Stefan Schmidt says:
[linux-block.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
3e039c5c
MR
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
77649905
DH
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
3e039c5c 50 *
9303c9d5 51 * Each region is represented by struct memblock_region that
3e039c5c 52 * defines the region extents, its attributes and NUMA node id on NUMA
1bf162e4
MCC
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
77649905 55 * the allocator metadata. The "memory" and "reserved" types are nicely
9303c9d5 56 * wrapped with struct memblock. This structure is statically
77649905
DH
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
65 *
66 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
3e039c5c 73 *
a2974133
MR
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
6e5af9a8
C
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
a2974133 81 *
df1758d9 82 * Note, that both API variants use implicit assumptions about allowed
a2974133 83 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
3e039c5c 86 *
6e5af9a8
C
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
3e039c5c 89 *
6e5af9a8 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
77649905
DH
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
3e039c5c
MR
93 */
94
a9ee6cf5 95#ifndef CONFIG_NUMA
bda49a81
MR
96struct pglist_data __refdata contig_page_data;
97EXPORT_SYMBOL(contig_page_data);
98#endif
99
100unsigned long max_low_pfn;
101unsigned long min_low_pfn;
102unsigned long max_pfn;
103unsigned long long max_possible_pfn;
104
fe091c20 105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
8a5b403d 106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9 107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
70210ed9 109#endif
fe091c20
TH
110
111struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 115 .memory.name = "memory",
fe091c20
TH
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 120 .reserved.name = "reserved",
fe091c20 121
79442ed1 122 .bottom_up = false,
fe091c20
TH
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124};
95f72d1e 125
77649905
DH
126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132};
133#endif
134
9f3d5eaa
MR
135/*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
cd991db8
MR
143#define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
87c55870
MR
148#define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154static int memblock_debug __initdata_memblock;
a3f5bafc 155static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 156static int memblock_can_resize __initdata_memblock;
181eb394
GS
157static int memblock_memory_in_slab __initdata_memblock = 0;
158static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 159
c366ea89 160static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
161{
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163}
164
eb18f1b5
TH
165/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167{
1c4bc43d 168 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
169}
170
6ed311b2
BH
171/*
172 * Address comparison utilities
173 */
10d06439 174static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 175 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
176{
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178}
179
95cf82ec 180bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 181 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
182{
183 unsigned long i;
184
023accf5
MR
185 memblock_cap_size(base, &size);
186
f14516fb
AK
187 for (i = 0; i < type->cnt; i++)
188 if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 type->regions[i].size))
6ed311b2 190 break;
c5c5c9d1 191 return i < type->cnt;
6ed311b2
BH
192}
193
47cec443 194/**
79442ed1
TC
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
196 * @start: start of candidate range
47cec443
MR
197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
199 * @size: size of free area to find
200 * @align: alignment of free area to find
b1154233 201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 202 * @flags: pick from blocks based on memory attributes
79442ed1
TC
203 *
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205 *
47cec443 206 * Return:
79442ed1
TC
207 * Found address on success, 0 on failure.
208 */
209static phys_addr_t __init_memblock
210__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 211 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 212 enum memblock_flags flags)
79442ed1
TC
213{
214 phys_addr_t this_start, this_end, cand;
215 u64 i;
216
fc6daaf9 217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
218 this_start = clamp(this_start, start, end);
219 this_end = clamp(this_end, start, end);
220
221 cand = round_up(this_start, align);
222 if (cand < this_end && this_end - cand >= size)
223 return cand;
224 }
225
226 return 0;
227}
228
7bd0b0f0 229/**
1402899e 230 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 231 * @start: start of candidate range
47cec443
MR
232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
234 * @size: size of free area to find
235 * @align: alignment of free area to find
b1154233 236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 237 * @flags: pick from blocks based on memory attributes
7bd0b0f0 238 *
1402899e 239 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 240 *
47cec443 241 * Return:
79442ed1 242 * Found address on success, 0 on failure.
6ed311b2 243 */
1402899e
TC
244static phys_addr_t __init_memblock
245__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 246 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 247 enum memblock_flags flags)
f7210e6c
TC
248{
249 phys_addr_t this_start, this_end, cand;
250 u64 i;
251
fc6daaf9
TL
252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 NULL) {
f7210e6c
TC
254 this_start = clamp(this_start, start, end);
255 this_end = clamp(this_end, start, end);
256
257 if (this_end < size)
258 continue;
259
260 cand = round_down(this_end - size, align);
261 if (cand >= this_start)
262 return cand;
263 }
1402899e 264
f7210e6c
TC
265 return 0;
266}
6ed311b2 267
1402899e
TC
268/**
269 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
270 * @size: size of free area to find
271 * @align: alignment of free area to find
87029ee9 272 * @start: start of candidate range
47cec443
MR
273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 276 * @flags: pick from blocks based on memory attributes
1402899e
TC
277 *
278 * Find @size free area aligned to @align in the specified range and node.
279 *
47cec443 280 * Return:
79442ed1 281 * Found address on success, 0 on failure.
1402899e 282 */
c366ea89 283static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 284 phys_addr_t align, phys_addr_t start,
e1720fee
MR
285 phys_addr_t end, int nid,
286 enum memblock_flags flags)
1402899e
TC
287{
288 /* pump up @end */
fed84c78 289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
c6975d7c 290 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
1402899e
TC
291 end = memblock.current_limit;
292
293 /* avoid allocating the first page */
294 start = max_t(phys_addr_t, start, PAGE_SIZE);
295 end = max(start, end);
296
2dcb3964
RG
297 if (memblock_bottom_up())
298 return __memblock_find_range_bottom_up(start, end, size, align,
299 nid, flags);
300 else
301 return __memblock_find_range_top_down(start, end, size, align,
302 nid, flags);
1402899e
TC
303}
304
7bd0b0f0
TH
305/**
306 * memblock_find_in_range - find free area in given range
307 * @start: start of candidate range
47cec443
MR
308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
310 * @size: size of free area to find
311 * @align: alignment of free area to find
312 *
313 * Find @size free area aligned to @align in the specified range.
314 *
47cec443 315 * Return:
79442ed1 316 * Found address on success, 0 on failure.
fc769a8e 317 */
a7259df7 318static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
7bd0b0f0
TH
319 phys_addr_t end, phys_addr_t size,
320 phys_addr_t align)
6ed311b2 321{
a3f5bafc 322 phys_addr_t ret;
e1720fee 323 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
324
325again:
326 ret = memblock_find_in_range_node(size, align, start, end,
327 NUMA_NO_NODE, flags);
328
329 if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 &size);
332 flags &= ~MEMBLOCK_MIRROR;
333 goto again;
334 }
335
336 return ret;
6ed311b2
BH
337}
338
10d06439 339static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 340{
1440c4e2 341 type->total_size -= type->regions[r].size;
7c0caeb8
TH
342 memmove(&type->regions[r], &type->regions[r + 1],
343 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 344 type->cnt--;
95f72d1e 345
8f7a6605
BH
346 /* Special case for empty arrays */
347 if (type->cnt == 0) {
1440c4e2 348 WARN_ON(type->total_size != 0);
8f7a6605
BH
349 type->cnt = 1;
350 type->regions[0].base = 0;
351 type->regions[0].size = 0;
66a20757 352 type->regions[0].flags = 0;
7c0caeb8 353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 354 }
95f72d1e
YL
355}
356
350e88ba 357#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 358/**
47cec443 359 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
360 */
361void __init memblock_discard(void)
5e270e25 362{
3010f876 363 phys_addr_t addr, size;
5e270e25 364
3010f876
PT
365 if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 addr = __pa(memblock.reserved.regions);
367 size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 memblock.reserved.max);
c94afc46
ML
369 if (memblock_reserved_in_slab)
370 kfree(memblock.reserved.regions);
371 else
372 memblock_free_late(addr, size);
3010f876 373 }
5e270e25 374
91b540f9 375 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
376 addr = __pa(memblock.memory.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.memory.max);
c94afc46
ML
379 if (memblock_memory_in_slab)
380 kfree(memblock.memory.regions);
381 else
382 memblock_free_late(addr, size);
3010f876 383 }
9f3d5eaa
MR
384
385 memblock_memory = NULL;
5e270e25 386}
5e270e25
PH
387#endif
388
48c3b583
GP
389/**
390 * memblock_double_array - double the size of the memblock regions array
391 * @type: memblock type of the regions array being doubled
392 * @new_area_start: starting address of memory range to avoid overlap with
393 * @new_area_size: size of memory range to avoid overlap with
394 *
395 * Double the size of the @type regions array. If memblock is being used to
396 * allocate memory for a new reserved regions array and there is a previously
47cec443 397 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
398 * waiting to be reserved, ensure the memory used by the new array does
399 * not overlap.
