docs/mm: memblock: add kernel-doc description for memblock types
[linux-2.6-block.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885 19#include <linux/debugfs.h>
514c6032 20#include <linux/kmemleak.h>
6d03b885 21#include <linux/seq_file.h>
95f72d1e
YL
22#include <linux/memblock.h>
23
c4c5ad6b 24#include <asm/sections.h>
26f09e9b
SS
25#include <linux/io.h>
26
27#include "internal.h"
79442ed1 28
fe091c20
TH
29static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
70210ed9
PH
31#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
32static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
33#endif
fe091c20
TH
34
35struct memblock memblock __initdata_memblock = {
36 .memory.regions = memblock_memory_init_regions,
37 .memory.cnt = 1, /* empty dummy entry */
38 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 39 .memory.name = "memory",
fe091c20
TH
40
41 .reserved.regions = memblock_reserved_init_regions,
42 .reserved.cnt = 1, /* empty dummy entry */
43 .reserved.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 44 .reserved.name = "reserved",
fe091c20 45
70210ed9
PH
46#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
47 .physmem.regions = memblock_physmem_init_regions,
48 .physmem.cnt = 1, /* empty dummy entry */
49 .physmem.max = INIT_PHYSMEM_REGIONS,
0262d9c8 50 .physmem.name = "physmem",
70210ed9
PH
51#endif
52
79442ed1 53 .bottom_up = false,
fe091c20
TH
54 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
55};
95f72d1e 56
10d06439 57int memblock_debug __initdata_memblock;
a3f5bafc 58static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 59static int memblock_can_resize __initdata_memblock;
181eb394
GS
60static int memblock_memory_in_slab __initdata_memblock = 0;
61static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 62
e1720fee 63enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
64{
65 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
66}
67
eb18f1b5
TH
68/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
69static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
70{
1c4bc43d 71 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
72}
73
6ed311b2
BH
74/*
75 * Address comparison utilities
76 */
10d06439 77static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 78 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
79{
80 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
81}
82
95cf82ec 83bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 84 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
85{
86 unsigned long i;
87
f14516fb
AK
88 for (i = 0; i < type->cnt; i++)
89 if (memblock_addrs_overlap(base, size, type->regions[i].base,
90 type->regions[i].size))
6ed311b2 91 break;
c5c5c9d1 92 return i < type->cnt;
6ed311b2
BH
93}
94
47cec443 95/**
79442ed1
TC
96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
97 * @start: start of candidate range
47cec443
MR
98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
99 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
100 * @size: size of free area to find
101 * @align: alignment of free area to find
b1154233 102 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 103 * @flags: pick from blocks based on memory attributes
79442ed1
TC
104 *
105 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
106 *
47cec443 107 * Return:
79442ed1
TC
108 * Found address on success, 0 on failure.
109 */
110static phys_addr_t __init_memblock
111__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 112 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 113 enum memblock_flags flags)
79442ed1
TC
114{
115 phys_addr_t this_start, this_end, cand;
116 u64 i;
117
fc6daaf9 118 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
119 this_start = clamp(this_start, start, end);
120 this_end = clamp(this_end, start, end);
121
122 cand = round_up(this_start, align);
123 if (cand < this_end && this_end - cand >= size)
124 return cand;
125 }
126
127 return 0;
128}
129
7bd0b0f0 130/**
1402899e 131 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 132 * @start: start of candidate range
47cec443
MR
133 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
134 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
135 * @size: size of free area to find
136 * @align: alignment of free area to find
b1154233 137 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 138 * @flags: pick from blocks based on memory attributes
7bd0b0f0 139 *
1402899e 140 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 141 *
47cec443 142 * Return:
79442ed1 143 * Found address on success, 0 on failure.
6ed311b2 144 */
1402899e
TC
145static phys_addr_t __init_memblock
146__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 147 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 148 enum memblock_flags flags)
f7210e6c
TC
149{
150 phys_addr_t this_start, this_end, cand;
151 u64 i;
152
fc6daaf9
TL
153 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
154 NULL) {
f7210e6c
TC
155 this_start = clamp(this_start, start, end);
156 this_end = clamp(this_end, start, end);
157
158 if (this_end < size)
159 continue;
160
161 cand = round_down(this_end - size, align);
162 if (cand >= this_start)
163 return cand;
164 }
1402899e 165
f7210e6c
TC
166 return 0;
167}
6ed311b2 168
1402899e
TC
169/**
170 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
171 * @size: size of free area to find
172 * @align: alignment of free area to find
87029ee9 173 * @start: start of candidate range
47cec443
MR
174 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
175 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 176 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 177 * @flags: pick from blocks based on memory attributes
1402899e
TC
178 *
179 * Find @size free area aligned to @align in the specified range and node.
180 *
79442ed1
TC
181 * When allocation direction is bottom-up, the @start should be greater
182 * than the end of the kernel image. Otherwise, it will be trimmed. The
183 * reason is that we want the bottom-up allocation just near the kernel
184 * image so it is highly likely that the allocated memory and the kernel
185 * will reside in the same node.
186 *
187 * If bottom-up allocation failed, will try to allocate memory top-down.
188 *
47cec443 189 * Return:
79442ed1 190 * Found address on success, 0 on failure.
1402899e 191 */
87029ee9
GS
192phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
193 phys_addr_t align, phys_addr_t start,
e1720fee
MR
194 phys_addr_t end, int nid,
195 enum memblock_flags flags)
1402899e 196{
0cfb8f0c 197 phys_addr_t kernel_end, ret;
79442ed1 198
1402899e
TC
199 /* pump up @end */
200 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
201 end = memblock.current_limit;
202
203 /* avoid allocating the first page */
204 start = max_t(phys_addr_t, start, PAGE_SIZE);
205 end = max(start, end);
79442ed1
TC
206 kernel_end = __pa_symbol(_end);
207
208 /*
209 * try bottom-up allocation only when bottom-up mode
210 * is set and @end is above the kernel image.
211 */
212 if (memblock_bottom_up() && end > kernel_end) {
213 phys_addr_t bottom_up_start;
214
215 /* make sure we will allocate above the kernel */
216 bottom_up_start = max(start, kernel_end);
217
218 /* ok, try bottom-up allocation first */
219 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 220 size, align, nid, flags);
79442ed1
TC
221 if (ret)
222 return ret;
223
224 /*
225 * we always limit bottom-up allocation above the kernel,
226 * but top-down allocation doesn't have the limit, so
227 * retrying top-down allocation may succeed when bottom-up
228 * allocation failed.
229 *
230 * bottom-up allocation is expected to be fail very rarely,
231 * so we use WARN_ONCE() here to see the stack trace if
232 * fail happens.
233 */
756a025f 234 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
79442ed1 235 }
1402899e 236
fc6daaf9
TL
237 return __memblock_find_range_top_down(start, end, size, align, nid,
238 flags);
1402899e
TC
239}
240
7bd0b0f0
TH
241/**
242 * memblock_find_in_range - find free area in given range
243 * @start: start of candidate range
47cec443
MR
244 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
245 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
246 * @size: size of free area to find
247 * @align: alignment of free area to find
248 *
249 * Find @size free area aligned to @align in the specified range.
