memblock: Remove memblock_memory_can_coalesce()
[linux-block.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885
BH
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
95f72d1e
YL
21#include <linux/memblock.h>
22
10d06439 23struct memblock memblock __initdata_memblock;
95f72d1e 24
10d06439
YL
25int memblock_debug __initdata_memblock;
26int memblock_can_resize __initdata_memblock;
27static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
28static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
95f72d1e 29
142b45a7
BH
30/* inline so we don't get a warning when pr_debug is compiled out */
31static inline const char *memblock_type_name(struct memblock_type *type)
32{
33 if (type == &memblock.memory)
34 return "memory";
35 else if (type == &memblock.reserved)
36 return "reserved";
37 else
38 return "unknown";
39}
40
6ed311b2
BH
41/*
42 * Address comparison utilities
43 */
10d06439 44static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 45 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
46{
47 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
48}
49
10d06439 50long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
6ed311b2
BH
51{
52 unsigned long i;
53
54 for (i = 0; i < type->cnt; i++) {
55 phys_addr_t rgnbase = type->regions[i].base;
56 phys_addr_t rgnsize = type->regions[i].size;
57 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
58 break;
59 }
60
61 return (i < type->cnt) ? i : -1;
62}
63
64/*
65 * Find, allocate, deallocate or reserve unreserved regions. All allocations
66 * are top-down.
67 */
68
cd79481d 69static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
6ed311b2
BH
70 phys_addr_t size, phys_addr_t align)
71{
72 phys_addr_t base, res_base;
73 long j;
74
f1af98c7
YL
75 /* In case, huge size is requested */
76 if (end < size)
1f5026a7 77 return 0;
f1af98c7 78
348968eb 79 base = round_down(end - size, align);
f1af98c7 80
25818f0f
BH
81 /* Prevent allocations returning 0 as it's also used to
82 * indicate an allocation failure
83 */
84 if (start == 0)
85 start = PAGE_SIZE;
86
6ed311b2
BH
87 while (start <= base) {
88 j = memblock_overlaps_region(&memblock.reserved, base, size);
89 if (j < 0)
90 return base;
91 res_base = memblock.reserved.regions[j].base;
92 if (res_base < size)
93 break;
348968eb 94 base = round_down(res_base - size, align);
6ed311b2
BH
95 }
96
1f5026a7 97 return 0;
6ed311b2
BH
98}
99
fc769a8e
TH
100/*
101 * Find a free area with specified alignment in a specific range.
102 */
103phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end,
104 phys_addr_t size, phys_addr_t align)
6ed311b2
BH
105{
106 long i;
6ed311b2
BH
107
108 BUG_ON(0 == size);
109
6ed311b2 110 /* Pump up max_addr */
fef501d4
BH
111 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
112 end = memblock.current_limit;
6ed311b2
BH
113
114 /* We do a top-down search, this tends to limit memory
115 * fragmentation by keeping early boot allocs near the
116 * top of memory
117 */
118 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
119 phys_addr_t memblockbase = memblock.memory.regions[i].base;
120 phys_addr_t memblocksize = memblock.memory.regions[i].size;
fef501d4 121 phys_addr_t bottom, top, found;
6ed311b2
BH
122
123 if (memblocksize < size)
124 continue;
fef501d4
BH
125 if ((memblockbase + memblocksize) <= start)
126 break;
127 bottom = max(memblockbase, start);
128 top = min(memblockbase + memblocksize, end);
129 if (bottom >= top)
130 continue;
131 found = memblock_find_region(bottom, top, size, align);
1f5026a7 132 if (found)
fef501d4 133 return found;
6ed311b2 134 }
1f5026a7 135 return 0;
6ed311b2
BH
136}
137
7950c407
YL
138/*
139 * Free memblock.reserved.regions
140 */
141int __init_memblock memblock_free_reserved_regions(void)
142{
143 if (memblock.reserved.regions == memblock_reserved_init_regions)
144 return 0;
145
146 return memblock_free(__pa(memblock.reserved.regions),
147 sizeof(struct memblock_region) * memblock.reserved.max);
148}
149
150/*
151 * Reserve memblock.reserved.regions
152 */
153int __init_memblock memblock_reserve_reserved_regions(void)
154{
155 if (memblock.reserved.regions == memblock_reserved_init_regions)
156 return 0;
157
