Merge tag 'devprop-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-block.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
3e039c5c
MR
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
77649905
DH
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
3e039c5c 50 *
9303c9d5 51 * Each region is represented by struct memblock_region that
3e039c5c 52 * defines the region extents, its attributes and NUMA node id on NUMA
1bf162e4
MCC
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
77649905 55 * the allocator metadata. The "memory" and "reserved" types are nicely
9303c9d5 56 * wrapped with struct memblock. This structure is statically
77649905
DH
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
65 *
66 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
3e039c5c 73 *
a2974133
MR
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
6e5af9a8
C
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
a2974133 81 *
df1758d9 82 * Note, that both API variants use implicit assumptions about allowed
a2974133 83 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
3e039c5c 86 *
6e5af9a8
C
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
3e039c5c 89 *
6e5af9a8 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
77649905
DH
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
3e039c5c
MR
93 */
94
bda49a81
MR
95#ifndef CONFIG_NEED_MULTIPLE_NODES
96struct pglist_data __refdata contig_page_data;
97EXPORT_SYMBOL(contig_page_data);
98#endif
99
100unsigned long max_low_pfn;
101unsigned long min_low_pfn;
102unsigned long max_pfn;
103unsigned long long max_possible_pfn;
104
fe091c20 105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
8a5b403d 106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9 107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
70210ed9 109#endif
fe091c20
TH
110
111struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 115 .memory.name = "memory",
fe091c20
TH
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 120 .reserved.name = "reserved",
fe091c20 121
79442ed1 122 .bottom_up = false,
fe091c20
TH
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124};
95f72d1e 125
77649905
DH
126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132};
133#endif
134
9f3d5eaa
MR
135/*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
cd991db8
MR
143#define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
87c55870
MR
148#define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154static int memblock_debug __initdata_memblock;
a3f5bafc 155static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 156static int memblock_can_resize __initdata_memblock;
181eb394
GS
157static int memblock_memory_in_slab __initdata_memblock = 0;
158static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 159
c366ea89 160static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
161{
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163}
164
eb18f1b5
TH
165/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167{
1c4bc43d 168 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
169}
170
6ed311b2
BH
171/*
172 * Address comparison utilities
173 */
10d06439 174static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 175 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
176{
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178}
179
95cf82ec 180bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 181 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
182{
183 unsigned long i;
184
f14516fb
AK
185 for (i = 0; i < type->cnt; i++)
186 if (memblock_addrs_overlap(base, size, type->regions[i].base,
187 type->regions[i].size))
6ed311b2 188 break;
c5c5c9d1 189 return i < type->cnt;
6ed311b2
BH
190}
191
47cec443 192/**
79442ed1
TC
193 * __memblock_find_range_bottom_up - find free area utility in bottom-up
194 * @start: start of candidate range
47cec443
MR
195 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
196 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
197 * @size: size of free area to find
198 * @align: alignment of free area to find
b1154233 199 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 200 * @flags: pick from blocks based on memory attributes
79442ed1
TC
201 *
202 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
203 *
47cec443 204 * Return:
79442ed1
TC
205 * Found address on success, 0 on failure.
206 */
207static phys_addr_t __init_memblock
208__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 209 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 210 enum memblock_flags flags)
79442ed1
TC
211{
212 phys_addr_t this_start, this_end, cand;
213 u64 i;
214
fc6daaf9 215 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
216 this_start = clamp(this_start, start, end);
217 this_end = clamp(this_end, start, end);
218
219 cand = round_up(this_start, align);
220 if (cand < this_end && this_end - cand >= size)
221 return cand;
222 }
223
224 return 0;
225}
226
7bd0b0f0 227/**
1402899e 228 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 229 * @start: start of candidate range
47cec443
MR
230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
231 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
232 * @size: size of free area to find
233 * @align: alignment of free area to find
b1154233 234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 235 * @flags: pick from blocks based on memory attributes
7bd0b0f0 236 *
1402899e 237 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 238 *
47cec443 239 * Return:
79442ed1 240 * Found address on success, 0 on failure.
6ed311b2 241 */
1402899e
TC
242static phys_addr_t __init_memblock
243__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 244 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 245 enum memblock_flags flags)
f7210e6c
TC
246{
247 phys_addr_t this_start, this_end, cand;
248 u64 i;
249
fc6daaf9
TL
250 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
251 NULL) {
f7210e6c
TC
252 this_start = clamp(this_start, start, end);
253 this_end = clamp(this_end, start, end);
254
255 if (this_end < size)
256 continue;
257
258 cand = round_down(this_end - size, align);
259 if (cand >= this_start)
260 return cand;
261 }
1402899e 262
f7210e6c
TC
263 return 0;
264}
6ed311b2 265
1402899e
TC
266/**
267 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
268 * @size: size of free area to find
269 * @align: alignment of free area to find
87029ee9 270 * @start: start of candidate range
47cec443
MR
271 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
272 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 273 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 274 * @flags: pick from blocks based on memory attributes
1402899e
TC
275 *
276 * Find @size free area aligned to @align in the specified range and node.
277 *
47cec443 278 * Return:
79442ed1 279 * Found address on success, 0 on failure.
