mm, hwpoison: enable memory error handling on 1GB hugepage
[linux-block.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
450d0e74
ZG
32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34#endif
35
3e039c5c
MR
36/**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
77649905
DH
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
3e039c5c 54 *
9303c9d5 55 * Each region is represented by struct memblock_region that
3e039c5c 56 * defines the region extents, its attributes and NUMA node id on NUMA
1bf162e4
MCC
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
77649905 59 * the allocator metadata. The "memory" and "reserved" types are nicely
9303c9d5 60 * wrapped with struct memblock. This structure is statically
77649905 61 * initialized at build time. The region arrays are initially sized to
450d0e74
ZG
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
69 *
70 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
3e039c5c 77 *
a2974133
MR
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
6e5af9a8
C
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
a2974133 85 *
df1758d9 86 * Note, that both API variants use implicit assumptions about allowed
a2974133 87 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
3e039c5c 90 *
6e5af9a8
C
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
3e039c5c 93 *
6e5af9a8 94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
77649905
DH
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
3e039c5c
MR
97 */
98
a9ee6cf5 99#ifndef CONFIG_NUMA
bda49a81
MR
100struct pglist_data __refdata contig_page_data;
101EXPORT_SYMBOL(contig_page_data);
102#endif
103
104unsigned long max_low_pfn;
105unsigned long min_low_pfn;
106unsigned long max_pfn;
107unsigned long long max_possible_pfn;
108
450d0e74 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
8a5b403d 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
70210ed9 113#endif
fe091c20
TH
114
115struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
450d0e74 118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
0262d9c8 119 .memory.name = "memory",
fe091c20
TH
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 124 .reserved.name = "reserved",
fe091c20 125
79442ed1 126 .bottom_up = false,
fe091c20
TH
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128};
95f72d1e 129
77649905
DH
130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136};
137#endif
138
9f3d5eaa
MR
139/*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
cd991db8
MR
147#define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
87c55870
MR
152#define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158static int memblock_debug __initdata_memblock;
a3f5bafc 159static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 160static int memblock_can_resize __initdata_memblock;
181eb394
GS
161static int memblock_memory_in_slab __initdata_memblock = 0;
162static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 163
c366ea89 164static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
165{
166 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
167}
168
eb18f1b5
TH
169/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
170static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
171{
1c4bc43d 172 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
173}
174
6ed311b2
BH
175/*
176 * Address comparison utilities
177 */
10d06439 178static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 179 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
180{
181 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
182}
183
95cf82ec 184bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 185 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
186{
187 unsigned long i;
188
023accf5
MR
189 memblock_cap_size(base, &size);
190
f14516fb
AK
191 for (i = 0; i < type->cnt; i++)
192 if (memblock_addrs_overlap(base, size, type->regions[i].base,
193 type->regions[i].size))
6ed311b2 194 break;
c5c5c9d1 195 return i < type->cnt;
6ed311b2
BH
196}
197
47cec443 198/**
79442ed1
TC
199 * __memblock_find_range_bottom_up - find free area utility in bottom-up
200 * @start: start of candidate range
47cec443
MR
201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
202 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
203 * @size: size of free area to find
204 * @align: alignment of free area to find
b1154233 205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 206 * @flags: pick from blocks based on memory attributes
79442ed1
TC
207 *
208 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
209 *
47cec443 210 * Return:
79442ed1
TC
211 * Found address on success, 0 on failure.
212 */
213static phys_addr_t __init_memblock
214__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 215 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 216 enum memblock_flags flags)
79442ed1
TC
217{
218 phys_addr_t this_start, this_end, cand;
219 u64 i;
220
fc6daaf9 221 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
222 this_start = clamp(this_start, start, end);
223 this_end = clamp(this_end, start, end);
224
225 cand = round_up(this_start, align);
226 if (cand < this_end && this_end - cand >= size)
227 return cand;
228 }
229
230 return 0;
231}
232
7bd0b0f0 233/**
1402899e 234 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 235 * @start: start of candidate range
47cec443
MR
236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
237 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
238 * @size: size of free area to find
239 * @align: alignment of free area to find
b1154233 240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 241 * @flags: pick from blocks based on memory attributes
7bd0b0f0 242 *
1402899e 243 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 244 *
47cec443 245 * Return:
79442ed1 246 * Found address on success, 0 on failure.
6ed311b2 247 */
1402899e
TC
248static phys_addr_t __init_memblock
249__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 250 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 251 enum memblock_flags flags)
f7210e6c
TC
252{
253 phys_addr_t this_start, this_end, cand;
254 u64 i;
255
fc6daaf9
TL
256 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
257 NULL) {
f7210e6c
TC
258 this_start = clamp(this_start, start, end);
259 this_end = clamp(this_end, start, end);
260
261 if (this_end < size)
262 continue;
263
264 cand = round_down(this_end - size, align);
265 if (cand >= this_start)
266 return cand;
267 }
1402899e 268
f7210e6c
TC
269 return 0;
270}
6ed311b2 271
1402899e
TC
272/**
273 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
274 * @size: size of free area to find
275 * @align: alignment of free area to find
87029ee9 276 * @start: start of candidate range
47cec443
MR
277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
278 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 280 * @flags: pick from blocks based on memory attributes
1402899e
TC
281 *
282 * Find @size free area aligned to @align in the specified range and node.
283 *
47cec443 284 * Return:
79442ed1 285 * Found address on success, 0 on failure.
1402899e 286 */
c366ea89 287static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 288 phys_addr_t align, phys_addr_t start,
e1720fee
MR
289 phys_addr_t end, int nid,
290 enum memblock_flags flags)
1402899e
TC
291{
292 /* pump up @end */
fed84c78 293 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
c6975d7c 294 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
1402899e
TC
295 end = memblock.current_limit;
296
297 /* avoid allocating the first page */
298 start = max_t(phys_addr_t, start, PAGE_SIZE);
299 end = max(start, end);
300
2dcb3964
RG
301 if (memblock_bottom_up())
302 return __memblock_find_range_bottom_up(start, end, size, align,
303 nid, flags);
304 else
305 return __memblock_find_range_top_down(start, end, size, align,
306 nid, flags);
1402899e
TC
307}
308
7bd0b0f0
TH
309/**
310 * memblock_find_in_range - find free area in given range
311 * @start: start of candidate range
47cec443
MR
312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
313 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
314 * @size: size of free area to find
315 * @align: alignment of free area to find
316 *
317 * Find @size free area aligned to @align in the specified range.
318 *
47cec443 319 * Return:
79442ed1 320 * Found address on success, 0 on failure.
fc769a8e 321 */
a7259df7 322static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
7bd0b0f0
TH
323 phys_addr_t end, phys_addr_t size,
324 phys_addr_t align)
6ed311b2 325{
a3f5bafc 326 phys_addr_t ret;
e1720fee 327 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
328
329again:
330 ret = memblock_find_in_range_node(size, align, start, end,
331 NUMA_NO_NODE, flags);
332
333 if (!ret && (flags & MEMBLOCK_MIRROR)) {
14d9a675 334 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
a3f5bafc
TL
335 &size);
336 flags &= ~MEMBLOCK_MIRROR;
337 goto again;
338 }
339
340 return ret;
6ed311b2
BH
341}
342
10d06439 343static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 344{
1440c4e2 345 type->total_size -= type->regions[r].size;
7c0caeb8
TH
346 memmove(&type->regions[r], &type->regions[r + 1],
347 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 348 type->cnt--;
95f72d1e 349
8f7a6605
BH
350 /* Special case for empty arrays */
351 if (type->cnt == 0) {
1440c4e2 352 WARN_ON(type->total_size != 0);
8f7a6605
BH
353 type->cnt = 1;
354 type->regions[0].base = 0;
355 type->regions[0].size = 0;
66a20757 356 type->regions[0].flags = 0;
7c0caeb8 357 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 358 }
95f72d1e
YL
359}
360
350e88ba 361#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 362/**
47cec443 363 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
364 */
365void __init memblock_discard(void)
5e270e25 366{
3010f876 367 phys_addr_t addr, size;
5e270e25 368
3010f876
PT
369 if (memblock.reserved.regions != memblock_reserved_init_regions) {
370 addr = __pa(memblock.reserved.regions);
371 size = PAGE_ALIGN(sizeof(struct memblock_region) *
372 memblock.reserved.max);
c94afc46
ML
373 if (memblock_reserved_in_slab)
374 kfree(memblock.reserved.regions);
375 else
376 memblock_free_late(addr, size);
3010f876 377 }
5e270e25 378
91b540f9 379 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
380 addr = __pa(memblock.memory.regions);
381 size = PAGE_ALIGN(sizeof(struct memblock_region) *
382 memblock.memory.max);
c94afc46
ML
383 if (memblock_memory_in_slab)
384 kfree(memblock.memory.regions);
385 else
386 memblock_free_late(addr, size);
3010f876 387 }
9f3d5eaa
MR
388
389 memblock_memory = NULL;
5e270e25 390}
5e270e25
PH
391#endif
392
48c3b583
GP
393/**
394 * memblock_double_array - double the size of the memblock regions array
395 * @type: memblock type of the regions array being doubled
396 * @new_area_start: starting address of memory range to avoid overlap with
397 * @new_area_size: size of memory range to avoid overlap with
398 *
399 * Double the size of the @type regions array. If memblock is being used to
400 * allocate memory for a new reserved regions array and there is a previously
47cec443 401 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
402 * waiting to be reserved, ensure the memory used by the new array does
403 * not overlap.