158 return memblock_reserve(__pa(memblock.reserved.regions),
159 sizeof(struct memblock_region) * memblock.reserved.max);
160}
161
10d06439 162static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e
YL
163{
164 unsigned long i;
165
e3239ff9
BH
166 for (i = r; i < type->cnt - 1; i++) {
167 type->regions[i].base = type->regions[i + 1].base;
168 type->regions[i].size = type->regions[i + 1].size;
95f72d1e 169 }
e3239ff9 170 type->cnt--;
95f72d1e 171
8f7a6605
BH
172 /* Special case for empty arrays */
173 if (type->cnt == 0) {
174 type->cnt = 1;
175 type->regions[0].base = 0;
176 type->regions[0].size = 0;
177 }
95f72d1e
YL
178}
179
142b45a7
BH
180/* Defined below but needed now */
181static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
182
10d06439 183static int __init_memblock memblock_double_array(struct memblock_type *type)
142b45a7
BH
184{
185 struct memblock_region *new_array, *old_array;
186 phys_addr_t old_size, new_size, addr;
187 int use_slab = slab_is_available();
188
189 /* We don't allow resizing until we know about the reserved regions
190 * of memory that aren't suitable for allocation
191 */
192 if (!memblock_can_resize)
193 return -1;
194
142b45a7
BH
195 /* Calculate new doubled size */
196 old_size = type->max * sizeof(struct memblock_region);
197 new_size = old_size << 1;
198
199 /* Try to find some space for it.
200 *
201 * WARNING: We assume that either slab_is_available() and we use it or
202 * we use MEMBLOCK for allocations. That means that this is unsafe to use
203 * when bootmem is currently active (unless bootmem itself is implemented
204 * on top of MEMBLOCK which isn't the case yet)
205 *
206 * This should however not be an issue for now, as we currently only
207 * call into MEMBLOCK while it's still active, or much later when slab is
208 * active for memory hotplug operations
209 */
210 if (use_slab) {
211 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 212 addr = new_array ? __pa(new_array) : 0;
142b45a7 213 } else
fc769a8e 214 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
1f5026a7 215 if (!addr) {
142b45a7
BH
216 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
217 memblock_type_name(type), type->max, type->max * 2);
218 return -1;
219 }
220 new_array = __va(addr);
221
ea9e4376
YL
222 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
223 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
224
142b45a7
BH
225 /* Found space, we now need to move the array over before
226 * we add the reserved region since it may be our reserved
227 * array itself that is full.
228 */
229 memcpy(new_array, type->regions, old_size);
230 memset(new_array + type->max, 0, old_size);
231 old_array = type->regions;
232 type->regions = new_array;
233 type->max <<= 1;
234
235 /* If we use SLAB that's it, we are done */
236 if (use_slab)
237 return 0;
238
239 /* Add the new reserved region now. Should not fail ! */
8f7a6605 240 BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
142b45a7
BH
241
242 /* If the array wasn't our static init one, then free it. We only do
243 * that before SLAB is available as later on, we don't know whether
244 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
245 * anyways
246 */
247 if (old_array != memblock_memory_init_regions &&
248 old_array != memblock_reserved_init_regions)
249 memblock_free(__pa(old_array), old_size);
250
251 return 0;
252}
253
8f7a6605
BH
254static long __init_memblock memblock_add_region(struct memblock_type *type,
255 phys_addr_t base, phys_addr_t size)
95f72d1e 256{
8f7a6605
BH
257 phys_addr_t end = base + size;
258 int i, slot = -1;
95f72d1e 259
8f7a6605 260 /* First try and coalesce this MEMBLOCK with others */
e3239ff9 261 for (i = 0; i < type->cnt; i++) {
8f7a6605
BH
262 struct memblock_region *rgn = &type->regions[i];
263 phys_addr_t rend = rgn->base + rgn->size;
264
265 /* Exit if there's no possible hits */
266 if (rgn->base > end || rgn->size == 0)
267 break;
95f72d1e 268
8f7a6605
BH
269 /* Check if we are fully enclosed within an existing
270 * block
271 */
272 if (rgn->base <= base && rend >= end)
95f72d1e
YL
273 return 0;
274
8f7a6605
BH
275 /* Check if we overlap or are adjacent with the bottom
276 * of a block.