400 *
47cec443 401 * Return:
48c3b583
GP
402 * 0 on success, -1 on failure.
403 */
404static int __init_memblock memblock_double_array(struct memblock_type *type,
405 phys_addr_t new_area_start,
406 phys_addr_t new_area_size)
142b45a7
BH
407{
408 struct memblock_region *new_array, *old_array;
29f67386 409 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 410 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 411 int use_slab = slab_is_available();
181eb394 412 int *in_slab;
142b45a7
BH
413
414 /* We don't allow resizing until we know about the reserved regions
415 * of memory that aren't suitable for allocation
416 */
417 if (!memblock_can_resize)
418 return -1;
419
142b45a7
BH
420 /* Calculate new doubled size */
421 old_size = type->max * sizeof(struct memblock_region);
422 new_size = old_size << 1;
29f67386
YL
423 /*
424 * We need to allocated new one align to PAGE_SIZE,
425 * so we can free them completely later.
426 */
427 old_alloc_size = PAGE_ALIGN(old_size);
428 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 429
181eb394
GS
430 /* Retrieve the slab flag */
431 if (type == &memblock.memory)
432 in_slab = &memblock_memory_in_slab;
433 else
434 in_slab = &memblock_reserved_in_slab;
435
a2974133 436 /* Try to find some space for it */
142b45a7
BH
437 if (use_slab) {
438 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 439 addr = new_array ? __pa(new_array) : 0;
4e2f0775 440 } else {
48c3b583
GP
441 /* only exclude range when trying to double reserved.regions */
442 if (type != &memblock.reserved)
443 new_area_start = new_area_size = 0;
444
445 addr = memblock_find_in_range(new_area_start + new_area_size,
446 memblock.current_limit,
29f67386 447 new_alloc_size, PAGE_SIZE);
48c3b583
GP
448 if (!addr && new_area_size)
449 addr = memblock_find_in_range(0,
fd07383b
AM
450 min(new_area_start, memblock.current_limit),
451 new_alloc_size, PAGE_SIZE);
48c3b583 452
15674868 453 new_array = addr ? __va(addr) : NULL;
4e2f0775 454 }
1f5026a7 455 if (!addr) {
142b45a7 456 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 457 type->name, type->max, type->max * 2);
142b45a7
BH
458 return -1;
459 }
142b45a7 460
a36aab89
MR
461 new_end = addr + new_size - 1;
462 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
463 type->name, type->max * 2, &addr, &new_end);
ea9e4376 464
fd07383b
AM
465 /*
466 * Found space, we now need to move the array over before we add the
467 * reserved region since it may be our reserved array itself that is
468 * full.
142b45a7
BH
469 */
470 memcpy(new_array, type->regions, old_size);
471 memset(new_array + type->max, 0, old_size);
472 old_array = type->regions;
473 type->regions = new_array;
474 type->max <<= 1;
475
fd07383b 476 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
477 if (*in_slab)
478 kfree(old_array);
479 else if (old_array != memblock_memory_init_regions &&
480 old_array != memblock_reserved_init_regions)
4421cca0 481 memblock_free(old_array, old_alloc_size);
142b45a7 482
fd07383b
AM
483 /*
484 * Reserve the new array if that comes from the memblock. Otherwise, we
485 * needn't do it
181eb394
GS
486 */
487 if (!use_slab)
29f67386 488 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
489
490 /* Update slab flag */
491 *in_slab = use_slab;
492
142b45a7
BH
493 return 0;
494}
495
784656f9
TH
496/**
497 * memblock_merge_regions - merge neighboring compatible regions
498 * @type: memblock type to scan
499 *
500 * Scan @type and merge neighboring compatible regions.
501 */
502static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 503{
784656f9 504 int i = 0;
95f72d1e 505
784656f9
TH
506 /* cnt never goes below 1 */
507 while (i < type->cnt - 1) {
508 struct memblock_region *this = &type->regions[i];
509 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 510
7c0caeb8
TH
511 if (this->base + this->size != next->base ||
512 memblock_get_region_node(this) !=
66a20757
TC
513 memblock_get_region_node(next) ||
514 this->flags != next->flags) {
784656f9
TH
515 BUG_ON(this->base + this->size > next->base);
516 i++;
517 continue;
8f7a6605
BH
518 }
519
784656f9 520 this->size += next->size;
c0232ae8
LF
521 /* move forward from next + 1, index of which is i + 2 */
522 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 523 type->cnt--;
95f72d1e 524 }
784656f9 525}
95f72d1e 526
784656f9
TH
527/**
528 * memblock_insert_region - insert new memblock region
209ff86d
TC
529 * @type: memblock type to insert into
530 * @idx: index for the insertion point
531 * @base: base address of the new region
532 * @size: size of the new region
533 * @nid: node id of the new region
66a20757 534 * @flags: flags of the new region
784656f9 535 *
47cec443 536 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 537 * @type must already have extra room to accommodate the new region.
784656f9
TH
538 */
539static void __init_memblock memblock_insert_region(struct memblock_type *type,
540 int idx, phys_addr_t base,
66a20757 541 phys_addr_t size,
e1720fee
MR
542 int nid,
543 enum memblock_flags flags)
784656f9
TH
544{
545 struct memblock_region *rgn = &type->regions[idx];
546
547 BUG_ON(type->cnt >= type->max);
548 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
549 rgn->base = base;
550 rgn->size = size;
66a20757 551 rgn->flags = flags;
7c0caeb8 552 memblock_set_region_node(rgn, nid);
784656f9 553 type->cnt++;
1440c4e2 554 type->total_size += size;
784656f9
TH
555}
556
557/**
f1af9d3a 558 * memblock_add_range - add new memblock region
784656f9
TH
559 * @type: memblock type to add new region into
560 * @base: base address of the new region
561 * @size: size of the new region
7fb0bc3f 562 * @nid: nid of the new region
66a20757 563 * @flags: flags of the new region
784656f9 564 *
47cec443 565 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
566 * is allowed to overlap with existing ones - overlaps don't affect already
567 * existing regions. @type is guaranteed to be minimal (all neighbouring
568 * compatible regions are merged) after the addition.
569 *
47cec443 570 * Return:
784656f9
TH
571 * 0 on success, -errno on failure.
572 */
02634a44 573static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 574 phys_addr_t base, phys_addr_t size,
e1720fee 575 int nid, enum memblock_flags flags)
784656f9
TH
576{
577 bool insert = false;
eb18f1b5
TH
578 phys_addr_t obase = base;
579 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
580 int idx, nr_new;
581 struct memblock_region *rgn;
784656f9 582
b3dc627c
TH
583 if (!size)
584 return 0;
585
784656f9
TH
586 /* special case for empty array */
587 if (type->regions[0].size == 0) {
1440c4e2 588 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
589 type->regions[0].base = base;
590 type->regions[0].size = size;
66a20757 591 type->regions[0].flags = flags;
7fb0bc3f 592 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 593 type->total_size = size;
8f7a6605 594 return 0;
95f72d1e 595 }
784656f9
TH
596repeat:
597 /*
598 * The following is executed twice. Once with %false @insert and
599 * then with %true. The first counts the number of regions needed
412d0008 600 * to accommodate the new area. The second actually inserts them.
142b45a7 601 */
784656f9
TH
602 base = obase;
603 nr_new = 0;
95f72d1e 604
66e8b438 605 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
606 phys_addr_t rbase = rgn->base;
607 phys_addr_t rend = rbase + rgn->size;
608
609 if (rbase >= end)
95f72d1e 610 break;
784656f9
TH
611 if (rend <= base)
612 continue;
613 /*
614 * @rgn overlaps. If it separates the lower part of new
615 * area, insert that portion.