404 *
47cec443 405 * Return:
48c3b583
GP
406 * 0 on success, -1 on failure.
407 */
408static int __init_memblock memblock_double_array(struct memblock_type *type,
409 phys_addr_t new_area_start,
410 phys_addr_t new_area_size)
142b45a7
BH
411{
412 struct memblock_region *new_array, *old_array;
29f67386 413 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 414 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 415 int use_slab = slab_is_available();
181eb394 416 int *in_slab;
142b45a7
BH
417
418 /* We don't allow resizing until we know about the reserved regions
419 * of memory that aren't suitable for allocation
420 */
421 if (!memblock_can_resize)
422 return -1;
423
142b45a7
BH
424 /* Calculate new doubled size */
425 old_size = type->max * sizeof(struct memblock_region);
426 new_size = old_size << 1;
29f67386
YL
427 /*
428 * We need to allocated new one align to PAGE_SIZE,
429 * so we can free them completely later.
430 */
431 old_alloc_size = PAGE_ALIGN(old_size);
432 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 433
181eb394
GS
434 /* Retrieve the slab flag */
435 if (type == &memblock.memory)
436 in_slab = &memblock_memory_in_slab;
437 else
438 in_slab = &memblock_reserved_in_slab;
439
a2974133 440 /* Try to find some space for it */
142b45a7
BH
441 if (use_slab) {
442 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 443 addr = new_array ? __pa(new_array) : 0;
4e2f0775 444 } else {
48c3b583
GP
445 /* only exclude range when trying to double reserved.regions */
446 if (type != &memblock.reserved)
447 new_area_start = new_area_size = 0;
448
449 addr = memblock_find_in_range(new_area_start + new_area_size,
450 memblock.current_limit,
29f67386 451 new_alloc_size, PAGE_SIZE);
48c3b583
GP
452 if (!addr && new_area_size)
453 addr = memblock_find_in_range(0,
fd07383b
AM
454 min(new_area_start, memblock.current_limit),
455 new_alloc_size, PAGE_SIZE);
48c3b583 456
15674868 457 new_array = addr ? __va(addr) : NULL;
4e2f0775 458 }
1f5026a7 459 if (!addr) {
142b45a7 460 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 461 type->name, type->max, type->max * 2);
142b45a7
BH
462 return -1;
463 }
142b45a7 464
a36aab89
MR
465 new_end = addr + new_size - 1;
466 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
467 type->name, type->max * 2, &addr, &new_end);
ea9e4376 468
fd07383b
AM
469 /*
470 * Found space, we now need to move the array over before we add the
471 * reserved region since it may be our reserved array itself that is
472 * full.
142b45a7
BH
473 */
474 memcpy(new_array, type->regions, old_size);
475 memset(new_array + type->max, 0, old_size);
476 old_array = type->regions;
477 type->regions = new_array;
478 type->max <<= 1;
479
fd07383b 480 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
481 if (*in_slab)
482 kfree(old_array);
483 else if (old_array != memblock_memory_init_regions &&
484 old_array != memblock_reserved_init_regions)
4421cca0 485 memblock_free(old_array, old_alloc_size);
142b45a7 486
fd07383b
AM
487 /*
488 * Reserve the new array if that comes from the memblock. Otherwise, we
489 * needn't do it
181eb394
GS
490 */
491 if (!use_slab)
29f67386 492 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
493
494 /* Update slab flag */
495 *in_slab = use_slab;
496
142b45a7
BH
497 return 0;
498}
499
784656f9
TH
500/**
501 * memblock_merge_regions - merge neighboring compatible regions
502 * @type: memblock type to scan
503 *
504 * Scan @type and merge neighboring compatible regions.
505 */
506static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 507{
784656f9 508 int i = 0;
95f72d1e 509
784656f9
TH
510 /* cnt never goes below 1 */
511 while (i < type->cnt - 1) {
512 struct memblock_region *this = &type->regions[i];
513 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 514
7c0caeb8
TH
515 if (this->base + this->size != next->base ||
516 memblock_get_region_node(this) !=
66a20757
TC
517 memblock_get_region_node(next) ||
518 this->flags != next->flags) {
784656f9
TH
519 BUG_ON(this->base + this->size > next->base);
520 i++;
521 continue;
8f7a6605
BH
522 }
523
784656f9 524 this->size += next->size;
c0232ae8
LF
525 /* move forward from next + 1, index of which is i + 2 */
526 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 527 type->cnt--;
95f72d1e 528 }
784656f9 529}
95f72d1e 530
784656f9
TH
531/**
532 * memblock_insert_region - insert new memblock region
209ff86d
TC
533 * @type: memblock type to insert into
534 * @idx: index for the insertion point
535 * @base: base address of the new region
536 * @size: size of the new region
537 * @nid: node id of the new region
66a20757 538 * @flags: flags of the new region
784656f9 539 *
47cec443 540 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 541 * @type must already have extra room to accommodate the new region.
784656f9
TH
542 */
543static void __init_memblock memblock_insert_region(struct memblock_type *type,
544 int idx, phys_addr_t base,
66a20757 545 phys_addr_t size,
e1720fee
MR
546 int nid,
547 enum memblock_flags flags)
784656f9
TH
548{
549 struct memblock_region *rgn = &type->regions[idx];
550
551 BUG_ON(type->cnt >= type->max);
552 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
553 rgn->base = base;
554 rgn->size = size;
66a20757 555 rgn->flags = flags;
7c0caeb8 556 memblock_set_region_node(rgn, nid);
784656f9 557 type->cnt++;
1440c4e2 558 type->total_size += size;
784656f9
TH
559}
560
561/**
f1af9d3a 562 * memblock_add_range - add new memblock region
784656f9
TH
563 * @type: memblock type to add new region into
564 * @base: base address of the new region
565 * @size: size of the new region
7fb0bc3f 566 * @nid: nid of the new region
66a20757 567 * @flags: flags of the new region
784656f9 568 *
47cec443 569 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
570 * is allowed to overlap with existing ones - overlaps don't affect already
571 * existing regions. @type is guaranteed to be minimal (all neighbouring
572 * compatible regions are merged) after the addition.
573 *
47cec443 574 * Return:
784656f9
TH
575 * 0 on success, -errno on failure.
576 */
02634a44 577static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 578 phys_addr_t base, phys_addr_t size,
e1720fee 579 int nid, enum memblock_flags flags)
784656f9
TH
580{
581 bool insert = false;
eb18f1b5
TH
582 phys_addr_t obase = base;
583 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
584 int idx, nr_new;
585 struct memblock_region *rgn;
784656f9 586
b3dc627c
TH
587 if (!size)
588 return 0;
589
784656f9
TH
590 /* special case for empty array */
591 if (type->regions[0].size == 0) {
1440c4e2 592 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
593 type->regions[0].base = base;
594 type->regions[0].size = size;
66a20757 595 type->regions[0].flags = flags;
7fb0bc3f 596 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 597 type->total_size = size;
8f7a6605 598 return 0;
95f72d1e 599 }
784656f9
TH
600repeat:
601 /*
602 * The following is executed twice. Once with %false @insert and
603 * then with %true. The first counts the number of regions needed
412d0008 604 * to accommodate the new area. The second actually inserts them.