277 */
278 if (base < rgn->base && end >= rgn->base) {
8f7a6605
BH
279 /* We extend the bottom of the block down to our
280 * base
281 */
282 rgn->base = base;
283 rgn->size = rend - base;
284
285 /* Return if we have nothing else to allocate
286 * (fully coalesced)
287 */
288 if (rend >= end)
289 return 0;
290
291 /* We continue processing from the end of the
292 * coalesced block.
293 */
294 base = rend;
295 size = end - base;
296 }
297
298 /* Now check if we overlap or are adjacent with the
299 * top of a block
300 */
301 if (base <= rend && end >= rend) {
8f7a6605
BH
302 /* We adjust our base down to enclose the
303 * original block and destroy it. It will be
304 * part of our new allocation. Since we've
305 * freed an entry, we know we won't fail
306 * to allocate one later, so we won't risk
307 * losing the original block allocation.
308 */
309 size += (base - rgn->base);
310 base = rgn->base;
311 memblock_remove_region(type, i--);
95f72d1e
YL
312 }
313 }
314
8f7a6605
BH
315 /* If the array is empty, special case, replace the fake
316 * filler region and return
d2cd563b 317 */
8f7a6605
BH
318 if ((type->cnt == 1) && (type->regions[0].size == 0)) {
319 type->regions[0].base = base;
320 type->regions[0].size = size;
321 return 0;
95f72d1e
YL
322 }
323
142b45a7
BH
324 /* If we are out of space, we fail. It's too late to resize the array
325 * but then this shouldn't have happened in the first place.
326 */
327 if (WARN_ON(type->cnt >= type->max))
95f72d1e
YL
328 return -1;
329
330 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
e3239ff9
BH
331 for (i = type->cnt - 1; i >= 0; i--) {
332 if (base < type->regions[i].base) {
333 type->regions[i+1].base = type->regions[i].base;
334 type->regions[i+1].size = type->regions[i].size;
95f72d1e 335 } else {
e3239ff9
BH
336 type->regions[i+1].base = base;
337 type->regions[i+1].size = size;
8f7a6605 338 slot = i + 1;
95f72d1e
YL
339 break;
340 }
341 }
e3239ff9
BH
342 if (base < type->regions[0].base) {
343 type->regions[0].base = base;
344 type->regions[0].size = size;
8f7a6605 345 slot = 0;
95f72d1e 346 }
e3239ff9 347 type->cnt++;
95f72d1e 348
142b45a7
BH
349 /* The array is full ? Try to resize it. If that fails, we undo
350 * our allocation and return an error
351 */
352 if (type->cnt == type->max && memblock_double_array(type)) {
8f7a6605
BH
353 BUG_ON(slot < 0);
354 memblock_remove_region(type, slot);
142b45a7
BH
355 return -1;
356 }
357
95f72d1e
YL
358 return 0;
359}
360
10d06439 361long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
95f72d1e 362{
e3239ff9 363 return memblock_add_region(&memblock.memory, base, size);
95f72d1e
YL
364
365}
366
8f7a6605
BH
367static long __init_memblock __memblock_remove(struct memblock_type *type,
368 phys_addr_t base, phys_addr_t size)
95f72d1e 369{
2898cc4c 370 phys_addr_t end = base + size;
95f72d1e
YL
371 int i;
372
8f7a6605
BH
373 /* Walk through the array for collisions */
374 for (i = 0; i < type->cnt; i++) {
375 struct memblock_region *rgn = &type->regions[i];
376 phys_addr_t rend = rgn->base + rgn->size;
95f72d1e 377
8f7a6605
BH
378 /* Nothing more to do, exit */
379 if (rgn->base > end || rgn->size == 0)
95f72d1e 380 break;
95f72d1e 381
8f7a6605
BH
382 /* If we fully enclose the block, drop it */
383 if (base <= rgn->base && end >= rend) {
384 memblock_remove_region(type, i--);
385 continue;
386 }
95f72d1e 387
8f7a6605
BH
388 /* If we are fully enclosed within a block
389 * then we need to split it and we are done
390 */
391 if (base > rgn->base && end < rend) {
392 rgn->size = base - rgn->base;
393 if (!memblock_add_region(type, end, rend - end))
394 return 0;
395 /* Failure to split is bad, we at least
396 * restore the block before erroring
397 */
398 rgn->size = rend - rgn->base;
399 WARN_ON(1);
400 return -1;
401 }
95f72d1e 402
8f7a6605
BH
403 /* Check if we need to trim the bottom of a block */