250 *
47cec443 251 * Return:
79442ed1 252 * Found address on success, 0 on failure.
fc769a8e 253 */
7bd0b0f0
TH
254phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
255 phys_addr_t end, phys_addr_t size,
256 phys_addr_t align)
6ed311b2 257{
a3f5bafc 258 phys_addr_t ret;
e1720fee 259 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
260
261again:
262 ret = memblock_find_in_range_node(size, align, start, end,
263 NUMA_NO_NODE, flags);
264
265 if (!ret && (flags & MEMBLOCK_MIRROR)) {
266 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
267 &size);
268 flags &= ~MEMBLOCK_MIRROR;
269 goto again;
270 }
271
272 return ret;
6ed311b2
BH
273}
274
10d06439 275static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 276{
1440c4e2 277 type->total_size -= type->regions[r].size;
7c0caeb8
TH
278 memmove(&type->regions[r], &type->regions[r + 1],
279 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 280 type->cnt--;
95f72d1e 281
8f7a6605
BH
282 /* Special case for empty arrays */
283 if (type->cnt == 0) {
1440c4e2 284 WARN_ON(type->total_size != 0);
8f7a6605
BH
285 type->cnt = 1;
286 type->regions[0].base = 0;
287 type->regions[0].size = 0;
66a20757 288 type->regions[0].flags = 0;
7c0caeb8 289 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 290 }
95f72d1e
YL
291}
292
354f17e1 293#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
3010f876 294/**
47cec443 295 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
296 */
297void __init memblock_discard(void)
5e270e25 298{
3010f876 299 phys_addr_t addr, size;
5e270e25 300
3010f876
PT
301 if (memblock.reserved.regions != memblock_reserved_init_regions) {
302 addr = __pa(memblock.reserved.regions);
303 size = PAGE_ALIGN(sizeof(struct memblock_region) *
304 memblock.reserved.max);
305 __memblock_free_late(addr, size);
306 }
5e270e25 307
91b540f9 308 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
309 addr = __pa(memblock.memory.regions);
310 size = PAGE_ALIGN(sizeof(struct memblock_region) *
311 memblock.memory.max);
312 __memblock_free_late(addr, size);
313 }
5e270e25 314}
5e270e25
PH
315#endif
316
48c3b583
GP
317/**
318 * memblock_double_array - double the size of the memblock regions array
319 * @type: memblock type of the regions array being doubled
320 * @new_area_start: starting address of memory range to avoid overlap with
321 * @new_area_size: size of memory range to avoid overlap with
322 *
323 * Double the size of the @type regions array. If memblock is being used to
324 * allocate memory for a new reserved regions array and there is a previously
47cec443 325 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
326 * waiting to be reserved, ensure the memory used by the new array does
327 * not overlap.
328 *
47cec443 329 * Return:
48c3b583
GP
330 * 0 on success, -1 on failure.
331 */
332static int __init_memblock memblock_double_array(struct memblock_type *type,
333 phys_addr_t new_area_start,
334 phys_addr_t new_area_size)
142b45a7
BH
335{
336 struct memblock_region *new_array, *old_array;
29f67386 337 phys_addr_t old_alloc_size, new_alloc_size;
142b45a7
BH
338 phys_addr_t old_size, new_size, addr;
339 int use_slab = slab_is_available();
181eb394 340 int *in_slab;
142b45a7
BH
341
342 /* We don't allow resizing until we know about the reserved regions
343 * of memory that aren't suitable for allocation
344 */
345 if (!memblock_can_resize)
346 return -1;
347
142b45a7
BH
348 /* Calculate new doubled size */
349 old_size = type->max * sizeof(struct memblock_region);
350 new_size = old_size << 1;
29f67386
YL
351 /*
352 * We need to allocated new one align to PAGE_SIZE,
353 * so we can free them completely later.
354 */
355 old_alloc_size = PAGE_ALIGN(old_size);
356 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 357
181eb394
GS
358 /* Retrieve the slab flag */
359 if (type == &memblock.memory)
360 in_slab = &memblock_memory_in_slab;
361 else
362 in_slab = &memblock_reserved_in_slab;
363
142b45a7
BH
364 /* Try to find some space for it.
365 *
366 * WARNING: We assume that either slab_is_available() and we use it or
fd07383b
AM
367 * we use MEMBLOCK for allocations. That means that this is unsafe to
368 * use when bootmem is currently active (unless bootmem itself is
369 * implemented on top of MEMBLOCK which isn't the case yet)
142b45a7
BH
370 *
371 * This should however not be an issue for now, as we currently only
fd07383b
AM
372 * call into MEMBLOCK while it's still active, or much later when slab
373 * is active for memory hotplug operations
142b45a7
BH
374 */
375 if (use_slab) {
376 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 377 addr = new_array ? __pa(new_array) : 0;
4e2f0775 378 } else {
48c3b583
GP
379 /* only exclude range when trying to double reserved.regions */
380 if (type != &memblock.reserved)
381 new_area_start = new_area_size = 0;
382
383 addr = memblock_find_in_range(new_area_start + new_area_size,
384 memblock.current_limit,
29f67386 385 new_alloc_size, PAGE_SIZE);
48c3b583
GP
386 if (!addr && new_area_size)
387 addr = memblock_find_in_range(0,
fd07383b
AM
388 min(new_area_start, memblock.current_limit),
389 new_alloc_size, PAGE_SIZE);
48c3b583 390
15674868 391 new_array = addr ? __va(addr) : NULL;
4e2f0775 392 }
1f5026a7 393 if (!addr) {
142b45a7 394 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 395 type->name, type->max, type->max * 2);
142b45a7
BH
396 return -1;
397 }
142b45a7 398
fd07383b 399 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
0262d9c8 400 type->name, type->max * 2, (u64)addr,
fd07383b 401 (u64)addr + new_size - 1);
ea9e4376 402
fd07383b
AM
403 /*
404 * Found space, we now need to move the array over before we add the
405 * reserved region since it may be our reserved array itself that is
406 * full.
142b45a7
BH
407 */
408 memcpy(new_array, type->regions, old_size);
409 memset(new_array + type->max, 0, old_size);
410 old_array = type->regions;
411 type->regions = new_array;
412 type->max <<= 1;
413
fd07383b 414 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
415 if (*in_slab)
416 kfree(old_array);
417 else if (old_array != memblock_memory_init_regions &&
418 old_array != memblock_reserved_init_regions)
29f67386 419 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 420
fd07383b
AM
421 /*
422 * Reserve the new array if that comes from the memblock. Otherwise, we
423 * needn't do it
181eb394
GS
424 */
425 if (!use_slab)
29f67386 426 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
427
428 /* Update slab flag */
429 *in_slab = use_slab;
430
142b45a7
BH
431 return 0;
432}
433
784656f9
TH
434/**
435 * memblock_merge_regions - merge neighboring compatible regions
436 * @type: memblock type to scan
437 *
438 * Scan @type and merge neighboring compatible regions.
439 */
440static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 441{
784656f9 442 int i = 0;
95f72d1e 443
784656f9
TH
444 /* cnt never goes below 1 */
445 while (i < type->cnt - 1) {
446 struct memblock_region *this = &type->regions[i];
447 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 448
7c0caeb8
TH
449 if (this->base + this->size != next->base ||
450 memblock_get_region_node(this) !=
66a20757
TC
451 memblock_get_region_node(next) ||
452 this->flags != next->flags) {
784656f9
TH
453 BUG_ON(this->base + this->size > next->base);
454 i++;
455 continue;
8f7a6605
BH
456 }
457
784656f9 458 this->size += next->size;
c0232ae8
LF
459 /* move forward from next + 1, index of which is i + 2 */
460 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 461 type->cnt--;
95f72d1e 462 }
784656f9 463}
95f72d1e 464
784656f9
TH
465/**
466 * memblock_insert_region - insert new memblock region
209ff86d
TC
467 * @type: memblock type to insert into
468 * @idx: index for the insertion point
469 * @base: base address of the new region
470 * @size: size of the new region
471 * @nid: node id of the new region
66a20757 472 * @flags: flags of the new region
784656f9 473 *
47cec443 474 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 475 * @type must already have extra room to accommodate the new region.