142b45a7 605 */
784656f9
TH
606 base = obase;
607 nr_new = 0;
95f72d1e 608
66e8b438 609 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
610 phys_addr_t rbase = rgn->base;
611 phys_addr_t rend = rbase + rgn->size;
612
613 if (rbase >= end)
95f72d1e 614 break;
784656f9
TH
615 if (rend <= base)
616 continue;
617 /*
618 * @rgn overlaps. If it separates the lower part of new
619 * area, insert that portion.
620 */
621 if (rbase > base) {
a9ee6cf5 622#ifdef CONFIG_NUMA
c0a29498
WY
623 WARN_ON(nid != memblock_get_region_node(rgn));
624#endif
4fcab5f4 625 WARN_ON(flags != rgn->flags);
784656f9
TH
626 nr_new++;
627 if (insert)
8c9c1701 628 memblock_insert_region(type, idx++, base,
66a20757
TC
629 rbase - base, nid,
630 flags);
95f72d1e 631 }
784656f9
TH
632 /* area below @rend is dealt with, forget about it */
633 base = min(rend, end);
95f72d1e 634 }
784656f9
TH
635
636 /* insert the remaining portion */
637 if (base < end) {
638 nr_new++;
639 if (insert)
8c9c1701 640 memblock_insert_region(type, idx, base, end - base,
66a20757 641 nid, flags);
95f72d1e 642 }
95f72d1e 643
ef3cc4db 644 if (!nr_new)
645 return 0;
646
784656f9
TH
647 /*
648 * If this was the first round, resize array and repeat for actual
649 * insertions; otherwise, merge and return.
142b45a7 650 */
784656f9
TH
651 if (!insert) {
652 while (type->cnt + nr_new > type->max)
48c3b583 653 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
654 return -ENOMEM;
655 insert = true;
656 goto repeat;
657 } else {
658 memblock_merge_regions(type);
659 return 0;
142b45a7 660 }
95f72d1e
YL
661}
662
48a833cc
MR
663/**
664 * memblock_add_node - add new memblock region within a NUMA node
665 * @base: base address of the new region
666 * @size: size of the new region
667 * @nid: nid of the new region
952eea9b 668 * @flags: flags of the new region
48a833cc
MR
669 *
670 * Add new memblock region [@base, @base + @size) to the "memory"
671 * type. See memblock_add_range() description for mode details
672 *
673 * Return:
674 * 0 on success, -errno on failure.
675 */
7fb0bc3f 676int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
952eea9b 677 int nid, enum memblock_flags flags)
7fb0bc3f 678{
00974b9a
GU
679 phys_addr_t end = base + size - 1;
680
952eea9b
DH
681 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
682 &base, &end, nid, flags, (void *)_RET_IP_);
00974b9a 683
952eea9b 684 return memblock_add_range(&memblock.memory, base, size, nid, flags);
7fb0bc3f
TH
685}
686
48a833cc
MR
687/**
688 * memblock_add - add new memblock region
689 * @base: base address of the new region
690 * @size: size of the new region
691 *
692 * Add new memblock region [@base, @base + @size) to the "memory"
693 * type. See memblock_add_range() description for mode details
694 *
695 * Return:
696 * 0 on success, -errno on failure.
697 */
f705ac4b 698int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 699{
5d63f81c
MC
700 phys_addr_t end = base + size - 1;
701
a090d711 702 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 703 &base, &end, (void *)_RET_IP_);
6a4055bc 704
f705ac4b 705 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
706}
707
6a9ceb31
TH
708/**
709 * memblock_isolate_range - isolate given range into disjoint memblocks
710 * @type: memblock type to isolate range for
711 * @base: base of range to isolate
712 * @size: size of range to isolate
713 * @start_rgn: out parameter for the start of isolated region
714 * @end_rgn: out parameter for the end of isolated region
715 *
716 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 717 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
718 * which may create at most two more regions. The index of the first
719 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
720 *
47cec443 721 * Return:
6a9ceb31
TH
722 * 0 on success, -errno on failure.
723 */
724static int __init_memblock memblock_isolate_range(struct memblock_type *type,
725 phys_addr_t base, phys_addr_t size,
726 int *start_rgn, int *end_rgn)
727{
eb18f1b5 728 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
729 int idx;
730 struct memblock_region *rgn;
6a9ceb31
TH
731
732 *start_rgn = *end_rgn = 0;
733
b3dc627c
TH
734 if (!size)
735 return 0;
736
6a9ceb31
TH
737 /* we'll create at most two more regions */
738 while (type->cnt + 2 > type->max)
48c3b583 739 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
740 return -ENOMEM;
741
66e8b438 742 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
743 phys_addr_t rbase = rgn->base;
744 phys_addr_t rend = rbase + rgn->size;
745
746 if (rbase >= end)
747 break;
748 if (rend <= base)
749 continue;
750
751 if (rbase < base) {
752 /*
753 * @rgn intersects from below. Split and continue
754 * to process the next region - the new top half.
755 */
756 rgn->base = base;
1440c4e2
TH
757 rgn->size -= base - rbase;
758 type->total_size -= base - rbase;
8c9c1701 759 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
760 memblock_get_region_node(rgn),
761 rgn->flags);
6a9ceb31
TH
762 } else if (rend > end) {
763 /*
764 * @rgn intersects from above. Split and redo the
765 * current region - the new bottom half.
766 */
767 rgn->base = end;
1440c4e2
TH
768 rgn->size -= end - rbase;
769 type->total_size -= end - rbase;
8c9c1701 770 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
771 memblock_get_region_node(rgn),
772 rgn->flags);
6a9ceb31
TH
773 } else {
774 /* @rgn is fully contained, record it */
775 if (!*end_rgn)
8c9c1701
AK
776 *start_rgn = idx;
777 *end_rgn = idx + 1;
6a9ceb31
TH
778 }
779 }
780
781 return 0;
782}
6a9ceb31 783
35bd16a2 784static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 785 phys_addr_t base, phys_addr_t size)
95f72d1e 786{
71936180
TH
787 int start_rgn, end_rgn;
788 int i, ret;
95f72d1e 789
71936180
TH
790 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
791 if (ret)
792 return ret;
95f72d1e 793
71936180
TH
794 for (i = end_rgn - 1; i >= start_rgn; i--)
795 memblock_remove_region(type, i);
8f7a6605 796 return 0;
95f72d1e
YL
797}
798
581adcbe 799int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 800{
25cf23d7
MK
801 phys_addr_t end = base + size - 1;
802
a090d711 803 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
804 &base, &end, (void *)_RET_IP_);
805
f1af9d3a 806 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
807}
808
77e02cf5 809/**
4421cca0 810 * memblock_free - free boot memory allocation
77e02cf5
LT
811 * @ptr: starting address of the boot memory allocation
812 * @size: size of the boot memory block in bytes
813 *
814 * Free boot memory block previously allocated by memblock_alloc_xx() API.
815 * The freeing memory will not be released to the buddy allocator.
816 */
4421cca0 817void __init_memblock memblock_free(void *ptr, size_t size)
77e02cf5
LT
818{
819 if (ptr)
3ecc6834 820 memblock_phys_free(__pa(ptr), size);
77e02cf5
LT
821}
822
4d72868c 823/**
3ecc6834 824 * memblock_phys_free - free boot memory block
4d72868c
MR
825 * @base: phys starting address of the boot memory block
826 * @size: size of the boot memory block in bytes
827 *
828 * Free boot memory block previously allocated by memblock_alloc_xx() API.
829 * The freeing memory will not be released to the buddy allocator.
830 */
3ecc6834 831int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
95f72d1e 832{
5d63f81c
MC
833 phys_addr_t end = base + size - 1;
834
a090d711 835 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 836 &base, &end, (void *)_RET_IP_);
24aa0788 837
9099daed 838 kmemleak_free_part_phys(base, size);
f1af9d3a 839 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
840}
841
f705ac4b 842int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 843{
5d63f81c
MC
844 phys_addr_t end = base + size - 1;
845
a090d711 846 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 847 &base, &end, (void *)_RET_IP_);
95f72d1e 848
f705ac4b 849 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
850}
851
02634a44
AK
852#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
853int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
854{
855 phys_addr_t end = base + size - 1;
856
857 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
858 &base, &end, (void *)_RET_IP_);
859
77649905 860 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
02634a44
AK
861}
862#endif
863
66b16edf 864/**
47cec443
MR
865 * memblock_setclr_flag - set or clear flag for a memory region
866 * @base: base address of the region
867 * @size: size of the region
868 * @set: set or clear the flag
8958b249 869 * @flag: the flag to update
66b16edf 870 *
4308ce17 871 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 872 *
47cec443 873 * Return: 0 on success, -errno on failure.