616 */
617 if (rbase > base) {
a9ee6cf5 618#ifdef CONFIG_NUMA
c0a29498
WY
619 WARN_ON(nid != memblock_get_region_node(rgn));
620#endif
4fcab5f4 621 WARN_ON(flags != rgn->flags);
784656f9
TH
622 nr_new++;
623 if (insert)
8c9c1701 624 memblock_insert_region(type, idx++, base,
66a20757
TC
625 rbase - base, nid,
626 flags);
95f72d1e 627 }
784656f9
TH
628 /* area below @rend is dealt with, forget about it */
629 base = min(rend, end);
95f72d1e 630 }
784656f9
TH
631
632 /* insert the remaining portion */
633 if (base < end) {
634 nr_new++;
635 if (insert)
8c9c1701 636 memblock_insert_region(type, idx, base, end - base,
66a20757 637 nid, flags);
95f72d1e 638 }
95f72d1e 639
ef3cc4db 640 if (!nr_new)
641 return 0;
642
784656f9
TH
643 /*
644 * If this was the first round, resize array and repeat for actual
645 * insertions; otherwise, merge and return.
142b45a7 646 */
784656f9
TH
647 if (!insert) {
648 while (type->cnt + nr_new > type->max)
48c3b583 649 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
650 return -ENOMEM;
651 insert = true;
652 goto repeat;
653 } else {
654 memblock_merge_regions(type);
655 return 0;
142b45a7 656 }
95f72d1e
YL
657}
658
48a833cc
MR
659/**
660 * memblock_add_node - add new memblock region within a NUMA node
661 * @base: base address of the new region
662 * @size: size of the new region
663 * @nid: nid of the new region
952eea9b 664 * @flags: flags of the new region
48a833cc
MR
665 *
666 * Add new memblock region [@base, @base + @size) to the "memory"
667 * type. See memblock_add_range() description for mode details
668 *
669 * Return:
670 * 0 on success, -errno on failure.
671 */
7fb0bc3f 672int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
952eea9b 673 int nid, enum memblock_flags flags)
7fb0bc3f 674{
00974b9a
GU
675 phys_addr_t end = base + size - 1;
676
952eea9b
DH
677 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
678 &base, &end, nid, flags, (void *)_RET_IP_);
00974b9a 679
952eea9b 680 return memblock_add_range(&memblock.memory, base, size, nid, flags);
7fb0bc3f
TH
681}
682
48a833cc
MR
683/**
684 * memblock_add - add new memblock region
685 * @base: base address of the new region
686 * @size: size of the new region
687 *
688 * Add new memblock region [@base, @base + @size) to the "memory"
689 * type. See memblock_add_range() description for mode details
690 *
691 * Return:
692 * 0 on success, -errno on failure.
693 */
f705ac4b 694int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 695{
5d63f81c
MC
696 phys_addr_t end = base + size - 1;
697
a090d711 698 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 699 &base, &end, (void *)_RET_IP_);
6a4055bc 700
f705ac4b 701 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
702}
703
6a9ceb31
TH
704/**
705 * memblock_isolate_range - isolate given range into disjoint memblocks
706 * @type: memblock type to isolate range for
707 * @base: base of range to isolate
708 * @size: size of range to isolate
709 * @start_rgn: out parameter for the start of isolated region
710 * @end_rgn: out parameter for the end of isolated region
711 *
712 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 713 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
714 * which may create at most two more regions. The index of the first
715 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
716 *
47cec443 717 * Return:
6a9ceb31
TH
718 * 0 on success, -errno on failure.
719 */
720static int __init_memblock memblock_isolate_range(struct memblock_type *type,
721 phys_addr_t base, phys_addr_t size,
722 int *start_rgn, int *end_rgn)
723{
eb18f1b5 724 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
725 int idx;
726 struct memblock_region *rgn;
6a9ceb31
TH
727
728 *start_rgn = *end_rgn = 0;
729
b3dc627c
TH
730 if (!size)
731 return 0;
732
6a9ceb31
TH
733 /* we'll create at most two more regions */
734 while (type->cnt + 2 > type->max)
48c3b583 735 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
736 return -ENOMEM;
737
66e8b438 738 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
739 phys_addr_t rbase = rgn->base;
740 phys_addr_t rend = rbase + rgn->size;
741
742 if (rbase >= end)
743 break;
744 if (rend <= base)
745 continue;
746
747 if (rbase < base) {
748 /*
749 * @rgn intersects from below. Split and continue
750 * to process the next region - the new top half.
751 */
752 rgn->base = base;
1440c4e2
TH
753 rgn->size -= base - rbase;
754 type->total_size -= base - rbase;
8c9c1701 755 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
756 memblock_get_region_node(rgn),
757 rgn->flags);
6a9ceb31
TH
758 } else if (rend > end) {
759 /*
760 * @rgn intersects from above. Split and redo the
761 * current region - the new bottom half.
762 */
763 rgn->base = end;
1440c4e2
TH
764 rgn->size -= end - rbase;
765 type->total_size -= end - rbase;
8c9c1701 766 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
767 memblock_get_region_node(rgn),
768 rgn->flags);
6a9ceb31
TH
769 } else {
770 /* @rgn is fully contained, record it */
771 if (!*end_rgn)
8c9c1701
AK
772 *start_rgn = idx;
773 *end_rgn = idx + 1;
6a9ceb31
TH
774 }
775 }
776
777 return 0;
778}
6a9ceb31 779
35bd16a2 780static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 781 phys_addr_t base, phys_addr_t size)
95f72d1e 782{
71936180
TH
783 int start_rgn, end_rgn;
784 int i, ret;
95f72d1e 785
71936180
TH
786 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
787 if (ret)
788 return ret;
95f72d1e 789
71936180
TH
790 for (i = end_rgn - 1; i >= start_rgn; i--)
791 memblock_remove_region(type, i);
8f7a6605 792 return 0;
95f72d1e
YL
793}
794
581adcbe 795int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 796{
25cf23d7
MK
797 phys_addr_t end = base + size - 1;
798
a090d711 799 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
800 &base, &end, (void *)_RET_IP_);
801
f1af9d3a 802 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
803}
804
77e02cf5 805/**
4421cca0 806 * memblock_free - free boot memory allocation
77e02cf5
LT
807 * @ptr: starting address of the boot memory allocation
808 * @size: size of the boot memory block in bytes
809 *
810 * Free boot memory block previously allocated by memblock_alloc_xx() API.
811 * The freeing memory will not be released to the buddy allocator.
812 */
4421cca0 813void __init_memblock memblock_free(void *ptr, size_t size)
77e02cf5
LT
814{
815 if (ptr)
3ecc6834 816 memblock_phys_free(__pa(ptr), size);
77e02cf5
LT
817}
818
4d72868c 819/**
3ecc6834 820 * memblock_phys_free - free boot memory block
4d72868c
MR
821 * @base: phys starting address of the boot memory block
822 * @size: size of the boot memory block in bytes
823 *
824 * Free boot memory block previously allocated by memblock_alloc_xx() API.
825 * The freeing memory will not be released to the buddy allocator.
826 */
3ecc6834 827int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
95f72d1e 828{
5d63f81c
MC
829 phys_addr_t end = base + size - 1;
830
a090d711 831 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 832 &base, &end, (void *)_RET_IP_);
24aa0788 833
9099daed 834 kmemleak_free_part_phys(base, size);
f1af9d3a 835 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
836}
837
f705ac4b 838int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 839{
5d63f81c
MC
840 phys_addr_t end = base + size - 1;
841
a090d711 842 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 843 &base, &end, (void *)_RET_IP_);
95f72d1e 844
f705ac4b 845 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
846}
847
02634a44
AK
848#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
849int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
850{
851 phys_addr_t end = base + size - 1;
852
853 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
854 &base, &end, (void *)_RET_IP_);
855
77649905 856 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
02634a44
AK
857}
858#endif
859
66b16edf 860/**
47cec443
MR
861 * memblock_setclr_flag - set or clear flag for a memory region
862 * @base: base address of the region
863 * @size: size of the region
864 * @set: set or clear the flag
8958b249 865 * @flag: the flag to update
66b16edf 866 *
4308ce17 867 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 868 *
47cec443 869 * Return: 0 on success, -errno on failure.
