mtd: denali: fix indents and other trivial things
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0 359#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
2633d7a0 362 struct list_head memcg_slab_caches;
2633d7a0
GC
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365#endif
45cf7ebd
GC
366
367 int last_scanned_node;
368#if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372#endif
70ddf637 373
fba94807
TH
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
54f72fe0
JW
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
380};
381
510fc4e1
GC
382/* internal only representation about the status of kmem accounting. */
383enum {
6de64beb 384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
386};
387
510fc4e1
GC
388#ifdef CONFIG_MEMCG_KMEM
389static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390{
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392}
7de37682
GC
393
394static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395{
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397}
398
399static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400{
10d5ebf4
LZ
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
7de37682
GC
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408}
409
410static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411{
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414}
510fc4e1
GC
415#endif
416
7dc74be0
DN
417/* Stuffs for move charges at task migration. */
418/*
ee5e8472
GC
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
421 */
422enum move_type {
4ffef5fe 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
425 NR_MOVE_TYPE,
426};
427
4ffef5fe
DN
428/* "mc" and its members are protected by cgroup_mutex */
429static struct move_charge_struct {
b1dd693e 430 spinlock_t lock; /* for from, to */
4ffef5fe
DN
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
ee5e8472 433 unsigned long immigrate_flags;
4ffef5fe 434 unsigned long precharge;
854ffa8d 435 unsigned long moved_charge;
483c30b5 436 unsigned long moved_swap;
8033b97c
DN
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439} mc = {
2bd9bb20 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442};
4ffef5fe 443
90254a65
DN
444static bool move_anon(void)
445{
ee5e8472 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
447}
448
87946a72
DN
449static bool move_file(void)
450{
ee5e8472 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
452}
453
4e416953
BS
454/*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
a0db00fc 458#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 459#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 460
217bc319
KH
461enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 463 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
466 NR_CHARGE_TYPE,
467};
468
8c7c6e34 469/* for encoding cft->private value on file */
86ae53e1
GC
470enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
510fc4e1 474 _KMEM,
86ae53e1
GC
475};
476
a0db00fc
KS
477#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 479#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
480/* Used for OOM nofiier */
481#define OOM_CONTROL (0)
8c7c6e34 482
75822b44
BS
483/*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
0999821b
GC
491/*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496static DEFINE_MUTEX(memcg_create_mutex);
497
b2145145
WL
498struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499{
a7c6d554 500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
501}
502
70ddf637
AV
503/* Some nice accessors for the vmpressure. */
504struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505{
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509}
510
511struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512{
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514}
515
7ffc0edc
MH
516static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517{
518 return (memcg == root_mem_cgroup);
519}
520
4219b2da
LZ
521/*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525#define MEM_CGROUP_ID_MAX USHRT_MAX
526
34c00c31
LZ
527static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528{
15a4c835 529 return memcg->css.id;
34c00c31
LZ
530}
531
532static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533{
534 struct cgroup_subsys_state *css;
535
7d699ddb 536 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
537 return mem_cgroup_from_css(css);
538}
539
e1aab161 540/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 541#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 542
e1aab161
GC
543void sock_update_memcg(struct sock *sk)
544{
376be5ff 545 if (mem_cgroup_sockets_enabled) {
e1aab161 546 struct mem_cgroup *memcg;
3f134619 547 struct cg_proto *cg_proto;
e1aab161
GC
548
549 BUG_ON(!sk->sk_prot->proto_cgroup);
550
f3f511e1
GC
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
555 *
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
558 */
559 if (sk->sk_cgrp) {
560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 561 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
562 return;
563 }
564
e1aab161
GC
565 rcu_read_lock();
566 memcg = mem_cgroup_from_task(current);
3f134619 567 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 568 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
569 memcg_proto_active(cg_proto) &&
570 css_tryget_online(&memcg->css)) {
3f134619 571 sk->sk_cgrp = cg_proto;
e1aab161
GC
572 }
573 rcu_read_unlock();
574 }
575}
576EXPORT_SYMBOL(sock_update_memcg);
577
578void sock_release_memcg(struct sock *sk)
579{
376be5ff 580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
5347e5ae 584 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
585 }
586}
d1a4c0b3
GC
587
588struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589{
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
2e685cad 593 return &memcg->tcp_mem;
d1a4c0b3
GC
594}
595EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 596
3f134619
GC
597static void disarm_sock_keys(struct mem_cgroup *memcg)
598{
2e685cad 599 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602}
603#else
604static void disarm_sock_keys(struct mem_cgroup *memcg)
605{
606}
607#endif
608
a8964b9b 609#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
610/*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
55007d84
GC
617 *
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
621 */
622static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
623int memcg_limited_groups_array_size;
624
55007d84
GC
625/*
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
630 *
b8627835 631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
635 * increase ours as well if it increases.
636 */
637#define MEMCG_CACHES_MIN_SIZE 4
b8627835 638#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 639
d7f25f8a
GC
640/*
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
645 */
a8964b9b 646struct static_key memcg_kmem_enabled_key;
d7f25f8a 647EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
648
649static void disarm_kmem_keys(struct mem_cgroup *memcg)
650{
55007d84 651 if (memcg_kmem_is_active(memcg)) {
a8964b9b 652 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 }
bea207c8
GC
655 /*
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
658 */
659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
660}
661#else
662static void disarm_kmem_keys(struct mem_cgroup *memcg)
663{
664}
665#endif /* CONFIG_MEMCG_KMEM */
666
667static void disarm_static_keys(struct mem_cgroup *memcg)
668{
669 disarm_sock_keys(memcg);
670 disarm_kmem_keys(memcg);
671}
672
c0ff4b85 673static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 674
f64c3f54 675static struct mem_cgroup_per_zone *
e231875b 676mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 677{
e231875b
JZ
678 int nid = zone_to_nid(zone);
679 int zid = zone_idx(zone);
680
54f72fe0 681 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
682}
683
c0ff4b85 684struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 685{
c0ff4b85 686 return &memcg->css;
d324236b
WF
687}
688
f64c3f54 689static struct mem_cgroup_per_zone *
e231875b 690mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 691{
97a6c37b
JW
692 int nid = page_to_nid(page);
693 int zid = page_zonenum(page);
f64c3f54 694
e231875b 695 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
696}
697
bb4cc1a8
AM
698static struct mem_cgroup_tree_per_zone *
699soft_limit_tree_node_zone(int nid, int zid)
700{
701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702}
703
704static struct mem_cgroup_tree_per_zone *
705soft_limit_tree_from_page(struct page *page)
706{
707 int nid = page_to_nid(page);
708 int zid = page_zonenum(page);
709
710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711}
712
cf2c8127
JW
713static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz,
715 unsigned long long new_usage_in_excess)
bb4cc1a8
AM
716{
717 struct rb_node **p = &mctz->rb_root.rb_node;
718 struct rb_node *parent = NULL;
719 struct mem_cgroup_per_zone *mz_node;
720
721 if (mz->on_tree)
722 return;
723
724 mz->usage_in_excess = new_usage_in_excess;
725 if (!mz->usage_in_excess)
726 return;
727 while (*p) {
728 parent = *p;
729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 tree_node);
731 if (mz->usage_in_excess < mz_node->usage_in_excess)
732 p = &(*p)->rb_left;
733 /*
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
736 */
737 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 p = &(*p)->rb_right;
739 }
740 rb_link_node(&mz->tree_node, parent, p);
741 rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 mz->on_tree = true;
743}
744
cf2c8127
JW
745static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
747{
748 if (!mz->on_tree)
749 return;
750 rb_erase(&mz->tree_node, &mctz->rb_root);
751 mz->on_tree = false;
752}
753
cf2c8127
JW
754static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 756{
0a31bc97
JW
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 760 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 761 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
762}
763
764
765static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
766{
767 unsigned long long excess;
768 struct mem_cgroup_per_zone *mz;
769 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 770
e231875b 771 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
772 /*
773 * Necessary to update all ancestors when hierarchy is used.
774 * because their event counter is not touched.
775 */
776 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 777 mz = mem_cgroup_page_zoneinfo(memcg, page);
bb4cc1a8
AM
778 excess = res_counter_soft_limit_excess(&memcg->res);
779 /*
780 * We have to update the tree if mz is on RB-tree or
781 * mem is over its softlimit.
782 */
783 if (excess || mz->on_tree) {
0a31bc97
JW
784 unsigned long flags;
785
786 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
787 /* if on-tree, remove it */
788 if (mz->on_tree)
cf2c8127 789 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
790 /*
791 * Insert again. mz->usage_in_excess will be updated.
792 * If excess is 0, no tree ops.
793 */
cf2c8127 794 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 795 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
796 }
797 }
798}
799
800static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
801{
bb4cc1a8 802 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
803 struct mem_cgroup_per_zone *mz;
804 int nid, zid;
bb4cc1a8 805
e231875b
JZ
806 for_each_node(nid) {
807 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
808 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
809 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 810 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
811 }
812 }
813}
814
815static struct mem_cgroup_per_zone *
816__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
817{
818 struct rb_node *rightmost = NULL;
819 struct mem_cgroup_per_zone *mz;
820
821retry:
822 mz = NULL;
823 rightmost = rb_last(&mctz->rb_root);
824 if (!rightmost)
825 goto done; /* Nothing to reclaim from */
826
827 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
828 /*
829 * Remove the node now but someone else can add it back,
830 * we will to add it back at the end of reclaim to its correct
831 * position in the tree.
832 */
cf2c8127 833 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8 834 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
ec903c0c 835 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
836 goto retry;
837done:
838 return mz;
839}
840
841static struct mem_cgroup_per_zone *
842mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
843{
844 struct mem_cgroup_per_zone *mz;
845
0a31bc97 846 spin_lock_irq(&mctz->lock);
bb4cc1a8 847 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 848 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
849 return mz;
850}
851
711d3d2c
KH
852/*
853 * Implementation Note: reading percpu statistics for memcg.
854 *
855 * Both of vmstat[] and percpu_counter has threshold and do periodic
856 * synchronization to implement "quick" read. There are trade-off between
857 * reading cost and precision of value. Then, we may have a chance to implement
858 * a periodic synchronizion of counter in memcg's counter.
859 *
860 * But this _read() function is used for user interface now. The user accounts
861 * memory usage by memory cgroup and he _always_ requires exact value because
862 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
863 * have to visit all online cpus and make sum. So, for now, unnecessary
864 * synchronization is not implemented. (just implemented for cpu hotplug)
865 *
866 * If there are kernel internal actions which can make use of some not-exact
867 * value, and reading all cpu value can be performance bottleneck in some
868 * common workload, threashold and synchonization as vmstat[] should be
869 * implemented.
870 */
c0ff4b85 871static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 872 enum mem_cgroup_stat_index idx)
c62b1a3b 873{
7a159cc9 874 long val = 0;
c62b1a3b 875 int cpu;
c62b1a3b 876
711d3d2c
KH
877 get_online_cpus();
878 for_each_online_cpu(cpu)
c0ff4b85 879 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 880#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
881 spin_lock(&memcg->pcp_counter_lock);
882 val += memcg->nocpu_base.count[idx];
883 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
884#endif
885 put_online_cpus();
c62b1a3b
KH
886 return val;
887}
888
c0ff4b85 889static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
890 enum mem_cgroup_events_index idx)
891{
892 unsigned long val = 0;
893 int cpu;
894
9c567512 895 get_online_cpus();
e9f8974f 896 for_each_online_cpu(cpu)
c0ff4b85 897 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 898#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
899 spin_lock(&memcg->pcp_counter_lock);
900 val += memcg->nocpu_base.events[idx];
901 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 902#endif
9c567512 903 put_online_cpus();
e9f8974f
JW
904 return val;
905}
906
c0ff4b85 907static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 908 struct page *page,
0a31bc97 909 int nr_pages)
d52aa412 910{
b2402857
KH
911 /*
912 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
913 * counted as CACHE even if it's on ANON LRU.
914 */
0a31bc97 915 if (PageAnon(page))
b2402857 916 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 917 nr_pages);
d52aa412 918 else
b2402857 919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 920 nr_pages);
55e462b0 921
b070e65c
DR
922 if (PageTransHuge(page))
923 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
924 nr_pages);
925
e401f176
KH
926 /* pagein of a big page is an event. So, ignore page size */
927 if (nr_pages > 0)
c0ff4b85 928 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 929 else {
c0ff4b85 930 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
931 nr_pages = -nr_pages; /* for event */
932 }
e401f176 933
13114716 934 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
935}
936
e231875b 937unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
938{
939 struct mem_cgroup_per_zone *mz;
940
941 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
942 return mz->lru_size[lru];
943}
944
e231875b
JZ
945static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
946 int nid,
947 unsigned int lru_mask)
bb2a0de9 948{
e231875b 949 unsigned long nr = 0;
889976db
YH
950 int zid;
951
e231875b 952 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 953
e231875b
JZ
954 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
955 struct mem_cgroup_per_zone *mz;
956 enum lru_list lru;
957
958 for_each_lru(lru) {
959 if (!(BIT(lru) & lru_mask))
960 continue;
961 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
962 nr += mz->lru_size[lru];
963 }
964 }
965 return nr;
889976db 966}
bb2a0de9 967
c0ff4b85 968static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 969 unsigned int lru_mask)
6d12e2d8 970{
e231875b 971 unsigned long nr = 0;
889976db 972 int nid;
6d12e2d8 973
31aaea4a 974 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
975 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
976 return nr;
d52aa412
KH
977}
978
f53d7ce3
JW
979static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
980 enum mem_cgroup_events_target target)
7a159cc9
JW
981{
982 unsigned long val, next;
983
13114716 984 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 985 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 986 /* from time_after() in jiffies.h */
f53d7ce3
JW
987 if ((long)next - (long)val < 0) {
988 switch (target) {
989 case MEM_CGROUP_TARGET_THRESH:
990 next = val + THRESHOLDS_EVENTS_TARGET;
991 break;
bb4cc1a8
AM
992 case MEM_CGROUP_TARGET_SOFTLIMIT:
993 next = val + SOFTLIMIT_EVENTS_TARGET;
994 break;
f53d7ce3
JW
995 case MEM_CGROUP_TARGET_NUMAINFO:
996 next = val + NUMAINFO_EVENTS_TARGET;
997 break;
998 default:
999 break;
1000 }
1001 __this_cpu_write(memcg->stat->targets[target], next);
1002 return true;
7a159cc9 1003 }
f53d7ce3 1004 return false;
d2265e6f
KH
1005}
1006
1007/*
1008 * Check events in order.
1009 *
1010 */
c0ff4b85 1011static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
1012{
1013 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1014 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1016 bool do_softlimit;
82b3f2a7 1017 bool do_numainfo __maybe_unused;
f53d7ce3 1018
bb4cc1a8
AM
1019 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1020 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1021#if MAX_NUMNODES > 1
1022 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1023 MEM_CGROUP_TARGET_NUMAINFO);
1024#endif
c0ff4b85 1025 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1026 if (unlikely(do_softlimit))
1027 mem_cgroup_update_tree(memcg, page);
453a9bf3 1028#if MAX_NUMNODES > 1
f53d7ce3 1029 if (unlikely(do_numainfo))
c0ff4b85 1030 atomic_inc(&memcg->numainfo_events);
453a9bf3 1031#endif
0a31bc97 1032 }
d2265e6f
KH
1033}
1034
cf475ad2 1035struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1036{
31a78f23
BS
1037 /*
1038 * mm_update_next_owner() may clear mm->owner to NULL
1039 * if it races with swapoff, page migration, etc.
1040 * So this can be called with p == NULL.
1041 */
1042 if (unlikely(!p))
1043 return NULL;
1044
073219e9 1045 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1046}
1047
df381975 1048static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1049{
c0ff4b85 1050 struct mem_cgroup *memcg = NULL;
0b7f569e 1051
54595fe2
KH
1052 rcu_read_lock();
1053 do {
6f6acb00
MH
1054 /*
1055 * Page cache insertions can happen withou an
1056 * actual mm context, e.g. during disk probing
1057 * on boot, loopback IO, acct() writes etc.
1058 */
1059 if (unlikely(!mm))
df381975 1060 memcg = root_mem_cgroup;
6f6acb00
MH
1061 else {
1062 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 if (unlikely(!memcg))
1064 memcg = root_mem_cgroup;
1065 }
ec903c0c 1066 } while (!css_tryget_online(&memcg->css));
54595fe2 1067 rcu_read_unlock();
c0ff4b85 1068 return memcg;
54595fe2
KH
1069}
1070
16248d8f
MH
1071/*
1072 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1073 * ref. count) or NULL if the whole root's subtree has been visited.
1074 *
1075 * helper function to be used by mem_cgroup_iter
1076 */
1077static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1078 struct mem_cgroup *last_visited)
16248d8f 1079{
492eb21b 1080 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1081
bd8815a6 1082 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1083skip_node:
492eb21b 1084 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1085
1086 /*
1087 * Even if we found a group we have to make sure it is
1088 * alive. css && !memcg means that the groups should be
1089 * skipped and we should continue the tree walk.
1090 * last_visited css is safe to use because it is
1091 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1092 *
1093 * We do not take a reference on the root of the tree walk
1094 * because we might race with the root removal when it would
1095 * be the only node in the iterated hierarchy and mem_cgroup_iter
1096 * would end up in an endless loop because it expects that at
1097 * least one valid node will be returned. Root cannot disappear
1098 * because caller of the iterator should hold it already so
1099 * skipping css reference should be safe.
16248d8f 1100 */
492eb21b 1101 if (next_css) {
ce48225f 1102 if ((next_css == &root->css) ||
ec903c0c
TH
1103 ((next_css->flags & CSS_ONLINE) &&
1104 css_tryget_online(next_css)))
d8ad3055 1105 return mem_cgroup_from_css(next_css);
0eef6156
MH
1106
1107 prev_css = next_css;
1108 goto skip_node;
16248d8f
MH
1109 }
1110
1111 return NULL;
1112}
1113
519ebea3
JW
1114static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1115{
1116 /*
1117 * When a group in the hierarchy below root is destroyed, the
1118 * hierarchy iterator can no longer be trusted since it might
1119 * have pointed to the destroyed group. Invalidate it.
1120 */
1121 atomic_inc(&root->dead_count);
1122}
1123
1124static struct mem_cgroup *
1125mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1126 struct mem_cgroup *root,
1127 int *sequence)
1128{
1129 struct mem_cgroup *position = NULL;
1130 /*
1131 * A cgroup destruction happens in two stages: offlining and
1132 * release. They are separated by a RCU grace period.
1133 *
1134 * If the iterator is valid, we may still race with an
1135 * offlining. The RCU lock ensures the object won't be
1136 * released, tryget will fail if we lost the race.
1137 */
1138 *sequence = atomic_read(&root->dead_count);
1139 if (iter->last_dead_count == *sequence) {
1140 smp_rmb();
1141 position = iter->last_visited;
ecc736fc
MH
1142
1143 /*
1144 * We cannot take a reference to root because we might race
1145 * with root removal and returning NULL would end up in
1146 * an endless loop on the iterator user level when root
1147 * would be returned all the time.
1148 */
1149 if (position && position != root &&
ec903c0c 1150 !css_tryget_online(&position->css))
519ebea3
JW
1151 position = NULL;
1152 }
1153 return position;
1154}
1155
1156static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1157 struct mem_cgroup *last_visited,
1158 struct mem_cgroup *new_position,
ecc736fc 1159 struct mem_cgroup *root,
519ebea3
JW
1160 int sequence)
1161{
ecc736fc
MH
1162 /* root reference counting symmetric to mem_cgroup_iter_load */
1163 if (last_visited && last_visited != root)
519ebea3
JW
1164 css_put(&last_visited->css);
1165 /*
1166 * We store the sequence count from the time @last_visited was
1167 * loaded successfully instead of rereading it here so that we
1168 * don't lose destruction events in between. We could have
1169 * raced with the destruction of @new_position after all.
1170 */
1171 iter->last_visited = new_position;
1172 smp_wmb();
1173 iter->last_dead_count = sequence;
1174}
1175
5660048c
JW
1176/**
1177 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1178 * @root: hierarchy root
1179 * @prev: previously returned memcg, NULL on first invocation
1180 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1181 *
1182 * Returns references to children of the hierarchy below @root, or
1183 * @root itself, or %NULL after a full round-trip.
1184 *
1185 * Caller must pass the return value in @prev on subsequent
1186 * invocations for reference counting, or use mem_cgroup_iter_break()
1187 * to cancel a hierarchy walk before the round-trip is complete.
1188 *
1189 * Reclaimers can specify a zone and a priority level in @reclaim to
1190 * divide up the memcgs in the hierarchy among all concurrent
1191 * reclaimers operating on the same zone and priority.
1192 */
694fbc0f 1193struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1194 struct mem_cgroup *prev,
694fbc0f 1195 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1196{
9f3a0d09 1197 struct mem_cgroup *memcg = NULL;
542f85f9 1198 struct mem_cgroup *last_visited = NULL;
711d3d2c 1199
694fbc0f
AM
1200 if (mem_cgroup_disabled())
1201 return NULL;
5660048c 1202
9f3a0d09
JW
1203 if (!root)
1204 root = root_mem_cgroup;
7d74b06f 1205
9f3a0d09 1206 if (prev && !reclaim)
542f85f9 1207 last_visited = prev;
14067bb3 1208
9f3a0d09
JW
1209 if (!root->use_hierarchy && root != root_mem_cgroup) {
1210 if (prev)
c40046f3 1211 goto out_css_put;
694fbc0f 1212 return root;
9f3a0d09 1213 }
14067bb3 1214
542f85f9 1215 rcu_read_lock();
9f3a0d09 1216 while (!memcg) {
527a5ec9 1217 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1218 int uninitialized_var(seq);
711d3d2c 1219
527a5ec9 1220 if (reclaim) {
527a5ec9
JW
1221 struct mem_cgroup_per_zone *mz;
1222
e231875b 1223 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
527a5ec9 1224 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1225 if (prev && reclaim->generation != iter->generation) {
5f578161 1226 iter->last_visited = NULL;
542f85f9
MH
1227 goto out_unlock;
1228 }
5f578161 1229
519ebea3 1230 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1231 }
7d74b06f 1232
694fbc0f 1233 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1234
527a5ec9 1235 if (reclaim) {
ecc736fc
MH
1236 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1237 seq);
542f85f9 1238
19f39402 1239 if (!memcg)
527a5ec9
JW
1240 iter->generation++;
1241 else if (!prev && memcg)
1242 reclaim->generation = iter->generation;
1243 }
9f3a0d09 1244
694fbc0f 1245 if (prev && !memcg)
542f85f9 1246 goto out_unlock;
9f3a0d09 1247 }
542f85f9
MH
1248out_unlock:
1249 rcu_read_unlock();
c40046f3
MH
1250out_css_put:
1251 if (prev && prev != root)
1252 css_put(&prev->css);
1253
9f3a0d09 1254 return memcg;
14067bb3 1255}
7d74b06f 1256
5660048c
JW
1257/**
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261 */
1262void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 struct mem_cgroup *prev)
9f3a0d09
JW
1264{
1265 if (!root)
1266 root = root_mem_cgroup;
1267 if (prev && prev != root)
1268 css_put(&prev->css);
1269}
7d74b06f 1270
9f3a0d09
JW
1271/*
1272 * Iteration constructs for visiting all cgroups (under a tree). If
1273 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274 * be used for reference counting.
1275 */
1276#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1277 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1278 iter != NULL; \
527a5ec9 1279 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1280
9f3a0d09 1281#define for_each_mem_cgroup(iter) \
527a5ec9 1282 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1283 iter != NULL; \
527a5ec9 1284 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1285
68ae564b 1286void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1287{
c0ff4b85 1288 struct mem_cgroup *memcg;
456f998e 1289
456f998e 1290 rcu_read_lock();
c0ff4b85
R
1291 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1292 if (unlikely(!memcg))
456f998e
YH
1293 goto out;
1294
1295 switch (idx) {
456f998e 1296 case PGFAULT:
0e574a93
JW
1297 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1298 break;
1299 case PGMAJFAULT:
1300 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1301 break;
1302 default:
1303 BUG();
1304 }
1305out:
1306 rcu_read_unlock();
1307}
68ae564b 1308EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1309
925b7673
JW
1310/**
1311 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312 * @zone: zone of the wanted lruvec
fa9add64 1313 * @memcg: memcg of the wanted lruvec
925b7673
JW
1314 *
1315 * Returns the lru list vector holding pages for the given @zone and
1316 * @mem. This can be the global zone lruvec, if the memory controller
1317 * is disabled.
