mm: remove nobootmem
[linux-2.6-block.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885 19#include <linux/debugfs.h>
514c6032 20#include <linux/kmemleak.h>
6d03b885 21#include <linux/seq_file.h>
95f72d1e 22#include <linux/memblock.h>
19373672 23#include <linux/bootmem.h>
95f72d1e 24
c4c5ad6b 25#include <asm/sections.h>
26f09e9b
SS
26#include <linux/io.h>
27
28#include "internal.h"
79442ed1 29
3e039c5c
MR
30/**
31 * DOC: memblock overview
32 *
33 * Memblock is a method of managing memory regions during the early
34 * boot period when the usual kernel memory allocators are not up and
35 * running.
36 *
37 * Memblock views the system memory as collections of contiguous
38 * regions. There are several types of these collections:
39 *
40 * * ``memory`` - describes the physical memory available to the
41 * kernel; this may differ from the actual physical memory installed
42 * in the system, for instance when the memory is restricted with
43 * ``mem=`` command line parameter
44 * * ``reserved`` - describes the regions that were allocated
45 * * ``physmap`` - describes the actual physical memory regardless of
46 * the possible restrictions; the ``physmap`` type is only available
47 * on some architectures.
48 *
49 * Each region is represented by :c:type:`struct memblock_region` that
50 * defines the region extents, its attributes and NUMA node id on NUMA
51 * systems. Every memory type is described by the :c:type:`struct
52 * memblock_type` which contains an array of memory regions along with
53 * the allocator metadata. The memory types are nicely wrapped with
54 * :c:type:`struct memblock`. This structure is statically initialzed
55 * at build time. The region arrays for the "memory" and "reserved"
56 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
57 * "physmap" type to %INIT_PHYSMEM_REGIONS.
58 * The :c:func:`memblock_allow_resize` enables automatic resizing of
59 * the region arrays during addition of new regions. This feature
60 * should be used with care so that memory allocated for the region
61 * array will not overlap with areas that should be reserved, for
62 * example initrd.
63 *
64 * The early architecture setup should tell memblock what the physical
65 * memory layout is by using :c:func:`memblock_add` or
66 * :c:func:`memblock_add_node` functions. The first function does not
67 * assign the region to a NUMA node and it is appropriate for UMA
68 * systems. Yet, it is possible to use it on NUMA systems as well and
69 * assign the region to a NUMA node later in the setup process using
70 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
71 * performs such an assignment directly.
72 *
73 * Once memblock is setup the memory can be allocated using either
74 * memblock or bootmem APIs.
75 *
76 * As the system boot progresses, the architecture specific
77 * :c:func:`mem_init` function frees all the memory to the buddy page
78 * allocator.
79 *
80 * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
81 * memblock data structures will be discarded after the system
82 * initialization compltes.
83 */
84
bda49a81
MR
85#ifndef CONFIG_NEED_MULTIPLE_NODES
86struct pglist_data __refdata contig_page_data;
87EXPORT_SYMBOL(contig_page_data);
88#endif
89
90unsigned long max_low_pfn;
91unsigned long min_low_pfn;
92unsigned long max_pfn;
93unsigned long long max_possible_pfn;
94
fe091c20
TH
95static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
96static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
70210ed9
PH
97#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
98static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
99#endif
fe091c20
TH
100
101struct memblock memblock __initdata_memblock = {
102 .memory.regions = memblock_memory_init_regions,
103 .memory.cnt = 1, /* empty dummy entry */
104 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 105 .memory.name = "memory",
fe091c20
TH
106
107 .reserved.regions = memblock_reserved_init_regions,
108 .reserved.cnt = 1, /* empty dummy entry */
109 .reserved.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 110 .reserved.name = "reserved",
fe091c20 111
70210ed9
PH
112#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
113 .physmem.regions = memblock_physmem_init_regions,
114 .physmem.cnt = 1, /* empty dummy entry */
115 .physmem.max = INIT_PHYSMEM_REGIONS,
0262d9c8 116 .physmem.name = "physmem",
70210ed9
PH
117#endif
118
79442ed1 119 .bottom_up = false,
fe091c20
TH
120 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
121};
95f72d1e 122
10d06439 123int memblock_debug __initdata_memblock;
a3f5bafc 124static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 125static int memblock_can_resize __initdata_memblock;
181eb394
GS
126static int memblock_memory_in_slab __initdata_memblock = 0;
127static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 128
e1720fee 129enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
130{
131 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
132}
133
eb18f1b5
TH
134/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
135static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
136{
1c4bc43d 137 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
138}
139
6ed311b2
BH
140/*
141 * Address comparison utilities
142 */
10d06439 143static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 144 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
145{
146 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
147}
148
95cf82ec 149bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 150 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
151{
152 unsigned long i;
153
f14516fb
AK
154 for (i = 0; i < type->cnt; i++)
155 if (memblock_addrs_overlap(base, size, type->regions[i].base,
156 type->regions[i].size))
6ed311b2 157 break;
c5c5c9d1 158 return i < type->cnt;
6ed311b2
BH
159}
160
47cec443 161/**
79442ed1
TC
162 * __memblock_find_range_bottom_up - find free area utility in bottom-up
163 * @start: start of candidate range
47cec443
MR
164 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
165 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
166 * @size: size of free area to find
167 * @align: alignment of free area to find
b1154233 168 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 169 * @flags: pick from blocks based on memory attributes
79442ed1
TC
170 *
171 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
172 *
47cec443 173 * Return:
79442ed1
TC
174 * Found address on success, 0 on failure.
175 */
176static phys_addr_t __init_memblock
177__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 178 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 179 enum memblock_flags flags)
79442ed1
TC
180{
181 phys_addr_t this_start, this_end, cand;
182 u64 i;
183
fc6daaf9 184 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
185 this_start = clamp(this_start, start, end);
186 this_end = clamp(this_end, start, end);
187
188 cand = round_up(this_start, align);
189 if (cand < this_end && this_end - cand >= size)
190 return cand;
191 }
192
193 return 0;
194}
195
7bd0b0f0 196/**
1402899e 197 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 198 * @start: start of candidate range
47cec443
MR
199 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
200 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
201 * @size: size of free area to find
202 * @align: alignment of free area to find
b1154233 203 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 204 * @flags: pick from blocks based on memory attributes
7bd0b0f0 205 *
1402899e 206 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 207 *
47cec443 208 * Return:
79442ed1 209 * Found address on success, 0 on failure.
6ed311b2 210 */
1402899e
TC
211static phys_addr_t __init_memblock
212__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 213 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 214 enum memblock_flags flags)
f7210e6c
TC
215{
216 phys_addr_t this_start, this_end, cand;
217 u64 i;
218
fc6daaf9
TL
219 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
220 NULL) {
f7210e6c
TC
221 this_start = clamp(this_start, start, end);
222 this_end = clamp(this_end, start, end);
223
224 if (this_end < size)
225 continue;
226
227 cand = round_down(this_end - size, align);
228 if (cand >= this_start)
229 return cand;
230 }
1402899e 231
f7210e6c
TC
232 return 0;
233}
6ed311b2 234
1402899e
TC
235/**
236 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
237 * @size: size of free area to find
238 * @align: alignment of free area to find
87029ee9 239 * @start: start of candidate range
47cec443
MR
240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
241 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 242 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 243 * @flags: pick from blocks based on memory attributes
1402899e
TC
244 *
245 * Find @size free area aligned to @align in the specified range and node.
246 *
79442ed1
TC
247 * When allocation direction is bottom-up, the @start should be greater
248 * than the end of the kernel image. Otherwise, it will be trimmed. The
249 * reason is that we want the bottom-up allocation just near the kernel
250 * image so it is highly likely that the allocated memory and the kernel
251 * will reside in the same node.
252 *
253 * If bottom-up allocation failed, will try to allocate memory top-down.
254 *
47cec443 255 * Return:
79442ed1 256 * Found address on success, 0 on failure.