66b16edf 870 */
4308ce17
TL
871static int __init_memblock memblock_setclr_flag(phys_addr_t base,
872 phys_addr_t size, int set, int flag)
66b16edf
TC
873{
874 struct memblock_type *type = &memblock.memory;
875 int i, ret, start_rgn, end_rgn;
876
877 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
878 if (ret)
879 return ret;
880
fe145124
MR
881 for (i = start_rgn; i < end_rgn; i++) {
882 struct memblock_region *r = &type->regions[i];
883
4308ce17 884 if (set)
fe145124 885 r->flags |= flag;
4308ce17 886 else
fe145124
MR
887 r->flags &= ~flag;
888 }
66b16edf
TC
889
890 memblock_merge_regions(type);
891 return 0;
892}
893
894/**
4308ce17 895 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
896 * @base: the base phys addr of the region
897 * @size: the size of the region
898 *
47cec443 899 * Return: 0 on success, -errno on failure.
4308ce17
TL
900 */
901int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
902{
903 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
904}
905
906/**
907 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
908 * @base: the base phys addr of the region
909 * @size: the size of the region
66b16edf 910 *
47cec443 911 * Return: 0 on success, -errno on failure.
66b16edf
TC
912 */
913int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
914{
4308ce17 915 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
916}
917
a3f5bafc
TL
918/**
919 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
920 * @base: the base phys addr of the region
921 * @size: the size of the region
922 *
47cec443 923 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
924 */
925int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
926{
927 system_has_some_mirror = true;
928
929 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
930}
931
bf3d3cc5
AB
932/**
933 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
934 * @base: the base phys addr of the region
935 * @size: the size of the region
936 *
9092d4f7
MR
937 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
938 * direct mapping of the physical memory. These regions will still be
939 * covered by the memory map. The struct page representing NOMAP memory
940 * frames in the memory map will be PageReserved()
941 *
658aafc8
MR
942 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
943 * memblock, the caller must inform kmemleak to ignore that memory
944 *
47cec443 945 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
946 */
947int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
948{
6c9a5455 949 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
bf3d3cc5 950}
a3f5bafc 951
4c546b8a
AT
952/**
953 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
954 * @base: the base phys addr of the region
955 * @size: the size of the region
956 *
47cec443 957 * Return: 0 on success, -errno on failure.
4c546b8a
AT
958 */
959int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
960{
961 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
962}
963
9f3d5eaa
MR
964static bool should_skip_region(struct memblock_type *type,
965 struct memblock_region *m,
966 int nid, int flags)
c9a688a3
MR
967{
968 int m_nid = memblock_get_region_node(m);
969
9f3d5eaa
MR
970 /* we never skip regions when iterating memblock.reserved or physmem */
971 if (type != memblock_memory)
972 return false;
973
c9a688a3
MR
974 /* only memory regions are associated with nodes, check it */
975 if (nid != NUMA_NO_NODE && nid != m_nid)
976 return true;
977
978 /* skip hotpluggable memory regions if needed */
79e482e9
MR
979 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
980 !(flags & MEMBLOCK_HOTPLUG))
c9a688a3
MR
981 return true;
982
983 /* if we want mirror memory skip non-mirror memory regions */
984 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
985 return true;
986
987 /* skip nomap memory unless we were asked for it explicitly */
988 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
989 return true;
990
f7892d8e
DH
991 /* skip driver-managed memory unless we were asked for it explicitly */
992 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
993 return true;
994
c9a688a3
MR
995 return false;
996}
997
35fd0808 998/**
a2974133 999 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 1000 * @idx: pointer to u64 loop variable
b1154233 1001 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1002 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1003 * @type_a: pointer to memblock_type from where the range is taken
1004 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1005 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1006 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1007 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 1008 *
f1af9d3a 1009 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 1010 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
1011 * *@idx contains index into type_a and the upper 32bit indexes the
1012 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
1013 * look like the following,
1014 *
1015 * 0:[0-16), 1:[32-48), 2:[128-130)
1016 *
1017 * The upper 32bit indexes the following regions.
1018 *
1019 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1020 *
1021 * As both region arrays are sorted, the function advances the two indices
1022 * in lockstep and returns each intersection.
1023 */
77649905
DH
1024void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1025 struct memblock_type *type_a,
1026 struct memblock_type *type_b, phys_addr_t *out_start,
1027 phys_addr_t *out_end, int *out_nid)
35fd0808 1028{
f1af9d3a
PH
1029 int idx_a = *idx & 0xffffffff;
1030 int idx_b = *idx >> 32;
b1154233 1031
f1af9d3a
PH
1032 if (WARN_ONCE(nid == MAX_NUMNODES,
1033 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 1034 nid = NUMA_NO_NODE;
35fd0808 1035
f1af9d3a
PH
1036 for (; idx_a < type_a->cnt; idx_a++) {
1037 struct memblock_region *m = &type_a->regions[idx_a];
1038
35fd0808
TH
1039 phys_addr_t m_start = m->base;
1040 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1041 int m_nid = memblock_get_region_node(m);
35fd0808 1042
9f3d5eaa 1043 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1044 continue;
1045
f1af9d3a
PH
1046 if (!type_b) {
1047 if (out_start)
1048 *out_start = m_start;
1049 if (out_end)
1050 *out_end = m_end;
1051 if (out_nid)
1052 *out_nid = m_nid;
1053 idx_a++;
1054 *idx = (u32)idx_a | (u64)idx_b << 32;
1055 return;
1056 }
1057
1058 /* scan areas before each reservation */
1059 for (; idx_b < type_b->cnt + 1; idx_b++) {
1060 struct memblock_region *r;
1061 phys_addr_t r_start;
1062 phys_addr_t r_end;
1063
1064 r = &type_b->regions[idx_b];
1065 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1066 r_end = idx_b < type_b->cnt ?
1c4bc43d 1067 r->base : PHYS_ADDR_MAX;
35fd0808 1068
f1af9d3a
PH
1069 /*
1070 * if idx_b advanced past idx_a,
1071 * break out to advance idx_a
1072 */
35fd0808
TH
1073 if (r_start >= m_end)
1074 break;
1075 /* if the two regions intersect, we're done */
1076 if (m_start < r_end) {
1077 if (out_start)
f1af9d3a
PH
1078 *out_start =
1079 max(m_start, r_start);
35fd0808
TH
1080 if (out_end)
1081 *out_end = min(m_end, r_end);
1082 if (out_nid)
f1af9d3a 1083 *out_nid = m_nid;
35fd0808 1084 /*
f1af9d3a
PH
1085 * The region which ends first is
1086 * advanced for the next iteration.
35fd0808
TH
1087 */
1088 if (m_end <= r_end)
f1af9d3a 1089 idx_a++;
35fd0808 1090 else
f1af9d3a
PH
1091 idx_b++;
1092 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1093 return;
1094 }
1095 }
1096 }
1097
1098 /* signal end of iteration */
1099 *idx = ULLONG_MAX;
1100}
1101
7bd0b0f0 1102/**
f1af9d3a
PH
1103 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1104 *
7bd0b0f0 1105 * @idx: pointer to u64 loop variable
ad5ea8cd 1106 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1107 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1108 * @type_a: pointer to memblock_type from where the range is taken
1109 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1110 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1111 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1112 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1113 *
47cec443
MR
1114 * Finds the next range from type_a which is not marked as unsuitable
1115 * in type_b.
1116 *
f1af9d3a 1117 * Reverse of __next_mem_range().
7bd0b0f0 1118 */
e1720fee
MR
1119void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1120 enum memblock_flags flags,
f1af9d3a
PH
1121 struct memblock_type *type_a,
1122 struct memblock_type *type_b,
1123 phys_addr_t *out_start,
1124 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1125{
f1af9d3a
PH
1126 int idx_a = *idx & 0xffffffff;
1127 int idx_b = *idx >> 32;
b1154233 1128
560dca27
GS
1129 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1130 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1131
1132 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1133 idx_a = type_a->cnt - 1;
e47608ab 1134 if (type_b != NULL)
1135 idx_b = type_b->cnt;
1136 else
1137 idx_b = 0;
7bd0b0f0
TH
1138 }
1139
f1af9d3a
PH
1140 for (; idx_a >= 0; idx_a--) {
1141 struct memblock_region *m = &type_a->regions[idx_a];
1142
7bd0b0f0
TH
1143 phys_addr_t m_start = m->base;
1144 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1145 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1146
9f3d5eaa 1147 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1148 continue;
1149
f1af9d3a
PH
1150 if (!type_b) {
1151 if (out_start)
1152 *out_start = m_start;
1153 if (out_end)
1154 *out_end = m_end;
1155 if (out_nid)
1156 *out_nid = m_nid;
fb399b48 1157 idx_a--;
f1af9d3a
PH
1158 *idx = (u32)idx_a | (u64)idx_b << 32;
1159 return;
1160 }
1161
1162 /* scan areas before each reservation */
1163 for (; idx_b >= 0; idx_b--) {
1164 struct memblock_region *r;
1165 phys_addr_t r_start;
1166 phys_addr_t r_end;
1167
1168 r = &type_b->regions[idx_b];
1169 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1170 r_end = idx_b < type_b->cnt ?
