <linux/mm.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
c8713d0b 60#include <linux/seq_buf.h>
08e552c6 61#include "internal.h"
d1a4c0b3 62#include <net/sock.h>
4bd2c1ee 63#include <net/ip.h>
f35c3a8e 64#include "slab.h"
8cdea7c0 65
7c0f6ba6 66#include <linux/uaccess.h>
8697d331 67
cc8e970c
KM
68#include <trace/events/vmscan.h>
69
073219e9
TH
70struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 72
7d828602
JW
73struct mem_cgroup *root_mem_cgroup __read_mostly;
74
a181b0e8 75#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 76
f7e1cb6e
JW
77/* Socket memory accounting disabled? */
78static bool cgroup_memory_nosocket;
79
04823c83
VD
80/* Kernel memory accounting disabled? */
81static bool cgroup_memory_nokmem;
82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
7941d214
JW
90/* Whether legacy memory+swap accounting is active */
91static bool do_memsw_account(void)
92{
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94}
95
71cd3113 96static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
97 "inactive_anon",
98 "active_anon",
99 "inactive_file",
100 "active_file",
101 "unevictable",
102};
103
a0db00fc
KS
104#define THRESHOLDS_EVENTS_TARGET 128
105#define SOFTLIMIT_EVENTS_TARGET 1024
106#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
217bc319
KH
206enum charge_type {
207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 208 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
211 NR_CHARGE_TYPE,
212};
213
8c7c6e34 214/* for encoding cft->private value on file */
86ae53e1
GC
215enum res_type {
216 _MEM,
217 _MEMSWAP,
218 _OOM_TYPE,
510fc4e1 219 _KMEM,
d55f90bf 220 _TCP,
86ae53e1
GC
221};
222
a0db00fc
KS
223#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
224#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 225#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
226/* Used for OOM nofiier */
227#define OOM_CONTROL (0)
8c7c6e34 228
b05706f1
KT
229/*
230 * Iteration constructs for visiting all cgroups (under a tree). If
231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
232 * be used for reference counting.
233 */
234#define for_each_mem_cgroup_tree(iter, root) \
235 for (iter = mem_cgroup_iter(root, NULL, NULL); \
236 iter != NULL; \
237 iter = mem_cgroup_iter(root, iter, NULL))
238
239#define for_each_mem_cgroup(iter) \
240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(NULL, iter, NULL))
243
7775face
TH
244static inline bool should_force_charge(void)
245{
246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 (current->flags & PF_EXITING);
248}
249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
84c07d11 263#ifdef CONFIG_MEMCG_KMEM
55007d84 264/*
f7ce3190 265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
266 * The main reason for not using cgroup id for this:
267 * this works better in sparse environments, where we have a lot of memcgs,
268 * but only a few kmem-limited. Or also, if we have, for instance, 200
269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
270 * 200 entry array for that.
55007d84 271 *
dbcf73e2
VD
272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
273 * will double each time we have to increase it.
55007d84 274 */
dbcf73e2
VD
275static DEFINE_IDA(memcg_cache_ida);
276int memcg_nr_cache_ids;
749c5415 277
05257a1a
VD
278/* Protects memcg_nr_cache_ids */
279static DECLARE_RWSEM(memcg_cache_ids_sem);
280
281void memcg_get_cache_ids(void)
282{
283 down_read(&memcg_cache_ids_sem);
284}
285
286void memcg_put_cache_ids(void)
287{
288 up_read(&memcg_cache_ids_sem);
289}
290
55007d84
GC
291/*
292 * MIN_SIZE is different than 1, because we would like to avoid going through
293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
294 * cgroups is a reasonable guess. In the future, it could be a parameter or
295 * tunable, but that is strictly not necessary.
296 *
b8627835 297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
298 * this constant directly from cgroup, but it is understandable that this is
299 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
301 * increase ours as well if it increases.
302 */
303#define MEMCG_CACHES_MIN_SIZE 4
b8627835 304#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 305
d7f25f8a
GC
306/*
307 * A lot of the calls to the cache allocation functions are expected to be
308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309 * conditional to this static branch, we'll have to allow modules that does
310 * kmem_cache_alloc and the such to see this symbol as well
311 */
ef12947c 312DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 313EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 314
17cc4dfe
TH
315struct workqueue_struct *memcg_kmem_cache_wq;
316
0a4465d3
KT
317static int memcg_shrinker_map_size;
318static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319
320static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321{
322 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323}
324
325static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 int size, int old_size)
327{
328 struct memcg_shrinker_map *new, *old;
329 int nid;
330
331 lockdep_assert_held(&memcg_shrinker_map_mutex);
332
333 for_each_node(nid) {
334 old = rcu_dereference_protected(
335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 /* Not yet online memcg */
337 if (!old)
338 return 0;
339
340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 if (!new)
342 return -ENOMEM;
343
344 /* Set all old bits, clear all new bits */
345 memset(new->map, (int)0xff, old_size);
346 memset((void *)new->map + old_size, 0, size - old_size);
347
348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 }
351
352 return 0;
353}
354
355static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356{
357 struct mem_cgroup_per_node *pn;
358 struct memcg_shrinker_map *map;
359 int nid;
360
361 if (mem_cgroup_is_root(memcg))
362 return;
363
364 for_each_node(nid) {
365 pn = mem_cgroup_nodeinfo(memcg, nid);
366 map = rcu_dereference_protected(pn->shrinker_map, true);
367 if (map)
368 kvfree(map);
369 rcu_assign_pointer(pn->shrinker_map, NULL);
370 }
371}
372
373static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374{
375 struct memcg_shrinker_map *map;
376 int nid, size, ret = 0;
377
378 if (mem_cgroup_is_root(memcg))
379 return 0;
380
381 mutex_lock(&memcg_shrinker_map_mutex);
382 size = memcg_shrinker_map_size;
383 for_each_node(nid) {
384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 if (!map) {
386 memcg_free_shrinker_maps(memcg);
387 ret = -ENOMEM;
388 break;
389 }
390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 }
392 mutex_unlock(&memcg_shrinker_map_mutex);
393
394 return ret;
395}
396
397int memcg_expand_shrinker_maps(int new_id)
398{
399 int size, old_size, ret = 0;
400 struct mem_cgroup *memcg;
401
402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 old_size = memcg_shrinker_map_size;
404 if (size <= old_size)
405 return 0;
406
407 mutex_lock(&memcg_shrinker_map_mutex);
408 if (!root_mem_cgroup)
409 goto unlock;
410
411 for_each_mem_cgroup(memcg) {
412 if (mem_cgroup_is_root(memcg))
413 continue;
414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 if (ret)
416 goto unlock;
417 }
418unlock:
419 if (!ret)
420 memcg_shrinker_map_size = size;
421 mutex_unlock(&memcg_shrinker_map_mutex);
422 return ret;
423}
fae91d6d
KT
424
425void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426{
427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 struct memcg_shrinker_map *map;
429
430 rcu_read_lock();
431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
432 /* Pairs with smp mb in shrink_slab() */
433 smp_mb__before_atomic();
fae91d6d
KT
434 set_bit(shrinker_id, map->map);
435 rcu_read_unlock();
436 }
437}
438
0a4465d3
KT
439#else /* CONFIG_MEMCG_KMEM */
440static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441{
442 return 0;
443}
444static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 445#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 446
ad7fa852
TH
447/**
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
450 *
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
454 *
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456 * is returned.
ad7fa852
TH
457 */
458struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459{
460 struct mem_cgroup *memcg;
461
ad7fa852
TH
462 memcg = page->mem_cgroup;
463
9e10a130 464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
465 memcg = root_mem_cgroup;
466
ad7fa852
TH
467 return &memcg->css;
468}
469
2fc04524
VD
470/**
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
472 * @page: the page
473 *
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
477 *
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
482 */
483ino_t page_cgroup_ino(struct page *page)
484{
485 struct mem_cgroup *memcg;
486 unsigned long ino = 0;
487
488 rcu_read_lock();
4d96ba35
RG
489 if (PageHead(page) && PageSlab(page))
490 memcg = memcg_from_slab_page(page);
491 else
492 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
493 while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 memcg = parent_mem_cgroup(memcg);
495 if (memcg)
496 ino = cgroup_ino(memcg->css.cgroup);
497 rcu_read_unlock();
498 return ino;
499}
500
ef8f2327
MG
501static struct mem_cgroup_per_node *
502mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 503{
97a6c37b 504 int nid = page_to_nid(page);
f64c3f54 505
ef8f2327 506 return memcg->nodeinfo[nid];
f64c3f54
BS
507}
508
ef8f2327
MG
509static struct mem_cgroup_tree_per_node *
510soft_limit_tree_node(int nid)
bb4cc1a8 511{
ef8f2327 512 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
513}
514
ef8f2327 515static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
516soft_limit_tree_from_page(struct page *page)
517{
518 int nid = page_to_nid(page);
bb4cc1a8 519
ef8f2327 520 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
521}
522
ef8f2327
MG
523static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 525 unsigned long new_usage_in_excess)
bb4cc1a8
AM
526{
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
ef8f2327 529 struct mem_cgroup_per_node *mz_node;
fa90b2fd 530 bool rightmost = true;
bb4cc1a8
AM
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
ef8f2327 540 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 541 tree_node);
fa90b2fd 542 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 543 p = &(*p)->rb_left;
fa90b2fd
DB
544 rightmost = false;
545 }
546
bb4cc1a8
AM
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
fa90b2fd
DB
554
555 if (rightmost)
556 mctz->rb_rightmost = &mz->tree_node;
557
bb4cc1a8
AM
558 rb_link_node(&mz->tree_node, parent, p);
559 rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 mz->on_tree = true;
561}
562
ef8f2327
MG
563static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
565{
566 if (!mz->on_tree)
567 return;
fa90b2fd
DB
568
569 if (&mz->tree_node == mctz->rb_rightmost)
570 mctz->rb_rightmost = rb_prev(&mz->tree_node);
571
bb4cc1a8
AM
572 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mz->on_tree = false;
574}
575
ef8f2327
MG
576static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 578{
0a31bc97
JW
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 582 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 583 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
584}
585
3e32cb2e
JW
586static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587{
588 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
590 unsigned long excess = 0;
591
592 if (nr_pages > soft_limit)
593 excess = nr_pages - soft_limit;
594
595 return excess;
596}
bb4cc1a8
AM
597
598static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599{
3e32cb2e 600 unsigned long excess;
ef8f2327
MG
601 struct mem_cgroup_per_node *mz;
602 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 603
e231875b 604 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
605 if (!mctz)
606 return;
bb4cc1a8
AM
607 /*
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
610 */
611 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 612 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 613 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
614 /*
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
617 */
618 if (excess || mz->on_tree) {
0a31bc97
JW
619 unsigned long flags;
620
621 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
622 /* if on-tree, remove it */
623 if (mz->on_tree)
cf2c8127 624 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
625 /*
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
628 */
cf2c8127 629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 630 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
631 }
632 }
633}
634
635static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636{
ef8f2327
MG
637 struct mem_cgroup_tree_per_node *mctz;
638 struct mem_cgroup_per_node *mz;
639 int nid;
bb4cc1a8 640
e231875b 641 for_each_node(nid) {
ef8f2327
MG
642 mz = mem_cgroup_nodeinfo(memcg, nid);
643 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
644 if (mctz)
645 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
646 }
647}
648
ef8f2327
MG
649static struct mem_cgroup_per_node *
650__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 651{
ef8f2327 652 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
653
654retry:
655 mz = NULL;
fa90b2fd 656 if (!mctz->rb_rightmost)
bb4cc1a8
AM
657 goto done; /* Nothing to reclaim from */
658
fa90b2fd
DB
659 mz = rb_entry(mctz->rb_rightmost,
660 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
661 /*
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
665 */
cf2c8127 666 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 667 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 668 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
669 goto retry;
670done:
671 return mz;
672}
673
ef8f2327
MG
674static struct mem_cgroup_per_node *
675mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 676{
ef8f2327 677 struct mem_cgroup_per_node *mz;
bb4cc1a8 678
0a31bc97 679 spin_lock_irq(&mctz->lock);
bb4cc1a8 680 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 681 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
682 return mz;
683}
684
db9adbcb
JW
685/**
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
691void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692{
693 long x;
694
695 if (mem_cgroup_disabled())
696 return;
697
815744d7
JW
698 __this_cpu_add(memcg->vmstats_local->stat[idx], val);
699
db9adbcb
JW
700 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
701 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
702 struct mem_cgroup *mi;
703
42a30035
JW
704 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
705 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
706 x = 0;
707 }
708 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
709}
710
42a30035
JW
711static struct mem_cgroup_per_node *
712parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
713{
714 struct mem_cgroup *parent;
715
716 parent = parent_mem_cgroup(pn->memcg);
717 if (!parent)
718 return NULL;
719 return mem_cgroup_nodeinfo(parent, nid);
720}
721
db9adbcb
JW
722/**
723 * __mod_lruvec_state - update lruvec memory statistics
724 * @lruvec: the lruvec
725 * @idx: the stat item
726 * @val: delta to add to the counter, can be negative
727 *
728 * The lruvec is the intersection of the NUMA node and a cgroup. This
729 * function updates the all three counters that are affected by a
730 * change of state at this level: per-node, per-cgroup, per-lruvec.
731 */
732void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
733 int val)
734{
42a30035 735 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 736 struct mem_cgroup_per_node *pn;
42a30035 737 struct mem_cgroup *memcg;
db9adbcb
JW
738 long x;
739
740 /* Update node */
42a30035 741 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
742
743 if (mem_cgroup_disabled())
744 return;
745
746 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 747 memcg = pn->memcg;
db9adbcb
JW
748
749 /* Update memcg */
42a30035 750 __mod_memcg_state(memcg, idx, val);
db9adbcb
JW
751
752 /* Update lruvec */
815744d7
JW
753 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
754
db9adbcb
JW
755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
757 struct mem_cgroup_per_node *pi;
758
42a30035
JW
759 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
760 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
761 x = 0;
762 }
763 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
764}
765
766/**
767 * __count_memcg_events - account VM events in a cgroup
768 * @memcg: the memory cgroup
769 * @idx: the event item
770 * @count: the number of events that occured
771 */
772void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
773 unsigned long count)
774{
775 unsigned long x;
776
777 if (mem_cgroup_disabled())
778 return;
779
815744d7
JW
780 __this_cpu_add(memcg->vmstats_local->events[idx], count);
781
db9adbcb
JW
782 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
783 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
784 struct mem_cgroup *mi;
785
42a30035
JW
786 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
787 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
788 x = 0;
789 }
790 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
791}
792
42a30035 793static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 794{
871789d4 795 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
796}
797
42a30035
JW
798static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
799{
815744d7
JW
800 long x = 0;
801 int cpu;
802
803 for_each_possible_cpu(cpu)
804 x += per_cpu(memcg->vmstats_local->events[event], cpu);
805 return x;
42a30035
JW
806}
807
c0ff4b85 808static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 809 struct page *page,
f627c2f5 810 bool compound, int nr_pages)
d52aa412 811{
b2402857
KH
812 /*
813 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
814 * counted as CACHE even if it's on ANON LRU.
815 */
0a31bc97 816 if (PageAnon(page))
c9019e9b 817 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 818 else {
c9019e9b 819 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 820 if (PageSwapBacked(page))
c9019e9b 821 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 822 }
55e462b0 823
f627c2f5
KS
824 if (compound) {
825 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 826 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 827 }
b070e65c 828
e401f176
KH
829 /* pagein of a big page is an event. So, ignore page size */
830 if (nr_pages > 0)
c9019e9b 831 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 832 else {
c9019e9b 833 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
834 nr_pages = -nr_pages; /* for event */
835 }
e401f176 836
871789d4 837 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
838}
839
f53d7ce3
JW
840static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
841 enum mem_cgroup_events_target target)
7a159cc9
JW
842{
843 unsigned long val, next;
844
871789d4
CD
845 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
846 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 847 /* from time_after() in jiffies.h */
6a1a8b80 848 if ((long)(next - val) < 0) {
f53d7ce3
JW
849 switch (target) {
850 case MEM_CGROUP_TARGET_THRESH:
851 next = val + THRESHOLDS_EVENTS_TARGET;
852 break;
bb4cc1a8
AM
853 case MEM_CGROUP_TARGET_SOFTLIMIT:
854 next = val + SOFTLIMIT_EVENTS_TARGET;
855 break;
f53d7ce3
JW
856 case MEM_CGROUP_TARGET_NUMAINFO:
857 next = val + NUMAINFO_EVENTS_TARGET;
858 break;
859 default:
860 break;
861 }
871789d4 862 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 863 return true;
7a159cc9 864 }
f53d7ce3 865 return false;
d2265e6f
KH
866}
867
868/*
869 * Check events in order.
870 *
871 */
c0ff4b85 872static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
873{
874 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
875 if (unlikely(mem_cgroup_event_ratelimit(memcg,
876 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 877 bool do_softlimit;
82b3f2a7 878 bool do_numainfo __maybe_unused;
f53d7ce3 879
bb4cc1a8
AM
880 do_softlimit = mem_cgroup_event_ratelimit(memcg,
881 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
882#if MAX_NUMNODES > 1
883 do_numainfo = mem_cgroup_event_ratelimit(memcg,
884 MEM_CGROUP_TARGET_NUMAINFO);
885#endif
c0ff4b85 886 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
887 if (unlikely(do_softlimit))
888 mem_cgroup_update_tree(memcg, page);
453a9bf3 889#if MAX_NUMNODES > 1
f53d7ce3 890 if (unlikely(do_numainfo))
c0ff4b85 891 atomic_inc(&memcg->numainfo_events);
453a9bf3 892#endif
0a31bc97 893 }
d2265e6f
KH
894}
895
cf475ad2 896struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 897{
31a78f23
BS
898 /*
899 * mm_update_next_owner() may clear mm->owner to NULL
900 * if it races with swapoff, page migration, etc.
901 * So this can be called with p == NULL.
902 */
903 if (unlikely(!p))
904 return NULL;
905
073219e9 906 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 907}
33398cf2 908EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 909
d46eb14b
SB
910/**
911 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
912 * @mm: mm from which memcg should be extracted. It can be NULL.
913 *
914 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
915 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
916 * returned.
917 */
918struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 919{
d46eb14b
SB
920 struct mem_cgroup *memcg;
921
922 if (mem_cgroup_disabled())
923 return NULL;
0b7f569e 924
54595fe2
KH
925 rcu_read_lock();
926 do {
6f6acb00
MH
927 /*
928 * Page cache insertions can happen withou an
929 * actual mm context, e.g. during disk probing
930 * on boot, loopback IO, acct() writes etc.
931 */
932 if (unlikely(!mm))
df381975 933 memcg = root_mem_cgroup;
6f6acb00
MH
934 else {
935 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
936 if (unlikely(!memcg))
937 memcg = root_mem_cgroup;
938 }
ec903c0c 939 } while (!css_tryget_online(&memcg->css));
54595fe2 940 rcu_read_unlock();
c0ff4b85 941 return memcg;
54595fe2 942}
d46eb14b
SB
943EXPORT_SYMBOL(get_mem_cgroup_from_mm);
944
f745c6f5
SB
945/**
946 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
947 * @page: page from which memcg should be extracted.
948 *
949 * Obtain a reference on page->memcg and returns it if successful. Otherwise
950 * root_mem_cgroup is returned.
951 */
952struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
953{
954 struct mem_cgroup *memcg = page->mem_cgroup;
955
956 if (mem_cgroup_disabled())
957 return NULL;
958
959 rcu_read_lock();
960 if (!memcg || !css_tryget_online(&memcg->css))
961 memcg = root_mem_cgroup;
962 rcu_read_unlock();
963 return memcg;
964}
965EXPORT_SYMBOL(get_mem_cgroup_from_page);
966
d46eb14b
SB
967/**
968 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
969 */
970static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
971{
972 if (unlikely(current->active_memcg)) {
973 struct mem_cgroup *memcg = root_mem_cgroup;
974
975 rcu_read_lock();
976 if (css_tryget_online(&current->active_memcg->css))
977 memcg = current->active_memcg;
978 rcu_read_unlock();
979 return memcg;
980 }
981 return get_mem_cgroup_from_mm(current->mm);
982}
54595fe2 983
5660048c
JW
984/**
985 * mem_cgroup_iter - iterate over memory cgroup hierarchy
986 * @root: hierarchy root
987 * @prev: previously returned memcg, NULL on first invocation
988 * @reclaim: cookie for shared reclaim walks, NULL for full walks
989 *
990 * Returns references to children of the hierarchy below @root, or
991 * @root itself, or %NULL after a full round-trip.
992 *
993 * Caller must pass the return value in @prev on subsequent
994 * invocations for reference counting, or use mem_cgroup_iter_break()
995 * to cancel a hierarchy walk before the round-trip is complete.
996 *
b213b54f 997 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 998 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 999 * reclaimers operating on the same node and priority.
5660048c 1000 */
694fbc0f 1001struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1002 struct mem_cgroup *prev,
694fbc0f 1003 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1004{
33398cf2 1005 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1006 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1007 struct mem_cgroup *memcg = NULL;
5ac8fb31 1008 struct mem_cgroup *pos = NULL;
711d3d2c 1009
694fbc0f
AM
1010 if (mem_cgroup_disabled())
1011 return NULL;
5660048c 1012
9f3a0d09
JW
1013 if (!root)
1014 root = root_mem_cgroup;
7d74b06f 1015
9f3a0d09 1016 if (prev && !reclaim)
5ac8fb31 1017 pos = prev;
14067bb3 1018
9f3a0d09
JW
1019 if (!root->use_hierarchy && root != root_mem_cgroup) {
1020 if (prev)
5ac8fb31 1021 goto out;
694fbc0f 1022 return root;
9f3a0d09 1023 }
14067bb3 1024
542f85f9 1025 rcu_read_lock();
5f578161 1026
5ac8fb31 1027 if (reclaim) {
ef8f2327 1028 struct mem_cgroup_per_node *mz;
5ac8fb31 1029
ef8f2327 1030 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
1031 iter = &mz->iter[reclaim->priority];
1032
1033 if (prev && reclaim->generation != iter->generation)
1034 goto out_unlock;
1035
6df38689 1036 while (1) {
4db0c3c2 1037 pos = READ_ONCE(iter->position);
6df38689
VD
1038 if (!pos || css_tryget(&pos->css))
1039 break;
5ac8fb31 1040 /*
6df38689
VD
1041 * css reference reached zero, so iter->position will
1042 * be cleared by ->css_released. However, we should not
1043 * rely on this happening soon, because ->css_released
1044 * is called from a work queue, and by busy-waiting we
1045 * might block it. So we clear iter->position right
1046 * away.
5ac8fb31 1047 */
6df38689
VD
1048 (void)cmpxchg(&iter->position, pos, NULL);
1049 }
5ac8fb31
JW
1050 }
1051
1052 if (pos)
1053 css = &pos->css;
1054
1055 for (;;) {
1056 css = css_next_descendant_pre(css, &root->css);
1057 if (!css) {
1058 /*
1059 * Reclaimers share the hierarchy walk, and a
1060 * new one might jump in right at the end of
1061 * the hierarchy - make sure they see at least
1062 * one group and restart from the beginning.
1063 */
1064 if (!prev)
1065 continue;
1066 break;
527a5ec9 1067 }
7d74b06f 1068
5ac8fb31
JW
1069 /*
1070 * Verify the css and acquire a reference. The root
1071 * is provided by the caller, so we know it's alive
1072 * and kicking, and don't take an extra reference.
1073 */
1074 memcg = mem_cgroup_from_css(css);
14067bb3 1075
5ac8fb31
JW
1076 if (css == &root->css)
1077 break;
14067bb3 1078
0b8f73e1
JW
1079 if (css_tryget(css))
1080 break;
9f3a0d09 1081
5ac8fb31 1082 memcg = NULL;
9f3a0d09 1083 }
5ac8fb31
JW
1084
1085 if (reclaim) {
5ac8fb31 1086 /*
6df38689
VD
1087 * The position could have already been updated by a competing
1088 * thread, so check that the value hasn't changed since we read
1089 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1090 */
6df38689
VD
1091 (void)cmpxchg(&iter->position, pos, memcg);
1092
5ac8fb31
JW
1093 if (pos)
1094 css_put(&pos->css);
1095
1096 if (!memcg)
1097 iter->generation++;
1098 else if (!prev)
1099 reclaim->generation = iter->generation;
9f3a0d09 1100 }
5ac8fb31 1101
542f85f9
MH
1102out_unlock:
1103 rcu_read_unlock();
5ac8fb31 1104out:
c40046f3
MH
1105 if (prev && prev != root)
1106 css_put(&prev->css);
1107
9f3a0d09 1108 return memcg;
14067bb3 1109}
7d74b06f 1110
5660048c
JW
1111/**
1112 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1113 * @root: hierarchy root
1114 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1115 */
1116void mem_cgroup_iter_break(struct mem_cgroup *root,
1117 struct mem_cgroup *prev)
9f3a0d09
JW
1118{
1119 if (!root)
1120 root = root_mem_cgroup;
1121 if (prev && prev != root)
1122 css_put(&prev->css);
1123}
7d74b06f 1124
6df38689
VD
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1129 struct mem_cgroup_per_node *mz;
1130 int nid;
6df38689
VD
1131 int i;
1132
9f15bde6 1133 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1134 for_each_node(nid) {
ef8f2327
MG
1135 mz = mem_cgroup_nodeinfo(memcg, nid);
1136 for (i = 0; i <= DEF_PRIORITY; i++) {
1137 iter = &mz->iter[i];
1138 cmpxchg(&iter->position,
1139 dead_memcg, NULL);
6df38689
VD
1140 }
1141 }
1142 }
1143}
1144
7c5f64f8
VD
1145/**
1146 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1147 * @memcg: hierarchy root
1148 * @fn: function to call for each task
1149 * @arg: argument passed to @fn
1150 *
1151 * This function iterates over tasks attached to @memcg or to any of its
1152 * descendants and calls @fn for each task. If @fn returns a non-zero
1153 * value, the function breaks the iteration loop and returns the value.