1402899e 257 */
87029ee9
GS
258phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
259 phys_addr_t align, phys_addr_t start,
e1720fee
MR
260 phys_addr_t end, int nid,
261 enum memblock_flags flags)
1402899e 262{
0cfb8f0c 263 phys_addr_t kernel_end, ret;
79442ed1 264
1402899e
TC
265 /* pump up @end */
266 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
267 end = memblock.current_limit;
268
269 /* avoid allocating the first page */
270 start = max_t(phys_addr_t, start, PAGE_SIZE);
271 end = max(start, end);
79442ed1
TC
272 kernel_end = __pa_symbol(_end);
273
274 /*
275 * try bottom-up allocation only when bottom-up mode
276 * is set and @end is above the kernel image.
277 */
278 if (memblock_bottom_up() && end > kernel_end) {
279 phys_addr_t bottom_up_start;
280
281 /* make sure we will allocate above the kernel */
282 bottom_up_start = max(start, kernel_end);
283
284 /* ok, try bottom-up allocation first */
285 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 286 size, align, nid, flags);
79442ed1
TC
287 if (ret)
288 return ret;
289
290 /*
291 * we always limit bottom-up allocation above the kernel,
292 * but top-down allocation doesn't have the limit, so
293 * retrying top-down allocation may succeed when bottom-up
294 * allocation failed.
295 *
296 * bottom-up allocation is expected to be fail very rarely,
297 * so we use WARN_ONCE() here to see the stack trace if
298 * fail happens.
299 */
e3d301ca
MH
300 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
301 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
79442ed1 302 }
1402899e 303
fc6daaf9
TL
304 return __memblock_find_range_top_down(start, end, size, align, nid,
305 flags);
1402899e
TC
306}
307
7bd0b0f0
TH
308/**
309 * memblock_find_in_range - find free area in given range
310 * @start: start of candidate range
47cec443
MR
311 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
312 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
313 * @size: size of free area to find
314 * @align: alignment of free area to find
315 *
316 * Find @size free area aligned to @align in the specified range.
317 *
47cec443 318 * Return:
79442ed1 319 * Found address on success, 0 on failure.
fc769a8e 320 */
7bd0b0f0
TH
321phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
322 phys_addr_t end, phys_addr_t size,
323 phys_addr_t align)
6ed311b2 324{
a3f5bafc 325 phys_addr_t ret;
e1720fee 326 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
327
328again:
329 ret = memblock_find_in_range_node(size, align, start, end,
330 NUMA_NO_NODE, flags);
331
332 if (!ret && (flags & MEMBLOCK_MIRROR)) {
333 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
334 &size);
335 flags &= ~MEMBLOCK_MIRROR;
336 goto again;
337 }
338
339 return ret;
6ed311b2
BH
340}
341
10d06439 342static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 343{
1440c4e2 344 type->total_size -= type->regions[r].size;
7c0caeb8
TH
345 memmove(&type->regions[r], &type->regions[r + 1],
346 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 347 type->cnt--;
95f72d1e 348
8f7a6605
BH
349 /* Special case for empty arrays */
350 if (type->cnt == 0) {
1440c4e2 351 WARN_ON(type->total_size != 0);
8f7a6605
BH
352 type->cnt = 1;
353 type->regions[0].base = 0;
354 type->regions[0].size = 0;
66a20757 355 type->regions[0].flags = 0;
7c0caeb8 356 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 357 }
95f72d1e
YL
358}
359
354f17e1 360#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
3010f876 361/**
47cec443 362 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
363 */
364void __init memblock_discard(void)
5e270e25 365{
3010f876 366 phys_addr_t addr, size;
5e270e25 367
3010f876
PT
368 if (memblock.reserved.regions != memblock_reserved_init_regions) {
369 addr = __pa(memblock.reserved.regions);
370 size = PAGE_ALIGN(sizeof(struct memblock_region) *
371 memblock.reserved.max);
372 __memblock_free_late(addr, size);
373 }
5e270e25 374
91b540f9 375 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
376 addr = __pa(memblock.memory.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.memory.max);
379 __memblock_free_late(addr, size);
380 }
5e270e25 381}
5e270e25
PH
382#endif
383
48c3b583
GP
384/**
385 * memblock_double_array - double the size of the memblock regions array
386 * @type: memblock type of the regions array being doubled
387 * @new_area_start: starting address of memory range to avoid overlap with
388 * @new_area_size: size of memory range to avoid overlap with
389 *
390 * Double the size of the @type regions array. If memblock is being used to
391 * allocate memory for a new reserved regions array and there is a previously
47cec443 392 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
393 * waiting to be reserved, ensure the memory used by the new array does
394 * not overlap.
395 *
47cec443 396 * Return:
48c3b583
GP
397 * 0 on success, -1 on failure.
398 */
399static int __init_memblock memblock_double_array(struct memblock_type *type,
400 phys_addr_t new_area_start,
401 phys_addr_t new_area_size)
142b45a7
BH
402{
403 struct memblock_region *new_array, *old_array;
29f67386 404 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 405 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 406 int use_slab = slab_is_available();
181eb394 407 int *in_slab;
142b45a7
BH
408
409 /* We don't allow resizing until we know about the reserved regions
410 * of memory that aren't suitable for allocation
411 */
412 if (!memblock_can_resize)
413 return -1;
414
142b45a7
BH
415 /* Calculate new doubled size */
416 old_size = type->max * sizeof(struct memblock_region);
417 new_size = old_size << 1;
29f67386
YL
418 /*
419 * We need to allocated new one align to PAGE_SIZE,
420 * so we can free them completely later.
421 */
422 old_alloc_size = PAGE_ALIGN(old_size);
423 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 424
181eb394
GS
425 /* Retrieve the slab flag */
426 if (type == &memblock.memory)
427 in_slab = &memblock_memory_in_slab;
428 else
429 in_slab = &memblock_reserved_in_slab;
430
142b45a7
BH
431 /* Try to find some space for it.
432 *
433 * WARNING: We assume that either slab_is_available() and we use it or
fd07383b
AM
434 * we use MEMBLOCK for allocations. That means that this is unsafe to
435 * use when bootmem is currently active (unless bootmem itself is
436 * implemented on top of MEMBLOCK which isn't the case yet)
142b45a7
BH
437 *
438 * This should however not be an issue for now, as we currently only
fd07383b
AM
439 * call into MEMBLOCK while it's still active, or much later when slab
440 * is active for memory hotplug operations
142b45a7
BH
441 */
442 if (use_slab) {
443 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 444 addr = new_array ? __pa(new_array) : 0;
4e2f0775 445 } else {
48c3b583
GP
446 /* only exclude range when trying to double reserved.regions */
447 if (type != &memblock.reserved)
448 new_area_start = new_area_size = 0;
449
450 addr = memblock_find_in_range(new_area_start + new_area_size,
451 memblock.current_limit,
29f67386 452 new_alloc_size, PAGE_SIZE);
48c3b583
GP
453 if (!addr && new_area_size)
454 addr = memblock_find_in_range(0,
fd07383b
AM
455 min(new_area_start, memblock.current_limit),
456 new_alloc_size, PAGE_SIZE);
48c3b583 457
15674868 458 new_array = addr ? __va(addr) : NULL;
4e2f0775 459 }
1f5026a7 460 if (!addr) {
142b45a7 461 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 462 type->name, type->max, type->max * 2);
142b45a7
BH
463 return -1;
464 }
142b45a7 465
a36aab89
MR
466 new_end = addr + new_size - 1;
467 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
468 type->name, type->max * 2, &addr, &new_end);
ea9e4376 469
fd07383b
AM
470 /*
471 * Found space, we now need to move the array over before we add the
472 * reserved region since it may be our reserved array itself that is
473 * full.
142b45a7
BH
474 */
475 memcpy(new_array, type->regions, old_size);
476 memset(new_array + type->max, 0, old_size);
477 old_array = type->regions;
478 type->regions = new_array;
479 type->max <<= 1;
480
fd07383b 481 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
482 if (*in_slab)
483 kfree(old_array);
484 else if (old_array != memblock_memory_init_regions &&
485 old_array != memblock_reserved_init_regions)
29f67386 486 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 487
fd07383b
AM
488 /*
489 * Reserve the new array if that comes from the memblock. Otherwise, we
490 * needn't do it
181eb394
GS
491 */
492 if (!use_slab)
29f67386 493 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
494
495 /* Update slab flag */
496 *in_slab = use_slab;
497
142b45a7
BH
498 return 0;
499}
500
784656f9
TH
501/**
502 * memblock_merge_regions - merge neighboring compatible regions
503 * @type: memblock type to scan
504 *
505 * Scan @type and merge neighboring compatible regions.