1c4bc43d 1171 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1172 /*
1173 * if idx_b advanced past idx_a,
1174 * break out to advance idx_a
1175 */
7bd0b0f0 1176
7bd0b0f0
TH
1177 if (r_end <= m_start)
1178 break;
1179 /* if the two regions intersect, we're done */
1180 if (m_end > r_start) {
1181 if (out_start)
1182 *out_start = max(m_start, r_start);
1183 if (out_end)
1184 *out_end = min(m_end, r_end);
1185 if (out_nid)
f1af9d3a 1186 *out_nid = m_nid;
7bd0b0f0 1187 if (m_start >= r_start)
f1af9d3a 1188 idx_a--;
7bd0b0f0 1189 else
f1af9d3a
PH
1190 idx_b--;
1191 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1192 return;
1193 }
1194 }
1195 }
f1af9d3a 1196 /* signal end of iteration */
7bd0b0f0
TH
1197 *idx = ULLONG_MAX;
1198}
1199
7c0caeb8 1200/*
45e79815 1201 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1202 */
1203void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1204 unsigned long *out_start_pfn,
1205 unsigned long *out_end_pfn, int *out_nid)
1206{
1207 struct memblock_type *type = &memblock.memory;
1208 struct memblock_region *r;
d622abf7 1209 int r_nid;
7c0caeb8
TH
1210
1211 while (++*idx < type->cnt) {
1212 r = &type->regions[*idx];
d622abf7 1213 r_nid = memblock_get_region_node(r);
7c0caeb8
TH
1214
1215 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1216 continue;
d622abf7 1217 if (nid == MAX_NUMNODES || nid == r_nid)
7c0caeb8
TH
1218 break;
1219 }
1220 if (*idx >= type->cnt) {
1221 *idx = -1;
1222 return;
1223 }
1224
1225 if (out_start_pfn)
1226 *out_start_pfn = PFN_UP(r->base);
1227 if (out_end_pfn)
1228 *out_end_pfn = PFN_DOWN(r->base + r->size);
1229 if (out_nid)
d622abf7 1230 *out_nid = r_nid;
7c0caeb8
TH
1231}
1232
1233/**
1234 * memblock_set_node - set node ID on memblock regions
1235 * @base: base of area to set node ID for
1236 * @size: size of area to set node ID for
e7e8de59 1237 * @type: memblock type to set node ID for
7c0caeb8
TH
1238 * @nid: node ID to set
1239 *
47cec443 1240 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1241 * Regions which cross the area boundaries are split as necessary.
1242 *
47cec443 1243 * Return:
7c0caeb8
TH
1244 * 0 on success, -errno on failure.
1245 */
1246int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1247 struct memblock_type *type, int nid)
7c0caeb8 1248{
a9ee6cf5 1249#ifdef CONFIG_NUMA
6a9ceb31
TH
1250 int start_rgn, end_rgn;
1251 int i, ret;
7c0caeb8 1252
6a9ceb31
TH
1253 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1254 if (ret)
1255 return ret;
7c0caeb8 1256
6a9ceb31 1257 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1258 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1259
1260 memblock_merge_regions(type);
3f08a302 1261#endif
7c0caeb8
TH
1262 return 0;
1263}
3f08a302 1264
837566e7
AD
1265#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1266/**
1267 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1268 *
1269 * @idx: pointer to u64 loop variable
1270 * @zone: zone in which all of the memory blocks reside
1271 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1272 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1273 *
1274 * This function is meant to be a zone/pfn specific wrapper for the
1275 * for_each_mem_range type iterators. Specifically they are used in the
1276 * deferred memory init routines and as such we were duplicating much of
1277 * this logic throughout the code. So instead of having it in multiple
1278 * locations it seemed like it would make more sense to centralize this to
1279 * one new iterator that does everything they need.
1280 */
1281void __init_memblock
1282__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1283 unsigned long *out_spfn, unsigned long *out_epfn)
1284{
1285 int zone_nid = zone_to_nid(zone);
1286 phys_addr_t spa, epa;
837566e7
AD
1287
1288 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1289 &memblock.memory, &memblock.reserved,
f30b002c 1290 &spa, &epa, NULL);
837566e7
AD
1291
1292 while (*idx != U64_MAX) {
1293 unsigned long epfn = PFN_DOWN(epa);
1294 unsigned long spfn = PFN_UP(spa);
1295
1296 /*
1297 * Verify the end is at least past the start of the zone and
1298 * that we have at least one PFN to initialize.
1299 */
1300 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1301 /* if we went too far just stop searching */
1302 if (zone_end_pfn(zone) <= spfn) {
1303 *idx = U64_MAX;
1304 break;
1305 }
1306
1307 if (out_spfn)
1308 *out_spfn = max(zone->zone_start_pfn, spfn);
1309 if (out_epfn)
1310 *out_epfn = min(zone_end_pfn(zone), epfn);
1311
1312 return;
1313 }
1314
1315 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1316 &memblock.memory, &memblock.reserved,
f30b002c 1317 &spa, &epa, NULL);
837566e7
AD
1318 }
1319
1320 /* signal end of iteration */
1321 if (out_spfn)
1322 *out_spfn = ULONG_MAX;
1323 if (out_epfn)
1324 *out_epfn = 0;
1325}
1326
1327#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1328
92d12f95
MR
1329/**
1330 * memblock_alloc_range_nid - allocate boot memory block
1331 * @size: size of memory block to be allocated in bytes
1332 * @align: alignment of the region and block's size
1333 * @start: the lower bound of the memory region to allocate (phys address)
1334 * @end: the upper bound of the memory region to allocate (phys address)
1335 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1336 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1337 *
1338 * The allocation is performed from memory region limited by
95830666 1339 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1340 *
0ac398b1
YY
1341 * If the specified node can not hold the requested memory and @exact_nid
1342 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1343 *
1344 * For systems with memory mirroring, the allocation is attempted first
1345 * from the regions with mirroring enabled and then retried from any
1346 * memory region.
1347 *
1348 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1349 * allocated boot memory block, so that it is never reported as leaks.
1350 *
1351 * Return:
1352 * Physical address of allocated memory block on success, %0 on failure.
1353 */
8676af1f 1354phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
2bfc2862 1355 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1356 phys_addr_t end, int nid,
1357 bool exact_nid)
95f72d1e 1358{
92d12f95 1359 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1360 phys_addr_t found;
95f72d1e 1361
92d12f95
MR
1362 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1363 nid = NUMA_NO_NODE;
1364
2f770806
MR
1365 if (!align) {
1366 /* Can't use WARNs this early in boot on powerpc */
1367 dump_stack();
1368 align = SMP_CACHE_BYTES;
1369 }
1370
92d12f95 1371again:
fc6daaf9
TL
1372 found = memblock_find_in_range_node(size, align, start, end, nid,
1373 flags);
92d12f95
MR
1374 if (found && !memblock_reserve(found, size))
1375 goto done;
1376
0ac398b1 1377 if (nid != NUMA_NO_NODE && !exact_nid) {
92d12f95
MR
1378 found = memblock_find_in_range_node(size, align, start,
1379 end, NUMA_NO_NODE,
1380 flags);
1381 if (found && !memblock_reserve(found, size))
1382 goto done;
1383 }
1384
1385 if (flags & MEMBLOCK_MIRROR) {
1386 flags &= ~MEMBLOCK_MIRROR;
1387 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1388 &size);
1389 goto again;
1390 }
1391
1392 return 0;
1393
1394done:
c6975d7c
QC
1395 /*
1396 * Skip kmemleak for those places like kasan_init() and
1397 * early_pgtable_alloc() due to high volume.