1154 * Otherwise, it will iterate over all tasks and return 0.
1155 *
1156 * This function must not be called for the root memory cgroup.
1157 */
1158int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1159 int (*fn)(struct task_struct *, void *), void *arg)
1160{
1161 struct mem_cgroup *iter;
1162 int ret = 0;
1163
1164 BUG_ON(memcg == root_mem_cgroup);
1165
1166 for_each_mem_cgroup_tree(iter, memcg) {
1167 struct css_task_iter it;
1168 struct task_struct *task;
1169
f168a9a5 1170 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1171 while (!ret && (task = css_task_iter_next(&it)))
1172 ret = fn(task, arg);
1173 css_task_iter_end(&it);
1174 if (ret) {
1175 mem_cgroup_iter_break(memcg, iter);
1176 break;
1177 }
1178 }
1179 return ret;
1180}
1181
925b7673 1182/**
dfe0e773 1183 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1184 * @page: the page
f144c390 1185 * @pgdat: pgdat of the page
dfe0e773
JW
1186 *
1187 * This function is only safe when following the LRU page isolation
1188 * and putback protocol: the LRU lock must be held, and the page must
1189 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1190 */
599d0c95 1191struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1192{
ef8f2327 1193 struct mem_cgroup_per_node *mz;
925b7673 1194 struct mem_cgroup *memcg;
bea8c150 1195 struct lruvec *lruvec;
6d12e2d8 1196
bea8c150 1197 if (mem_cgroup_disabled()) {
599d0c95 1198 lruvec = &pgdat->lruvec;
bea8c150
HD
1199 goto out;
1200 }
925b7673 1201
1306a85a 1202 memcg = page->mem_cgroup;
7512102c 1203 /*
dfe0e773 1204 * Swapcache readahead pages are added to the LRU - and
29833315 1205 * possibly migrated - before they are charged.
7512102c 1206 */
29833315
JW
1207 if (!memcg)
1208 memcg = root_mem_cgroup;
7512102c 1209
ef8f2327 1210 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1211 lruvec = &mz->lruvec;
1212out:
1213 /*
1214 * Since a node can be onlined after the mem_cgroup was created,
1215 * we have to be prepared to initialize lruvec->zone here;
1216 * and if offlined then reonlined, we need to reinitialize it.
1217 */
599d0c95
MG
1218 if (unlikely(lruvec->pgdat != pgdat))
1219 lruvec->pgdat = pgdat;
bea8c150 1220 return lruvec;
08e552c6 1221}
b69408e8 1222
925b7673 1223/**
fa9add64
HD
1224 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1225 * @lruvec: mem_cgroup per zone lru vector
1226 * @lru: index of lru list the page is sitting on
b4536f0c 1227 * @zid: zone id of the accounted pages
fa9add64 1228 * @nr_pages: positive when adding or negative when removing
925b7673 1229 *
ca707239
HD
1230 * This function must be called under lru_lock, just before a page is added
1231 * to or just after a page is removed from an lru list (that ordering being
1232 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1233 */
fa9add64 1234void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1235 int zid, int nr_pages)
3f58a829 1236{
ef8f2327 1237 struct mem_cgroup_per_node *mz;
fa9add64 1238 unsigned long *lru_size;
ca707239 1239 long size;
3f58a829
MK
1240
1241 if (mem_cgroup_disabled())
1242 return;
1243
ef8f2327 1244 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1245 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1246
1247 if (nr_pages < 0)
1248 *lru_size += nr_pages;
1249
1250 size = *lru_size;
b4536f0c
MH
1251 if (WARN_ONCE(size < 0,
1252 "%s(%p, %d, %d): lru_size %ld\n",
1253 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1254 VM_BUG_ON(1);
1255 *lru_size = 0;
1256 }
1257
1258 if (nr_pages > 0)
1259 *lru_size += nr_pages;
08e552c6 1260}
544122e5 1261
19942822 1262/**
9d11ea9f 1263 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1264 * @memcg: the memory cgroup
19942822 1265 *
9d11ea9f 1266 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1267 * pages.
19942822 1268 */
c0ff4b85 1269static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1270{
3e32cb2e
JW
1271 unsigned long margin = 0;
1272 unsigned long count;
1273 unsigned long limit;
9d11ea9f 1274
3e32cb2e 1275 count = page_counter_read(&memcg->memory);
bbec2e15 1276 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1277 if (count < limit)
1278 margin = limit - count;
1279
7941d214 1280 if (do_memsw_account()) {
3e32cb2e 1281 count = page_counter_read(&memcg->memsw);
bbec2e15 1282 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1283 if (count <= limit)
1284 margin = min(margin, limit - count);
cbedbac3
LR
1285 else
1286 margin = 0;
3e32cb2e
JW
1287 }
1288
1289 return margin;
19942822
JW
1290}
1291
32047e2a 1292/*
bdcbb659 1293 * A routine for checking "mem" is under move_account() or not.
32047e2a 1294 *
bdcbb659
QH
1295 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1296 * moving cgroups. This is for waiting at high-memory pressure
1297 * caused by "move".
32047e2a 1298 */
c0ff4b85 1299static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1300{
2bd9bb20
KH
1301 struct mem_cgroup *from;
1302 struct mem_cgroup *to;
4b534334 1303 bool ret = false;
2bd9bb20
KH
1304 /*
1305 * Unlike task_move routines, we access mc.to, mc.from not under
1306 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1307 */
1308 spin_lock(&mc.lock);
1309 from = mc.from;
1310 to = mc.to;
1311 if (!from)
1312 goto unlock;
3e92041d 1313
2314b42d
JW
1314 ret = mem_cgroup_is_descendant(from, memcg) ||
1315 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1316unlock:
1317 spin_unlock(&mc.lock);
4b534334
KH
1318 return ret;
1319}
1320
c0ff4b85 1321static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1322{
1323 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1324 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1325 DEFINE_WAIT(wait);
1326 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1327 /* moving charge context might have finished. */
1328 if (mc.moving_task)
1329 schedule();
1330 finish_wait(&mc.waitq, &wait);
1331 return true;
1332 }
1333 }
1334 return false;
1335}
1336
c8713d0b
JW
1337static char *memory_stat_format(struct mem_cgroup *memcg)
1338{
1339 struct seq_buf s;
1340 int i;
71cd3113 1341
c8713d0b
JW
1342 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1343 if (!s.buffer)
1344 return NULL;
1345
1346 /*
1347 * Provide statistics on the state of the memory subsystem as
1348 * well as cumulative event counters that show past behavior.
1349 *
1350 * This list is ordered following a combination of these gradients:
1351 * 1) generic big picture -> specifics and details
1352 * 2) reflecting userspace activity -> reflecting kernel heuristics
1353 *
1354 * Current memory state:
1355 */
1356
1357 seq_buf_printf(&s, "anon %llu\n",
1358 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1359 PAGE_SIZE);
1360 seq_buf_printf(&s, "file %llu\n",
1361 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1362 PAGE_SIZE);
1363 seq_buf_printf(&s, "kernel_stack %llu\n",
1364 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1365 1024);
1366 seq_buf_printf(&s, "slab %llu\n",
1367 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1368 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1369 PAGE_SIZE);
1370 seq_buf_printf(&s, "sock %llu\n",
1371 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1372 PAGE_SIZE);
1373
1374 seq_buf_printf(&s, "shmem %llu\n",
1375 (u64)memcg_page_state(memcg, NR_SHMEM) *
1376 PAGE_SIZE);
1377 seq_buf_printf(&s, "file_mapped %llu\n",
1378 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1379 PAGE_SIZE);
1380 seq_buf_printf(&s, "file_dirty %llu\n",
1381 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1382 PAGE_SIZE);
1383 seq_buf_printf(&s, "file_writeback %llu\n",
1384 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1385 PAGE_SIZE);
1386
1387 /*
1388 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1389 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1390 * arse because it requires migrating the work out of rmap to a place
1391 * where the page->mem_cgroup is set up and stable.
1392 */
1393 seq_buf_printf(&s, "anon_thp %llu\n",
1394 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1395 PAGE_SIZE);
1396
1397 for (i = 0; i < NR_LRU_LISTS; i++)
1398 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1399 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1400 PAGE_SIZE);
1401
1402 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1403 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1404 PAGE_SIZE);
1405 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1406 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1407 PAGE_SIZE);
1408
1409 /* Accumulated memory events */
1410
1411 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1412 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1413
1414 seq_buf_printf(&s, "workingset_refault %lu\n",
1415 memcg_page_state(memcg, WORKINGSET_REFAULT));
1416 seq_buf_printf(&s, "workingset_activate %lu\n",
1417 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1418 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1419 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1420
1421 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1422 seq_buf_printf(&s, "pgscan %lu\n",
1423 memcg_events(memcg, PGSCAN_KSWAPD) +
1424 memcg_events(memcg, PGSCAN_DIRECT));
1425 seq_buf_printf(&s, "pgsteal %lu\n",
1426 memcg_events(memcg, PGSTEAL_KSWAPD) +
1427 memcg_events(memcg, PGSTEAL_DIRECT));
1428 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1429 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1430 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1431 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1432
1433#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1434 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1435 memcg_events(memcg, THP_FAULT_ALLOC));
1436 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1437 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1438#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1439
1440 /* The above should easily fit into one page */
1441 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1442
1443 return s.buffer;
1444}
71cd3113 1445
58cf188e 1446#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1447/**
f0c867d9 1448 * mem_cgroup_print_oom_context: Print OOM information relevant to
1449 * memory controller.
e222432b
BS
1450 * @memcg: The memory cgroup that went over limit
1451 * @p: Task that is going to be killed
1452 *
1453 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1454 * enabled
1455 */
f0c867d9 1456void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1457{
e222432b
BS
1458 rcu_read_lock();
1459
f0c867d9 1460 if (memcg) {
1461 pr_cont(",oom_memcg=");
1462 pr_cont_cgroup_path(memcg->css.cgroup);
1463 } else
1464 pr_cont(",global_oom");
2415b9f5 1465 if (p) {
f0c867d9 1466 pr_cont(",task_memcg=");
2415b9f5 1467 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1468 }
e222432b 1469 rcu_read_unlock();
f0c867d9 1470}
1471
1472/**
1473 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1474 * memory controller.
1475 * @memcg: The memory cgroup that went over limit
1476 */
1477void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1478{
c8713d0b 1479 char *buf;
e222432b 1480
3e32cb2e
JW
1481 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1482 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1483 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1484 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1485 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1486 K((u64)page_counter_read(&memcg->swap)),
1487 K((u64)memcg->swap.max), memcg->swap.failcnt);
1488 else {
1489 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->memsw)),
1491 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1492 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1493 K((u64)page_counter_read(&memcg->kmem)),
1494 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1495 }
c8713d0b
JW
1496
1497 pr_info("Memory cgroup stats for ");
1498 pr_cont_cgroup_path(memcg->css.cgroup);
1499 pr_cont(":");
1500 buf = memory_stat_format(memcg);
1501 if (!buf)
1502 return;
1503 pr_info("%s", buf);
1504 kfree(buf);
e222432b
BS
1505}
1506
a63d83f4
DR
1507/*
1508 * Return the memory (and swap, if configured) limit for a memcg.
1509 */
bbec2e15 1510unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1511{
bbec2e15 1512 unsigned long max;
f3e8eb70 1513
bbec2e15 1514 max = memcg->memory.max;
9a5a8f19 1515 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1516 unsigned long memsw_max;
1517 unsigned long swap_max;
9a5a8f19 1518
bbec2e15
RG
1519 memsw_max = memcg->memsw.max;
1520 swap_max = memcg->swap.max;
1521 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1522 max = min(max + swap_max, memsw_max);
9a5a8f19 1523 }
bbec2e15 1524 return max;
a63d83f4
DR
1525}
1526
b6e6edcf 1527static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1528 int order)
9cbb78bb 1529{
6e0fc46d
DR
1530 struct oom_control oc = {
1531 .zonelist = NULL,
1532 .nodemask = NULL,
2a966b77 1533 .memcg = memcg,
6e0fc46d
DR
1534 .gfp_mask = gfp_mask,
1535 .order = order,
6e0fc46d 1536 };
7c5f64f8 1537 bool ret;
9cbb78bb 1538
7775face
TH
1539 if (mutex_lock_killable(&oom_lock))
1540 return true;
1541 /*
1542 * A few threads which were not waiting at mutex_lock_killable() can
1543 * fail to bail out. Therefore, check again after holding oom_lock.
1544 */
1545 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1546 mutex_unlock(&oom_lock);
7c5f64f8 1547 return ret;
9cbb78bb
DR
1548}
1549
ae6e71d3
MC
1550#if MAX_NUMNODES > 1
1551
4d0c066d
KH
1552/**
1553 * test_mem_cgroup_node_reclaimable
dad7557e 1554 * @memcg: the target memcg
4d0c066d
KH
1555 * @nid: the node ID to be checked.
1556 * @noswap : specify true here if the user wants flle only information.
1557 *
1558 * This function returns whether the specified memcg contains any
1559 * reclaimable pages on a node. Returns true if there are any reclaimable
1560 * pages in the node.
1561 */
c0ff4b85 1562static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1563 int nid, bool noswap)
1564{
2b487e59
JW
1565 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1566
def0fdae
JW
1567 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1568 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1569 return true;
1570 if (noswap || !total_swap_pages)
1571 return false;
def0fdae
JW
1572 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1573 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1574 return true;
1575 return false;
1576
1577}
889976db
YH
1578
1579/*
1580 * Always updating the nodemask is not very good - even if we have an empty
1581 * list or the wrong list here, we can start from some node and traverse all
1582 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1583 *
1584 */
c0ff4b85 1585static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1586{
1587 int nid;
453a9bf3
KH
1588 /*
1589 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1590 * pagein/pageout changes since the last update.
1591 */
c0ff4b85 1592 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1593 return;
c0ff4b85 1594 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1595 return;
1596
889976db 1597 /* make a nodemask where this memcg uses memory from */
31aaea4a 1598 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1599
31aaea4a 1600 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1601
c0ff4b85
R
1602 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1603 node_clear(nid, memcg->scan_nodes);
889976db 1604 }
453a9bf3 1605
c0ff4b85
R
1606 atomic_set(&memcg->numainfo_events, 0);
1607 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1608}
1609
1610/*
1611 * Selecting a node where we start reclaim from. Because what we need is just
1612 * reducing usage counter, start from anywhere is O,K. Considering
1613 * memory reclaim from current node, there are pros. and cons.
1614 *
1615 * Freeing memory from current node means freeing memory from a node which
1616 * we'll use or we've used. So, it may make LRU bad. And if several threads
1617 * hit limits, it will see a contention on a node. But freeing from remote
1618 * node means more costs for memory reclaim because of memory latency.
1619 *
1620 * Now, we use round-robin. Better algorithm is welcomed.
1621 */
c0ff4b85 1622int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1623{
1624 int node;
1625
c0ff4b85
R
1626 mem_cgroup_may_update_nodemask(memcg);
1627 node = memcg->last_scanned_node;
889976db 1628
0edaf86c 1629 node = next_node_in(node, memcg->scan_nodes);
889976db 1630 /*
fda3d69b
MH
1631 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1632 * last time it really checked all the LRUs due to rate limiting.
1633 * Fallback to the current node in that case for simplicity.
889976db
YH
1634 */
1635 if (unlikely(node == MAX_NUMNODES))
1636 node = numa_node_id();
1637
c0ff4b85 1638 memcg->last_scanned_node = node;
889976db
YH
1639 return node;
1640}
889976db 1641#else
c0ff4b85 1642int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1643{
1644 return 0;
1645}
1646#endif
1647
0608f43d 1648static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1649 pg_data_t *pgdat,
0608f43d
AM
1650 gfp_t gfp_mask,
1651 unsigned long *total_scanned)
1652{
1653 struct mem_cgroup *victim = NULL;
1654 int total = 0;
1655 int loop = 0;
1656 unsigned long excess;
1657 unsigned long nr_scanned;
1658 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1659 .pgdat = pgdat,
0608f43d
AM
1660 .priority = 0,
1661 };
1662
3e32cb2e 1663 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1664
1665 while (1) {
1666 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1667 if (!victim) {
1668 loop++;
1669 if (loop >= 2) {
1670 /*
1671 * If we have not been able to reclaim
1672 * anything, it might because there are
1673 * no reclaimable pages under this hierarchy
1674 */
1675 if (!total)
1676 break;
1677 /*
1678 * We want to do more targeted reclaim.
1679 * excess >> 2 is not to excessive so as to
1680 * reclaim too much, nor too less that we keep
1681 * coming back to reclaim from this cgroup
1682 */
1683 if (total >= (excess >> 2) ||
1684 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1685 break;
1686 }
1687 continue;
1688 }
a9dd0a83 1689 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1690 pgdat, &nr_scanned);
0608f43d 1691 *total_scanned += nr_scanned;
3e32cb2e 1692 if (!soft_limit_excess(root_memcg))
0608f43d 1693 break;
6d61ef40 1694 }
0608f43d
AM
1695 mem_cgroup_iter_break(root_memcg, victim);
1696 return total;
6d61ef40
BS
1697}
1698
0056f4e6
JW
1699#ifdef CONFIG_LOCKDEP
1700static struct lockdep_map memcg_oom_lock_dep_map = {
1701 .name = "memcg_oom_lock",
1702};
1703#endif
1704
fb2a6fc5
JW
1705static DEFINE_SPINLOCK(memcg_oom_lock);
1706
867578cb
KH
1707/*
1708 * Check OOM-Killer is already running under our hierarchy.
1709 * If someone is running, return false.
1710 */
fb2a6fc5 1711static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1712{
79dfdacc 1713 struct mem_cgroup *iter, *failed = NULL;
a636b327 1714
fb2a6fc5
JW
1715 spin_lock(&memcg_oom_lock);
1716
9f3a0d09 1717 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1718 if (iter->oom_lock) {
79dfdacc
MH
1719 /*
1720 * this subtree of our hierarchy is already locked
1721 * so we cannot give a lock.
1722 */
79dfdacc 1723 failed = iter;
9f3a0d09
JW
1724 mem_cgroup_iter_break(memcg, iter);
1725 break;
23751be0
JW
1726 } else
1727 iter->oom_lock = true;
7d74b06f 1728 }
867578cb 1729
fb2a6fc5
JW
1730 if (failed) {
1731 /*
1732 * OK, we failed to lock the whole subtree so we have
1733 * to clean up what we set up to the failing subtree
1734 */
1735 for_each_mem_cgroup_tree(iter, memcg) {
1736 if (iter == failed) {
1737 mem_cgroup_iter_break(memcg, iter);
1738 break;
1739 }
1740 iter->oom_lock = false;
79dfdacc 1741 }
0056f4e6
JW
1742 } else
1743 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1744
1745 spin_unlock(&memcg_oom_lock);
1746
1747 return !failed;
a636b327 1748}
0b7f569e 1749
fb2a6fc5 1750static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1751{
7d74b06f
KH
1752 struct mem_cgroup *iter;
1753
fb2a6fc5 1754 spin_lock(&memcg_oom_lock);
0056f4e6 1755 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1756 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1757 iter->oom_lock = false;
fb2a6fc5 1758 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1759}
1760
c0ff4b85 1761static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1762{
1763 struct mem_cgroup *iter;
1764
c2b42d3c 1765 spin_lock(&memcg_oom_lock);
c0ff4b85 1766 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1767 iter->under_oom++;
1768 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1769}
1770
c0ff4b85 1771static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1772{
1773 struct mem_cgroup *iter;
1774
867578cb
KH
1775 /*
1776 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1777 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1778 */
c2b42d3c 1779 spin_lock(&memcg_oom_lock);
c0ff4b85 1780 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1781 if (iter->under_oom > 0)
1782 iter->under_oom--;
1783 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1784}
1785
867578cb
KH
1786static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1787
dc98df5a 1788struct oom_wait_info {
d79154bb 1789 struct mem_cgroup *memcg;
ac6424b9 1790 wait_queue_entry_t wait;
dc98df5a
KH
1791};
1792
ac6424b9 1793static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1794 unsigned mode, int sync, void *arg)
1795{
d79154bb
HD
1796 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1797 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1798 struct oom_wait_info *oom_wait_info;
1799
1800 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1801 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1802
2314b42d
JW
1803 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1804 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1805 return 0;
dc98df5a
KH
1806 return autoremove_wake_function(wait, mode, sync, arg);
1807}
1808
c0ff4b85 1809static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1810{
c2b42d3c
TH
1811 /*
1812 * For the following lockless ->under_oom test, the only required
1813 * guarantee is that it must see the state asserted by an OOM when
1814 * this function is called as a result of userland actions
1815 * triggered by the notification of the OOM. This is trivially
1816 * achieved by invoking mem_cgroup_mark_under_oom() before
1817 * triggering notification.
1818 */
1819 if (memcg && memcg->under_oom)
f4b90b70 1820 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1821}
1822
29ef680a
MH
1823enum oom_status {
1824 OOM_SUCCESS,
1825 OOM_FAILED,
1826 OOM_ASYNC,
1827 OOM_SKIPPED
1828};
1829
1830static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1831{
7056d3a3
MH
1832 enum oom_status ret;
1833 bool locked;
1834
29ef680a
MH
1835 if (order > PAGE_ALLOC_COSTLY_ORDER)
1836 return OOM_SKIPPED;
1837
7a1adfdd
RG
1838 memcg_memory_event(memcg, MEMCG_OOM);
1839
867578cb 1840 /*
49426420
JW
1841 * We are in the middle of the charge context here, so we
1842 * don't want to block when potentially sitting on a callstack
1843 * that holds all kinds of filesystem and mm locks.
1844 *
29ef680a
MH
1845 * cgroup1 allows disabling the OOM killer and waiting for outside
1846 * handling until the charge can succeed; remember the context and put
1847 * the task to sleep at the end of the page fault when all locks are
1848 * released.
49426420 1849 *
29ef680a
MH
1850 * On the other hand, in-kernel OOM killer allows for an async victim
1851 * memory reclaim (oom_reaper) and that means that we are not solely
1852 * relying on the oom victim to make a forward progress and we can
1853 * invoke the oom killer here.
1854 *
1855 * Please note that mem_cgroup_out_of_memory might fail to find a
1856 * victim and then we have to bail out from the charge path.
867578cb 1857 */
29ef680a
MH
1858 if (memcg->oom_kill_disable) {
1859 if (!current->in_user_fault)
1860 return OOM_SKIPPED;
1861 css_get(&memcg->css);
1862 current->memcg_in_oom = memcg;
1863 current->memcg_oom_gfp_mask = mask;
1864 current->memcg_oom_order = order;
1865
1866 return OOM_ASYNC;
1867 }
1868
7056d3a3
MH
1869 mem_cgroup_mark_under_oom(memcg);
1870
1871 locked = mem_cgroup_oom_trylock(memcg);
1872
1873 if (locked)
1874 mem_cgroup_oom_notify(memcg);
1875
1876 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1877 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1878 ret = OOM_SUCCESS;
1879 else
1880 ret = OOM_FAILED;
1881
1882 if (locked)
1883 mem_cgroup_oom_unlock(memcg);
29ef680a 1884
7056d3a3 1885 return ret;
3812c8c8
JW
1886}
1887
1888/**
1889 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1890 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1891 *
49426420
JW
1892 * This has to be called at the end of a page fault if the memcg OOM
1893 * handler was enabled.
3812c8c8 1894 *
49426420 1895 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1896 * sleep on a waitqueue until the userspace task resolves the
1897 * situation. Sleeping directly in the charge context with all kinds
1898 * of locks held is not a good idea, instead we remember an OOM state
1899 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1900 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1901 *
1902 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1903 * completed, %false otherwise.
3812c8c8 1904 */
49426420 1905bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1906{
626ebc41 1907 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1908 struct oom_wait_info owait;
49426420 1909 bool locked;
3812c8c8
JW
1910
1911 /* OOM is global, do not handle */
3812c8c8 1912 if (!memcg)
49426420 1913 return false;
3812c8c8 1914
7c5f64f8 1915 if (!handle)
49426420 1916 goto cleanup;
3812c8c8
JW
1917
1918 owait.memcg = memcg;
1919 owait.wait.flags = 0;
1920 owait.wait.func = memcg_oom_wake_function;
1921 owait.wait.private = current;
2055da97 1922 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1923
3812c8c8 1924 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1925 mem_cgroup_mark_under_oom(memcg);
1926
1927 locked = mem_cgroup_oom_trylock(memcg);
1928
1929 if (locked)
1930 mem_cgroup_oom_notify(memcg);
1931
1932 if (locked && !memcg->oom_kill_disable) {
1933 mem_cgroup_unmark_under_oom(memcg);
1934 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1935 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1936 current->memcg_oom_order);
49426420 1937 } else {
3812c8c8 1938 schedule();
49426420
JW
1939 mem_cgroup_unmark_under_oom(memcg);
1940 finish_wait(&memcg_oom_waitq, &owait.wait);
1941 }
1942
1943 if (locked) {
fb2a6fc5
JW
1944 mem_cgroup_oom_unlock(memcg);
1945 /*
1946 * There is no guarantee that an OOM-lock contender
1947 * sees the wakeups triggered by the OOM kill
1948 * uncharges. Wake any sleepers explicitely.