784656f9
TH
476 */
477static void __init_memblock memblock_insert_region(struct memblock_type *type,
478 int idx, phys_addr_t base,
66a20757 479 phys_addr_t size,
e1720fee
MR
480 int nid,
481 enum memblock_flags flags)
784656f9
TH
482{
483 struct memblock_region *rgn = &type->regions[idx];
484
485 BUG_ON(type->cnt >= type->max);
486 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
487 rgn->base = base;
488 rgn->size = size;
66a20757 489 rgn->flags = flags;
7c0caeb8 490 memblock_set_region_node(rgn, nid);
784656f9 491 type->cnt++;
1440c4e2 492 type->total_size += size;
784656f9
TH
493}
494
495/**
f1af9d3a 496 * memblock_add_range - add new memblock region
784656f9
TH
497 * @type: memblock type to add new region into
498 * @base: base address of the new region
499 * @size: size of the new region
7fb0bc3f 500 * @nid: nid of the new region
66a20757 501 * @flags: flags of the new region
784656f9 502 *
47cec443 503 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
504 * is allowed to overlap with existing ones - overlaps don't affect already
505 * existing regions. @type is guaranteed to be minimal (all neighbouring
506 * compatible regions are merged) after the addition.
507 *
47cec443 508 * Return:
784656f9
TH
509 * 0 on success, -errno on failure.
510 */
f1af9d3a 511int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 512 phys_addr_t base, phys_addr_t size,
e1720fee 513 int nid, enum memblock_flags flags)
784656f9
TH
514{
515 bool insert = false;
eb18f1b5
TH
516 phys_addr_t obase = base;
517 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
518 int idx, nr_new;
519 struct memblock_region *rgn;
784656f9 520
b3dc627c
TH
521 if (!size)
522 return 0;
523
784656f9
TH
524 /* special case for empty array */
525 if (type->regions[0].size == 0) {
1440c4e2 526 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
527 type->regions[0].base = base;
528 type->regions[0].size = size;
66a20757 529 type->regions[0].flags = flags;
7fb0bc3f 530 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 531 type->total_size = size;
8f7a6605 532 return 0;
95f72d1e 533 }
784656f9
TH
534repeat:
535 /*
536 * The following is executed twice. Once with %false @insert and
537 * then with %true. The first counts the number of regions needed
412d0008 538 * to accommodate the new area. The second actually inserts them.
142b45a7 539 */
784656f9
TH
540 base = obase;
541 nr_new = 0;
95f72d1e 542
66e8b438 543 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
544 phys_addr_t rbase = rgn->base;
545 phys_addr_t rend = rbase + rgn->size;
546
547 if (rbase >= end)
95f72d1e 548 break;
784656f9
TH
549 if (rend <= base)
550 continue;
551 /*
552 * @rgn overlaps. If it separates the lower part of new
553 * area, insert that portion.
554 */
555 if (rbase > base) {
c0a29498
WY
556#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
557 WARN_ON(nid != memblock_get_region_node(rgn));
558#endif
4fcab5f4 559 WARN_ON(flags != rgn->flags);
784656f9
TH
560 nr_new++;
561 if (insert)
8c9c1701 562 memblock_insert_region(type, idx++, base,
66a20757
TC
563 rbase - base, nid,
564 flags);
95f72d1e 565 }
784656f9
TH
566 /* area below @rend is dealt with, forget about it */
567 base = min(rend, end);
95f72d1e 568 }
784656f9
TH
569
570 /* insert the remaining portion */
571 if (base < end) {
572 nr_new++;
573 if (insert)
8c9c1701 574 memblock_insert_region(type, idx, base, end - base,
66a20757 575 nid, flags);
95f72d1e 576 }
95f72d1e 577
ef3cc4db 578 if (!nr_new)
579 return 0;
580
784656f9
TH
581 /*
582 * If this was the first round, resize array and repeat for actual
583 * insertions; otherwise, merge and return.
142b45a7 584 */
784656f9
TH
585 if (!insert) {
586 while (type->cnt + nr_new > type->max)
48c3b583 587 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
588 return -ENOMEM;
589 insert = true;
590 goto repeat;
591 } else {
592 memblock_merge_regions(type);
593 return 0;
142b45a7 594 }
95f72d1e
YL
595}
596
48a833cc
MR
597/**
598 * memblock_add_node - add new memblock region within a NUMA node
599 * @base: base address of the new region
600 * @size: size of the new region
601 * @nid: nid of the new region
602 *
603 * Add new memblock region [@base, @base + @size) to the "memory"
604 * type. See memblock_add_range() description for mode details
605 *
606 * Return:
607 * 0 on success, -errno on failure.
608 */
7fb0bc3f
TH
609int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
610 int nid)
611{
f1af9d3a 612 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
613}
614
48a833cc
MR
615/**
616 * memblock_add - add new memblock region
617 * @base: base address of the new region
618 * @size: size of the new region
619 *
620 * Add new memblock region [@base, @base + @size) to the "memory"
621 * type. See memblock_add_range() description for mode details
622 *
623 * Return:
624 * 0 on success, -errno on failure.
625 */
f705ac4b 626int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 627{
5d63f81c
MC
628 phys_addr_t end = base + size - 1;
629
630 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
631 &base, &end, (void *)_RET_IP_);
6a4055bc 632
f705ac4b 633 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
634}
635
6a9ceb31
TH
636/**
637 * memblock_isolate_range - isolate given range into disjoint memblocks
638 * @type: memblock type to isolate range for
639 * @base: base of range to isolate
640 * @size: size of range to isolate
641 * @start_rgn: out parameter for the start of isolated region
642 * @end_rgn: out parameter for the end of isolated region
643 *
644 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 645 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
646 * which may create at most two more regions. The index of the first
647 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
648 *
47cec443 649 * Return:
6a9ceb31
TH
650 * 0 on success, -errno on failure.
651 */
652static int __init_memblock memblock_isolate_range(struct memblock_type *type,
653 phys_addr_t base, phys_addr_t size,
654 int *start_rgn, int *end_rgn)
655{
eb18f1b5 656 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
657 int idx;
658 struct memblock_region *rgn;
6a9ceb31
TH
659
660 *start_rgn = *end_rgn = 0;
661
b3dc627c
TH
662 if (!size)
663 return 0;
664
6a9ceb31
TH
665 /* we'll create at most two more regions */
666 while (type->cnt + 2 > type->max)
48c3b583 667 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
668 return -ENOMEM;
669
66e8b438 670 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
671 phys_addr_t rbase = rgn->base;
672 phys_addr_t rend = rbase + rgn->size;
673
674 if (rbase >= end)
675 break;
676 if (rend <= base)
677 continue;
678
679 if (rbase < base) {
680 /*
681 * @rgn intersects from below. Split and continue
682 * to process the next region - the new top half.
683 */
684 rgn->base = base;
1440c4e2
TH
685 rgn->size -= base - rbase;
686 type->total_size -= base - rbase;
8c9c1701 687 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
688 memblock_get_region_node(rgn),
689 rgn->flags);
6a9ceb31
TH
690 } else if (rend > end) {
691 /*
692 * @rgn intersects from above. Split and redo the
693 * current region - the new bottom half.