66b16edf 874 */
4308ce17
TL
875static int __init_memblock memblock_setclr_flag(phys_addr_t base,
876 phys_addr_t size, int set, int flag)
66b16edf
TC
877{
878 struct memblock_type *type = &memblock.memory;
879 int i, ret, start_rgn, end_rgn;
880
881 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
882 if (ret)
883 return ret;
884
fe145124
MR
885 for (i = start_rgn; i < end_rgn; i++) {
886 struct memblock_region *r = &type->regions[i];
887
4308ce17 888 if (set)
fe145124 889 r->flags |= flag;
4308ce17 890 else
fe145124
MR
891 r->flags &= ~flag;
892 }
66b16edf
TC
893
894 memblock_merge_regions(type);
895 return 0;
896}
897
898/**
4308ce17 899 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
900 * @base: the base phys addr of the region
901 * @size: the size of the region
902 *
47cec443 903 * Return: 0 on success, -errno on failure.
4308ce17
TL
904 */
905int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
906{
907 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
908}
909
910/**
911 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
912 * @base: the base phys addr of the region
913 * @size: the size of the region
66b16edf 914 *
47cec443 915 * Return: 0 on success, -errno on failure.
66b16edf
TC
916 */
917int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
918{
4308ce17 919 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
920}
921
a3f5bafc
TL
922/**
923 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
924 * @base: the base phys addr of the region
925 * @size: the size of the region
926 *
47cec443 927 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
928 */
929int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
930{
902c2d91
MW
931 if (!mirrored_kernelcore)
932 return 0;
933
a3f5bafc
TL
934 system_has_some_mirror = true;
935
936 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
937}
938
bf3d3cc5
AB
939/**
940 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
941 * @base: the base phys addr of the region
942 * @size: the size of the region
943 *
9092d4f7
MR
944 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
945 * direct mapping of the physical memory. These regions will still be
946 * covered by the memory map. The struct page representing NOMAP memory
947 * frames in the memory map will be PageReserved()
948 *
658aafc8
MR
949 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
950 * memblock, the caller must inform kmemleak to ignore that memory
951 *
47cec443 952 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
953 */
954int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
955{
6c9a5455 956 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
bf3d3cc5 957}
a3f5bafc 958
4c546b8a
AT
959/**
960 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
961 * @base: the base phys addr of the region
962 * @size: the size of the region
963 *
47cec443 964 * Return: 0 on success, -errno on failure.
4c546b8a
AT
965 */
966int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
967{
968 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
969}
970
9f3d5eaa
MR
971static bool should_skip_region(struct memblock_type *type,
972 struct memblock_region *m,
973 int nid, int flags)
c9a688a3
MR
974{
975 int m_nid = memblock_get_region_node(m);
976
9f3d5eaa
MR
977 /* we never skip regions when iterating memblock.reserved or physmem */
978 if (type != memblock_memory)
979 return false;
980
c9a688a3
MR
981 /* only memory regions are associated with nodes, check it */
982 if (nid != NUMA_NO_NODE && nid != m_nid)
983 return true;
984
985 /* skip hotpluggable memory regions if needed */
79e482e9
MR
986 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
987 !(flags & MEMBLOCK_HOTPLUG))
c9a688a3
MR
988 return true;
989
990 /* if we want mirror memory skip non-mirror memory regions */
991 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
992 return true;
993
994 /* skip nomap memory unless we were asked for it explicitly */
995 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
996 return true;
997
f7892d8e
DH
998 /* skip driver-managed memory unless we were asked for it explicitly */
999 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1000 return true;
1001
c9a688a3
MR
1002 return false;
1003}
1004
35fd0808 1005/**
a2974133 1006 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 1007 * @idx: pointer to u64 loop variable
b1154233 1008 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1009 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1010 * @type_a: pointer to memblock_type from where the range is taken
1011 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1012 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1013 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1014 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 1015 *
f1af9d3a 1016 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 1017 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
1018 * *@idx contains index into type_a and the upper 32bit indexes the
1019 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
1020 * look like the following,
1021 *
1022 * 0:[0-16), 1:[32-48), 2:[128-130)
1023 *
1024 * The upper 32bit indexes the following regions.
1025 *
1026 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1027 *
1028 * As both region arrays are sorted, the function advances the two indices
1029 * in lockstep and returns each intersection.
1030 */
77649905
DH
1031void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1032 struct memblock_type *type_a,
1033 struct memblock_type *type_b, phys_addr_t *out_start,
1034 phys_addr_t *out_end, int *out_nid)
35fd0808 1035{
f1af9d3a
PH
1036 int idx_a = *idx & 0xffffffff;
1037 int idx_b = *idx >> 32;
b1154233 1038
f1af9d3a
PH
1039 if (WARN_ONCE(nid == MAX_NUMNODES,
1040 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 1041 nid = NUMA_NO_NODE;
35fd0808 1042
f1af9d3a
PH
1043 for (; idx_a < type_a->cnt; idx_a++) {
1044 struct memblock_region *m = &type_a->regions[idx_a];
1045
35fd0808
TH
1046 phys_addr_t m_start = m->base;
1047 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1048 int m_nid = memblock_get_region_node(m);
35fd0808 1049
9f3d5eaa 1050 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1051 continue;
1052
f1af9d3a
PH
1053 if (!type_b) {
1054 if (out_start)
1055 *out_start = m_start;
1056 if (out_end)
1057 *out_end = m_end;
1058 if (out_nid)
1059 *out_nid = m_nid;
1060 idx_a++;
1061 *idx = (u32)idx_a | (u64)idx_b << 32;
1062 return;
1063 }
1064
1065 /* scan areas before each reservation */
1066 for (; idx_b < type_b->cnt + 1; idx_b++) {
1067 struct memblock_region *r;
1068 phys_addr_t r_start;
1069 phys_addr_t r_end;
1070
1071 r = &type_b->regions[idx_b];
1072 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1073 r_end = idx_b < type_b->cnt ?
1c4bc43d 1074 r->base : PHYS_ADDR_MAX;
35fd0808 1075
f1af9d3a
PH
1076 /*
1077 * if idx_b advanced past idx_a,
1078 * break out to advance idx_a
1079 */
35fd0808
TH
1080 if (r_start >= m_end)
1081 break;
1082 /* if the two regions intersect, we're done */
1083 if (m_start < r_end) {
1084 if (out_start)
f1af9d3a
PH
1085 *out_start =
1086 max(m_start, r_start);
35fd0808
TH
1087 if (out_end)
1088 *out_end = min(m_end, r_end);
1089 if (out_nid)
f1af9d3a 1090 *out_nid = m_nid;
35fd0808 1091 /*
f1af9d3a
PH
1092 * The region which ends first is
1093 * advanced for the next iteration.
35fd0808
TH
1094 */
1095 if (m_end <= r_end)
f1af9d3a 1096 idx_a++;
35fd0808 1097 else
f1af9d3a
PH
1098 idx_b++;
1099 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1100 return;
1101 }
1102 }
1103 }
1104
1105 /* signal end of iteration */
1106 *idx = ULLONG_MAX;
1107}
1108
7bd0b0f0 1109/**
f1af9d3a
PH
1110 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1111 *
7bd0b0f0 1112 * @idx: pointer to u64 loop variable
ad5ea8cd 1113 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1114 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1115 * @type_a: pointer to memblock_type from where the range is taken
1116 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1117 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1118 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1119 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1120 *
47cec443
MR
1121 * Finds the next range from type_a which is not marked as unsuitable
1122 * in type_b.
1123 *
f1af9d3a 1124 * Reverse of __next_mem_range().