1402899e 280 */
c366ea89 281static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 282 phys_addr_t align, phys_addr_t start,
e1720fee
MR
283 phys_addr_t end, int nid,
284 enum memblock_flags flags)
1402899e
TC
285{
286 /* pump up @end */
fed84c78
QC
287 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
288 end == MEMBLOCK_ALLOC_KASAN)
1402899e
TC
289 end = memblock.current_limit;
290
291 /* avoid allocating the first page */
292 start = max_t(phys_addr_t, start, PAGE_SIZE);
293 end = max(start, end);
294
2dcb3964
RG
295 if (memblock_bottom_up())
296 return __memblock_find_range_bottom_up(start, end, size, align,
297 nid, flags);
298 else
299 return __memblock_find_range_top_down(start, end, size, align,
300 nid, flags);
1402899e
TC
301}
302
7bd0b0f0
TH
303/**
304 * memblock_find_in_range - find free area in given range
305 * @start: start of candidate range
47cec443
MR
306 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
307 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
308 * @size: size of free area to find
309 * @align: alignment of free area to find
310 *
311 * Find @size free area aligned to @align in the specified range.
312 *
47cec443 313 * Return:
79442ed1 314 * Found address on success, 0 on failure.
fc769a8e 315 */
7bd0b0f0
TH
316phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
317 phys_addr_t end, phys_addr_t size,
318 phys_addr_t align)
6ed311b2 319{
a3f5bafc 320 phys_addr_t ret;
e1720fee 321 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
322
323again:
324 ret = memblock_find_in_range_node(size, align, start, end,
325 NUMA_NO_NODE, flags);
326
327 if (!ret && (flags & MEMBLOCK_MIRROR)) {
328 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
329 &size);
330 flags &= ~MEMBLOCK_MIRROR;
331 goto again;
332 }
333
334 return ret;
6ed311b2
BH
335}
336
10d06439 337static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 338{
1440c4e2 339 type->total_size -= type->regions[r].size;
7c0caeb8
TH
340 memmove(&type->regions[r], &type->regions[r + 1],
341 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 342 type->cnt--;
95f72d1e 343
8f7a6605
BH
344 /* Special case for empty arrays */
345 if (type->cnt == 0) {
1440c4e2 346 WARN_ON(type->total_size != 0);
8f7a6605
BH
347 type->cnt = 1;
348 type->regions[0].base = 0;
349 type->regions[0].size = 0;
66a20757 350 type->regions[0].flags = 0;
7c0caeb8 351 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 352 }
95f72d1e
YL
353}
354
350e88ba 355#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 356/**
47cec443 357 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
358 */
359void __init memblock_discard(void)
5e270e25 360{
3010f876 361 phys_addr_t addr, size;
5e270e25 362
3010f876
PT
363 if (memblock.reserved.regions != memblock_reserved_init_regions) {
364 addr = __pa(memblock.reserved.regions);
365 size = PAGE_ALIGN(sizeof(struct memblock_region) *
366 memblock.reserved.max);
367 __memblock_free_late(addr, size);
368 }
5e270e25 369
91b540f9 370 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
371 addr = __pa(memblock.memory.regions);
372 size = PAGE_ALIGN(sizeof(struct memblock_region) *
373 memblock.memory.max);
374 __memblock_free_late(addr, size);
375 }
9f3d5eaa
MR
376
377 memblock_memory = NULL;
5e270e25 378}
5e270e25
PH
379#endif
380
48c3b583
GP
381/**
382 * memblock_double_array - double the size of the memblock regions array
383 * @type: memblock type of the regions array being doubled
384 * @new_area_start: starting address of memory range to avoid overlap with
385 * @new_area_size: size of memory range to avoid overlap with
386 *
387 * Double the size of the @type regions array. If memblock is being used to
388 * allocate memory for a new reserved regions array and there is a previously
47cec443 389 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
390 * waiting to be reserved, ensure the memory used by the new array does
391 * not overlap.
392 *
47cec443 393 * Return:
48c3b583
GP
394 * 0 on success, -1 on failure.
395 */
396static int __init_memblock memblock_double_array(struct memblock_type *type,
397 phys_addr_t new_area_start,
398 phys_addr_t new_area_size)
142b45a7
BH
399{
400 struct memblock_region *new_array, *old_array;
29f67386 401 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 402 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 403 int use_slab = slab_is_available();
181eb394 404 int *in_slab;
142b45a7
BH
405
406 /* We don't allow resizing until we know about the reserved regions
407 * of memory that aren't suitable for allocation
408 */
409 if (!memblock_can_resize)
410 return -1;
411
142b45a7
BH
412 /* Calculate new doubled size */
413 old_size = type->max * sizeof(struct memblock_region);
414 new_size = old_size << 1;
29f67386
YL
415 /*
416 * We need to allocated new one align to PAGE_SIZE,
417 * so we can free them completely later.