1949 */
1950 memcg_oom_recover(memcg);
1951 }
49426420 1952cleanup:
626ebc41 1953 current->memcg_in_oom = NULL;
3812c8c8 1954 css_put(&memcg->css);
867578cb 1955 return true;
0b7f569e
KH
1956}
1957
3d8b38eb
RG
1958/**
1959 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1960 * @victim: task to be killed by the OOM killer
1961 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1962 *
1963 * Returns a pointer to a memory cgroup, which has to be cleaned up
1964 * by killing all belonging OOM-killable tasks.
1965 *
1966 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1967 */
1968struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1969 struct mem_cgroup *oom_domain)
1970{
1971 struct mem_cgroup *oom_group = NULL;
1972 struct mem_cgroup *memcg;
1973
1974 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1975 return NULL;
1976
1977 if (!oom_domain)
1978 oom_domain = root_mem_cgroup;
1979
1980 rcu_read_lock();
1981
1982 memcg = mem_cgroup_from_task(victim);
1983 if (memcg == root_mem_cgroup)
1984 goto out;
1985
1986 /*
1987 * Traverse the memory cgroup hierarchy from the victim task's
1988 * cgroup up to the OOMing cgroup (or root) to find the
1989 * highest-level memory cgroup with oom.group set.
1990 */
1991 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1992 if (memcg->oom_group)
1993 oom_group = memcg;
1994
1995 if (memcg == oom_domain)
1996 break;
1997 }
1998
1999 if (oom_group)
2000 css_get(&oom_group->css);
2001out:
2002 rcu_read_unlock();
2003
2004 return oom_group;
2005}
2006
2007void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2008{
2009 pr_info("Tasks in ");
2010 pr_cont_cgroup_path(memcg->css.cgroup);
2011 pr_cont(" are going to be killed due to memory.oom.group set\n");
2012}
2013
d7365e78 2014/**
81f8c3a4
JW
2015 * lock_page_memcg - lock a page->mem_cgroup binding
2016 * @page: the page
32047e2a 2017 *
81f8c3a4 2018 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2019 * another cgroup.
2020 *
2021 * It ensures lifetime of the returned memcg. Caller is responsible
2022 * for the lifetime of the page; __unlock_page_memcg() is available
2023 * when @page might get freed inside the locked section.
d69b042f 2024 */
739f79fc 2025struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
2026{
2027 struct mem_cgroup *memcg;
6de22619 2028 unsigned long flags;
89c06bd5 2029
6de22619
JW
2030 /*
2031 * The RCU lock is held throughout the transaction. The fast
2032 * path can get away without acquiring the memcg->move_lock
2033 * because page moving starts with an RCU grace period.
739f79fc
JW
2034 *
2035 * The RCU lock also protects the memcg from being freed when
2036 * the page state that is going to change is the only thing
2037 * preventing the page itself from being freed. E.g. writeback
2038 * doesn't hold a page reference and relies on PG_writeback to
2039 * keep off truncation, migration and so forth.
2040 */
d7365e78
JW
2041 rcu_read_lock();
2042
2043 if (mem_cgroup_disabled())
739f79fc 2044 return NULL;
89c06bd5 2045again:
1306a85a 2046 memcg = page->mem_cgroup;
29833315 2047 if (unlikely(!memcg))
739f79fc 2048 return NULL;
d7365e78 2049
bdcbb659 2050 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2051 return memcg;
89c06bd5 2052
6de22619 2053 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2054 if (memcg != page->mem_cgroup) {
6de22619 2055 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2056 goto again;
2057 }
6de22619
JW
2058
2059 /*
2060 * When charge migration first begins, we can have locked and
2061 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2062 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2063 */
2064 memcg->move_lock_task = current;
2065 memcg->move_lock_flags = flags;
d7365e78 2066
739f79fc 2067 return memcg;
89c06bd5 2068}
81f8c3a4 2069EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2070
d7365e78 2071/**
739f79fc
JW
2072 * __unlock_page_memcg - unlock and unpin a memcg
2073 * @memcg: the memcg
2074 *
2075 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2076 */
739f79fc 2077void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2078{
6de22619
JW
2079 if (memcg && memcg->move_lock_task == current) {
2080 unsigned long flags = memcg->move_lock_flags;
2081
2082 memcg->move_lock_task = NULL;
2083 memcg->move_lock_flags = 0;
2084
2085 spin_unlock_irqrestore(&memcg->move_lock, flags);
2086 }
89c06bd5 2087
d7365e78 2088 rcu_read_unlock();
89c06bd5 2089}
739f79fc
JW
2090
2091/**
2092 * unlock_page_memcg - unlock a page->mem_cgroup binding
2093 * @page: the page
2094 */
2095void unlock_page_memcg(struct page *page)
2096{
2097 __unlock_page_memcg(page->mem_cgroup);
2098}
81f8c3a4 2099EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2100
cdec2e42
KH
2101struct memcg_stock_pcp {
2102 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2103 unsigned int nr_pages;
cdec2e42 2104 struct work_struct work;
26fe6168 2105 unsigned long flags;
a0db00fc 2106#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2107};
2108static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2109static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2110
a0956d54
SS
2111/**
2112 * consume_stock: Try to consume stocked charge on this cpu.
2113 * @memcg: memcg to consume from.
2114 * @nr_pages: how many pages to charge.
2115 *
2116 * The charges will only happen if @memcg matches the current cpu's memcg
2117 * stock, and at least @nr_pages are available in that stock. Failure to
2118 * service an allocation will refill the stock.
2119 *
2120 * returns true if successful, false otherwise.
cdec2e42 2121 */
a0956d54 2122static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2123{
2124 struct memcg_stock_pcp *stock;
db2ba40c 2125 unsigned long flags;
3e32cb2e 2126 bool ret = false;
cdec2e42 2127
a983b5eb 2128 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2129 return ret;
a0956d54 2130
db2ba40c
JW
2131 local_irq_save(flags);
2132
2133 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2134 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2135 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2136 ret = true;
2137 }
db2ba40c
JW
2138
2139 local_irq_restore(flags);
2140
cdec2e42
KH
2141 return ret;
2142}
2143
2144/*
3e32cb2e 2145 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2146 */
2147static void drain_stock(struct memcg_stock_pcp *stock)
2148{
2149 struct mem_cgroup *old = stock->cached;
2150
11c9ea4e 2151 if (stock->nr_pages) {
3e32cb2e 2152 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2153 if (do_memsw_account())
3e32cb2e 2154 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2155 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2156 stock->nr_pages = 0;
cdec2e42
KH
2157 }
2158 stock->cached = NULL;
cdec2e42
KH
2159}
2160
cdec2e42
KH
2161static void drain_local_stock(struct work_struct *dummy)
2162{
db2ba40c
JW
2163 struct memcg_stock_pcp *stock;
2164 unsigned long flags;
2165
72f0184c
MH
2166 /*
2167 * The only protection from memory hotplug vs. drain_stock races is
2168 * that we always operate on local CPU stock here with IRQ disabled
2169 */
db2ba40c
JW
2170 local_irq_save(flags);
2171
2172 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2173 drain_stock(stock);
26fe6168 2174 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2175
2176 local_irq_restore(flags);
cdec2e42
KH
2177}
2178
2179/*
3e32cb2e 2180 * Cache charges(val) to local per_cpu area.
320cc51d 2181 * This will be consumed by consume_stock() function, later.
cdec2e42 2182 */
c0ff4b85 2183static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2184{
db2ba40c
JW
2185 struct memcg_stock_pcp *stock;
2186 unsigned long flags;
2187
2188 local_irq_save(flags);
cdec2e42 2189
db2ba40c 2190 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2191 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2192 drain_stock(stock);
c0ff4b85 2193 stock->cached = memcg;
cdec2e42 2194 }
11c9ea4e 2195 stock->nr_pages += nr_pages;
db2ba40c 2196
a983b5eb 2197 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2198 drain_stock(stock);
2199
db2ba40c 2200 local_irq_restore(flags);
cdec2e42
KH
2201}
2202
2203/*
c0ff4b85 2204 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2205 * of the hierarchy under it.
cdec2e42 2206 */
6d3d6aa2 2207static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2208{
26fe6168 2209 int cpu, curcpu;
d38144b7 2210
6d3d6aa2
JW
2211 /* If someone's already draining, avoid adding running more workers. */
2212 if (!mutex_trylock(&percpu_charge_mutex))
2213 return;
72f0184c
MH
2214 /*
2215 * Notify other cpus that system-wide "drain" is running
2216 * We do not care about races with the cpu hotplug because cpu down
2217 * as well as workers from this path always operate on the local
2218 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2219 */
5af12d0e 2220 curcpu = get_cpu();
cdec2e42
KH
2221 for_each_online_cpu(cpu) {
2222 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2223 struct mem_cgroup *memcg;
26fe6168 2224
c0ff4b85 2225 memcg = stock->cached;
72f0184c 2226 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2227 continue;
72f0184c
MH
2228 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2229 css_put(&memcg->css);
3e92041d 2230 continue;
72f0184c 2231 }
d1a05b69
MH
2232 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2233 if (cpu == curcpu)
2234 drain_local_stock(&stock->work);
2235 else
2236 schedule_work_on(cpu, &stock->work);
2237 }
72f0184c 2238 css_put(&memcg->css);
cdec2e42 2239 }
5af12d0e 2240 put_cpu();
9f50fad6 2241 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2242}
2243
308167fc 2244static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2245{
cdec2e42 2246 struct memcg_stock_pcp *stock;
42a30035 2247 struct mem_cgroup *memcg, *mi;
cdec2e42 2248
cdec2e42
KH
2249 stock = &per_cpu(memcg_stock, cpu);
2250 drain_stock(stock);
a983b5eb
JW
2251
2252 for_each_mem_cgroup(memcg) {
2253 int i;
2254
2255 for (i = 0; i < MEMCG_NR_STAT; i++) {
2256 int nid;
2257 long x;
2258
871789d4 2259 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2260 if (x)
42a30035
JW
2261 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2262 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2263
2264 if (i >= NR_VM_NODE_STAT_ITEMS)
2265 continue;
2266
2267 for_each_node(nid) {
2268 struct mem_cgroup_per_node *pn;
2269
2270 pn = mem_cgroup_nodeinfo(memcg, nid);
2271 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2272 if (x)
42a30035
JW
2273 do {
2274 atomic_long_add(x, &pn->lruvec_stat[i]);
2275 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2276 }
2277 }
2278
e27be240 2279 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2280 long x;
2281
871789d4 2282 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2283 if (x)
42a30035
JW
2284 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2285 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2286 }
2287 }
2288
308167fc 2289 return 0;
cdec2e42
KH
2290}
2291
f7e1cb6e
JW
2292static void reclaim_high(struct mem_cgroup *memcg,
2293 unsigned int nr_pages,
2294 gfp_t gfp_mask)
2295{
2296 do {
2297 if (page_counter_read(&memcg->memory) <= memcg->high)
2298 continue;
e27be240 2299 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2300 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2301 } while ((memcg = parent_mem_cgroup(memcg)));
2302}
2303
2304static void high_work_func(struct work_struct *work)
2305{
2306 struct mem_cgroup *memcg;
2307
2308 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2309 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2310}
2311
b23afb93
TH
2312/*
2313 * Scheduled by try_charge() to be executed from the userland return path
2314 * and reclaims memory over the high limit.
2315 */
2316void mem_cgroup_handle_over_high(void)
2317{
2318 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2319 struct mem_cgroup *memcg;
b23afb93
TH
2320
2321 if (likely(!nr_pages))
2322 return;
2323
f7e1cb6e
JW
2324 memcg = get_mem_cgroup_from_mm(current->mm);
2325 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2326 css_put(&memcg->css);
2327 current->memcg_nr_pages_over_high = 0;
2328}
2329
00501b53
JW
2330static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2331 unsigned int nr_pages)
8a9f3ccd 2332{
a983b5eb 2333 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2334 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2335 struct mem_cgroup *mem_over_limit;
3e32cb2e 2336 struct page_counter *counter;
6539cc05 2337 unsigned long nr_reclaimed;
b70a2a21
JW
2338 bool may_swap = true;
2339 bool drained = false;
29ef680a 2340 enum oom_status oom_status;
a636b327 2341
ce00a967 2342 if (mem_cgroup_is_root(memcg))
10d53c74 2343 return 0;
6539cc05 2344retry:
b6b6cc72 2345 if (consume_stock(memcg, nr_pages))
10d53c74 2346 return 0;
8a9f3ccd 2347
7941d214 2348 if (!do_memsw_account() ||
6071ca52
JW
2349 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2350 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2351 goto done_restock;
7941d214 2352 if (do_memsw_account())
3e32cb2e
JW
2353 page_counter_uncharge(&memcg->memsw, batch);
2354 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2355 } else {
3e32cb2e 2356 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2357 may_swap = false;
3fbe7244 2358 }
7a81b88c 2359
6539cc05
JW
2360 if (batch > nr_pages) {
2361 batch = nr_pages;
2362 goto retry;
2363 }
6d61ef40 2364
06b078fc
JW
2365 /*
2366 * Unlike in global OOM situations, memcg is not in a physical
2367 * memory shortage. Allow dying and OOM-killed tasks to
2368 * bypass the last charges so that they can exit quickly and
2369 * free their memory.
2370 */
7775face 2371 if (unlikely(should_force_charge()))
10d53c74 2372 goto force;
06b078fc 2373
89a28483
JW
2374 /*
2375 * Prevent unbounded recursion when reclaim operations need to
2376 * allocate memory. This might exceed the limits temporarily,
2377 * but we prefer facilitating memory reclaim and getting back
2378 * under the limit over triggering OOM kills in these cases.
2379 */
2380 if (unlikely(current->flags & PF_MEMALLOC))
2381 goto force;
2382
06b078fc
JW
2383 if (unlikely(task_in_memcg_oom(current)))
2384 goto nomem;
2385
d0164adc 2386 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2387 goto nomem;
4b534334 2388
e27be240 2389 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2390
b70a2a21
JW
2391 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2392 gfp_mask, may_swap);
6539cc05 2393
61e02c74 2394 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2395 goto retry;
28c34c29 2396
b70a2a21 2397 if (!drained) {
6d3d6aa2 2398 drain_all_stock(mem_over_limit);
b70a2a21
JW
2399 drained = true;
2400 goto retry;
2401 }
2402
28c34c29
JW
2403 if (gfp_mask & __GFP_NORETRY)
2404 goto nomem;
6539cc05
JW
2405 /*
2406 * Even though the limit is exceeded at this point, reclaim
2407 * may have been able to free some pages. Retry the charge
2408 * before killing the task.
2409 *
2410 * Only for regular pages, though: huge pages are rather
2411 * unlikely to succeed so close to the limit, and we fall back
2412 * to regular pages anyway in case of failure.
2413 */
61e02c74 2414 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2415 goto retry;
2416 /*
2417 * At task move, charge accounts can be doubly counted. So, it's
2418 * better to wait until the end of task_move if something is going on.
2419 */
2420 if (mem_cgroup_wait_acct_move(mem_over_limit))
2421 goto retry;
2422
9b130619
JW
2423 if (nr_retries--)
2424 goto retry;
2425
38d38493 2426 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2427 goto nomem;
2428
06b078fc 2429 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2430 goto force;
06b078fc 2431
6539cc05 2432 if (fatal_signal_pending(current))
10d53c74 2433 goto force;
6539cc05 2434
29ef680a
MH
2435 /*
2436 * keep retrying as long as the memcg oom killer is able to make
2437 * a forward progress or bypass the charge if the oom killer
2438 * couldn't make any progress.
2439 */
2440 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2441 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2442 switch (oom_status) {
2443 case OOM_SUCCESS:
2444 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2445 goto retry;
2446 case OOM_FAILED:
2447 goto force;
2448 default:
2449 goto nomem;
2450 }
7a81b88c 2451nomem:
6d1fdc48 2452 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2453 return -ENOMEM;
10d53c74
TH
2454force:
2455 /*
2456 * The allocation either can't fail or will lead to more memory
2457 * being freed very soon. Allow memory usage go over the limit
2458 * temporarily by force charging it.
2459 */
2460 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2461 if (do_memsw_account())
10d53c74
TH
2462 page_counter_charge(&memcg->memsw, nr_pages);
2463 css_get_many(&memcg->css, nr_pages);
2464
2465 return 0;
6539cc05
JW
2466
2467done_restock:
e8ea14cc 2468 css_get_many(&memcg->css, batch);
6539cc05
JW
2469 if (batch > nr_pages)
2470 refill_stock(memcg, batch - nr_pages);
b23afb93 2471
241994ed 2472 /*
b23afb93
TH
2473 * If the hierarchy is above the normal consumption range, schedule
2474 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2475 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2476 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2477 * not recorded as it most likely matches current's and won't
2478 * change in the meantime. As high limit is checked again before
2479 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2480 */
2481 do {
b23afb93 2482 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2483 /* Don't bother a random interrupted task */
2484 if (in_interrupt()) {
2485 schedule_work(&memcg->high_work);
2486 break;
2487 }
9516a18a 2488 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2489 set_notify_resume(current);
2490 break;
2491 }
241994ed 2492 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2493
2494 return 0;
7a81b88c 2495}
8a9f3ccd 2496
00501b53 2497static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2498{
ce00a967
JW
2499 if (mem_cgroup_is_root(memcg))
2500 return;
2501
3e32cb2e 2502 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2503 if (do_memsw_account())
3e32cb2e 2504 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2505
e8ea14cc 2506 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2507}
2508
0a31bc97
JW
2509static void lock_page_lru(struct page *page, int *isolated)
2510{
f4b7e272 2511 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2512
f4b7e272 2513 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2514 if (PageLRU(page)) {
2515 struct lruvec *lruvec;
2516
f4b7e272 2517 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2518 ClearPageLRU(page);
2519 del_page_from_lru_list(page, lruvec, page_lru(page));
2520 *isolated = 1;
2521 } else
2522 *isolated = 0;
2523}
2524
2525static void unlock_page_lru(struct page *page, int isolated)
2526{
f4b7e272 2527 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2528
2529 if (isolated) {
2530 struct lruvec *lruvec;
2531
f4b7e272 2532 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2533 VM_BUG_ON_PAGE(PageLRU(page), page);
2534 SetPageLRU(page);
2535 add_page_to_lru_list(page, lruvec, page_lru(page));
2536 }
f4b7e272 2537 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2538}
2539
00501b53 2540static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2541 bool lrucare)
7a81b88c 2542{
0a31bc97 2543 int isolated;
9ce70c02 2544
1306a85a 2545 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2546
2547 /*
2548 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2549 * may already be on some other mem_cgroup's LRU. Take care of it.
2550 */
0a31bc97
JW
2551 if (lrucare)
2552 lock_page_lru(page, &isolated);
9ce70c02 2553
0a31bc97
JW
2554 /*
2555 * Nobody should be changing or seriously looking at
1306a85a 2556 * page->mem_cgroup at this point:
0a31bc97
JW
2557 *
2558 * - the page is uncharged
2559 *
2560 * - the page is off-LRU
2561 *
2562 * - an anonymous fault has exclusive page access, except for
2563 * a locked page table
2564 *
2565 * - a page cache insertion, a swapin fault, or a migration
2566 * have the page locked
2567 */
1306a85a 2568 page->mem_cgroup = memcg;
9ce70c02 2569
0a31bc97
JW
2570 if (lrucare)
2571 unlock_page_lru(page, isolated);
7a81b88c 2572}
66e1707b 2573
84c07d11 2574#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2575static int memcg_alloc_cache_id(void)
55007d84 2576{
f3bb3043
VD
2577 int id, size;
2578 int err;
2579
dbcf73e2 2580 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2581 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2582 if (id < 0)
2583 return id;
55007d84 2584
dbcf73e2 2585 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2586 return id;
2587
2588 /*
2589 * There's no space for the new id in memcg_caches arrays,
2590 * so we have to grow them.
2591 */
05257a1a 2592 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2593
2594 size = 2 * (id + 1);
55007d84
GC
2595 if (size < MEMCG_CACHES_MIN_SIZE)
2596 size = MEMCG_CACHES_MIN_SIZE;
2597 else if (size > MEMCG_CACHES_MAX_SIZE)
2598 size = MEMCG_CACHES_MAX_SIZE;
2599
f3bb3043 2600 err = memcg_update_all_caches(size);
60d3fd32
VD
2601 if (!err)
2602 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2603 if (!err)
2604 memcg_nr_cache_ids = size;
2605
2606 up_write(&memcg_cache_ids_sem);
2607
f3bb3043 2608 if (err) {
dbcf73e2 2609 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2610 return err;
2611 }
2612 return id;
2613}
2614
2615static void memcg_free_cache_id(int id)
2616{
dbcf73e2 2617 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2618}
2619
d5b3cf71 2620struct memcg_kmem_cache_create_work {
5722d094
VD
2621 struct mem_cgroup *memcg;
2622 struct kmem_cache *cachep;
2623 struct work_struct work;
2624};
2625
d5b3cf71 2626static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2627{
d5b3cf71
VD
2628 struct memcg_kmem_cache_create_work *cw =
2629 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2630 struct mem_cgroup *memcg = cw->memcg;
2631 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2632
d5b3cf71 2633 memcg_create_kmem_cache(memcg, cachep);
bd673145 2634
5722d094 2635 css_put(&memcg->css);
d7f25f8a
GC
2636 kfree(cw);
2637}
2638
2639/*
2640 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2641 */
85cfb245 2642static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2643 struct kmem_cache *cachep)
d7f25f8a 2644{
d5b3cf71 2645 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2646
f0a3a24b
RG
2647 if (!css_tryget_online(&memcg->css))
2648 return;
2649
c892fd82 2650 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2651 if (!cw)
d7f25f8a 2652 return;
8135be5a 2653
d7f25f8a
GC
2654 cw->memcg = memcg;
2655 cw->cachep = cachep;
d5b3cf71 2656 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2657
17cc4dfe 2658 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2659}
2660
45264778
VD
2661static inline bool memcg_kmem_bypass(void)
2662{
2663 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2664 return true;
2665 return false;
2666}
2667
2668/**
2669 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2670 * @cachep: the original global kmem cache
2671 *
d7f25f8a
GC
2672 * Return the kmem_cache we're supposed to use for a slab allocation.
2673 * We try to use the current memcg's version of the cache.
2674 *
45264778
VD
2675 * If the cache does not exist yet, if we are the first user of it, we
2676 * create it asynchronously in a workqueue and let the current allocation
2677 * go through with the original cache.
d7f25f8a 2678 *
45264778
VD
2679 * This function takes a reference to the cache it returns to assure it
2680 * won't get destroyed while we are working with it. Once the caller is
2681 * done with it, memcg_kmem_put_cache() must be called to release the
2682 * reference.
d7f25f8a 2683 */
45264778 2684struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2685{
2686 struct mem_cgroup *memcg;
959c8963 2687 struct kmem_cache *memcg_cachep;
f0a3a24b 2688 struct memcg_cache_array *arr;
2a4db7eb 2689 int kmemcg_id;
d7f25f8a 2690
f7ce3190 2691 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2692
45264778 2693 if (memcg_kmem_bypass())
230e9fc2
VD
2694 return cachep;
2695
f0a3a24b
RG
2696 rcu_read_lock();
2697
2698 if (unlikely(current->active_memcg))
2699 memcg = current->active_memcg;
2700 else
2701 memcg = mem_cgroup_from_task(current);
2702
2703 if (!memcg || memcg == root_mem_cgroup)
2704 goto out_unlock;
2705
4db0c3c2 2706 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2707 if (kmemcg_id < 0)
f0a3a24b 2708 goto out_unlock;
d7f25f8a 2709
f0a3a24b
RG
2710 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2711
2712 /*
2713 * Make sure we will access the up-to-date value. The code updating
2714 * memcg_caches issues a write barrier to match the data dependency
2715 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2716 */
2717 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2718
2719 /*
2720 * If we are in a safe context (can wait, and not in interrupt
2721 * context), we could be be predictable and return right away.
2722 * This would guarantee that the allocation being performed
2723 * already belongs in the new cache.
2724 *
2725 * However, there are some clashes that can arrive from locking.
2726 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2727 * memcg_create_kmem_cache, this means no further allocation
2728 * could happen with the slab_mutex held. So it's better to
2729 * defer everything.
f0a3a24b
RG
2730 *
2731 * If the memcg is dying or memcg_cache is about to be released,
2732 * don't bother creating new kmem_caches. Because memcg_cachep
2733 * is ZEROed as the fist step of kmem offlining, we don't need
2734 * percpu_ref_tryget_live() here. css_tryget_online() check in
2735 * memcg_schedule_kmem_cache_create() will prevent us from
2736 * creation of a new kmem_cache.
ca0dde97 2737 */
f0a3a24b
RG
2738 if (unlikely(!memcg_cachep))
2739 memcg_schedule_kmem_cache_create(memcg, cachep);
2740 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2741 cachep = memcg_cachep;
2742out_unlock:
2743 rcu_read_unlock();
ca0dde97 2744 return cachep;
d7f25f8a 2745}
d7f25f8a 2746
45264778
VD
2747/**
2748 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2749 * @cachep: the cache returned by memcg_kmem_get_cache
2750 */
2751void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2752{
2753 if (!is_root_cache(cachep))
f0a3a24b 2754 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2755}
2756
45264778 2757/**
60cd4bcd 2758 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2759 * @page: page to charge
2760 * @gfp: reclaim mode
2761 * @order: allocation order
2762 * @memcg: memory cgroup to charge
2763 *
2764 * Returns 0 on success, an error code on failure.