1318 */
1319struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1320 struct mem_cgroup *memcg)
1321{
1322 struct mem_cgroup_per_zone *mz;
bea8c150 1323 struct lruvec *lruvec;
925b7673 1324
bea8c150
HD
1325 if (mem_cgroup_disabled()) {
1326 lruvec = &zone->lruvec;
1327 goto out;
1328 }
925b7673 1329
e231875b 1330 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1331 lruvec = &mz->lruvec;
1332out:
1333 /*
1334 * Since a node can be onlined after the mem_cgroup was created,
1335 * we have to be prepared to initialize lruvec->zone here;
1336 * and if offlined then reonlined, we need to reinitialize it.
1337 */
1338 if (unlikely(lruvec->zone != zone))
1339 lruvec->zone = zone;
1340 return lruvec;
925b7673
JW
1341}
1342
925b7673 1343/**
fa9add64 1344 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1345 * @page: the page
fa9add64 1346 * @zone: zone of the page
925b7673 1347 */
fa9add64 1348struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1349{
08e552c6 1350 struct mem_cgroup_per_zone *mz;
925b7673
JW
1351 struct mem_cgroup *memcg;
1352 struct page_cgroup *pc;
bea8c150 1353 struct lruvec *lruvec;
6d12e2d8 1354
bea8c150
HD
1355 if (mem_cgroup_disabled()) {
1356 lruvec = &zone->lruvec;
1357 goto out;
1358 }
925b7673 1359
08e552c6 1360 pc = lookup_page_cgroup(page);
38c5d72f 1361 memcg = pc->mem_cgroup;
7512102c
HD
1362
1363 /*
fa9add64 1364 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1365 * an uncharged page off lru does nothing to secure
1366 * its former mem_cgroup from sudden removal.
1367 *
1368 * Our caller holds lru_lock, and PageCgroupUsed is updated
1369 * under page_cgroup lock: between them, they make all uses
1370 * of pc->mem_cgroup safe.
1371 */
fa9add64 1372 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1373 pc->mem_cgroup = memcg = root_mem_cgroup;
1374
e231875b 1375 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1376 lruvec = &mz->lruvec;
1377out:
1378 /*
1379 * Since a node can be onlined after the mem_cgroup was created,
1380 * we have to be prepared to initialize lruvec->zone here;
1381 * and if offlined then reonlined, we need to reinitialize it.
1382 */
1383 if (unlikely(lruvec->zone != zone))
1384 lruvec->zone = zone;
1385 return lruvec;
08e552c6 1386}
b69408e8 1387
925b7673 1388/**
fa9add64
HD
1389 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1390 * @lruvec: mem_cgroup per zone lru vector
1391 * @lru: index of lru list the page is sitting on
1392 * @nr_pages: positive when adding or negative when removing
925b7673 1393 *
fa9add64
HD
1394 * This function must be called when a page is added to or removed from an
1395 * lru list.
3f58a829 1396 */
fa9add64
HD
1397void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1398 int nr_pages)
3f58a829
MK
1399{
1400 struct mem_cgroup_per_zone *mz;
fa9add64 1401 unsigned long *lru_size;
3f58a829
MK
1402
1403 if (mem_cgroup_disabled())
1404 return;
1405
fa9add64
HD
1406 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1407 lru_size = mz->lru_size + lru;
1408 *lru_size += nr_pages;
1409 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1410}
544122e5 1411
3e92041d 1412/*
c0ff4b85 1413 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1414 * hierarchy subtree
1415 */
c3ac9a8a
JW
1416bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1417 struct mem_cgroup *memcg)
3e92041d 1418{
91c63734
JW
1419 if (root_memcg == memcg)
1420 return true;
3a981f48 1421 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1422 return false;
b47f77b5 1423 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1424}
1425
1426static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1427 struct mem_cgroup *memcg)
1428{
1429 bool ret;
1430
91c63734 1431 rcu_read_lock();
c3ac9a8a 1432 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1433 rcu_read_unlock();
1434 return ret;
3e92041d
MH
1435}
1436
ffbdccf5
DR
1437bool task_in_mem_cgroup(struct task_struct *task,
1438 const struct mem_cgroup *memcg)
4c4a2214 1439{
0b7f569e 1440 struct mem_cgroup *curr = NULL;
158e0a2d 1441 struct task_struct *p;
ffbdccf5 1442 bool ret;
4c4a2214 1443
158e0a2d 1444 p = find_lock_task_mm(task);
de077d22 1445 if (p) {
df381975 1446 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1447 task_unlock(p);
1448 } else {
1449 /*
1450 * All threads may have already detached their mm's, but the oom
1451 * killer still needs to detect if they have already been oom
1452 * killed to prevent needlessly killing additional tasks.
1453 */
ffbdccf5 1454 rcu_read_lock();
de077d22
DR
1455 curr = mem_cgroup_from_task(task);
1456 if (curr)
1457 css_get(&curr->css);
ffbdccf5 1458 rcu_read_unlock();
de077d22 1459 }
d31f56db 1460 /*
c0ff4b85 1461 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1462 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1463 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1464 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1465 */
c0ff4b85 1466 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1467 css_put(&curr->css);
4c4a2214
DR
1468 return ret;
1469}
1470
c56d5c7d 1471int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1472{
9b272977 1473 unsigned long inactive_ratio;
14797e23 1474 unsigned long inactive;
9b272977 1475 unsigned long active;
c772be93 1476 unsigned long gb;
14797e23 1477
4d7dcca2
HD
1478 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1479 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1480
c772be93
KM
1481 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1482 if (gb)
1483 inactive_ratio = int_sqrt(10 * gb);
1484 else
1485 inactive_ratio = 1;
1486
9b272977 1487 return inactive * inactive_ratio < active;
14797e23
KM
1488}
1489
6d61ef40
BS
1490#define mem_cgroup_from_res_counter(counter, member) \
1491 container_of(counter, struct mem_cgroup, member)
1492
19942822 1493/**
9d11ea9f 1494 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1495 * @memcg: the memory cgroup
19942822 1496 *
9d11ea9f 1497 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1498 * pages.
19942822 1499 */
c0ff4b85 1500static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1501{
9d11ea9f
JW
1502 unsigned long long margin;
1503
c0ff4b85 1504 margin = res_counter_margin(&memcg->res);
9d11ea9f 1505 if (do_swap_account)
c0ff4b85 1506 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1507 return margin >> PAGE_SHIFT;
19942822
JW
1508}
1509
1f4c025b 1510int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1511{
a7885eb8 1512 /* root ? */
14208b0e 1513 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1514 return vm_swappiness;
1515
bf1ff263 1516 return memcg->swappiness;
a7885eb8
KM
1517}
1518
619d094b
KH
1519/*
1520 * memcg->moving_account is used for checking possibility that some thread is
1521 * calling move_account(). When a thread on CPU-A starts moving pages under
1522 * a memcg, other threads should check memcg->moving_account under
1523 * rcu_read_lock(), like this:
1524 *
1525 * CPU-A CPU-B
1526 * rcu_read_lock()
1527 * memcg->moving_account+1 if (memcg->mocing_account)
1528 * take heavy locks.
1529 * synchronize_rcu() update something.
1530 * rcu_read_unlock()
1531 * start move here.
1532 */
4331f7d3
KH
1533
1534/* for quick checking without looking up memcg */
1535atomic_t memcg_moving __read_mostly;
1536
c0ff4b85 1537static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1538{
4331f7d3 1539 atomic_inc(&memcg_moving);
619d094b 1540 atomic_inc(&memcg->moving_account);
32047e2a
KH
1541 synchronize_rcu();
1542}
1543
c0ff4b85 1544static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1545{
619d094b
KH
1546 /*
1547 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1548 * We check NULL in callee rather than caller.
1549 */
4331f7d3
KH
1550 if (memcg) {
1551 atomic_dec(&memcg_moving);
619d094b 1552 atomic_dec(&memcg->moving_account);
4331f7d3 1553 }
32047e2a 1554}
619d094b 1555
32047e2a 1556/*
bdcbb659 1557 * A routine for checking "mem" is under move_account() or not.
32047e2a 1558 *
bdcbb659
QH
1559 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1560 * moving cgroups. This is for waiting at high-memory pressure
1561 * caused by "move".
32047e2a 1562 */
c0ff4b85 1563static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1564{
2bd9bb20
KH
1565 struct mem_cgroup *from;
1566 struct mem_cgroup *to;
4b534334 1567 bool ret = false;
2bd9bb20
KH
1568 /*
1569 * Unlike task_move routines, we access mc.to, mc.from not under
1570 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1571 */
1572 spin_lock(&mc.lock);
1573 from = mc.from;
1574 to = mc.to;
1575 if (!from)
1576 goto unlock;
3e92041d 1577
c0ff4b85
R
1578 ret = mem_cgroup_same_or_subtree(memcg, from)
1579 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1580unlock:
1581 spin_unlock(&mc.lock);
4b534334
KH
1582 return ret;
1583}
1584
c0ff4b85 1585static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1586{
1587 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1588 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1589 DEFINE_WAIT(wait);
1590 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1591 /* moving charge context might have finished. */
1592 if (mc.moving_task)
1593 schedule();
1594 finish_wait(&mc.waitq, &wait);
1595 return true;
1596 }
1597 }
1598 return false;
1599}
1600
312734c0
KH
1601/*
1602 * Take this lock when
1603 * - a code tries to modify page's memcg while it's USED.
1604 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1605 */
1606static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1607 unsigned long *flags)
1608{
1609 spin_lock_irqsave(&memcg->move_lock, *flags);
1610}
1611
1612static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1613 unsigned long *flags)
1614{
1615 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1616}
1617
58cf188e 1618#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1619/**
58cf188e 1620 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1621 * @memcg: The memory cgroup that went over limit
1622 * @p: Task that is going to be killed
1623 *
1624 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1625 * enabled
1626 */
1627void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1628{
e61734c5 1629 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1630 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1631 struct mem_cgroup *iter;
1632 unsigned int i;
e222432b 1633
58cf188e 1634 if (!p)
e222432b
BS
1635 return;
1636
08088cb9 1637 mutex_lock(&oom_info_lock);
e222432b
BS
1638 rcu_read_lock();
1639
e61734c5
TH
1640 pr_info("Task in ");
1641 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1642 pr_info(" killed as a result of limit of ");
1643 pr_cont_cgroup_path(memcg->css.cgroup);
1644 pr_info("\n");
e222432b 1645
e222432b
BS
1646 rcu_read_unlock();
1647
d045197f 1648 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1649 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1650 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1651 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1652 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1653 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1654 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1655 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1656 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1657 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1658 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1659 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1660
1661 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1662 pr_info("Memory cgroup stats for ");
1663 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1664 pr_cont(":");
1665
1666 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1667 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1668 continue;
1669 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1670 K(mem_cgroup_read_stat(iter, i)));
1671 }
1672
1673 for (i = 0; i < NR_LRU_LISTS; i++)
1674 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1675 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1676
1677 pr_cont("\n");
1678 }
08088cb9 1679 mutex_unlock(&oom_info_lock);
e222432b
BS
1680}
1681
81d39c20
KH
1682/*
1683 * This function returns the number of memcg under hierarchy tree. Returns
1684 * 1(self count) if no children.
1685 */
c0ff4b85 1686static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1687{
1688 int num = 0;
7d74b06f
KH
1689 struct mem_cgroup *iter;
1690
c0ff4b85 1691 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1692 num++;
81d39c20
KH
1693 return num;
1694}
1695
a63d83f4
DR
1696/*
1697 * Return the memory (and swap, if configured) limit for a memcg.
1698 */
9cbb78bb 1699static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1700{
1701 u64 limit;
a63d83f4 1702
f3e8eb70 1703 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1704
a63d83f4 1705 /*
9a5a8f19 1706 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1707 */
9a5a8f19
MH
1708 if (mem_cgroup_swappiness(memcg)) {
1709 u64 memsw;
1710
1711 limit += total_swap_pages << PAGE_SHIFT;
1712 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1713
1714 /*
1715 * If memsw is finite and limits the amount of swap space
1716 * available to this memcg, return that limit.
1717 */
1718 limit = min(limit, memsw);
1719 }
1720
1721 return limit;
a63d83f4
DR
1722}
1723
19965460
DR
1724static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1725 int order)
9cbb78bb
DR
1726{
1727 struct mem_cgroup *iter;
1728 unsigned long chosen_points = 0;
1729 unsigned long totalpages;
1730 unsigned int points = 0;
1731 struct task_struct *chosen = NULL;
1732
876aafbf 1733 /*
465adcf1
DR
1734 * If current has a pending SIGKILL or is exiting, then automatically
1735 * select it. The goal is to allow it to allocate so that it may
1736 * quickly exit and free its memory.
876aafbf 1737 */
465adcf1 1738 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1739 set_thread_flag(TIF_MEMDIE);
1740 return;
1741 }
1742
1743 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1744 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1745 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1746 struct css_task_iter it;
9cbb78bb
DR
1747 struct task_struct *task;
1748
72ec7029
TH
1749 css_task_iter_start(&iter->css, &it);
1750 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1751 switch (oom_scan_process_thread(task, totalpages, NULL,
1752 false)) {
1753 case OOM_SCAN_SELECT:
1754 if (chosen)
1755 put_task_struct(chosen);
1756 chosen = task;
1757 chosen_points = ULONG_MAX;
1758 get_task_struct(chosen);
1759 /* fall through */
1760 case OOM_SCAN_CONTINUE:
1761 continue;
1762 case OOM_SCAN_ABORT:
72ec7029 1763 css_task_iter_end(&it);
9cbb78bb
DR
1764 mem_cgroup_iter_break(memcg, iter);
1765 if (chosen)
1766 put_task_struct(chosen);
1767 return;
1768 case OOM_SCAN_OK:
1769 break;
1770 };
1771 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1772 if (!points || points < chosen_points)
1773 continue;
1774 /* Prefer thread group leaders for display purposes */
1775 if (points == chosen_points &&
1776 thread_group_leader(chosen))
1777 continue;
1778
1779 if (chosen)
1780 put_task_struct(chosen);
1781 chosen = task;
1782 chosen_points = points;
1783 get_task_struct(chosen);
9cbb78bb 1784 }
72ec7029 1785 css_task_iter_end(&it);
9cbb78bb
DR
1786 }
1787
1788 if (!chosen)
1789 return;
1790 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1791 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1792 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1793}
1794
5660048c
JW
1795static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1796 gfp_t gfp_mask,
1797 unsigned long flags)
1798{
1799 unsigned long total = 0;
1800 bool noswap = false;
1801 int loop;
1802
1803 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1804 noswap = true;
1805 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1806 noswap = true;
1807
1808 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1809 if (loop)
1810 drain_all_stock_async(memcg);
1811 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1812 /*
1813 * Allow limit shrinkers, which are triggered directly
1814 * by userspace, to catch signals and stop reclaim
1815 * after minimal progress, regardless of the margin.
1816 */
1817 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1818 break;
1819 if (mem_cgroup_margin(memcg))
1820 break;
1821 /*
1822 * If nothing was reclaimed after two attempts, there
1823 * may be no reclaimable pages in this hierarchy.
1824 */
1825 if (loop && !total)
1826 break;
1827 }
1828 return total;
1829}
1830
4d0c066d
KH
1831/**
1832 * test_mem_cgroup_node_reclaimable
dad7557e 1833 * @memcg: the target memcg
4d0c066d
KH
1834 * @nid: the node ID to be checked.
1835 * @noswap : specify true here if the user wants flle only information.
1836 *
1837 * This function returns whether the specified memcg contains any
1838 * reclaimable pages on a node. Returns true if there are any reclaimable
1839 * pages in the node.
1840 */
c0ff4b85 1841static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1842 int nid, bool noswap)
1843{
c0ff4b85 1844 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1845 return true;
1846 if (noswap || !total_swap_pages)
1847 return false;
c0ff4b85 1848 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1849 return true;
1850 return false;
1851
1852}
bb4cc1a8 1853#if MAX_NUMNODES > 1
889976db
YH
1854
1855/*
1856 * Always updating the nodemask is not very good - even if we have an empty
1857 * list or the wrong list here, we can start from some node and traverse all
1858 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1859 *
1860 */
c0ff4b85 1861static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1862{
1863 int nid;
453a9bf3
KH
1864 /*
1865 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1866 * pagein/pageout changes since the last update.
1867 */
c0ff4b85 1868 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1869 return;
c0ff4b85 1870 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1871 return;
1872
889976db 1873 /* make a nodemask where this memcg uses memory from */
31aaea4a 1874 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1875
31aaea4a 1876 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1877
c0ff4b85
R
1878 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1879 node_clear(nid, memcg->scan_nodes);
889976db 1880 }
453a9bf3 1881
c0ff4b85
R
1882 atomic_set(&memcg->numainfo_events, 0);
1883 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1884}
1885
1886/*
1887 * Selecting a node where we start reclaim from. Because what we need is just
1888 * reducing usage counter, start from anywhere is O,K. Considering
1889 * memory reclaim from current node, there are pros. and cons.
1890 *
1891 * Freeing memory from current node means freeing memory from a node which
1892 * we'll use or we've used. So, it may make LRU bad. And if several threads
1893 * hit limits, it will see a contention on a node. But freeing from remote
1894 * node means more costs for memory reclaim because of memory latency.
1895 *
1896 * Now, we use round-robin. Better algorithm is welcomed.
1897 */
c0ff4b85 1898int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1899{
1900 int node;
1901
c0ff4b85
R
1902 mem_cgroup_may_update_nodemask(memcg);
1903 node = memcg->last_scanned_node;
889976db 1904
c0ff4b85 1905 node = next_node(node, memcg->scan_nodes);
889976db 1906 if (node == MAX_NUMNODES)
c0ff4b85 1907 node = first_node(memcg->scan_nodes);
889976db
YH
1908 /*
1909 * We call this when we hit limit, not when pages are added to LRU.
1910 * No LRU may hold pages because all pages are UNEVICTABLE or
1911 * memcg is too small and all pages are not on LRU. In that case,
1912 * we use curret node.
1913 */
1914 if (unlikely(node == MAX_NUMNODES))
1915 node = numa_node_id();
1916
c0ff4b85 1917 memcg->last_scanned_node = node;
889976db
YH
1918 return node;
1919}
1920
bb4cc1a8
AM
1921/*
1922 * Check all nodes whether it contains reclaimable pages or not.
1923 * For quick scan, we make use of scan_nodes. This will allow us to skip
1924 * unused nodes. But scan_nodes is lazily updated and may not cotain
1925 * enough new information. We need to do double check.
1926 */
1927static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1928{
1929 int nid;
1930
1931 /*
1932 * quick check...making use of scan_node.
1933 * We can skip unused nodes.
1934 */
1935 if (!nodes_empty(memcg->scan_nodes)) {
1936 for (nid = first_node(memcg->scan_nodes);
1937 nid < MAX_NUMNODES;
1938 nid = next_node(nid, memcg->scan_nodes)) {
1939
1940 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1941 return true;
1942 }
1943 }
1944 /*
1945 * Check rest of nodes.
1946 */
1947 for_each_node_state(nid, N_MEMORY) {
1948 if (node_isset(nid, memcg->scan_nodes))
1949 continue;
1950 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1951 return true;
1952 }
1953 return false;
1954}
1955
889976db 1956#else
c0ff4b85 1957int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1958{
1959 return 0;
1960}
4d0c066d 1961
bb4cc1a8
AM
1962static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1963{
1964 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1965}
889976db
YH
1966#endif
1967
0608f43d
AM
1968static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1969 struct zone *zone,
1970 gfp_t gfp_mask,
1971 unsigned long *total_scanned)
1972{
1973 struct mem_cgroup *victim = NULL;
1974 int total = 0;
1975 int loop = 0;
1976 unsigned long excess;
1977 unsigned long nr_scanned;
1978 struct mem_cgroup_reclaim_cookie reclaim = {
1979 .zone = zone,
1980 .priority = 0,
1981 };
1982
1983 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1984
1985 while (1) {
1986 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1987 if (!victim) {
1988 loop++;
1989 if (loop >= 2) {
1990 /*
1991 * If we have not been able to reclaim
1992 * anything, it might because there are
1993 * no reclaimable pages under this hierarchy
1994 */
1995 if (!total)
1996 break;
1997 /*
1998 * We want to do more targeted reclaim.
1999 * excess >> 2 is not to excessive so as to
2000 * reclaim too much, nor too less that we keep
2001 * coming back to reclaim from this cgroup
2002 */
2003 if (total >= (excess >> 2) ||
2004 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2005 break;
2006 }
2007 continue;
2008 }
2009 if (!mem_cgroup_reclaimable(victim, false))
2010 continue;
2011 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2012 zone, &nr_scanned);
2013 *total_scanned += nr_scanned;
2014 if (!res_counter_soft_limit_excess(&root_memcg->res))
2015 break;
6d61ef40 2016 }
0608f43d
AM
2017 mem_cgroup_iter_break(root_memcg, victim);
2018 return total;
6d61ef40
BS
2019}
2020
0056f4e6
JW
2021#ifdef CONFIG_LOCKDEP
2022static struct lockdep_map memcg_oom_lock_dep_map = {
2023 .name = "memcg_oom_lock",
2024};
2025#endif
2026
fb2a6fc5
JW
2027static DEFINE_SPINLOCK(memcg_oom_lock);
2028
867578cb
KH
2029/*
2030 * Check OOM-Killer is already running under our hierarchy.
2031 * If someone is running, return false.
2032 */
fb2a6fc5 2033static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2034{
79dfdacc 2035 struct mem_cgroup *iter, *failed = NULL;
a636b327 2036
fb2a6fc5
JW
2037 spin_lock(&memcg_oom_lock);
2038
9f3a0d09 2039 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2040 if (iter->oom_lock) {
79dfdacc
MH
2041 /*
2042 * this subtree of our hierarchy is already locked
2043 * so we cannot give a lock.
2044 */
79dfdacc 2045 failed = iter;
9f3a0d09
JW
2046 mem_cgroup_iter_break(memcg, iter);
2047 break;
23751be0
JW
2048 } else
2049 iter->oom_lock = true;
7d74b06f 2050 }
867578cb 2051
fb2a6fc5
JW
2052 if (failed) {
2053 /*
2054 * OK, we failed to lock the whole subtree so we have
2055 * to clean up what we set up to the failing subtree
2056 */
2057 for_each_mem_cgroup_tree(iter, memcg) {
2058 if (iter == failed) {
2059 mem_cgroup_iter_break(memcg, iter);
2060 break;
2061 }
2062 iter->oom_lock = false;
79dfdacc 2063 }
0056f4e6
JW
2064 } else
2065 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2066
2067 spin_unlock(&memcg_oom_lock);
2068
2069 return !failed;
a636b327 2070}
0b7f569e 2071
fb2a6fc5 2072static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2073{
7d74b06f
KH
2074 struct mem_cgroup *iter;
2075
fb2a6fc5 2076 spin_lock(&memcg_oom_lock);
0056f4e6 2077 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2078 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2079 iter->oom_lock = false;
fb2a6fc5 2080 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2081}
2082
c0ff4b85 2083static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2084{
2085 struct mem_cgroup *iter;
2086
c0ff4b85 2087 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2088 atomic_inc(&iter->under_oom);
2089}
2090
c0ff4b85 2091static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2092{
2093 struct mem_cgroup *iter;
2094
867578cb
KH
2095 /*
2096 * When a new child is created while the hierarchy is under oom,
2097 * mem_cgroup_oom_lock() may not be called. We have to use
2098 * atomic_add_unless() here.
2099 */
c0ff4b85 2100 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2101 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2102}
2103
867578cb
KH
2104static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2105
dc98df5a 2106struct oom_wait_info {
d79154bb 2107 struct mem_cgroup *memcg;
dc98df5a
KH
2108 wait_queue_t wait;
2109};
2110
2111static int memcg_oom_wake_function(wait_queue_t *wait,
2112 unsigned mode, int sync, void *arg)
2113{
d79154bb
HD
2114 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2115 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2116 struct oom_wait_info *oom_wait_info;
2117
2118 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2119 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2120
dc98df5a 2121 /*
d79154bb 2122 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2123 * Then we can use css_is_ancestor without taking care of RCU.
2124 */
c0ff4b85
R
2125 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2126 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2127 return 0;
dc98df5a
KH
2128 return autoremove_wake_function(wait, mode, sync, arg);
2129}
2130
c0ff4b85 2131static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2132{
3812c8c8 2133 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2134 /* for filtering, pass "memcg" as argument. */
2135 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2136}
2137
c0ff4b85 2138static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2139{
c0ff4b85
R
2140 if (memcg && atomic_read(&memcg->under_oom))
2141 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2142}
2143
3812c8c8 2144static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2145{
3812c8c8
JW
2146 if (!current->memcg_oom.may_oom)
2147 return;
867578cb 2148 /*
49426420
JW
2149 * We are in the middle of the charge context here, so we
2150 * don't want to block when potentially sitting on a callstack
2151 * that holds all kinds of filesystem and mm locks.