506 */
507static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 508{
784656f9 509 int i = 0;
95f72d1e 510
784656f9
TH
511 /* cnt never goes below 1 */
512 while (i < type->cnt - 1) {
513 struct memblock_region *this = &type->regions[i];
514 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 515
7c0caeb8
TH
516 if (this->base + this->size != next->base ||
517 memblock_get_region_node(this) !=
66a20757
TC
518 memblock_get_region_node(next) ||
519 this->flags != next->flags) {
784656f9
TH
520 BUG_ON(this->base + this->size > next->base);
521 i++;
522 continue;
8f7a6605
BH
523 }
524
784656f9 525 this->size += next->size;
c0232ae8
LF
526 /* move forward from next + 1, index of which is i + 2 */
527 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 528 type->cnt--;
95f72d1e 529 }
784656f9 530}
95f72d1e 531
784656f9
TH
532/**
533 * memblock_insert_region - insert new memblock region
209ff86d
TC
534 * @type: memblock type to insert into
535 * @idx: index for the insertion point
536 * @base: base address of the new region
537 * @size: size of the new region
538 * @nid: node id of the new region
66a20757 539 * @flags: flags of the new region
784656f9 540 *
47cec443 541 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 542 * @type must already have extra room to accommodate the new region.
784656f9
TH
543 */
544static void __init_memblock memblock_insert_region(struct memblock_type *type,
545 int idx, phys_addr_t base,
66a20757 546 phys_addr_t size,
e1720fee
MR
547 int nid,
548 enum memblock_flags flags)
784656f9
TH
549{
550 struct memblock_region *rgn = &type->regions[idx];
551
552 BUG_ON(type->cnt >= type->max);
553 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
554 rgn->base = base;
555 rgn->size = size;
66a20757 556 rgn->flags = flags;
7c0caeb8 557 memblock_set_region_node(rgn, nid);
784656f9 558 type->cnt++;
1440c4e2 559 type->total_size += size;
784656f9
TH
560}
561
562/**
f1af9d3a 563 * memblock_add_range - add new memblock region
784656f9
TH
564 * @type: memblock type to add new region into
565 * @base: base address of the new region
566 * @size: size of the new region
7fb0bc3f 567 * @nid: nid of the new region
66a20757 568 * @flags: flags of the new region
784656f9 569 *
47cec443 570 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
571 * is allowed to overlap with existing ones - overlaps don't affect already
572 * existing regions. @type is guaranteed to be minimal (all neighbouring
573 * compatible regions are merged) after the addition.
574 *
47cec443 575 * Return:
784656f9
TH
576 * 0 on success, -errno on failure.
577 */
f1af9d3a 578int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 579 phys_addr_t base, phys_addr_t size,
e1720fee 580 int nid, enum memblock_flags flags)
784656f9
TH
581{
582 bool insert = false;
eb18f1b5
TH
583 phys_addr_t obase = base;
584 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
585 int idx, nr_new;
586 struct memblock_region *rgn;
784656f9 587
b3dc627c
TH
588 if (!size)
589 return 0;
590
784656f9
TH
591 /* special case for empty array */
592 if (type->regions[0].size == 0) {
1440c4e2 593 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
594 type->regions[0].base = base;
595 type->regions[0].size = size;
66a20757 596 type->regions[0].flags = flags;
7fb0bc3f 597 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 598 type->total_size = size;
8f7a6605 599 return 0;
95f72d1e 600 }
784656f9
TH
601repeat:
602 /*
603 * The following is executed twice. Once with %false @insert and
604 * then with %true. The first counts the number of regions needed
412d0008 605 * to accommodate the new area. The second actually inserts them.
142b45a7 606 */
784656f9
TH
607 base = obase;
608 nr_new = 0;
95f72d1e 609
66e8b438 610 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
611 phys_addr_t rbase = rgn->base;
612 phys_addr_t rend = rbase + rgn->size;
613
614 if (rbase >= end)
95f72d1e 615 break;
784656f9
TH
616 if (rend <= base)
617 continue;
618 /*
619 * @rgn overlaps. If it separates the lower part of new
620 * area, insert that portion.
621 */
622 if (rbase > base) {
c0a29498
WY
623#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
624 WARN_ON(nid != memblock_get_region_node(rgn));
625#endif
4fcab5f4 626 WARN_ON(flags != rgn->flags);
784656f9
TH
627 nr_new++;
628 if (insert)
8c9c1701 629 memblock_insert_region(type, idx++, base,
66a20757
TC
630 rbase - base, nid,
631 flags);
95f72d1e 632 }
784656f9
TH
633 /* area below @rend is dealt with, forget about it */
634 base = min(rend, end);
95f72d1e 635 }
784656f9
TH
636
637 /* insert the remaining portion */
638 if (base < end) {
639 nr_new++;
640 if (insert)
8c9c1701 641 memblock_insert_region(type, idx, base, end - base,
66a20757 642 nid, flags);
95f72d1e 643 }
95f72d1e 644
ef3cc4db 645 if (!nr_new)
646 return 0;
647
784656f9
TH
648 /*
649 * If this was the first round, resize array and repeat for actual
650 * insertions; otherwise, merge and return.
142b45a7 651 */
784656f9
TH
652 if (!insert) {
653 while (type->cnt + nr_new > type->max)
48c3b583 654 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
655 return -ENOMEM;
656 insert = true;
657 goto repeat;
658 } else {
659 memblock_merge_regions(type);
660 return 0;
142b45a7 661 }
95f72d1e
YL
662}
663
48a833cc
MR
664/**
665 * memblock_add_node - add new memblock region within a NUMA node
666 * @base: base address of the new region
667 * @size: size of the new region
668 * @nid: nid of the new region
669 *
670 * Add new memblock region [@base, @base + @size) to the "memory"
671 * type. See memblock_add_range() description for mode details
672 *
673 * Return:
674 * 0 on success, -errno on failure.
675 */
7fb0bc3f
TH
676int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
677 int nid)
678{
f1af9d3a 679 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
680}
681
48a833cc
MR
682/**
683 * memblock_add - add new memblock region
684 * @base: base address of the new region
685 * @size: size of the new region
686 *
687 * Add new memblock region [@base, @base + @size) to the "memory"
688 * type. See memblock_add_range() description for mode details
689 *
690 * Return:
691 * 0 on success, -errno on failure.
692 */
f705ac4b 693int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 694{
5d63f81c
MC
695 phys_addr_t end = base + size - 1;
696
697 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
698 &base, &end, (void *)_RET_IP_);
6a4055bc 699
f705ac4b 700 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
701}
702
6a9ceb31
TH
703/**
704 * memblock_isolate_range - isolate given range into disjoint memblocks
705 * @type: memblock type to isolate range for
706 * @base: base of range to isolate
707 * @size: size of range to isolate
708 * @start_rgn: out parameter for the start of isolated region
709 * @end_rgn: out parameter for the end of isolated region
710 *
711 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 712 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
713 * which may create at most two more regions. The index of the first
714 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
715 *
47cec443 716 * Return:
6a9ceb31
TH
717 * 0 on success, -errno on failure.
718 */
719static int __init_memblock memblock_isolate_range(struct memblock_type *type,
720 phys_addr_t base, phys_addr_t size,
721 int *start_rgn, int *end_rgn)
722{
eb18f1b5 723 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
724 int idx;
725 struct memblock_region *rgn;
6a9ceb31
TH
726
727 *start_rgn = *end_rgn = 0;
728
b3dc627c
TH
729 if (!size)
730 return 0;
731
6a9ceb31
TH
732 /* we'll create at most two more regions */
733 while (type->cnt + 2 > type->max)
48c3b583 734 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
735 return -ENOMEM;
736
66e8b438 737 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
738 phys_addr_t rbase = rgn->base;
739 phys_addr_t rend = rbase + rgn->size;
740
741 if (rbase >= end)
742 break;
743 if (rend <= base)
744 continue;
745
746 if (rbase < base) {
747 /*
748 * @rgn intersects from below. Split and continue
749 * to process the next region - the new top half.