2765 */
60cd4bcd 2766int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2767 struct mem_cgroup *memcg)
7ae1e1d0 2768{
f3ccb2c4
VD
2769 unsigned int nr_pages = 1 << order;
2770 struct page_counter *counter;
7ae1e1d0
GC
2771 int ret;
2772
f3ccb2c4 2773 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2774 if (ret)
f3ccb2c4 2775 return ret;
52c29b04
JW
2776
2777 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2778 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2779 cancel_charge(memcg, nr_pages);
2780 return -ENOMEM;
7ae1e1d0 2781 }
f3ccb2c4 2782 return 0;
7ae1e1d0
GC
2783}
2784
45264778 2785/**
60cd4bcd 2786 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2787 * @page: page to charge
2788 * @gfp: reclaim mode
2789 * @order: allocation order
2790 *
2791 * Returns 0 on success, an error code on failure.
2792 */
60cd4bcd 2793int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2794{
f3ccb2c4 2795 struct mem_cgroup *memcg;
fcff7d7e 2796 int ret = 0;
7ae1e1d0 2797
60cd4bcd 2798 if (memcg_kmem_bypass())
45264778
VD
2799 return 0;
2800
d46eb14b 2801 memcg = get_mem_cgroup_from_current();
c4159a75 2802 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2803 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2804 if (!ret) {
2805 page->mem_cgroup = memcg;
c4159a75 2806 __SetPageKmemcg(page);
4d96ba35 2807 }
c4159a75 2808 }
7ae1e1d0 2809 css_put(&memcg->css);
d05e83a6 2810 return ret;
7ae1e1d0 2811}
49a18eae
RG
2812
2813/**
2814 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2815 * @memcg: memcg to uncharge
2816 * @nr_pages: number of pages to uncharge
2817 */
2818void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2819 unsigned int nr_pages)
2820{
2821 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2822 page_counter_uncharge(&memcg->kmem, nr_pages);
2823
2824 page_counter_uncharge(&memcg->memory, nr_pages);
2825 if (do_memsw_account())
2826 page_counter_uncharge(&memcg->memsw, nr_pages);
2827}
45264778 2828/**
60cd4bcd 2829 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2830 * @page: page to uncharge
2831 * @order: allocation order
2832 */
60cd4bcd 2833void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2834{
1306a85a 2835 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2836 unsigned int nr_pages = 1 << order;
7ae1e1d0 2837
7ae1e1d0
GC
2838 if (!memcg)
2839 return;
2840
309381fe 2841 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 2842 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 2843 page->mem_cgroup = NULL;
c4159a75
VD
2844
2845 /* slab pages do not have PageKmemcg flag set */
2846 if (PageKmemcg(page))
2847 __ClearPageKmemcg(page);
2848
f3ccb2c4 2849 css_put_many(&memcg->css, nr_pages);
60d3fd32 2850}
84c07d11 2851#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2852
ca3e0214
KH
2853#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2854
ca3e0214
KH
2855/*
2856 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2857 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2858 */
e94c8a9c 2859void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2860{
e94c8a9c 2861 int i;
ca3e0214 2862
3d37c4a9
KH
2863 if (mem_cgroup_disabled())
2864 return;
b070e65c 2865
29833315 2866 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2867 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2868
c9019e9b 2869 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2870}
12d27107 2871#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2872
c255a458 2873#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2874/**
2875 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2876 * @entry: swap entry to be moved
2877 * @from: mem_cgroup which the entry is moved from
2878 * @to: mem_cgroup which the entry is moved to
2879 *
2880 * It succeeds only when the swap_cgroup's record for this entry is the same
2881 * as the mem_cgroup's id of @from.
2882 *
2883 * Returns 0 on success, -EINVAL on failure.
2884 *
3e32cb2e 2885 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2886 * both res and memsw, and called css_get().
2887 */
2888static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2889 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2890{
2891 unsigned short old_id, new_id;
2892
34c00c31
LZ
2893 old_id = mem_cgroup_id(from);
2894 new_id = mem_cgroup_id(to);
02491447
DN
2895
2896 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2897 mod_memcg_state(from, MEMCG_SWAP, -1);
2898 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2899 return 0;
2900 }
2901 return -EINVAL;
2902}
2903#else
2904static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2905 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2906{
2907 return -EINVAL;
2908}
8c7c6e34 2909#endif
d13d1443 2910
bbec2e15 2911static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2912
bbec2e15
RG
2913static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2914 unsigned long max, bool memsw)
628f4235 2915{
3e32cb2e 2916 bool enlarge = false;
bb4a7ea2 2917 bool drained = false;
3e32cb2e 2918 int ret;
c054a78c
YZ
2919 bool limits_invariant;
2920 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2921
3e32cb2e 2922 do {
628f4235
KH
2923 if (signal_pending(current)) {
2924 ret = -EINTR;
2925 break;
2926 }
3e32cb2e 2927
bbec2e15 2928 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2929 /*
2930 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2931 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2932 */
bbec2e15
RG
2933 limits_invariant = memsw ? max >= memcg->memory.max :
2934 max <= memcg->memsw.max;
c054a78c 2935 if (!limits_invariant) {
bbec2e15 2936 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2937 ret = -EINVAL;
8c7c6e34
KH
2938 break;
2939 }
bbec2e15 2940 if (max > counter->max)
3e32cb2e 2941 enlarge = true;
bbec2e15
RG
2942 ret = page_counter_set_max(counter, max);
2943 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2944
2945 if (!ret)
2946 break;
2947
bb4a7ea2
SB
2948 if (!drained) {
2949 drain_all_stock(memcg);
2950 drained = true;
2951 continue;
2952 }
2953
1ab5c056
AR
2954 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2955 GFP_KERNEL, !memsw)) {
2956 ret = -EBUSY;
2957 break;
2958 }
2959 } while (true);
3e32cb2e 2960
3c11ecf4
KH
2961 if (!ret && enlarge)
2962 memcg_oom_recover(memcg);
3e32cb2e 2963
628f4235
KH
2964 return ret;
2965}
2966
ef8f2327 2967unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2968 gfp_t gfp_mask,
2969 unsigned long *total_scanned)
2970{
2971 unsigned long nr_reclaimed = 0;
ef8f2327 2972 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2973 unsigned long reclaimed;
2974 int loop = 0;
ef8f2327 2975 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2976 unsigned long excess;
0608f43d
AM
2977 unsigned long nr_scanned;
2978
2979 if (order > 0)
2980 return 0;
2981
ef8f2327 2982 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2983
2984 /*
2985 * Do not even bother to check the largest node if the root
2986 * is empty. Do it lockless to prevent lock bouncing. Races
2987 * are acceptable as soft limit is best effort anyway.
2988 */
bfc7228b 2989 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2990 return 0;
2991
0608f43d
AM
2992 /*
2993 * This loop can run a while, specially if mem_cgroup's continuously
2994 * keep exceeding their soft limit and putting the system under
2995 * pressure
2996 */
2997 do {
2998 if (next_mz)
2999 mz = next_mz;
3000 else
3001 mz = mem_cgroup_largest_soft_limit_node(mctz);
3002 if (!mz)
3003 break;
3004
3005 nr_scanned = 0;
ef8f2327 3006 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3007 gfp_mask, &nr_scanned);
3008 nr_reclaimed += reclaimed;
3009 *total_scanned += nr_scanned;
0a31bc97 3010 spin_lock_irq(&mctz->lock);
bc2f2e7f 3011 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3012
3013 /*
3014 * If we failed to reclaim anything from this memory cgroup
3015 * it is time to move on to the next cgroup
3016 */
3017 next_mz = NULL;
bc2f2e7f
VD
3018 if (!reclaimed)
3019 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3020
3e32cb2e 3021 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3022 /*
3023 * One school of thought says that we should not add
3024 * back the node to the tree if reclaim returns 0.
3025 * But our reclaim could return 0, simply because due
3026 * to priority we are exposing a smaller subset of
3027 * memory to reclaim from. Consider this as a longer
3028 * term TODO.
3029 */
3030 /* If excess == 0, no tree ops */
cf2c8127 3031 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3032 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3033 css_put(&mz->memcg->css);
3034 loop++;
3035 /*
3036 * Could not reclaim anything and there are no more
3037 * mem cgroups to try or we seem to be looping without
3038 * reclaiming anything.
3039 */
3040 if (!nr_reclaimed &&
3041 (next_mz == NULL ||
3042 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3043 break;
3044 } while (!nr_reclaimed);
3045 if (next_mz)
3046 css_put(&next_mz->memcg->css);
3047 return nr_reclaimed;
3048}
3049
ea280e7b
TH
3050/*
3051 * Test whether @memcg has children, dead or alive. Note that this
3052 * function doesn't care whether @memcg has use_hierarchy enabled and
3053 * returns %true if there are child csses according to the cgroup
3054 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3055 */
b5f99b53
GC
3056static inline bool memcg_has_children(struct mem_cgroup *memcg)
3057{
ea280e7b
TH
3058 bool ret;
3059
ea280e7b
TH
3060 rcu_read_lock();
3061 ret = css_next_child(NULL, &memcg->css);
3062 rcu_read_unlock();
3063 return ret;
b5f99b53
GC
3064}
3065
c26251f9 3066/*
51038171 3067 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3068 *
3069 * Caller is responsible for holding css reference for memcg.
3070 */
3071static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3072{
3073 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3074
c1e862c1
KH
3075 /* we call try-to-free pages for make this cgroup empty */
3076 lru_add_drain_all();
d12c60f6
JS
3077
3078 drain_all_stock(memcg);
3079
f817ed48 3080 /* try to free all pages in this cgroup */
3e32cb2e 3081 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3082 int progress;
c1e862c1 3083
c26251f9
MH
3084 if (signal_pending(current))
3085 return -EINTR;
3086
b70a2a21
JW
3087 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3088 GFP_KERNEL, true);
c1e862c1 3089 if (!progress) {
f817ed48 3090 nr_retries--;
c1e862c1 3091 /* maybe some writeback is necessary */
8aa7e847 3092 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3093 }
f817ed48
KH
3094
3095 }
ab5196c2
MH
3096
3097 return 0;
cc847582
KH
3098}
3099
6770c64e
TH
3100static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3101 char *buf, size_t nbytes,
3102 loff_t off)
c1e862c1 3103{
6770c64e 3104 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3105
d8423011
MH
3106 if (mem_cgroup_is_root(memcg))
3107 return -EINVAL;
6770c64e 3108 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3109}
3110
182446d0
TH
3111static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3112 struct cftype *cft)
18f59ea7 3113{
182446d0 3114 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3115}
3116
182446d0
TH
3117static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3118 struct cftype *cft, u64 val)
18f59ea7
BS
3119{
3120 int retval = 0;
182446d0 3121 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3122 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3123
567fb435 3124 if (memcg->use_hierarchy == val)
0b8f73e1 3125 return 0;
567fb435 3126
18f59ea7 3127 /*
af901ca1 3128 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3129 * in the child subtrees. If it is unset, then the change can
3130 * occur, provided the current cgroup has no children.
3131 *
3132 * For the root cgroup, parent_mem is NULL, we allow value to be
3133 * set if there are no children.
3134 */
c0ff4b85 3135 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3136 (val == 1 || val == 0)) {
ea280e7b 3137 if (!memcg_has_children(memcg))
c0ff4b85 3138 memcg->use_hierarchy = val;
18f59ea7
BS
3139 else
3140 retval = -EBUSY;
3141 } else
3142 retval = -EINVAL;
567fb435 3143
18f59ea7
BS
3144 return retval;
3145}
3146
6f646156 3147static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3148{
42a30035 3149 unsigned long val;
ce00a967 3150
3e32cb2e 3151 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3152 val = memcg_page_state(memcg, MEMCG_CACHE) +
3153 memcg_page_state(memcg, MEMCG_RSS);
3154 if (swap)
3155 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3156 } else {
ce00a967 3157 if (!swap)
3e32cb2e 3158 val = page_counter_read(&memcg->memory);
ce00a967 3159 else
3e32cb2e 3160 val = page_counter_read(&memcg->memsw);
ce00a967 3161 }
c12176d3 3162 return val;
ce00a967
JW
3163}
3164
3e32cb2e
JW
3165enum {
3166 RES_USAGE,
3167 RES_LIMIT,
3168 RES_MAX_USAGE,
3169 RES_FAILCNT,
3170 RES_SOFT_LIMIT,
3171};
ce00a967 3172
791badbd 3173static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3174 struct cftype *cft)
8cdea7c0 3175{
182446d0 3176 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3177 struct page_counter *counter;
af36f906 3178
3e32cb2e 3179 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3180 case _MEM:
3e32cb2e
JW
3181 counter = &memcg->memory;
3182 break;
8c7c6e34 3183 case _MEMSWAP:
3e32cb2e
JW
3184 counter = &memcg->memsw;
3185 break;
510fc4e1 3186 case _KMEM:
3e32cb2e 3187 counter = &memcg->kmem;
510fc4e1 3188 break;
d55f90bf 3189 case _TCP:
0db15298 3190 counter = &memcg->tcpmem;
d55f90bf 3191 break;
8c7c6e34
KH
3192 default:
3193 BUG();
8c7c6e34 3194 }
3e32cb2e
JW
3195
3196 switch (MEMFILE_ATTR(cft->private)) {
3197 case RES_USAGE:
3198 if (counter == &memcg->memory)
c12176d3 3199 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3200 if (counter == &memcg->memsw)
c12176d3 3201 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3202 return (u64)page_counter_read(counter) * PAGE_SIZE;
3203 case RES_LIMIT:
bbec2e15 3204 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3205 case RES_MAX_USAGE:
3206 return (u64)counter->watermark * PAGE_SIZE;
3207 case RES_FAILCNT:
3208 return counter->failcnt;
3209 case RES_SOFT_LIMIT:
3210 return (u64)memcg->soft_limit * PAGE_SIZE;
3211 default:
3212 BUG();
3213 }
8cdea7c0 3214}
510fc4e1 3215
84c07d11 3216#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3217static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3218{
d6441637
VD
3219 int memcg_id;
3220
b313aeee
VD
3221 if (cgroup_memory_nokmem)
3222 return 0;
3223
2a4db7eb 3224 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3225 BUG_ON(memcg->kmem_state);
d6441637 3226
f3bb3043 3227 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3228 if (memcg_id < 0)
3229 return memcg_id;
d6441637 3230
ef12947c 3231 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3232 /*
567e9ab2 3233 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3234 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3235 * guarantee no one starts accounting before all call sites are
3236 * patched.
3237 */
900a38f0 3238 memcg->kmemcg_id = memcg_id;
567e9ab2 3239 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3240 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3241
3242 return 0;
d6441637
VD
3243}
3244
8e0a8912
JW
3245static void memcg_offline_kmem(struct mem_cgroup *memcg)
3246{
3247 struct cgroup_subsys_state *css;
3248 struct mem_cgroup *parent, *child;
3249 int kmemcg_id;
3250
3251 if (memcg->kmem_state != KMEM_ONLINE)
3252 return;
3253 /*
3254 * Clear the online state before clearing memcg_caches array
3255 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3256 * guarantees that no cache will be created for this cgroup
3257 * after we are done (see memcg_create_kmem_cache()).
3258 */
3259 memcg->kmem_state = KMEM_ALLOCATED;
3260
8e0a8912
JW
3261 parent = parent_mem_cgroup(memcg);
3262 if (!parent)
3263 parent = root_mem_cgroup;
3264
fb2f2b0a
RG
3265 memcg_deactivate_kmem_caches(memcg, parent);
3266
3267 kmemcg_id = memcg->kmemcg_id;
3268 BUG_ON(kmemcg_id < 0);
3269
8e0a8912
JW
3270 /*
3271 * Change kmemcg_id of this cgroup and all its descendants to the
3272 * parent's id, and then move all entries from this cgroup's list_lrus
3273 * to ones of the parent. After we have finished, all list_lrus
3274 * corresponding to this cgroup are guaranteed to remain empty. The
3275 * ordering is imposed by list_lru_node->lock taken by
3276 * memcg_drain_all_list_lrus().
3277 */
3a06bb78 3278 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3279 css_for_each_descendant_pre(css, &memcg->css) {
3280 child = mem_cgroup_from_css(css);
3281 BUG_ON(child->kmemcg_id != kmemcg_id);
3282 child->kmemcg_id = parent->kmemcg_id;
3283 if (!memcg->use_hierarchy)
3284 break;
3285 }
3a06bb78
TH
3286 rcu_read_unlock();
3287
9bec5c35 3288 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3289
3290 memcg_free_cache_id(kmemcg_id);
3291}
3292
3293static void memcg_free_kmem(struct mem_cgroup *memcg)
3294{
0b8f73e1
JW
3295 /* css_alloc() failed, offlining didn't happen */
3296 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3297 memcg_offline_kmem(memcg);
3298
8e0a8912 3299 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3300 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3301 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3302 }
8e0a8912 3303}
d6441637 3304#else
0b8f73e1 3305static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3306{
3307 return 0;
3308}
3309static void memcg_offline_kmem(struct mem_cgroup *memcg)
3310{
3311}
3312static void memcg_free_kmem(struct mem_cgroup *memcg)
3313{
3314}
84c07d11 3315#endif /* CONFIG_MEMCG_KMEM */
127424c8 3316
bbec2e15
RG
3317static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3318 unsigned long max)
d6441637 3319{
b313aeee 3320 int ret;
127424c8 3321
bbec2e15
RG
3322 mutex_lock(&memcg_max_mutex);
3323 ret = page_counter_set_max(&memcg->kmem, max);
3324 mutex_unlock(&memcg_max_mutex);
127424c8 3325 return ret;
d6441637 3326}
510fc4e1 3327
bbec2e15 3328static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3329{
3330 int ret;
3331
bbec2e15 3332 mutex_lock(&memcg_max_mutex);
d55f90bf 3333
bbec2e15 3334 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3335 if (ret)
3336 goto out;
3337
0db15298 3338 if (!memcg->tcpmem_active) {
d55f90bf
VD
3339 /*
3340 * The active flag needs to be written after the static_key
3341 * update. This is what guarantees that the socket activation
2d758073
JW
3342 * function is the last one to run. See mem_cgroup_sk_alloc()
3343 * for details, and note that we don't mark any socket as
3344 * belonging to this memcg until that flag is up.
d55f90bf
VD
3345 *
3346 * We need to do this, because static_keys will span multiple
3347 * sites, but we can't control their order. If we mark a socket
3348 * as accounted, but the accounting functions are not patched in
3349 * yet, we'll lose accounting.
3350 *
2d758073 3351 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3352 * because when this value change, the code to process it is not
3353 * patched in yet.
3354 */
3355 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3356 memcg->tcpmem_active = true;
d55f90bf
VD
3357 }
3358out:
bbec2e15 3359 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3360 return ret;
3361}
d55f90bf 3362
628f4235
KH
3363/*
3364 * The user of this function is...
3365 * RES_LIMIT.
3366 */
451af504
TH
3367static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3368 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3369{
451af504 3370 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3371 unsigned long nr_pages;
628f4235
KH
3372 int ret;
3373
451af504 3374 buf = strstrip(buf);
650c5e56 3375 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3376 if (ret)
3377 return ret;
af36f906 3378
3e32cb2e 3379 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3380 case RES_LIMIT:
4b3bde4c
BS
3381 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3382 ret = -EINVAL;
3383 break;
3384 }
3e32cb2e
JW
3385 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3386 case _MEM:
bbec2e15 3387 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3388 break;
3e32cb2e 3389 case _MEMSWAP:
bbec2e15 3390 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3391 break;
3e32cb2e 3392 case _KMEM:
bbec2e15 3393 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3394 break;
d55f90bf 3395 case _TCP:
bbec2e15 3396 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3397 break;
3e32cb2e 3398 }
296c81d8 3399 break;
3e32cb2e
JW
3400 case RES_SOFT_LIMIT:
3401 memcg->soft_limit = nr_pages;
3402 ret = 0;
628f4235
KH
3403 break;
3404 }
451af504 3405 return ret ?: nbytes;
8cdea7c0
BS
3406}
3407
6770c64e
TH
3408static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3409 size_t nbytes, loff_t off)
c84872e1 3410{
6770c64e 3411 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3412 struct page_counter *counter;
c84872e1 3413
3e32cb2e
JW
3414 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3415 case _MEM:
3416 counter = &memcg->memory;
3417 break;
3418 case _MEMSWAP:
3419 counter = &memcg->memsw;
3420 break;
3421 case _KMEM:
3422 counter = &memcg->kmem;
3423 break;
d55f90bf 3424 case _TCP:
0db15298 3425 counter = &memcg->tcpmem;
d55f90bf 3426 break;
3e32cb2e
JW
3427 default:
3428 BUG();
3429 }
af36f906 3430
3e32cb2e 3431 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3432 case RES_MAX_USAGE:
3e32cb2e 3433 page_counter_reset_watermark(counter);
29f2a4da
PE
3434 break;
3435 case RES_FAILCNT:
3e32cb2e 3436 counter->failcnt = 0;
29f2a4da 3437 break;
3e32cb2e
JW
3438 default:
3439 BUG();
29f2a4da 3440 }
f64c3f54 3441
6770c64e 3442 return nbytes;
c84872e1
PE
3443}
3444
182446d0 3445static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3446 struct cftype *cft)
3447{
182446d0 3448 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3449}
3450
02491447 3451#ifdef CONFIG_MMU
182446d0 3452static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3453 struct cftype *cft, u64 val)
3454{
182446d0 3455 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3456
1dfab5ab 3457 if (val & ~MOVE_MASK)
7dc74be0 3458 return -EINVAL;
ee5e8472 3459
7dc74be0 3460 /*
ee5e8472
GC
3461 * No kind of locking is needed in here, because ->can_attach() will
3462 * check this value once in the beginning of the process, and then carry
3463 * on with stale data. This means that changes to this value will only
3464 * affect task migrations starting after the change.