7bd0b0f0 1125 */
e1720fee
MR
1126void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1127 enum memblock_flags flags,
f1af9d3a
PH
1128 struct memblock_type *type_a,
1129 struct memblock_type *type_b,
1130 phys_addr_t *out_start,
1131 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1132{
f1af9d3a
PH
1133 int idx_a = *idx & 0xffffffff;
1134 int idx_b = *idx >> 32;
b1154233 1135
560dca27
GS
1136 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1137 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1138
1139 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1140 idx_a = type_a->cnt - 1;
e47608ab 1141 if (type_b != NULL)
1142 idx_b = type_b->cnt;
1143 else
1144 idx_b = 0;
7bd0b0f0
TH
1145 }
1146
f1af9d3a
PH
1147 for (; idx_a >= 0; idx_a--) {
1148 struct memblock_region *m = &type_a->regions[idx_a];
1149
7bd0b0f0
TH
1150 phys_addr_t m_start = m->base;
1151 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1152 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1153
9f3d5eaa 1154 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1155 continue;
1156
f1af9d3a
PH
1157 if (!type_b) {
1158 if (out_start)
1159 *out_start = m_start;
1160 if (out_end)
1161 *out_end = m_end;
1162 if (out_nid)
1163 *out_nid = m_nid;
fb399b48 1164 idx_a--;
f1af9d3a
PH
1165 *idx = (u32)idx_a | (u64)idx_b << 32;
1166 return;
1167 }
1168
1169 /* scan areas before each reservation */
1170 for (; idx_b >= 0; idx_b--) {
1171 struct memblock_region *r;
1172 phys_addr_t r_start;
1173 phys_addr_t r_end;
1174
1175 r = &type_b->regions[idx_b];
1176 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1177 r_end = idx_b < type_b->cnt ?
1c4bc43d 1178 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1179 /*
1180 * if idx_b advanced past idx_a,
1181 * break out to advance idx_a
1182 */
7bd0b0f0 1183
7bd0b0f0
TH
1184 if (r_end <= m_start)
1185 break;
1186 /* if the two regions intersect, we're done */
1187 if (m_end > r_start) {
1188 if (out_start)
1189 *out_start = max(m_start, r_start);
1190 if (out_end)
1191 *out_end = min(m_end, r_end);
1192 if (out_nid)
f1af9d3a 1193 *out_nid = m_nid;
7bd0b0f0 1194 if (m_start >= r_start)
f1af9d3a 1195 idx_a--;
7bd0b0f0 1196 else
f1af9d3a
PH
1197 idx_b--;
1198 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1199 return;
1200 }
1201 }
1202 }
f1af9d3a 1203 /* signal end of iteration */
7bd0b0f0
TH
1204 *idx = ULLONG_MAX;
1205}
1206
7c0caeb8 1207/*
45e79815 1208 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1209 */
1210void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1211 unsigned long *out_start_pfn,
1212 unsigned long *out_end_pfn, int *out_nid)
1213{
1214 struct memblock_type *type = &memblock.memory;
1215 struct memblock_region *r;
d622abf7 1216 int r_nid;
7c0caeb8
TH
1217
1218 while (++*idx < type->cnt) {
1219 r = &type->regions[*idx];
d622abf7 1220 r_nid = memblock_get_region_node(r);
7c0caeb8
TH
1221
1222 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1223 continue;
d622abf7 1224 if (nid == MAX_NUMNODES || nid == r_nid)
7c0caeb8
TH
1225 break;
1226 }
1227 if (*idx >= type->cnt) {
1228 *idx = -1;
1229 return;
1230 }
1231
1232 if (out_start_pfn)
1233 *out_start_pfn = PFN_UP(r->base);
1234 if (out_end_pfn)
1235 *out_end_pfn = PFN_DOWN(r->base + r->size);
1236 if (out_nid)
d622abf7 1237 *out_nid = r_nid;
7c0caeb8
TH
1238}
1239
1240/**
1241 * memblock_set_node - set node ID on memblock regions
1242 * @base: base of area to set node ID for
1243 * @size: size of area to set node ID for
e7e8de59 1244 * @type: memblock type to set node ID for
7c0caeb8
TH
1245 * @nid: node ID to set
1246 *
47cec443 1247 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1248 * Regions which cross the area boundaries are split as necessary.
1249 *
47cec443 1250 * Return:
7c0caeb8
TH
1251 * 0 on success, -errno on failure.
1252 */
1253int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1254 struct memblock_type *type, int nid)
7c0caeb8 1255{
a9ee6cf5 1256#ifdef CONFIG_NUMA
6a9ceb31
TH
1257 int start_rgn, end_rgn;
1258 int i, ret;
7c0caeb8 1259
6a9ceb31
TH
1260 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1261 if (ret)
1262 return ret;
7c0caeb8 1263
6a9ceb31 1264 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1265 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1266
1267 memblock_merge_regions(type);
3f08a302 1268#endif
7c0caeb8
TH
1269 return 0;
1270}
3f08a302 1271
837566e7
AD
1272#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1273/**
1274 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1275 *
1276 * @idx: pointer to u64 loop variable
1277 * @zone: zone in which all of the memory blocks reside
1278 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1279 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1280 *
1281 * This function is meant to be a zone/pfn specific wrapper for the
1282 * for_each_mem_range type iterators. Specifically they are used in the
1283 * deferred memory init routines and as such we were duplicating much of
1284 * this logic throughout the code. So instead of having it in multiple
1285 * locations it seemed like it would make more sense to centralize this to
1286 * one new iterator that does everything they need.
1287 */
1288void __init_memblock
1289__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1290 unsigned long *out_spfn, unsigned long *out_epfn)
1291{
1292 int zone_nid = zone_to_nid(zone);
1293 phys_addr_t spa, epa;
837566e7
AD
1294
1295 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1296 &memblock.memory, &memblock.reserved,
f30b002c 1297 &spa, &epa, NULL);
837566e7
AD
1298
1299 while (*idx != U64_MAX) {
1300 unsigned long epfn = PFN_DOWN(epa);
1301 unsigned long spfn = PFN_UP(spa);
1302
1303 /*
1304 * Verify the end is at least past the start of the zone and
1305 * that we have at least one PFN to initialize.
1306 */
1307 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1308 /* if we went too far just stop searching */
1309 if (zone_end_pfn(zone) <= spfn) {
1310 *idx = U64_MAX;
1311 break;
1312 }
1313
1314 if (out_spfn)
1315 *out_spfn = max(zone->zone_start_pfn, spfn);
1316 if (out_epfn)
1317 *out_epfn = min(zone_end_pfn(zone), epfn);
1318
1319 return;
1320 }
1321
1322 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1323 &memblock.memory, &memblock.reserved,
f30b002c 1324 &spa, &epa, NULL);
837566e7
AD
1325 }
1326
1327 /* signal end of iteration */
1328 if (out_spfn)
1329 *out_spfn = ULONG_MAX;
1330 if (out_epfn)
1331 *out_epfn = 0;
1332}
1333
1334#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1335
92d12f95
MR
1336/**
1337 * memblock_alloc_range_nid - allocate boot memory block
1338 * @size: size of memory block to be allocated in bytes
1339 * @align: alignment of the region and block's size
1340 * @start: the lower bound of the memory region to allocate (phys address)
1341 * @end: the upper bound of the memory region to allocate (phys address)
1342 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1343 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1344 *
1345 * The allocation is performed from memory region limited by
95830666 1346 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1347 *
0ac398b1
YY
1348 * If the specified node can not hold the requested memory and @exact_nid
1349 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1350 *
1351 * For systems with memory mirroring, the allocation is attempted first
1352 * from the regions with mirroring enabled and then retried from any
1353 * memory region.
1354 *
c200d900
PW
1355 * In addition, function using kmemleak_alloc_phys for allocated boot
1356 * memory block, it is never reported as leaks.
92d12f95
MR
1357 *
1358 * Return:
1359 * Physical address of allocated memory block on success, %0 on failure.
1360 */
8676af1f 1361phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
2bfc2862 1362 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1363 phys_addr_t end, int nid,
1364 bool exact_nid)
95f72d1e 1365{
92d12f95 1366 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1367 phys_addr_t found;
95f72d1e 1368
92d12f95
MR
1369 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1370 nid = NUMA_NO_NODE;
1371
2f770806
MR
1372 if (!align) {
1373 /* Can't use WARNs this early in boot on powerpc */
1374 dump_stack();
1375 align = SMP_CACHE_BYTES;
1376 }
1377
92d12f95 1378again:
fc6daaf9
TL
1379 found = memblock_find_in_range_node(size, align, start, end, nid,
1380 flags);
92d12f95
MR
1381 if (found && !memblock_reserve(found, size))
1382 goto done;
1383
0ac398b1 1384 if (nid != NUMA_NO_NODE && !exact_nid) {
92d12f95
MR
1385 found = memblock_find_in_range_node(size, align, start,
1386 end, NUMA_NO_NODE,
1387 flags);
1388 if (found && !memblock_reserve(found, size))
1389 goto done;
1390 }
1391
1392 if (flags & MEMBLOCK_MIRROR) {
1393 flags &= ~MEMBLOCK_MIRROR;
14d9a675 1394 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
92d12f95
MR
1395 &size);
1396 goto again;
1397 }
1398
1399 return 0;
1400
1401done:
c6975d7c
QC
1402 /*
1403 * Skip kmemleak for those places like kasan_init() and
1404 * early_pgtable_alloc() due to high volume.