418 */
419 old_alloc_size = PAGE_ALIGN(old_size);
420 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 421
181eb394
GS
422 /* Retrieve the slab flag */
423 if (type == &memblock.memory)
424 in_slab = &memblock_memory_in_slab;
425 else
426 in_slab = &memblock_reserved_in_slab;
427
a2974133 428 /* Try to find some space for it */
142b45a7
BH
429 if (use_slab) {
430 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 431 addr = new_array ? __pa(new_array) : 0;
4e2f0775 432 } else {
48c3b583
GP
433 /* only exclude range when trying to double reserved.regions */
434 if (type != &memblock.reserved)
435 new_area_start = new_area_size = 0;
436
437 addr = memblock_find_in_range(new_area_start + new_area_size,
438 memblock.current_limit,
29f67386 439 new_alloc_size, PAGE_SIZE);
48c3b583
GP
440 if (!addr && new_area_size)
441 addr = memblock_find_in_range(0,
fd07383b
AM
442 min(new_area_start, memblock.current_limit),
443 new_alloc_size, PAGE_SIZE);
48c3b583 444
15674868 445 new_array = addr ? __va(addr) : NULL;
4e2f0775 446 }
1f5026a7 447 if (!addr) {
142b45a7 448 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 449 type->name, type->max, type->max * 2);
142b45a7
BH
450 return -1;
451 }
142b45a7 452
a36aab89
MR
453 new_end = addr + new_size - 1;
454 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
455 type->name, type->max * 2, &addr, &new_end);
ea9e4376 456
fd07383b
AM
457 /*
458 * Found space, we now need to move the array over before we add the
459 * reserved region since it may be our reserved array itself that is
460 * full.
142b45a7
BH
461 */
462 memcpy(new_array, type->regions, old_size);
463 memset(new_array + type->max, 0, old_size);
464 old_array = type->regions;
465 type->regions = new_array;
466 type->max <<= 1;
467
fd07383b 468 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
469 if (*in_slab)
470 kfree(old_array);
471 else if (old_array != memblock_memory_init_regions &&
472 old_array != memblock_reserved_init_regions)
29f67386 473 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 474
fd07383b
AM
475 /*
476 * Reserve the new array if that comes from the memblock. Otherwise, we
477 * needn't do it
181eb394
GS
478 */
479 if (!use_slab)
29f67386 480 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
481
482 /* Update slab flag */
483 *in_slab = use_slab;
484
142b45a7
BH
485 return 0;
486}
487
784656f9
TH
488/**
489 * memblock_merge_regions - merge neighboring compatible regions
490 * @type: memblock type to scan
491 *
492 * Scan @type and merge neighboring compatible regions.
493 */
494static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 495{
784656f9 496 int i = 0;
95f72d1e 497
784656f9
TH
498 /* cnt never goes below 1 */
499 while (i < type->cnt - 1) {
500 struct memblock_region *this = &type->regions[i];
501 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 502
7c0caeb8
TH
503 if (this->base + this->size != next->base ||
504 memblock_get_region_node(this) !=
66a20757
TC
505 memblock_get_region_node(next) ||
506 this->flags != next->flags) {
784656f9
TH
507 BUG_ON(this->base + this->size > next->base);
508 i++;
509 continue;
8f7a6605
BH
510 }
511
784656f9 512 this->size += next->size;
c0232ae8
LF
513 /* move forward from next + 1, index of which is i + 2 */
514 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 515 type->cnt--;
95f72d1e 516 }
784656f9 517}
95f72d1e 518
784656f9
TH
519/**
520 * memblock_insert_region - insert new memblock region
209ff86d
TC
521 * @type: memblock type to insert into
522 * @idx: index for the insertion point
523 * @base: base address of the new region
524 * @size: size of the new region
525 * @nid: node id of the new region
66a20757 526 * @flags: flags of the new region
784656f9 527 *
47cec443 528 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 529 * @type must already have extra room to accommodate the new region.
784656f9
TH
530 */
531static void __init_memblock memblock_insert_region(struct memblock_type *type,
532 int idx, phys_addr_t base,
66a20757 533 phys_addr_t size,
e1720fee
MR
534 int nid,
535 enum memblock_flags flags)
784656f9
TH
536{
537 struct memblock_region *rgn = &type->regions[idx];
538
539 BUG_ON(type->cnt >= type->max);
540 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
541 rgn->base = base;
542 rgn->size = size;
66a20757 543 rgn->flags = flags;
7c0caeb8 544 memblock_set_region_node(rgn, nid);
784656f9 545 type->cnt++;
1440c4e2 546 type->total_size += size;
784656f9
TH
547}
548
549/**
f1af9d3a 550 * memblock_add_range - add new memblock region
784656f9
TH
551 * @type: memblock type to add new region into
552 * @base: base address of the new region
553 * @size: size of the new region
7fb0bc3f 554 * @nid: nid of the new region
66a20757 555 * @flags: flags of the new region
784656f9 556 *
47cec443 557 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
558 * is allowed to overlap with existing ones - overlaps don't affect already
559 * existing regions. @type is guaranteed to be minimal (all neighbouring
560 * compatible regions are merged) after the addition.
561 *
47cec443 562 * Return:
784656f9
TH
563 * 0 on success, -errno on failure.