2152 *
2153 * Also, the caller may handle a failed allocation gracefully
2154 * (like optional page cache readahead) and so an OOM killer
2155 * invocation might not even be necessary.
2156 *
2157 * That's why we don't do anything here except remember the
2158 * OOM context and then deal with it at the end of the page
2159 * fault when the stack is unwound, the locks are released,
2160 * and when we know whether the fault was overall successful.
867578cb 2161 */
49426420
JW
2162 css_get(&memcg->css);
2163 current->memcg_oom.memcg = memcg;
2164 current->memcg_oom.gfp_mask = mask;
2165 current->memcg_oom.order = order;
3812c8c8
JW
2166}
2167
2168/**
2169 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2170 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2171 *
49426420
JW
2172 * This has to be called at the end of a page fault if the memcg OOM
2173 * handler was enabled.
3812c8c8 2174 *
49426420 2175 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2176 * sleep on a waitqueue until the userspace task resolves the
2177 * situation. Sleeping directly in the charge context with all kinds
2178 * of locks held is not a good idea, instead we remember an OOM state
2179 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2180 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2181 *
2182 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2183 * completed, %false otherwise.
3812c8c8 2184 */
49426420 2185bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2186{
49426420 2187 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2188 struct oom_wait_info owait;
49426420 2189 bool locked;
3812c8c8
JW
2190
2191 /* OOM is global, do not handle */
3812c8c8 2192 if (!memcg)
49426420 2193 return false;
3812c8c8 2194
49426420
JW
2195 if (!handle)
2196 goto cleanup;
3812c8c8
JW
2197
2198 owait.memcg = memcg;
2199 owait.wait.flags = 0;
2200 owait.wait.func = memcg_oom_wake_function;
2201 owait.wait.private = current;
2202 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2203
3812c8c8 2204 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2205 mem_cgroup_mark_under_oom(memcg);
2206
2207 locked = mem_cgroup_oom_trylock(memcg);
2208
2209 if (locked)
2210 mem_cgroup_oom_notify(memcg);
2211
2212 if (locked && !memcg->oom_kill_disable) {
2213 mem_cgroup_unmark_under_oom(memcg);
2214 finish_wait(&memcg_oom_waitq, &owait.wait);
2215 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2216 current->memcg_oom.order);
2217 } else {
3812c8c8 2218 schedule();
49426420
JW
2219 mem_cgroup_unmark_under_oom(memcg);
2220 finish_wait(&memcg_oom_waitq, &owait.wait);
2221 }
2222
2223 if (locked) {
fb2a6fc5
JW
2224 mem_cgroup_oom_unlock(memcg);
2225 /*
2226 * There is no guarantee that an OOM-lock contender
2227 * sees the wakeups triggered by the OOM kill
2228 * uncharges. Wake any sleepers explicitely.
2229 */
2230 memcg_oom_recover(memcg);
2231 }
49426420
JW
2232cleanup:
2233 current->memcg_oom.memcg = NULL;
3812c8c8 2234 css_put(&memcg->css);
867578cb 2235 return true;
0b7f569e
KH
2236}
2237
d69b042f 2238/*
b5ffc856 2239 * Used to update mapped file or writeback or other statistics.
32047e2a
KH
2240 *
2241 * Notes: Race condition
2242 *
0a31bc97
JW
2243 * Charging occurs during page instantiation, while the page is
2244 * unmapped and locked in page migration, or while the page table is
2245 * locked in THP migration. No race is possible.
32047e2a 2246 *
0a31bc97 2247 * Uncharge happens to pages with zero references, no race possible.
32047e2a 2248 *
0a31bc97
JW
2249 * Charge moving between groups is protected by checking mm->moving
2250 * account and taking the move_lock in the slowpath.
d69b042f 2251 */
26174efd 2252
89c06bd5
KH
2253void __mem_cgroup_begin_update_page_stat(struct page *page,
2254 bool *locked, unsigned long *flags)
2255{
2256 struct mem_cgroup *memcg;
2257 struct page_cgroup *pc;
2258
2259 pc = lookup_page_cgroup(page);
2260again:
2261 memcg = pc->mem_cgroup;
2262 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2263 return;
2264 /*
2265 * If this memory cgroup is not under account moving, we don't
da92c47d 2266 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2267 * rcu_read_lock(), any calls to move_account will be delayed until
bdcbb659 2268 * rcu_read_unlock().
89c06bd5 2269 */
bdcbb659
QH
2270 VM_BUG_ON(!rcu_read_lock_held());
2271 if (atomic_read(&memcg->moving_account) <= 0)
89c06bd5
KH
2272 return;
2273
2274 move_lock_mem_cgroup(memcg, flags);
2275 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2276 move_unlock_mem_cgroup(memcg, flags);
2277 goto again;
2278 }
2279 *locked = true;
2280}
2281
2282void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2283{
2284 struct page_cgroup *pc = lookup_page_cgroup(page);
2285
2286 /*
2287 * It's guaranteed that pc->mem_cgroup never changes while
2288 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2289 * should take move_lock_mem_cgroup().
89c06bd5
KH
2290 */
2291 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2292}
2293
2a7106f2 2294void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2295 enum mem_cgroup_stat_index idx, int val)
d69b042f 2296{
c0ff4b85 2297 struct mem_cgroup *memcg;
32047e2a 2298 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2299 unsigned long uninitialized_var(flags);
d69b042f 2300
cfa44946 2301 if (mem_cgroup_disabled())
d69b042f 2302 return;
89c06bd5 2303
658b72c5 2304 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2305 memcg = pc->mem_cgroup;
2306 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2307 return;
26174efd 2308
c0ff4b85 2309 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2310}
26174efd 2311
cdec2e42
KH
2312/*
2313 * size of first charge trial. "32" comes from vmscan.c's magic value.
2314 * TODO: maybe necessary to use big numbers in big irons.
2315 */
7ec99d62 2316#define CHARGE_BATCH 32U
cdec2e42
KH
2317struct memcg_stock_pcp {
2318 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2319 unsigned int nr_pages;
cdec2e42 2320 struct work_struct work;
26fe6168 2321 unsigned long flags;
a0db00fc 2322#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2323};
2324static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2325static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2326
a0956d54
SS
2327/**
2328 * consume_stock: Try to consume stocked charge on this cpu.
2329 * @memcg: memcg to consume from.
2330 * @nr_pages: how many pages to charge.
2331 *
2332 * The charges will only happen if @memcg matches the current cpu's memcg
2333 * stock, and at least @nr_pages are available in that stock. Failure to
2334 * service an allocation will refill the stock.
2335 *
2336 * returns true if successful, false otherwise.
cdec2e42 2337 */
a0956d54 2338static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2339{
2340 struct memcg_stock_pcp *stock;
2341 bool ret = true;
2342
a0956d54
SS
2343 if (nr_pages > CHARGE_BATCH)
2344 return false;
2345
cdec2e42 2346 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2347 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2348 stock->nr_pages -= nr_pages;
cdec2e42
KH
2349 else /* need to call res_counter_charge */
2350 ret = false;
2351 put_cpu_var(memcg_stock);
2352 return ret;
2353}
2354
2355/*
2356 * Returns stocks cached in percpu to res_counter and reset cached information.
2357 */
2358static void drain_stock(struct memcg_stock_pcp *stock)
2359{
2360 struct mem_cgroup *old = stock->cached;
2361
11c9ea4e
JW
2362 if (stock->nr_pages) {
2363 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2364
2365 res_counter_uncharge(&old->res, bytes);
cdec2e42 2366 if (do_swap_account)
11c9ea4e
JW
2367 res_counter_uncharge(&old->memsw, bytes);
2368 stock->nr_pages = 0;
cdec2e42
KH
2369 }
2370 stock->cached = NULL;
cdec2e42
KH
2371}
2372
2373/*
2374 * This must be called under preempt disabled or must be called by
2375 * a thread which is pinned to local cpu.
2376 */
2377static void drain_local_stock(struct work_struct *dummy)
2378{
7c8e0181 2379 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2380 drain_stock(stock);
26fe6168 2381 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2382}
2383
e4777496
MH
2384static void __init memcg_stock_init(void)
2385{
2386 int cpu;
2387
2388 for_each_possible_cpu(cpu) {
2389 struct memcg_stock_pcp *stock =
2390 &per_cpu(memcg_stock, cpu);
2391 INIT_WORK(&stock->work, drain_local_stock);
2392 }
2393}
2394
cdec2e42
KH
2395/*
2396 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2397 * This will be consumed by consume_stock() function, later.
cdec2e42 2398 */
c0ff4b85 2399static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2400{
2401 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2402
c0ff4b85 2403 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2404 drain_stock(stock);
c0ff4b85 2405 stock->cached = memcg;
cdec2e42 2406 }
11c9ea4e 2407 stock->nr_pages += nr_pages;
cdec2e42
KH
2408 put_cpu_var(memcg_stock);
2409}
2410
2411/*
c0ff4b85 2412 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2413 * of the hierarchy under it. sync flag says whether we should block
2414 * until the work is done.
cdec2e42 2415 */
c0ff4b85 2416static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2417{
26fe6168 2418 int cpu, curcpu;
d38144b7 2419
cdec2e42 2420 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2421 get_online_cpus();
5af12d0e 2422 curcpu = get_cpu();
cdec2e42
KH
2423 for_each_online_cpu(cpu) {
2424 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2425 struct mem_cgroup *memcg;
26fe6168 2426
c0ff4b85
R
2427 memcg = stock->cached;
2428 if (!memcg || !stock->nr_pages)
26fe6168 2429 continue;
c0ff4b85 2430 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2431 continue;
d1a05b69
MH
2432 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2433 if (cpu == curcpu)
2434 drain_local_stock(&stock->work);
2435 else
2436 schedule_work_on(cpu, &stock->work);
2437 }
cdec2e42 2438 }
5af12d0e 2439 put_cpu();
d38144b7
MH
2440
2441 if (!sync)
2442 goto out;
2443
2444 for_each_online_cpu(cpu) {
2445 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2446 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2447 flush_work(&stock->work);
2448 }
2449out:
f894ffa8 2450 put_online_cpus();
d38144b7
MH
2451}
2452
2453/*
2454 * Tries to drain stocked charges in other cpus. This function is asynchronous
2455 * and just put a work per cpu for draining localy on each cpu. Caller can
2456 * expects some charges will be back to res_counter later but cannot wait for
2457 * it.
2458 */
c0ff4b85 2459static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2460{
9f50fad6
MH
2461 /*
2462 * If someone calls draining, avoid adding more kworker runs.
2463 */
2464 if (!mutex_trylock(&percpu_charge_mutex))
2465 return;
c0ff4b85 2466 drain_all_stock(root_memcg, false);
9f50fad6 2467 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2468}
2469
2470/* This is a synchronous drain interface. */
c0ff4b85 2471static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2472{
2473 /* called when force_empty is called */
9f50fad6 2474 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2475 drain_all_stock(root_memcg, true);
9f50fad6 2476 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2477}
2478
711d3d2c
KH
2479/*
2480 * This function drains percpu counter value from DEAD cpu and
2481 * move it to local cpu. Note that this function can be preempted.
2482 */
c0ff4b85 2483static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2484{
2485 int i;
2486
c0ff4b85 2487 spin_lock(&memcg->pcp_counter_lock);
6104621d 2488 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2489 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2490
c0ff4b85
R
2491 per_cpu(memcg->stat->count[i], cpu) = 0;
2492 memcg->nocpu_base.count[i] += x;
711d3d2c 2493 }
e9f8974f 2494 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2495 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2496
c0ff4b85
R
2497 per_cpu(memcg->stat->events[i], cpu) = 0;
2498 memcg->nocpu_base.events[i] += x;
e9f8974f 2499 }
c0ff4b85 2500 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2501}
2502
0db0628d 2503static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2504 unsigned long action,
2505 void *hcpu)
2506{
2507 int cpu = (unsigned long)hcpu;
2508 struct memcg_stock_pcp *stock;
711d3d2c 2509 struct mem_cgroup *iter;
cdec2e42 2510
619d094b 2511 if (action == CPU_ONLINE)
1489ebad 2512 return NOTIFY_OK;
1489ebad 2513
d833049b 2514 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2515 return NOTIFY_OK;
711d3d2c 2516
9f3a0d09 2517 for_each_mem_cgroup(iter)
711d3d2c
KH
2518 mem_cgroup_drain_pcp_counter(iter, cpu);
2519
cdec2e42
KH
2520 stock = &per_cpu(memcg_stock, cpu);
2521 drain_stock(stock);
2522 return NOTIFY_OK;
2523}
2524
00501b53
JW
2525static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2526 unsigned int nr_pages)
8a9f3ccd 2527{
7ec99d62 2528 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2529 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05
JW
2530 struct mem_cgroup *mem_over_limit;
2531 struct res_counter *fail_res;
2532 unsigned long nr_reclaimed;
2533 unsigned long flags = 0;
2534 unsigned long long size;
05b84301 2535 int ret = 0;
a636b327 2536
ce00a967
JW
2537 if (mem_cgroup_is_root(memcg))
2538 goto done;
6539cc05 2539retry:
b6b6cc72
MH
2540 if (consume_stock(memcg, nr_pages))
2541 goto done;
8a9f3ccd 2542
6539cc05
JW
2543 size = batch * PAGE_SIZE;
2544 if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2545 if (!do_swap_account)
2546 goto done_restock;
2547 if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2548 goto done_restock;
2549 res_counter_uncharge(&memcg->res, size);
2550 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2551 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2552 } else
2553 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
7a81b88c 2554
6539cc05
JW
2555 if (batch > nr_pages) {
2556 batch = nr_pages;
2557 goto retry;
2558 }
6d61ef40 2559
06b078fc
JW
2560 /*
2561 * Unlike in global OOM situations, memcg is not in a physical
2562 * memory shortage. Allow dying and OOM-killed tasks to
2563 * bypass the last charges so that they can exit quickly and
2564 * free their memory.
2565 */
2566 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2567 fatal_signal_pending(current) ||
2568 current->flags & PF_EXITING))
2569 goto bypass;
2570
2571 if (unlikely(task_in_memcg_oom(current)))
2572 goto nomem;
2573
6539cc05
JW
2574 if (!(gfp_mask & __GFP_WAIT))
2575 goto nomem;
4b534334 2576
6539cc05
JW
2577 nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2578
61e02c74 2579 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2580 goto retry;
28c34c29
JW
2581
2582 if (gfp_mask & __GFP_NORETRY)
2583 goto nomem;
6539cc05
JW
2584 /*
2585 * Even though the limit is exceeded at this point, reclaim
2586 * may have been able to free some pages. Retry the charge
2587 * before killing the task.
2588 *
2589 * Only for regular pages, though: huge pages are rather
2590 * unlikely to succeed so close to the limit, and we fall back
2591 * to regular pages anyway in case of failure.
2592 */
61e02c74 2593 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2594 goto retry;
2595 /*
2596 * At task move, charge accounts can be doubly counted. So, it's
2597 * better to wait until the end of task_move if something is going on.
2598 */
2599 if (mem_cgroup_wait_acct_move(mem_over_limit))
2600 goto retry;
2601
9b130619
JW
2602 if (nr_retries--)
2603 goto retry;
2604
06b078fc
JW
2605 if (gfp_mask & __GFP_NOFAIL)
2606 goto bypass;
2607
6539cc05
JW
2608 if (fatal_signal_pending(current))
2609 goto bypass;
2610
61e02c74 2611 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2612nomem:
6d1fdc48 2613 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2614 return -ENOMEM;
867578cb 2615bypass:
ce00a967 2616 return -EINTR;
6539cc05
JW
2617
2618done_restock:
2619 if (batch > nr_pages)
2620 refill_stock(memcg, batch - nr_pages);
2621done:
05b84301 2622 return ret;
7a81b88c 2623}
8a9f3ccd 2624
00501b53 2625static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2626{
05b84301 2627 unsigned long bytes = nr_pages * PAGE_SIZE;
e7018b8d 2628
ce00a967
JW
2629 if (mem_cgroup_is_root(memcg))
2630 return;
2631
05b84301
JW
2632 res_counter_uncharge(&memcg->res, bytes);
2633 if (do_swap_account)
2634 res_counter_uncharge(&memcg->memsw, bytes);
854ffa8d
DN
2635}
2636
d01dd17f
KH
2637/*
2638 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2639 * This is useful when moving usage to parent cgroup.
2640 */
2641static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2642 unsigned int nr_pages)
2643{
2644 unsigned long bytes = nr_pages * PAGE_SIZE;
2645
ce00a967
JW
2646 if (mem_cgroup_is_root(memcg))
2647 return;
2648
d01dd17f
KH
2649 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2650 if (do_swap_account)
2651 res_counter_uncharge_until(&memcg->memsw,
2652 memcg->memsw.parent, bytes);
2653}
2654
a3b2d692
KH
2655/*
2656 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2657 * rcu_read_lock(). The caller is responsible for calling
2658 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2659 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2660 */
2661static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2662{
a3b2d692
KH
2663 /* ID 0 is unused ID */
2664 if (!id)
2665 return NULL;
34c00c31 2666 return mem_cgroup_from_id(id);
a3b2d692
KH
2667}
2668
0a31bc97
JW
2669/*
2670 * try_get_mem_cgroup_from_page - look up page's memcg association
2671 * @page: the page
2672 *
2673 * Look up, get a css reference, and return the memcg that owns @page.
2674 *
2675 * The page must be locked to prevent racing with swap-in and page
2676 * cache charges. If coming from an unlocked page table, the caller
2677 * must ensure the page is on the LRU or this can race with charging.
2678 */
e42d9d5d 2679struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2680{
c0ff4b85 2681 struct mem_cgroup *memcg = NULL;
3c776e64 2682 struct page_cgroup *pc;
a3b2d692 2683 unsigned short id;
b5a84319
KH
2684 swp_entry_t ent;
2685
309381fe 2686 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2687
3c776e64 2688 pc = lookup_page_cgroup(page);
a3b2d692 2689 if (PageCgroupUsed(pc)) {
c0ff4b85 2690 memcg = pc->mem_cgroup;
ec903c0c 2691 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2692 memcg = NULL;
e42d9d5d 2693 } else if (PageSwapCache(page)) {
3c776e64 2694 ent.val = page_private(page);
9fb4b7cc 2695 id = lookup_swap_cgroup_id(ent);
a3b2d692 2696 rcu_read_lock();
c0ff4b85 2697 memcg = mem_cgroup_lookup(id);
ec903c0c 2698 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2699 memcg = NULL;
a3b2d692 2700 rcu_read_unlock();
3c776e64 2701 }
c0ff4b85 2702 return memcg;
b5a84319
KH
2703}
2704
0a31bc97
JW
2705static void lock_page_lru(struct page *page, int *isolated)
2706{
2707 struct zone *zone = page_zone(page);
2708
2709 spin_lock_irq(&zone->lru_lock);
2710 if (PageLRU(page)) {
2711 struct lruvec *lruvec;
2712
2713 lruvec = mem_cgroup_page_lruvec(page, zone);
2714 ClearPageLRU(page);
2715 del_page_from_lru_list(page, lruvec, page_lru(page));
2716 *isolated = 1;
2717 } else
2718 *isolated = 0;
2719}
2720
2721static void unlock_page_lru(struct page *page, int isolated)
2722{
2723 struct zone *zone = page_zone(page);
2724
2725 if (isolated) {
2726 struct lruvec *lruvec;
2727
2728 lruvec = mem_cgroup_page_lruvec(page, zone);
2729 VM_BUG_ON_PAGE(PageLRU(page), page);
2730 SetPageLRU(page);
2731 add_page_to_lru_list(page, lruvec, page_lru(page));
2732 }
2733 spin_unlock_irq(&zone->lru_lock);
2734}
2735
00501b53 2736static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2737 bool lrucare)
7a81b88c 2738{
ce587e65 2739 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2740 int isolated;
9ce70c02 2741
309381fe 2742 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2743 /*
2744 * we don't need page_cgroup_lock about tail pages, becase they are not
2745 * accessed by any other context at this point.
2746 */
9ce70c02
HD
2747
2748 /*
2749 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2750 * may already be on some other mem_cgroup's LRU. Take care of it.
2751 */
0a31bc97
JW
2752 if (lrucare)
2753 lock_page_lru(page, &isolated);
9ce70c02 2754
0a31bc97
JW
2755 /*
2756 * Nobody should be changing or seriously looking at
2757 * pc->mem_cgroup and pc->flags at this point:
2758 *
2759 * - the page is uncharged
2760 *
2761 * - the page is off-LRU
2762 *
2763 * - an anonymous fault has exclusive page access, except for
2764 * a locked page table
2765 *
2766 * - a page cache insertion, a swapin fault, or a migration
2767 * have the page locked
2768 */
c0ff4b85 2769 pc->mem_cgroup = memcg;
0a31bc97 2770 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
9ce70c02 2771
0a31bc97
JW
2772 if (lrucare)
2773 unlock_page_lru(page, isolated);
7a81b88c 2774}
66e1707b 2775
7cf27982
GC
2776static DEFINE_MUTEX(set_limit_mutex);
2777
7ae1e1d0 2778#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2779/*
2780 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2781 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2782 */
2783static DEFINE_MUTEX(memcg_slab_mutex);
2784
d6441637
VD
2785static DEFINE_MUTEX(activate_kmem_mutex);
2786
7ae1e1d0
GC
2787static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2788{
2789 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2790 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2791}
2792
1f458cbf
GC
2793/*
2794 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2795 * in the memcg_cache_params struct.
2796 */
2797static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2798{
2799 struct kmem_cache *cachep;
2800
2801 VM_BUG_ON(p->is_root_cache);
2802 cachep = p->root_cache;
7a67d7ab 2803 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2804}
2805
749c5415 2806#ifdef CONFIG_SLABINFO
2da8ca82 2807static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2808{
2da8ca82 2809 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2810 struct memcg_cache_params *params;
2811
2812 if (!memcg_can_account_kmem(memcg))
2813 return -EIO;
2814
2815 print_slabinfo_header(m);
2816
bd673145 2817 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2818 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2819 cache_show(memcg_params_to_cache(params), m);
bd673145 2820 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2821
2822 return 0;
2823}
2824#endif
2825
c67a8a68 2826static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
7ae1e1d0
GC
2827{
2828 struct res_counter *fail_res;
7ae1e1d0 2829 int ret = 0;
7ae1e1d0
GC
2830
2831 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2832 if (ret)
2833 return ret;
2834
00501b53 2835 ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
7ae1e1d0
GC
2836 if (ret == -EINTR) {
2837 /*
00501b53
JW
2838 * try_charge() chose to bypass to root due to OOM kill or
2839 * fatal signal. Since our only options are to either fail
2840 * the allocation or charge it to this cgroup, do it as a
2841 * temporary condition. But we can't fail. From a kmem/slab
2842 * perspective, the cache has already been selected, by
2843 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2844 * our minds.
2845 *
2846 * This condition will only trigger if the task entered
00501b53
JW
2847 * memcg_charge_kmem in a sane state, but was OOM-killed
2848 * during try_charge() above. Tasks that were already dying
2849 * when the allocation triggers should have been already
7ae1e1d0
GC
2850 * directed to the root cgroup in memcontrol.h
2851 */
2852 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2853 if (do_swap_account)
2854 res_counter_charge_nofail(&memcg->memsw, size,
2855 &fail_res);
2856 ret = 0;
2857 } else if (ret)
2858 res_counter_uncharge(&memcg->kmem, size);
2859
2860 return ret;
2861}
2862
c67a8a68 2863static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
7ae1e1d0 2864{
7ae1e1d0
GC
2865 res_counter_uncharge(&memcg->res, size);
2866 if (do_swap_account)
2867 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2868
2869 /* Not down to 0 */
2870 if (res_counter_uncharge(&memcg->kmem, size))
2871 return;
2872
10d5ebf4
LZ
2873 /*
2874 * Releases a reference taken in kmem_cgroup_css_offline in case
2875 * this last uncharge is racing with the offlining code or it is
2876 * outliving the memcg existence.
2877 *
2878 * The memory barrier imposed by test&clear is paired with the
2879 * explicit one in memcg_kmem_mark_dead().
2880 */
7de37682 2881 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2882 css_put(&memcg->css);
7ae1e1d0
GC
2883}
2884
2633d7a0
GC
2885/*
2886 * helper for acessing a memcg's index. It will be used as an index in the
2887 * child cache array in kmem_cache, and also to derive its name. This function
2888 * will return -1 when this is not a kmem-limited memcg.
2889 */
2890int memcg_cache_id(struct mem_cgroup *memcg)
2891{
2892 return memcg ? memcg->kmemcg_id : -1;
2893}
2894
55007d84
GC
2895static size_t memcg_caches_array_size(int num_groups)
2896{
2897 ssize_t size;
2898 if (num_groups <= 0)
2899 return 0;
2900
2901 size = 2 * num_groups;
2902 if (size < MEMCG_CACHES_MIN_SIZE)
2903 size = MEMCG_CACHES_MIN_SIZE;
2904 else if (size > MEMCG_CACHES_MAX_SIZE)
2905 size = MEMCG_CACHES_MAX_SIZE;
2906
2907 return size;
2908}
2909
2910/*
2911 * We should update the current array size iff all caches updates succeed. This
2912 * can only be done from the slab side. The slab mutex needs to be held when
2913 * calling this.