694 */
695 rgn->base = end;
1440c4e2
TH
696 rgn->size -= end - rbase;
697 type->total_size -= end - rbase;
8c9c1701 698 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
699 memblock_get_region_node(rgn),
700 rgn->flags);
6a9ceb31
TH
701 } else {
702 /* @rgn is fully contained, record it */
703 if (!*end_rgn)
8c9c1701
AK
704 *start_rgn = idx;
705 *end_rgn = idx + 1;
6a9ceb31
TH
706 }
707 }
708
709 return 0;
710}
6a9ceb31 711
35bd16a2 712static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 713 phys_addr_t base, phys_addr_t size)
95f72d1e 714{
71936180
TH
715 int start_rgn, end_rgn;
716 int i, ret;
95f72d1e 717
71936180
TH
718 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
719 if (ret)
720 return ret;
95f72d1e 721
71936180
TH
722 for (i = end_rgn - 1; i >= start_rgn; i--)
723 memblock_remove_region(type, i);
8f7a6605 724 return 0;
95f72d1e
YL
725}
726
581adcbe 727int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 728{
25cf23d7
MK
729 phys_addr_t end = base + size - 1;
730
731 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
732 &base, &end, (void *)_RET_IP_);
733
f1af9d3a 734 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
735}
736
f1af9d3a 737
581adcbe 738int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 739{
5d63f81c
MC
740 phys_addr_t end = base + size - 1;
741
742 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
743 &base, &end, (void *)_RET_IP_);
24aa0788 744
9099daed 745 kmemleak_free_part_phys(base, size);
f1af9d3a 746 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
747}
748
f705ac4b 749int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 750{
5d63f81c
MC
751 phys_addr_t end = base + size - 1;
752
753 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
754 &base, &end, (void *)_RET_IP_);
95f72d1e 755
f705ac4b 756 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
757}
758
66b16edf 759/**
47cec443
MR
760 * memblock_setclr_flag - set or clear flag for a memory region
761 * @base: base address of the region
762 * @size: size of the region
763 * @set: set or clear the flag
764 * @flag: the flag to udpate
66b16edf 765 *
4308ce17 766 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 767 *
47cec443 768 * Return: 0 on success, -errno on failure.
66b16edf 769 */
4308ce17
TL
770static int __init_memblock memblock_setclr_flag(phys_addr_t base,
771 phys_addr_t size, int set, int flag)
66b16edf
TC
772{
773 struct memblock_type *type = &memblock.memory;
774 int i, ret, start_rgn, end_rgn;
775
776 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
777 if (ret)
778 return ret;
779
780 for (i = start_rgn; i < end_rgn; i++)
4308ce17
TL
781 if (set)
782 memblock_set_region_flags(&type->regions[i], flag);
783 else
784 memblock_clear_region_flags(&type->regions[i], flag);
66b16edf
TC
785
786 memblock_merge_regions(type);
787 return 0;
788}
789
790/**
4308ce17 791 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
792 * @base: the base phys addr of the region
793 * @size: the size of the region
794 *
47cec443 795 * Return: 0 on success, -errno on failure.
4308ce17
TL
796 */
797int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
798{
799 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
800}
801
802/**
803 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
804 * @base: the base phys addr of the region
805 * @size: the size of the region
66b16edf 806 *
47cec443 807 * Return: 0 on success, -errno on failure.
66b16edf
TC
808 */
809int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
810{
4308ce17 811 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
812}
813
a3f5bafc
TL
814/**
815 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
816 * @base: the base phys addr of the region
817 * @size: the size of the region
818 *
47cec443 819 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
820 */
821int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
822{
823 system_has_some_mirror = true;
824
825 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
826}
827
bf3d3cc5
AB
828/**
829 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
830 * @base: the base phys addr of the region
831 * @size: the size of the region
832 *
47cec443 833 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
834 */
835int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
836{
837 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
838}
a3f5bafc 839
4c546b8a
AT
840/**
841 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
842 * @base: the base phys addr of the region
843 * @size: the size of the region
844 *
47cec443 845 * Return: 0 on success, -errno on failure.
4c546b8a
AT
846 */
847int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
848{
849 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
850}
851
8e7a7f86
RH
852/**
853 * __next_reserved_mem_region - next function for for_each_reserved_region()
854 * @idx: pointer to u64 loop variable
855 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
856 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
857 *
858 * Iterate over all reserved memory regions.
859 */
860void __init_memblock __next_reserved_mem_region(u64 *idx,
861 phys_addr_t *out_start,
862 phys_addr_t *out_end)
863{
567d117b 864 struct memblock_type *type = &memblock.reserved;
8e7a7f86 865
cd33a76b 866 if (*idx < type->cnt) {
567d117b 867 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
868 phys_addr_t base = r->base;
869 phys_addr_t size = r->size;
870
871 if (out_start)
872 *out_start = base;
873 if (out_end)
874 *out_end = base + size - 1;
875
876 *idx += 1;
877 return;
878 }
879
880 /* signal end of iteration */
881 *idx = ULLONG_MAX;
882}
883
35fd0808 884/**
f1af9d3a 885 * __next__mem_range - next function for for_each_free_mem_range() etc.
35fd0808 886 * @idx: pointer to u64 loop variable
b1154233 887 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 888 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
889 * @type_a: pointer to memblock_type from where the range is taken
890 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
891 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
892 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
893 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 894 *
f1af9d3a 895 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 896 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
897 * *@idx contains index into type_a and the upper 32bit indexes the
898 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
899 * look like the following,
900 *
901 * 0:[0-16), 1:[32-48), 2:[128-130)
902 *
903 * The upper 32bit indexes the following regions.
904 *
905 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
906 *
907 * As both region arrays are sorted, the function advances the two indices
908 * in lockstep and returns each intersection.
909 */
e1720fee
MR
910void __init_memblock __next_mem_range(u64 *idx, int nid,
911 enum memblock_flags flags,
f1af9d3a
PH
912 struct memblock_type *type_a,
913 struct memblock_type *type_b,
914 phys_addr_t *out_start,
915 phys_addr_t *out_end, int *out_nid)
35fd0808 916{
f1af9d3a
PH
917 int idx_a = *idx & 0xffffffff;
918 int idx_b = *idx >> 32;
b1154233 919
f1af9d3a
PH
920 if (WARN_ONCE(nid == MAX_NUMNODES,
921 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 922 nid = NUMA_NO_NODE;
35fd0808 923
f1af9d3a
PH
924 for (; idx_a < type_a->cnt; idx_a++) {
925 struct memblock_region *m = &type_a->regions[idx_a];
926
35fd0808
TH
927 phys_addr_t m_start = m->base;
928 phys_addr_t m_end = m->base + m->size;
f1af9d3a 929 int m_nid = memblock_get_region_node(m);
35fd0808
TH
930
931 /* only memory regions are associated with nodes, check it */
f1af9d3a 932 if (nid != NUMA_NO_NODE && nid != m_nid)
35fd0808
TH
933 continue;
934
0a313a99
XQ
935 /* skip hotpluggable memory regions if needed */
936 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
937 continue;
938
a3f5bafc
TL
939 /* if we want mirror memory skip non-mirror memory regions */
940 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
941 continue;
942
bf3d3cc5
AB
943 /* skip nomap memory unless we were asked for it explicitly */
944 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
945 continue;
946
f1af9d3a
PH
947 if (!type_b) {
948 if (out_start)
949 *out_start = m_start;
950 if (out_end)
951 *out_end = m_end;
952 if (out_nid)
953 *out_nid = m_nid;
954 idx_a++;
955 *idx = (u32)idx_a | (u64)idx_b << 32;
956 return;
957 }
958
959 /* scan areas before each reservation */
960 for (; idx_b < type_b->cnt + 1; idx_b++) {
961 struct memblock_region *r;
962 phys_addr_t r_start;
963 phys_addr_t r_end;
964
965 r = &type_b->regions[idx_b];
966 r_start = idx_b ? r[-1].base + r[-1].size : 0;
967 r_end = idx_b < type_b->cnt ?