564 */
02634a44 565static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 566 phys_addr_t base, phys_addr_t size,
e1720fee 567 int nid, enum memblock_flags flags)
784656f9
TH
568{
569 bool insert = false;
eb18f1b5
TH
570 phys_addr_t obase = base;
571 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
572 int idx, nr_new;
573 struct memblock_region *rgn;
784656f9 574
b3dc627c
TH
575 if (!size)
576 return 0;
577
784656f9
TH
578 /* special case for empty array */
579 if (type->regions[0].size == 0) {
1440c4e2 580 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
581 type->regions[0].base = base;
582 type->regions[0].size = size;
66a20757 583 type->regions[0].flags = flags;
7fb0bc3f 584 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 585 type->total_size = size;
8f7a6605 586 return 0;
95f72d1e 587 }
784656f9
TH
588repeat:
589 /*
590 * The following is executed twice. Once with %false @insert and
591 * then with %true. The first counts the number of regions needed
412d0008 592 * to accommodate the new area. The second actually inserts them.
142b45a7 593 */
784656f9
TH
594 base = obase;
595 nr_new = 0;
95f72d1e 596
66e8b438 597 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
598 phys_addr_t rbase = rgn->base;
599 phys_addr_t rend = rbase + rgn->size;
600
601 if (rbase >= end)
95f72d1e 602 break;
784656f9
TH
603 if (rend <= base)
604 continue;
605 /*
606 * @rgn overlaps. If it separates the lower part of new
607 * area, insert that portion.
608 */
609 if (rbase > base) {
3f08a302 610#ifdef CONFIG_NEED_MULTIPLE_NODES
c0a29498
WY
611 WARN_ON(nid != memblock_get_region_node(rgn));
612#endif
4fcab5f4 613 WARN_ON(flags != rgn->flags);
784656f9
TH
614 nr_new++;
615 if (insert)
8c9c1701 616 memblock_insert_region(type, idx++, base,
66a20757
TC
617 rbase - base, nid,
618 flags);
95f72d1e 619 }
784656f9
TH
620 /* area below @rend is dealt with, forget about it */
621 base = min(rend, end);
95f72d1e 622 }
784656f9
TH
623
624 /* insert the remaining portion */
625 if (base < end) {
626 nr_new++;
627 if (insert)
8c9c1701 628 memblock_insert_region(type, idx, base, end - base,
66a20757 629 nid, flags);
95f72d1e 630 }
95f72d1e 631
ef3cc4db 632 if (!nr_new)
633 return 0;
634
784656f9
TH
635 /*
636 * If this was the first round, resize array and repeat for actual
637 * insertions; otherwise, merge and return.
142b45a7 638 */
784656f9
TH
639 if (!insert) {
640 while (type->cnt + nr_new > type->max)
48c3b583 641 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
642 return -ENOMEM;
643 insert = true;
644 goto repeat;
645 } else {
646 memblock_merge_regions(type);
647 return 0;
142b45a7 648 }
95f72d1e
YL
649}
650
48a833cc
MR
651/**
652 * memblock_add_node - add new memblock region within a NUMA node
653 * @base: base address of the new region
654 * @size: size of the new region
655 * @nid: nid of the new region
656 *
657 * Add new memblock region [@base, @base + @size) to the "memory"
658 * type. See memblock_add_range() description for mode details
659 *
660 * Return:
661 * 0 on success, -errno on failure.
662 */
7fb0bc3f
TH
663int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
664 int nid)
665{
f1af9d3a 666 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
667}
668
48a833cc
MR
669/**
670 * memblock_add - add new memblock region
671 * @base: base address of the new region
672 * @size: size of the new region
673 *
674 * Add new memblock region [@base, @base + @size) to the "memory"
675 * type. See memblock_add_range() description for mode details
676 *
677 * Return:
678 * 0 on success, -errno on failure.
679 */
f705ac4b 680int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 681{
5d63f81c
MC
682 phys_addr_t end = base + size - 1;
683
a090d711 684 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 685 &base, &end, (void *)_RET_IP_);
6a4055bc 686
f705ac4b 687 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
688}
689
6a9ceb31
TH
690/**
691 * memblock_isolate_range - isolate given range into disjoint memblocks
692 * @type: memblock type to isolate range for
693 * @base: base of range to isolate
694 * @size: size of range to isolate
695 * @start_rgn: out parameter for the start of isolated region
696 * @end_rgn: out parameter for the end of isolated region
697 *
698 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 699 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
700 * which may create at most two more regions. The index of the first
701 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
702 *
47cec443 703 * Return:
6a9ceb31
TH
704 * 0 on success, -errno on failure.
705 */
706static int __init_memblock memblock_isolate_range(struct memblock_type *type,
707 phys_addr_t base, phys_addr_t size,
708 int *start_rgn, int *end_rgn)
709{
eb18f1b5 710 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
711 int idx;
712 struct memblock_region *rgn;
6a9ceb31
TH
713
714 *start_rgn = *end_rgn = 0;
715
b3dc627c
TH
716 if (!size)
717 return 0;
718
6a9ceb31
TH
719 /* we'll create at most two more regions */
720 while (type->cnt + 2 > type->max)
48c3b583 721 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
722 return -ENOMEM;
723
66e8b438 724 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
725 phys_addr_t rbase = rgn->base;
726 phys_addr_t rend = rbase + rgn->size;
727
728 if (rbase >= end)
729 break;
730 if (rend <= base)
731 continue;
732
733 if (rbase < base) {
734 /*
735 * @rgn intersects from below. Split and continue
736 * to process the next region - the new top half.