7dc74be0 3465 */
c0ff4b85 3466 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3467 return 0;
3468}
02491447 3469#else
182446d0 3470static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3471 struct cftype *cft, u64 val)
3472{
3473 return -ENOSYS;
3474}
3475#endif
7dc74be0 3476
406eb0c9 3477#ifdef CONFIG_NUMA
113b7dfd
JW
3478
3479#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3480#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3481#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3482
3483static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3484 int nid, unsigned int lru_mask)
3485{
3486 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3487 unsigned long nr = 0;
3488 enum lru_list lru;
3489
3490 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3491
3492 for_each_lru(lru) {
3493 if (!(BIT(lru) & lru_mask))
3494 continue;
205b20cc 3495 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3496 }
3497 return nr;
3498}
3499
3500static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3501 unsigned int lru_mask)
3502{
3503 unsigned long nr = 0;
3504 enum lru_list lru;
3505
3506 for_each_lru(lru) {
3507 if (!(BIT(lru) & lru_mask))
3508 continue;
205b20cc 3509 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3510 }
3511 return nr;
3512}
3513
2da8ca82 3514static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3515{
25485de6
GT
3516 struct numa_stat {
3517 const char *name;
3518 unsigned int lru_mask;
3519 };
3520
3521 static const struct numa_stat stats[] = {
3522 { "total", LRU_ALL },
3523 { "file", LRU_ALL_FILE },
3524 { "anon", LRU_ALL_ANON },
3525 { "unevictable", BIT(LRU_UNEVICTABLE) },
3526 };
3527 const struct numa_stat *stat;
406eb0c9 3528 int nid;
25485de6 3529 unsigned long nr;
aa9694bb 3530 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3531
25485de6
GT
3532 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3533 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3534 seq_printf(m, "%s=%lu", stat->name, nr);
3535 for_each_node_state(nid, N_MEMORY) {
3536 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3537 stat->lru_mask);
3538 seq_printf(m, " N%d=%lu", nid, nr);
3539 }
3540 seq_putc(m, '\n');
406eb0c9 3541 }
406eb0c9 3542
071aee13
YH
3543 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3544 struct mem_cgroup *iter;
3545
3546 nr = 0;
3547 for_each_mem_cgroup_tree(iter, memcg)
3548 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3549 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3550 for_each_node_state(nid, N_MEMORY) {
3551 nr = 0;
3552 for_each_mem_cgroup_tree(iter, memcg)
3553 nr += mem_cgroup_node_nr_lru_pages(
3554 iter, nid, stat->lru_mask);
3555 seq_printf(m, " N%d=%lu", nid, nr);
3556 }
3557 seq_putc(m, '\n');
406eb0c9 3558 }
406eb0c9 3559
406eb0c9
YH
3560 return 0;
3561}
3562#endif /* CONFIG_NUMA */
3563
c8713d0b
JW
3564static const unsigned int memcg1_stats[] = {
3565 MEMCG_CACHE,
3566 MEMCG_RSS,
3567 MEMCG_RSS_HUGE,
3568 NR_SHMEM,
3569 NR_FILE_MAPPED,
3570 NR_FILE_DIRTY,
3571 NR_WRITEBACK,
3572 MEMCG_SWAP,
3573};
3574
3575static const char *const memcg1_stat_names[] = {
3576 "cache",
3577 "rss",
3578 "rss_huge",
3579 "shmem",
3580 "mapped_file",
3581 "dirty",
3582 "writeback",
3583 "swap",
3584};
3585
df0e53d0 3586/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3587static const unsigned int memcg1_events[] = {
df0e53d0
JW
3588 PGPGIN,
3589 PGPGOUT,
3590 PGFAULT,
3591 PGMAJFAULT,
3592};
3593
3594static const char *const memcg1_event_names[] = {
3595 "pgpgin",
3596 "pgpgout",
3597 "pgfault",
3598 "pgmajfault",
3599};
3600
2da8ca82 3601static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3602{
aa9694bb 3603 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3604 unsigned long memory, memsw;
af7c4b0e
JW
3605 struct mem_cgroup *mi;
3606 unsigned int i;
406eb0c9 3607
71cd3113 3608 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3609 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3610
71cd3113
JW
3611 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3612 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3613 continue;
71cd3113 3614 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3615 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3616 PAGE_SIZE);
1dd3a273 3617 }
7b854121 3618
df0e53d0
JW
3619 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3620 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3621 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3622
3623 for (i = 0; i < NR_LRU_LISTS; i++)
3624 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3625 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3626 PAGE_SIZE);
af7c4b0e 3627
14067bb3 3628 /* Hierarchical information */
3e32cb2e
JW
3629 memory = memsw = PAGE_COUNTER_MAX;
3630 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3631 memory = min(memory, mi->memory.max);
3632 memsw = min(memsw, mi->memsw.max);
fee7b548 3633 }
3e32cb2e
JW
3634 seq_printf(m, "hierarchical_memory_limit %llu\n",
3635 (u64)memory * PAGE_SIZE);
7941d214 3636 if (do_memsw_account())
3e32cb2e
JW
3637 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3638 (u64)memsw * PAGE_SIZE);
7f016ee8 3639
8de7ecc6 3640 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3641 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3642 continue;
8de7ecc6 3643 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3644 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3645 PAGE_SIZE);
af7c4b0e
JW
3646 }
3647
8de7ecc6
SB
3648 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3649 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
dd923990 3650 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3651
8de7ecc6
SB
3652 for (i = 0; i < NR_LRU_LISTS; i++)
3653 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
3654 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3655 PAGE_SIZE);
14067bb3 3656
7f016ee8 3657#ifdef CONFIG_DEBUG_VM
7f016ee8 3658 {
ef8f2327
MG
3659 pg_data_t *pgdat;
3660 struct mem_cgroup_per_node *mz;
89abfab1 3661 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3662 unsigned long recent_rotated[2] = {0, 0};
3663 unsigned long recent_scanned[2] = {0, 0};
3664
ef8f2327
MG
3665 for_each_online_pgdat(pgdat) {
3666 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3667 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3668
ef8f2327
MG
3669 recent_rotated[0] += rstat->recent_rotated[0];
3670 recent_rotated[1] += rstat->recent_rotated[1];
3671 recent_scanned[0] += rstat->recent_scanned[0];
3672 recent_scanned[1] += rstat->recent_scanned[1];
3673 }
78ccf5b5
JW
3674 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3675 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3676 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3677 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3678 }
3679#endif
3680
d2ceb9b7
KH
3681 return 0;
3682}
3683
182446d0
TH
3684static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3685 struct cftype *cft)
a7885eb8 3686{
182446d0 3687 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3688
1f4c025b 3689 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3690}
3691
182446d0
TH
3692static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3693 struct cftype *cft, u64 val)
a7885eb8 3694{
182446d0 3695 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3696
3dae7fec 3697 if (val > 100)
a7885eb8
KM
3698 return -EINVAL;
3699
14208b0e 3700 if (css->parent)
3dae7fec
JW
3701 memcg->swappiness = val;
3702 else
3703 vm_swappiness = val;
068b38c1 3704
a7885eb8
KM
3705 return 0;
3706}
3707
2e72b634
KS
3708static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3709{
3710 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3711 unsigned long usage;
2e72b634
KS
3712 int i;
3713
3714 rcu_read_lock();
3715 if (!swap)
2c488db2 3716 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3717 else
2c488db2 3718 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3719
3720 if (!t)
3721 goto unlock;
3722
ce00a967 3723 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3724
3725 /*
748dad36 3726 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3727 * If it's not true, a threshold was crossed after last
3728 * call of __mem_cgroup_threshold().
3729 */
5407a562 3730 i = t->current_threshold;
2e72b634
KS
3731
3732 /*
3733 * Iterate backward over array of thresholds starting from
3734 * current_threshold and check if a threshold is crossed.
3735 * If none of thresholds below usage is crossed, we read
3736 * only one element of the array here.
3737 */
3738 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3739 eventfd_signal(t->entries[i].eventfd, 1);
3740
3741 /* i = current_threshold + 1 */
3742 i++;
3743
3744 /*
3745 * Iterate forward over array of thresholds starting from
3746 * current_threshold+1 and check if a threshold is crossed.
3747 * If none of thresholds above usage is crossed, we read
3748 * only one element of the array here.
3749 */
3750 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3751 eventfd_signal(t->entries[i].eventfd, 1);
3752
3753 /* Update current_threshold */
5407a562 3754 t->current_threshold = i - 1;
2e72b634
KS
3755unlock:
3756 rcu_read_unlock();
3757}
3758
3759static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3760{
ad4ca5f4
KS
3761 while (memcg) {
3762 __mem_cgroup_threshold(memcg, false);
7941d214 3763 if (do_memsw_account())
ad4ca5f4
KS
3764 __mem_cgroup_threshold(memcg, true);
3765
3766 memcg = parent_mem_cgroup(memcg);
3767 }
2e72b634
KS
3768}
3769
3770static int compare_thresholds(const void *a, const void *b)
3771{
3772 const struct mem_cgroup_threshold *_a = a;
3773 const struct mem_cgroup_threshold *_b = b;
3774
2bff24a3
GT
3775 if (_a->threshold > _b->threshold)
3776 return 1;
3777
3778 if (_a->threshold < _b->threshold)
3779 return -1;
3780
3781 return 0;
2e72b634
KS
3782}
3783
c0ff4b85 3784static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3785{
3786 struct mem_cgroup_eventfd_list *ev;
3787
2bcf2e92
MH
3788 spin_lock(&memcg_oom_lock);
3789
c0ff4b85 3790 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3791 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3792
3793 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3794 return 0;
3795}
3796
c0ff4b85 3797static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3798{
7d74b06f
KH
3799 struct mem_cgroup *iter;
3800
c0ff4b85 3801 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3802 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3803}
3804
59b6f873 3805static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3806 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3807{
2c488db2
KS
3808 struct mem_cgroup_thresholds *thresholds;
3809 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3810 unsigned long threshold;
3811 unsigned long usage;
2c488db2 3812 int i, size, ret;
2e72b634 3813
650c5e56 3814 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3815 if (ret)
3816 return ret;
3817
3818 mutex_lock(&memcg->thresholds_lock);
2c488db2 3819
05b84301 3820 if (type == _MEM) {
2c488db2 3821 thresholds = &memcg->thresholds;
ce00a967 3822 usage = mem_cgroup_usage(memcg, false);
05b84301 3823 } else if (type == _MEMSWAP) {
2c488db2 3824 thresholds = &memcg->memsw_thresholds;
ce00a967 3825 usage = mem_cgroup_usage(memcg, true);
05b84301 3826 } else
2e72b634
KS
3827 BUG();
3828
2e72b634 3829 /* Check if a threshold crossed before adding a new one */
2c488db2 3830 if (thresholds->primary)
2e72b634
KS
3831 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3832
2c488db2 3833 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3834
3835 /* Allocate memory for new array of thresholds */
67b8046f 3836 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3837 if (!new) {
2e72b634
KS
3838 ret = -ENOMEM;
3839 goto unlock;
3840 }
2c488db2 3841 new->size = size;
2e72b634
KS
3842
3843 /* Copy thresholds (if any) to new array */
2c488db2
KS
3844 if (thresholds->primary) {
3845 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3846 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3847 }
3848
2e72b634 3849 /* Add new threshold */
2c488db2
KS
3850 new->entries[size - 1].eventfd = eventfd;
3851 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3852
3853 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3854 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3855 compare_thresholds, NULL);
3856
3857 /* Find current threshold */
2c488db2 3858 new->current_threshold = -1;
2e72b634 3859 for (i = 0; i < size; i++) {
748dad36 3860 if (new->entries[i].threshold <= usage) {
2e72b634 3861 /*
2c488db2
KS
3862 * new->current_threshold will not be used until
3863 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3864 * it here.
3865 */
2c488db2 3866 ++new->current_threshold;
748dad36
SZ
3867 } else
3868 break;
2e72b634
KS
3869 }
3870
2c488db2
KS
3871 /* Free old spare buffer and save old primary buffer as spare */
3872 kfree(thresholds->spare);
3873 thresholds->spare = thresholds->primary;
3874
3875 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3876
907860ed 3877 /* To be sure that nobody uses thresholds */
2e72b634
KS
3878 synchronize_rcu();
3879
2e72b634
KS
3880unlock:
3881 mutex_unlock(&memcg->thresholds_lock);
3882
3883 return ret;
3884}
3885
59b6f873 3886static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3887 struct eventfd_ctx *eventfd, const char *args)
3888{
59b6f873 3889 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3890}
3891
59b6f873 3892static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3893 struct eventfd_ctx *eventfd, const char *args)
3894{
59b6f873 3895 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3896}
3897
59b6f873 3898static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3899 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3900{
2c488db2
KS
3901 struct mem_cgroup_thresholds *thresholds;
3902 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3903 unsigned long usage;
2c488db2 3904 int i, j, size;
2e72b634
KS
3905
3906 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3907
3908 if (type == _MEM) {
2c488db2 3909 thresholds = &memcg->thresholds;
ce00a967 3910 usage = mem_cgroup_usage(memcg, false);
05b84301 3911 } else if (type == _MEMSWAP) {
2c488db2 3912 thresholds = &memcg->memsw_thresholds;
ce00a967 3913 usage = mem_cgroup_usage(memcg, true);
05b84301 3914 } else
2e72b634
KS
3915 BUG();
3916
371528ca
AV
3917 if (!thresholds->primary)
3918 goto unlock;
3919
2e72b634
KS
3920 /* Check if a threshold crossed before removing */
3921 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3922
3923 /* Calculate new number of threshold */
2c488db2
KS
3924 size = 0;
3925 for (i = 0; i < thresholds->primary->size; i++) {
3926 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3927 size++;
3928 }
3929
2c488db2 3930 new = thresholds->spare;
907860ed 3931
2e72b634
KS
3932 /* Set thresholds array to NULL if we don't have thresholds */
3933 if (!size) {
2c488db2
KS
3934 kfree(new);
3935 new = NULL;
907860ed 3936 goto swap_buffers;
2e72b634
KS
3937 }
3938
2c488db2 3939 new->size = size;
2e72b634
KS
3940
3941 /* Copy thresholds and find current threshold */
2c488db2
KS
3942 new->current_threshold = -1;
3943 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3944 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3945 continue;
3946
2c488db2 3947 new->entries[j] = thresholds->primary->entries[i];
748dad36 3948 if (new->entries[j].threshold <= usage) {
2e72b634 3949 /*
2c488db2 3950 * new->current_threshold will not be used
2e72b634
KS
3951 * until rcu_assign_pointer(), so it's safe to increment
3952 * it here.
3953 */
2c488db2 3954 ++new->current_threshold;
2e72b634
KS
3955 }
3956 j++;
3957 }
3958
907860ed 3959swap_buffers:
2c488db2
KS
3960 /* Swap primary and spare array */
3961 thresholds->spare = thresholds->primary;
8c757763 3962
2c488db2 3963 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3964
907860ed 3965 /* To be sure that nobody uses thresholds */
2e72b634 3966 synchronize_rcu();
6611d8d7
MC
3967
3968 /* If all events are unregistered, free the spare array */
3969 if (!new) {
3970 kfree(thresholds->spare);
3971 thresholds->spare = NULL;
3972 }
371528ca 3973unlock:
2e72b634 3974 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3975}
c1e862c1 3976
59b6f873 3977static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3978 struct eventfd_ctx *eventfd)
3979{
59b6f873 3980 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3981}
3982
59b6f873 3983static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3984 struct eventfd_ctx *eventfd)
3985{
59b6f873 3986 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3987}
3988
59b6f873 3989static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3990 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3991{
9490ff27 3992 struct mem_cgroup_eventfd_list *event;
9490ff27 3993
9490ff27
KH
3994 event = kmalloc(sizeof(*event), GFP_KERNEL);
3995 if (!event)
3996 return -ENOMEM;
3997
1af8efe9 3998 spin_lock(&memcg_oom_lock);
9490ff27
KH
3999
4000 event->eventfd = eventfd;
4001 list_add(&event->list, &memcg->oom_notify);
4002
4003 /* already in OOM ? */
c2b42d3c 4004 if (memcg->under_oom)
9490ff27 4005 eventfd_signal(eventfd, 1);
1af8efe9 4006 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4007
4008 return 0;
4009}
4010
59b6f873 4011static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4012 struct eventfd_ctx *eventfd)
9490ff27 4013{
9490ff27 4014 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4015
1af8efe9 4016 spin_lock(&memcg_oom_lock);
9490ff27 4017
c0ff4b85 4018 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4019 if (ev->eventfd == eventfd) {
4020 list_del(&ev->list);
4021 kfree(ev);
4022 }
4023 }
4024
1af8efe9 4025 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4026}
4027
2da8ca82 4028static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4029{
aa9694bb 4030 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4031
791badbd 4032 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4033 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4034 seq_printf(sf, "oom_kill %lu\n",
4035 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4036 return 0;
4037}
4038
182446d0 4039static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4040 struct cftype *cft, u64 val)
4041{
182446d0 4042 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4043
4044 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4045 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4046 return -EINVAL;
4047
c0ff4b85 4048 memcg->oom_kill_disable = val;
4d845ebf 4049 if (!val)
c0ff4b85 4050 memcg_oom_recover(memcg);
3dae7fec 4051
3c11ecf4
KH
4052 return 0;
4053}
4054
52ebea74
TH
4055#ifdef CONFIG_CGROUP_WRITEBACK
4056
841710aa
TH
4057static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4058{
4059 return wb_domain_init(&memcg->cgwb_domain, gfp);
4060}
4061
4062static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4063{
4064 wb_domain_exit(&memcg->cgwb_domain);
4065}
4066
2529bb3a
TH
4067static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4068{
4069 wb_domain_size_changed(&memcg->cgwb_domain);
4070}
4071
841710aa
TH
4072struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4073{
4074 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4075
4076 if (!memcg->css.parent)
4077 return NULL;
4078
4079 return &memcg->cgwb_domain;
4080}
4081
0b3d6e6f
GT
4082/*
4083 * idx can be of type enum memcg_stat_item or node_stat_item.
4084 * Keep in sync with memcg_exact_page().
4085 */
4086static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4087{
871789d4 4088 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4089 int cpu;
4090
4091 for_each_online_cpu(cpu)
871789d4 4092 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4093 if (x < 0)
4094 x = 0;
4095 return x;
4096}
4097
c2aa723a
TH
4098/**
4099 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4100 * @wb: bdi_writeback in question
c5edf9cd
TH
4101 * @pfilepages: out parameter for number of file pages
4102 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4103 * @pdirty: out parameter for number of dirty pages
4104 * @pwriteback: out parameter for number of pages under writeback
4105 *
c5edf9cd
TH
4106 * Determine the numbers of file, headroom, dirty, and writeback pages in
4107 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4108 * is a bit more involved.
c2aa723a 4109 *
c5edf9cd
TH
4110 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4111 * headroom is calculated as the lowest headroom of itself and the
4112 * ancestors. Note that this doesn't consider the actual amount of
4113 * available memory in the system. The caller should further cap
4114 * *@pheadroom accordingly.
c2aa723a 4115 */
c5edf9cd
TH
4116void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4117 unsigned long *pheadroom, unsigned long *pdirty,
4118 unsigned long *pwriteback)
c2aa723a
TH
4119{
4120 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4121 struct mem_cgroup *parent;
c2aa723a 4122
0b3d6e6f 4123 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4124
4125 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4126 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4127 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4128 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4129 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4130
c2aa723a 4131 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4132 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4133 unsigned long used = page_counter_read(&memcg->memory);
4134
c5edf9cd 4135 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4136 memcg = parent;
4137 }
c2aa723a
TH
4138}
4139
841710aa
TH
4140#else /* CONFIG_CGROUP_WRITEBACK */
4141
4142static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4143{
4144 return 0;
4145}
4146
4147static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4148{
4149}
4150
2529bb3a
TH
4151static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4152{
4153}
4154
52ebea74
TH
4155#endif /* CONFIG_CGROUP_WRITEBACK */
4156
3bc942f3
TH
4157/*
4158 * DO NOT USE IN NEW FILES.
4159 *
4160 * "cgroup.event_control" implementation.
4161 *
4162 * This is way over-engineered. It tries to support fully configurable
4163 * events for each user. Such level of flexibility is completely
4164 * unnecessary especially in the light of the planned unified hierarchy.
4165 *
4166 * Please deprecate this and replace with something simpler if at all
4167 * possible.
4168 */
4169
79bd9814
TH
4170/*
4171 * Unregister event and free resources.
4172 *
4173 * Gets called from workqueue.
4174 */
3bc942f3 4175static void memcg_event_remove(struct work_struct *work)
79bd9814 4176{
3bc942f3
TH
4177 struct mem_cgroup_event *event =
4178 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4179 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4180
4181 remove_wait_queue(event->wqh, &event->wait);
4182
59b6f873 4183 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4184
4185 /* Notify userspace the event is going away. */
4186 eventfd_signal(event->eventfd, 1);
4187
4188 eventfd_ctx_put(event->eventfd);
4189 kfree(event);
59b6f873 4190 css_put(&memcg->css);
79bd9814
TH
4191}
4192
4193/*
a9a08845 4194 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4195 *
4196 * Called with wqh->lock held and interrupts disabled.
4197 */
ac6424b9 4198static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4199 int sync, void *key)
79bd9814 4200{
3bc942f3
TH
4201 struct mem_cgroup_event *event =
4202 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4203 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4204 __poll_t flags = key_to_poll(key);
79bd9814 4205
a9a08845 4206 if (flags & EPOLLHUP) {
79bd9814
TH
4207 /*
4208 * If the event has been detached at cgroup removal, we
4209 * can simply return knowing the other side will cleanup
4210 * for us.
4211 *
4212 * We can't race against event freeing since the other
4213 * side will require wqh->lock via remove_wait_queue(),
4214 * which we hold.
4215 */
fba94807 4216 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4217 if (!list_empty(&event->list)) {
4218 list_del_init(&event->list);
4219 /*
4220 * We are in atomic context, but cgroup_event_remove()
4221 * may sleep, so we have to call it in workqueue.
4222 */
4223 schedule_work(&event->remove);
4224 }
fba94807 4225 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4226 }
4227
4228 return 0;
4229}
4230
3bc942f3 4231static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4232 wait_queue_head_t *wqh, poll_table *pt)
4233{
3bc942f3
TH
4234 struct mem_cgroup_event *event =
4235 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4236
4237 event->wqh = wqh;
4238 add_wait_queue(wqh, &event->wait);
4239}
4240
4241/*
3bc942f3
TH
4242 * DO NOT USE IN NEW FILES.
4243 *
79bd9814
TH
4244 * Parse input and register new cgroup event handler.
4245 *
4246 * Input must be in format '<event_fd> <control_fd> <args>'.
4247 * Interpretation of args is defined by control file implementation.
4248 */
451af504
TH
4249static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4250 char *buf, size_t nbytes, loff_t off)
79bd9814 4251{
451af504 4252 struct cgroup_subsys_state *css = of_css(of);
fba94807 4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4254 struct mem_cgroup_event *event;
79bd9814
TH
4255 struct cgroup_subsys_state *cfile_css;
4256 unsigned int efd, cfd;
4257 struct fd efile;
4258 struct fd cfile;
fba94807 4259 const char *name;
79bd9814
TH
4260 char *endp;
4261 int ret;
4262
451af504
TH
4263 buf = strstrip(buf);
4264
4265 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4266 if (*endp != ' ')
4267 return -EINVAL;
451af504 4268 buf = endp + 1;
79bd9814 4269
451af504 4270 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4271 if ((*endp != ' ') && (*endp != '\0'))
4272 return -EINVAL;
451af504 4273 buf = endp + 1;
79bd9814
TH
4274
4275 event = kzalloc(sizeof(*event), GFP_KERNEL);
4276 if (!event)
4277 return -ENOMEM;
4278
59b6f873 4279 event->memcg = memcg;
79bd9814 4280 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4281 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4282 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4283 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4284
4285 efile = fdget(efd);
4286 if (!efile.file) {
4287 ret = -EBADF;
4288 goto out_kfree;
4289 }
4290
4291 event->eventfd = eventfd_ctx_fileget(efile.file);
4292 if (IS_ERR(event->eventfd)) {
4293 ret = PTR_ERR(event->eventfd);
4294 goto out_put_efile;
4295 }
4296
4297 cfile = fdget(cfd);
4298 if (!cfile.file) {
4299 ret = -EBADF;
4300 goto out_put_eventfd;
4301 }
4302
4303 /* the process need read permission on control file */
4304 /* AV: shouldn't we check that it's been opened for read instead? */
4305 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4306 if (ret < 0)
4307 goto out_put_cfile;
4308
fba94807
TH
4309 /*
4310 * Determine the event callbacks and set them in @event. This used
4311 * to be done via struct cftype but cgroup core no longer knows
4312 * about these events. The following is crude but the whole thing
4313 * is for compatibility anyway.
3bc942f3
TH
4314 *
4315 * DO NOT ADD NEW FILES.
fba94807 4316 */
b583043e 4317 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4318
4319 if (!strcmp(name, "memory.usage_in_bytes")) {
4320 event->register_event = mem_cgroup_usage_register_event;
4321 event->unregister_event = mem_cgroup_usage_unregister_event;
4322 } else if (!strcmp(name, "memory.oom_control")) {
4323 event->register_event = mem_cgroup_oom_register_event;
4324 event->unregister_event = mem_cgroup_oom_unregister_event;
4325 } else if (!strcmp(name, "memory.pressure_level")) {
4326 event->register_event = vmpressure_register_event;
4327 event->unregister_event = vmpressure_unregister_event;
4328 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4329 event->register_event = memsw_cgroup_usage_register_event;
4330 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4331 } else {
4332 ret = -EINVAL;
4333 goto out_put_cfile;
4334 }
4335
79bd9814 4336 /*
b5557c4c
TH
4337 * Verify @cfile should belong to @css. Also, remaining events are
4338 * automatically removed on cgroup destruction but the removal is
4339 * asynchronous, so take an extra ref on @css.
79bd9814 4340 */
b583043e 4341 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4342 &memory_cgrp_subsys);
79bd9814 4343 ret = -EINVAL;
5a17f543 4344 if (IS_ERR(cfile_css))
79bd9814 4345 goto out_put_cfile;
5a17f543
TH
4346 if (cfile_css != css) {
4347 css_put(cfile_css);
79bd9814 4348 goto out_put_cfile;
5a17f543 4349 }
79bd9814 4350
451af504 4351 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4352 if (ret)
4353 goto out_put_css;
4354
9965ed17 4355 vfs_poll(efile.file, &event->pt);
79bd9814 4356
fba94807
TH
4357 spin_lock(&memcg->event_list_lock);
4358 list_add(&event->list, &memcg->event_list);
4359 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4360
4361 fdput(cfile);
4362 fdput(efile);
4363
451af504 4364 return nbytes;
79bd9814
TH
4365
4366out_put_css:
b5557c4c 4367 css_put(css);
79bd9814
TH
4368out_put_cfile:
4369 fdput(cfile);
4370out_put_eventfd:
4371 eventfd_ctx_put(event->eventfd);
4372out_put_efile:
4373 fdput(efile);
4374out_kfree:
4375 kfree(event);
4376
4377 return ret;
4378}
4379
241994ed 4380static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4381 {
0eea1030 4382 .name = "usage_in_bytes",
8c7c6e34 4383 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4384 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4385 },
c84872e1
PE
4386 {
4387 .name = "max_usage_in_bytes",
8c7c6e34 4388 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4389 .write = mem_cgroup_reset,
791badbd 4390 .read_u64 = mem_cgroup_read_u64,
c84872e1 4391 },
8cdea7c0 4392 {
0eea1030 4393 .name = "limit_in_bytes",
8c7c6e34 4394 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4395 .write = mem_cgroup_write,
791badbd 4396 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4397 },
296c81d8
BS
4398 {
4399 .name = "soft_limit_in_bytes",
4400 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4401 .write = mem_cgroup_write,
791badbd 4402 .read_u64 = mem_cgroup_read_u64,
296c81d8 4403 },
8cdea7c0
BS
4404 {
4405 .name = "failcnt",
8c7c6e34 4406 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4407 .write = mem_cgroup_reset,
791badbd 4408 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4409 },
d2ceb9b7
KH
4410 {
4411 .name = "stat",
2da8ca82 4412 .seq_show = memcg_stat_show,
d2ceb9b7 4413 },
c1e862c1
KH
4414 {
4415 .name = "force_empty",
6770c64e 4416 .write = mem_cgroup_force_empty_write,
c1e862c1 4417 },
18f59ea7
BS
4418 {
4419 .name = "use_hierarchy",
4420 .write_u64 = mem_cgroup_hierarchy_write,
4421 .read_u64 = mem_cgroup_hierarchy_read,
4422 },
79bd9814 4423 {
3bc942f3 4424 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4425 .write = memcg_write_event_control,
7dbdb199 4426 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4427 },
a7885eb8
KM
4428 {
4429 .name = "swappiness",
4430 .read_u64 = mem_cgroup_swappiness_read,
4431 .write_u64 = mem_cgroup_swappiness_write,
4432 },
7dc74be0
DN
4433 {
4434 .name = "move_charge_at_immigrate",
4435 .read_u64 = mem_cgroup_move_charge_read,
4436 .write_u64 = mem_cgroup_move_charge_write,
4437 },
9490ff27
KH
4438 {
4439 .name = "oom_control",
2da8ca82 4440 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4441 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4442 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4443 },
70ddf637
AV
4444 {
4445 .name = "pressure_level",
70ddf637 4446 },
406eb0c9
YH
4447#ifdef CONFIG_NUMA
4448 {
4449 .name = "numa_stat",
2da8ca82 4450 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4451 },
4452#endif
510fc4e1
GC
4453 {
4454 .name = "kmem.limit_in_bytes",
4455 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4456 .write = mem_cgroup_write,
791badbd 4457 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4458 },
4459 {
4460 .name = "kmem.usage_in_bytes",
4461 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4462 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4463 },
4464 {
4465 .name = "kmem.failcnt",
4466 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4467 .write = mem_cgroup_reset,
791badbd 4468 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4469 },
4470 {
4471 .name = "kmem.max_usage_in_bytes",
4472 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4473 .write = mem_cgroup_reset,
791badbd 4474 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4475 },
5b365771 4476#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4477 {
4478 .name = "kmem.slabinfo",
bc2791f8
TH
4479 .seq_start = memcg_slab_start,
4480 .seq_next = memcg_slab_next,
4481 .seq_stop = memcg_slab_stop,
b047501c 4482 .seq_show = memcg_slab_show,
749c5415
GC
4483 },
4484#endif
d55f90bf
VD
4485 {
4486 .name = "kmem.tcp.limit_in_bytes",
4487 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4488 .write = mem_cgroup_write,
4489 .read_u64 = mem_cgroup_read_u64,
4490 },
4491 {
4492 .name = "kmem.tcp.usage_in_bytes",
4493 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4494 .read_u64 = mem_cgroup_read_u64,
4495 },
4496 {
4497 .name = "kmem.tcp.failcnt",
4498 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4499 .write = mem_cgroup_reset,
4500 .read_u64 = mem_cgroup_read_u64,
4501 },
4502 {
4503 .name = "kmem.tcp.max_usage_in_bytes",
4504 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4505 .write = mem_cgroup_reset,
4506 .read_u64 = mem_cgroup_read_u64,
4507 },
6bc10349 4508 { }, /* terminate */
af36f906 4509};
8c7c6e34 4510
73f576c0
JW
4511/*
4512 * Private memory cgroup IDR
4513 *
4514 * Swap-out records and page cache shadow entries need to store memcg
4515 * references in constrained space, so we maintain an ID space that is
4516 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4517 * memory-controlled cgroups to 64k.