1405 */
1406 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
aedf95ea 1407 /*
c200d900
PW
1408 * Memblock allocated blocks are never reported as
1409 * leaks. This is because many of these blocks are
1410 * only referred via the physical address which is
1411 * not looked up by kmemleak.
aedf95ea 1412 */
c200d900 1413 kmemleak_alloc_phys(found, size, 0);
92d12f95
MR
1414
1415 return found;
95f72d1e
YL
1416}
1417
a2974133
MR
1418/**
1419 * memblock_phys_alloc_range - allocate a memory block inside specified range
1420 * @size: size of memory block to be allocated in bytes
1421 * @align: alignment of the region and block's size
1422 * @start: the lower bound of the memory region to allocate (physical address)
1423 * @end: the upper bound of the memory region to allocate (physical address)
1424 *
1425 * Allocate @size bytes in the between @start and @end.
1426 *
1427 * Return: physical address of the allocated memory block on success,
1428 * %0 on failure.
1429 */
8a770c2a
MR
1430phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1431 phys_addr_t align,
1432 phys_addr_t start,
1433 phys_addr_t end)
2bfc2862 1434{
b5cf2d6c
FM
1435 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1436 __func__, (u64)size, (u64)align, &start, &end,
1437 (void *)_RET_IP_);
0ac398b1
YY
1438 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1439 false);
7bd0b0f0
TH
1440}
1441
a2974133 1442/**
17cbe038 1443 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
a2974133
MR
1444 * @size: size of memory block to be allocated in bytes
1445 * @align: alignment of the region and block's size
1446 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1447 *
1448 * Allocates memory block from the specified NUMA node. If the node
1449 * has no available memory, attempts to allocated from any node in the
1450 * system.
1451 *
1452 * Return: physical address of the allocated memory block on success,
1453 * %0 on failure.
1454 */
9a8dd708 1455phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1456{
33755574 1457 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1458 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1459}
1460
26f09e9b 1461/**
eb31d559 1462 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1463 * @size: size of memory block to be allocated in bytes
1464 * @align: alignment of the region and block's size
1465 * @min_addr: the lower bound of the memory region to allocate (phys address)
1466 * @max_addr: the upper bound of the memory region to allocate (phys address)
1467 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1468 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1469 *
92d12f95
MR
1470 * Allocates memory block using memblock_alloc_range_nid() and
1471 * converts the returned physical address to virtual.
26f09e9b 1472 *
92d12f95
MR
1473 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1474 * will fall back to memory below @min_addr. Other constraints, such
1475 * as node and mirrored memory will be handled again in
1476 * memblock_alloc_range_nid().
26f09e9b 1477 *
47cec443 1478 * Return:
26f09e9b
SS
1479 * Virtual address of allocated memory block on success, NULL on failure.
1480 */
eb31d559 1481static void * __init memblock_alloc_internal(
26f09e9b
SS
1482 phys_addr_t size, phys_addr_t align,
1483 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1484 int nid, bool exact_nid)
26f09e9b
SS
1485{
1486 phys_addr_t alloc;
26f09e9b
SS
1487
1488 /*
1489 * Detect any accidental use of these APIs after slab is ready, as at
1490 * this moment memblock may be deinitialized already and its
c6ffc5ca 1491 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1492 */
1493 if (WARN_ON_ONCE(slab_is_available()))
1494 return kzalloc_node(size, GFP_NOWAIT, nid);
1495
f3057ad7
MR
1496 if (max_addr > memblock.current_limit)
1497 max_addr = memblock.current_limit;
1498
0ac398b1
YY
1499 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1500 exact_nid);
26f09e9b 1501
92d12f95
MR
1502 /* retry allocation without lower limit */
1503 if (!alloc && min_addr)
0ac398b1
YY
1504 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1505 exact_nid);
26f09e9b 1506
92d12f95
MR
1507 if (!alloc)
1508 return NULL;
26f09e9b 1509
92d12f95 1510 return phys_to_virt(alloc);
26f09e9b
SS
1511}
1512
0ac398b1
YY
1513/**
1514 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1515 * without zeroing memory
1516 * @size: size of memory block to be allocated in bytes
1517 * @align: alignment of the region and block's size
1518 * @min_addr: the lower bound of the memory region from where the allocation
1519 * is preferred (phys address)
1520 * @max_addr: the upper bound of the memory region from where the allocation
1521 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1522 * allocate only from memory limited by memblock.current_limit value
1523 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1524 *
1525 * Public function, provides additional debug information (including caller
1526 * info), if enabled. Does not zero allocated memory.
1527 *
1528 * Return:
1529 * Virtual address of allocated memory block on success, NULL on failure.
1530 */
1531void * __init memblock_alloc_exact_nid_raw(
1532 phys_addr_t size, phys_addr_t align,
1533 phys_addr_t min_addr, phys_addr_t max_addr,
1534 int nid)
1535{
0ac398b1
YY
1536 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1537 __func__, (u64)size, (u64)align, nid, &min_addr,
1538 &max_addr, (void *)_RET_IP_);
1539
08678804
MR
1540 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1541 true);
0ac398b1
YY
1542}
1543
ea1f5f37 1544/**
eb31d559 1545 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1546 * memory and without panicking
1547 * @size: size of memory block to be allocated in bytes
1548 * @align: alignment of the region and block's size
1549 * @min_addr: the lower bound of the memory region from where the allocation
1550 * is preferred (phys address)
1551 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1552 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1553 * allocate only from memory limited by memblock.current_limit value
1554 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1555 *
1556 * Public function, provides additional debug information (including caller
1557 * info), if enabled. Does not zero allocated memory, does not panic if request
1558 * cannot be satisfied.
1559 *
47cec443 1560 * Return:
ea1f5f37
PT
1561 * Virtual address of allocated memory block on success, NULL on failure.
1562 */
eb31d559 1563void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1564 phys_addr_t size, phys_addr_t align,
1565 phys_addr_t min_addr, phys_addr_t max_addr,
1566 int nid)
1567{
d75f773c 1568 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1569 __func__, (u64)size, (u64)align, nid, &min_addr,
1570 &max_addr, (void *)_RET_IP_);
ea1f5f37 1571
08678804
MR
1572 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1573 false);
ea1f5f37
PT
1574}
1575
26f09e9b 1576/**
c0dbe825 1577 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1578 * @size: size of memory block to be allocated in bytes
1579 * @align: alignment of the region and block's size
1580 * @min_addr: the lower bound of the memory region from where the allocation
1581 * is preferred (phys address)
1582 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1583 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1584 * allocate only from memory limited by memblock.current_limit value
1585 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1586 *
c0dbe825
MR
1587 * Public function, provides additional debug information (including caller
1588 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1589 *
47cec443 1590 * Return:
26f09e9b
SS
1591 * Virtual address of allocated memory block on success, NULL on failure.
1592 */
eb31d559 1593void * __init memblock_alloc_try_nid(
26f09e9b
SS
1594 phys_addr_t size, phys_addr_t align,
1595 phys_addr_t min_addr, phys_addr_t max_addr,
1596 int nid)
1597{
1598 void *ptr;
1599
d75f773c 1600 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1601 __func__, (u64)size, (u64)align, nid, &min_addr,
1602 &max_addr, (void *)_RET_IP_);
eb31d559 1603 ptr = memblock_alloc_internal(size, align,
0ac398b1 1604 min_addr, max_addr, nid, false);
c0dbe825 1605 if (ptr)
ea1f5f37 1606 memset(ptr, 0, size);
26f09e9b 1607
c0dbe825 1608 return ptr;
26f09e9b
SS
1609}
1610
48a833cc 1611/**
621d9739 1612 * memblock_free_late - free pages directly to buddy allocator
48a833cc 1613 * @base: phys starting address of the boot memory block
26f09e9b
SS
1614 * @size: size of the boot memory block in bytes
1615 *
a2974133 1616 * This is only useful when the memblock allocator has already been torn
26f09e9b 1617 * down, but we are still initializing the system. Pages are released directly
a2974133 1618 * to the buddy allocator.