737 */
738 rgn->base = base;
1440c4e2
TH
739 rgn->size -= base - rbase;
740 type->total_size -= base - rbase;
8c9c1701 741 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
742 memblock_get_region_node(rgn),
743 rgn->flags);
6a9ceb31
TH
744 } else if (rend > end) {
745 /*
746 * @rgn intersects from above. Split and redo the
747 * current region - the new bottom half.
748 */
749 rgn->base = end;
1440c4e2
TH
750 rgn->size -= end - rbase;
751 type->total_size -= end - rbase;
8c9c1701 752 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
753 memblock_get_region_node(rgn),
754 rgn->flags);
6a9ceb31
TH
755 } else {
756 /* @rgn is fully contained, record it */
757 if (!*end_rgn)
8c9c1701
AK
758 *start_rgn = idx;
759 *end_rgn = idx + 1;
6a9ceb31
TH
760 }
761 }
762
763 return 0;
764}
6a9ceb31 765
35bd16a2 766static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 767 phys_addr_t base, phys_addr_t size)
95f72d1e 768{
71936180
TH
769 int start_rgn, end_rgn;
770 int i, ret;
95f72d1e 771
71936180
TH
772 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
773 if (ret)
774 return ret;
95f72d1e 775
71936180
TH
776 for (i = end_rgn - 1; i >= start_rgn; i--)
777 memblock_remove_region(type, i);
8f7a6605 778 return 0;
95f72d1e
YL
779}
780
581adcbe 781int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 782{
25cf23d7
MK
783 phys_addr_t end = base + size - 1;
784
a090d711 785 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
786 &base, &end, (void *)_RET_IP_);
787
f1af9d3a 788 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
789}
790
4d72868c
MR
791/**
792 * memblock_free - free boot memory block
793 * @base: phys starting address of the boot memory block
794 * @size: size of the boot memory block in bytes
795 *
796 * Free boot memory block previously allocated by memblock_alloc_xx() API.
797 * The freeing memory will not be released to the buddy allocator.
798 */
581adcbe 799int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 800{
5d63f81c
MC
801 phys_addr_t end = base + size - 1;
802
a090d711 803 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 804 &base, &end, (void *)_RET_IP_);
24aa0788 805
9099daed 806 kmemleak_free_part_phys(base, size);
f1af9d3a 807 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
808}
809
f705ac4b 810int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 811{
5d63f81c
MC
812 phys_addr_t end = base + size - 1;
813
a090d711 814 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 815 &base, &end, (void *)_RET_IP_);
95f72d1e 816
f705ac4b 817 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
818}
819
02634a44
AK
820#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
821int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
822{
823 phys_addr_t end = base + size - 1;
824
825 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
826 &base, &end, (void *)_RET_IP_);
827
77649905 828 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
02634a44
AK
829}
830#endif
831
66b16edf 832/**
47cec443
MR
833 * memblock_setclr_flag - set or clear flag for a memory region
834 * @base: base address of the region
835 * @size: size of the region
836 * @set: set or clear the flag
8958b249 837 * @flag: the flag to update
66b16edf 838 *
4308ce17 839 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 840 *
47cec443 841 * Return: 0 on success, -errno on failure.
66b16edf 842 */
4308ce17
TL
843static int __init_memblock memblock_setclr_flag(phys_addr_t base,
844 phys_addr_t size, int set, int flag)
66b16edf
TC
845{
846 struct memblock_type *type = &memblock.memory;
847 int i, ret, start_rgn, end_rgn;
848
849 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
850 if (ret)
851 return ret;
852
fe145124
MR
853 for (i = start_rgn; i < end_rgn; i++) {
854 struct memblock_region *r = &type->regions[i];
855
4308ce17 856 if (set)
fe145124 857 r->flags |= flag;
4308ce17 858 else
fe145124
MR
859 r->flags &= ~flag;
860 }
66b16edf
TC
861
862 memblock_merge_regions(type);
863 return 0;
864}
865
866/**
4308ce17 867 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
868 * @base: the base phys addr of the region
869 * @size: the size of the region
870 *
47cec443 871 * Return: 0 on success, -errno on failure.
4308ce17
TL
872 */
873int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
874{
875 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
876}
877
878/**
879 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
880 * @base: the base phys addr of the region
881 * @size: the size of the region
66b16edf 882 *
47cec443 883 * Return: 0 on success, -errno on failure.
66b16edf
TC
884 */
885int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
886{
4308ce17 887 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
888}
889
a3f5bafc
TL
890/**
891 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
892 * @base: the base phys addr of the region
893 * @size: the size of the region
894 *
47cec443 895 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
896 */
897int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
898{
899 system_has_some_mirror = true;
900
901 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
902}
903
bf3d3cc5
AB
904/**
905 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
906 * @base: the base phys addr of the region
907 * @size: the size of the region
908 *
47cec443 909 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
910 */
911int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
912{
913 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
914}
a3f5bafc 915
4c546b8a
AT
916/**
917 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
918 * @base: the base phys addr of the region
919 * @size: the size of the region
920 *
47cec443 921 * Return: 0 on success, -errno on failure.