1c4bc43d 968 r->base : PHYS_ADDR_MAX;
35fd0808 969
f1af9d3a
PH
970 /*
971 * if idx_b advanced past idx_a,
972 * break out to advance idx_a
973 */
35fd0808
TH
974 if (r_start >= m_end)
975 break;
976 /* if the two regions intersect, we're done */
977 if (m_start < r_end) {
978 if (out_start)
f1af9d3a
PH
979 *out_start =
980 max(m_start, r_start);
35fd0808
TH
981 if (out_end)
982 *out_end = min(m_end, r_end);
983 if (out_nid)
f1af9d3a 984 *out_nid = m_nid;
35fd0808 985 /*
f1af9d3a
PH
986 * The region which ends first is
987 * advanced for the next iteration.
35fd0808
TH
988 */
989 if (m_end <= r_end)
f1af9d3a 990 idx_a++;
35fd0808 991 else
f1af9d3a
PH
992 idx_b++;
993 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
994 return;
995 }
996 }
997 }
998
999 /* signal end of iteration */
1000 *idx = ULLONG_MAX;
1001}
1002
7bd0b0f0 1003/**
f1af9d3a
PH
1004 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1005 *
7bd0b0f0 1006 * @idx: pointer to u64 loop variable
ad5ea8cd 1007 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1008 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1009 * @type_a: pointer to memblock_type from where the range is taken
1010 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1011 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1012 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1013 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1014 *
47cec443
MR
1015 * Finds the next range from type_a which is not marked as unsuitable
1016 * in type_b.
1017 *
f1af9d3a 1018 * Reverse of __next_mem_range().
7bd0b0f0 1019 */
e1720fee
MR
1020void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1021 enum memblock_flags flags,
f1af9d3a
PH
1022 struct memblock_type *type_a,
1023 struct memblock_type *type_b,
1024 phys_addr_t *out_start,
1025 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1026{
f1af9d3a
PH
1027 int idx_a = *idx & 0xffffffff;
1028 int idx_b = *idx >> 32;
b1154233 1029
560dca27
GS
1030 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1031 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1032
1033 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1034 idx_a = type_a->cnt - 1;
e47608ab 1035 if (type_b != NULL)
1036 idx_b = type_b->cnt;
1037 else
1038 idx_b = 0;
7bd0b0f0
TH
1039 }
1040
f1af9d3a
PH
1041 for (; idx_a >= 0; idx_a--) {
1042 struct memblock_region *m = &type_a->regions[idx_a];
1043
7bd0b0f0
TH
1044 phys_addr_t m_start = m->base;
1045 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1046 int m_nid = memblock_get_region_node(m);
7bd0b0f0
TH
1047
1048 /* only memory regions are associated with nodes, check it */
f1af9d3a 1049 if (nid != NUMA_NO_NODE && nid != m_nid)
7bd0b0f0
TH
1050 continue;
1051
55ac590c
TC
1052 /* skip hotpluggable memory regions if needed */
1053 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1054 continue;
1055
a3f5bafc
TL
1056 /* if we want mirror memory skip non-mirror memory regions */
1057 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1058 continue;
1059
bf3d3cc5
AB
1060 /* skip nomap memory unless we were asked for it explicitly */
1061 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1062 continue;
1063
f1af9d3a
PH
1064 if (!type_b) {
1065 if (out_start)
1066 *out_start = m_start;
1067 if (out_end)
1068 *out_end = m_end;
1069 if (out_nid)
1070 *out_nid = m_nid;
fb399b48 1071 idx_a--;
f1af9d3a
PH
1072 *idx = (u32)idx_a | (u64)idx_b << 32;
1073 return;
1074 }
1075
1076 /* scan areas before each reservation */
1077 for (; idx_b >= 0; idx_b--) {
1078 struct memblock_region *r;
1079 phys_addr_t r_start;
1080 phys_addr_t r_end;
1081
1082 r = &type_b->regions[idx_b];
1083 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1084 r_end = idx_b < type_b->cnt ?
1c4bc43d 1085 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1086 /*
1087 * if idx_b advanced past idx_a,
1088 * break out to advance idx_a
1089 */
7bd0b0f0 1090
7bd0b0f0
TH
1091 if (r_end <= m_start)
1092 break;
1093 /* if the two regions intersect, we're done */
1094 if (m_end > r_start) {
1095 if (out_start)
1096 *out_start = max(m_start, r_start);
1097 if (out_end)
1098 *out_end = min(m_end, r_end);
1099 if (out_nid)
f1af9d3a 1100 *out_nid = m_nid;
7bd0b0f0 1101 if (m_start >= r_start)
f1af9d3a 1102 idx_a--;
7bd0b0f0 1103 else
f1af9d3a
PH
1104 idx_b--;
1105 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1106 return;
1107 }
1108 }
1109 }
f1af9d3a 1110 /* signal end of iteration */
7bd0b0f0
TH
1111 *idx = ULLONG_MAX;
1112}
1113
7c0caeb8
TH
1114#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1115/*
1116 * Common iterator interface used to define for_each_mem_range().
1117 */
1118void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1119 unsigned long *out_start_pfn,
1120 unsigned long *out_end_pfn, int *out_nid)
1121{
1122 struct memblock_type *type = &memblock.memory;
1123 struct memblock_region *r;
1124
1125 while (++*idx < type->cnt) {
1126 r = &type->regions[*idx];
1127
1128 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1129 continue;
1130 if (nid == MAX_NUMNODES || nid == r->nid)
1131 break;
1132 }
1133 if (*idx >= type->cnt) {
1134 *idx = -1;
1135 return;
1136 }
1137
1138 if (out_start_pfn)
1139 *out_start_pfn = PFN_UP(r->base);
1140 if (out_end_pfn)
1141 *out_end_pfn = PFN_DOWN(r->base + r->size);
1142 if (out_nid)
1143 *out_nid = r->nid;
1144}
1145
1146/**
1147 * memblock_set_node - set node ID on memblock regions
1148 * @base: base of area to set node ID for
1149 * @size: size of area to set node ID for
e7e8de59 1150 * @type: memblock type to set node ID for
7c0caeb8
TH
1151 * @nid: node ID to set
1152 *
47cec443 1153 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1154 * Regions which cross the area boundaries are split as necessary.
1155 *
47cec443 1156 * Return:
7c0caeb8
TH
1157 * 0 on success, -errno on failure.