2914 */
2915void memcg_update_array_size(int num)
2916{
2917 if (num > memcg_limited_groups_array_size)
2918 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2919}
2920
2921int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2922{
2923 struct memcg_cache_params *cur_params = s->memcg_params;
2924
f35c3a8e 2925 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
2926
2927 if (num_groups > memcg_limited_groups_array_size) {
2928 int i;
f8570263 2929 struct memcg_cache_params *new_params;
55007d84
GC
2930 ssize_t size = memcg_caches_array_size(num_groups);
2931
2932 size *= sizeof(void *);
90c7a79c 2933 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 2934
f8570263
VD
2935 new_params = kzalloc(size, GFP_KERNEL);
2936 if (!new_params)
55007d84 2937 return -ENOMEM;
55007d84 2938
f8570263 2939 new_params->is_root_cache = true;
55007d84
GC
2940
2941 /*
2942 * There is the chance it will be bigger than
2943 * memcg_limited_groups_array_size, if we failed an allocation
2944 * in a cache, in which case all caches updated before it, will
2945 * have a bigger array.
2946 *
2947 * But if that is the case, the data after
2948 * memcg_limited_groups_array_size is certainly unused
2949 */
2950 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2951 if (!cur_params->memcg_caches[i])
2952 continue;
f8570263 2953 new_params->memcg_caches[i] =
55007d84
GC
2954 cur_params->memcg_caches[i];
2955 }
2956
2957 /*
2958 * Ideally, we would wait until all caches succeed, and only
2959 * then free the old one. But this is not worth the extra
2960 * pointer per-cache we'd have to have for this.
2961 *
2962 * It is not a big deal if some caches are left with a size
2963 * bigger than the others. And all updates will reset this
2964 * anyway.
2965 */
f8570263
VD
2966 rcu_assign_pointer(s->memcg_params, new_params);
2967 if (cur_params)
2968 kfree_rcu(cur_params, rcu_head);
55007d84
GC
2969 }
2970 return 0;
2971}
2972
363a044f
VD
2973int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
2974 struct kmem_cache *root_cache)
2633d7a0 2975{
90c7a79c 2976 size_t size;
2633d7a0
GC
2977
2978 if (!memcg_kmem_enabled())
2979 return 0;
2980
90c7a79c
AV
2981 if (!memcg) {
2982 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 2983 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
2984 } else
2985 size = sizeof(struct memcg_cache_params);
55007d84 2986
2633d7a0
GC
2987 s->memcg_params = kzalloc(size, GFP_KERNEL);
2988 if (!s->memcg_params)
2989 return -ENOMEM;
2990
943a451a 2991 if (memcg) {
2633d7a0 2992 s->memcg_params->memcg = memcg;
943a451a 2993 s->memcg_params->root_cache = root_cache;
051dd460 2994 css_get(&memcg->css);
4ba902b5
GC
2995 } else
2996 s->memcg_params->is_root_cache = true;
2997
2633d7a0
GC
2998 return 0;
2999}
3000
363a044f
VD
3001void memcg_free_cache_params(struct kmem_cache *s)
3002{
051dd460
VD
3003 if (!s->memcg_params)
3004 return;
3005 if (!s->memcg_params->is_root_cache)
3006 css_put(&s->memcg_params->memcg->css);
363a044f
VD
3007 kfree(s->memcg_params);
3008}
3009
776ed0f0
VD
3010static void memcg_register_cache(struct mem_cgroup *memcg,
3011 struct kmem_cache *root_cache)
2633d7a0 3012{
93f39eea
VD
3013 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3014 memcg_slab_mutex */
bd673145 3015 struct kmem_cache *cachep;
d7f25f8a
GC
3016 int id;
3017
bd673145
VD
3018 lockdep_assert_held(&memcg_slab_mutex);
3019
3020 id = memcg_cache_id(memcg);
3021
3022 /*
3023 * Since per-memcg caches are created asynchronously on first
3024 * allocation (see memcg_kmem_get_cache()), several threads can try to
3025 * create the same cache, but only one of them may succeed.
3026 */
3027 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
3028 return;
3029
073ee1c6 3030 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 3031 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 3032 /*
bd673145
VD
3033 * If we could not create a memcg cache, do not complain, because
3034 * that's not critical at all as we can always proceed with the root
3035 * cache.
2edefe11 3036 */
bd673145
VD
3037 if (!cachep)
3038 return;
2edefe11 3039
bd673145 3040 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 3041
d7f25f8a 3042 /*
959c8963
VD
3043 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3044 * barrier here to ensure nobody will see the kmem_cache partially
3045 * initialized.
d7f25f8a 3046 */
959c8963
VD
3047 smp_wmb();
3048
bd673145
VD
3049 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3050 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 3051}
d7f25f8a 3052
776ed0f0 3053static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 3054{
bd673145 3055 struct kmem_cache *root_cache;
1aa13254
VD
3056 struct mem_cgroup *memcg;
3057 int id;
3058
bd673145 3059 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 3060
bd673145 3061 BUG_ON(is_root_cache(cachep));
2edefe11 3062
bd673145
VD
3063 root_cache = cachep->memcg_params->root_cache;
3064 memcg = cachep->memcg_params->memcg;
96403da2 3065 id = memcg_cache_id(memcg);
d7f25f8a 3066
bd673145
VD
3067 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3068 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 3069
bd673145
VD
3070 list_del(&cachep->memcg_params->list);
3071
3072 kmem_cache_destroy(cachep);
2633d7a0
GC
3073}
3074
0e9d92f2
GC
3075/*
3076 * During the creation a new cache, we need to disable our accounting mechanism
3077 * altogether. This is true even if we are not creating, but rather just
3078 * enqueing new caches to be created.
3079 *
3080 * This is because that process will trigger allocations; some visible, like
3081 * explicit kmallocs to auxiliary data structures, name strings and internal
3082 * cache structures; some well concealed, like INIT_WORK() that can allocate
3083 * objects during debug.
3084 *
3085 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3086 * to it. This may not be a bounded recursion: since the first cache creation
3087 * failed to complete (waiting on the allocation), we'll just try to create the
3088 * cache again, failing at the same point.
3089 *
3090 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3091 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3092 * inside the following two functions.
3093 */
3094static inline void memcg_stop_kmem_account(void)
3095{
3096 VM_BUG_ON(!current->mm);
3097 current->memcg_kmem_skip_account++;
3098}
3099
3100static inline void memcg_resume_kmem_account(void)
3101{
3102 VM_BUG_ON(!current->mm);
3103 current->memcg_kmem_skip_account--;
3104}
3105
776ed0f0 3106int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
3107{
3108 struct kmem_cache *c;
b8529907 3109 int i, failed = 0;
7cf27982 3110
bd673145 3111 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
3112 for_each_memcg_cache_index(i) {
3113 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3114 if (!c)
3115 continue;
3116
776ed0f0 3117 memcg_unregister_cache(c);
b8529907
VD
3118
3119 if (cache_from_memcg_idx(s, i))
3120 failed++;
7cf27982 3121 }
bd673145 3122 mutex_unlock(&memcg_slab_mutex);
b8529907 3123 return failed;
7cf27982
GC
3124}
3125
776ed0f0 3126static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3127{
3128 struct kmem_cache *cachep;
bd673145 3129 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
3130
3131 if (!memcg_kmem_is_active(memcg))
3132 return;
3133
bd673145
VD
3134 mutex_lock(&memcg_slab_mutex);
3135 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 3136 cachep = memcg_params_to_cache(params);
bd673145
VD
3137 kmem_cache_shrink(cachep);
3138 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 3139 memcg_unregister_cache(cachep);
1f458cbf 3140 }
bd673145 3141 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
3142}
3143
776ed0f0 3144struct memcg_register_cache_work {
5722d094
VD
3145 struct mem_cgroup *memcg;
3146 struct kmem_cache *cachep;
3147 struct work_struct work;
3148};
3149
776ed0f0 3150static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 3151{
776ed0f0
VD
3152 struct memcg_register_cache_work *cw =
3153 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
3154 struct mem_cgroup *memcg = cw->memcg;
3155 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3156
bd673145 3157 mutex_lock(&memcg_slab_mutex);
776ed0f0 3158 memcg_register_cache(memcg, cachep);
bd673145
VD
3159 mutex_unlock(&memcg_slab_mutex);
3160
5722d094 3161 css_put(&memcg->css);
d7f25f8a
GC
3162 kfree(cw);
3163}
3164
3165/*
3166 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3167 */
776ed0f0
VD
3168static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3169 struct kmem_cache *cachep)
d7f25f8a 3170{
776ed0f0 3171 struct memcg_register_cache_work *cw;
d7f25f8a 3172
776ed0f0 3173 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
3174 if (cw == NULL) {
3175 css_put(&memcg->css);
d7f25f8a
GC
3176 return;
3177 }
3178
3179 cw->memcg = memcg;
3180 cw->cachep = cachep;
3181
776ed0f0 3182 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
3183 schedule_work(&cw->work);
3184}
3185
776ed0f0
VD
3186static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3187 struct kmem_cache *cachep)
0e9d92f2
GC
3188{
3189 /*
3190 * We need to stop accounting when we kmalloc, because if the
3191 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 3192 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
3193 *
3194 * However, it is better to enclose the whole function. Depending on
3195 * the debugging options enabled, INIT_WORK(), for instance, can
3196 * trigger an allocation. This too, will make us recurse. Because at
3197 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3198 * the safest choice is to do it like this, wrapping the whole function.
3199 */
3200 memcg_stop_kmem_account();
776ed0f0 3201 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3202 memcg_resume_kmem_account();
3203}
c67a8a68
VD
3204
3205int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3206{
3207 int res;
3208
3209 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3210 PAGE_SIZE << order);
3211 if (!res)
3212 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3213 return res;
3214}
3215
3216void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3217{
3218 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3219 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3220}
3221
d7f25f8a
GC
3222/*
3223 * Return the kmem_cache we're supposed to use for a slab allocation.
3224 * We try to use the current memcg's version of the cache.
3225 *
3226 * If the cache does not exist yet, if we are the first user of it,
3227 * we either create it immediately, if possible, or create it asynchronously
3228 * in a workqueue.
3229 * In the latter case, we will let the current allocation go through with
3230 * the original cache.
3231 *
3232 * Can't be called in interrupt context or from kernel threads.
3233 * This function needs to be called with rcu_read_lock() held.
3234 */
3235struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3236 gfp_t gfp)
3237{
3238 struct mem_cgroup *memcg;
959c8963 3239 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3240
3241 VM_BUG_ON(!cachep->memcg_params);
3242 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3243
0e9d92f2
GC
3244 if (!current->mm || current->memcg_kmem_skip_account)
3245 return cachep;
3246
d7f25f8a
GC
3247 rcu_read_lock();
3248 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3249
3250 if (!memcg_can_account_kmem(memcg))
ca0dde97 3251 goto out;
d7f25f8a 3252
959c8963
VD
3253 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3254 if (likely(memcg_cachep)) {
3255 cachep = memcg_cachep;
ca0dde97 3256 goto out;
d7f25f8a
GC
3257 }
3258
ca0dde97 3259 /* The corresponding put will be done in the workqueue. */
ec903c0c 3260 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3261 goto out;
3262 rcu_read_unlock();
3263
3264 /*
3265 * If we are in a safe context (can wait, and not in interrupt
3266 * context), we could be be predictable and return right away.
3267 * This would guarantee that the allocation being performed
3268 * already belongs in the new cache.
3269 *
3270 * However, there are some clashes that can arrive from locking.
3271 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3272 * memcg_create_kmem_cache, this means no further allocation
3273 * could happen with the slab_mutex held. So it's better to
3274 * defer everything.
ca0dde97 3275 */
776ed0f0 3276 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3277 return cachep;
3278out:
3279 rcu_read_unlock();
3280 return cachep;
d7f25f8a 3281}
d7f25f8a 3282
7ae1e1d0
GC
3283/*
3284 * We need to verify if the allocation against current->mm->owner's memcg is
3285 * possible for the given order. But the page is not allocated yet, so we'll
3286 * need a further commit step to do the final arrangements.
3287 *
3288 * It is possible for the task to switch cgroups in this mean time, so at
3289 * commit time, we can't rely on task conversion any longer. We'll then use
3290 * the handle argument to return to the caller which cgroup we should commit
3291 * against. We could also return the memcg directly and avoid the pointer
3292 * passing, but a boolean return value gives better semantics considering
3293 * the compiled-out case as well.
3294 *
3295 * Returning true means the allocation is possible.
3296 */
3297bool
3298__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3299{
3300 struct mem_cgroup *memcg;
3301 int ret;
3302
3303 *_memcg = NULL;
6d42c232
GC
3304
3305 /*
3306 * Disabling accounting is only relevant for some specific memcg
3307 * internal allocations. Therefore we would initially not have such
52383431
VD
3308 * check here, since direct calls to the page allocator that are
3309 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3310 * outside memcg core. We are mostly concerned with cache allocations,
3311 * and by having this test at memcg_kmem_get_cache, we are already able
3312 * to relay the allocation to the root cache and bypass the memcg cache
3313 * altogether.
6d42c232
GC
3314 *
3315 * There is one exception, though: the SLUB allocator does not create
3316 * large order caches, but rather service large kmallocs directly from
3317 * the page allocator. Therefore, the following sequence when backed by
3318 * the SLUB allocator:
3319 *
f894ffa8
AM
3320 * memcg_stop_kmem_account();
3321 * kmalloc(<large_number>)
3322 * memcg_resume_kmem_account();
6d42c232
GC
3323 *
3324 * would effectively ignore the fact that we should skip accounting,
3325 * since it will drive us directly to this function without passing
3326 * through the cache selector memcg_kmem_get_cache. Such large
3327 * allocations are extremely rare but can happen, for instance, for the
3328 * cache arrays. We bring this test here.
3329 */
3330 if (!current->mm || current->memcg_kmem_skip_account)
3331 return true;
3332
df381975 3333 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3334
3335 if (!memcg_can_account_kmem(memcg)) {
3336 css_put(&memcg->css);
3337 return true;
3338 }
3339
7ae1e1d0
GC
3340 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3341 if (!ret)
3342 *_memcg = memcg;
7ae1e1d0
GC
3343
3344 css_put(&memcg->css);
3345 return (ret == 0);
3346}
3347
3348void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3349 int order)
3350{
3351 struct page_cgroup *pc;
3352
3353 VM_BUG_ON(mem_cgroup_is_root(memcg));
3354
3355 /* The page allocation failed. Revert */
3356 if (!page) {
3357 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3358 return;
3359 }
a840cda6
JW
3360 /*
3361 * The page is freshly allocated and not visible to any
3362 * outside callers yet. Set up pc non-atomically.
3363 */
7ae1e1d0 3364 pc = lookup_page_cgroup(page);
7ae1e1d0 3365 pc->mem_cgroup = memcg;
a840cda6 3366 pc->flags = PCG_USED;
7ae1e1d0
GC
3367}
3368
3369void __memcg_kmem_uncharge_pages(struct page *page, int order)
3370{
3371 struct mem_cgroup *memcg = NULL;
3372 struct page_cgroup *pc;
3373
3374
3375 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3376 if (!PageCgroupUsed(pc))
3377 return;
3378
a840cda6
JW
3379 memcg = pc->mem_cgroup;
3380 pc->flags = 0;
7ae1e1d0
GC
3381
3382 /*
3383 * We trust that only if there is a memcg associated with the page, it
3384 * is a valid allocation
3385 */
3386 if (!memcg)
3387 return;
3388
309381fe 3389 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3390 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3391}
1f458cbf 3392#else
776ed0f0 3393static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3394{
3395}
7ae1e1d0
GC
3396#endif /* CONFIG_MEMCG_KMEM */
3397
ca3e0214
KH
3398#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3399
ca3e0214
KH
3400/*
3401 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3402 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3403 * charge/uncharge will be never happen and move_account() is done under
3404 * compound_lock(), so we don't have to take care of races.
ca3e0214 3405 */
e94c8a9c 3406void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3407{
3408 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3409 struct page_cgroup *pc;
b070e65c 3410 struct mem_cgroup *memcg;
e94c8a9c 3411 int i;
ca3e0214 3412
3d37c4a9
KH
3413 if (mem_cgroup_disabled())
3414 return;
b070e65c
DR
3415
3416 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3417 for (i = 1; i < HPAGE_PMD_NR; i++) {
3418 pc = head_pc + i;
b070e65c 3419 pc->mem_cgroup = memcg;
0a31bc97 3420 pc->flags = head_pc->flags;
e94c8a9c 3421 }
b070e65c
DR
3422 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3423 HPAGE_PMD_NR);
ca3e0214 3424}
12d27107 3425#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3426
f817ed48 3427/**
de3638d9 3428 * mem_cgroup_move_account - move account of the page
5564e88b 3429 * @page: the page
7ec99d62 3430 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3431 * @pc: page_cgroup of the page.
3432 * @from: mem_cgroup which the page is moved from.
3433 * @to: mem_cgroup which the page is moved to. @from != @to.
3434 *
3435 * The caller must confirm following.
08e552c6 3436 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3437 * - compound_lock is held when nr_pages > 1
f817ed48 3438 *
2f3479b1
KH
3439 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3440 * from old cgroup.
f817ed48 3441 */
7ec99d62
JW
3442static int mem_cgroup_move_account(struct page *page,
3443 unsigned int nr_pages,
3444 struct page_cgroup *pc,
3445 struct mem_cgroup *from,
2f3479b1 3446 struct mem_cgroup *to)
f817ed48 3447{
de3638d9
JW
3448 unsigned long flags;
3449 int ret;
987eba66 3450
f817ed48 3451 VM_BUG_ON(from == to);
309381fe 3452 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3453 /*
3454 * The page is isolated from LRU. So, collapse function
3455 * will not handle this page. But page splitting can happen.
3456 * Do this check under compound_page_lock(). The caller should
3457 * hold it.
3458 */
3459 ret = -EBUSY;
7ec99d62 3460 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3461 goto out;
3462
0a31bc97
JW
3463 /*
3464 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3465 * of its source page while we change it: page migration takes
3466 * both pages off the LRU, but page cache replacement doesn't.
3467 */
3468 if (!trylock_page(page))
3469 goto out;
de3638d9
JW
3470
3471 ret = -EINVAL;
3472 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
0a31bc97 3473 goto out_unlock;
de3638d9 3474
312734c0 3475 move_lock_mem_cgroup(from, &flags);
f817ed48 3476
0a31bc97 3477 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3478 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3479 nr_pages);
3480 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3481 nr_pages);
3482 }
3ea67d06 3483
59d1d256
JW
3484 if (PageWriteback(page)) {
3485 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3486 nr_pages);
3487 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3488 nr_pages);
3489 }
3ea67d06 3490
0a31bc97
JW
3491 /*
3492 * It is safe to change pc->mem_cgroup here because the page
3493 * is referenced, charged, and isolated - we can't race with
3494 * uncharging, charging, migration, or LRU putback.
3495 */
d69b042f 3496
854ffa8d 3497 /* caller should have done css_get */
08e552c6 3498 pc->mem_cgroup = to;
312734c0 3499 move_unlock_mem_cgroup(from, &flags);
de3638d9 3500 ret = 0;
0a31bc97
JW
3501
3502 local_irq_disable();
3503 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3504 memcg_check_events(to, page);
0a31bc97 3505 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3506 memcg_check_events(from, page);
0a31bc97
JW
3507 local_irq_enable();
3508out_unlock:
3509 unlock_page(page);
de3638d9 3510out:
f817ed48
KH
3511 return ret;
3512}
3513
2ef37d3f
MH
3514/**
3515 * mem_cgroup_move_parent - moves page to the parent group
3516 * @page: the page to move
3517 * @pc: page_cgroup of the page
3518 * @child: page's cgroup
3519 *
3520 * move charges to its parent or the root cgroup if the group has no
3521 * parent (aka use_hierarchy==0).
3522 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3523 * mem_cgroup_move_account fails) the failure is always temporary and
3524 * it signals a race with a page removal/uncharge or migration. In the
3525 * first case the page is on the way out and it will vanish from the LRU
3526 * on the next attempt and the call should be retried later.
3527 * Isolation from the LRU fails only if page has been isolated from
3528 * the LRU since we looked at it and that usually means either global
3529 * reclaim or migration going on. The page will either get back to the
3530 * LRU or vanish.
3531 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3532 * (!PageCgroupUsed) or moved to a different group. The page will
3533 * disappear in the next attempt.
f817ed48 3534 */
5564e88b
JW
3535static int mem_cgroup_move_parent(struct page *page,
3536 struct page_cgroup *pc,
6068bf01 3537 struct mem_cgroup *child)
f817ed48 3538{
f817ed48 3539 struct mem_cgroup *parent;
7ec99d62 3540 unsigned int nr_pages;
4be4489f 3541 unsigned long uninitialized_var(flags);
f817ed48
KH
3542 int ret;
3543
d8423011 3544 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3545
57f9fd7d
DN
3546 ret = -EBUSY;
3547 if (!get_page_unless_zero(page))
3548 goto out;
3549 if (isolate_lru_page(page))
3550 goto put;
52dbb905 3551
7ec99d62 3552 nr_pages = hpage_nr_pages(page);
08e552c6 3553
cc926f78
KH
3554 parent = parent_mem_cgroup(child);
3555 /*
3556 * If no parent, move charges to root cgroup.
3557 */
3558 if (!parent)
3559 parent = root_mem_cgroup;
f817ed48 3560
2ef37d3f 3561 if (nr_pages > 1) {
309381fe 3562 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3563 flags = compound_lock_irqsave(page);
2ef37d3f 3564 }
987eba66 3565
cc926f78 3566 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3567 pc, child, parent);
cc926f78
KH
3568 if (!ret)
3569 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3570
7ec99d62 3571 if (nr_pages > 1)
987eba66 3572 compound_unlock_irqrestore(page, flags);
08e552c6 3573 putback_lru_page(page);
57f9fd7d 3574put:
40d58138 3575 put_page(page);
57f9fd7d 3576out:
f817ed48
KH
3577 return ret;
3578}
3579
c255a458 3580#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3581static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3582 bool charge)
d13d1443 3583{
0a31bc97
JW
3584 int val = (charge) ? 1 : -1;
3585 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3586}
02491447
DN
3587
3588/**
3589 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3590 * @entry: swap entry to be moved
3591 * @from: mem_cgroup which the entry is moved from
3592 * @to: mem_cgroup which the entry is moved to
3593 *
3594 * It succeeds only when the swap_cgroup's record for this entry is the same
3595 * as the mem_cgroup's id of @from.
3596 *
3597 * Returns 0 on success, -EINVAL on failure.
3598 *
3599 * The caller must have charged to @to, IOW, called res_counter_charge() about
3600 * both res and memsw, and called css_get().
3601 */
3602static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3603 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3604{
3605 unsigned short old_id, new_id;
3606
34c00c31
LZ
3607 old_id = mem_cgroup_id(from);
3608 new_id = mem_cgroup_id(to);
02491447
DN
3609
3610 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3611 mem_cgroup_swap_statistics(from, false);
483c30b5 3612 mem_cgroup_swap_statistics(to, true);
02491447 3613 /*
483c30b5
DN
3614 * This function is only called from task migration context now.
3615 * It postpones res_counter and refcount handling till the end
3616 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3617 * improvement. But we cannot postpone css_get(to) because if
3618 * the process that has been moved to @to does swap-in, the
3619 * refcount of @to might be decreased to 0.
3620 *
3621 * We are in attach() phase, so the cgroup is guaranteed to be
3622 * alive, so we can just call css_get().
02491447 3623 */
4050377b 3624 css_get(&to->css);
02491447
DN
3625 return 0;
3626 }
3627 return -EINVAL;
3628}
3629#else
3630static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3631 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3632{
3633 return -EINVAL;
3634}
8c7c6e34 3635#endif
d13d1443 3636
f212ad7c
DN
3637#ifdef CONFIG_DEBUG_VM
3638static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3639{
3640 struct page_cgroup *pc;
3641
3642 pc = lookup_page_cgroup(page);
cfa44946
JW
3643 /*
3644 * Can be NULL while feeding pages into the page allocator for
3645 * the first time, i.e. during boot or memory hotplug;
3646 * or when mem_cgroup_disabled().