4c546b8a
AT
922 */
923int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
924{
925 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
926}
927
9f3d5eaa
MR
928static bool should_skip_region(struct memblock_type *type,
929 struct memblock_region *m,
930 int nid, int flags)
c9a688a3
MR
931{
932 int m_nid = memblock_get_region_node(m);
933
9f3d5eaa
MR
934 /* we never skip regions when iterating memblock.reserved or physmem */
935 if (type != memblock_memory)
936 return false;
937
c9a688a3
MR
938 /* only memory regions are associated with nodes, check it */
939 if (nid != NUMA_NO_NODE && nid != m_nid)
940 return true;
941
942 /* skip hotpluggable memory regions if needed */
943 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
944 return true;
945
946 /* if we want mirror memory skip non-mirror memory regions */
947 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
948 return true;
949
950 /* skip nomap memory unless we were asked for it explicitly */
951 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
952 return true;
953
954 return false;
955}
956
35fd0808 957/**
a2974133 958 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 959 * @idx: pointer to u64 loop variable
b1154233 960 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 961 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
962 * @type_a: pointer to memblock_type from where the range is taken
963 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
964 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
965 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
966 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 967 *
f1af9d3a 968 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 969 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
970 * *@idx contains index into type_a and the upper 32bit indexes the
971 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
972 * look like the following,
973 *
974 * 0:[0-16), 1:[32-48), 2:[128-130)
975 *
976 * The upper 32bit indexes the following regions.
977 *
978 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
979 *
980 * As both region arrays are sorted, the function advances the two indices
981 * in lockstep and returns each intersection.
982 */
77649905
DH
983void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
984 struct memblock_type *type_a,
985 struct memblock_type *type_b, phys_addr_t *out_start,
986 phys_addr_t *out_end, int *out_nid)
35fd0808 987{
f1af9d3a
PH
988 int idx_a = *idx & 0xffffffff;
989 int idx_b = *idx >> 32;
b1154233 990
f1af9d3a
PH
991 if (WARN_ONCE(nid == MAX_NUMNODES,
992 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 993 nid = NUMA_NO_NODE;
35fd0808 994
f1af9d3a
PH
995 for (; idx_a < type_a->cnt; idx_a++) {
996 struct memblock_region *m = &type_a->regions[idx_a];
997
35fd0808
TH
998 phys_addr_t m_start = m->base;
999 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1000 int m_nid = memblock_get_region_node(m);
35fd0808 1001
9f3d5eaa 1002 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1003 continue;
1004
f1af9d3a
PH
1005 if (!type_b) {
1006 if (out_start)
1007 *out_start = m_start;
1008 if (out_end)
1009 *out_end = m_end;
1010 if (out_nid)
1011 *out_nid = m_nid;
1012 idx_a++;
1013 *idx = (u32)idx_a | (u64)idx_b << 32;
1014 return;
1015 }
1016
1017 /* scan areas before each reservation */
1018 for (; idx_b < type_b->cnt + 1; idx_b++) {
1019 struct memblock_region *r;
1020 phys_addr_t r_start;
1021 phys_addr_t r_end;
1022
1023 r = &type_b->regions[idx_b];
1024 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1025 r_end = idx_b < type_b->cnt ?
1c4bc43d 1026 r->base : PHYS_ADDR_MAX;
35fd0808 1027
f1af9d3a
PH
1028 /*
1029 * if idx_b advanced past idx_a,
1030 * break out to advance idx_a
1031 */
35fd0808
TH
1032 if (r_start >= m_end)
1033 break;
1034 /* if the two regions intersect, we're done */
1035 if (m_start < r_end) {
1036 if (out_start)
f1af9d3a
PH
1037 *out_start =
1038 max(m_start, r_start);
35fd0808
TH
1039 if (out_end)
1040 *out_end = min(m_end, r_end);
1041 if (out_nid)
f1af9d3a 1042 *out_nid = m_nid;
35fd0808 1043 /*
f1af9d3a
PH
1044 * The region which ends first is
1045 * advanced for the next iteration.
35fd0808
TH
1046 */
1047 if (m_end <= r_end)
f1af9d3a 1048 idx_a++;
35fd0808 1049 else
f1af9d3a
PH
1050 idx_b++;
1051 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1052 return;
1053 }
1054 }
1055 }
1056
1057 /* signal end of iteration */
1058 *idx = ULLONG_MAX;
1059}
1060
7bd0b0f0 1061/**
f1af9d3a
PH
1062 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1063 *
7bd0b0f0 1064 * @idx: pointer to u64 loop variable
ad5ea8cd 1065 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1066 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1067 * @type_a: pointer to memblock_type from where the range is taken
1068 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1069 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1070 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1071 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1072 *
47cec443
MR
1073 * Finds the next range from type_a which is not marked as unsuitable
1074 * in type_b.
1075 *
f1af9d3a 1076 * Reverse of __next_mem_range().