4518 *
4519 * However, there usually are many references to the oflline CSS after
4520 * the cgroup has been destroyed, such as page cache or reclaimable
4521 * slab objects, that don't need to hang on to the ID. We want to keep
4522 * those dead CSS from occupying IDs, or we might quickly exhaust the
4523 * relatively small ID space and prevent the creation of new cgroups
4524 * even when there are much fewer than 64k cgroups - possibly none.
4525 *
4526 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4527 * be freed and recycled when it's no longer needed, which is usually
4528 * when the CSS is offlined.
4529 *
4530 * The only exception to that are records of swapped out tmpfs/shmem
4531 * pages that need to be attributed to live ancestors on swapin. But
4532 * those references are manageable from userspace.
4533 */
4534
4535static DEFINE_IDR(mem_cgroup_idr);
4536
7e97de0b
KT
4537static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4538{
4539 if (memcg->id.id > 0) {
4540 idr_remove(&mem_cgroup_idr, memcg->id.id);
4541 memcg->id.id = 0;
4542 }
4543}
4544
615d66c3 4545static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4546{
1c2d479a 4547 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4548}
4549
615d66c3 4550static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4551{
1c2d479a 4552 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4553 mem_cgroup_id_remove(memcg);
73f576c0
JW
4554
4555 /* Memcg ID pins CSS */
4556 css_put(&memcg->css);
4557 }
4558}
4559
615d66c3
VD
4560static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4561{
4562 mem_cgroup_id_get_many(memcg, 1);
4563}
4564
4565static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4566{
4567 mem_cgroup_id_put_many(memcg, 1);
4568}
4569
73f576c0
JW
4570/**
4571 * mem_cgroup_from_id - look up a memcg from a memcg id
4572 * @id: the memcg id to look up
4573 *
4574 * Caller must hold rcu_read_lock().
4575 */
4576struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4577{
4578 WARN_ON_ONCE(!rcu_read_lock_held());
4579 return idr_find(&mem_cgroup_idr, id);
4580}
4581
ef8f2327 4582static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4583{
4584 struct mem_cgroup_per_node *pn;
ef8f2327 4585 int tmp = node;
1ecaab2b
KH
4586 /*
4587 * This routine is called against possible nodes.
4588 * But it's BUG to call kmalloc() against offline node.
4589 *
4590 * TODO: this routine can waste much memory for nodes which will
4591 * never be onlined. It's better to use memory hotplug callback
4592 * function.
4593 */
41e3355d
KH
4594 if (!node_state(node, N_NORMAL_MEMORY))
4595 tmp = -1;
17295c88 4596 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4597 if (!pn)
4598 return 1;
1ecaab2b 4599
815744d7
JW
4600 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4601 if (!pn->lruvec_stat_local) {
4602 kfree(pn);
4603 return 1;
4604 }
4605
a983b5eb
JW
4606 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4607 if (!pn->lruvec_stat_cpu) {
815744d7 4608 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4609 kfree(pn);
4610 return 1;
4611 }
4612
ef8f2327
MG
4613 lruvec_init(&pn->lruvec);
4614 pn->usage_in_excess = 0;
4615 pn->on_tree = false;
4616 pn->memcg = memcg;
4617
54f72fe0 4618 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4619 return 0;
4620}
4621
ef8f2327 4622static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4623{
00f3ca2c
JW
4624 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4625
4eaf431f
MH
4626 if (!pn)
4627 return;
4628
a983b5eb 4629 free_percpu(pn->lruvec_stat_cpu);
815744d7 4630 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4631 kfree(pn);
1ecaab2b
KH
4632}
4633
40e952f9 4634static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4635{
c8b2a36f 4636 int node;
59927fb9 4637
c8b2a36f 4638 for_each_node(node)
ef8f2327 4639 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4640 free_percpu(memcg->vmstats_percpu);
815744d7 4641 free_percpu(memcg->vmstats_local);
8ff69e2c 4642 kfree(memcg);
59927fb9 4643}
3afe36b1 4644
40e952f9
TE
4645static void mem_cgroup_free(struct mem_cgroup *memcg)
4646{
4647 memcg_wb_domain_exit(memcg);
4648 __mem_cgroup_free(memcg);
4649}
4650
0b8f73e1 4651static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4652{
d142e3e6 4653 struct mem_cgroup *memcg;
b9726c26 4654 unsigned int size;
6d12e2d8 4655 int node;
8cdea7c0 4656
0b8f73e1
JW
4657 size = sizeof(struct mem_cgroup);
4658 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4659
4660 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4661 if (!memcg)
0b8f73e1
JW
4662 return NULL;
4663
73f576c0
JW
4664 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4665 1, MEM_CGROUP_ID_MAX,
4666 GFP_KERNEL);
4667 if (memcg->id.id < 0)
4668 goto fail;
4669
815744d7
JW
4670 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4671 if (!memcg->vmstats_local)
4672 goto fail;
4673
871789d4
CD
4674 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4675 if (!memcg->vmstats_percpu)
0b8f73e1 4676 goto fail;
78fb7466 4677
3ed28fa1 4678 for_each_node(node)
ef8f2327 4679 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4680 goto fail;
f64c3f54 4681
0b8f73e1
JW
4682 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4683 goto fail;
28dbc4b6 4684
f7e1cb6e 4685 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4686 memcg->last_scanned_node = MAX_NUMNODES;
4687 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4688 mutex_init(&memcg->thresholds_lock);
4689 spin_lock_init(&memcg->move_lock);
70ddf637 4690 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4691 INIT_LIST_HEAD(&memcg->event_list);
4692 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4693 memcg->socket_pressure = jiffies;
84c07d11 4694#ifdef CONFIG_MEMCG_KMEM
900a38f0 4695 memcg->kmemcg_id = -1;
900a38f0 4696#endif
52ebea74
TH
4697#ifdef CONFIG_CGROUP_WRITEBACK
4698 INIT_LIST_HEAD(&memcg->cgwb_list);
4699#endif
73f576c0 4700 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4701 return memcg;
4702fail:
7e97de0b 4703 mem_cgroup_id_remove(memcg);
40e952f9 4704 __mem_cgroup_free(memcg);
0b8f73e1 4705 return NULL;
d142e3e6
GC
4706}
4707
0b8f73e1
JW
4708static struct cgroup_subsys_state * __ref
4709mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4710{
0b8f73e1
JW
4711 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4712 struct mem_cgroup *memcg;
4713 long error = -ENOMEM;
d142e3e6 4714
0b8f73e1
JW
4715 memcg = mem_cgroup_alloc();
4716 if (!memcg)
4717 return ERR_PTR(error);
d142e3e6 4718
0b8f73e1
JW
4719 memcg->high = PAGE_COUNTER_MAX;
4720 memcg->soft_limit = PAGE_COUNTER_MAX;
4721 if (parent) {
4722 memcg->swappiness = mem_cgroup_swappiness(parent);
4723 memcg->oom_kill_disable = parent->oom_kill_disable;
4724 }
4725 if (parent && parent->use_hierarchy) {
4726 memcg->use_hierarchy = true;
3e32cb2e 4727 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4728 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4729 page_counter_init(&memcg->memsw, &parent->memsw);
4730 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4731 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4732 } else {
3e32cb2e 4733 page_counter_init(&memcg->memory, NULL);
37e84351 4734 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4735 page_counter_init(&memcg->memsw, NULL);
4736 page_counter_init(&memcg->kmem, NULL);
0db15298 4737 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4738 /*
4739 * Deeper hierachy with use_hierarchy == false doesn't make
4740 * much sense so let cgroup subsystem know about this
4741 * unfortunate state in our controller.
4742 */
d142e3e6 4743 if (parent != root_mem_cgroup)
073219e9 4744 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4745 }
d6441637 4746
0b8f73e1
JW
4747 /* The following stuff does not apply to the root */
4748 if (!parent) {
fb2f2b0a
RG
4749#ifdef CONFIG_MEMCG_KMEM
4750 INIT_LIST_HEAD(&memcg->kmem_caches);
4751#endif
0b8f73e1
JW
4752 root_mem_cgroup = memcg;
4753 return &memcg->css;
4754 }
4755
b313aeee 4756 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4757 if (error)
4758 goto fail;
127424c8 4759
f7e1cb6e 4760 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4761 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4762
0b8f73e1
JW
4763 return &memcg->css;
4764fail:
7e97de0b 4765 mem_cgroup_id_remove(memcg);
0b8f73e1 4766 mem_cgroup_free(memcg);
ea3a9645 4767 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4768}
4769
73f576c0 4770static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4771{
58fa2a55
VD
4772 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4773
0a4465d3
KT
4774 /*
4775 * A memcg must be visible for memcg_expand_shrinker_maps()
4776 * by the time the maps are allocated. So, we allocate maps
4777 * here, when for_each_mem_cgroup() can't skip it.
4778 */
4779 if (memcg_alloc_shrinker_maps(memcg)) {
4780 mem_cgroup_id_remove(memcg);
4781 return -ENOMEM;
4782 }
4783
73f576c0 4784 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4785 refcount_set(&memcg->id.ref, 1);
73f576c0 4786 css_get(css);
2f7dd7a4 4787 return 0;
8cdea7c0
BS
4788}
4789
eb95419b 4790static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4791{
eb95419b 4792 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4793 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4794
4795 /*
4796 * Unregister events and notify userspace.
4797 * Notify userspace about cgroup removing only after rmdir of cgroup
4798 * directory to avoid race between userspace and kernelspace.
4799 */
fba94807
TH
4800 spin_lock(&memcg->event_list_lock);
4801 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4802 list_del_init(&event->list);
4803 schedule_work(&event->remove);
4804 }
fba94807 4805 spin_unlock(&memcg->event_list_lock);
ec64f515 4806
bf8d5d52 4807 page_counter_set_min(&memcg->memory, 0);
23067153 4808 page_counter_set_low(&memcg->memory, 0);
63677c74 4809
567e9ab2 4810 memcg_offline_kmem(memcg);
52ebea74 4811 wb_memcg_offline(memcg);
73f576c0 4812
591edfb1
RG
4813 drain_all_stock(memcg);
4814
73f576c0 4815 mem_cgroup_id_put(memcg);
df878fb0
KH
4816}
4817
6df38689
VD
4818static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4819{
4820 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4821
4822 invalidate_reclaim_iterators(memcg);
4823}
4824
eb95419b 4825static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4826{
eb95419b 4827 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4828
f7e1cb6e 4829 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4830 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4831
0db15298 4832 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4833 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4834
0b8f73e1
JW
4835 vmpressure_cleanup(&memcg->vmpressure);
4836 cancel_work_sync(&memcg->high_work);
4837 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4838 memcg_free_shrinker_maps(memcg);
d886f4e4 4839 memcg_free_kmem(memcg);
0b8f73e1 4840 mem_cgroup_free(memcg);
8cdea7c0
BS
4841}
4842
1ced953b
TH
4843/**
4844 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4845 * @css: the target css
4846 *
4847 * Reset the states of the mem_cgroup associated with @css. This is
4848 * invoked when the userland requests disabling on the default hierarchy
4849 * but the memcg is pinned through dependency. The memcg should stop
4850 * applying policies and should revert to the vanilla state as it may be
4851 * made visible again.
4852 *
4853 * The current implementation only resets the essential configurations.
4854 * This needs to be expanded to cover all the visible parts.
4855 */
4856static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4857{
4858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4859
bbec2e15
RG
4860 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4861 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4862 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4863 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4864 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4865 page_counter_set_min(&memcg->memory, 0);
23067153 4866 page_counter_set_low(&memcg->memory, 0);
241994ed 4867 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4868 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4869 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4870}
4871
02491447 4872#ifdef CONFIG_MMU
7dc74be0 4873/* Handlers for move charge at task migration. */
854ffa8d 4874static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4875{
05b84301 4876 int ret;
9476db97 4877
d0164adc
MG
4878 /* Try a single bulk charge without reclaim first, kswapd may wake */
4879 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4880 if (!ret) {
854ffa8d 4881 mc.precharge += count;
854ffa8d
DN
4882 return ret;
4883 }
9476db97 4884
3674534b 4885 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4886 while (count--) {
3674534b 4887 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4888 if (ret)
38c5d72f 4889 return ret;
854ffa8d 4890 mc.precharge++;
9476db97 4891 cond_resched();
854ffa8d 4892 }
9476db97 4893 return 0;
4ffef5fe
DN
4894}
4895
4ffef5fe
DN
4896union mc_target {
4897 struct page *page;
02491447 4898 swp_entry_t ent;
4ffef5fe
DN
4899};
4900
4ffef5fe 4901enum mc_target_type {
8d32ff84 4902 MC_TARGET_NONE = 0,
4ffef5fe 4903 MC_TARGET_PAGE,
02491447 4904 MC_TARGET_SWAP,
c733a828 4905 MC_TARGET_DEVICE,
4ffef5fe
DN
4906};
4907
90254a65
DN
4908static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4909 unsigned long addr, pte_t ptent)
4ffef5fe 4910{
25b2995a 4911 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4912
90254a65
DN
4913 if (!page || !page_mapped(page))
4914 return NULL;
4915 if (PageAnon(page)) {
1dfab5ab 4916 if (!(mc.flags & MOVE_ANON))
90254a65 4917 return NULL;
1dfab5ab
JW
4918 } else {
4919 if (!(mc.flags & MOVE_FILE))
4920 return NULL;
4921 }
90254a65
DN
4922 if (!get_page_unless_zero(page))
4923 return NULL;
4924
4925 return page;
4926}
4927
c733a828 4928#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4929static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4930 pte_t ptent, swp_entry_t *entry)
90254a65 4931{
90254a65
DN
4932 struct page *page = NULL;
4933 swp_entry_t ent = pte_to_swp_entry(ptent);
4934
1dfab5ab 4935 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4936 return NULL;
c733a828
JG
4937
4938 /*
4939 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4940 * a device and because they are not accessible by CPU they are store
4941 * as special swap entry in the CPU page table.
4942 */
4943 if (is_device_private_entry(ent)) {
4944 page = device_private_entry_to_page(ent);
4945 /*
4946 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4947 * a refcount of 1 when free (unlike normal page)
4948 */
4949 if (!page_ref_add_unless(page, 1, 1))
4950 return NULL;
4951 return page;
4952 }
4953
4b91355e
KH
4954 /*
4955 * Because lookup_swap_cache() updates some statistics counter,
4956 * we call find_get_page() with swapper_space directly.
4957 */
f6ab1f7f 4958 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4959 if (do_memsw_account())
90254a65
DN
4960 entry->val = ent.val;
4961
4962 return page;
4963}
4b91355e
KH
4964#else
4965static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4966 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4967{
4968 return NULL;
4969}
4970#endif
90254a65 4971
87946a72
DN
4972static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4973 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4974{
4975 struct page *page = NULL;
87946a72
DN
4976 struct address_space *mapping;
4977 pgoff_t pgoff;
4978
4979 if (!vma->vm_file) /* anonymous vma */
4980 return NULL;
1dfab5ab 4981 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4982 return NULL;
4983
87946a72 4984 mapping = vma->vm_file->f_mapping;
0661a336 4985 pgoff = linear_page_index(vma, addr);
87946a72
DN
4986
4987 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4988#ifdef CONFIG_SWAP
4989 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4990 if (shmem_mapping(mapping)) {
4991 page = find_get_entry(mapping, pgoff);
3159f943 4992 if (xa_is_value(page)) {
139b6a6f 4993 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4994 if (do_memsw_account())
139b6a6f 4995 *entry = swp;
f6ab1f7f
HY
4996 page = find_get_page(swap_address_space(swp),
4997 swp_offset(swp));
139b6a6f
JW
4998 }
4999 } else
5000 page = find_get_page(mapping, pgoff);
5001#else
5002 page = find_get_page(mapping, pgoff);
aa3b1895 5003#endif
87946a72
DN
5004 return page;
5005}
5006
b1b0deab
CG
5007/**
5008 * mem_cgroup_move_account - move account of the page
5009 * @page: the page
25843c2b 5010 * @compound: charge the page as compound or small page
b1b0deab
CG
5011 * @from: mem_cgroup which the page is moved from.
5012 * @to: mem_cgroup which the page is moved to. @from != @to.
5013 *
3ac808fd 5014 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5015 *
5016 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5017 * from old cgroup.
5018 */
5019static int mem_cgroup_move_account(struct page *page,
f627c2f5 5020 bool compound,
b1b0deab
CG
5021 struct mem_cgroup *from,
5022 struct mem_cgroup *to)
5023{
5024 unsigned long flags;
f627c2f5 5025 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5026 int ret;
c4843a75 5027 bool anon;
b1b0deab
CG
5028
5029 VM_BUG_ON(from == to);
5030 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5031 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5032
5033 /*
6a93ca8f 5034 * Prevent mem_cgroup_migrate() from looking at
45637bab 5035 * page->mem_cgroup of its source page while we change it.
b1b0deab 5036 */
f627c2f5 5037 ret = -EBUSY;
b1b0deab
CG
5038 if (!trylock_page(page))
5039 goto out;
5040
5041 ret = -EINVAL;
5042 if (page->mem_cgroup != from)
5043 goto out_unlock;
5044
c4843a75
GT
5045 anon = PageAnon(page);
5046
b1b0deab
CG
5047 spin_lock_irqsave(&from->move_lock, flags);
5048
c4843a75 5049 if (!anon && page_mapped(page)) {
c9019e9b
JW
5050 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5051 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5052 }
5053
c4843a75
GT
5054 /*
5055 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5056 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5057 * So mapping should be stable for dirty pages.
5058 */
5059 if (!anon && PageDirty(page)) {
5060 struct address_space *mapping = page_mapping(page);
5061
5062 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
5063 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5064 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5065 }
5066 }
5067
b1b0deab 5068 if (PageWriteback(page)) {
c9019e9b
JW
5069 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5070 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5071 }
5072
5073 /*
5074 * It is safe to change page->mem_cgroup here because the page
5075 * is referenced, charged, and isolated - we can't race with
5076 * uncharging, charging, migration, or LRU putback.
5077 */
5078
5079 /* caller should have done css_get */
5080 page->mem_cgroup = to;
5081 spin_unlock_irqrestore(&from->move_lock, flags);
5082
5083 ret = 0;
5084
5085 local_irq_disable();
f627c2f5 5086 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5087 memcg_check_events(to, page);
f627c2f5 5088 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5089 memcg_check_events(from, page);
5090 local_irq_enable();
5091out_unlock:
5092 unlock_page(page);
5093out:
5094 return ret;
5095}
5096
7cf7806c
LR
5097/**
5098 * get_mctgt_type - get target type of moving charge
5099 * @vma: the vma the pte to be checked belongs
5100 * @addr: the address corresponding to the pte to be checked
5101 * @ptent: the pte to be checked
5102 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5103 *
5104 * Returns
5105 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5106 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5107 * move charge. if @target is not NULL, the page is stored in target->page
5108 * with extra refcnt got(Callers should handle it).
5109 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5110 * target for charge migration. if @target is not NULL, the entry is stored
5111 * in target->ent.
25b2995a
CH
5112 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5113 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5114 * For now we such page is charge like a regular page would be as for all
5115 * intent and purposes it is just special memory taking the place of a
5116 * regular page.
c733a828
JG
5117 *
5118 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5119 *
5120 * Called with pte lock held.
5121 */
5122
8d32ff84 5123static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5124 unsigned long addr, pte_t ptent, union mc_target *target)
5125{
5126 struct page *page = NULL;
8d32ff84 5127 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5128 swp_entry_t ent = { .val = 0 };
5129
5130 if (pte_present(ptent))
5131 page = mc_handle_present_pte(vma, addr, ptent);
5132 else if (is_swap_pte(ptent))
48406ef8 5133 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5134 else if (pte_none(ptent))
87946a72 5135 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5136
5137 if (!page && !ent.val)
8d32ff84 5138 return ret;
02491447 5139 if (page) {
02491447 5140 /*
0a31bc97 5141 * Do only loose check w/o serialization.
1306a85a 5142 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5143 * not under LRU exclusion.
02491447 5144 */
1306a85a 5145 if (page->mem_cgroup == mc.from) {
02491447 5146 ret = MC_TARGET_PAGE;
25b2995a 5147 if (is_device_private_page(page))
c733a828 5148 ret = MC_TARGET_DEVICE;
02491447
DN
5149 if (target)
5150 target->page = page;
5151 }
5152 if (!ret || !target)
5153 put_page(page);
5154 }
3e14a57b
HY
5155 /*
5156 * There is a swap entry and a page doesn't exist or isn't charged.
5157 * But we cannot move a tail-page in a THP.
5158 */
5159 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5160 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5161 ret = MC_TARGET_SWAP;
5162 if (target)
5163 target->ent = ent;
4ffef5fe 5164 }
4ffef5fe
DN
5165 return ret;
5166}
5167
12724850
NH
5168#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5169/*
d6810d73
HY
5170 * We don't consider PMD mapped swapping or file mapped pages because THP does
5171 * not support them for now.
12724850
NH
5172 * Caller should make sure that pmd_trans_huge(pmd) is true.
5173 */
5174static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5175 unsigned long addr, pmd_t pmd, union mc_target *target)
5176{
5177 struct page *page = NULL;
12724850
NH
5178 enum mc_target_type ret = MC_TARGET_NONE;
5179
84c3fc4e
ZY
5180 if (unlikely(is_swap_pmd(pmd))) {
5181 VM_BUG_ON(thp_migration_supported() &&
5182 !is_pmd_migration_entry(pmd));
5183 return ret;
5184 }
12724850 5185 page = pmd_page(pmd);
309381fe 5186 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5187 if (!(mc.flags & MOVE_ANON))
12724850 5188 return ret;
1306a85a 5189 if (page->mem_cgroup == mc.from) {
12724850
NH
5190 ret = MC_TARGET_PAGE;
5191 if (target) {
5192 get_page(page);
5193 target->page = page;
5194 }
5195 }
5196 return ret;
5197}
5198#else
5199static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5200 unsigned long addr, pmd_t pmd, union mc_target *target)
5201{
5202 return MC_TARGET_NONE;
5203}
5204#endif
5205
4ffef5fe
DN
5206static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5207 unsigned long addr, unsigned long end,
5208 struct mm_walk *walk)
5209{
26bcd64a 5210 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5211 pte_t *pte;
5212 spinlock_t *ptl;
5213
b6ec57f4
KS
5214 ptl = pmd_trans_huge_lock(pmd, vma);
5215 if (ptl) {
c733a828
JG
5216 /*
5217 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5218 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5219 * this might change.
c733a828 5220 */
12724850
NH
5221 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5222 mc.precharge += HPAGE_PMD_NR;
bf929152 5223 spin_unlock(ptl);
1a5a9906 5224 return 0;
12724850 5225 }
03319327 5226
45f83cef
AA
5227 if (pmd_trans_unstable(pmd))
5228 return 0;
4ffef5fe
DN
5229 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5230 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5231 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5232 mc.precharge++; /* increment precharge temporarily */
5233 pte_unmap_unlock(pte - 1, ptl);
5234 cond_resched();
5235
7dc74be0
DN
5236 return 0;
5237}
5238
4ffef5fe
DN
5239static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5240{
5241 unsigned long precharge;
4ffef5fe 5242
26bcd64a
NH
5243 struct mm_walk mem_cgroup_count_precharge_walk = {
5244 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5245 .mm = mm,
5246 };
dfe076b0 5247 down_read(&mm->mmap_sem);
0247f3f4
JM
5248 walk_page_range(0, mm->highest_vm_end,
5249 &mem_cgroup_count_precharge_walk);
dfe076b0 5250 up_read(&mm->mmap_sem);
4ffef5fe
DN
5251
5252 precharge = mc.precharge;
5253 mc.precharge = 0;
5254
5255 return precharge;
5256}
5257
4ffef5fe
DN
5258static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5259{
dfe076b0
DN
5260 unsigned long precharge = mem_cgroup_count_precharge(mm);
5261
5262 VM_BUG_ON(mc.moving_task);
5263 mc.moving_task = current;
5264 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5265}
5266
dfe076b0
DN
5267/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5268static void __mem_cgroup_clear_mc(void)
4ffef5fe 5269{
2bd9bb20
KH
5270 struct mem_cgroup *from = mc.from;
5271 struct mem_cgroup *to = mc.to;
5272
4ffef5fe 5273 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5274 if (mc.precharge) {
00501b53 5275 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5276 mc.precharge = 0;
5277 }
5278 /*
5279 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5280 * we must uncharge here.