3647 */
f212ad7c
DN
3648 if (likely(pc) && PageCgroupUsed(pc))
3649 return pc;
3650 return NULL;
3651}
3652
3653bool mem_cgroup_bad_page_check(struct page *page)
3654{
3655 if (mem_cgroup_disabled())
3656 return false;
3657
3658 return lookup_page_cgroup_used(page) != NULL;
3659}
3660
3661void mem_cgroup_print_bad_page(struct page *page)
3662{
3663 struct page_cgroup *pc;
3664
3665 pc = lookup_page_cgroup_used(page);
3666 if (pc) {
d045197f
AM
3667 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3668 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3669 }
3670}
3671#endif
3672
d38d2a75 3673static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3674 unsigned long long val)
628f4235 3675{
81d39c20 3676 int retry_count;
3c11ecf4 3677 u64 memswlimit, memlimit;
628f4235 3678 int ret = 0;
81d39c20
KH
3679 int children = mem_cgroup_count_children(memcg);
3680 u64 curusage, oldusage;
3c11ecf4 3681 int enlarge;
81d39c20
KH
3682
3683 /*
3684 * For keeping hierarchical_reclaim simple, how long we should retry
3685 * is depends on callers. We set our retry-count to be function
3686 * of # of children which we should visit in this loop.
3687 */
3688 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3689
3690 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3691
3c11ecf4 3692 enlarge = 0;
8c7c6e34 3693 while (retry_count) {
628f4235
KH
3694 if (signal_pending(current)) {
3695 ret = -EINTR;
3696 break;
3697 }
8c7c6e34
KH
3698 /*
3699 * Rather than hide all in some function, I do this in
3700 * open coded manner. You see what this really does.
aaad153e 3701 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3702 */
3703 mutex_lock(&set_limit_mutex);
3704 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3705 if (memswlimit < val) {
3706 ret = -EINVAL;
3707 mutex_unlock(&set_limit_mutex);
628f4235
KH
3708 break;
3709 }
3c11ecf4
KH
3710
3711 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3712 if (memlimit < val)
3713 enlarge = 1;
3714
8c7c6e34 3715 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3716 if (!ret) {
3717 if (memswlimit == val)
3718 memcg->memsw_is_minimum = true;
3719 else
3720 memcg->memsw_is_minimum = false;
3721 }
8c7c6e34
KH
3722 mutex_unlock(&set_limit_mutex);
3723
3724 if (!ret)
3725 break;
3726
5660048c
JW
3727 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3728 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3729 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3730 /* Usage is reduced ? */
f894ffa8 3731 if (curusage >= oldusage)
81d39c20
KH
3732 retry_count--;
3733 else
3734 oldusage = curusage;
8c7c6e34 3735 }
3c11ecf4
KH
3736 if (!ret && enlarge)
3737 memcg_oom_recover(memcg);
14797e23 3738
8c7c6e34
KH
3739 return ret;
3740}
3741
338c8431
LZ
3742static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3743 unsigned long long val)
8c7c6e34 3744{
81d39c20 3745 int retry_count;
3c11ecf4 3746 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3747 int children = mem_cgroup_count_children(memcg);
3748 int ret = -EBUSY;
3c11ecf4 3749 int enlarge = 0;
8c7c6e34 3750
81d39c20 3751 /* see mem_cgroup_resize_res_limit */
f894ffa8 3752 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 3753 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3754 while (retry_count) {
3755 if (signal_pending(current)) {
3756 ret = -EINTR;
3757 break;
3758 }
3759 /*
3760 * Rather than hide all in some function, I do this in
3761 * open coded manner. You see what this really does.
aaad153e 3762 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3763 */
3764 mutex_lock(&set_limit_mutex);
3765 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3766 if (memlimit > val) {
3767 ret = -EINVAL;
3768 mutex_unlock(&set_limit_mutex);
3769 break;
3770 }
3c11ecf4
KH
3771 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3772 if (memswlimit < val)
3773 enlarge = 1;
8c7c6e34 3774 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3775 if (!ret) {
3776 if (memlimit == val)
3777 memcg->memsw_is_minimum = true;
3778 else
3779 memcg->memsw_is_minimum = false;
3780 }
8c7c6e34
KH
3781 mutex_unlock(&set_limit_mutex);
3782
3783 if (!ret)
3784 break;
3785
5660048c
JW
3786 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3787 MEM_CGROUP_RECLAIM_NOSWAP |
3788 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3789 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3790 /* Usage is reduced ? */
8c7c6e34 3791 if (curusage >= oldusage)
628f4235 3792 retry_count--;
81d39c20
KH
3793 else
3794 oldusage = curusage;
628f4235 3795 }
3c11ecf4
KH
3796 if (!ret && enlarge)
3797 memcg_oom_recover(memcg);
628f4235
KH
3798 return ret;
3799}
3800
0608f43d
AM
3801unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3802 gfp_t gfp_mask,
3803 unsigned long *total_scanned)
3804{
3805 unsigned long nr_reclaimed = 0;
3806 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3807 unsigned long reclaimed;
3808 int loop = 0;
3809 struct mem_cgroup_tree_per_zone *mctz;
3810 unsigned long long excess;
3811 unsigned long nr_scanned;
3812
3813 if (order > 0)
3814 return 0;
3815
3816 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3817 /*
3818 * This loop can run a while, specially if mem_cgroup's continuously
3819 * keep exceeding their soft limit and putting the system under
3820 * pressure
3821 */
3822 do {
3823 if (next_mz)
3824 mz = next_mz;
3825 else
3826 mz = mem_cgroup_largest_soft_limit_node(mctz);
3827 if (!mz)
3828 break;
3829
3830 nr_scanned = 0;
3831 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3832 gfp_mask, &nr_scanned);
3833 nr_reclaimed += reclaimed;
3834 *total_scanned += nr_scanned;
0a31bc97 3835 spin_lock_irq(&mctz->lock);
0608f43d
AM
3836
3837 /*
3838 * If we failed to reclaim anything from this memory cgroup
3839 * it is time to move on to the next cgroup
3840 */
3841 next_mz = NULL;
3842 if (!reclaimed) {
3843 do {
3844 /*
3845 * Loop until we find yet another one.
3846 *
3847 * By the time we get the soft_limit lock
3848 * again, someone might have aded the
3849 * group back on the RB tree. Iterate to
3850 * make sure we get a different mem.
3851 * mem_cgroup_largest_soft_limit_node returns
3852 * NULL if no other cgroup is present on
3853 * the tree
3854 */
3855 next_mz =
3856 __mem_cgroup_largest_soft_limit_node(mctz);
3857 if (next_mz == mz)
3858 css_put(&next_mz->memcg->css);
3859 else /* next_mz == NULL or other memcg */
3860 break;
3861 } while (1);
3862 }
cf2c8127 3863 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3864 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3865 /*
3866 * One school of thought says that we should not add
3867 * back the node to the tree if reclaim returns 0.
3868 * But our reclaim could return 0, simply because due
3869 * to priority we are exposing a smaller subset of
3870 * memory to reclaim from. Consider this as a longer
3871 * term TODO.
3872 */
3873 /* If excess == 0, no tree ops */
cf2c8127 3874 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3875 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3876 css_put(&mz->memcg->css);
3877 loop++;
3878 /*
3879 * Could not reclaim anything and there are no more
3880 * mem cgroups to try or we seem to be looping without
3881 * reclaiming anything.
3882 */
3883 if (!nr_reclaimed &&
3884 (next_mz == NULL ||
3885 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3886 break;
3887 } while (!nr_reclaimed);
3888 if (next_mz)
3889 css_put(&next_mz->memcg->css);
3890 return nr_reclaimed;
3891}
3892
2ef37d3f
MH
3893/**
3894 * mem_cgroup_force_empty_list - clears LRU of a group
3895 * @memcg: group to clear
3896 * @node: NUMA node
3897 * @zid: zone id
3898 * @lru: lru to to clear
3899 *
3c935d18 3900 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3901 * reclaim the pages page themselves - pages are moved to the parent (or root)
3902 * group.
cc847582 3903 */
2ef37d3f 3904static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3905 int node, int zid, enum lru_list lru)
cc847582 3906{
bea8c150 3907 struct lruvec *lruvec;
2ef37d3f 3908 unsigned long flags;
072c56c1 3909 struct list_head *list;
925b7673
JW
3910 struct page *busy;
3911 struct zone *zone;
072c56c1 3912
08e552c6 3913 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3914 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3915 list = &lruvec->lists[lru];
cc847582 3916
f817ed48 3917 busy = NULL;
2ef37d3f 3918 do {
925b7673 3919 struct page_cgroup *pc;
5564e88b
JW
3920 struct page *page;
3921
08e552c6 3922 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3923 if (list_empty(list)) {
08e552c6 3924 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3925 break;
f817ed48 3926 }
925b7673
JW
3927 page = list_entry(list->prev, struct page, lru);
3928 if (busy == page) {
3929 list_move(&page->lru, list);
648bcc77 3930 busy = NULL;
08e552c6 3931 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3932 continue;
3933 }
08e552c6 3934 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3935
925b7673 3936 pc = lookup_page_cgroup(page);
5564e88b 3937
3c935d18 3938 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3939 /* found lock contention or "pc" is obsolete. */
925b7673 3940 busy = page;
f817ed48
KH
3941 } else
3942 busy = NULL;
2a7a0e0f 3943 cond_resched();
2ef37d3f 3944 } while (!list_empty(list));
cc847582
KH
3945}
3946
3947/*
c26251f9
MH
3948 * make mem_cgroup's charge to be 0 if there is no task by moving
3949 * all the charges and pages to the parent.
cc847582 3950 * This enables deleting this mem_cgroup.
c26251f9
MH
3951 *
3952 * Caller is responsible for holding css reference on the memcg.
cc847582 3953 */
ab5196c2 3954static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3955{
c26251f9 3956 int node, zid;
bea207c8 3957 u64 usage;
f817ed48 3958
fce66477 3959 do {
52d4b9ac
KH
3960 /* This is for making all *used* pages to be on LRU. */
3961 lru_add_drain_all();
c0ff4b85 3962 drain_all_stock_sync(memcg);
c0ff4b85 3963 mem_cgroup_start_move(memcg);
31aaea4a 3964 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3965 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3966 enum lru_list lru;
3967 for_each_lru(lru) {
2ef37d3f 3968 mem_cgroup_force_empty_list(memcg,
f156ab93 3969 node, zid, lru);
f817ed48 3970 }
1ecaab2b 3971 }
f817ed48 3972 }
c0ff4b85
R
3973 mem_cgroup_end_move(memcg);
3974 memcg_oom_recover(memcg);
52d4b9ac 3975 cond_resched();
f817ed48 3976
2ef37d3f 3977 /*
bea207c8
GC
3978 * Kernel memory may not necessarily be trackable to a specific
3979 * process. So they are not migrated, and therefore we can't
3980 * expect their value to drop to 0 here.
3981 * Having res filled up with kmem only is enough.
3982 *
2ef37d3f
MH
3983 * This is a safety check because mem_cgroup_force_empty_list
3984 * could have raced with mem_cgroup_replace_page_cache callers
3985 * so the lru seemed empty but the page could have been added
3986 * right after the check. RES_USAGE should be safe as we always
3987 * charge before adding to the LRU.
3988 */
bea207c8
GC
3989 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3990 res_counter_read_u64(&memcg->kmem, RES_USAGE);
3991 } while (usage > 0);
c26251f9
MH
3992}
3993
ea280e7b
TH
3994/*
3995 * Test whether @memcg has children, dead or alive. Note that this
3996 * function doesn't care whether @memcg has use_hierarchy enabled and
3997 * returns %true if there are child csses according to the cgroup
3998 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3999 */
b5f99b53
GC
4000static inline bool memcg_has_children(struct mem_cgroup *memcg)
4001{
ea280e7b
TH
4002 bool ret;
4003
696ac172 4004 /*
ea280e7b
TH
4005 * The lock does not prevent addition or deletion of children, but
4006 * it prevents a new child from being initialized based on this
4007 * parent in css_online(), so it's enough to decide whether
4008 * hierarchically inherited attributes can still be changed or not.
696ac172 4009 */
ea280e7b
TH
4010 lockdep_assert_held(&memcg_create_mutex);
4011
4012 rcu_read_lock();
4013 ret = css_next_child(NULL, &memcg->css);
4014 rcu_read_unlock();
4015 return ret;
b5f99b53
GC
4016}
4017
c26251f9
MH
4018/*
4019 * Reclaims as many pages from the given memcg as possible and moves
4020 * the rest to the parent.
4021 *
4022 * Caller is responsible for holding css reference for memcg.
4023 */
4024static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4025{
4026 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 4027
c1e862c1
KH
4028 /* we call try-to-free pages for make this cgroup empty */
4029 lru_add_drain_all();
f817ed48 4030 /* try to free all pages in this cgroup */
569530fb 4031 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4032 int progress;
c1e862c1 4033
c26251f9
MH
4034 if (signal_pending(current))
4035 return -EINTR;
4036
c0ff4b85 4037 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4038 false);
c1e862c1 4039 if (!progress) {
f817ed48 4040 nr_retries--;
c1e862c1 4041 /* maybe some writeback is necessary */
8aa7e847 4042 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4043 }
f817ed48
KH
4044
4045 }
ab5196c2
MH
4046
4047 return 0;
cc847582
KH
4048}
4049
6770c64e
TH
4050static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4051 char *buf, size_t nbytes,
4052 loff_t off)
c1e862c1 4053{
6770c64e 4054 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 4055
d8423011
MH
4056 if (mem_cgroup_is_root(memcg))
4057 return -EINVAL;
6770c64e 4058 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
4059}
4060
182446d0
TH
4061static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4062 struct cftype *cft)
18f59ea7 4063{
182446d0 4064 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4065}
4066
182446d0
TH
4067static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4068 struct cftype *cft, u64 val)
18f59ea7
BS
4069{
4070 int retval = 0;
182446d0 4071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4072 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 4073
0999821b 4074 mutex_lock(&memcg_create_mutex);
567fb435
GC
4075
4076 if (memcg->use_hierarchy == val)
4077 goto out;
4078
18f59ea7 4079 /*
af901ca1 4080 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4081 * in the child subtrees. If it is unset, then the change can
4082 * occur, provided the current cgroup has no children.
4083 *
4084 * For the root cgroup, parent_mem is NULL, we allow value to be
4085 * set if there are no children.
4086 */
c0ff4b85 4087 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4088 (val == 1 || val == 0)) {
ea280e7b 4089 if (!memcg_has_children(memcg))
c0ff4b85 4090 memcg->use_hierarchy = val;
18f59ea7
BS
4091 else
4092 retval = -EBUSY;
4093 } else
4094 retval = -EINVAL;
567fb435
GC
4095
4096out:
0999821b 4097 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4098
4099 return retval;
4100}
4101
ce00a967
JW
4102static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4103 enum mem_cgroup_stat_index idx)
4104{
4105 struct mem_cgroup *iter;
4106 long val = 0;
4107
4108 /* Per-cpu values can be negative, use a signed accumulator */
4109 for_each_mem_cgroup_tree(iter, memcg)
4110 val += mem_cgroup_read_stat(iter, idx);
4111
4112 if (val < 0) /* race ? */
4113 val = 0;
4114 return val;
4115}
4116
4117static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4118{
4119 u64 val;
4120
4121 if (!mem_cgroup_is_root(memcg)) {
4122 if (!swap)
4123 return res_counter_read_u64(&memcg->res, RES_USAGE);
4124 else
4125 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4126 }
4127
4128 /*
4129 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4130 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4131 */
4132 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4133 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4134
4135 if (swap)
4136 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4137
4138 return val << PAGE_SHIFT;
4139}
4140
4141
791badbd 4142static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 4143 struct cftype *cft)
8cdea7c0 4144{
182446d0 4145 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
05b84301
JW
4146 enum res_type type = MEMFILE_TYPE(cft->private);
4147 int name = MEMFILE_ATTR(cft->private);
af36f906 4148
8c7c6e34
KH
4149 switch (type) {
4150 case _MEM:
ce00a967
JW
4151 if (name == RES_USAGE)
4152 return mem_cgroup_usage(memcg, false);
05b84301 4153 return res_counter_read_u64(&memcg->res, name);
8c7c6e34 4154 case _MEMSWAP:
ce00a967
JW
4155 if (name == RES_USAGE)
4156 return mem_cgroup_usage(memcg, true);
05b84301 4157 return res_counter_read_u64(&memcg->memsw, name);
510fc4e1 4158 case _KMEM:
05b84301 4159 return res_counter_read_u64(&memcg->kmem, name);
510fc4e1 4160 break;
8c7c6e34
KH
4161 default:
4162 BUG();
8c7c6e34 4163 }
8cdea7c0 4164}
510fc4e1 4165
510fc4e1 4166#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4167/* should be called with activate_kmem_mutex held */
4168static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4169 unsigned long long limit)
4170{
4171 int err = 0;
4172 int memcg_id;
4173
4174 if (memcg_kmem_is_active(memcg))
4175 return 0;
4176
4177 /*
4178 * We are going to allocate memory for data shared by all memory
4179 * cgroups so let's stop accounting here.
4180 */
4181 memcg_stop_kmem_account();
4182
510fc4e1
GC
4183 /*
4184 * For simplicity, we won't allow this to be disabled. It also can't
4185 * be changed if the cgroup has children already, or if tasks had
4186 * already joined.
4187 *
4188 * If tasks join before we set the limit, a person looking at
4189 * kmem.usage_in_bytes will have no way to determine when it took
4190 * place, which makes the value quite meaningless.
4191 *
4192 * After it first became limited, changes in the value of the limit are
4193 * of course permitted.
510fc4e1 4194 */
0999821b 4195 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
4196 if (cgroup_has_tasks(memcg->css.cgroup) ||
4197 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
4198 err = -EBUSY;
4199 mutex_unlock(&memcg_create_mutex);
4200 if (err)
4201 goto out;
510fc4e1 4202
d6441637
VD
4203 memcg_id = ida_simple_get(&kmem_limited_groups,
4204 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4205 if (memcg_id < 0) {
4206 err = memcg_id;
4207 goto out;
4208 }
4209
4210 /*
4211 * Make sure we have enough space for this cgroup in each root cache's
4212 * memcg_params.
4213 */
bd673145 4214 mutex_lock(&memcg_slab_mutex);
d6441637 4215 err = memcg_update_all_caches(memcg_id + 1);
bd673145 4216 mutex_unlock(&memcg_slab_mutex);
d6441637
VD
4217 if (err)
4218 goto out_rmid;
4219
4220 memcg->kmemcg_id = memcg_id;
4221 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4222
4223 /*
4224 * We couldn't have accounted to this cgroup, because it hasn't got the
4225 * active bit set yet, so this should succeed.
4226 */
4227 err = res_counter_set_limit(&memcg->kmem, limit);
4228 VM_BUG_ON(err);
4229
4230 static_key_slow_inc(&memcg_kmem_enabled_key);
4231 /*
4232 * Setting the active bit after enabling static branching will
4233 * guarantee no one starts accounting before all call sites are
4234 * patched.
4235 */
4236 memcg_kmem_set_active(memcg);
510fc4e1 4237out:
d6441637
VD
4238 memcg_resume_kmem_account();
4239 return err;
4240
4241out_rmid:
4242 ida_simple_remove(&kmem_limited_groups, memcg_id);
4243 goto out;
4244}
4245
4246static int memcg_activate_kmem(struct mem_cgroup *memcg,
4247 unsigned long long limit)
4248{
4249 int ret;
4250
4251 mutex_lock(&activate_kmem_mutex);
4252 ret = __memcg_activate_kmem(memcg, limit);
4253 mutex_unlock(&activate_kmem_mutex);
4254 return ret;
4255}
4256
4257static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4258 unsigned long long val)
4259{
4260 int ret;
4261
4262 if (!memcg_kmem_is_active(memcg))
4263 ret = memcg_activate_kmem(memcg, val);
4264 else
4265 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
4266 return ret;
4267}
4268
55007d84 4269static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4270{
55007d84 4271 int ret = 0;
510fc4e1 4272 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 4273
d6441637
VD
4274 if (!parent)
4275 return 0;
55007d84 4276
d6441637 4277 mutex_lock(&activate_kmem_mutex);
55007d84 4278 /*
d6441637
VD
4279 * If the parent cgroup is not kmem-active now, it cannot be activated
4280 * after this point, because it has at least one child already.
55007d84 4281 */
d6441637
VD
4282 if (memcg_kmem_is_active(parent))
4283 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4284 mutex_unlock(&activate_kmem_mutex);
55007d84 4285 return ret;
510fc4e1 4286}
d6441637
VD
4287#else
4288static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4289 unsigned long long val)
4290{
4291 return -EINVAL;
4292}
6d043990 4293#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4294
628f4235
KH
4295/*
4296 * The user of this function is...
4297 * RES_LIMIT.
4298 */
451af504
TH
4299static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4300 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4301{
451af504 4302 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4303 enum res_type type;
4304 int name;
628f4235
KH
4305 unsigned long long val;
4306 int ret;
4307
451af504
TH
4308 buf = strstrip(buf);
4309 type = MEMFILE_TYPE(of_cft(of)->private);
4310 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 4311
8c7c6e34 4312 switch (name) {
628f4235 4313 case RES_LIMIT:
4b3bde4c
BS
4314 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4315 ret = -EINVAL;
4316 break;
4317 }
628f4235 4318 /* This function does all necessary parse...reuse it */
451af504 4319 ret = res_counter_memparse_write_strategy(buf, &val);
8c7c6e34
KH
4320 if (ret)
4321 break;
4322 if (type == _MEM)
628f4235 4323 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 4324 else if (type == _MEMSWAP)
8c7c6e34 4325 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 4326 else if (type == _KMEM)
d6441637 4327 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
4328 else
4329 return -EINVAL;
628f4235 4330 break;
296c81d8 4331 case RES_SOFT_LIMIT:
451af504 4332 ret = res_counter_memparse_write_strategy(buf, &val);
296c81d8
BS
4333 if (ret)
4334 break;
4335 /*
4336 * For memsw, soft limits are hard to implement in terms
4337 * of semantics, for now, we support soft limits for
4338 * control without swap
4339 */
4340 if (type == _MEM)
4341 ret = res_counter_set_soft_limit(&memcg->res, val);
4342 else
4343 ret = -EINVAL;
4344 break;
628f4235
KH
4345 default:
4346 ret = -EINVAL; /* should be BUG() ? */
4347 break;
4348 }
451af504 4349 return ret ?: nbytes;
8cdea7c0
BS
4350}
4351
fee7b548
KH
4352static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4353 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4354{
fee7b548
KH
4355 unsigned long long min_limit, min_memsw_limit, tmp;
4356
4357 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4358 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
4359 if (!memcg->use_hierarchy)
4360 goto out;
4361
5c9d535b
TH
4362 while (memcg->css.parent) {
4363 memcg = mem_cgroup_from_css(memcg->css.parent);
fee7b548
KH
4364 if (!memcg->use_hierarchy)
4365 break;
4366 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4367 min_limit = min(min_limit, tmp);
4368 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4369 min_memsw_limit = min(min_memsw_limit, tmp);
4370 }
4371out:
4372 *mem_limit = min_limit;
4373 *memsw_limit = min_memsw_limit;
fee7b548
KH
4374}
4375
6770c64e
TH
4376static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4377 size_t nbytes, loff_t off)
c84872e1 4378{
6770c64e 4379 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4380 int name;
4381 enum res_type type;
c84872e1 4382
6770c64e
TH
4383 type = MEMFILE_TYPE(of_cft(of)->private);
4384 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 4385
8c7c6e34 4386 switch (name) {
29f2a4da 4387 case RES_MAX_USAGE:
8c7c6e34 4388 if (type == _MEM)
c0ff4b85 4389 res_counter_reset_max(&memcg->res);
510fc4e1 4390 else if (type == _MEMSWAP)
c0ff4b85 4391 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
4392 else if (type == _KMEM)
4393 res_counter_reset_max(&memcg->kmem);
4394 else
4395 return -EINVAL;
29f2a4da
PE
4396 break;
4397 case RES_FAILCNT:
8c7c6e34 4398 if (type == _MEM)
c0ff4b85 4399 res_counter_reset_failcnt(&memcg->res);
510fc4e1 4400 else if (type == _MEMSWAP)
c0ff4b85 4401 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
4402 else if (type == _KMEM)
4403 res_counter_reset_failcnt(&memcg->kmem);
4404 else
4405 return -EINVAL;
29f2a4da
PE
4406 break;
4407 }
f64c3f54 4408
6770c64e 4409 return nbytes;
c84872e1
PE
4410}
4411
182446d0 4412static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4413 struct cftype *cft)
4414{
182446d0 4415 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4416}
4417
02491447 4418#ifdef CONFIG_MMU
182446d0 4419static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4420 struct cftype *cft, u64 val)
4421{
182446d0 4422 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
4423
4424 if (val >= (1 << NR_MOVE_TYPE))
4425 return -EINVAL;
ee5e8472 4426
7dc74be0 4427 /*
ee5e8472
GC
4428 * No kind of locking is needed in here, because ->can_attach() will
4429 * check this value once in the beginning of the process, and then carry
4430 * on with stale data. This means that changes to this value will only
4431 * affect task migrations starting after the change.