750 */
751 rgn->base = base;
1440c4e2
TH
752 rgn->size -= base - rbase;
753 type->total_size -= base - rbase;
8c9c1701 754 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
755 memblock_get_region_node(rgn),
756 rgn->flags);
6a9ceb31
TH
757 } else if (rend > end) {
758 /*
759 * @rgn intersects from above. Split and redo the
760 * current region - the new bottom half.
761 */
762 rgn->base = end;
1440c4e2
TH
763 rgn->size -= end - rbase;
764 type->total_size -= end - rbase;
8c9c1701 765 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
766 memblock_get_region_node(rgn),
767 rgn->flags);
6a9ceb31
TH
768 } else {
769 /* @rgn is fully contained, record it */
770 if (!*end_rgn)
8c9c1701
AK
771 *start_rgn = idx;
772 *end_rgn = idx + 1;
6a9ceb31
TH
773 }
774 }
775
776 return 0;
777}
6a9ceb31 778
35bd16a2 779static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 780 phys_addr_t base, phys_addr_t size)
95f72d1e 781{
71936180
TH
782 int start_rgn, end_rgn;
783 int i, ret;
95f72d1e 784
71936180
TH
785 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
786 if (ret)
787 return ret;
95f72d1e 788
71936180
TH
789 for (i = end_rgn - 1; i >= start_rgn; i--)
790 memblock_remove_region(type, i);
8f7a6605 791 return 0;
95f72d1e
YL
792}
793
581adcbe 794int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 795{
25cf23d7
MK
796 phys_addr_t end = base + size - 1;
797
798 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
799 &base, &end, (void *)_RET_IP_);
800
f1af9d3a 801 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
802}
803
f1af9d3a 804
581adcbe 805int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 806{
5d63f81c
MC
807 phys_addr_t end = base + size - 1;
808
809 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
810 &base, &end, (void *)_RET_IP_);
24aa0788 811
9099daed 812 kmemleak_free_part_phys(base, size);
f1af9d3a 813 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
814}
815
f705ac4b 816int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 817{
5d63f81c
MC
818 phys_addr_t end = base + size - 1;
819
820 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
821 &base, &end, (void *)_RET_IP_);
95f72d1e 822
f705ac4b 823 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
824}
825
66b16edf 826/**
47cec443
MR
827 * memblock_setclr_flag - set or clear flag for a memory region
828 * @base: base address of the region
829 * @size: size of the region
830 * @set: set or clear the flag
831 * @flag: the flag to udpate
66b16edf 832 *
4308ce17 833 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 834 *
47cec443 835 * Return: 0 on success, -errno on failure.
66b16edf 836 */
4308ce17
TL
837static int __init_memblock memblock_setclr_flag(phys_addr_t base,
838 phys_addr_t size, int set, int flag)
66b16edf
TC
839{
840 struct memblock_type *type = &memblock.memory;
841 int i, ret, start_rgn, end_rgn;
842
843 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
844 if (ret)
845 return ret;
846
847 for (i = start_rgn; i < end_rgn; i++)
4308ce17
TL
848 if (set)
849 memblock_set_region_flags(&type->regions[i], flag);
850 else
851 memblock_clear_region_flags(&type->regions[i], flag);
66b16edf
TC
852
853 memblock_merge_regions(type);
854 return 0;
855}
856
857/**
4308ce17 858 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
859 * @base: the base phys addr of the region
860 * @size: the size of the region
861 *
47cec443 862 * Return: 0 on success, -errno on failure.
4308ce17
TL
863 */
864int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
865{
866 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
867}
868
869/**
870 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
871 * @base: the base phys addr of the region
872 * @size: the size of the region
66b16edf 873 *
47cec443 874 * Return: 0 on success, -errno on failure.
66b16edf
TC
875 */
876int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
877{
4308ce17 878 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
879}
880
a3f5bafc
TL
881/**
882 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
883 * @base: the base phys addr of the region
884 * @size: the size of the region
885 *
47cec443 886 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
887 */
888int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
889{
890 system_has_some_mirror = true;
891
892 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
893}
894
bf3d3cc5
AB
895/**
896 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
897 * @base: the base phys addr of the region
898 * @size: the size of the region
899 *
47cec443 900 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
901 */
902int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
903{
904 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
905}
a3f5bafc 906
4c546b8a
AT
907/**
908 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
909 * @base: the base phys addr of the region
910 * @size: the size of the region
911 *
47cec443 912 * Return: 0 on success, -errno on failure.
4c546b8a
AT
913 */
914int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
915{
916 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
917}
918
8e7a7f86
RH
919/**
920 * __next_reserved_mem_region - next function for for_each_reserved_region()
921 * @idx: pointer to u64 loop variable
922 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
923 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
924 *
925 * Iterate over all reserved memory regions.
926 */
927void __init_memblock __next_reserved_mem_region(u64 *idx,
928 phys_addr_t *out_start,
929 phys_addr_t *out_end)
930{
567d117b 931 struct memblock_type *type = &memblock.reserved;
8e7a7f86 932
cd33a76b 933 if (*idx < type->cnt) {
567d117b 934 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
935 phys_addr_t base = r->base;
936 phys_addr_t size = r->size;
937
938 if (out_start)
939 *out_start = base;
940 if (out_end)
941 *out_end = base + size - 1;
942
943 *idx += 1;
944 return;
945 }
946
947 /* signal end of iteration */
948 *idx = ULLONG_MAX;
949}
950
35fd0808 951/**
f1af9d3a 952 * __next__mem_range - next function for for_each_free_mem_range() etc.
35fd0808 953 * @idx: pointer to u64 loop variable
b1154233 954 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 955 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
956 * @type_a: pointer to memblock_type from where the range is taken
957 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
958 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
959 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
960 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 961 *
f1af9d3a 962 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 963 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
964 * *@idx contains index into type_a and the upper 32bit indexes the
965 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
966 * look like the following,
967 *
968 * 0:[0-16), 1:[32-48), 2:[128-130)
969 *
970 * The upper 32bit indexes the following regions.
971 *
972 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
973 *
974 * As both region arrays are sorted, the function advances the two indices
975 * in lockstep and returns each intersection.
976 */
e1720fee
MR
977void __init_memblock __next_mem_range(u64 *idx, int nid,
978 enum memblock_flags flags,
f1af9d3a
PH
979 struct memblock_type *type_a,
980 struct memblock_type *type_b,
981 phys_addr_t *out_start,
982 phys_addr_t *out_end, int *out_nid)
35fd0808 983{
f1af9d3a
PH
984 int idx_a = *idx & 0xffffffff;
985 int idx_b = *idx >> 32;
b1154233 986
f1af9d3a
PH
987 if (WARN_ONCE(nid == MAX_NUMNODES,
988 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 989 nid = NUMA_NO_NODE;
35fd0808 990
f1af9d3a
PH
991 for (; idx_a < type_a->cnt; idx_a++) {
992 struct memblock_region *m = &type_a->regions[idx_a];
993
35fd0808
TH
994 phys_addr_t m_start = m->base;
995 phys_addr_t m_end = m->base + m->size;
f1af9d3a 996 int m_nid = memblock_get_region_node(m);
35fd0808
TH
997
998 /* only memory regions are associated with nodes, check it */
f1af9d3a 999 if (nid != NUMA_NO_NODE && nid != m_nid)
35fd0808
TH
1000 continue;
1001
0a313a99
XQ
1002 /* skip hotpluggable memory regions if needed */
1003 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1004 continue;
1005
a3f5bafc
TL
1006 /* if we want mirror memory skip non-mirror memory regions */
1007 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1008 continue;
1009
bf3d3cc5
AB
1010 /* skip nomap memory unless we were asked for it explicitly */
1011 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1012 continue;
1013
f1af9d3a
PH
1014 if (!type_b) {
1015 if (out_start)
1016 *out_start = m_start;
1017 if (out_end)
1018 *out_end = m_end;
1019 if (out_nid)
1020 *out_nid = m_nid;
1021 idx_a++;
1022 *idx = (u32)idx_a | (u64)idx_b << 32;
1023 return;
1024 }
1025
1026 /* scan areas before each reservation */
1027 for (; idx_b < type_b->cnt + 1; idx_b++) {
1028 struct memblock_region *r;
1029 phys_addr_t r_start;
1030 phys_addr_t r_end;
1031
1032 r = &type_b->regions[idx_b];
1033 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1034 r_end = idx_b < type_b->cnt ?