7bd0b0f0 1077 */
e1720fee
MR
1078void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1079 enum memblock_flags flags,
f1af9d3a
PH
1080 struct memblock_type *type_a,
1081 struct memblock_type *type_b,
1082 phys_addr_t *out_start,
1083 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1084{
f1af9d3a
PH
1085 int idx_a = *idx & 0xffffffff;
1086 int idx_b = *idx >> 32;
b1154233 1087
560dca27
GS
1088 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1089 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1090
1091 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1092 idx_a = type_a->cnt - 1;
e47608ab 1093 if (type_b != NULL)
1094 idx_b = type_b->cnt;
1095 else
1096 idx_b = 0;
7bd0b0f0
TH
1097 }
1098
f1af9d3a
PH
1099 for (; idx_a >= 0; idx_a--) {
1100 struct memblock_region *m = &type_a->regions[idx_a];
1101
7bd0b0f0
TH
1102 phys_addr_t m_start = m->base;
1103 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1104 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1105
9f3d5eaa 1106 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1107 continue;
1108
f1af9d3a
PH
1109 if (!type_b) {
1110 if (out_start)
1111 *out_start = m_start;
1112 if (out_end)
1113 *out_end = m_end;
1114 if (out_nid)
1115 *out_nid = m_nid;
fb399b48 1116 idx_a--;
f1af9d3a
PH
1117 *idx = (u32)idx_a | (u64)idx_b << 32;
1118 return;
1119 }
1120
1121 /* scan areas before each reservation */
1122 for (; idx_b >= 0; idx_b--) {
1123 struct memblock_region *r;
1124 phys_addr_t r_start;
1125 phys_addr_t r_end;
1126
1127 r = &type_b->regions[idx_b];
1128 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1129 r_end = idx_b < type_b->cnt ?
1c4bc43d 1130 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1131 /*
1132 * if idx_b advanced past idx_a,
1133 * break out to advance idx_a
1134 */
7bd0b0f0 1135
7bd0b0f0
TH
1136 if (r_end <= m_start)
1137 break;
1138 /* if the two regions intersect, we're done */
1139 if (m_end > r_start) {
1140 if (out_start)
1141 *out_start = max(m_start, r_start);
1142 if (out_end)
1143 *out_end = min(m_end, r_end);
1144 if (out_nid)
f1af9d3a 1145 *out_nid = m_nid;
7bd0b0f0 1146 if (m_start >= r_start)
f1af9d3a 1147 idx_a--;
7bd0b0f0 1148 else
f1af9d3a
PH
1149 idx_b--;
1150 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1151 return;
1152 }
1153 }
1154 }
f1af9d3a 1155 /* signal end of iteration */
7bd0b0f0
TH
1156 *idx = ULLONG_MAX;
1157}
1158
7c0caeb8 1159/*
45e79815 1160 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1161 */
1162void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1163 unsigned long *out_start_pfn,
1164 unsigned long *out_end_pfn, int *out_nid)
1165{
1166 struct memblock_type *type = &memblock.memory;
1167 struct memblock_region *r;
d622abf7 1168 int r_nid;
7c0caeb8
TH
1169
1170 while (++*idx < type->cnt) {
1171 r = &type->regions[*idx];
d622abf7 1172 r_nid = memblock_get_region_node(r);
7c0caeb8
TH
1173
1174 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1175 continue;
d622abf7 1176 if (nid == MAX_NUMNODES || nid == r_nid)
7c0caeb8
TH
1177 break;
1178 }
1179 if (*idx >= type->cnt) {
1180 *idx = -1;
1181 return;
1182 }
1183
1184 if (out_start_pfn)
1185 *out_start_pfn = PFN_UP(r->base);
1186 if (out_end_pfn)
1187 *out_end_pfn = PFN_DOWN(r->base + r->size);
1188 if (out_nid)
d622abf7 1189 *out_nid = r_nid;
7c0caeb8
TH
1190}
1191
1192/**
1193 * memblock_set_node - set node ID on memblock regions
1194 * @base: base of area to set node ID for
1195 * @size: size of area to set node ID for
e7e8de59 1196 * @type: memblock type to set node ID for
7c0caeb8
TH
1197 * @nid: node ID to set
1198 *
47cec443 1199 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1200 * Regions which cross the area boundaries are split as necessary.
1201 *
47cec443 1202 * Return:
7c0caeb8
TH
1203 * 0 on success, -errno on failure.
1204 */
1205int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1206 struct memblock_type *type, int nid)
7c0caeb8 1207{
3f08a302 1208#ifdef CONFIG_NEED_MULTIPLE_NODES
6a9ceb31
TH
1209 int start_rgn, end_rgn;
1210 int i, ret;
7c0caeb8 1211
6a9ceb31
TH
1212 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1213 if (ret)
1214 return ret;
7c0caeb8 1215
6a9ceb31 1216 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1217 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1218
1219 memblock_merge_regions(type);
3f08a302 1220#endif
7c0caeb8
TH
1221 return 0;
1222}
3f08a302 1223
837566e7
AD
1224#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1225/**
1226 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1227 *
1228 * @idx: pointer to u64 loop variable
1229 * @zone: zone in which all of the memory blocks reside
1230 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1231 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1232 *
1233 * This function is meant to be a zone/pfn specific wrapper for the
1234 * for_each_mem_range type iterators. Specifically they are used in the
1235 * deferred memory init routines and as such we were duplicating much of
1236 * this logic throughout the code. So instead of having it in multiple
1237 * locations it seemed like it would make more sense to centralize this to
1238 * one new iterator that does everything they need.