5281 */
5282 if (mc.moved_charge) {
00501b53 5283 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5284 mc.moved_charge = 0;
4ffef5fe 5285 }
483c30b5
DN
5286 /* we must fixup refcnts and charges */
5287 if (mc.moved_swap) {
483c30b5 5288 /* uncharge swap account from the old cgroup */
ce00a967 5289 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5290 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5291
615d66c3
VD
5292 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5293
05b84301 5294 /*
3e32cb2e
JW
5295 * we charged both to->memory and to->memsw, so we
5296 * should uncharge to->memory.
05b84301 5297 */
ce00a967 5298 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5299 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5300
615d66c3
VD
5301 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5302 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5303
483c30b5
DN
5304 mc.moved_swap = 0;
5305 }
dfe076b0
DN
5306 memcg_oom_recover(from);
5307 memcg_oom_recover(to);
5308 wake_up_all(&mc.waitq);
5309}
5310
5311static void mem_cgroup_clear_mc(void)
5312{
264a0ae1
TH
5313 struct mm_struct *mm = mc.mm;
5314
dfe076b0
DN
5315 /*
5316 * we must clear moving_task before waking up waiters at the end of
5317 * task migration.
5318 */
5319 mc.moving_task = NULL;
5320 __mem_cgroup_clear_mc();
2bd9bb20 5321 spin_lock(&mc.lock);
4ffef5fe
DN
5322 mc.from = NULL;
5323 mc.to = NULL;
264a0ae1 5324 mc.mm = NULL;
2bd9bb20 5325 spin_unlock(&mc.lock);
264a0ae1
TH
5326
5327 mmput(mm);
4ffef5fe
DN
5328}
5329
1f7dd3e5 5330static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5331{
1f7dd3e5 5332 struct cgroup_subsys_state *css;
eed67d75 5333 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5334 struct mem_cgroup *from;
4530eddb 5335 struct task_struct *leader, *p;
9f2115f9 5336 struct mm_struct *mm;
1dfab5ab 5337 unsigned long move_flags;
9f2115f9 5338 int ret = 0;
7dc74be0 5339
1f7dd3e5
TH
5340 /* charge immigration isn't supported on the default hierarchy */
5341 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5342 return 0;
5343
4530eddb
TH
5344 /*
5345 * Multi-process migrations only happen on the default hierarchy
5346 * where charge immigration is not used. Perform charge
5347 * immigration if @tset contains a leader and whine if there are
5348 * multiple.
5349 */
5350 p = NULL;
1f7dd3e5 5351 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5352 WARN_ON_ONCE(p);
5353 p = leader;
1f7dd3e5 5354 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5355 }
5356 if (!p)
5357 return 0;
5358
1f7dd3e5
TH
5359 /*
5360 * We are now commited to this value whatever it is. Changes in this
5361 * tunable will only affect upcoming migrations, not the current one.
5362 * So we need to save it, and keep it going.
5363 */
5364 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5365 if (!move_flags)
5366 return 0;
5367
9f2115f9
TH
5368 from = mem_cgroup_from_task(p);
5369
5370 VM_BUG_ON(from == memcg);
5371
5372 mm = get_task_mm(p);
5373 if (!mm)
5374 return 0;
5375 /* We move charges only when we move a owner of the mm */
5376 if (mm->owner == p) {
5377 VM_BUG_ON(mc.from);
5378 VM_BUG_ON(mc.to);
5379 VM_BUG_ON(mc.precharge);
5380 VM_BUG_ON(mc.moved_charge);
5381 VM_BUG_ON(mc.moved_swap);
5382
5383 spin_lock(&mc.lock);
264a0ae1 5384 mc.mm = mm;
9f2115f9
TH
5385 mc.from = from;
5386 mc.to = memcg;
5387 mc.flags = move_flags;
5388 spin_unlock(&mc.lock);
5389 /* We set mc.moving_task later */
5390
5391 ret = mem_cgroup_precharge_mc(mm);
5392 if (ret)
5393 mem_cgroup_clear_mc();
264a0ae1
TH
5394 } else {
5395 mmput(mm);
7dc74be0
DN
5396 }
5397 return ret;
5398}
5399
1f7dd3e5 5400static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5401{
4e2f245d
JW
5402 if (mc.to)
5403 mem_cgroup_clear_mc();
7dc74be0
DN
5404}
5405
4ffef5fe
DN
5406static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5407 unsigned long addr, unsigned long end,
5408 struct mm_walk *walk)
7dc74be0 5409{
4ffef5fe 5410 int ret = 0;
26bcd64a 5411 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5412 pte_t *pte;
5413 spinlock_t *ptl;
12724850
NH
5414 enum mc_target_type target_type;
5415 union mc_target target;
5416 struct page *page;
4ffef5fe 5417
b6ec57f4
KS
5418 ptl = pmd_trans_huge_lock(pmd, vma);
5419 if (ptl) {
62ade86a 5420 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5421 spin_unlock(ptl);
12724850
NH
5422 return 0;
5423 }
5424 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5425 if (target_type == MC_TARGET_PAGE) {
5426 page = target.page;
5427 if (!isolate_lru_page(page)) {
f627c2f5 5428 if (!mem_cgroup_move_account(page, true,
1306a85a 5429 mc.from, mc.to)) {
12724850
NH
5430 mc.precharge -= HPAGE_PMD_NR;
5431 mc.moved_charge += HPAGE_PMD_NR;
5432 }
5433 putback_lru_page(page);
5434 }
5435 put_page(page);
c733a828
JG
5436 } else if (target_type == MC_TARGET_DEVICE) {
5437 page = target.page;
5438 if (!mem_cgroup_move_account(page, true,
5439 mc.from, mc.to)) {
5440 mc.precharge -= HPAGE_PMD_NR;
5441 mc.moved_charge += HPAGE_PMD_NR;
5442 }
5443 put_page(page);
12724850 5444 }
bf929152 5445 spin_unlock(ptl);
1a5a9906 5446 return 0;
12724850
NH
5447 }
5448
45f83cef
AA
5449 if (pmd_trans_unstable(pmd))
5450 return 0;
4ffef5fe
DN
5451retry:
5452 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5453 for (; addr != end; addr += PAGE_SIZE) {
5454 pte_t ptent = *(pte++);
c733a828 5455 bool device = false;
02491447 5456 swp_entry_t ent;
4ffef5fe
DN
5457
5458 if (!mc.precharge)
5459 break;
5460
8d32ff84 5461 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5462 case MC_TARGET_DEVICE:
5463 device = true;
5464 /* fall through */
4ffef5fe
DN
5465 case MC_TARGET_PAGE:
5466 page = target.page;
53f9263b
KS
5467 /*
5468 * We can have a part of the split pmd here. Moving it
5469 * can be done but it would be too convoluted so simply
5470 * ignore such a partial THP and keep it in original
5471 * memcg. There should be somebody mapping the head.
5472 */
5473 if (PageTransCompound(page))
5474 goto put;
c733a828 5475 if (!device && isolate_lru_page(page))
4ffef5fe 5476 goto put;
f627c2f5
KS
5477 if (!mem_cgroup_move_account(page, false,
5478 mc.from, mc.to)) {
4ffef5fe 5479 mc.precharge--;
854ffa8d
DN
5480 /* we uncharge from mc.from later. */
5481 mc.moved_charge++;
4ffef5fe 5482 }
c733a828
JG
5483 if (!device)
5484 putback_lru_page(page);
8d32ff84 5485put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5486 put_page(page);
5487 break;
02491447
DN
5488 case MC_TARGET_SWAP:
5489 ent = target.ent;
e91cbb42 5490 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5491 mc.precharge--;
483c30b5
DN
5492 /* we fixup refcnts and charges later. */
5493 mc.moved_swap++;
5494 }
02491447 5495 break;
4ffef5fe
DN
5496 default:
5497 break;
5498 }
5499 }
5500 pte_unmap_unlock(pte - 1, ptl);
5501 cond_resched();
5502
5503 if (addr != end) {
5504 /*
5505 * We have consumed all precharges we got in can_attach().
5506 * We try charge one by one, but don't do any additional
5507 * charges to mc.to if we have failed in charge once in attach()
5508 * phase.
5509 */
854ffa8d 5510 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5511 if (!ret)
5512 goto retry;
5513 }
5514
5515 return ret;
5516}
5517
264a0ae1 5518static void mem_cgroup_move_charge(void)
4ffef5fe 5519{
26bcd64a
NH
5520 struct mm_walk mem_cgroup_move_charge_walk = {
5521 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5522 .mm = mc.mm,
26bcd64a 5523 };
4ffef5fe
DN
5524
5525 lru_add_drain_all();
312722cb 5526 /*
81f8c3a4
JW
5527 * Signal lock_page_memcg() to take the memcg's move_lock
5528 * while we're moving its pages to another memcg. Then wait
5529 * for already started RCU-only updates to finish.
312722cb
JW
5530 */
5531 atomic_inc(&mc.from->moving_account);
5532 synchronize_rcu();
dfe076b0 5533retry:
264a0ae1 5534 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5535 /*
5536 * Someone who are holding the mmap_sem might be waiting in
5537 * waitq. So we cancel all extra charges, wake up all waiters,
5538 * and retry. Because we cancel precharges, we might not be able
5539 * to move enough charges, but moving charge is a best-effort
5540 * feature anyway, so it wouldn't be a big problem.
5541 */
5542 __mem_cgroup_clear_mc();
5543 cond_resched();
5544 goto retry;
5545 }
26bcd64a
NH
5546 /*
5547 * When we have consumed all precharges and failed in doing
5548 * additional charge, the page walk just aborts.
5549 */
0247f3f4
JM
5550 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5551
264a0ae1 5552 up_read(&mc.mm->mmap_sem);
312722cb 5553 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5554}
5555
264a0ae1 5556static void mem_cgroup_move_task(void)
67e465a7 5557{
264a0ae1
TH
5558 if (mc.to) {
5559 mem_cgroup_move_charge();
a433658c 5560 mem_cgroup_clear_mc();
264a0ae1 5561 }
67e465a7 5562}
5cfb80a7 5563#else /* !CONFIG_MMU */
1f7dd3e5 5564static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5565{
5566 return 0;
5567}
1f7dd3e5 5568static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5569{
5570}
264a0ae1 5571static void mem_cgroup_move_task(void)
5cfb80a7
DN
5572{
5573}
5574#endif
67e465a7 5575
f00baae7
TH
5576/*
5577 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5578 * to verify whether we're attached to the default hierarchy on each mount
5579 * attempt.
f00baae7 5580 */
eb95419b 5581static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5582{
5583 /*
aa6ec29b 5584 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5585 * guarantees that @root doesn't have any children, so turning it
5586 * on for the root memcg is enough.
5587 */
9e10a130 5588 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5589 root_mem_cgroup->use_hierarchy = true;
5590 else
5591 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5592}
5593
677dc973
CD
5594static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5595{
5596 if (value == PAGE_COUNTER_MAX)
5597 seq_puts(m, "max\n");
5598 else
5599 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5600
5601 return 0;
5602}
5603
241994ed
JW
5604static u64 memory_current_read(struct cgroup_subsys_state *css,
5605 struct cftype *cft)
5606{
f5fc3c5d
JW
5607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5608
5609 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5610}
5611
bf8d5d52
RG
5612static int memory_min_show(struct seq_file *m, void *v)
5613{
677dc973
CD
5614 return seq_puts_memcg_tunable(m,
5615 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5616}
5617
5618static ssize_t memory_min_write(struct kernfs_open_file *of,
5619 char *buf, size_t nbytes, loff_t off)
5620{
5621 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5622 unsigned long min;
5623 int err;
5624
5625 buf = strstrip(buf);
5626 err = page_counter_memparse(buf, "max", &min);
5627 if (err)
5628 return err;
5629
5630 page_counter_set_min(&memcg->memory, min);
5631
5632 return nbytes;
5633}
5634
241994ed
JW
5635static int memory_low_show(struct seq_file *m, void *v)
5636{
677dc973
CD
5637 return seq_puts_memcg_tunable(m,
5638 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5639}
5640
5641static ssize_t memory_low_write(struct kernfs_open_file *of,
5642 char *buf, size_t nbytes, loff_t off)
5643{
5644 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5645 unsigned long low;
5646 int err;
5647
5648 buf = strstrip(buf);
d2973697 5649 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5650 if (err)
5651 return err;
5652
23067153 5653 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5654
5655 return nbytes;
5656}
5657
5658static int memory_high_show(struct seq_file *m, void *v)
5659{
677dc973 5660 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5661}
5662
5663static ssize_t memory_high_write(struct kernfs_open_file *of,
5664 char *buf, size_t nbytes, loff_t off)
5665{
5666 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5667 unsigned long nr_pages;
241994ed
JW
5668 unsigned long high;
5669 int err;
5670
5671 buf = strstrip(buf);
d2973697 5672 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5673 if (err)
5674 return err;
5675
5676 memcg->high = high;
5677
588083bb
JW
5678 nr_pages = page_counter_read(&memcg->memory);
5679 if (nr_pages > high)
5680 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5681 GFP_KERNEL, true);
5682
2529bb3a 5683 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5684 return nbytes;
5685}
5686
5687static int memory_max_show(struct seq_file *m, void *v)
5688{
677dc973
CD
5689 return seq_puts_memcg_tunable(m,
5690 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
5691}
5692
5693static ssize_t memory_max_write(struct kernfs_open_file *of,
5694 char *buf, size_t nbytes, loff_t off)
5695{
5696 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5697 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5698 bool drained = false;
241994ed
JW
5699 unsigned long max;
5700 int err;
5701
5702 buf = strstrip(buf);
d2973697 5703 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5704 if (err)
5705 return err;
5706
bbec2e15 5707 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5708
5709 for (;;) {
5710 unsigned long nr_pages = page_counter_read(&memcg->memory);
5711
5712 if (nr_pages <= max)
5713 break;
5714
5715 if (signal_pending(current)) {
5716 err = -EINTR;
5717 break;
5718 }
5719
5720 if (!drained) {
5721 drain_all_stock(memcg);
5722 drained = true;
5723 continue;
5724 }
5725
5726 if (nr_reclaims) {
5727 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5728 GFP_KERNEL, true))
5729 nr_reclaims--;
5730 continue;
5731 }
5732
e27be240 5733 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5734 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5735 break;
5736 }
241994ed 5737
2529bb3a 5738 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5739 return nbytes;
5740}
5741
1e577f97
SB
5742static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5743{
5744 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5745 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5746 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5747 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5748 seq_printf(m, "oom_kill %lu\n",
5749 atomic_long_read(&events[MEMCG_OOM_KILL]));
5750}
5751
241994ed
JW
5752static int memory_events_show(struct seq_file *m, void *v)
5753{
aa9694bb 5754 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5755
1e577f97
SB
5756 __memory_events_show(m, memcg->memory_events);
5757 return 0;
5758}
5759
5760static int memory_events_local_show(struct seq_file *m, void *v)
5761{
5762 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5763
1e577f97 5764 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
5765 return 0;
5766}
5767
587d9f72
JW
5768static int memory_stat_show(struct seq_file *m, void *v)
5769{
aa9694bb 5770 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 5771 char *buf;
1ff9e6e1 5772
c8713d0b
JW
5773 buf = memory_stat_format(memcg);
5774 if (!buf)
5775 return -ENOMEM;
5776 seq_puts(m, buf);
5777 kfree(buf);
587d9f72
JW
5778 return 0;
5779}
5780
3d8b38eb
RG
5781static int memory_oom_group_show(struct seq_file *m, void *v)
5782{
aa9694bb 5783 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
5784
5785 seq_printf(m, "%d\n", memcg->oom_group);
5786
5787 return 0;
5788}
5789
5790static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5791 char *buf, size_t nbytes, loff_t off)
5792{
5793 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5794 int ret, oom_group;
5795
5796 buf = strstrip(buf);
5797 if (!buf)
5798 return -EINVAL;
5799
5800 ret = kstrtoint(buf, 0, &oom_group);
5801 if (ret)
5802 return ret;
5803
5804 if (oom_group != 0 && oom_group != 1)
5805 return -EINVAL;
5806
5807 memcg->oom_group = oom_group;
5808
5809 return nbytes;
5810}
5811
241994ed
JW
5812static struct cftype memory_files[] = {
5813 {
5814 .name = "current",
f5fc3c5d 5815 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5816 .read_u64 = memory_current_read,
5817 },
bf8d5d52
RG
5818 {
5819 .name = "min",
5820 .flags = CFTYPE_NOT_ON_ROOT,
5821 .seq_show = memory_min_show,
5822 .write = memory_min_write,
5823 },
241994ed
JW
5824 {
5825 .name = "low",
5826 .flags = CFTYPE_NOT_ON_ROOT,
5827 .seq_show = memory_low_show,
5828 .write = memory_low_write,
5829 },
5830 {
5831 .name = "high",
5832 .flags = CFTYPE_NOT_ON_ROOT,
5833 .seq_show = memory_high_show,
5834 .write = memory_high_write,
5835 },
5836 {
5837 .name = "max",
5838 .flags = CFTYPE_NOT_ON_ROOT,
5839 .seq_show = memory_max_show,
5840 .write = memory_max_write,
5841 },
5842 {
5843 .name = "events",
5844 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5845 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5846 .seq_show = memory_events_show,
5847 },
1e577f97
SB
5848 {
5849 .name = "events.local",
5850 .flags = CFTYPE_NOT_ON_ROOT,
5851 .file_offset = offsetof(struct mem_cgroup, events_local_file),
5852 .seq_show = memory_events_local_show,
5853 },
587d9f72
JW
5854 {
5855 .name = "stat",
5856 .flags = CFTYPE_NOT_ON_ROOT,
5857 .seq_show = memory_stat_show,
5858 },
3d8b38eb
RG
5859 {
5860 .name = "oom.group",
5861 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5862 .seq_show = memory_oom_group_show,
5863 .write = memory_oom_group_write,
5864 },
241994ed
JW
5865 { } /* terminate */
5866};
5867
073219e9 5868struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5869 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5870 .css_online = mem_cgroup_css_online,
92fb9748 5871 .css_offline = mem_cgroup_css_offline,
6df38689 5872 .css_released = mem_cgroup_css_released,
92fb9748 5873 .css_free = mem_cgroup_css_free,
1ced953b 5874 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5875 .can_attach = mem_cgroup_can_attach,
5876 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5877 .post_attach = mem_cgroup_move_task,
f00baae7 5878 .bind = mem_cgroup_bind,
241994ed
JW
5879 .dfl_cftypes = memory_files,
5880 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5881 .early_init = 0,
8cdea7c0 5882};
c077719b 5883
241994ed 5884/**
bf8d5d52 5885 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5886 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5887 * @memcg: the memory cgroup to check
5888 *
23067153
RG
5889 * WARNING: This function is not stateless! It can only be used as part
5890 * of a top-down tree iteration, not for isolated queries.
34c81057 5891 *
bf8d5d52
RG
5892 * Returns one of the following:
5893 * MEMCG_PROT_NONE: cgroup memory is not protected
5894 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5895 * an unprotected supply of reclaimable memory from other cgroups.
5896 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5897 *
bf8d5d52 5898 * @root is exclusive; it is never protected when looked at directly
34c81057 5899 *
bf8d5d52
RG
5900 * To provide a proper hierarchical behavior, effective memory.min/low values
5901 * are used. Below is the description of how effective memory.low is calculated.
5902 * Effective memory.min values is calculated in the same way.
34c81057 5903 *
23067153
RG
5904 * Effective memory.low is always equal or less than the original memory.low.
5905 * If there is no memory.low overcommittment (which is always true for
5906 * top-level memory cgroups), these two values are equal.
5907 * Otherwise, it's a part of parent's effective memory.low,
5908 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5909 * memory.low usages, where memory.low usage is the size of actually
5910 * protected memory.
34c81057 5911 *
23067153
RG
5912 * low_usage
5913 * elow = min( memory.low, parent->elow * ------------------ ),
5914 * siblings_low_usage
34c81057 5915 *
23067153
RG
5916 * | memory.current, if memory.current < memory.low
5917 * low_usage = |
82ede7ee 5918 * | 0, otherwise.
34c81057 5919 *
23067153
RG
5920 *
5921 * Such definition of the effective memory.low provides the expected
5922 * hierarchical behavior: parent's memory.low value is limiting
5923 * children, unprotected memory is reclaimed first and cgroups,
5924 * which are not using their guarantee do not affect actual memory
5925 * distribution.
5926 *
5927 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5928 *
5929 * A A/memory.low = 2G, A/memory.current = 6G
5930 * //\\
5931 * BC DE B/memory.low = 3G B/memory.current = 2G
5932 * C/memory.low = 1G C/memory.current = 2G
5933 * D/memory.low = 0 D/memory.current = 2G
5934 * E/memory.low = 10G E/memory.current = 0
5935 *
5936 * and the memory pressure is applied, the following memory distribution
5937 * is expected (approximately):
5938 *
5939 * A/memory.current = 2G
5940 *
5941 * B/memory.current = 1.3G
5942 * C/memory.current = 0.6G
5943 * D/memory.current = 0
5944 * E/memory.current = 0
5945 *
5946 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5947 * (see propagate_protected_usage()), as well as recursive calculation of
5948 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5949 * path for each memory cgroup top-down from the reclaim,
5950 * it's possible to optimize this part, and save calculated elow
5951 * for next usage. This part is intentionally racy, but it's ok,
5952 * as memory.low is a best-effort mechanism.
241994ed 5953 */
bf8d5d52
RG
5954enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5955 struct mem_cgroup *memcg)
241994ed 5956{
23067153 5957 struct mem_cgroup *parent;
bf8d5d52
RG
5958 unsigned long emin, parent_emin;
5959 unsigned long elow, parent_elow;
5960 unsigned long usage;
23067153 5961
241994ed 5962 if (mem_cgroup_disabled())
bf8d5d52 5963 return MEMCG_PROT_NONE;
241994ed 5964
34c81057
SC
5965 if (!root)
5966 root = root_mem_cgroup;
5967 if (memcg == root)
bf8d5d52 5968 return MEMCG_PROT_NONE;
241994ed 5969
23067153 5970 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5971 if (!usage)
5972 return MEMCG_PROT_NONE;
5973
5974 emin = memcg->memory.min;
5975 elow = memcg->memory.low;
34c81057 5976
bf8d5d52 5977 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5978 /* No parent means a non-hierarchical mode on v1 memcg */
5979 if (!parent)
5980 return MEMCG_PROT_NONE;
5981
23067153
RG
5982 if (parent == root)
5983 goto exit;
5984
bf8d5d52
RG
5985 parent_emin = READ_ONCE(parent->memory.emin);
5986 emin = min(emin, parent_emin);
5987 if (emin && parent_emin) {
5988 unsigned long min_usage, siblings_min_usage;
5989
5990 min_usage = min(usage, memcg->memory.min);
5991 siblings_min_usage = atomic_long_read(
5992 &parent->memory.children_min_usage);
5993
5994 if (min_usage && siblings_min_usage)
5995 emin = min(emin, parent_emin * min_usage /
5996 siblings_min_usage);
5997 }
5998
23067153
RG
5999 parent_elow = READ_ONCE(parent->memory.elow);
6000 elow = min(elow, parent_elow);
bf8d5d52
RG
6001 if (elow && parent_elow) {
6002 unsigned long low_usage, siblings_low_usage;
23067153 6003
bf8d5d52
RG
6004 low_usage = min(usage, memcg->memory.low);
6005 siblings_low_usage = atomic_long_read(
6006 &parent->memory.children_low_usage);
23067153 6007
bf8d5d52
RG
6008 if (low_usage && siblings_low_usage)
6009 elow = min(elow, parent_elow * low_usage /
6010 siblings_low_usage);
6011 }
23067153 6012
23067153 6013exit:
bf8d5d52 6014 memcg->memory.emin = emin;
23067153 6015 memcg->memory.elow = elow;
bf8d5d52
RG
6016
6017 if (usage <= emin)
6018 return MEMCG_PROT_MIN;
6019 else if (usage <= elow)
6020 return MEMCG_PROT_LOW;
6021 else
6022 return MEMCG_PROT_NONE;
241994ed
JW
6023}
6024
00501b53
JW
6025/**
6026 * mem_cgroup_try_charge - try charging a page
6027 * @page: page to charge
6028 * @mm: mm context of the victim
6029 * @gfp_mask: reclaim mode
6030 * @memcgp: charged memcg return
25843c2b 6031 * @compound: charge the page as compound or small page
00501b53
JW
6032 *
6033 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6034 * pages according to @gfp_mask if necessary.