404 if (rgn->base < end && rend > end) {
405 rgn->size -= end - rgn->base;
406 rgn->base = end;
407 break;
408 }
95f72d1e 409
8f7a6605
BH
410 /* And check if we need to trim the top of a block */
411 if (base < rend)
412 rgn->size -= rend - base;
95f72d1e 413
8f7a6605
BH
414 }
415 return 0;
95f72d1e
YL
416}
417
10d06439 418long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e
YL
419{
420 return __memblock_remove(&memblock.memory, base, size);
421}
422
3661ca66 423long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e
YL
424{
425 return __memblock_remove(&memblock.reserved, base, size);
426}
427
3661ca66 428long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 429{
e3239ff9 430 struct memblock_type *_rgn = &memblock.reserved;
95f72d1e
YL
431
432 BUG_ON(0 == size);
433
434 return memblock_add_region(_rgn, base, size);
435}
436
6ed311b2 437phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 438{
6ed311b2 439 phys_addr_t found;
95f72d1e 440
6ed311b2
BH
441 /* We align the size to limit fragmentation. Without this, a lot of
442 * small allocs quickly eat up the whole reserve array on sparc
443 */
348968eb 444 size = round_up(size, align);
95f72d1e 445
fc769a8e 446 found = memblock_find_in_range(0, max_addr, size, align);
1f5026a7 447 if (found && !memblock_add_region(&memblock.reserved, found, size))
6ed311b2 448 return found;
95f72d1e 449
6ed311b2 450 return 0;
95f72d1e
YL
451}
452
6ed311b2 453phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 454{
6ed311b2
BH
455 phys_addr_t alloc;
456
457 alloc = __memblock_alloc_base(size, align, max_addr);
458
459 if (alloc == 0)
460 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
461 (unsigned long long) size, (unsigned long long) max_addr);
462
463 return alloc;
95f72d1e
YL
464}
465
6ed311b2 466phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 467{
6ed311b2
BH
468 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
469}
95f72d1e 470
95f72d1e 471
6ed311b2 472/*
34e18455 473 * Additional node-local top-down allocators.
c196f76f
BH
474 *
475 * WARNING: Only available after early_node_map[] has been populated,
476 * on some architectures, that is after all the calls to add_active_range()
477 * have been done to populate it.
6ed311b2 478 */
95f72d1e 479
34e18455
TH
480static phys_addr_t __init memblock_nid_range_rev(phys_addr_t start,
481 phys_addr_t end, int *nid)
c3f72b57 482{
c196f76f 483#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
c196f76f
BH
484 unsigned long start_pfn, end_pfn;
485 int i;
486
b2fea988 487 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, nid)
34e18455
TH
488 if (end > PFN_PHYS(start_pfn) && end <= PFN_PHYS(end_pfn))
489 return max(start, PFN_PHYS(start_pfn));
c196f76f 490#endif
c3f72b57 491 *nid = 0;
34e18455 492 return start;
c3f72b57
BH
493}
494
e6498040
TH
495phys_addr_t __init memblock_find_in_range_node(phys_addr_t start,
496 phys_addr_t end,
2898cc4c
BH
497 phys_addr_t size,
498 phys_addr_t align, int nid)
95f72d1e 499{
e6498040
TH
500 struct memblock_type *mem = &memblock.memory;
501 int i;
95f72d1e 502
e6498040 503 BUG_ON(0 == size);
95f72d1e 504
e6498040
TH
505 /* Pump up max_addr */
506 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
507 end = memblock.current_limit;
95f72d1e 508
e6498040
TH
509 for (i = mem->cnt - 1; i >= 0; i--) {
510 struct memblock_region *r = &mem->regions[i];
511 phys_addr_t base = max(start, r->base);
512 phys_addr_t top = min(end, r->base + r->size);
513
514 while (base < top) {
515 phys_addr_t tbase, ret;
516 int tnid;
517
518 tbase = memblock_nid_range_rev(base, top, &tnid);
519 if (nid == MAX_NUMNODES || tnid == nid) {
520 ret = memblock_find_region(tbase, top, size, align);
521 if (ret)
522 return ret;
523 }
524 top = tbase;
95f72d1e 525 }
95f72d1e 526 }
e6498040 527
1f5026a7 528 return 0;
95f72d1e
YL
529}
530
2898cc4c 531phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