1158 */
1159int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1160 struct memblock_type *type, int nid)
7c0caeb8 1161{
6a9ceb31
TH
1162 int start_rgn, end_rgn;
1163 int i, ret;
7c0caeb8 1164
6a9ceb31
TH
1165 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1166 if (ret)
1167 return ret;
7c0caeb8 1168
6a9ceb31 1169 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1170 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1171
1172 memblock_merge_regions(type);
1173 return 0;
1174}
1175#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1176
2bfc2862
AM
1177static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1178 phys_addr_t align, phys_addr_t start,
e1720fee
MR
1179 phys_addr_t end, int nid,
1180 enum memblock_flags flags)
95f72d1e 1181{
6ed311b2 1182 phys_addr_t found;
95f72d1e 1183
79f40fab
GS
1184 if (!align)
1185 align = SMP_CACHE_BYTES;
94f3d3af 1186
fc6daaf9
TL
1187 found = memblock_find_in_range_node(size, align, start, end, nid,
1188 flags);
aedf95ea
CM
1189 if (found && !memblock_reserve(found, size)) {
1190 /*
1191 * The min_count is set to 0 so that memblock allocations are
1192 * never reported as leaks.
1193 */
9099daed 1194 kmemleak_alloc_phys(found, size, 0, 0);
6ed311b2 1195 return found;
aedf95ea 1196 }
6ed311b2 1197 return 0;
95f72d1e
YL
1198}
1199
2bfc2862 1200phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
fc6daaf9 1201 phys_addr_t start, phys_addr_t end,
e1720fee 1202 enum memblock_flags flags)
2bfc2862 1203{
fc6daaf9
TL
1204 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1205 flags);
2bfc2862
AM
1206}
1207
b575454f 1208phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
2bfc2862 1209 phys_addr_t align, phys_addr_t max_addr,
e1720fee 1210 int nid, enum memblock_flags flags)
2bfc2862 1211{
fc6daaf9 1212 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
2bfc2862
AM
1213}
1214
7bd0b0f0
TH
1215phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1216{
e1720fee 1217 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
1218 phys_addr_t ret;
1219
1220again:
1221 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1222 nid, flags);
1223
1224 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1225 flags &= ~MEMBLOCK_MIRROR;
1226 goto again;
1227 }
1228 return ret;
7bd0b0f0
TH
1229}
1230
1231phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1232{
fc6daaf9
TL
1233 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1234 MEMBLOCK_NONE);
7bd0b0f0
TH
1235}
1236
6ed311b2 1237phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 1238{
6ed311b2
BH
1239 phys_addr_t alloc;
1240
1241 alloc = __memblock_alloc_base(size, align, max_addr);
1242
1243 if (alloc == 0)
5d63f81c
MC
1244 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1245 &size, &max_addr);
6ed311b2
BH
1246
1247 return alloc;
95f72d1e
YL
1248}
1249
6ed311b2 1250phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 1251{
6ed311b2
BH
1252 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1253}
95f72d1e 1254
9d1e2492
BH
1255phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1256{
1257 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1258
1259 if (res)
1260 return res;
15fb0972 1261 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
1262}
1263
26f09e9b
SS
1264/**
1265 * memblock_virt_alloc_internal - allocate boot memory block
1266 * @size: size of memory block to be allocated in bytes
1267 * @align: alignment of the region and block's size
1268 * @min_addr: the lower bound of the memory region to allocate (phys address)
1269 * @max_addr: the upper bound of the memory region to allocate (phys address)
1270 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1271 *
1272 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1273 * will fall back to memory below @min_addr. Also, allocation may fall back
1274 * to any node in the system if the specified node can not
1275 * hold the requested memory.
1276 *
1277 * The allocation is performed from memory region limited by
1278 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1279 *
47cec443 1280 * The memory block is aligned on %SMP_CACHE_BYTES if @align == 0.
26f09e9b
SS
1281 *
1282 * The phys address of allocated boot memory block is converted to virtual and
1283 * allocated memory is reset to 0.
1284 *
1285 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1286 * allocated boot memory block, so that it is never reported as leaks.
1287 *
47cec443 1288 * Return:
26f09e9b
SS
1289 * Virtual address of allocated memory block on success, NULL on failure.
1290 */
1291static void * __init memblock_virt_alloc_internal(
1292 phys_addr_t size, phys_addr_t align,
1293 phys_addr_t min_addr, phys_addr_t max_addr,
1294 int nid)
1295{
1296 phys_addr_t alloc;
1297 void *ptr;
e1720fee 1298 enum memblock_flags flags = choose_memblock_flags();
26f09e9b 1299
560dca27
GS
1300 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1301 nid = NUMA_NO_NODE;
26f09e9b
SS
1302
1303 /*
1304 * Detect any accidental use of these APIs after slab is ready, as at
1305 * this moment memblock may be deinitialized already and its
1306 * internal data may be destroyed (after execution of free_all_bootmem)
1307 */
1308 if (WARN_ON_ONCE(slab_is_available()))
1309 return kzalloc_node(size, GFP_NOWAIT, nid);
1310
1311 if (!align)
1312 align = SMP_CACHE_BYTES;
1313
f544e14f
YL
1314 if (max_addr > memblock.current_limit)
1315 max_addr = memblock.current_limit;
26f09e9b
SS
1316again:
1317 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
a3f5bafc 1318 nid, flags);
7d41c03e 1319 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1320 goto done;
1321
1322 if (nid != NUMA_NO_NODE) {
1323 alloc = memblock_find_in_range_node(size, align, min_addr,
fc6daaf9 1324 max_addr, NUMA_NO_NODE,
a3f5bafc 1325 flags);
7d41c03e 1326 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1327 goto done;
1328 }
1329
1330 if (min_addr) {
1331 min_addr = 0;
1332 goto again;
26f09e9b
SS
1333 }
1334
a3f5bafc
TL
1335 if (flags & MEMBLOCK_MIRROR) {
1336 flags &= ~MEMBLOCK_MIRROR;
1337 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1338 &size);
1339 goto again;
1340 }
1341
1342 return NULL;
26f09e9b 1343done:
26f09e9b 1344 ptr = phys_to_virt(alloc);
26f09e9b
SS
1345
1346 /*
1347 * The min_count is set to 0 so that bootmem allocated blocks
1348 * are never reported as leaks. This is because many of these blocks
1349 * are only referred via the physical address which is not
1350 * looked up by kmemleak.
1351 */
1352 kmemleak_alloc(ptr, size, 0, 0);
1353
1354 return ptr;
26f09e9b
SS
1355}
1356
ea1f5f37
PT
1357/**
1358 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1359 * memory and without panicking
1360 * @size: size of memory block to be allocated in bytes
1361 * @align: alignment of the region and block's size
1362 * @min_addr: the lower bound of the memory region from where the allocation
1363 * is preferred (phys address)
1364 * @max_addr: the upper bound of the memory region from where the allocation
1365 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1366 * allocate only from memory limited by memblock.current_limit value
1367 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1368 *
1369 * Public function, provides additional debug information (including caller
1370 * info), if enabled. Does not zero allocated memory, does not panic if request
1371 * cannot be satisfied.
1372 *
47cec443 1373 * Return:
ea1f5f37
PT
1374 * Virtual address of allocated memory block on success, NULL on failure.