1398 */
1399 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
aedf95ea 1400 /*
92d12f95
MR
1401 * The min_count is set to 0 so that memblock allocated
1402 * blocks are never reported as leaks. This is because many
1403 * of these blocks are only referred via the physical
1404 * address which is not looked up by kmemleak.
aedf95ea 1405 */
9099daed 1406 kmemleak_alloc_phys(found, size, 0, 0);
92d12f95
MR
1407
1408 return found;
95f72d1e
YL
1409}
1410
a2974133
MR
1411/**
1412 * memblock_phys_alloc_range - allocate a memory block inside specified range
1413 * @size: size of memory block to be allocated in bytes
1414 * @align: alignment of the region and block's size
1415 * @start: the lower bound of the memory region to allocate (physical address)
1416 * @end: the upper bound of the memory region to allocate (physical address)
1417 *
1418 * Allocate @size bytes in the between @start and @end.
1419 *
1420 * Return: physical address of the allocated memory block on success,
1421 * %0 on failure.
1422 */
8a770c2a
MR
1423phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1424 phys_addr_t align,
1425 phys_addr_t start,
1426 phys_addr_t end)
2bfc2862 1427{
b5cf2d6c
FM
1428 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1429 __func__, (u64)size, (u64)align, &start, &end,
1430 (void *)_RET_IP_);
0ac398b1
YY
1431 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1432 false);
7bd0b0f0
TH
1433}
1434
a2974133 1435/**
17cbe038 1436 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
a2974133
MR
1437 * @size: size of memory block to be allocated in bytes
1438 * @align: alignment of the region and block's size
1439 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1440 *
1441 * Allocates memory block from the specified NUMA node. If the node
1442 * has no available memory, attempts to allocated from any node in the
1443 * system.
1444 *
1445 * Return: physical address of the allocated memory block on success,
1446 * %0 on failure.
1447 */
9a8dd708 1448phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1449{
33755574 1450 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1451 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1452}
1453
26f09e9b 1454/**
eb31d559 1455 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1456 * @size: size of memory block to be allocated in bytes
1457 * @align: alignment of the region and block's size
1458 * @min_addr: the lower bound of the memory region to allocate (phys address)
1459 * @max_addr: the upper bound of the memory region to allocate (phys address)
1460 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1461 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1462 *
92d12f95
MR
1463 * Allocates memory block using memblock_alloc_range_nid() and
1464 * converts the returned physical address to virtual.
26f09e9b 1465 *
92d12f95
MR
1466 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1467 * will fall back to memory below @min_addr. Other constraints, such
1468 * as node and mirrored memory will be handled again in
1469 * memblock_alloc_range_nid().
26f09e9b 1470 *
47cec443 1471 * Return:
26f09e9b
SS
1472 * Virtual address of allocated memory block on success, NULL on failure.
1473 */
eb31d559 1474static void * __init memblock_alloc_internal(
26f09e9b
SS
1475 phys_addr_t size, phys_addr_t align,
1476 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1477 int nid, bool exact_nid)
26f09e9b
SS
1478{
1479 phys_addr_t alloc;
26f09e9b
SS
1480
1481 /*
1482 * Detect any accidental use of these APIs after slab is ready, as at
1483 * this moment memblock may be deinitialized already and its
c6ffc5ca 1484 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1485 */
1486 if (WARN_ON_ONCE(slab_is_available()))
1487 return kzalloc_node(size, GFP_NOWAIT, nid);
1488
f3057ad7
MR
1489 if (max_addr > memblock.current_limit)
1490 max_addr = memblock.current_limit;
1491
0ac398b1
YY
1492 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1493 exact_nid);
26f09e9b 1494
92d12f95
MR
1495 /* retry allocation without lower limit */
1496 if (!alloc && min_addr)
0ac398b1
YY
1497 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1498 exact_nid);
26f09e9b 1499
92d12f95
MR
1500 if (!alloc)
1501 return NULL;
26f09e9b 1502
92d12f95 1503 return phys_to_virt(alloc);
26f09e9b
SS
1504}
1505
0ac398b1
YY
1506/**
1507 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1508 * without zeroing memory
1509 * @size: size of memory block to be allocated in bytes
1510 * @align: alignment of the region and block's size
1511 * @min_addr: the lower bound of the memory region from where the allocation
1512 * is preferred (phys address)
1513 * @max_addr: the upper bound of the memory region from where the allocation
1514 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1515 * allocate only from memory limited by memblock.current_limit value
1516 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1517 *
1518 * Public function, provides additional debug information (including caller
1519 * info), if enabled. Does not zero allocated memory.
1520 *
1521 * Return:
1522 * Virtual address of allocated memory block on success, NULL on failure.
1523 */
1524void * __init memblock_alloc_exact_nid_raw(
1525 phys_addr_t size, phys_addr_t align,
1526 phys_addr_t min_addr, phys_addr_t max_addr,
1527 int nid)
1528{
0ac398b1
YY
1529 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1530 __func__, (u64)size, (u64)align, nid, &min_addr,
1531 &max_addr, (void *)_RET_IP_);
1532
08678804
MR
1533 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1534 true);
0ac398b1
YY
1535}
1536
ea1f5f37 1537/**
eb31d559 1538 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1539 * memory and without panicking
1540 * @size: size of memory block to be allocated in bytes
1541 * @align: alignment of the region and block's size
1542 * @min_addr: the lower bound of the memory region from where the allocation
1543 * is preferred (phys address)
1544 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1545 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1546 * allocate only from memory limited by memblock.current_limit value
1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548 *
1549 * Public function, provides additional debug information (including caller
1550 * info), if enabled. Does not zero allocated memory, does not panic if request
1551 * cannot be satisfied.
1552 *
47cec443 1553 * Return:
ea1f5f37
PT
1554 * Virtual address of allocated memory block on success, NULL on failure.
1555 */
eb31d559 1556void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1557 phys_addr_t size, phys_addr_t align,
1558 phys_addr_t min_addr, phys_addr_t max_addr,
1559 int nid)
1560{
d75f773c 1561 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1562 __func__, (u64)size, (u64)align, nid, &min_addr,
1563 &max_addr, (void *)_RET_IP_);
ea1f5f37 1564
08678804
MR
1565 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1566 false);
ea1f5f37
PT
1567}
1568
26f09e9b 1569/**
c0dbe825 1570 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1571 * @size: size of memory block to be allocated in bytes
1572 * @align: alignment of the region and block's size
1573 * @min_addr: the lower bound of the memory region from where the allocation
1574 * is preferred (phys address)
1575 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1576 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1577 * allocate only from memory limited by memblock.current_limit value
1578 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1579 *
c0dbe825
MR
1580 * Public function, provides additional debug information (including caller
1581 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1582 *
47cec443 1583 * Return:
26f09e9b
SS
1584 * Virtual address of allocated memory block on success, NULL on failure.
1585 */
eb31d559 1586void * __init memblock_alloc_try_nid(
26f09e9b
SS
1587 phys_addr_t size, phys_addr_t align,
1588 phys_addr_t min_addr, phys_addr_t max_addr,
1589 int nid)
1590{
1591 void *ptr;
1592
d75f773c 1593 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1594 __func__, (u64)size, (u64)align, nid, &min_addr,
1595 &max_addr, (void *)_RET_IP_);
eb31d559 1596 ptr = memblock_alloc_internal(size, align,
0ac398b1 1597 min_addr, max_addr, nid, false);
c0dbe825 1598 if (ptr)
ea1f5f37 1599 memset(ptr, 0, size);
26f09e9b 1600
c0dbe825 1601 return ptr;
26f09e9b
SS
1602}
1603
48a833cc 1604/**
621d9739 1605 * memblock_free_late - free pages directly to buddy allocator
48a833cc 1606 * @base: phys starting address of the boot memory block
26f09e9b
SS
1607 * @size: size of the boot memory block in bytes
1608 *
a2974133 1609 * This is only useful when the memblock allocator has already been torn
26f09e9b 1610 * down, but we are still initializing the system. Pages are released directly
a2974133 1611 * to the buddy allocator.