95f72d1e 532{
e6498040 533 phys_addr_t found;
95f72d1e 534
e6498040
TH
535 /*
536 * We align the size to limit fragmentation. Without this, a lot of
7f219c73
BH
537 * small allocs quickly eat up the whole reserve array on sparc
538 */
348968eb 539 size = round_up(size, align);
7f219c73 540
e6498040
TH
541 found = memblock_find_in_range_node(0, MEMBLOCK_ALLOC_ACCESSIBLE,
542 size, align, nid);
543 if (found && !memblock_add_region(&memblock.reserved, found, size))
544 return found;
95f72d1e 545
9d1e2492
BH
546 return 0;
547}
548
549phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
550{
551 phys_addr_t res = memblock_alloc_nid(size, align, nid);
552
553 if (res)
554 return res;
15fb0972 555 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
556}
557
9d1e2492
BH
558
559/*
560 * Remaining API functions
561 */
562
95f72d1e 563/* You must call memblock_analyze() before this. */
2898cc4c 564phys_addr_t __init memblock_phys_mem_size(void)
95f72d1e 565{
4734b594 566 return memblock.memory_size;
95f72d1e
YL
567}
568
10d06439 569phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
570{
571 int idx = memblock.memory.cnt - 1;
572
e3239ff9 573 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
574}
575
576/* You must call memblock_analyze() after this. */
2898cc4c 577void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
95f72d1e
YL
578{
579 unsigned long i;
2898cc4c 580 phys_addr_t limit;
e3239ff9 581 struct memblock_region *p;
95f72d1e
YL
582
583 if (!memory_limit)
584 return;
585
586 /* Truncate the memblock regions to satisfy the memory limit. */
587 limit = memory_limit;
588 for (i = 0; i < memblock.memory.cnt; i++) {
e3239ff9
BH
589 if (limit > memblock.memory.regions[i].size) {
590 limit -= memblock.memory.regions[i].size;
95f72d1e
YL
591 continue;
592 }
593
e3239ff9 594 memblock.memory.regions[i].size = limit;
95f72d1e
YL
595 memblock.memory.cnt = i + 1;
596 break;
597 }
598
95f72d1e
YL
599 memory_limit = memblock_end_of_DRAM();
600
601 /* And truncate any reserves above the limit also. */
602 for (i = 0; i < memblock.reserved.cnt; i++) {
e3239ff9 603 p = &memblock.reserved.regions[i];
95f72d1e
YL
604
605 if (p->base > memory_limit)
606 p->size = 0;
607 else if ((p->base + p->size) > memory_limit)
608 p->size = memory_limit - p->base;
609
610 if (p->size == 0) {
611 memblock_remove_region(&memblock.reserved, i);
612 i--;
613 }
614 }
615}
616
cd79481d 617static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
618{
619 unsigned int left = 0, right = type->cnt;
620
621 do {
622 unsigned int mid = (right + left) / 2;
623
624 if (addr < type->regions[mid].base)
625 right = mid;
626 else if (addr >= (type->regions[mid].base +
627 type->regions[mid].size))
628 left = mid + 1;
629 else
630 return mid;
631 } while (left < right);
632 return -1;
633}
634
2898cc4c 635int __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 636{
72d4b0b4
BH
637 return memblock_search(&memblock.reserved, addr) != -1;
638}
95f72d1e 639
3661ca66 640int __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
641{
642 return memblock_search(&memblock.memory, addr) != -1;
643}
644
3661ca66 645int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 646{
abb65272 647 int idx = memblock_search(&memblock.memory, base);
72d4b0b4
BH
648
649 if (idx == -1)
650 return 0;
abb65272
TV
651 return memblock.memory.regions[idx].base <= base &&
652 (memblock.memory.regions[idx].base +
653 memblock.memory.regions[idx].size) >= (base + size);
95f72d1e
YL
654}
655
10d06439 656int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 657{
f1c2c19c 658 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
95f72d1e
YL
659}
660
e63075a3 661
3661ca66 662void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
663{
664 memblock.current_limit = limit;
665}
666
10d06439 667static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
6ed311b2