1375 */
1376void * __init memblock_virt_alloc_try_nid_raw(
1377 phys_addr_t size, phys_addr_t align,
1378 phys_addr_t min_addr, phys_addr_t max_addr,
1379 int nid)
1380{
1381 void *ptr;
1382
1383 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1384 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1385 (u64)max_addr, (void *)_RET_IP_);
1386
1387 ptr = memblock_virt_alloc_internal(size, align,
1388 min_addr, max_addr, nid);
1389#ifdef CONFIG_DEBUG_VM
1390 if (ptr && size > 0)
f165b378 1391 memset(ptr, PAGE_POISON_PATTERN, size);
ea1f5f37
PT
1392#endif
1393 return ptr;
1394}
1395
26f09e9b
SS
1396/**
1397 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1398 * @size: size of memory block to be allocated in bytes
1399 * @align: alignment of the region and block's size
1400 * @min_addr: the lower bound of the memory region from where the allocation
1401 * is preferred (phys address)
1402 * @max_addr: the upper bound of the memory region from where the allocation
1403 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1404 * allocate only from memory limited by memblock.current_limit value
1405 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1406 *
ea1f5f37
PT
1407 * Public function, provides additional debug information (including caller
1408 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1409 *
47cec443 1410 * Return:
26f09e9b
SS
1411 * Virtual address of allocated memory block on success, NULL on failure.
1412 */
1413void * __init memblock_virt_alloc_try_nid_nopanic(
1414 phys_addr_t size, phys_addr_t align,
1415 phys_addr_t min_addr, phys_addr_t max_addr,
1416 int nid)
1417{
ea1f5f37
PT
1418 void *ptr;
1419
26f09e9b
SS
1420 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1421 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1422 (u64)max_addr, (void *)_RET_IP_);
ea1f5f37
PT
1423
1424 ptr = memblock_virt_alloc_internal(size, align,
1425 min_addr, max_addr, nid);
1426 if (ptr)
1427 memset(ptr, 0, size);
1428 return ptr;
26f09e9b
SS
1429}
1430
1431/**
1432 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1433 * @size: size of memory block to be allocated in bytes
1434 * @align: alignment of the region and block's size
1435 * @min_addr: the lower bound of the memory region from where the allocation
1436 * is preferred (phys address)
1437 * @max_addr: the upper bound of the memory region from where the allocation
1438 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1439 * allocate only from memory limited by memblock.current_limit value
1440 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1441 *
ea1f5f37 1442 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
26f09e9b
SS
1443 * which provides debug information (including caller info), if enabled,
1444 * and panics if the request can not be satisfied.
1445 *
47cec443 1446 * Return:
26f09e9b
SS
1447 * Virtual address of allocated memory block on success, NULL on failure.
1448 */
1449void * __init memblock_virt_alloc_try_nid(
1450 phys_addr_t size, phys_addr_t align,
1451 phys_addr_t min_addr, phys_addr_t max_addr,
1452 int nid)
1453{
1454 void *ptr;
1455
1456 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1457 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1458 (u64)max_addr, (void *)_RET_IP_);
1459 ptr = memblock_virt_alloc_internal(size, align,
1460 min_addr, max_addr, nid);
ea1f5f37
PT
1461 if (ptr) {
1462 memset(ptr, 0, size);
26f09e9b 1463 return ptr;
ea1f5f37 1464 }
26f09e9b
SS
1465
1466 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1467 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1468 (u64)max_addr);
1469 return NULL;
1470}
1471
1472/**
1473 * __memblock_free_early - free boot memory block
1474 * @base: phys starting address of the boot memory block
1475 * @size: size of the boot memory block in bytes
1476 *
1477 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1478 * The freeing memory will not be released to the buddy allocator.
1479 */
1480void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1481{
1482 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1483 __func__, (u64)base, (u64)base + size - 1,
1484 (void *)_RET_IP_);
9099daed 1485 kmemleak_free_part_phys(base, size);
f1af9d3a 1486 memblock_remove_range(&memblock.reserved, base, size);
26f09e9b
SS
1487}
1488
48a833cc 1489/**
26f09e9b 1490 * __memblock_free_late - free bootmem block pages directly to buddy allocator
48a833cc 1491 * @base: phys starting address of the boot memory block
26f09e9b
SS
1492 * @size: size of the boot memory block in bytes
1493 *
1494 * This is only useful when the bootmem allocator has already been torn
1495 * down, but we are still initializing the system. Pages are released directly
1496 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1497 */
1498void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1499{
1500 u64 cursor, end;
1501
1502 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1503 __func__, (u64)base, (u64)base + size - 1,
1504 (void *)_RET_IP_);
9099daed 1505 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1506 cursor = PFN_UP(base);
1507 end = PFN_DOWN(base + size);
1508
1509 for (; cursor < end; cursor++) {
d70ddd7a 1510 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
26f09e9b
SS
1511 totalram_pages++;
1512 }
1513}
9d1e2492
BH
1514
1515/*
1516 * Remaining API functions
1517 */
1518
1f1ffb8a 1519phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1520{
1440c4e2 1521 return memblock.memory.total_size;
95f72d1e
YL
1522}
1523
8907de5d
SD
1524phys_addr_t __init_memblock memblock_reserved_size(void)
1525{
1526 return memblock.reserved.total_size;
1527}
1528
595ad9af
YL
1529phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1530{
1531 unsigned long pages = 0;
1532 struct memblock_region *r;
1533 unsigned long start_pfn, end_pfn;
1534
1535 for_each_memblock(memory, r) {
1536 start_pfn = memblock_region_memory_base_pfn(r);
1537 end_pfn = memblock_region_memory_end_pfn(r);
1538 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1539 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1540 pages += end_pfn - start_pfn;
1541 }
1542
16763230 1543 return PFN_PHYS(pages);
595ad9af
YL
1544}
1545
0a93ebef
SR
1546/* lowest address */
1547phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1548{
1549 return memblock.memory.regions[0].base;
1550}
1551
10d06439 1552phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1553{
1554 int idx = memblock.memory.cnt - 1;
1555
e3239ff9 1556 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1557}
1558
a571d4eb 1559static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1560{
1c4bc43d 1561 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1562 struct memblock_region *r;
95f72d1e 1563
a571d4eb
DC
1564 /*
1565 * translate the memory @limit size into the max address within one of
1566 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1567 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1568 */
136199f0 1569 for_each_memblock(memory, r) {
c0ce8fef
TH
1570 if (limit <= r->size) {
1571 max_addr = r->base + limit;
1572 break;
95f72d1e 1573 }
c0ce8fef 1574 limit -= r->size;
95f72d1e 1575 }
c0ce8fef 1576
a571d4eb
DC
1577 return max_addr;
1578}
1579
1580void __init memblock_enforce_memory_limit(phys_addr_t limit)
1581{
1c4bc43d 1582 phys_addr_t max_addr = PHYS_ADDR_MAX;
a571d4eb
DC
1583
1584 if (!limit)
1585 return;
1586
1587 max_addr = __find_max_addr(limit);
1588
1589 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1590 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1591 return;
1592
c0ce8fef 1593 /* truncate both memory and reserved regions */
f1af9d3a 1594 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1595 PHYS_ADDR_MAX);
f1af9d3a 1596 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1597 PHYS_ADDR_MAX);
95f72d1e
YL
1598}
1599
c9ca9b4e
AT
1600void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1601{
1602 int start_rgn, end_rgn;
1603 int i, ret;
1604
1605 if (!size)
1606 return;
1607
1608 ret = memblock_isolate_range(&memblock.memory, base, size,