7dc74be0 4432 */
c0ff4b85 4433 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4434 return 0;
4435}
02491447 4436#else
182446d0 4437static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4438 struct cftype *cft, u64 val)
4439{
4440 return -ENOSYS;
4441}
4442#endif
7dc74be0 4443
406eb0c9 4444#ifdef CONFIG_NUMA
2da8ca82 4445static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4446{
25485de6
GT
4447 struct numa_stat {
4448 const char *name;
4449 unsigned int lru_mask;
4450 };
4451
4452 static const struct numa_stat stats[] = {
4453 { "total", LRU_ALL },
4454 { "file", LRU_ALL_FILE },
4455 { "anon", LRU_ALL_ANON },
4456 { "unevictable", BIT(LRU_UNEVICTABLE) },
4457 };
4458 const struct numa_stat *stat;
406eb0c9 4459 int nid;
25485de6 4460 unsigned long nr;
2da8ca82 4461 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 4462
25485de6
GT
4463 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4464 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4465 seq_printf(m, "%s=%lu", stat->name, nr);
4466 for_each_node_state(nid, N_MEMORY) {
4467 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4468 stat->lru_mask);
4469 seq_printf(m, " N%d=%lu", nid, nr);
4470 }
4471 seq_putc(m, '\n');
406eb0c9 4472 }
406eb0c9 4473
071aee13
YH
4474 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4475 struct mem_cgroup *iter;
4476
4477 nr = 0;
4478 for_each_mem_cgroup_tree(iter, memcg)
4479 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4480 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4481 for_each_node_state(nid, N_MEMORY) {
4482 nr = 0;
4483 for_each_mem_cgroup_tree(iter, memcg)
4484 nr += mem_cgroup_node_nr_lru_pages(
4485 iter, nid, stat->lru_mask);
4486 seq_printf(m, " N%d=%lu", nid, nr);
4487 }
4488 seq_putc(m, '\n');
406eb0c9 4489 }
406eb0c9 4490
406eb0c9
YH
4491 return 0;
4492}
4493#endif /* CONFIG_NUMA */
4494
af7c4b0e
JW
4495static inline void mem_cgroup_lru_names_not_uptodate(void)
4496{
4497 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4498}
4499
2da8ca82 4500static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4501{
2da8ca82 4502 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
4503 struct mem_cgroup *mi;
4504 unsigned int i;
406eb0c9 4505
af7c4b0e 4506 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4507 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4508 continue;
af7c4b0e
JW
4509 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4510 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4511 }
7b854121 4512
af7c4b0e
JW
4513 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4514 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4515 mem_cgroup_read_events(memcg, i));
4516
4517 for (i = 0; i < NR_LRU_LISTS; i++)
4518 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4519 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4520
14067bb3 4521 /* Hierarchical information */
fee7b548
KH
4522 {
4523 unsigned long long limit, memsw_limit;
d79154bb 4524 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4525 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4526 if (do_swap_account)
78ccf5b5
JW
4527 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4528 memsw_limit);
fee7b548 4529 }
7f016ee8 4530
af7c4b0e
JW
4531 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4532 long long val = 0;
4533
bff6bb83 4534 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4535 continue;
af7c4b0e
JW
4536 for_each_mem_cgroup_tree(mi, memcg)
4537 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4538 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4539 }
4540
4541 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4542 unsigned long long val = 0;
4543
4544 for_each_mem_cgroup_tree(mi, memcg)
4545 val += mem_cgroup_read_events(mi, i);
4546 seq_printf(m, "total_%s %llu\n",
4547 mem_cgroup_events_names[i], val);
4548 }
4549
4550 for (i = 0; i < NR_LRU_LISTS; i++) {
4551 unsigned long long val = 0;
4552
4553 for_each_mem_cgroup_tree(mi, memcg)
4554 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4555 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4556 }
14067bb3 4557
7f016ee8 4558#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4559 {
4560 int nid, zid;
4561 struct mem_cgroup_per_zone *mz;
89abfab1 4562 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4563 unsigned long recent_rotated[2] = {0, 0};
4564 unsigned long recent_scanned[2] = {0, 0};
4565
4566 for_each_online_node(nid)
4567 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4568 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4569 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4570
89abfab1
HD
4571 recent_rotated[0] += rstat->recent_rotated[0];
4572 recent_rotated[1] += rstat->recent_rotated[1];
4573 recent_scanned[0] += rstat->recent_scanned[0];
4574 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4575 }
78ccf5b5
JW
4576 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4577 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4578 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4579 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4580 }
4581#endif
4582
d2ceb9b7
KH
4583 return 0;
4584}
4585
182446d0
TH
4586static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4587 struct cftype *cft)
a7885eb8 4588{
182446d0 4589 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4590
1f4c025b 4591 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4592}
4593
182446d0
TH
4594static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4595 struct cftype *cft, u64 val)
a7885eb8 4596{
182446d0 4597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4598
3dae7fec 4599 if (val > 100)
a7885eb8
KM
4600 return -EINVAL;
4601
14208b0e 4602 if (css->parent)
3dae7fec
JW
4603 memcg->swappiness = val;
4604 else
4605 vm_swappiness = val;
068b38c1 4606
a7885eb8
KM
4607 return 0;
4608}
4609
2e72b634
KS
4610static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4611{
4612 struct mem_cgroup_threshold_ary *t;
4613 u64 usage;
4614 int i;
4615
4616 rcu_read_lock();
4617 if (!swap)
2c488db2 4618 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4619 else
2c488db2 4620 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4621
4622 if (!t)
4623 goto unlock;
4624
ce00a967 4625 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4626
4627 /*
748dad36 4628 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4629 * If it's not true, a threshold was crossed after last
4630 * call of __mem_cgroup_threshold().
4631 */
5407a562 4632 i = t->current_threshold;
2e72b634
KS
4633
4634 /*
4635 * Iterate backward over array of thresholds starting from
4636 * current_threshold and check if a threshold is crossed.
4637 * If none of thresholds below usage is crossed, we read
4638 * only one element of the array here.
4639 */
4640 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4641 eventfd_signal(t->entries[i].eventfd, 1);
4642
4643 /* i = current_threshold + 1 */
4644 i++;
4645
4646 /*
4647 * Iterate forward over array of thresholds starting from
4648 * current_threshold+1 and check if a threshold is crossed.
4649 * If none of thresholds above usage is crossed, we read
4650 * only one element of the array here.
4651 */
4652 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4653 eventfd_signal(t->entries[i].eventfd, 1);
4654
4655 /* Update current_threshold */
5407a562 4656 t->current_threshold = i - 1;
2e72b634
KS
4657unlock:
4658 rcu_read_unlock();
4659}
4660
4661static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4662{
ad4ca5f4
KS
4663 while (memcg) {
4664 __mem_cgroup_threshold(memcg, false);
4665 if (do_swap_account)
4666 __mem_cgroup_threshold(memcg, true);
4667
4668 memcg = parent_mem_cgroup(memcg);
4669 }
2e72b634
KS
4670}
4671
4672static int compare_thresholds(const void *a, const void *b)
4673{
4674 const struct mem_cgroup_threshold *_a = a;
4675 const struct mem_cgroup_threshold *_b = b;
4676
2bff24a3
GT
4677 if (_a->threshold > _b->threshold)
4678 return 1;
4679
4680 if (_a->threshold < _b->threshold)
4681 return -1;
4682
4683 return 0;
2e72b634
KS
4684}
4685
c0ff4b85 4686static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4687{
4688 struct mem_cgroup_eventfd_list *ev;
4689
2bcf2e92
MH
4690 spin_lock(&memcg_oom_lock);
4691
c0ff4b85 4692 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4693 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4694
4695 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4696 return 0;
4697}
4698
c0ff4b85 4699static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4700{
7d74b06f
KH
4701 struct mem_cgroup *iter;
4702
c0ff4b85 4703 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4704 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4705}
4706
59b6f873 4707static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4708 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4709{
2c488db2
KS
4710 struct mem_cgroup_thresholds *thresholds;
4711 struct mem_cgroup_threshold_ary *new;
2e72b634 4712 u64 threshold, usage;
2c488db2 4713 int i, size, ret;
2e72b634
KS
4714
4715 ret = res_counter_memparse_write_strategy(args, &threshold);
4716 if (ret)
4717 return ret;
4718
4719 mutex_lock(&memcg->thresholds_lock);
2c488db2 4720
05b84301 4721 if (type == _MEM) {
2c488db2 4722 thresholds = &memcg->thresholds;
ce00a967 4723 usage = mem_cgroup_usage(memcg, false);
05b84301 4724 } else if (type == _MEMSWAP) {
2c488db2 4725 thresholds = &memcg->memsw_thresholds;
ce00a967 4726 usage = mem_cgroup_usage(memcg, true);
05b84301 4727 } else
2e72b634
KS
4728 BUG();
4729
2e72b634 4730 /* Check if a threshold crossed before adding a new one */
2c488db2 4731 if (thresholds->primary)
2e72b634
KS
4732 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4733
2c488db2 4734 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4735
4736 /* Allocate memory for new array of thresholds */
2c488db2 4737 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4738 GFP_KERNEL);
2c488db2 4739 if (!new) {
2e72b634
KS
4740 ret = -ENOMEM;
4741 goto unlock;
4742 }
2c488db2 4743 new->size = size;
2e72b634
KS
4744
4745 /* Copy thresholds (if any) to new array */
2c488db2
KS
4746 if (thresholds->primary) {
4747 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4748 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4749 }
4750
2e72b634 4751 /* Add new threshold */
2c488db2
KS
4752 new->entries[size - 1].eventfd = eventfd;
4753 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4754
4755 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4756 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4757 compare_thresholds, NULL);
4758
4759 /* Find current threshold */
2c488db2 4760 new->current_threshold = -1;
2e72b634 4761 for (i = 0; i < size; i++) {
748dad36 4762 if (new->entries[i].threshold <= usage) {
2e72b634 4763 /*
2c488db2
KS
4764 * new->current_threshold will not be used until
4765 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4766 * it here.
4767 */
2c488db2 4768 ++new->current_threshold;
748dad36
SZ
4769 } else
4770 break;
2e72b634
KS
4771 }
4772
2c488db2
KS
4773 /* Free old spare buffer and save old primary buffer as spare */
4774 kfree(thresholds->spare);
4775 thresholds->spare = thresholds->primary;
4776
4777 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4778
907860ed 4779 /* To be sure that nobody uses thresholds */
2e72b634
KS
4780 synchronize_rcu();
4781
2e72b634
KS
4782unlock:
4783 mutex_unlock(&memcg->thresholds_lock);
4784
4785 return ret;
4786}
4787
59b6f873 4788static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4789 struct eventfd_ctx *eventfd, const char *args)
4790{
59b6f873 4791 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4792}
4793
59b6f873 4794static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4795 struct eventfd_ctx *eventfd, const char *args)
4796{
59b6f873 4797 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4798}
4799
59b6f873 4800static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4801 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4802{
2c488db2
KS
4803 struct mem_cgroup_thresholds *thresholds;
4804 struct mem_cgroup_threshold_ary *new;
2e72b634 4805 u64 usage;
2c488db2 4806 int i, j, size;
2e72b634
KS
4807
4808 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4809
4810 if (type == _MEM) {
2c488db2 4811 thresholds = &memcg->thresholds;
ce00a967 4812 usage = mem_cgroup_usage(memcg, false);
05b84301 4813 } else if (type == _MEMSWAP) {
2c488db2 4814 thresholds = &memcg->memsw_thresholds;
ce00a967 4815 usage = mem_cgroup_usage(memcg, true);
05b84301 4816 } else
2e72b634
KS
4817 BUG();
4818
371528ca
AV
4819 if (!thresholds->primary)
4820 goto unlock;
4821
2e72b634
KS
4822 /* Check if a threshold crossed before removing */
4823 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4824
4825 /* Calculate new number of threshold */
2c488db2
KS
4826 size = 0;
4827 for (i = 0; i < thresholds->primary->size; i++) {
4828 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4829 size++;
4830 }
4831
2c488db2 4832 new = thresholds->spare;
907860ed 4833
2e72b634
KS
4834 /* Set thresholds array to NULL if we don't have thresholds */
4835 if (!size) {
2c488db2
KS
4836 kfree(new);
4837 new = NULL;
907860ed 4838 goto swap_buffers;
2e72b634
KS
4839 }
4840
2c488db2 4841 new->size = size;
2e72b634
KS
4842
4843 /* Copy thresholds and find current threshold */
2c488db2
KS
4844 new->current_threshold = -1;
4845 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4846 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4847 continue;
4848
2c488db2 4849 new->entries[j] = thresholds->primary->entries[i];
748dad36 4850 if (new->entries[j].threshold <= usage) {
2e72b634 4851 /*
2c488db2 4852 * new->current_threshold will not be used
2e72b634
KS
4853 * until rcu_assign_pointer(), so it's safe to increment
4854 * it here.
4855 */
2c488db2 4856 ++new->current_threshold;
2e72b634
KS
4857 }
4858 j++;
4859 }
4860
907860ed 4861swap_buffers:
2c488db2
KS
4862 /* Swap primary and spare array */
4863 thresholds->spare = thresholds->primary;
8c757763
SZ
4864 /* If all events are unregistered, free the spare array */
4865 if (!new) {
4866 kfree(thresholds->spare);
4867 thresholds->spare = NULL;
4868 }
4869
2c488db2 4870 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4871
907860ed 4872 /* To be sure that nobody uses thresholds */
2e72b634 4873 synchronize_rcu();
371528ca 4874unlock:
2e72b634 4875 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4876}
c1e862c1 4877
59b6f873 4878static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4879 struct eventfd_ctx *eventfd)
4880{
59b6f873 4881 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4882}
4883
59b6f873 4884static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4885 struct eventfd_ctx *eventfd)
4886{
59b6f873 4887 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4888}
4889
59b6f873 4890static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4891 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4892{
9490ff27 4893 struct mem_cgroup_eventfd_list *event;
9490ff27 4894
9490ff27
KH
4895 event = kmalloc(sizeof(*event), GFP_KERNEL);
4896 if (!event)
4897 return -ENOMEM;
4898
1af8efe9 4899 spin_lock(&memcg_oom_lock);
9490ff27
KH
4900
4901 event->eventfd = eventfd;
4902 list_add(&event->list, &memcg->oom_notify);
4903
4904 /* already in OOM ? */
79dfdacc 4905 if (atomic_read(&memcg->under_oom))
9490ff27 4906 eventfd_signal(eventfd, 1);
1af8efe9 4907 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4908
4909 return 0;
4910}
4911
59b6f873 4912static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4913 struct eventfd_ctx *eventfd)
9490ff27 4914{
9490ff27 4915 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4916
1af8efe9 4917 spin_lock(&memcg_oom_lock);
9490ff27 4918
c0ff4b85 4919 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4920 if (ev->eventfd == eventfd) {
4921 list_del(&ev->list);
4922 kfree(ev);
4923 }
4924 }
4925
1af8efe9 4926 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4927}
4928
2da8ca82 4929static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4930{
2da8ca82 4931 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4932
791badbd
TH
4933 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4934 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4935 return 0;
4936}
4937
182446d0 4938static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4939 struct cftype *cft, u64 val)
4940{
182446d0 4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4942
4943 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4944 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4945 return -EINVAL;
4946
c0ff4b85 4947 memcg->oom_kill_disable = val;
4d845ebf 4948 if (!val)
c0ff4b85 4949 memcg_oom_recover(memcg);
3dae7fec 4950
3c11ecf4
KH
4951 return 0;
4952}
4953
c255a458 4954#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4955static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4956{
55007d84
GC
4957 int ret;
4958
2633d7a0 4959 memcg->kmemcg_id = -1;
55007d84
GC
4960 ret = memcg_propagate_kmem(memcg);
4961 if (ret)
4962 return ret;
2633d7a0 4963
1d62e436 4964 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4965}
e5671dfa 4966
10d5ebf4 4967static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4968{
1d62e436 4969 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
4970}
4971
4972static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4973{
4974 if (!memcg_kmem_is_active(memcg))
4975 return;
4976
4977 /*
4978 * kmem charges can outlive the cgroup. In the case of slab
4979 * pages, for instance, a page contain objects from various
4980 * processes. As we prevent from taking a reference for every
4981 * such allocation we have to be careful when doing uncharge
4982 * (see memcg_uncharge_kmem) and here during offlining.
4983 *
4984 * The idea is that that only the _last_ uncharge which sees
4985 * the dead memcg will drop the last reference. An additional
4986 * reference is taken here before the group is marked dead
4987 * which is then paired with css_put during uncharge resp. here.
4988 *
4989 * Although this might sound strange as this path is called from
ec903c0c
TH
4990 * css_offline() when the referencemight have dropped down to 0 and
4991 * shouldn't be incremented anymore (css_tryget_online() would
4992 * fail) we do not have other options because of the kmem
4993 * allocations lifetime.
10d5ebf4
LZ
4994 */
4995 css_get(&memcg->css);
7de37682
GC
4996
4997 memcg_kmem_mark_dead(memcg);
4998
4999 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5000 return;
5001
7de37682 5002 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5003 css_put(&memcg->css);
d1a4c0b3 5004}
e5671dfa 5005#else
cbe128e3 5006static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5007{
5008 return 0;
5009}
d1a4c0b3 5010
10d5ebf4
LZ
5011static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5012{
5013}
5014
5015static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5016{
5017}
e5671dfa
GC
5018#endif
5019
3bc942f3
TH
5020/*
5021 * DO NOT USE IN NEW FILES.
5022 *
5023 * "cgroup.event_control" implementation.
5024 *
5025 * This is way over-engineered. It tries to support fully configurable
5026 * events for each user. Such level of flexibility is completely
5027 * unnecessary especially in the light of the planned unified hierarchy.
5028 *
5029 * Please deprecate this and replace with something simpler if at all
5030 * possible.
5031 */
5032
79bd9814
TH
5033/*
5034 * Unregister event and free resources.
5035 *
5036 * Gets called from workqueue.
5037 */
3bc942f3 5038static void memcg_event_remove(struct work_struct *work)
79bd9814 5039{
3bc942f3
TH
5040 struct mem_cgroup_event *event =
5041 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5042 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5043
5044 remove_wait_queue(event->wqh, &event->wait);
5045
59b6f873 5046 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5047
5048 /* Notify userspace the event is going away. */
5049 eventfd_signal(event->eventfd, 1);
5050
5051 eventfd_ctx_put(event->eventfd);
5052 kfree(event);
59b6f873 5053 css_put(&memcg->css);
79bd9814
TH
5054}
5055
5056/*
5057 * Gets called on POLLHUP on eventfd when user closes it.
5058 *
5059 * Called with wqh->lock held and interrupts disabled.
5060 */
3bc942f3
TH
5061static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5062 int sync, void *key)
79bd9814 5063{
3bc942f3
TH
5064 struct mem_cgroup_event *event =
5065 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5066 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5067 unsigned long flags = (unsigned long)key;
5068
5069 if (flags & POLLHUP) {
5070 /*
5071 * If the event has been detached at cgroup removal, we
5072 * can simply return knowing the other side will cleanup
5073 * for us.
5074 *
5075 * We can't race against event freeing since the other
5076 * side will require wqh->lock via remove_wait_queue(),
5077 * which we hold.
5078 */
fba94807 5079 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5080 if (!list_empty(&event->list)) {
5081 list_del_init(&event->list);
5082 /*
5083 * We are in atomic context, but cgroup_event_remove()
5084 * may sleep, so we have to call it in workqueue.
5085 */
5086 schedule_work(&event->remove);
5087 }
fba94807 5088 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5089 }
5090
5091 return 0;
5092}
5093
3bc942f3 5094static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5095 wait_queue_head_t *wqh, poll_table *pt)
5096{
3bc942f3
TH
5097 struct mem_cgroup_event *event =
5098 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5099
5100 event->wqh = wqh;
5101 add_wait_queue(wqh, &event->wait);
5102}
5103
5104/*
3bc942f3
TH
5105 * DO NOT USE IN NEW FILES.
5106 *
79bd9814
TH
5107 * Parse input and register new cgroup event handler.
5108 *
5109 * Input must be in format '<event_fd> <control_fd> <args>'.
5110 * Interpretation of args is defined by control file implementation.
5111 */
451af504
TH
5112static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5113 char *buf, size_t nbytes, loff_t off)
79bd9814 5114{
451af504 5115 struct cgroup_subsys_state *css = of_css(of);
fba94807 5116 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5117 struct mem_cgroup_event *event;
79bd9814
TH
5118 struct cgroup_subsys_state *cfile_css;
5119 unsigned int efd, cfd;
5120 struct fd efile;
5121 struct fd cfile;
fba94807 5122 const char *name;
79bd9814
TH
5123 char *endp;
5124 int ret;
5125
451af504
TH
5126 buf = strstrip(buf);
5127
5128 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5129 if (*endp != ' ')
5130 return -EINVAL;
451af504 5131 buf = endp + 1;
79bd9814 5132
451af504 5133 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5134 if ((*endp != ' ') && (*endp != '\0'))
5135 return -EINVAL;
451af504 5136 buf = endp + 1;
79bd9814
TH
5137
5138 event = kzalloc(sizeof(*event), GFP_KERNEL);
5139 if (!event)
5140 return -ENOMEM;
5141
59b6f873 5142 event->memcg = memcg;
79bd9814 5143 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5144 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5145 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5146 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5147
5148 efile = fdget(efd);
5149 if (!efile.file) {
5150 ret = -EBADF;
5151 goto out_kfree;
5152 }
5153
5154 event->eventfd = eventfd_ctx_fileget(efile.file);
5155 if (IS_ERR(event->eventfd)) {
5156 ret = PTR_ERR(event->eventfd);
5157 goto out_put_efile;
5158 }
5159
5160 cfile = fdget(cfd);
5161 if (!cfile.file) {
5162 ret = -EBADF;
5163 goto out_put_eventfd;
5164 }
5165
5166 /* the process need read permission on control file */
5167 /* AV: shouldn't we check that it's been opened for read instead? */
5168 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5169 if (ret < 0)
5170 goto out_put_cfile;
5171
fba94807
TH
5172 /*
5173 * Determine the event callbacks and set them in @event. This used
5174 * to be done via struct cftype but cgroup core no longer knows
5175 * about these events. The following is crude but the whole thing
5176 * is for compatibility anyway.
3bc942f3
TH
5177 *
5178 * DO NOT ADD NEW FILES.
fba94807
TH
5179 */
5180 name = cfile.file->f_dentry->d_name.name;
5181
5182 if (!strcmp(name, "memory.usage_in_bytes")) {
5183 event->register_event = mem_cgroup_usage_register_event;
5184 event->unregister_event = mem_cgroup_usage_unregister_event;
5185 } else if (!strcmp(name, "memory.oom_control")) {
5186 event->register_event = mem_cgroup_oom_register_event;
5187 event->unregister_event = mem_cgroup_oom_unregister_event;
5188 } else if (!strcmp(name, "memory.pressure_level")) {
5189 event->register_event = vmpressure_register_event;
5190 event->unregister_event = vmpressure_unregister_event;
5191 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5192 event->register_event = memsw_cgroup_usage_register_event;
5193 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5194 } else {
5195 ret = -EINVAL;
5196 goto out_put_cfile;
5197 }
5198
79bd9814 5199 /*
b5557c4c
TH
5200 * Verify @cfile should belong to @css. Also, remaining events are
5201 * automatically removed on cgroup destruction but the removal is
5202 * asynchronous, so take an extra ref on @css.