26f09e9b 1619 */
621d9739 1620void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
26f09e9b 1621{
a36aab89 1622 phys_addr_t cursor, end;
26f09e9b 1623
a36aab89 1624 end = base + size - 1;
d75f773c 1625 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1626 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1627 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1628 cursor = PFN_UP(base);
1629 end = PFN_DOWN(base + size);
1630
1631 for (; cursor < end; cursor++) {
7c2ee349 1632 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1633 totalram_pages_inc();
26f09e9b
SS
1634 }
1635}
9d1e2492
BH
1636
1637/*
1638 * Remaining API functions
1639 */
1640
1f1ffb8a 1641phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1642{
1440c4e2 1643 return memblock.memory.total_size;
95f72d1e
YL
1644}
1645
8907de5d
SD
1646phys_addr_t __init_memblock memblock_reserved_size(void)
1647{
1648 return memblock.reserved.total_size;
1649}
1650
0a93ebef
SR
1651/* lowest address */
1652phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1653{
1654 return memblock.memory.regions[0].base;
1655}
1656
10d06439 1657phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1658{
1659 int idx = memblock.memory.cnt - 1;
1660
e3239ff9 1661 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1662}
1663
a571d4eb 1664static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1665{
1c4bc43d 1666 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1667 struct memblock_region *r;
95f72d1e 1668
a571d4eb
DC
1669 /*
1670 * translate the memory @limit size into the max address within one of
1671 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1672 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1673 */
cc6de168 1674 for_each_mem_region(r) {
c0ce8fef
TH
1675 if (limit <= r->size) {
1676 max_addr = r->base + limit;
1677 break;
95f72d1e 1678 }
c0ce8fef 1679 limit -= r->size;
95f72d1e 1680 }
c0ce8fef 1681
a571d4eb
DC
1682 return max_addr;
1683}
1684
1685void __init memblock_enforce_memory_limit(phys_addr_t limit)
1686{
49aef717 1687 phys_addr_t max_addr;
a571d4eb
DC
1688
1689 if (!limit)
1690 return;
1691
1692 max_addr = __find_max_addr(limit);
1693
1694 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1695 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1696 return;
1697
c0ce8fef 1698 /* truncate both memory and reserved regions */
f1af9d3a 1699 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1700 PHYS_ADDR_MAX);
f1af9d3a 1701 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1702 PHYS_ADDR_MAX);
95f72d1e
YL
1703}
1704
c9ca9b4e
AT
1705void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1706{
1707 int start_rgn, end_rgn;
1708 int i, ret;
1709
1710 if (!size)
1711 return;
1712
5173ed72 1713 if (!memblock_memory->total_size) {
e888fa7b
GU
1714 pr_warn("%s: No memory registered yet\n", __func__);
1715 return;
1716 }
1717
c9ca9b4e
AT
1718 ret = memblock_isolate_range(&memblock.memory, base, size,
1719 &start_rgn, &end_rgn);
1720 if (ret)
1721 return;
1722
1723 /* remove all the MAP regions */
1724 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1725 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1726 memblock_remove_region(&memblock.memory, i);
1727
1728 for (i = start_rgn - 1; i >= 0; i--)
1729 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1730 memblock_remove_region(&memblock.memory, i);
1731
1732 /* truncate the reserved regions */
1733 memblock_remove_range(&memblock.reserved, 0, base);
1734 memblock_remove_range(&memblock.reserved,
1c4bc43d 1735 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1736}
1737
a571d4eb
DC
1738void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1739{
a571d4eb 1740 phys_addr_t max_addr;
a571d4eb
DC
1741
1742 if (!limit)
1743 return;
1744
1745 max_addr = __find_max_addr(limit);
1746
1747 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1748 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1749 return;
1750
c9ca9b4e 1751 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1752}
1753
cd79481d 1754static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1755{
1756 unsigned int left = 0, right = type->cnt;
1757
1758 do {
1759 unsigned int mid = (right + left) / 2;
1760
1761 if (addr < type->regions[mid].base)
1762 right = mid;
1763 else if (addr >= (type->regions[mid].base +
1764 type->regions[mid].size))
1765 left = mid + 1;
1766 else
1767 return mid;
1768 } while (left < right);
1769 return -1;
1770}
1771
f5a222dc 1772bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1773{
72d4b0b4
BH
1774 return memblock_search(&memblock.reserved, addr) != -1;
1775}
95f72d1e 1776
b4ad0c7e 1777bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1778{
1779 return memblock_search(&memblock.memory, addr) != -1;
1780}
1781
937f0c26 1782bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1783{
1784 int i = memblock_search(&memblock.memory, addr);
1785
1786 if (i == -1)
1787 return false;
1788 return !memblock_is_nomap(&memblock.memory.regions[i]);
1789}
1790
e76b63f8
YL
1791int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1792 unsigned long *start_pfn, unsigned long *end_pfn)
1793{
1794 struct memblock_type *type = &memblock.memory;
16763230 1795 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1796
1797 if (mid == -1)
1798 return -1;
1799
f7e2f7e8
FF
1800 *start_pfn = PFN_DOWN(type->regions[mid].base);
1801 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8 1802
d622abf7 1803 return memblock_get_region_node(&type->regions[mid]);
e76b63f8 1804}
e76b63f8 1805
eab30949
SB
1806/**
1807 * memblock_is_region_memory - check if a region is a subset of memory
1808 * @base: base of region to check
1809 * @size: size of region to check
1810 *
47cec443 1811 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1812 *
47cec443 1813 * Return:
eab30949
SB
1814 * 0 if false, non-zero if true
1815 */
937f0c26 1816bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1817{
abb65272 1818 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1819 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1820
1821 if (idx == -1)
937f0c26 1822 return false;
ef415ef4 1823 return (memblock.memory.regions[idx].base +
eb18f1b5 1824 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1825}
1826
eab30949
SB
1827/**
1828 * memblock_is_region_reserved - check if a region intersects reserved memory
1829 * @base: base of region to check
1830 * @size: size of region to check
1831 *
47cec443
MR
1832 * Check if the region [@base, @base + @size) intersects a reserved
1833 * memory block.
eab30949 1834 *
47cec443 1835 * Return:
c5c5c9d1 1836 * True if they intersect, false if not.
eab30949 1837 */
c5c5c9d1 1838bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1839{
c5c5c9d1 1840 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1841}
1842
6ede1fd3
YL
1843void __init_memblock memblock_trim_memory(phys_addr_t align)
1844{
6ede1fd3 1845 phys_addr_t start, end, orig_start, orig_end;
136199f0 1846 struct memblock_region *r;
6ede1fd3 1847
cc6de168 1848 for_each_mem_region(r) {
136199f0
EM
1849 orig_start = r->base;
1850 orig_end = r->base + r->size;
6ede1fd3
YL
1851 start = round_up(orig_start, align);
1852 end = round_down(orig_end, align);
1853
1854 if (start == orig_start && end == orig_end)
1855 continue;
1856
1857 if (start < end) {
136199f0
EM
1858 r->base = start;
1859 r->size = end - start;
6ede1fd3 1860 } else {
136199f0
EM
1861 memblock_remove_region(&memblock.memory,
1862 r - memblock.memory.regions);
1863 r--;
6ede1fd3
YL
1864 }
1865 }
1866}
e63075a3 1867
3661ca66 1868void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1869{
1870 memblock.current_limit = limit;
1871}
1872
fec51014
LA
1873phys_addr_t __init_memblock memblock_get_current_limit(void)
1874{
1875 return memblock.current_limit;
1876}
1877
0262d9c8 1878static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1879{
5d63f81c 1880 phys_addr_t base, end, size;
e1720fee 1881 enum memblock_flags flags;
8c9c1701
AK
1882 int idx;
1883 struct memblock_region *rgn;
6ed311b2 1884
0262d9c8 1885 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1886
66e8b438 1887 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1888 char nid_buf[32] = "";
1889
1890 base = rgn->base;
1891 size = rgn->size;
5d63f81c 1892 end = base + size - 1;
66a20757 1893 flags = rgn->flags;
a9ee6cf5 1894#ifdef CONFIG_NUMA
7c0caeb8
TH
1895 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1896 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1897 memblock_get_region_node(rgn));
1898#endif
e1720fee 1899 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1900 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1901 }
1902}
1903
87c55870 1904static void __init_memblock __memblock_dump_all(void)
6ed311b2 1905{
6ed311b2 1906 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1907 pr_info(" memory size = %pa reserved size = %pa\n",
1908 &memblock.memory.total_size,
1909 &memblock.reserved.total_size);
6ed311b2 1910
0262d9c8
HC
1911 memblock_dump(&memblock.memory);
1912 memblock_dump(&memblock.reserved);
409efd4c 1913#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 1914 memblock_dump(&physmem);
409efd4c 1915#endif
6ed311b2
BH
1916}
1917
87c55870
MR
1918void __init_memblock memblock_dump_all(void)
1919{
1920 if (memblock_debug)
1921 __memblock_dump_all();
1922}
1923
1aadc056 1924void __init memblock_allow_resize(void)
6ed311b2 1925{
142b45a7 1926 memblock_can_resize = 1;
6ed311b2
BH
1927}
1928
6ed311b2
BH
1929static int __init early_memblock(char *p)
1930{
1931 if (p && strstr(p, "debug"))
1932 memblock_debug = 1;
1933 return 0;
1934}
1935early_param("memblock", early_memblock);
1936
4f5b0c17
MR
1937static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1938{
1939 struct page *start_pg, *end_pg;
1940 phys_addr_t pg, pgend;
1941
1942 /*
1943 * Convert start_pfn/end_pfn to a struct page pointer.