1609 &start_rgn, &end_rgn);
1610 if (ret)
1611 return;
1612
1613 /* remove all the MAP regions */
1614 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1615 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1616 memblock_remove_region(&memblock.memory, i);
1617
1618 for (i = start_rgn - 1; i >= 0; i--)
1619 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1620 memblock_remove_region(&memblock.memory, i);
1621
1622 /* truncate the reserved regions */
1623 memblock_remove_range(&memblock.reserved, 0, base);
1624 memblock_remove_range(&memblock.reserved,
1c4bc43d 1625 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1626}
1627
a571d4eb
DC
1628void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1629{
a571d4eb 1630 phys_addr_t max_addr;
a571d4eb
DC
1631
1632 if (!limit)
1633 return;
1634
1635 max_addr = __find_max_addr(limit);
1636
1637 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1638 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1639 return;
1640
c9ca9b4e 1641 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1642}
1643
cd79481d 1644static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1645{
1646 unsigned int left = 0, right = type->cnt;
1647
1648 do {
1649 unsigned int mid = (right + left) / 2;
1650
1651 if (addr < type->regions[mid].base)
1652 right = mid;
1653 else if (addr >= (type->regions[mid].base +
1654 type->regions[mid].size))
1655 left = mid + 1;
1656 else
1657 return mid;
1658 } while (left < right);
1659 return -1;
1660}
1661
b4ad0c7e 1662bool __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 1663{
72d4b0b4
BH
1664 return memblock_search(&memblock.reserved, addr) != -1;
1665}
95f72d1e 1666
b4ad0c7e 1667bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1668{
1669 return memblock_search(&memblock.memory, addr) != -1;
1670}
1671
937f0c26 1672bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1673{
1674 int i = memblock_search(&memblock.memory, addr);
1675
1676 if (i == -1)
1677 return false;
1678 return !memblock_is_nomap(&memblock.memory.regions[i]);
1679}
1680
e76b63f8
YL
1681#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1682int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1683 unsigned long *start_pfn, unsigned long *end_pfn)
1684{
1685 struct memblock_type *type = &memblock.memory;
16763230 1686 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1687
1688 if (mid == -1)
1689 return -1;
1690
f7e2f7e8
FF
1691 *start_pfn = PFN_DOWN(type->regions[mid].base);
1692 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8
YL
1693
1694 return type->regions[mid].nid;
1695}
1696#endif
1697
eab30949
SB
1698/**
1699 * memblock_is_region_memory - check if a region is a subset of memory
1700 * @base: base of region to check
1701 * @size: size of region to check
1702 *
47cec443 1703 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1704 *
47cec443 1705 * Return:
eab30949
SB
1706 * 0 if false, non-zero if true
1707 */
937f0c26 1708bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1709{
abb65272 1710 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1711 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1712
1713 if (idx == -1)
937f0c26 1714 return false;
ef415ef4 1715 return (memblock.memory.regions[idx].base +
eb18f1b5 1716 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1717}
1718
eab30949
SB
1719/**
1720 * memblock_is_region_reserved - check if a region intersects reserved memory
1721 * @base: base of region to check
1722 * @size: size of region to check
1723 *
47cec443
MR
1724 * Check if the region [@base, @base + @size) intersects a reserved
1725 * memory block.
eab30949 1726 *
47cec443 1727 * Return:
c5c5c9d1 1728 * True if they intersect, false if not.
eab30949 1729 */
c5c5c9d1 1730bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1731{
eb18f1b5 1732 memblock_cap_size(base, &size);
c5c5c9d1 1733 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1734}
1735
6ede1fd3
YL
1736void __init_memblock memblock_trim_memory(phys_addr_t align)
1737{
6ede1fd3 1738 phys_addr_t start, end, orig_start, orig_end;
136199f0 1739 struct memblock_region *r;
6ede1fd3 1740
136199f0
EM
1741 for_each_memblock(memory, r) {
1742 orig_start = r->base;
1743 orig_end = r->base + r->size;
6ede1fd3
YL
1744 start = round_up(orig_start, align);
1745 end = round_down(orig_end, align);
1746
1747 if (start == orig_start && end == orig_end)
1748 continue;
1749
1750 if (start < end) {
136199f0
EM
1751 r->base = start;
1752 r->size = end - start;
6ede1fd3 1753 } else {
136199f0
EM
1754 memblock_remove_region(&memblock.memory,
1755 r - memblock.memory.regions);
1756 r--;
6ede1fd3
YL
1757 }
1758 }
1759}
e63075a3 1760
3661ca66 1761void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1762{
1763 memblock.current_limit = limit;
1764}
1765
fec51014
LA
1766phys_addr_t __init_memblock memblock_get_current_limit(void)
1767{
1768 return memblock.current_limit;
1769}
1770
0262d9c8 1771static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1772{
5d63f81c 1773 phys_addr_t base, end, size;
e1720fee 1774 enum memblock_flags flags;
8c9c1701
AK
1775 int idx;
1776 struct memblock_region *rgn;
6ed311b2 1777
0262d9c8 1778 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1779
66e8b438 1780 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1781 char nid_buf[32] = "";
1782
1783 base = rgn->base;
1784 size = rgn->size;
5d63f81c 1785 end = base + size - 1;
66a20757 1786 flags = rgn->flags;
7c0caeb8
TH
1787#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1788 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1789 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1790 memblock_get_region_node(rgn));
1791#endif
e1720fee 1792 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1793 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1794 }
1795}
1796
4ff7b82f 1797void __init_memblock __memblock_dump_all(void)
6ed311b2 1798{
6ed311b2 1799 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1800 pr_info(" memory size = %pa reserved size = %pa\n",
1801 &memblock.memory.total_size,
1802 &memblock.reserved.total_size);
6ed311b2 1803
0262d9c8
HC
1804 memblock_dump(&memblock.memory);
1805 memblock_dump(&memblock.reserved);
409efd4c 1806#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0262d9c8 1807 memblock_dump(&memblock.physmem);
409efd4c 1808#endif
6ed311b2
BH
1809}
1810
1aadc056 1811void __init memblock_allow_resize(void)
6ed311b2 1812{
142b45a7 1813 memblock_can_resize = 1;
6ed311b2
BH
1814}
1815
6ed311b2
BH
1816static int __init early_memblock(char *p)
1817{
1818 if (p && strstr(p, "debug"))
1819 memblock_debug = 1;
1820 return 0;
1821}
1822early_param("memblock", early_memblock);
1823
c378ddd5 1824#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
1825
1826static int memblock_debug_show(struct seq_file *m, void *private)
1827{
1828 struct memblock_type *type = m->private;
1829 struct memblock_region *reg;
1830 int i;
5d63f81c 1831 phys_addr_t end;
6d03b885
BH
1832
1833 for (i = 0; i < type->cnt; i++) {
1834 reg = &type->regions[i];
5d63f81c 1835 end = reg->base + reg->size - 1;
6d03b885 1836
5d63f81c
MC
1837 seq_printf(m, "%4d: ", i);
1838 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
1839 }
1840 return 0;
1841}
5ad35093 1842DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
1843
1844static int __init memblock_init_debugfs(void)
1845{
1846 struct dentry *root = debugfs_create_dir("memblock", NULL);
1847 if (!root)
1848 return -ENXIO;
0825a6f9
JP
1849 debugfs_create_file("memory", 0444, root,
1850 &memblock.memory, &memblock_debug_fops);
1851 debugfs_create_file("reserved", 0444, root,
1852 &memblock.reserved, &memblock_debug_fops);
70210ed9 1853#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0825a6f9
JP
1854 debugfs_create_file("physmem", 0444, root,
1855 &memblock.physmem, &memblock_debug_fops);
70210ed9 1856#endif
6d03b885
BH
1857
1858 return 0;
1859}
1860__initcall(memblock_init_debugfs);
1861
1862#endif /* CONFIG_DEBUG_FS */