1c4bc43d 1035 r->base : PHYS_ADDR_MAX;
35fd0808 1036
f1af9d3a
PH
1037 /*
1038 * if idx_b advanced past idx_a,
1039 * break out to advance idx_a
1040 */
35fd0808
TH
1041 if (r_start >= m_end)
1042 break;
1043 /* if the two regions intersect, we're done */
1044 if (m_start < r_end) {
1045 if (out_start)
f1af9d3a
PH
1046 *out_start =
1047 max(m_start, r_start);
35fd0808
TH
1048 if (out_end)
1049 *out_end = min(m_end, r_end);
1050 if (out_nid)
f1af9d3a 1051 *out_nid = m_nid;
35fd0808 1052 /*
f1af9d3a
PH
1053 * The region which ends first is
1054 * advanced for the next iteration.
35fd0808
TH
1055 */
1056 if (m_end <= r_end)
f1af9d3a 1057 idx_a++;
35fd0808 1058 else
f1af9d3a
PH
1059 idx_b++;
1060 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1061 return;
1062 }
1063 }
1064 }
1065
1066 /* signal end of iteration */
1067 *idx = ULLONG_MAX;
1068}
1069
7bd0b0f0 1070/**
f1af9d3a
PH
1071 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1072 *
7bd0b0f0 1073 * @idx: pointer to u64 loop variable
ad5ea8cd 1074 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1075 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1076 * @type_a: pointer to memblock_type from where the range is taken
1077 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1078 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1079 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1080 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1081 *
47cec443
MR
1082 * Finds the next range from type_a which is not marked as unsuitable
1083 * in type_b.
1084 *
f1af9d3a 1085 * Reverse of __next_mem_range().
7bd0b0f0 1086 */
e1720fee
MR
1087void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1088 enum memblock_flags flags,
f1af9d3a
PH
1089 struct memblock_type *type_a,
1090 struct memblock_type *type_b,
1091 phys_addr_t *out_start,
1092 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1093{
f1af9d3a
PH
1094 int idx_a = *idx & 0xffffffff;
1095 int idx_b = *idx >> 32;
b1154233 1096
560dca27
GS
1097 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1098 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1099
1100 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1101 idx_a = type_a->cnt - 1;
e47608ab 1102 if (type_b != NULL)
1103 idx_b = type_b->cnt;
1104 else
1105 idx_b = 0;
7bd0b0f0
TH
1106 }
1107
f1af9d3a
PH
1108 for (; idx_a >= 0; idx_a--) {
1109 struct memblock_region *m = &type_a->regions[idx_a];
1110
7bd0b0f0
TH
1111 phys_addr_t m_start = m->base;
1112 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1113 int m_nid = memblock_get_region_node(m);
7bd0b0f0
TH
1114
1115 /* only memory regions are associated with nodes, check it */
f1af9d3a 1116 if (nid != NUMA_NO_NODE && nid != m_nid)
7bd0b0f0
TH
1117 continue;
1118
55ac590c
TC
1119 /* skip hotpluggable memory regions if needed */
1120 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1121 continue;
1122
a3f5bafc
TL
1123 /* if we want mirror memory skip non-mirror memory regions */
1124 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1125 continue;
1126
bf3d3cc5
AB
1127 /* skip nomap memory unless we were asked for it explicitly */
1128 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1129 continue;
1130
f1af9d3a
PH
1131 if (!type_b) {
1132 if (out_start)
1133 *out_start = m_start;
1134 if (out_end)
1135 *out_end = m_end;
1136 if (out_nid)
1137 *out_nid = m_nid;
fb399b48 1138 idx_a--;
f1af9d3a
PH
1139 *idx = (u32)idx_a | (u64)idx_b << 32;
1140 return;
1141 }
1142
1143 /* scan areas before each reservation */
1144 for (; idx_b >= 0; idx_b--) {
1145 struct memblock_region *r;
1146 phys_addr_t r_start;
1147 phys_addr_t r_end;
1148
1149 r = &type_b->regions[idx_b];
1150 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1151 r_end = idx_b < type_b->cnt ?
1c4bc43d 1152 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1153 /*
1154 * if idx_b advanced past idx_a,
1155 * break out to advance idx_a
1156 */
7bd0b0f0 1157
7bd0b0f0
TH
1158 if (r_end <= m_start)
1159 break;
1160 /* if the two regions intersect, we're done */
1161 if (m_end > r_start) {
1162 if (out_start)
1163 *out_start = max(m_start, r_start);
1164 if (out_end)
1165 *out_end = min(m_end, r_end);
1166 if (out_nid)
f1af9d3a 1167 *out_nid = m_nid;
7bd0b0f0 1168 if (m_start >= r_start)
f1af9d3a 1169 idx_a--;
7bd0b0f0 1170 else
f1af9d3a
PH
1171 idx_b--;
1172 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1173 return;
1174 }
1175 }
1176 }
f1af9d3a 1177 /* signal end of iteration */
7bd0b0f0
TH
1178 *idx = ULLONG_MAX;
1179}
1180
7c0caeb8
TH
1181#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1182/*
1183 * Common iterator interface used to define for_each_mem_range().
1184 */
1185void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1186 unsigned long *out_start_pfn,
1187 unsigned long *out_end_pfn, int *out_nid)
1188{
1189 struct memblock_type *type = &memblock.memory;
1190 struct memblock_region *r;
1191
1192 while (++*idx < type->cnt) {
1193 r = &type->regions[*idx];
1194
1195 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1196 continue;
1197 if (nid == MAX_NUMNODES || nid == r->nid)
1198 break;
1199 }
1200 if (*idx >= type->cnt) {
1201 *idx = -1;
1202 return;
1203 }
1204
1205 if (out_start_pfn)
1206 *out_start_pfn = PFN_UP(r->base);
1207 if (out_end_pfn)
1208 *out_end_pfn = PFN_DOWN(r->base + r->size);
1209 if (out_nid)
1210 *out_nid = r->nid;
1211}
1212
1213/**
1214 * memblock_set_node - set node ID on memblock regions
1215 * @base: base of area to set node ID for
1216 * @size: size of area to set node ID for
e7e8de59 1217 * @type: memblock type to set node ID for
7c0caeb8
TH
1218 * @nid: node ID to set
1219 *
47cec443 1220 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1221 * Regions which cross the area boundaries are split as necessary.
1222 *
47cec443 1223 * Return:
7c0caeb8
TH
1224 * 0 on success, -errno on failure.
1225 */
1226int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1227 struct memblock_type *type, int nid)
7c0caeb8 1228{
6a9ceb31
TH
1229 int start_rgn, end_rgn;
1230 int i, ret;
7c0caeb8 1231
6a9ceb31
TH
1232 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1233 if (ret)
1234 return ret;
7c0caeb8 1235
6a9ceb31 1236 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1237 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1238
1239 memblock_merge_regions(type);
1240 return 0;
1241}
1242#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1243
2bfc2862
AM
1244static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1245 phys_addr_t align, phys_addr_t start,
e1720fee
MR
1246 phys_addr_t end, int nid,
1247 enum memblock_flags flags)
95f72d1e 1248{
6ed311b2 1249 phys_addr_t found;
95f72d1e 1250
79f40fab
GS
1251 if (!align)
1252 align = SMP_CACHE_BYTES;
94f3d3af 1253
fc6daaf9
TL
1254 found = memblock_find_in_range_node(size, align, start, end, nid,
1255 flags);
aedf95ea
CM
1256 if (found && !memblock_reserve(found, size)) {
1257 /*
1258 * The min_count is set to 0 so that memblock allocations are
1259 * never reported as leaks.