1944 */
1945 start_pg = pfn_to_page(start_pfn - 1) + 1;
1946 end_pg = pfn_to_page(end_pfn - 1) + 1;
1947
1948 /*
1949 * Convert to physical addresses, and round start upwards and end
1950 * downwards.
1951 */
1952 pg = PAGE_ALIGN(__pa(start_pg));
1953 pgend = __pa(end_pg) & PAGE_MASK;
1954
1955 /*
1956 * If there are free pages between these, free the section of the
1957 * memmap array.
1958 */
1959 if (pg < pgend)
3ecc6834 1960 memblock_phys_free(pg, pgend - pg);
4f5b0c17
MR
1961}
1962
1963/*
1964 * The mem_map array can get very big. Free the unused area of the memory map.
1965 */
1966static void __init free_unused_memmap(void)
1967{
1968 unsigned long start, end, prev_end = 0;
1969 int i;
1970
1971 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1972 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1973 return;
1974
1975 /*
1976 * This relies on each bank being in address order.
1977 * The banks are sorted previously in bootmem_init().
1978 */
1979 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1980#ifdef CONFIG_SPARSEMEM
1981 /*
1982 * Take care not to free memmap entries that don't exist
1983 * due to SPARSEMEM sections which aren't present.
1984 */
1985 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 1986#endif
4f5b0c17 1987 /*
e2a86800
MR
1988 * Align down here since many operations in VM subsystem
1989 * presume that there are no holes in the memory map inside
1990 * a pageblock
4f5b0c17 1991 */
e2a86800 1992 start = round_down(start, pageblock_nr_pages);
4f5b0c17
MR
1993
1994 /*
1995 * If we had a previous bank, and there is a space
1996 * between the current bank and the previous, free it.
1997 */
1998 if (prev_end && prev_end < start)
1999 free_memmap(prev_end, start);
2000
2001 /*
e2a86800
MR
2002 * Align up here since many operations in VM subsystem
2003 * presume that there are no holes in the memory map inside
2004 * a pageblock
4f5b0c17 2005 */
e2a86800 2006 prev_end = ALIGN(end, pageblock_nr_pages);
4f5b0c17
MR
2007 }
2008
2009#ifdef CONFIG_SPARSEMEM
f921f53e
MR
2010 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2011 prev_end = ALIGN(end, pageblock_nr_pages);
4f5b0c17 2012 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 2013 }
4f5b0c17
MR
2014#endif
2015}
2016
bda49a81
MR
2017static void __init __free_pages_memory(unsigned long start, unsigned long end)
2018{
2019 int order;
2020
2021 while (start < end) {
2022 order = min(MAX_ORDER - 1UL, __ffs(start));
2023
2024 while (start + (1UL << order) > end)
2025 order--;
2026
2027 memblock_free_pages(pfn_to_page(start), start, order);
2028
2029 start += (1UL << order);
2030 }
2031}
2032
2033static unsigned long __init __free_memory_core(phys_addr_t start,
2034 phys_addr_t end)
2035{
2036 unsigned long start_pfn = PFN_UP(start);
2037 unsigned long end_pfn = min_t(unsigned long,
2038 PFN_DOWN(end), max_low_pfn);
2039
2040 if (start_pfn >= end_pfn)
2041 return 0;
2042
2043 __free_pages_memory(start_pfn, end_pfn);
2044
2045 return end_pfn - start_pfn;
2046}
2047
9092d4f7
MR
2048static void __init memmap_init_reserved_pages(void)
2049{
2050 struct memblock_region *region;
2051 phys_addr_t start, end;
2052 u64 i;
2053
2054 /* initialize struct pages for the reserved regions */
2055 for_each_reserved_mem_range(i, &start, &end)
2056 reserve_bootmem_region(start, end);
2057
2058 /* and also treat struct pages for the NOMAP regions as PageReserved */
2059 for_each_mem_region(region) {
2060 if (memblock_is_nomap(region)) {
2061 start = region->base;
2062 end = start + region->size;
2063 reserve_bootmem_region(start, end);
2064 }
2065 }
2066}
2067
bda49a81
MR
2068static unsigned long __init free_low_memory_core_early(void)
2069{
2070 unsigned long count = 0;
2071 phys_addr_t start, end;
2072 u64 i;
2073
2074 memblock_clear_hotplug(0, -1);
2075
9092d4f7 2076 memmap_init_reserved_pages();
bda49a81
MR
2077
2078 /*
2079 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2080 * because in some case like Node0 doesn't have RAM installed
2081 * low ram will be on Node1
2082 */
2083 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2084 NULL)
2085 count += __free_memory_core(start, end);
2086
2087 return count;
2088}
2089
2090static int reset_managed_pages_done __initdata;
2091
2092void reset_node_managed_pages(pg_data_t *pgdat)
2093{
2094 struct zone *z;
2095
2096 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2097 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2098}
2099
2100void __init reset_all_zones_managed_pages(void)
2101{
2102 struct pglist_data *pgdat;
2103
2104 if (reset_managed_pages_done)
2105 return;
2106
2107 for_each_online_pgdat(pgdat)
2108 reset_node_managed_pages(pgdat);
2109
2110 reset_managed_pages_done = 1;
2111}
2112
2113/**
2114 * memblock_free_all - release free pages to the buddy allocator
bda49a81 2115 */
097d43d8 2116void __init memblock_free_all(void)
bda49a81
MR
2117{
2118 unsigned long pages;
2119
4f5b0c17 2120 free_unused_memmap();
bda49a81
MR
2121 reset_all_zones_managed_pages();
2122
2123 pages = free_low_memory_core_early();
ca79b0c2 2124 totalram_pages_add(pages);
bda49a81
MR
2125}
2126
350e88ba 2127#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
6d03b885
BH
2128
2129static int memblock_debug_show(struct seq_file *m, void *private)
2130{
2131 struct memblock_type *type = m->private;
2132 struct memblock_region *reg;
2133 int i;
5d63f81c 2134 phys_addr_t end;
6d03b885
BH
2135
2136 for (i = 0; i < type->cnt; i++) {
2137 reg = &type->regions[i];
5d63f81c 2138 end = reg->base + reg->size - 1;
6d03b885 2139
5d63f81c
MC
2140 seq_printf(m, "%4d: ", i);
2141 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
2142 }
2143 return 0;
2144}
5ad35093 2145DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2146
2147static int __init memblock_init_debugfs(void)
2148{
2149 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2150
0825a6f9
JP
2151 debugfs_create_file("memory", 0444, root,
2152 &memblock.memory, &memblock_debug_fops);
2153 debugfs_create_file("reserved", 0444, root,
2154 &memblock.reserved, &memblock_debug_fops);
70210ed9 2155#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905
DH
2156 debugfs_create_file("physmem", 0444, root, &physmem,
2157 &memblock_debug_fops);
70210ed9 2158#endif
6d03b885
BH
2159
2160 return 0;
2161}
2162__initcall(memblock_init_debugfs);
2163
2164#endif /* CONFIG_DEBUG_FS */