26f09e9b 1612 */
621d9739 1613void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
26f09e9b 1614{
a36aab89 1615 phys_addr_t cursor, end;
26f09e9b 1616
a36aab89 1617 end = base + size - 1;
d75f773c 1618 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1619 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1620 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1621 cursor = PFN_UP(base);
1622 end = PFN_DOWN(base + size);
1623
1624 for (; cursor < end; cursor++) {
7c2ee349 1625 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1626 totalram_pages_inc();
26f09e9b
SS
1627 }
1628}
9d1e2492
BH
1629
1630/*
1631 * Remaining API functions
1632 */
1633
1f1ffb8a 1634phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1635{
1440c4e2 1636 return memblock.memory.total_size;
95f72d1e
YL
1637}
1638
8907de5d
SD
1639phys_addr_t __init_memblock memblock_reserved_size(void)
1640{
1641 return memblock.reserved.total_size;
1642}
1643
0a93ebef
SR
1644/* lowest address */
1645phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1646{
1647 return memblock.memory.regions[0].base;
1648}
1649
10d06439 1650phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1651{
1652 int idx = memblock.memory.cnt - 1;
1653
e3239ff9 1654 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1655}
1656
a571d4eb 1657static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1658{
1c4bc43d 1659 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1660 struct memblock_region *r;
95f72d1e 1661
a571d4eb
DC
1662 /*
1663 * translate the memory @limit size into the max address within one of
1664 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1665 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1666 */
cc6de168 1667 for_each_mem_region(r) {
c0ce8fef
TH
1668 if (limit <= r->size) {
1669 max_addr = r->base + limit;
1670 break;
95f72d1e 1671 }
c0ce8fef 1672 limit -= r->size;
95f72d1e 1673 }
c0ce8fef 1674
a571d4eb
DC
1675 return max_addr;
1676}
1677
1678void __init memblock_enforce_memory_limit(phys_addr_t limit)
1679{
49aef717 1680 phys_addr_t max_addr;
a571d4eb
DC
1681
1682 if (!limit)
1683 return;
1684
1685 max_addr = __find_max_addr(limit);
1686
1687 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1688 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1689 return;
1690
c0ce8fef 1691 /* truncate both memory and reserved regions */
f1af9d3a 1692 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1693 PHYS_ADDR_MAX);
f1af9d3a 1694 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1695 PHYS_ADDR_MAX);
95f72d1e
YL
1696}
1697
c9ca9b4e
AT
1698void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1699{
1700 int start_rgn, end_rgn;
1701 int i, ret;
1702
1703 if (!size)
1704 return;
1705
5173ed72 1706 if (!memblock_memory->total_size) {
e888fa7b
GU
1707 pr_warn("%s: No memory registered yet\n", __func__);
1708 return;
1709 }
1710
c9ca9b4e
AT
1711 ret = memblock_isolate_range(&memblock.memory, base, size,
1712 &start_rgn, &end_rgn);
1713 if (ret)
1714 return;
1715
1716 /* remove all the MAP regions */
1717 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1718 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1719 memblock_remove_region(&memblock.memory, i);
1720
1721 for (i = start_rgn - 1; i >= 0; i--)
1722 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1723 memblock_remove_region(&memblock.memory, i);
1724
1725 /* truncate the reserved regions */
1726 memblock_remove_range(&memblock.reserved, 0, base);
1727 memblock_remove_range(&memblock.reserved,
1c4bc43d 1728 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1729}
1730
a571d4eb
DC
1731void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1732{
a571d4eb 1733 phys_addr_t max_addr;
a571d4eb
DC
1734
1735 if (!limit)
1736 return;
1737
1738 max_addr = __find_max_addr(limit);
1739
1740 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1741 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1742 return;
1743
c9ca9b4e 1744 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1745}
1746
cd79481d 1747static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1748{
1749 unsigned int left = 0, right = type->cnt;
1750
1751 do {
1752 unsigned int mid = (right + left) / 2;
1753
1754 if (addr < type->regions[mid].base)
1755 right = mid;
1756 else if (addr >= (type->regions[mid].base +
1757 type->regions[mid].size))
1758 left = mid + 1;
1759 else
1760 return mid;
1761 } while (left < right);
1762 return -1;
1763}
1764
f5a222dc 1765bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1766{
72d4b0b4
BH
1767 return memblock_search(&memblock.reserved, addr) != -1;
1768}
95f72d1e 1769
b4ad0c7e 1770bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1771{
1772 return memblock_search(&memblock.memory, addr) != -1;
1773}
1774
937f0c26 1775bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1776{
1777 int i = memblock_search(&memblock.memory, addr);
1778
1779 if (i == -1)
1780 return false;
1781 return !memblock_is_nomap(&memblock.memory.regions[i]);
1782}
1783
e76b63f8
YL
1784int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1785 unsigned long *start_pfn, unsigned long *end_pfn)
1786{
1787 struct memblock_type *type = &memblock.memory;
16763230 1788 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1789
1790 if (mid == -1)
1791 return -1;
1792
f7e2f7e8
FF
1793 *start_pfn = PFN_DOWN(type->regions[mid].base);
1794 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8 1795
d622abf7 1796 return memblock_get_region_node(&type->regions[mid]);
e76b63f8 1797}
e76b63f8 1798
eab30949
SB
1799/**
1800 * memblock_is_region_memory - check if a region is a subset of memory
1801 * @base: base of region to check
1802 * @size: size of region to check
1803 *
47cec443 1804 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1805 *
47cec443 1806 * Return:
eab30949
SB
1807 * 0 if false, non-zero if true
1808 */
937f0c26 1809bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1810{
abb65272 1811 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1812 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1813
1814 if (idx == -1)
937f0c26 1815 return false;
ef415ef4 1816 return (memblock.memory.regions[idx].base +
eb18f1b5 1817 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1818}
1819
eab30949
SB
1820/**
1821 * memblock_is_region_reserved - check if a region intersects reserved memory
1822 * @base: base of region to check
1823 * @size: size of region to check
1824 *
47cec443
MR
1825 * Check if the region [@base, @base + @size) intersects a reserved
1826 * memory block.
eab30949 1827 *
47cec443 1828 * Return:
c5c5c9d1 1829 * True if they intersect, false if not.
eab30949 1830 */
c5c5c9d1 1831bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1832{
c5c5c9d1 1833 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1834}
1835
6ede1fd3
YL
1836void __init_memblock memblock_trim_memory(phys_addr_t align)
1837{
6ede1fd3 1838 phys_addr_t start, end, orig_start, orig_end;
136199f0 1839 struct memblock_region *r;
6ede1fd3 1840
cc6de168 1841 for_each_mem_region(r) {
136199f0
EM
1842 orig_start = r->base;
1843 orig_end = r->base + r->size;
6ede1fd3
YL
1844 start = round_up(orig_start, align);
1845 end = round_down(orig_end, align);
1846
1847 if (start == orig_start && end == orig_end)
1848 continue;
1849
1850 if (start < end) {
136199f0
EM
1851 r->base = start;
1852 r->size = end - start;
6ede1fd3 1853 } else {
136199f0
EM
1854 memblock_remove_region(&memblock.memory,
1855 r - memblock.memory.regions);
1856 r--;
6ede1fd3
YL
1857 }
1858 }
1859}
e63075a3 1860
3661ca66 1861void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1862{
1863 memblock.current_limit = limit;
1864}
1865
fec51014
LA
1866phys_addr_t __init_memblock memblock_get_current_limit(void)
1867{
1868 return memblock.current_limit;
1869}
1870
0262d9c8 1871static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1872{
5d63f81c 1873 phys_addr_t base, end, size;
e1720fee 1874 enum memblock_flags flags;
8c9c1701
AK
1875 int idx;
1876 struct memblock_region *rgn;
6ed311b2 1877
0262d9c8 1878 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1879
66e8b438 1880 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1881 char nid_buf[32] = "";
1882
1883 base = rgn->base;
1884 size = rgn->size;
5d63f81c 1885 end = base + size - 1;
66a20757 1886 flags = rgn->flags;
a9ee6cf5 1887#ifdef CONFIG_NUMA
7c0caeb8
TH
1888 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1889 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1890 memblock_get_region_node(rgn));
1891#endif
e1720fee 1892 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1893 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1894 }
1895}
1896
87c55870 1897static void __init_memblock __memblock_dump_all(void)
6ed311b2 1898{
6ed311b2 1899 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1900 pr_info(" memory size = %pa reserved size = %pa\n",
1901 &memblock.memory.total_size,
1902 &memblock.reserved.total_size);
6ed311b2 1903
0262d9c8
HC
1904 memblock_dump(&memblock.memory);
1905 memblock_dump(&memblock.reserved);
409efd4c 1906#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 1907 memblock_dump(&physmem);
409efd4c 1908#endif
6ed311b2
BH
1909}
1910
87c55870
MR
1911void __init_memblock memblock_dump_all(void)
1912{
1913 if (memblock_debug)
1914 __memblock_dump_all();
1915}
1916
1aadc056 1917void __init memblock_allow_resize(void)
6ed311b2 1918{
142b45a7 1919 memblock_can_resize = 1;
6ed311b2
BH
1920}
1921
6ed311b2
BH
1922static int __init early_memblock(char *p)
1923{
1924 if (p && strstr(p, "debug"))
1925 memblock_debug = 1;
1926 return 0;
1927}
1928early_param("memblock", early_memblock);
1929
4f5b0c17
MR
1930static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1931{
1932 struct page *start_pg, *end_pg;
1933 phys_addr_t pg, pgend;
1934
1935 /*
1936 * Convert start_pfn/end_pfn to a struct page pointer.