79bd9814 5203 */
ec903c0c
TH
5204 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5205 &memory_cgrp_subsys);
79bd9814 5206 ret = -EINVAL;
5a17f543 5207 if (IS_ERR(cfile_css))
79bd9814 5208 goto out_put_cfile;
5a17f543
TH
5209 if (cfile_css != css) {
5210 css_put(cfile_css);
79bd9814 5211 goto out_put_cfile;
5a17f543 5212 }
79bd9814 5213
451af504 5214 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5215 if (ret)
5216 goto out_put_css;
5217
5218 efile.file->f_op->poll(efile.file, &event->pt);
5219
fba94807
TH
5220 spin_lock(&memcg->event_list_lock);
5221 list_add(&event->list, &memcg->event_list);
5222 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5223
5224 fdput(cfile);
5225 fdput(efile);
5226
451af504 5227 return nbytes;
79bd9814
TH
5228
5229out_put_css:
b5557c4c 5230 css_put(css);
79bd9814
TH
5231out_put_cfile:
5232 fdput(cfile);
5233out_put_eventfd:
5234 eventfd_ctx_put(event->eventfd);
5235out_put_efile:
5236 fdput(efile);
5237out_kfree:
5238 kfree(event);
5239
5240 return ret;
5241}
5242
8cdea7c0
BS
5243static struct cftype mem_cgroup_files[] = {
5244 {
0eea1030 5245 .name = "usage_in_bytes",
8c7c6e34 5246 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5247 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5248 },
c84872e1
PE
5249 {
5250 .name = "max_usage_in_bytes",
8c7c6e34 5251 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5252 .write = mem_cgroup_reset,
791badbd 5253 .read_u64 = mem_cgroup_read_u64,
c84872e1 5254 },
8cdea7c0 5255 {
0eea1030 5256 .name = "limit_in_bytes",
8c7c6e34 5257 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5258 .write = mem_cgroup_write,
791badbd 5259 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5260 },
296c81d8
BS
5261 {
5262 .name = "soft_limit_in_bytes",
5263 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5264 .write = mem_cgroup_write,
791badbd 5265 .read_u64 = mem_cgroup_read_u64,
296c81d8 5266 },
8cdea7c0
BS
5267 {
5268 .name = "failcnt",
8c7c6e34 5269 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5270 .write = mem_cgroup_reset,
791badbd 5271 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5272 },
d2ceb9b7
KH
5273 {
5274 .name = "stat",
2da8ca82 5275 .seq_show = memcg_stat_show,
d2ceb9b7 5276 },
c1e862c1
KH
5277 {
5278 .name = "force_empty",
6770c64e 5279 .write = mem_cgroup_force_empty_write,
c1e862c1 5280 },
18f59ea7
BS
5281 {
5282 .name = "use_hierarchy",
5283 .write_u64 = mem_cgroup_hierarchy_write,
5284 .read_u64 = mem_cgroup_hierarchy_read,
5285 },
79bd9814 5286 {
3bc942f3 5287 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5288 .write = memcg_write_event_control,
79bd9814
TH
5289 .flags = CFTYPE_NO_PREFIX,
5290 .mode = S_IWUGO,
5291 },
a7885eb8
KM
5292 {
5293 .name = "swappiness",
5294 .read_u64 = mem_cgroup_swappiness_read,
5295 .write_u64 = mem_cgroup_swappiness_write,
5296 },
7dc74be0
DN
5297 {
5298 .name = "move_charge_at_immigrate",
5299 .read_u64 = mem_cgroup_move_charge_read,
5300 .write_u64 = mem_cgroup_move_charge_write,
5301 },
9490ff27
KH
5302 {
5303 .name = "oom_control",
2da8ca82 5304 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5305 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5306 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5307 },
70ddf637
AV
5308 {
5309 .name = "pressure_level",
70ddf637 5310 },
406eb0c9
YH
5311#ifdef CONFIG_NUMA
5312 {
5313 .name = "numa_stat",
2da8ca82 5314 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5315 },
5316#endif
510fc4e1
GC
5317#ifdef CONFIG_MEMCG_KMEM
5318 {
5319 .name = "kmem.limit_in_bytes",
5320 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5321 .write = mem_cgroup_write,
791badbd 5322 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5323 },
5324 {
5325 .name = "kmem.usage_in_bytes",
5326 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5327 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5328 },
5329 {
5330 .name = "kmem.failcnt",
5331 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5332 .write = mem_cgroup_reset,
791badbd 5333 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5334 },
5335 {
5336 .name = "kmem.max_usage_in_bytes",
5337 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5338 .write = mem_cgroup_reset,
791badbd 5339 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5340 },
749c5415
GC
5341#ifdef CONFIG_SLABINFO
5342 {
5343 .name = "kmem.slabinfo",
2da8ca82 5344 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
5345 },
5346#endif
8c7c6e34 5347#endif
6bc10349 5348 { }, /* terminate */
af36f906 5349};
8c7c6e34 5350
2d11085e
MH
5351#ifdef CONFIG_MEMCG_SWAP
5352static struct cftype memsw_cgroup_files[] = {
5353 {
5354 .name = "memsw.usage_in_bytes",
5355 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 5356 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5357 },
5358 {
5359 .name = "memsw.max_usage_in_bytes",
5360 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 5361 .write = mem_cgroup_reset,
791badbd 5362 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5363 },
5364 {
5365 .name = "memsw.limit_in_bytes",
5366 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 5367 .write = mem_cgroup_write,
791badbd 5368 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5369 },
5370 {
5371 .name = "memsw.failcnt",
5372 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 5373 .write = mem_cgroup_reset,
791badbd 5374 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5375 },
5376 { }, /* terminate */
5377};
5378#endif
c0ff4b85 5379static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5380{
5381 struct mem_cgroup_per_node *pn;
1ecaab2b 5382 struct mem_cgroup_per_zone *mz;
41e3355d 5383 int zone, tmp = node;
1ecaab2b
KH
5384 /*
5385 * This routine is called against possible nodes.
5386 * But it's BUG to call kmalloc() against offline node.
5387 *
5388 * TODO: this routine can waste much memory for nodes which will
5389 * never be onlined. It's better to use memory hotplug callback
5390 * function.
5391 */
41e3355d
KH
5392 if (!node_state(node, N_NORMAL_MEMORY))
5393 tmp = -1;
17295c88 5394 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5395 if (!pn)
5396 return 1;
1ecaab2b 5397
1ecaab2b
KH
5398 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5399 mz = &pn->zoneinfo[zone];
bea8c150 5400 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
5401 mz->usage_in_excess = 0;
5402 mz->on_tree = false;
d79154bb 5403 mz->memcg = memcg;
1ecaab2b 5404 }
54f72fe0 5405 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5406 return 0;
5407}
5408
c0ff4b85 5409static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5410{
54f72fe0 5411 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5412}
5413
33327948
KH
5414static struct mem_cgroup *mem_cgroup_alloc(void)
5415{
d79154bb 5416 struct mem_cgroup *memcg;
8ff69e2c 5417 size_t size;
33327948 5418
8ff69e2c
VD
5419 size = sizeof(struct mem_cgroup);
5420 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 5421
8ff69e2c 5422 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 5423 if (!memcg)
e7bbcdf3
DC
5424 return NULL;
5425
d79154bb
HD
5426 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5427 if (!memcg->stat)
d2e61b8d 5428 goto out_free;
d79154bb
HD
5429 spin_lock_init(&memcg->pcp_counter_lock);
5430 return memcg;
d2e61b8d
DC
5431
5432out_free:
8ff69e2c 5433 kfree(memcg);
d2e61b8d 5434 return NULL;
33327948
KH
5435}
5436
59927fb9 5437/*
c8b2a36f
GC
5438 * At destroying mem_cgroup, references from swap_cgroup can remain.
5439 * (scanning all at force_empty is too costly...)
5440 *
5441 * Instead of clearing all references at force_empty, we remember
5442 * the number of reference from swap_cgroup and free mem_cgroup when
5443 * it goes down to 0.
5444 *
5445 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5446 */
c8b2a36f
GC
5447
5448static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5449{
c8b2a36f 5450 int node;
59927fb9 5451
bb4cc1a8 5452 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
5453
5454 for_each_node(node)
5455 free_mem_cgroup_per_zone_info(memcg, node);
5456
5457 free_percpu(memcg->stat);
5458
3f134619
GC
5459 /*
5460 * We need to make sure that (at least for now), the jump label
5461 * destruction code runs outside of the cgroup lock. This is because
5462 * get_online_cpus(), which is called from the static_branch update,
5463 * can't be called inside the cgroup_lock. cpusets are the ones
5464 * enforcing this dependency, so if they ever change, we might as well.
5465 *
5466 * schedule_work() will guarantee this happens. Be careful if you need
5467 * to move this code around, and make sure it is outside
5468 * the cgroup_lock.
5469 */
a8964b9b 5470 disarm_static_keys(memcg);
8ff69e2c 5471 kfree(memcg);
59927fb9 5472}
3afe36b1 5473
7bcc1bb1
DN
5474/*
5475 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5476 */
e1aab161 5477struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5478{
c0ff4b85 5479 if (!memcg->res.parent)
7bcc1bb1 5480 return NULL;
c0ff4b85 5481 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 5482}
e1aab161 5483EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5484
bb4cc1a8
AM
5485static void __init mem_cgroup_soft_limit_tree_init(void)
5486{
5487 struct mem_cgroup_tree_per_node *rtpn;
5488 struct mem_cgroup_tree_per_zone *rtpz;
5489 int tmp, node, zone;
5490
5491 for_each_node(node) {
5492 tmp = node;
5493 if (!node_state(node, N_NORMAL_MEMORY))
5494 tmp = -1;
5495 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5496 BUG_ON(!rtpn);
5497
5498 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5499
5500 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5501 rtpz = &rtpn->rb_tree_per_zone[zone];
5502 rtpz->rb_root = RB_ROOT;
5503 spin_lock_init(&rtpz->lock);
5504 }
5505 }
5506}
5507
0eb253e2 5508static struct cgroup_subsys_state * __ref
eb95419b 5509mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5510{
d142e3e6 5511 struct mem_cgroup *memcg;
04046e1a 5512 long error = -ENOMEM;
6d12e2d8 5513 int node;
8cdea7c0 5514
c0ff4b85
R
5515 memcg = mem_cgroup_alloc();
5516 if (!memcg)
04046e1a 5517 return ERR_PTR(error);
78fb7466 5518
3ed28fa1 5519 for_each_node(node)
c0ff4b85 5520 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5521 goto free_out;
f64c3f54 5522
c077719b 5523 /* root ? */
eb95419b 5524 if (parent_css == NULL) {
a41c58a6 5525 root_mem_cgroup = memcg;
d142e3e6
GC
5526 res_counter_init(&memcg->res, NULL);
5527 res_counter_init(&memcg->memsw, NULL);
5528 res_counter_init(&memcg->kmem, NULL);
18f59ea7 5529 }
28dbc4b6 5530
d142e3e6
GC
5531 memcg->last_scanned_node = MAX_NUMNODES;
5532 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5533 memcg->move_charge_at_immigrate = 0;
5534 mutex_init(&memcg->thresholds_lock);
5535 spin_lock_init(&memcg->move_lock);
70ddf637 5536 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5537 INIT_LIST_HEAD(&memcg->event_list);
5538 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5539
5540 return &memcg->css;
5541
5542free_out:
5543 __mem_cgroup_free(memcg);
5544 return ERR_PTR(error);
5545}
5546
5547static int
eb95419b 5548mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5549{
eb95419b 5550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5551 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
d142e3e6 5552
15a4c835 5553 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5554 return -ENOSPC;
5555
63876986 5556 if (!parent)
d142e3e6
GC
5557 return 0;
5558
0999821b 5559 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5560
5561 memcg->use_hierarchy = parent->use_hierarchy;
5562 memcg->oom_kill_disable = parent->oom_kill_disable;
5563 memcg->swappiness = mem_cgroup_swappiness(parent);
5564
5565 if (parent->use_hierarchy) {
c0ff4b85
R
5566 res_counter_init(&memcg->res, &parent->res);
5567 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 5568 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5569
7bcc1bb1 5570 /*
8d76a979
LZ
5571 * No need to take a reference to the parent because cgroup
5572 * core guarantees its existence.
7bcc1bb1 5573 */
18f59ea7 5574 } else {
ce00a967
JW
5575 res_counter_init(&memcg->res, NULL);
5576 res_counter_init(&memcg->memsw, NULL);
5577 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5578 /*
5579 * Deeper hierachy with use_hierarchy == false doesn't make
5580 * much sense so let cgroup subsystem know about this
5581 * unfortunate state in our controller.
5582 */
d142e3e6 5583 if (parent != root_mem_cgroup)
073219e9 5584 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5585 }
0999821b 5586 mutex_unlock(&memcg_create_mutex);
d6441637 5587
073219e9 5588 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
5589}
5590
5f578161
MH
5591/*
5592 * Announce all parents that a group from their hierarchy is gone.
5593 */
5594static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5595{
5596 struct mem_cgroup *parent = memcg;
5597
5598 while ((parent = parent_mem_cgroup(parent)))
519ebea3 5599 mem_cgroup_iter_invalidate(parent);
5f578161
MH
5600
5601 /*
5602 * if the root memcg is not hierarchical we have to check it
5603 * explicitely.
5604 */
5605 if (!root_mem_cgroup->use_hierarchy)
519ebea3 5606 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
5607}
5608
eb95419b 5609static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5610{
eb95419b 5611 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5612 struct mem_cgroup_event *event, *tmp;
4fb1a86f 5613 struct cgroup_subsys_state *iter;
79bd9814
TH
5614
5615 /*
5616 * Unregister events and notify userspace.
5617 * Notify userspace about cgroup removing only after rmdir of cgroup
5618 * directory to avoid race between userspace and kernelspace.
5619 */
fba94807
TH
5620 spin_lock(&memcg->event_list_lock);
5621 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5622 list_del_init(&event->list);
5623 schedule_work(&event->remove);
5624 }
fba94807 5625 spin_unlock(&memcg->event_list_lock);
ec64f515 5626
10d5ebf4
LZ
5627 kmem_cgroup_css_offline(memcg);
5628
5f578161 5629 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
5630
5631 /*
5632 * This requires that offlining is serialized. Right now that is
5633 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5634 */
5635 css_for_each_descendant_post(iter, css)
5636 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5637
776ed0f0 5638 memcg_unregister_all_caches(memcg);
33cb876e 5639 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5640}
5641
eb95419b 5642static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5643{
eb95419b 5644 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
5645 /*
5646 * XXX: css_offline() would be where we should reparent all
5647 * memory to prepare the cgroup for destruction. However,
ec903c0c 5648 * memcg does not do css_tryget_online() and res_counter charging
96f1c58d
JW
5649 * under the same RCU lock region, which means that charging
5650 * could race with offlining. Offlining only happens to
5651 * cgroups with no tasks in them but charges can show up
5652 * without any tasks from the swapin path when the target
5653 * memcg is looked up from the swapout record and not from the
5654 * current task as it usually is. A race like this can leak
5655 * charges and put pages with stale cgroup pointers into
5656 * circulation:
5657 *
5658 * #0 #1
5659 * lookup_swap_cgroup_id()
5660 * rcu_read_lock()
5661 * mem_cgroup_lookup()
ec903c0c 5662 * css_tryget_online()
96f1c58d 5663 * rcu_read_unlock()
ec903c0c 5664 * disable css_tryget_online()
96f1c58d
JW
5665 * call_rcu()
5666 * offline_css()
5667 * reparent_charges()
5668 * res_counter_charge()
5669 * css_put()
5670 * css_free()
5671 * pc->mem_cgroup = dead memcg
5672 * add page to lru
5673 *
5674 * The bulk of the charges are still moved in offline_css() to
5675 * avoid pinning a lot of pages in case a long-term reference
5676 * like a swapout record is deferring the css_free() to long
5677 * after offlining. But this makes sure we catch any charges
5678 * made after offlining:
5679 */
5680 mem_cgroup_reparent_charges(memcg);
c268e994 5681
10d5ebf4 5682 memcg_destroy_kmem(memcg);
465939a1 5683 __mem_cgroup_free(memcg);
8cdea7c0
BS
5684}
5685
1ced953b
TH
5686/**
5687 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5688 * @css: the target css
5689 *
5690 * Reset the states of the mem_cgroup associated with @css. This is
5691 * invoked when the userland requests disabling on the default hierarchy
5692 * but the memcg is pinned through dependency. The memcg should stop
5693 * applying policies and should revert to the vanilla state as it may be
5694 * made visible again.
5695 *
5696 * The current implementation only resets the essential configurations.
5697 * This needs to be expanded to cover all the visible parts.
5698 */
5699static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5700{
5701 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5702
5703 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5704 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5705 memcg_update_kmem_limit(memcg, ULLONG_MAX);
5706 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5707}
5708
02491447 5709#ifdef CONFIG_MMU
7dc74be0 5710/* Handlers for move charge at task migration. */
854ffa8d 5711static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5712{
05b84301 5713 int ret;
9476db97
JW
5714
5715 /* Try a single bulk charge without reclaim first */
00501b53 5716 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5717 if (!ret) {
854ffa8d 5718 mc.precharge += count;
854ffa8d
DN
5719 return ret;
5720 }
692e7c45 5721 if (ret == -EINTR) {
00501b53 5722 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5723 return ret;
5724 }
9476db97
JW
5725
5726 /* Try charges one by one with reclaim */
854ffa8d 5727 while (count--) {
00501b53 5728 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5729 /*
5730 * In case of failure, any residual charges against
5731 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5732 * later on. However, cancel any charges that are
5733 * bypassed to root right away or they'll be lost.
9476db97 5734 */
692e7c45 5735 if (ret == -EINTR)
00501b53 5736 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5737 if (ret)
38c5d72f 5738 return ret;
854ffa8d 5739 mc.precharge++;
9476db97 5740 cond_resched();
854ffa8d 5741 }
9476db97 5742 return 0;
4ffef5fe
DN
5743}
5744
5745/**
8d32ff84 5746 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5747 * @vma: the vma the pte to be checked belongs
5748 * @addr: the address corresponding to the pte to be checked
5749 * @ptent: the pte to be checked
02491447 5750 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5751 *
5752 * Returns
5753 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5754 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5755 * move charge. if @target is not NULL, the page is stored in target->page
5756 * with extra refcnt got(Callers should handle it).
02491447
DN
5757 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5758 * target for charge migration. if @target is not NULL, the entry is stored
5759 * in target->ent.
4ffef5fe
DN
5760 *
5761 * Called with pte lock held.
5762 */
4ffef5fe
DN
5763union mc_target {
5764 struct page *page;
02491447 5765 swp_entry_t ent;
4ffef5fe
DN
5766};
5767
4ffef5fe 5768enum mc_target_type {
8d32ff84 5769 MC_TARGET_NONE = 0,
4ffef5fe 5770 MC_TARGET_PAGE,
02491447 5771 MC_TARGET_SWAP,
4ffef5fe
DN
5772};
5773
90254a65
DN
5774static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5775 unsigned long addr, pte_t ptent)
4ffef5fe 5776{
90254a65 5777 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5778
90254a65
DN
5779 if (!page || !page_mapped(page))
5780 return NULL;
5781 if (PageAnon(page)) {
5782 /* we don't move shared anon */
4b91355e 5783 if (!move_anon())
90254a65 5784 return NULL;
87946a72
DN
5785 } else if (!move_file())
5786 /* we ignore mapcount for file pages */
90254a65
DN
5787 return NULL;
5788 if (!get_page_unless_zero(page))
5789 return NULL;
5790
5791 return page;
5792}
5793
4b91355e 5794#ifdef CONFIG_SWAP
90254a65
DN
5795static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5796 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5797{
90254a65
DN
5798 struct page *page = NULL;
5799 swp_entry_t ent = pte_to_swp_entry(ptent);
5800
5801 if (!move_anon() || non_swap_entry(ent))
5802 return NULL;
4b91355e
KH
5803 /*
5804 * Because lookup_swap_cache() updates some statistics counter,
5805 * we call find_get_page() with swapper_space directly.
5806 */
33806f06 5807 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5808 if (do_swap_account)
5809 entry->val = ent.val;
5810
5811 return page;
5812}
4b91355e
KH
5813#else
5814static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5815 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5816{
5817 return NULL;
5818}
5819#endif
90254a65 5820
87946a72
DN
5821static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5822 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5823{
5824 struct page *page = NULL;
87946a72
DN
5825 struct address_space *mapping;
5826 pgoff_t pgoff;
5827
5828 if (!vma->vm_file) /* anonymous vma */
5829 return NULL;
5830 if (!move_file())
5831 return NULL;
5832
87946a72
DN
5833 mapping = vma->vm_file->f_mapping;
5834 if (pte_none(ptent))
5835 pgoff = linear_page_index(vma, addr);
5836 else /* pte_file(ptent) is true */
5837 pgoff = pte_to_pgoff(ptent);
5838
5839 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5840#ifdef CONFIG_SWAP
5841 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5842 if (shmem_mapping(mapping)) {
5843 page = find_get_entry(mapping, pgoff);
5844 if (radix_tree_exceptional_entry(page)) {
5845 swp_entry_t swp = radix_to_swp_entry(page);
5846 if (do_swap_account)
5847 *entry = swp;
5848 page = find_get_page(swap_address_space(swp), swp.val);
5849 }
5850 } else
5851 page = find_get_page(mapping, pgoff);
5852#else
5853 page = find_get_page(mapping, pgoff);
aa3b1895 5854#endif
87946a72
DN
5855 return page;
5856}
5857
8d32ff84 5858static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5859 unsigned long addr, pte_t ptent, union mc_target *target)
5860{
5861 struct page *page = NULL;
5862 struct page_cgroup *pc;
8d32ff84 5863 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5864 swp_entry_t ent = { .val = 0 };
5865
5866 if (pte_present(ptent))
5867 page = mc_handle_present_pte(vma, addr, ptent);
5868 else if (is_swap_pte(ptent))
5869 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5870 else if (pte_none(ptent) || pte_file(ptent))
5871 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5872
5873 if (!page && !ent.val)
8d32ff84 5874 return ret;
02491447
DN
5875 if (page) {
5876 pc = lookup_page_cgroup(page);
5877 /*
0a31bc97
JW
5878 * Do only loose check w/o serialization.
5879 * mem_cgroup_move_account() checks the pc is valid or
5880 * not under LRU exclusion.
02491447
DN
5881 */
5882 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5883 ret = MC_TARGET_PAGE;
5884 if (target)
5885 target->page = page;
5886 }
5887 if (!ret || !target)
5888 put_page(page);
5889 }
90254a65
DN
5890 /* There is a swap entry and a page doesn't exist or isn't charged */
5891 if (ent.val && !ret &&
34c00c31 5892 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5893 ret = MC_TARGET_SWAP;
5894 if (target)
5895 target->ent = ent;
4ffef5fe 5896 }
4ffef5fe
DN
5897 return ret;
5898}
5899
12724850
NH
5900#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5901/*
5902 * We don't consider swapping or file mapped pages because THP does not
5903 * support them for now.
5904 * Caller should make sure that pmd_trans_huge(pmd) is true.
5905 */
5906static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5907 unsigned long addr, pmd_t pmd, union mc_target *target)
5908{
5909 struct page *page = NULL;
5910 struct page_cgroup *pc;
5911 enum mc_target_type ret = MC_TARGET_NONE;
5912
5913 page = pmd_page(pmd);
309381fe 5914 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5915 if (!move_anon())
5916 return ret;
5917 pc = lookup_page_cgroup(page);
5918 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5919 ret = MC_TARGET_PAGE;
5920 if (target) {
5921 get_page(page);
5922 target->page = page;
5923 }
5924 }
5925 return ret;
5926}
5927#else
5928static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5929 unsigned long addr, pmd_t pmd, union mc_target *target)
5930{
5931 return MC_TARGET_NONE;
5932}
5933#endif
5934
4ffef5fe
DN
5935static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5936 unsigned long addr, unsigned long end,
5937 struct mm_walk *walk)
5938{
5939 struct vm_area_struct *vma = walk->private;
5940 pte_t *pte;
5941 spinlock_t *ptl;
5942
bf929152 5943 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5944 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5945 mc.precharge += HPAGE_PMD_NR;
bf929152 5946 spin_unlock(ptl);
1a5a9906 5947 return 0;
12724850 5948 }
03319327 5949
45f83cef
AA
5950 if (pmd_trans_unstable(pmd))
5951 return 0;
4ffef5fe
DN
5952 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5953 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5954 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5955 mc.precharge++; /* increment precharge temporarily */
5956 pte_unmap_unlock(pte - 1, ptl);
5957 cond_resched();
5958
7dc74be0
DN
5959 return 0;
5960}
5961
4ffef5fe
DN
5962static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5963{
5964 unsigned long precharge;
5965 struct vm_area_struct *vma;
5966
dfe076b0 5967 down_read(&mm->mmap_sem);
4ffef5fe
DN
5968 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5969 struct mm_walk mem_cgroup_count_precharge_walk = {
5970 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5971 .mm = mm,
5972 .private = vma,
5973 };
5974 if (is_vm_hugetlb_page(vma))
5975 continue;
4ffef5fe
DN
5976 walk_page_range(vma->vm_start, vma->vm_end,
5977 &mem_cgroup_count_precharge_walk);
5978 }
dfe076b0 5979 up_read(&mm->mmap_sem);
4ffef5fe
DN
5980
5981 precharge = mc.precharge;
5982 mc.precharge = 0;
5983
5984 return precharge;
5985}
5986
4ffef5fe
DN
5987static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5988{
dfe076b0
DN
5989 unsigned long precharge = mem_cgroup_count_precharge(mm);
5990
5991 VM_BUG_ON(mc.moving_task);
5992 mc.moving_task = current;
5993 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5994}
5995
dfe076b0
DN
5996/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5997static void __mem_cgroup_clear_mc(void)
4ffef5fe 5998{
2bd9bb20
KH
5999 struct mem_cgroup *from = mc.from;
6000 struct mem_cgroup *to = mc.to;
4050377b 6001 int i;
2bd9bb20 6002
4ffef5fe 6003 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6004 if (mc.precharge) {
00501b53 6005 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6006 mc.precharge = 0;
6007 }
6008 /*
6009 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6010 * we must uncharge here.