1260 */
9099daed 1261 kmemleak_alloc_phys(found, size, 0, 0);
6ed311b2 1262 return found;
aedf95ea 1263 }
6ed311b2 1264 return 0;
95f72d1e
YL
1265}
1266
2bfc2862 1267phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
fc6daaf9 1268 phys_addr_t start, phys_addr_t end,
e1720fee 1269 enum memblock_flags flags)
2bfc2862 1270{
fc6daaf9
TL
1271 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1272 flags);
2bfc2862
AM
1273}
1274
b575454f 1275phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
2bfc2862 1276 phys_addr_t align, phys_addr_t max_addr,
e1720fee 1277 int nid, enum memblock_flags flags)
2bfc2862 1278{
fc6daaf9 1279 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
2bfc2862
AM
1280}
1281
9a8dd708 1282phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
7bd0b0f0 1283{
e1720fee 1284 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
1285 phys_addr_t ret;
1286
1287again:
1288 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1289 nid, flags);
1290
1291 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1292 flags &= ~MEMBLOCK_MIRROR;
1293 goto again;
1294 }
1295 return ret;
7bd0b0f0
TH
1296}
1297
1298phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1299{
fc6daaf9
TL
1300 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1301 MEMBLOCK_NONE);
7bd0b0f0
TH
1302}
1303
6ed311b2 1304phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 1305{
6ed311b2
BH
1306 phys_addr_t alloc;
1307
1308 alloc = __memblock_alloc_base(size, align, max_addr);
1309
1310 if (alloc == 0)
5d63f81c
MC
1311 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1312 &size, &max_addr);
6ed311b2
BH
1313
1314 return alloc;
95f72d1e
YL
1315}
1316
9a8dd708 1317phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 1318{
6ed311b2
BH
1319 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1320}
95f72d1e 1321
9a8dd708 1322phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1323{
9a8dd708 1324 phys_addr_t res = memblock_phys_alloc_nid(size, align, nid);
9d1e2492
BH
1325
1326 if (res)
1327 return res;
15fb0972 1328 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
1329}
1330
26f09e9b 1331/**
eb31d559 1332 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @min_addr: the lower bound of the memory region to allocate (phys address)
1336 * @max_addr: the upper bound of the memory region to allocate (phys address)
1337 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1338 *
1339 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1340 * will fall back to memory below @min_addr. Also, allocation may fall back
1341 * to any node in the system if the specified node can not
1342 * hold the requested memory.
1343 *
1344 * The allocation is performed from memory region limited by
1345 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1346 *
47cec443 1347 * The memory block is aligned on %SMP_CACHE_BYTES if @align == 0.
26f09e9b
SS
1348 *
1349 * The phys address of allocated boot memory block is converted to virtual and
1350 * allocated memory is reset to 0.
1351 *
1352 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1353 * allocated boot memory block, so that it is never reported as leaks.
1354 *
47cec443 1355 * Return:
26f09e9b
SS
1356 * Virtual address of allocated memory block on success, NULL on failure.
1357 */
eb31d559 1358static void * __init memblock_alloc_internal(
26f09e9b
SS
1359 phys_addr_t size, phys_addr_t align,
1360 phys_addr_t min_addr, phys_addr_t max_addr,
1361 int nid)
1362{
1363 phys_addr_t alloc;
1364 void *ptr;
e1720fee 1365 enum memblock_flags flags = choose_memblock_flags();
26f09e9b 1366
560dca27
GS
1367 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1368 nid = NUMA_NO_NODE;
26f09e9b
SS
1369
1370 /*
1371 * Detect any accidental use of these APIs after slab is ready, as at
1372 * this moment memblock may be deinitialized already and its
c6ffc5ca 1373 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1374 */
1375 if (WARN_ON_ONCE(slab_is_available()))
1376 return kzalloc_node(size, GFP_NOWAIT, nid);
1377
1378 if (!align)
1379 align = SMP_CACHE_BYTES;
1380
f544e14f
YL
1381 if (max_addr > memblock.current_limit)
1382 max_addr = memblock.current_limit;
26f09e9b
SS
1383again:
1384 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
a3f5bafc 1385 nid, flags);
7d41c03e 1386 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1387 goto done;
1388
1389 if (nid != NUMA_NO_NODE) {
1390 alloc = memblock_find_in_range_node(size, align, min_addr,
fc6daaf9 1391 max_addr, NUMA_NO_NODE,
a3f5bafc 1392 flags);
7d41c03e 1393 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1394 goto done;
1395 }
1396
1397 if (min_addr) {
1398 min_addr = 0;
1399 goto again;
26f09e9b
SS
1400 }
1401
a3f5bafc
TL
1402 if (flags & MEMBLOCK_MIRROR) {
1403 flags &= ~MEMBLOCK_MIRROR;
1404 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1405 &size);
1406 goto again;
1407 }
1408
1409 return NULL;
26f09e9b 1410done:
26f09e9b 1411 ptr = phys_to_virt(alloc);
26f09e9b
SS
1412
1413 /*
1414 * The min_count is set to 0 so that bootmem allocated blocks
1415 * are never reported as leaks. This is because many of these blocks
1416 * are only referred via the physical address which is not
1417 * looked up by kmemleak.
1418 */
1419 kmemleak_alloc(ptr, size, 0, 0);
1420
1421 return ptr;
26f09e9b
SS
1422}
1423
ea1f5f37 1424/**
eb31d559 1425 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1426 * memory and without panicking
1427 * @size: size of memory block to be allocated in bytes
1428 * @align: alignment of the region and block's size
1429 * @min_addr: the lower bound of the memory region from where the allocation
1430 * is preferred (phys address)
1431 * @max_addr: the upper bound of the memory region from where the allocation
1432 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1433 * allocate only from memory limited by memblock.current_limit value
1434 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1435 *
1436 * Public function, provides additional debug information (including caller
1437 * info), if enabled. Does not zero allocated memory, does not panic if request
1438 * cannot be satisfied.
1439 *
47cec443 1440 * Return:
ea1f5f37
PT
1441 * Virtual address of allocated memory block on success, NULL on failure.
1442 */
eb31d559 1443void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1444 phys_addr_t size, phys_addr_t align,
1445 phys_addr_t min_addr, phys_addr_t max_addr,
1446 int nid)
1447{
1448 void *ptr;
1449
a36aab89
MR
1450 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1451 __func__, (u64)size, (u64)align, nid, &min_addr,
1452 &max_addr, (void *)_RET_IP_);
ea1f5f37 1453
eb31d559 1454 ptr = memblock_alloc_internal(size, align,
ea1f5f37 1455 min_addr, max_addr, nid);
ea1f5f37 1456 if (ptr && size > 0)
f682a97a
AD
1457 page_init_poison(ptr, size);
1458
ea1f5f37
PT
1459 return ptr;
1460}
1461
26f09e9b 1462/**
eb31d559 1463 * memblock_alloc_try_nid_nopanic - allocate boot memory block
26f09e9b
SS
1464 * @size: size of memory block to be allocated in bytes
1465 * @align: alignment of the region and block's size
1466 * @min_addr: the lower bound of the memory region from where the allocation
1467 * is preferred (phys address)
1468 * @max_addr: the upper bound of the memory region from where the allocation
1469 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1470 * allocate only from memory limited by memblock.current_limit value
1471 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1472 *
ea1f5f37
PT
1473 * Public function, provides additional debug information (including caller
1474 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1475 *
47cec443 1476 * Return:
26f09e9b
SS
1477 * Virtual address of allocated memory block on success, NULL on failure.
1478 */
eb31d559 1479void * __init memblock_alloc_try_nid_nopanic(
26f09e9b
SS
1480 phys_addr_t size, phys_addr_t align,
1481 phys_addr_t min_addr, phys_addr_t max_addr,
1482 int nid)
1483{
ea1f5f37
PT
1484 void *ptr;
1485
a36aab89
MR
1486 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1487 __func__, (u64)size, (u64)align, nid, &min_addr,
1488 &max_addr, (void *)_RET_IP_);
ea1f5f37 1489
eb31d559 1490 ptr = memblock_alloc_internal(size, align,
ea1f5f37
PT
1491 min_addr, max_addr, nid);
1492 if (ptr)
1493 memset(ptr, 0, size);
1494 return ptr;
26f09e9b
SS
1495}
1496
1497/**
eb31d559 1498 * memblock_alloc_try_nid - allocate boot memory block with panicking
26f09e9b
SS
1499 * @size: size of memory block to be allocated in bytes
1500 * @align: alignment of the region and block's size
1501 * @min_addr: the lower bound of the memory region from where the allocation
1502 * is preferred (phys address)
1503 * @max_addr: the upper bound of the memory region from where the allocation
1504 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1505 * allocate only from memory limited by memblock.current_limit value
1506 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1507 *
eb31d559 1508 * Public panicking version of memblock_alloc_try_nid_nopanic()
26f09e9b
SS
1509 * which provides debug information (including caller info), if enabled,
1510 * and panics if the request can not be satisfied.