BH
668{
669 unsigned long long base, size;
670 int i;
671
672 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
673
674 for (i = 0; i < region->cnt; i++) {
675 base = region->regions[i].base;
676 size = region->regions[i].size;
677
ea9e4376 678 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
6ed311b2
BH
679 name, i, base, base + size - 1, size);
680 }
681}
682
10d06439 683void __init_memblock memblock_dump_all(void)
6ed311b2
BH
684{
685 if (!memblock_debug)
686 return;
687
688 pr_info("MEMBLOCK configuration:\n");
689 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
690
691 memblock_dump(&memblock.memory, "memory");
692 memblock_dump(&memblock.reserved, "reserved");
693}
694
695void __init memblock_analyze(void)
696{
697 int i;
698
699 /* Check marker in the unused last array entry */
700 WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
701 != (phys_addr_t)RED_INACTIVE);
702 WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
703 != (phys_addr_t)RED_INACTIVE);
704
705 memblock.memory_size = 0;
706
707 for (i = 0; i < memblock.memory.cnt; i++)
708 memblock.memory_size += memblock.memory.regions[i].size;
142b45a7
BH
709
710 /* We allow resizing from there */
711 memblock_can_resize = 1;
6ed311b2
BH
712}
713
7590abe8
BH
714void __init memblock_init(void)
715{
236260b9
JF
716 static int init_done __initdata = 0;
717
718 if (init_done)
719 return;
720 init_done = 1;
721
7590abe8
BH
722 /* Hookup the initial arrays */
723 memblock.memory.regions = memblock_memory_init_regions;
724 memblock.memory.max = INIT_MEMBLOCK_REGIONS;
725 memblock.reserved.regions = memblock_reserved_init_regions;
726 memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
727
728 /* Write a marker in the unused last array entry */
729 memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
730 memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
731
732 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
733 * This simplifies the memblock_add() code below...
734 */
735 memblock.memory.regions[0].base = 0;
736 memblock.memory.regions[0].size = 0;
737 memblock.memory.cnt = 1;
738
739 /* Ditto. */
740 memblock.reserved.regions[0].base = 0;
741 memblock.reserved.regions[0].size = 0;
742 memblock.reserved.cnt = 1;
743
744 memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
745}
746
6ed311b2
BH
747static int __init early_memblock(char *p)
748{
749 if (p && strstr(p, "debug"))
750 memblock_debug = 1;
751 return 0;
752}
753early_param("memblock", early_memblock);
754
10d06439 755#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
756
757static int memblock_debug_show(struct seq_file *m, void *private)
758{
759 struct memblock_type *type = m->private;
760 struct memblock_region *reg;
761 int i;
762
763 for (i = 0; i < type->cnt; i++) {
764 reg = &type->regions[i];
765 seq_printf(m, "%4d: ", i);
766 if (sizeof(phys_addr_t) == 4)
767 seq_printf(m, "0x%08lx..0x%08lx\n",
768 (unsigned long)reg->base,
769 (unsigned long)(reg->base + reg->size - 1));
770 else
771 seq_printf(m, "0x%016llx..0x%016llx\n",
772 (unsigned long long)reg->base,
773 (unsigned long long)(reg->base + reg->size - 1));
774
775 }
776 return 0;
777}
778
779static int memblock_debug_open(struct inode *inode, struct file *file)
780{
781 return single_open(file, memblock_debug_show, inode->i_private);
782}
783
784static const struct file_operations memblock_debug_fops = {
785 .open = memblock_debug_open,
786 .read = seq_read,
787 .llseek = seq_lseek,
788 .release = single_release,
789};
790
791static int __init memblock_init_debugfs(void)
792{
793 struct dentry *root = debugfs_create_dir("memblock", NULL);
794 if (!root)
795 return -ENXIO;
796 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
797 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
798
799 return 0;
800}
801__initcall(memblock_init_debugfs);
802
803#endif /* CONFIG_DEBUG_FS */