6011 */
6012 if (mc.moved_charge) {
00501b53 6013 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6014 mc.moved_charge = 0;
4ffef5fe 6015 }
483c30b5
DN
6016 /* we must fixup refcnts and charges */
6017 if (mc.moved_swap) {
483c30b5 6018 /* uncharge swap account from the old cgroup */
ce00a967
JW
6019 if (!mem_cgroup_is_root(mc.from))
6020 res_counter_uncharge(&mc.from->memsw,
6021 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6022
6023 for (i = 0; i < mc.moved_swap; i++)
6024 css_put(&mc.from->css);
483c30b5 6025
05b84301
JW
6026 /*
6027 * we charged both to->res and to->memsw, so we should
6028 * uncharge to->res.
6029 */
ce00a967
JW
6030 if (!mem_cgroup_is_root(mc.to))
6031 res_counter_uncharge(&mc.to->res,
6032 PAGE_SIZE * mc.moved_swap);
4050377b 6033 /* we've already done css_get(mc.to) */
483c30b5
DN
6034 mc.moved_swap = 0;
6035 }
dfe076b0
DN
6036 memcg_oom_recover(from);
6037 memcg_oom_recover(to);
6038 wake_up_all(&mc.waitq);
6039}
6040
6041static void mem_cgroup_clear_mc(void)
6042{
6043 struct mem_cgroup *from = mc.from;
6044
6045 /*
6046 * we must clear moving_task before waking up waiters at the end of
6047 * task migration.
6048 */
6049 mc.moving_task = NULL;
6050 __mem_cgroup_clear_mc();
2bd9bb20 6051 spin_lock(&mc.lock);
4ffef5fe
DN
6052 mc.from = NULL;
6053 mc.to = NULL;
2bd9bb20 6054 spin_unlock(&mc.lock);
32047e2a 6055 mem_cgroup_end_move(from);
4ffef5fe
DN
6056}
6057
eb95419b 6058static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6059 struct cgroup_taskset *tset)
7dc74be0 6060{
2f7ee569 6061 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6062 int ret = 0;
eb95419b 6063 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6064 unsigned long move_charge_at_immigrate;
7dc74be0 6065
ee5e8472
GC
6066 /*
6067 * We are now commited to this value whatever it is. Changes in this
6068 * tunable will only affect upcoming migrations, not the current one.
6069 * So we need to save it, and keep it going.
6070 */
6071 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6072 if (move_charge_at_immigrate) {
7dc74be0
DN
6073 struct mm_struct *mm;
6074 struct mem_cgroup *from = mem_cgroup_from_task(p);
6075
c0ff4b85 6076 VM_BUG_ON(from == memcg);
7dc74be0
DN
6077
6078 mm = get_task_mm(p);
6079 if (!mm)
6080 return 0;
7dc74be0 6081 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6082 if (mm->owner == p) {
6083 VM_BUG_ON(mc.from);
6084 VM_BUG_ON(mc.to);
6085 VM_BUG_ON(mc.precharge);
854ffa8d 6086 VM_BUG_ON(mc.moved_charge);
483c30b5 6087 VM_BUG_ON(mc.moved_swap);
32047e2a 6088 mem_cgroup_start_move(from);
2bd9bb20 6089 spin_lock(&mc.lock);
4ffef5fe 6090 mc.from = from;
c0ff4b85 6091 mc.to = memcg;
ee5e8472 6092 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6093 spin_unlock(&mc.lock);
dfe076b0 6094 /* We set mc.moving_task later */
4ffef5fe
DN
6095
6096 ret = mem_cgroup_precharge_mc(mm);
6097 if (ret)
6098 mem_cgroup_clear_mc();
dfe076b0
DN
6099 }
6100 mmput(mm);
7dc74be0
DN
6101 }
6102 return ret;
6103}
6104
eb95419b 6105static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6106 struct cgroup_taskset *tset)
7dc74be0 6107{
4ffef5fe 6108 mem_cgroup_clear_mc();
7dc74be0
DN
6109}
6110
4ffef5fe
DN
6111static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6112 unsigned long addr, unsigned long end,
6113 struct mm_walk *walk)
7dc74be0 6114{
4ffef5fe
DN
6115 int ret = 0;
6116 struct vm_area_struct *vma = walk->private;
6117 pte_t *pte;
6118 spinlock_t *ptl;
12724850
NH
6119 enum mc_target_type target_type;
6120 union mc_target target;
6121 struct page *page;
6122 struct page_cgroup *pc;
4ffef5fe 6123
12724850
NH
6124 /*
6125 * We don't take compound_lock() here but no race with splitting thp
6126 * happens because:
6127 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6128 * under splitting, which means there's no concurrent thp split,
6129 * - if another thread runs into split_huge_page() just after we
6130 * entered this if-block, the thread must wait for page table lock
6131 * to be unlocked in __split_huge_page_splitting(), where the main
6132 * part of thp split is not executed yet.
6133 */
bf929152 6134 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6135 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6136 spin_unlock(ptl);
12724850
NH
6137 return 0;
6138 }
6139 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6140 if (target_type == MC_TARGET_PAGE) {
6141 page = target.page;
6142 if (!isolate_lru_page(page)) {
6143 pc = lookup_page_cgroup(page);
6144 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6145 pc, mc.from, mc.to)) {
12724850
NH
6146 mc.precharge -= HPAGE_PMD_NR;
6147 mc.moved_charge += HPAGE_PMD_NR;
6148 }
6149 putback_lru_page(page);
6150 }
6151 put_page(page);
6152 }
bf929152 6153 spin_unlock(ptl);
1a5a9906 6154 return 0;
12724850
NH
6155 }
6156
45f83cef
AA
6157 if (pmd_trans_unstable(pmd))
6158 return 0;
4ffef5fe
DN
6159retry:
6160 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6161 for (; addr != end; addr += PAGE_SIZE) {
6162 pte_t ptent = *(pte++);
02491447 6163 swp_entry_t ent;
4ffef5fe
DN
6164
6165 if (!mc.precharge)
6166 break;
6167
8d32ff84 6168 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6169 case MC_TARGET_PAGE:
6170 page = target.page;
6171 if (isolate_lru_page(page))
6172 goto put;
6173 pc = lookup_page_cgroup(page);
7ec99d62 6174 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6175 mc.from, mc.to)) {
4ffef5fe 6176 mc.precharge--;
854ffa8d
DN
6177 /* we uncharge from mc.from later. */
6178 mc.moved_charge++;
4ffef5fe
DN
6179 }
6180 putback_lru_page(page);
8d32ff84 6181put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6182 put_page(page);
6183 break;
02491447
DN
6184 case MC_TARGET_SWAP:
6185 ent = target.ent;
e91cbb42 6186 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6187 mc.precharge--;
483c30b5
DN
6188 /* we fixup refcnts and charges later. */
6189 mc.moved_swap++;
6190 }
02491447 6191 break;
4ffef5fe
DN
6192 default:
6193 break;
6194 }
6195 }
6196 pte_unmap_unlock(pte - 1, ptl);
6197 cond_resched();
6198
6199 if (addr != end) {
6200 /*
6201 * We have consumed all precharges we got in can_attach().
6202 * We try charge one by one, but don't do any additional
6203 * charges to mc.to if we have failed in charge once in attach()
6204 * phase.
6205 */
854ffa8d 6206 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6207 if (!ret)
6208 goto retry;
6209 }
6210
6211 return ret;
6212}
6213
6214static void mem_cgroup_move_charge(struct mm_struct *mm)
6215{
6216 struct vm_area_struct *vma;
6217
6218 lru_add_drain_all();
dfe076b0
DN
6219retry:
6220 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6221 /*
6222 * Someone who are holding the mmap_sem might be waiting in
6223 * waitq. So we cancel all extra charges, wake up all waiters,
6224 * and retry. Because we cancel precharges, we might not be able
6225 * to move enough charges, but moving charge is a best-effort
6226 * feature anyway, so it wouldn't be a big problem.
6227 */
6228 __mem_cgroup_clear_mc();
6229 cond_resched();
6230 goto retry;
6231 }
4ffef5fe
DN
6232 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6233 int ret;
6234 struct mm_walk mem_cgroup_move_charge_walk = {
6235 .pmd_entry = mem_cgroup_move_charge_pte_range,
6236 .mm = mm,
6237 .private = vma,
6238 };
6239 if (is_vm_hugetlb_page(vma))
6240 continue;
4ffef5fe
DN
6241 ret = walk_page_range(vma->vm_start, vma->vm_end,
6242 &mem_cgroup_move_charge_walk);
6243 if (ret)
6244 /*
6245 * means we have consumed all precharges and failed in
6246 * doing additional charge. Just abandon here.
6247 */
6248 break;
6249 }
dfe076b0 6250 up_read(&mm->mmap_sem);
7dc74be0
DN
6251}
6252
eb95419b 6253static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6254 struct cgroup_taskset *tset)
67e465a7 6255{
2f7ee569 6256 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6257 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6258
dfe076b0 6259 if (mm) {
a433658c
KM
6260 if (mc.to)
6261 mem_cgroup_move_charge(mm);
dfe076b0
DN
6262 mmput(mm);
6263 }
a433658c
KM
6264 if (mc.to)
6265 mem_cgroup_clear_mc();
67e465a7 6266}
5cfb80a7 6267#else /* !CONFIG_MMU */
eb95419b 6268static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6269 struct cgroup_taskset *tset)
5cfb80a7
DN
6270{
6271 return 0;
6272}
eb95419b 6273static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6274 struct cgroup_taskset *tset)
5cfb80a7
DN
6275{
6276}
eb95419b 6277static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6278 struct cgroup_taskset *tset)
5cfb80a7
DN
6279{
6280}
6281#endif
67e465a7 6282
f00baae7
TH
6283/*
6284 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6285 * to verify whether we're attached to the default hierarchy on each mount
6286 * attempt.
f00baae7 6287 */
eb95419b 6288static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6289{
6290 /*
aa6ec29b 6291 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6292 * guarantees that @root doesn't have any children, so turning it
6293 * on for the root memcg is enough.
6294 */
aa6ec29b 6295 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 6296 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6297}
6298
073219e9 6299struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6300 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6301 .css_online = mem_cgroup_css_online,
92fb9748
TH
6302 .css_offline = mem_cgroup_css_offline,
6303 .css_free = mem_cgroup_css_free,
1ced953b 6304 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6305 .can_attach = mem_cgroup_can_attach,
6306 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6307 .attach = mem_cgroup_move_task,
f00baae7 6308 .bind = mem_cgroup_bind,
5577964e 6309 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 6310 .early_init = 0,
8cdea7c0 6311};
c077719b 6312
c255a458 6313#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6314static int __init enable_swap_account(char *s)
6315{
a2c8990a 6316 if (!strcmp(s, "1"))
a42c390c 6317 really_do_swap_account = 1;
a2c8990a 6318 else if (!strcmp(s, "0"))
a42c390c
MH
6319 really_do_swap_account = 0;
6320 return 1;
6321}
a2c8990a 6322__setup("swapaccount=", enable_swap_account);
c077719b 6323
2d11085e
MH
6324static void __init memsw_file_init(void)
6325{
2cf669a5
TH
6326 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6327 memsw_cgroup_files));
6acc8b02
MH
6328}
6329
6330static void __init enable_swap_cgroup(void)
6331{
6332 if (!mem_cgroup_disabled() && really_do_swap_account) {
6333 do_swap_account = 1;
6334 memsw_file_init();
6335 }
2d11085e 6336}
6acc8b02 6337
2d11085e 6338#else
6acc8b02 6339static void __init enable_swap_cgroup(void)
2d11085e
MH
6340{
6341}
c077719b 6342#endif
2d11085e 6343
0a31bc97
JW
6344#ifdef CONFIG_MEMCG_SWAP
6345/**
6346 * mem_cgroup_swapout - transfer a memsw charge to swap
6347 * @page: page whose memsw charge to transfer
6348 * @entry: swap entry to move the charge to
6349 *
6350 * Transfer the memsw charge of @page to @entry.
6351 */
6352void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6353{
6354 struct page_cgroup *pc;
6355 unsigned short oldid;
6356
6357 VM_BUG_ON_PAGE(PageLRU(page), page);
6358 VM_BUG_ON_PAGE(page_count(page), page);
6359
6360 if (!do_swap_account)
6361 return;
6362
6363 pc = lookup_page_cgroup(page);
6364
6365 /* Readahead page, never charged */
6366 if (!PageCgroupUsed(pc))
6367 return;
6368
6369 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6370
6371 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6372 VM_BUG_ON_PAGE(oldid, page);
6373
6374 pc->flags &= ~PCG_MEMSW;
6375 css_get(&pc->mem_cgroup->css);
6376 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6377}
6378
6379/**
6380 * mem_cgroup_uncharge_swap - uncharge a swap entry
6381 * @entry: swap entry to uncharge
6382 *
6383 * Drop the memsw charge associated with @entry.
6384 */
6385void mem_cgroup_uncharge_swap(swp_entry_t entry)
6386{
6387 struct mem_cgroup *memcg;
6388 unsigned short id;
6389
6390 if (!do_swap_account)
6391 return;
6392
6393 id = swap_cgroup_record(entry, 0);
6394 rcu_read_lock();
6395 memcg = mem_cgroup_lookup(id);
6396 if (memcg) {
ce00a967
JW
6397 if (!mem_cgroup_is_root(memcg))
6398 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0a31bc97
JW
6399 mem_cgroup_swap_statistics(memcg, false);
6400 css_put(&memcg->css);
6401 }
6402 rcu_read_unlock();
6403}
6404#endif
6405
00501b53
JW
6406/**
6407 * mem_cgroup_try_charge - try charging a page
6408 * @page: page to charge
6409 * @mm: mm context of the victim
6410 * @gfp_mask: reclaim mode
6411 * @memcgp: charged memcg return
6412 *
6413 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6414 * pages according to @gfp_mask if necessary.
6415 *
6416 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6417 * Otherwise, an error code is returned.
6418 *
6419 * After page->mapping has been set up, the caller must finalize the
6420 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6421 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6422 */
6423int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6424 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6425{
6426 struct mem_cgroup *memcg = NULL;
6427 unsigned int nr_pages = 1;
6428 int ret = 0;
6429
6430 if (mem_cgroup_disabled())
6431 goto out;
6432
6433 if (PageSwapCache(page)) {
6434 struct page_cgroup *pc = lookup_page_cgroup(page);
6435 /*
6436 * Every swap fault against a single page tries to charge the
6437 * page, bail as early as possible. shmem_unuse() encounters
6438 * already charged pages, too. The USED bit is protected by
6439 * the page lock, which serializes swap cache removal, which
6440 * in turn serializes uncharging.
6441 */
6442 if (PageCgroupUsed(pc))
6443 goto out;
6444 }
6445
6446 if (PageTransHuge(page)) {
6447 nr_pages <<= compound_order(page);
6448 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6449 }
6450
6451 if (do_swap_account && PageSwapCache(page))
6452 memcg = try_get_mem_cgroup_from_page(page);
6453 if (!memcg)
6454 memcg = get_mem_cgroup_from_mm(mm);
6455
6456 ret = try_charge(memcg, gfp_mask, nr_pages);
6457
6458 css_put(&memcg->css);
6459
6460 if (ret == -EINTR) {
6461 memcg = root_mem_cgroup;
6462 ret = 0;
6463 }
6464out:
6465 *memcgp = memcg;
6466 return ret;
6467}
6468
6469/**
6470 * mem_cgroup_commit_charge - commit a page charge
6471 * @page: page to charge
6472 * @memcg: memcg to charge the page to
6473 * @lrucare: page might be on LRU already
6474 *
6475 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6476 * after page->mapping has been set up. This must happen atomically
6477 * as part of the page instantiation, i.e. under the page table lock
6478 * for anonymous pages, under the page lock for page and swap cache.
6479 *
6480 * In addition, the page must not be on the LRU during the commit, to
6481 * prevent racing with task migration. If it might be, use @lrucare.
6482 *
6483 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6484 */
6485void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6486 bool lrucare)
6487{
6488 unsigned int nr_pages = 1;
6489
6490 VM_BUG_ON_PAGE(!page->mapping, page);
6491 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6492
6493 if (mem_cgroup_disabled())
6494 return;
6495 /*
6496 * Swap faults will attempt to charge the same page multiple
6497 * times. But reuse_swap_page() might have removed the page
6498 * from swapcache already, so we can't check PageSwapCache().
6499 */
6500 if (!memcg)
6501 return;
6502
6abb5a86
JW
6503 commit_charge(page, memcg, lrucare);
6504
00501b53
JW
6505 if (PageTransHuge(page)) {
6506 nr_pages <<= compound_order(page);
6507 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6508 }
6509
6abb5a86
JW
6510 local_irq_disable();
6511 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6512 memcg_check_events(memcg, page);
6513 local_irq_enable();
00501b53
JW
6514
6515 if (do_swap_account && PageSwapCache(page)) {
6516 swp_entry_t entry = { .val = page_private(page) };
6517 /*
6518 * The swap entry might not get freed for a long time,
6519 * let's not wait for it. The page already received a
6520 * memory+swap charge, drop the swap entry duplicate.
6521 */
6522 mem_cgroup_uncharge_swap(entry);
6523 }
6524}
6525
6526/**
6527 * mem_cgroup_cancel_charge - cancel a page charge
6528 * @page: page to charge
6529 * @memcg: memcg to charge the page to
6530 *
6531 * Cancel a charge transaction started by mem_cgroup_try_charge().
6532 */
6533void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6534{
6535 unsigned int nr_pages = 1;
6536
6537 if (mem_cgroup_disabled())
6538 return;
6539 /*
6540 * Swap faults will attempt to charge the same page multiple
6541 * times. But reuse_swap_page() might have removed the page
6542 * from swapcache already, so we can't check PageSwapCache().
6543 */
6544 if (!memcg)
6545 return;
6546
6547 if (PageTransHuge(page)) {
6548 nr_pages <<= compound_order(page);
6549 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6550 }
6551
6552 cancel_charge(memcg, nr_pages);
6553}
6554
747db954
JW
6555static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6556 unsigned long nr_mem, unsigned long nr_memsw,
6557 unsigned long nr_anon, unsigned long nr_file,
6558 unsigned long nr_huge, struct page *dummy_page)
6559{
6560 unsigned long flags;
6561
ce00a967
JW
6562 if (!mem_cgroup_is_root(memcg)) {
6563 if (nr_mem)
6564 res_counter_uncharge(&memcg->res,
6565 nr_mem * PAGE_SIZE);
6566 if (nr_memsw)
6567 res_counter_uncharge(&memcg->memsw,
6568 nr_memsw * PAGE_SIZE);
6569 memcg_oom_recover(memcg);
6570 }
747db954
JW
6571
6572 local_irq_save(flags);
6573 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6574 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6575 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6576 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6577 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6578 memcg_check_events(memcg, dummy_page);
6579 local_irq_restore(flags);
6580}
6581
6582static void uncharge_list(struct list_head *page_list)
6583{
6584 struct mem_cgroup *memcg = NULL;
6585 unsigned long nr_memsw = 0;
6586 unsigned long nr_anon = 0;
6587 unsigned long nr_file = 0;
6588 unsigned long nr_huge = 0;
6589 unsigned long pgpgout = 0;
6590 unsigned long nr_mem = 0;
6591 struct list_head *next;
6592 struct page *page;
6593
6594 next = page_list->next;
6595 do {
6596 unsigned int nr_pages = 1;
6597 struct page_cgroup *pc;
6598
6599 page = list_entry(next, struct page, lru);
6600 next = page->lru.next;
6601
6602 VM_BUG_ON_PAGE(PageLRU(page), page);
6603 VM_BUG_ON_PAGE(page_count(page), page);
6604
6605 pc = lookup_page_cgroup(page);
6606 if (!PageCgroupUsed(pc))
6607 continue;
6608
6609 /*
6610 * Nobody should be changing or seriously looking at
6611 * pc->mem_cgroup and pc->flags at this point, we have
6612 * fully exclusive access to the page.
6613 */
6614
6615 if (memcg != pc->mem_cgroup) {
6616 if (memcg) {
6617 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6618 nr_anon, nr_file, nr_huge, page);
6619 pgpgout = nr_mem = nr_memsw = 0;
6620 nr_anon = nr_file = nr_huge = 0;
6621 }
6622 memcg = pc->mem_cgroup;
6623 }
6624
6625 if (PageTransHuge(page)) {
6626 nr_pages <<= compound_order(page);
6627 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6628 nr_huge += nr_pages;
6629 }
6630
6631 if (PageAnon(page))
6632 nr_anon += nr_pages;
6633 else
6634 nr_file += nr_pages;
6635
6636 if (pc->flags & PCG_MEM)
6637 nr_mem += nr_pages;
6638 if (pc->flags & PCG_MEMSW)
6639 nr_memsw += nr_pages;
6640 pc->flags = 0;
6641
6642 pgpgout++;
6643 } while (next != page_list);
6644
6645 if (memcg)
6646 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6647 nr_anon, nr_file, nr_huge, page);
6648}
6649
0a31bc97
JW
6650/**
6651 * mem_cgroup_uncharge - uncharge a page
6652 * @page: page to uncharge
6653 *
6654 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6655 * mem_cgroup_commit_charge().
6656 */
6657void mem_cgroup_uncharge(struct page *page)
6658{
0a31bc97 6659 struct page_cgroup *pc;
0a31bc97
JW
6660
6661 if (mem_cgroup_disabled())
6662 return;
6663
747db954 6664 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6665 pc = lookup_page_cgroup(page);
0a31bc97
JW
6666 if (!PageCgroupUsed(pc))
6667 return;
6668
747db954
JW
6669 INIT_LIST_HEAD(&page->lru);
6670 uncharge_list(&page->lru);
6671}
0a31bc97 6672
747db954
JW
6673/**
6674 * mem_cgroup_uncharge_list - uncharge a list of page
6675 * @page_list: list of pages to uncharge
6676 *
6677 * Uncharge a list of pages previously charged with
6678 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6679 */
6680void mem_cgroup_uncharge_list(struct list_head *page_list)
6681{
6682 if (mem_cgroup_disabled())
6683 return;
0a31bc97 6684
747db954
JW
6685 if (!list_empty(page_list))
6686 uncharge_list(page_list);
0a31bc97
JW
6687}
6688
6689/**
6690 * mem_cgroup_migrate - migrate a charge to another page
6691 * @oldpage: currently charged page
6692 * @newpage: page to transfer the charge to
6693 * @lrucare: both pages might be on the LRU already
6694 *
6695 * Migrate the charge from @oldpage to @newpage.
6696 *
6697 * Both pages must be locked, @newpage->mapping must be set up.
6698 */
6699void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6700 bool lrucare)
6701{
0a31bc97
JW
6702 struct page_cgroup *pc;
6703 int isolated;
6704
6705 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6706 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6707 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6708 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6709 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6710 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6711 newpage);
0a31bc97
JW
6712
6713 if (mem_cgroup_disabled())
6714 return;
6715
6716 /* Page cache replacement: new page already charged? */
6717 pc = lookup_page_cgroup(newpage);
6718 if (PageCgroupUsed(pc))
6719 return;
6720
6721 /* Re-entrant migration: old page already uncharged? */
6722 pc = lookup_page_cgroup(oldpage);
6723 if (!PageCgroupUsed(pc))
6724 return;
6725
6726 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6727 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6728
0a31bc97
JW
6729 if (lrucare)
6730 lock_page_lru(oldpage, &isolated);
6731
6732 pc->flags = 0;
6733
6734 if (lrucare)
6735 unlock_page_lru(oldpage, isolated);
6736
6abb5a86 6737 commit_charge(newpage, pc->mem_cgroup, lrucare);
0a31bc97
JW
6738}
6739
2d11085e 6740/*
1081312f
MH
6741 * subsys_initcall() for memory controller.
6742 *
6743 * Some parts like hotcpu_notifier() have to be initialized from this context
6744 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6745 * everything that doesn't depend on a specific mem_cgroup structure should
6746 * be initialized from here.
2d11085e
MH
6747 */
6748static int __init mem_cgroup_init(void)
6749{
6750 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6751 enable_swap_cgroup();
bb4cc1a8 6752 mem_cgroup_soft_limit_tree_init();
e4777496 6753 memcg_stock_init();
2d11085e
MH
6754 return 0;
6755}
6756subsys_initcall(mem_cgroup_init);