6035 *
6036 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6037 * Otherwise, an error code is returned.
6038 *
6039 * After page->mapping has been set up, the caller must finalize the
6040 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6041 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6042 */
6043int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6044 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6045 bool compound)
00501b53
JW
6046{
6047 struct mem_cgroup *memcg = NULL;
f627c2f5 6048 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6049 int ret = 0;
6050
6051 if (mem_cgroup_disabled())
6052 goto out;
6053
6054 if (PageSwapCache(page)) {
00501b53
JW
6055 /*
6056 * Every swap fault against a single page tries to charge the
6057 * page, bail as early as possible. shmem_unuse() encounters
6058 * already charged pages, too. The USED bit is protected by
6059 * the page lock, which serializes swap cache removal, which
6060 * in turn serializes uncharging.
6061 */
e993d905 6062 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6063 if (compound_head(page)->mem_cgroup)
00501b53 6064 goto out;
e993d905 6065
37e84351 6066 if (do_swap_account) {
e993d905
VD
6067 swp_entry_t ent = { .val = page_private(page), };
6068 unsigned short id = lookup_swap_cgroup_id(ent);
6069
6070 rcu_read_lock();
6071 memcg = mem_cgroup_from_id(id);
6072 if (memcg && !css_tryget_online(&memcg->css))
6073 memcg = NULL;
6074 rcu_read_unlock();
6075 }
00501b53
JW
6076 }
6077
00501b53
JW
6078 if (!memcg)
6079 memcg = get_mem_cgroup_from_mm(mm);
6080
6081 ret = try_charge(memcg, gfp_mask, nr_pages);
6082
6083 css_put(&memcg->css);
00501b53
JW
6084out:
6085 *memcgp = memcg;
6086 return ret;
6087}
6088
2cf85583
TH
6089int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6090 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6091 bool compound)
6092{
6093 struct mem_cgroup *memcg;
6094 int ret;
6095
6096 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6097 memcg = *memcgp;
6098 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6099 return ret;
6100}
6101
00501b53
JW
6102/**
6103 * mem_cgroup_commit_charge - commit a page charge
6104 * @page: page to charge
6105 * @memcg: memcg to charge the page to
6106 * @lrucare: page might be on LRU already
25843c2b 6107 * @compound: charge the page as compound or small page
00501b53
JW
6108 *
6109 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6110 * after page->mapping has been set up. This must happen atomically
6111 * as part of the page instantiation, i.e. under the page table lock
6112 * for anonymous pages, under the page lock for page and swap cache.
6113 *
6114 * In addition, the page must not be on the LRU during the commit, to
6115 * prevent racing with task migration. If it might be, use @lrucare.
6116 *
6117 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6118 */
6119void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6120 bool lrucare, bool compound)
00501b53 6121{
f627c2f5 6122 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6123
6124 VM_BUG_ON_PAGE(!page->mapping, page);
6125 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6126
6127 if (mem_cgroup_disabled())
6128 return;
6129 /*
6130 * Swap faults will attempt to charge the same page multiple
6131 * times. But reuse_swap_page() might have removed the page
6132 * from swapcache already, so we can't check PageSwapCache().
6133 */
6134 if (!memcg)
6135 return;
6136
6abb5a86
JW
6137 commit_charge(page, memcg, lrucare);
6138
6abb5a86 6139 local_irq_disable();
f627c2f5 6140 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6141 memcg_check_events(memcg, page);
6142 local_irq_enable();
00501b53 6143
7941d214 6144 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6145 swp_entry_t entry = { .val = page_private(page) };
6146 /*
6147 * The swap entry might not get freed for a long time,
6148 * let's not wait for it. The page already received a
6149 * memory+swap charge, drop the swap entry duplicate.
6150 */
38d8b4e6 6151 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6152 }
6153}
6154
6155/**
6156 * mem_cgroup_cancel_charge - cancel a page charge
6157 * @page: page to charge
6158 * @memcg: memcg to charge the page to
25843c2b 6159 * @compound: charge the page as compound or small page
00501b53
JW
6160 *
6161 * Cancel a charge transaction started by mem_cgroup_try_charge().
6162 */
f627c2f5
KS
6163void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6164 bool compound)
00501b53 6165{
f627c2f5 6166 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6167
6168 if (mem_cgroup_disabled())
6169 return;
6170 /*
6171 * Swap faults will attempt to charge the same page multiple
6172 * times. But reuse_swap_page() might have removed the page
6173 * from swapcache already, so we can't check PageSwapCache().
6174 */
6175 if (!memcg)
6176 return;
6177
00501b53
JW
6178 cancel_charge(memcg, nr_pages);
6179}
6180
a9d5adee
JG
6181struct uncharge_gather {
6182 struct mem_cgroup *memcg;
6183 unsigned long pgpgout;
6184 unsigned long nr_anon;
6185 unsigned long nr_file;
6186 unsigned long nr_kmem;
6187 unsigned long nr_huge;
6188 unsigned long nr_shmem;
6189 struct page *dummy_page;
6190};
6191
6192static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6193{
a9d5adee
JG
6194 memset(ug, 0, sizeof(*ug));
6195}
6196
6197static void uncharge_batch(const struct uncharge_gather *ug)
6198{
6199 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6200 unsigned long flags;
6201
a9d5adee
JG
6202 if (!mem_cgroup_is_root(ug->memcg)) {
6203 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6204 if (do_memsw_account())
a9d5adee
JG
6205 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6206 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6207 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6208 memcg_oom_recover(ug->memcg);
ce00a967 6209 }
747db954
JW
6210
6211 local_irq_save(flags);
c9019e9b
JW
6212 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6213 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6214 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6215 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6216 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6217 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6218 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6219 local_irq_restore(flags);
e8ea14cc 6220
a9d5adee
JG
6221 if (!mem_cgroup_is_root(ug->memcg))
6222 css_put_many(&ug->memcg->css, nr_pages);
6223}
6224
6225static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6226{
6227 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6228 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6229 !PageHWPoison(page) , page);
a9d5adee
JG
6230
6231 if (!page->mem_cgroup)
6232 return;
6233
6234 /*
6235 * Nobody should be changing or seriously looking at
6236 * page->mem_cgroup at this point, we have fully
6237 * exclusive access to the page.
6238 */
6239
6240 if (ug->memcg != page->mem_cgroup) {
6241 if (ug->memcg) {
6242 uncharge_batch(ug);
6243 uncharge_gather_clear(ug);
6244 }
6245 ug->memcg = page->mem_cgroup;
6246 }
6247
6248 if (!PageKmemcg(page)) {
6249 unsigned int nr_pages = 1;
6250
6251 if (PageTransHuge(page)) {
6252 nr_pages <<= compound_order(page);
6253 ug->nr_huge += nr_pages;
6254 }
6255 if (PageAnon(page))
6256 ug->nr_anon += nr_pages;
6257 else {
6258 ug->nr_file += nr_pages;
6259 if (PageSwapBacked(page))
6260 ug->nr_shmem += nr_pages;
6261 }
6262 ug->pgpgout++;
6263 } else {
6264 ug->nr_kmem += 1 << compound_order(page);
6265 __ClearPageKmemcg(page);
6266 }
6267
6268 ug->dummy_page = page;
6269 page->mem_cgroup = NULL;
747db954
JW
6270}
6271
6272static void uncharge_list(struct list_head *page_list)
6273{
a9d5adee 6274 struct uncharge_gather ug;
747db954 6275 struct list_head *next;
a9d5adee
JG
6276
6277 uncharge_gather_clear(&ug);
747db954 6278
8b592656
JW
6279 /*
6280 * Note that the list can be a single page->lru; hence the
6281 * do-while loop instead of a simple list_for_each_entry().
6282 */
747db954
JW
6283 next = page_list->next;
6284 do {
a9d5adee
JG
6285 struct page *page;
6286
747db954
JW
6287 page = list_entry(next, struct page, lru);
6288 next = page->lru.next;
6289
a9d5adee 6290 uncharge_page(page, &ug);
747db954
JW
6291 } while (next != page_list);
6292
a9d5adee
JG
6293 if (ug.memcg)
6294 uncharge_batch(&ug);
747db954
JW
6295}
6296
0a31bc97
JW
6297/**
6298 * mem_cgroup_uncharge - uncharge a page
6299 * @page: page to uncharge
6300 *
6301 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6302 * mem_cgroup_commit_charge().
6303 */
6304void mem_cgroup_uncharge(struct page *page)
6305{
a9d5adee
JG
6306 struct uncharge_gather ug;
6307
0a31bc97
JW
6308 if (mem_cgroup_disabled())
6309 return;
6310
747db954 6311 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6312 if (!page->mem_cgroup)
0a31bc97
JW
6313 return;
6314
a9d5adee
JG
6315 uncharge_gather_clear(&ug);
6316 uncharge_page(page, &ug);
6317 uncharge_batch(&ug);
747db954 6318}
0a31bc97 6319
747db954
JW
6320/**
6321 * mem_cgroup_uncharge_list - uncharge a list of page
6322 * @page_list: list of pages to uncharge
6323 *
6324 * Uncharge a list of pages previously charged with
6325 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6326 */
6327void mem_cgroup_uncharge_list(struct list_head *page_list)
6328{
6329 if (mem_cgroup_disabled())
6330 return;
0a31bc97 6331
747db954
JW
6332 if (!list_empty(page_list))
6333 uncharge_list(page_list);
0a31bc97
JW
6334}
6335
6336/**
6a93ca8f
JW
6337 * mem_cgroup_migrate - charge a page's replacement
6338 * @oldpage: currently circulating page
6339 * @newpage: replacement page
0a31bc97 6340 *
6a93ca8f
JW
6341 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6342 * be uncharged upon free.
0a31bc97
JW
6343 *
6344 * Both pages must be locked, @newpage->mapping must be set up.
6345 */
6a93ca8f 6346void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6347{
29833315 6348 struct mem_cgroup *memcg;
44b7a8d3
JW
6349 unsigned int nr_pages;
6350 bool compound;
d93c4130 6351 unsigned long flags;
0a31bc97
JW
6352
6353 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6354 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6355 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6356 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6357 newpage);
0a31bc97
JW
6358
6359 if (mem_cgroup_disabled())
6360 return;
6361
6362 /* Page cache replacement: new page already charged? */
1306a85a 6363 if (newpage->mem_cgroup)
0a31bc97
JW
6364 return;
6365
45637bab 6366 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6367 memcg = oldpage->mem_cgroup;
29833315 6368 if (!memcg)
0a31bc97
JW
6369 return;
6370
44b7a8d3
JW
6371 /* Force-charge the new page. The old one will be freed soon */
6372 compound = PageTransHuge(newpage);
6373 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6374
6375 page_counter_charge(&memcg->memory, nr_pages);
6376 if (do_memsw_account())
6377 page_counter_charge(&memcg->memsw, nr_pages);
6378 css_get_many(&memcg->css, nr_pages);
0a31bc97 6379
9cf7666a 6380 commit_charge(newpage, memcg, false);
44b7a8d3 6381
d93c4130 6382 local_irq_save(flags);
44b7a8d3
JW
6383 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6384 memcg_check_events(memcg, newpage);
d93c4130 6385 local_irq_restore(flags);
0a31bc97
JW
6386}
6387
ef12947c 6388DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6389EXPORT_SYMBOL(memcg_sockets_enabled_key);
6390
2d758073 6391void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6392{
6393 struct mem_cgroup *memcg;
6394
2d758073
JW
6395 if (!mem_cgroup_sockets_enabled)
6396 return;
6397
edbe69ef
RG
6398 /*
6399 * Socket cloning can throw us here with sk_memcg already
6400 * filled. It won't however, necessarily happen from
6401 * process context. So the test for root memcg given
6402 * the current task's memcg won't help us in this case.
6403 *
6404 * Respecting the original socket's memcg is a better
6405 * decision in this case.
6406 */
6407 if (sk->sk_memcg) {
6408 css_get(&sk->sk_memcg->css);
6409 return;
6410 }
6411
11092087
JW
6412 rcu_read_lock();
6413 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6414 if (memcg == root_mem_cgroup)
6415 goto out;
0db15298 6416 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6417 goto out;
f7e1cb6e 6418 if (css_tryget_online(&memcg->css))
11092087 6419 sk->sk_memcg = memcg;
f7e1cb6e 6420out:
11092087
JW
6421 rcu_read_unlock();
6422}
11092087 6423
2d758073 6424void mem_cgroup_sk_free(struct sock *sk)
11092087 6425{
2d758073
JW
6426 if (sk->sk_memcg)
6427 css_put(&sk->sk_memcg->css);
11092087
JW
6428}
6429
6430/**
6431 * mem_cgroup_charge_skmem - charge socket memory
6432 * @memcg: memcg to charge
6433 * @nr_pages: number of pages to charge
6434 *
6435 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6436 * @memcg's configured limit, %false if the charge had to be forced.
6437 */
6438bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6439{
f7e1cb6e 6440 gfp_t gfp_mask = GFP_KERNEL;
11092087 6441
f7e1cb6e 6442 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6443 struct page_counter *fail;
f7e1cb6e 6444
0db15298
JW
6445 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6446 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6447 return true;
6448 }
0db15298
JW
6449 page_counter_charge(&memcg->tcpmem, nr_pages);
6450 memcg->tcpmem_pressure = 1;
f7e1cb6e 6451 return false;
11092087 6452 }
d886f4e4 6453
f7e1cb6e
JW
6454 /* Don't block in the packet receive path */
6455 if (in_softirq())
6456 gfp_mask = GFP_NOWAIT;
6457
c9019e9b 6458 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6459
f7e1cb6e
JW
6460 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6461 return true;
6462
6463 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6464 return false;
6465}
6466
6467/**
6468 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6469 * @memcg: memcg to uncharge
6470 * @nr_pages: number of pages to uncharge
11092087
JW
6471 */
6472void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6473{
f7e1cb6e 6474 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6475 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6476 return;
6477 }
d886f4e4 6478
c9019e9b 6479 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6480
475d0487 6481 refill_stock(memcg, nr_pages);
11092087
JW
6482}
6483
f7e1cb6e
JW
6484static int __init cgroup_memory(char *s)
6485{
6486 char *token;
6487
6488 while ((token = strsep(&s, ",")) != NULL) {
6489 if (!*token)
6490 continue;
6491 if (!strcmp(token, "nosocket"))
6492 cgroup_memory_nosocket = true;
04823c83
VD
6493 if (!strcmp(token, "nokmem"))
6494 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6495 }
6496 return 0;
6497}
6498__setup("cgroup.memory=", cgroup_memory);
11092087 6499
2d11085e 6500/*
1081312f
MH
6501 * subsys_initcall() for memory controller.
6502 *
308167fc
SAS
6503 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6504 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6505 * basically everything that doesn't depend on a specific mem_cgroup structure
6506 * should be initialized from here.
2d11085e
MH
6507 */
6508static int __init mem_cgroup_init(void)
6509{
95a045f6
JW
6510 int cpu, node;
6511
84c07d11 6512#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6513 /*
6514 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6515 * so use a workqueue with limited concurrency to avoid stalling
6516 * all worker threads in case lots of cgroups are created and
6517 * destroyed simultaneously.
13583c3d 6518 */
17cc4dfe
TH
6519 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6520 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6521#endif
6522
308167fc
SAS
6523 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6524 memcg_hotplug_cpu_dead);
95a045f6
JW
6525
6526 for_each_possible_cpu(cpu)
6527 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6528 drain_local_stock);
6529
6530 for_each_node(node) {
6531 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6532
6533 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6534 node_online(node) ? node : NUMA_NO_NODE);
6535
ef8f2327 6536 rtpn->rb_root = RB_ROOT;
fa90b2fd 6537 rtpn->rb_rightmost = NULL;
ef8f2327 6538 spin_lock_init(&rtpn->lock);
95a045f6
JW
6539 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6540 }
6541
2d11085e
MH
6542 return 0;
6543}
6544subsys_initcall(mem_cgroup_init);
21afa38e
JW
6545
6546#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6547static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6548{
1c2d479a 6549 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6550 /*
6551 * The root cgroup cannot be destroyed, so it's refcount must
6552 * always be >= 1.
6553 */
6554 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6555 VM_BUG_ON(1);
6556 break;
6557 }
6558 memcg = parent_mem_cgroup(memcg);
6559 if (!memcg)
6560 memcg = root_mem_cgroup;
6561 }
6562 return memcg;
6563}
6564
21afa38e
JW
6565/**
6566 * mem_cgroup_swapout - transfer a memsw charge to swap
6567 * @page: page whose memsw charge to transfer
6568 * @entry: swap entry to move the charge to
6569 *
6570 * Transfer the memsw charge of @page to @entry.
6571 */
6572void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6573{
1f47b61f 6574 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6575 unsigned int nr_entries;
21afa38e
JW
6576 unsigned short oldid;
6577
6578 VM_BUG_ON_PAGE(PageLRU(page), page);
6579 VM_BUG_ON_PAGE(page_count(page), page);
6580
7941d214 6581 if (!do_memsw_account())
21afa38e
JW
6582 return;
6583
6584 memcg = page->mem_cgroup;
6585
6586 /* Readahead page, never charged */
6587 if (!memcg)
6588 return;
6589
1f47b61f
VD
6590 /*
6591 * In case the memcg owning these pages has been offlined and doesn't
6592 * have an ID allocated to it anymore, charge the closest online
6593 * ancestor for the swap instead and transfer the memory+swap charge.
6594 */
6595 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6596 nr_entries = hpage_nr_pages(page);
6597 /* Get references for the tail pages, too */
6598 if (nr_entries > 1)
6599 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6600 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6601 nr_entries);
21afa38e 6602 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6603 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6604
6605 page->mem_cgroup = NULL;
6606
6607 if (!mem_cgroup_is_root(memcg))
d6810d73 6608 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6609
1f47b61f
VD
6610 if (memcg != swap_memcg) {
6611 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6612 page_counter_charge(&swap_memcg->memsw, nr_entries);
6613 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6614 }
6615
ce9ce665
SAS
6616 /*
6617 * Interrupts should be disabled here because the caller holds the
b93b0163 6618 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6619 * important here to have the interrupts disabled because it is the
b93b0163 6620 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6621 */
6622 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6623 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6624 -nr_entries);
21afa38e 6625 memcg_check_events(memcg, page);
73f576c0
JW
6626
6627 if (!mem_cgroup_is_root(memcg))
d08afa14 6628 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6629}
6630
38d8b4e6
HY
6631/**
6632 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6633 * @page: page being added to swap
6634 * @entry: swap entry to charge
6635 *
38d8b4e6 6636 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6637 *
6638 * Returns 0 on success, -ENOMEM on failure.
6639 */
6640int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6641{
38d8b4e6 6642 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6643 struct page_counter *counter;
38d8b4e6 6644 struct mem_cgroup *memcg;
37e84351
VD
6645 unsigned short oldid;
6646
6647 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6648 return 0;
6649
6650 memcg = page->mem_cgroup;
6651
6652 /* Readahead page, never charged */
6653 if (!memcg)
6654 return 0;
6655
f3a53a3a
TH
6656 if (!entry.val) {
6657 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6658 return 0;
f3a53a3a 6659 }
bb98f2c5 6660
1f47b61f
VD
6661 memcg = mem_cgroup_id_get_online(memcg);
6662
37e84351 6663 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6664 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6665 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6666 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6667 mem_cgroup_id_put(memcg);
37e84351 6668 return -ENOMEM;
1f47b61f 6669 }
37e84351 6670
38d8b4e6
HY
6671 /* Get references for the tail pages, too */
6672 if (nr_pages > 1)
6673 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6674 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6675 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6676 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6677
37e84351
VD
6678 return 0;
6679}
6680
21afa38e 6681/**
38d8b4e6 6682 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6683 * @entry: swap entry to uncharge
38d8b4e6 6684 * @nr_pages: the amount of swap space to uncharge
21afa38e 6685 */
38d8b4e6 6686void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6687{
6688 struct mem_cgroup *memcg;
6689 unsigned short id;
6690
37e84351 6691 if (!do_swap_account)
21afa38e
JW
6692 return;
6693
38d8b4e6 6694 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6695 rcu_read_lock();
adbe427b 6696 memcg = mem_cgroup_from_id(id);
21afa38e 6697 if (memcg) {
37e84351
VD
6698 if (!mem_cgroup_is_root(memcg)) {
6699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6700 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6701 else
38d8b4e6 6702 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6703 }
c9019e9b 6704 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6705 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6706 }
6707 rcu_read_unlock();
6708}
6709
d8b38438
VD
6710long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6711{
6712 long nr_swap_pages = get_nr_swap_pages();
6713
6714 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6715 return nr_swap_pages;
6716 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6717 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6718 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6719 page_counter_read(&memcg->swap));
6720 return nr_swap_pages;
6721}
6722
5ccc5aba
VD
6723bool mem_cgroup_swap_full(struct page *page)
6724{
6725 struct mem_cgroup *memcg;
6726
6727 VM_BUG_ON_PAGE(!PageLocked(page), page);
6728
6729 if (vm_swap_full())
6730 return true;
6731 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6732 return false;
6733
6734 memcg = page->mem_cgroup;
6735 if (!memcg)
6736 return false;
6737
6738 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6739 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6740 return true;
6741
6742 return false;
6743}
6744
21afa38e
JW
6745/* for remember boot option*/
6746#ifdef CONFIG_MEMCG_SWAP_ENABLED
6747static int really_do_swap_account __initdata = 1;
6748#else
6749static int really_do_swap_account __initdata;
6750#endif
6751
6752static int __init enable_swap_account(char *s)
6753{
6754 if (!strcmp(s, "1"))
6755 really_do_swap_account = 1;
6756 else if (!strcmp(s, "0"))
6757 really_do_swap_account = 0;
6758 return 1;
6759}
6760__setup("swapaccount=", enable_swap_account);
6761
37e84351
VD
6762static u64 swap_current_read(struct cgroup_subsys_state *css,
6763 struct cftype *cft)
6764{
6765 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6766
6767 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6768}
6769
6770static int swap_max_show(struct seq_file *m, void *v)
6771{
677dc973
CD
6772 return seq_puts_memcg_tunable(m,
6773 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
6774}
6775
6776static ssize_t swap_max_write(struct kernfs_open_file *of,
6777 char *buf, size_t nbytes, loff_t off)
6778{
6779 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6780 unsigned long max;
6781 int err;
6782
6783 buf = strstrip(buf);
6784 err = page_counter_memparse(buf, "max", &max);
6785 if (err)
6786 return err;
6787
be09102b 6788 xchg(&memcg->swap.max, max);
37e84351
VD
6789
6790 return nbytes;
6791}
6792
f3a53a3a
TH
6793static int swap_events_show(struct seq_file *m, void *v)
6794{
aa9694bb 6795 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
6796
6797 seq_printf(m, "max %lu\n",
6798 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6799 seq_printf(m, "fail %lu\n",
6800 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6801
6802 return 0;
6803}
6804
37e84351
VD
6805static struct cftype swap_files[] = {
6806 {
6807 .name = "swap.current",
6808 .flags = CFTYPE_NOT_ON_ROOT,
6809 .read_u64 = swap_current_read,
6810 },
6811 {
6812 .name = "swap.max",
6813 .flags = CFTYPE_NOT_ON_ROOT,
6814 .seq_show = swap_max_show,
6815 .write = swap_max_write,
6816 },
f3a53a3a
TH
6817 {
6818 .name = "swap.events",
6819 .flags = CFTYPE_NOT_ON_ROOT,
6820 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6821 .seq_show = swap_events_show,
6822 },
37e84351
VD
6823 { } /* terminate */
6824};
6825
21afa38e
JW
6826static struct cftype memsw_cgroup_files[] = {
6827 {
6828 .name = "memsw.usage_in_bytes",
6829 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6830 .read_u64 = mem_cgroup_read_u64,
6831 },
6832 {
6833 .name = "memsw.max_usage_in_bytes",
6834 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6835 .write = mem_cgroup_reset,
6836 .read_u64 = mem_cgroup_read_u64,
6837 },
6838 {
6839 .name = "memsw.limit_in_bytes",
6840 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6841 .write = mem_cgroup_write,
6842 .read_u64 = mem_cgroup_read_u64,
6843 },
6844 {
6845 .name = "memsw.failcnt",
6846 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6847 .write = mem_cgroup_reset,
6848 .read_u64 = mem_cgroup_read_u64,
6849 },
6850 { }, /* terminate */
6851};
6852
6853static int __init mem_cgroup_swap_init(void)
6854{
6855 if (!mem_cgroup_disabled() && really_do_swap_account) {
6856 do_swap_account = 1;
37e84351
VD
6857 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6858 swap_files));
21afa38e
JW
6859 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6860 memsw_cgroup_files));
6861 }
6862 return 0;
6863}
6864subsys_initcall(mem_cgroup_swap_init);
6865
6866#endif /* CONFIG_MEMCG_SWAP */