1511 *
47cec443 1512 * Return:
26f09e9b
SS
1513 * Virtual address of allocated memory block on success, NULL on failure.
1514 */
eb31d559 1515void * __init memblock_alloc_try_nid(
26f09e9b
SS
1516 phys_addr_t size, phys_addr_t align,
1517 phys_addr_t min_addr, phys_addr_t max_addr,
1518 int nid)
1519{
1520 void *ptr;
1521
a36aab89
MR
1522 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1523 __func__, (u64)size, (u64)align, nid, &min_addr,
1524 &max_addr, (void *)_RET_IP_);
eb31d559 1525 ptr = memblock_alloc_internal(size, align,
26f09e9b 1526 min_addr, max_addr, nid);
ea1f5f37
PT
1527 if (ptr) {
1528 memset(ptr, 0, size);
26f09e9b 1529 return ptr;
ea1f5f37 1530 }
26f09e9b 1531
a36aab89
MR
1532 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1533 __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
26f09e9b
SS
1534 return NULL;
1535}
1536
1537/**
1538 * __memblock_free_early - free boot memory block
1539 * @base: phys starting address of the boot memory block
1540 * @size: size of the boot memory block in bytes
1541 *
eb31d559 1542 * Free boot memory block previously allocated by memblock_alloc_xx() API.
26f09e9b
SS
1543 * The freeing memory will not be released to the buddy allocator.
1544 */
1545void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1546{
a36aab89
MR
1547 phys_addr_t end = base + size - 1;
1548
1549 memblock_dbg("%s: [%pa-%pa] %pF\n",
1550 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1551 kmemleak_free_part_phys(base, size);
f1af9d3a 1552 memblock_remove_range(&memblock.reserved, base, size);
26f09e9b
SS
1553}
1554
48a833cc 1555/**
26f09e9b 1556 * __memblock_free_late - free bootmem block pages directly to buddy allocator
48a833cc 1557 * @base: phys starting address of the boot memory block
26f09e9b
SS
1558 * @size: size of the boot memory block in bytes
1559 *
1560 * This is only useful when the bootmem allocator has already been torn
1561 * down, but we are still initializing the system. Pages are released directly
1562 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1563 */
1564void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1565{
a36aab89 1566 phys_addr_t cursor, end;
26f09e9b 1567
a36aab89
MR
1568 end = base + size - 1;
1569 memblock_dbg("%s: [%pa-%pa] %pF\n",
1570 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1571 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1572 cursor = PFN_UP(base);
1573 end = PFN_DOWN(base + size);
1574
1575 for (; cursor < end; cursor++) {
7c2ee349 1576 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
26f09e9b
SS
1577 totalram_pages++;
1578 }
1579}
9d1e2492
BH
1580
1581/*
1582 * Remaining API functions
1583 */
1584
1f1ffb8a 1585phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1586{
1440c4e2 1587 return memblock.memory.total_size;
95f72d1e
YL
1588}
1589
8907de5d
SD
1590phys_addr_t __init_memblock memblock_reserved_size(void)
1591{
1592 return memblock.reserved.total_size;
1593}
1594
595ad9af
YL
1595phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1596{
1597 unsigned long pages = 0;
1598 struct memblock_region *r;
1599 unsigned long start_pfn, end_pfn;
1600
1601 for_each_memblock(memory, r) {
1602 start_pfn = memblock_region_memory_base_pfn(r);
1603 end_pfn = memblock_region_memory_end_pfn(r);
1604 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1605 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1606 pages += end_pfn - start_pfn;
1607 }
1608
16763230 1609 return PFN_PHYS(pages);
595ad9af
YL
1610}
1611
0a93ebef
SR
1612/* lowest address */
1613phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1614{
1615 return memblock.memory.regions[0].base;
1616}
1617
10d06439 1618phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1619{
1620 int idx = memblock.memory.cnt - 1;
1621
e3239ff9 1622 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1623}
1624
a571d4eb 1625static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1626{
1c4bc43d 1627 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1628 struct memblock_region *r;
95f72d1e 1629
a571d4eb
DC
1630 /*
1631 * translate the memory @limit size into the max address within one of
1632 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1633 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1634 */
136199f0 1635 for_each_memblock(memory, r) {
c0ce8fef
TH
1636 if (limit <= r->size) {
1637 max_addr = r->base + limit;
1638 break;
95f72d1e 1639 }
c0ce8fef 1640 limit -= r->size;
95f72d1e 1641 }
c0ce8fef 1642
a571d4eb
DC
1643 return max_addr;
1644}
1645
1646void __init memblock_enforce_memory_limit(phys_addr_t limit)
1647{
1c4bc43d 1648 phys_addr_t max_addr = PHYS_ADDR_MAX;
a571d4eb
DC
1649
1650 if (!limit)
1651 return;
1652
1653 max_addr = __find_max_addr(limit);
1654
1655 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1656 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1657 return;
1658
c0ce8fef 1659 /* truncate both memory and reserved regions */
f1af9d3a 1660 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1661 PHYS_ADDR_MAX);
f1af9d3a 1662 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1663 PHYS_ADDR_MAX);
95f72d1e
YL
1664}
1665
c9ca9b4e
AT
1666void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1667{
1668 int start_rgn, end_rgn;
1669 int i, ret;
1670
1671 if (!size)
1672 return;
1673
1674 ret = memblock_isolate_range(&memblock.memory, base, size,
1675 &start_rgn, &end_rgn);
1676 if (ret)
1677 return;
1678
1679 /* remove all the MAP regions */
1680 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1681 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1682 memblock_remove_region(&memblock.memory, i);
1683
1684 for (i = start_rgn - 1; i >= 0; i--)
1685 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1686 memblock_remove_region(&memblock.memory, i);
1687
1688 /* truncate the reserved regions */
1689 memblock_remove_range(&memblock.reserved, 0, base);
1690 memblock_remove_range(&memblock.reserved,
1c4bc43d 1691 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1692}
1693
a571d4eb
DC
1694void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1695{
a571d4eb 1696 phys_addr_t max_addr;
a571d4eb
DC
1697
1698 if (!limit)
1699 return;
1700
1701 max_addr = __find_max_addr(limit);
1702
1703 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1704 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1705 return;
1706
c9ca9b4e 1707 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1708}
1709
cd79481d 1710static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1711{
1712 unsigned int left = 0, right = type->cnt;
1713
1714 do {
1715 unsigned int mid = (right + left) / 2;
1716
1717 if (addr < type->regions[mid].base)
1718 right = mid;
1719 else if (addr >= (type->regions[mid].base +
1720 type->regions[mid].size))
1721 left = mid + 1;
1722 else
1723 return mid;
1724 } while (left < right);
1725 return -1;
1726}
1727
b4ad0c7e 1728bool __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 1729{
72d4b0b4
BH
1730 return memblock_search(&memblock.reserved, addr) != -1;
1731}
95f72d1e 1732
b4ad0c7e 1733bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1734{
1735 return memblock_search(&memblock.memory, addr) != -1;
1736}
1737
937f0c26 1738bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1739{
1740 int i = memblock_search(&memblock.memory, addr);
1741
1742 if (i == -1)
1743 return false;
1744 return !memblock_is_nomap(&memblock.memory.regions[i]);
1745}
1746
e76b63f8
YL
1747#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1748int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1749 unsigned long *start_pfn, unsigned long *end_pfn)
1750{
1751 struct memblock_type *type = &memblock.memory;
16763230 1752 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1753
1754 if (mid == -1)
1755 return -1;
1756
f7e2f7e8
FF
1757 *start_pfn = PFN_DOWN(type->regions[mid].base);
1758 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8
YL
1759
1760 return type->regions[mid].nid;
1761}
1762#endif
1763
eab30949
SB
1764/**
1765 * memblock_is_region_memory - check if a region is a subset of memory
1766 * @base: base of region to check
1767 * @size: size of region to check
1768 *
47cec443 1769 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1770 *
47cec443 1771 * Return:
eab30949
SB
1772 * 0 if false, non-zero if true
1773 */
937f0c26 1774bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1775{
abb65272 1776 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1777 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1778
1779 if (idx == -1)
937f0c26 1780 return false;
ef415ef4 1781 return (memblock.memory.regions[idx].base +
eb18f1b5 1782 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1783}
1784
eab30949
SB
1785/**
1786 * memblock_is_region_reserved - check if a region intersects reserved memory
1787 * @base: base of region to check
1788 * @size: size of region to check
1789 *
47cec443
MR
1790 * Check if the region [@base, @base + @size) intersects a reserved
1791 * memory block.