1937 */
1938 start_pg = pfn_to_page(start_pfn - 1) + 1;
1939 end_pg = pfn_to_page(end_pfn - 1) + 1;
1940
1941 /*
1942 * Convert to physical addresses, and round start upwards and end
1943 * downwards.
1944 */
1945 pg = PAGE_ALIGN(__pa(start_pg));
1946 pgend = __pa(end_pg) & PAGE_MASK;
1947
1948 /*
1949 * If there are free pages between these, free the section of the
1950 * memmap array.
1951 */
1952 if (pg < pgend)
3ecc6834 1953 memblock_phys_free(pg, pgend - pg);
4f5b0c17
MR
1954}
1955
1956/*
1957 * The mem_map array can get very big. Free the unused area of the memory map.
1958 */
1959static void __init free_unused_memmap(void)
1960{
1961 unsigned long start, end, prev_end = 0;
1962 int i;
1963
1964 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1965 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1966 return;
1967
1968 /*
1969 * This relies on each bank being in address order.
1970 * The banks are sorted previously in bootmem_init().
1971 */
1972 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1973#ifdef CONFIG_SPARSEMEM
1974 /*
1975 * Take care not to free memmap entries that don't exist
1976 * due to SPARSEMEM sections which aren't present.
1977 */
1978 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 1979#endif
4f5b0c17 1980 /*
e2a86800
MR
1981 * Align down here since many operations in VM subsystem
1982 * presume that there are no holes in the memory map inside
1983 * a pageblock
4f5b0c17 1984 */
e2a86800 1985 start = round_down(start, pageblock_nr_pages);
4f5b0c17
MR
1986
1987 /*
1988 * If we had a previous bank, and there is a space
1989 * between the current bank and the previous, free it.
1990 */
1991 if (prev_end && prev_end < start)
1992 free_memmap(prev_end, start);
1993
1994 /*
e2a86800
MR
1995 * Align up here since many operations in VM subsystem
1996 * presume that there are no holes in the memory map inside
1997 * a pageblock
4f5b0c17 1998 */
e2a86800 1999 prev_end = ALIGN(end, pageblock_nr_pages);
4f5b0c17
MR
2000 }
2001
2002#ifdef CONFIG_SPARSEMEM
f921f53e
MR
2003 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2004 prev_end = ALIGN(end, pageblock_nr_pages);
4f5b0c17 2005 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 2006 }
4f5b0c17
MR
2007#endif
2008}
2009
bda49a81
MR
2010static void __init __free_pages_memory(unsigned long start, unsigned long end)
2011{
2012 int order;
2013
2014 while (start < end) {
2015 order = min(MAX_ORDER - 1UL, __ffs(start));
2016
2017 while (start + (1UL << order) > end)
2018 order--;
2019
2020 memblock_free_pages(pfn_to_page(start), start, order);
2021
2022 start += (1UL << order);
2023 }
2024}
2025
2026static unsigned long __init __free_memory_core(phys_addr_t start,
2027 phys_addr_t end)
2028{
2029 unsigned long start_pfn = PFN_UP(start);
2030 unsigned long end_pfn = min_t(unsigned long,
2031 PFN_DOWN(end), max_low_pfn);
2032
2033 if (start_pfn >= end_pfn)
2034 return 0;
2035
2036 __free_pages_memory(start_pfn, end_pfn);
2037
2038 return end_pfn - start_pfn;
2039}
2040
9092d4f7
MR
2041static void __init memmap_init_reserved_pages(void)
2042{
2043 struct memblock_region *region;
2044 phys_addr_t start, end;
2045 u64 i;
2046
2047 /* initialize struct pages for the reserved regions */
2048 for_each_reserved_mem_range(i, &start, &end)
2049 reserve_bootmem_region(start, end);
2050
2051 /* and also treat struct pages for the NOMAP regions as PageReserved */
2052 for_each_mem_region(region) {
2053 if (memblock_is_nomap(region)) {
2054 start = region->base;
2055 end = start + region->size;
2056 reserve_bootmem_region(start, end);
2057 }
2058 }
2059}
2060
bda49a81
MR
2061static unsigned long __init free_low_memory_core_early(void)
2062{
2063 unsigned long count = 0;
2064 phys_addr_t start, end;
2065 u64 i;
2066
2067 memblock_clear_hotplug(0, -1);
2068
9092d4f7 2069 memmap_init_reserved_pages();
bda49a81
MR
2070
2071 /*
2072 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2073 * because in some case like Node0 doesn't have RAM installed
2074 * low ram will be on Node1
2075 */
2076 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2077 NULL)
2078 count += __free_memory_core(start, end);
2079
2080 return count;
2081}
2082
2083static int reset_managed_pages_done __initdata;
2084
2085void reset_node_managed_pages(pg_data_t *pgdat)
2086{
2087 struct zone *z;
2088
2089 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2090 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2091}
2092
2093void __init reset_all_zones_managed_pages(void)
2094{
2095 struct pglist_data *pgdat;
2096
2097 if (reset_managed_pages_done)
2098 return;
2099
2100 for_each_online_pgdat(pgdat)
2101 reset_node_managed_pages(pgdat);
2102
2103 reset_managed_pages_done = 1;
2104}
2105
2106/**
2107 * memblock_free_all - release free pages to the buddy allocator
bda49a81 2108 */
097d43d8 2109void __init memblock_free_all(void)
bda49a81
MR
2110{
2111 unsigned long pages;
2112
4f5b0c17 2113 free_unused_memmap();
bda49a81
MR
2114 reset_all_zones_managed_pages();
2115
2116 pages = free_low_memory_core_early();
ca79b0c2 2117 totalram_pages_add(pages);
bda49a81
MR
2118}
2119
350e88ba 2120#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
6d03b885
BH
2121
2122static int memblock_debug_show(struct seq_file *m, void *private)
2123{
2124 struct memblock_type *type = m->private;
2125 struct memblock_region *reg;
2126 int i;
5d63f81c 2127 phys_addr_t end;
6d03b885
BH
2128
2129 for (i = 0; i < type->cnt; i++) {
2130 reg = &type->regions[i];
5d63f81c 2131 end = reg->base + reg->size - 1;
6d03b885 2132
5d63f81c
MC
2133 seq_printf(m, "%4d: ", i);
2134 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
2135 }
2136 return 0;
2137}
5ad35093 2138DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2139
2140static int __init memblock_init_debugfs(void)
2141{
2142 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2143
0825a6f9
JP
2144 debugfs_create_file("memory", 0444, root,
2145 &memblock.memory, &memblock_debug_fops);
2146 debugfs_create_file("reserved", 0444, root,
2147 &memblock.reserved, &memblock_debug_fops);
70210ed9 2148#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905
DH
2149 debugfs_create_file("physmem", 0444, root, &physmem,
2150 &memblock_debug_fops);
70210ed9 2151#endif
6d03b885
BH
2152
2153 return 0;
2154}
2155__initcall(memblock_init_debugfs);
2156
2157#endif /* CONFIG_DEBUG_FS */