eab30949 1792 *
47cec443 1793 * Return:
c5c5c9d1 1794 * True if they intersect, false if not.
eab30949 1795 */
c5c5c9d1 1796bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1797{
eb18f1b5 1798 memblock_cap_size(base, &size);
c5c5c9d1 1799 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1800}
1801
6ede1fd3
YL
1802void __init_memblock memblock_trim_memory(phys_addr_t align)
1803{
6ede1fd3 1804 phys_addr_t start, end, orig_start, orig_end;
136199f0 1805 struct memblock_region *r;
6ede1fd3 1806
136199f0
EM
1807 for_each_memblock(memory, r) {
1808 orig_start = r->base;
1809 orig_end = r->base + r->size;
6ede1fd3
YL
1810 start = round_up(orig_start, align);
1811 end = round_down(orig_end, align);
1812
1813 if (start == orig_start && end == orig_end)
1814 continue;
1815
1816 if (start < end) {
136199f0
EM
1817 r->base = start;
1818 r->size = end - start;
6ede1fd3 1819 } else {
136199f0
EM
1820 memblock_remove_region(&memblock.memory,
1821 r - memblock.memory.regions);
1822 r--;
6ede1fd3
YL
1823 }
1824 }
1825}
e63075a3 1826
3661ca66 1827void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1828{
1829 memblock.current_limit = limit;
1830}
1831
fec51014
LA
1832phys_addr_t __init_memblock memblock_get_current_limit(void)
1833{
1834 return memblock.current_limit;
1835}
1836
0262d9c8 1837static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1838{
5d63f81c 1839 phys_addr_t base, end, size;
e1720fee 1840 enum memblock_flags flags;
8c9c1701
AK
1841 int idx;
1842 struct memblock_region *rgn;
6ed311b2 1843
0262d9c8 1844 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1845
66e8b438 1846 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1847 char nid_buf[32] = "";
1848
1849 base = rgn->base;
1850 size = rgn->size;
5d63f81c 1851 end = base + size - 1;
66a20757 1852 flags = rgn->flags;
7c0caeb8
TH
1853#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1854 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1855 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1856 memblock_get_region_node(rgn));
1857#endif
e1720fee 1858 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1859 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1860 }
1861}
1862
4ff7b82f 1863void __init_memblock __memblock_dump_all(void)
6ed311b2 1864{
6ed311b2 1865 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1866 pr_info(" memory size = %pa reserved size = %pa\n",
1867 &memblock.memory.total_size,
1868 &memblock.reserved.total_size);
6ed311b2 1869
0262d9c8
HC
1870 memblock_dump(&memblock.memory);
1871 memblock_dump(&memblock.reserved);
409efd4c 1872#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0262d9c8 1873 memblock_dump(&memblock.physmem);
409efd4c 1874#endif
6ed311b2
BH
1875}
1876
1aadc056 1877void __init memblock_allow_resize(void)
6ed311b2 1878{
142b45a7 1879 memblock_can_resize = 1;
6ed311b2
BH
1880}
1881
6ed311b2
BH
1882static int __init early_memblock(char *p)
1883{
1884 if (p && strstr(p, "debug"))
1885 memblock_debug = 1;
1886 return 0;
1887}
1888early_param("memblock", early_memblock);
1889
bda49a81
MR
1890static void __init __free_pages_memory(unsigned long start, unsigned long end)
1891{
1892 int order;
1893
1894 while (start < end) {
1895 order = min(MAX_ORDER - 1UL, __ffs(start));
1896
1897 while (start + (1UL << order) > end)
1898 order--;
1899
1900 memblock_free_pages(pfn_to_page(start), start, order);
1901
1902 start += (1UL << order);
1903 }
1904}
1905
1906static unsigned long __init __free_memory_core(phys_addr_t start,
1907 phys_addr_t end)
1908{
1909 unsigned long start_pfn = PFN_UP(start);
1910 unsigned long end_pfn = min_t(unsigned long,
1911 PFN_DOWN(end), max_low_pfn);
1912
1913 if (start_pfn >= end_pfn)
1914 return 0;
1915
1916 __free_pages_memory(start_pfn, end_pfn);
1917
1918 return end_pfn - start_pfn;
1919}
1920
1921static unsigned long __init free_low_memory_core_early(void)
1922{
1923 unsigned long count = 0;
1924 phys_addr_t start, end;
1925 u64 i;
1926
1927 memblock_clear_hotplug(0, -1);
1928
1929 for_each_reserved_mem_region(i, &start, &end)
1930 reserve_bootmem_region(start, end);
1931
1932 /*
1933 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1934 * because in some case like Node0 doesn't have RAM installed
1935 * low ram will be on Node1
1936 */
1937 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1938 NULL)
1939 count += __free_memory_core(start, end);
1940
1941 return count;
1942}
1943
1944static int reset_managed_pages_done __initdata;
1945
1946void reset_node_managed_pages(pg_data_t *pgdat)
1947{
1948 struct zone *z;
1949
1950 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1951 z->managed_pages = 0;
1952}
1953
1954void __init reset_all_zones_managed_pages(void)
1955{
1956 struct pglist_data *pgdat;
1957
1958 if (reset_managed_pages_done)
1959 return;
1960
1961 for_each_online_pgdat(pgdat)
1962 reset_node_managed_pages(pgdat);
1963
1964 reset_managed_pages_done = 1;
1965}
1966
1967/**
1968 * memblock_free_all - release free pages to the buddy allocator
1969 *
1970 * Return: the number of pages actually released.
1971 */
1972unsigned long __init memblock_free_all(void)
1973{
1974 unsigned long pages;
1975
1976 reset_all_zones_managed_pages();
1977
1978 pages = free_low_memory_core_early();
1979 totalram_pages += pages;
1980
1981 return pages;
1982}
1983
c378ddd5 1984#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
1985
1986static int memblock_debug_show(struct seq_file *m, void *private)
1987{
1988 struct memblock_type *type = m->private;
1989 struct memblock_region *reg;
1990 int i;
5d63f81c 1991 phys_addr_t end;
6d03b885
BH
1992
1993 for (i = 0; i < type->cnt; i++) {
1994 reg = &type->regions[i];
5d63f81c 1995 end = reg->base + reg->size - 1;
6d03b885 1996
5d63f81c
MC
1997 seq_printf(m, "%4d: ", i);
1998 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
1999 }
2000 return 0;
2001}
5ad35093 2002DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2003
2004static int __init memblock_init_debugfs(void)
2005{
2006 struct dentry *root = debugfs_create_dir("memblock", NULL);
2007 if (!root)
2008 return -ENXIO;
0825a6f9
JP
2009 debugfs_create_file("memory", 0444, root,
2010 &memblock.memory, &memblock_debug_fops);
2011 debugfs_create_file("reserved", 0444, root,
2012 &memblock.reserved, &memblock_debug_fops);
70210ed9 2013#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0825a6f9
JP
2014 debugfs_create_file("physmem", 0444, root,
2015 &memblock.physmem, &memblock_debug_fops);
70210ed9 2016#endif
6d03b885
BH
2017
2018 return 0;
2019}
2020__initcall(memblock_init_debugfs);
2021
2022#endif /* CONFIG_DEBUG_FS */