1239 */
1240void __init_memblock
1241__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1242 unsigned long *out_spfn, unsigned long *out_epfn)
1243{
1244 int zone_nid = zone_to_nid(zone);
1245 phys_addr_t spa, epa;
1246 int nid;
1247
1248 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1249 &memblock.memory, &memblock.reserved,
1250 &spa, &epa, &nid);
1251
1252 while (*idx != U64_MAX) {
1253 unsigned long epfn = PFN_DOWN(epa);
1254 unsigned long spfn = PFN_UP(spa);
1255
1256 /*
1257 * Verify the end is at least past the start of the zone and
1258 * that we have at least one PFN to initialize.
1259 */
1260 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1261 /* if we went too far just stop searching */
1262 if (zone_end_pfn(zone) <= spfn) {
1263 *idx = U64_MAX;
1264 break;
1265 }
1266
1267 if (out_spfn)
1268 *out_spfn = max(zone->zone_start_pfn, spfn);
1269 if (out_epfn)
1270 *out_epfn = min(zone_end_pfn(zone), epfn);
1271
1272 return;
1273 }
1274
1275 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1276 &memblock.memory, &memblock.reserved,
1277 &spa, &epa, &nid);
1278 }
1279
1280 /* signal end of iteration */
1281 if (out_spfn)
1282 *out_spfn = ULONG_MAX;
1283 if (out_epfn)
1284 *out_epfn = 0;
1285}
1286
1287#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1288
92d12f95
MR
1289/**
1290 * memblock_alloc_range_nid - allocate boot memory block
1291 * @size: size of memory block to be allocated in bytes
1292 * @align: alignment of the region and block's size
1293 * @start: the lower bound of the memory region to allocate (phys address)
1294 * @end: the upper bound of the memory region to allocate (phys address)
1295 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1296 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1297 *
1298 * The allocation is performed from memory region limited by
95830666 1299 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1300 *
0ac398b1
YY
1301 * If the specified node can not hold the requested memory and @exact_nid
1302 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1303 *
1304 * For systems with memory mirroring, the allocation is attempted first
1305 * from the regions with mirroring enabled and then retried from any
1306 * memory region.
1307 *
1308 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1309 * allocated boot memory block, so that it is never reported as leaks.
1310 *
1311 * Return:
1312 * Physical address of allocated memory block on success, %0 on failure.
1313 */
8676af1f 1314phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
2bfc2862 1315 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1316 phys_addr_t end, int nid,
1317 bool exact_nid)
95f72d1e 1318{
92d12f95 1319 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1320 phys_addr_t found;
95f72d1e 1321
92d12f95
MR
1322 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1323 nid = NUMA_NO_NODE;
1324
2f770806
MR
1325 if (!align) {
1326 /* Can't use WARNs this early in boot on powerpc */
1327 dump_stack();
1328 align = SMP_CACHE_BYTES;
1329 }
1330
92d12f95 1331again:
fc6daaf9
TL
1332 found = memblock_find_in_range_node(size, align, start, end, nid,
1333 flags);
92d12f95
MR
1334 if (found && !memblock_reserve(found, size))
1335 goto done;
1336
0ac398b1 1337 if (nid != NUMA_NO_NODE && !exact_nid) {
92d12f95
MR
1338 found = memblock_find_in_range_node(size, align, start,
1339 end, NUMA_NO_NODE,
1340 flags);
1341 if (found && !memblock_reserve(found, size))
1342 goto done;
1343 }
1344
1345 if (flags & MEMBLOCK_MIRROR) {
1346 flags &= ~MEMBLOCK_MIRROR;
1347 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1348 &size);
1349 goto again;
1350 }
1351
1352 return 0;
1353
1354done:
1355 /* Skip kmemleak for kasan_init() due to high volume. */
1356 if (end != MEMBLOCK_ALLOC_KASAN)
aedf95ea 1357 /*
92d12f95
MR
1358 * The min_count is set to 0 so that memblock allocated
1359 * blocks are never reported as leaks. This is because many
1360 * of these blocks are only referred via the physical
1361 * address which is not looked up by kmemleak.
aedf95ea 1362 */
9099daed 1363 kmemleak_alloc_phys(found, size, 0, 0);
92d12f95
MR
1364
1365 return found;
95f72d1e
YL
1366}
1367
a2974133
MR
1368/**
1369 * memblock_phys_alloc_range - allocate a memory block inside specified range
1370 * @size: size of memory block to be allocated in bytes
1371 * @align: alignment of the region and block's size
1372 * @start: the lower bound of the memory region to allocate (physical address)
1373 * @end: the upper bound of the memory region to allocate (physical address)
1374 *
1375 * Allocate @size bytes in the between @start and @end.
1376 *
1377 * Return: physical address of the allocated memory block on success,
1378 * %0 on failure.
1379 */
8a770c2a
MR
1380phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1381 phys_addr_t align,
1382 phys_addr_t start,
1383 phys_addr_t end)
2bfc2862 1384{
b5cf2d6c
FM
1385 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1386 __func__, (u64)size, (u64)align, &start, &end,
1387 (void *)_RET_IP_);
0ac398b1
YY
1388 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1389 false);
7bd0b0f0
TH
1390}
1391
a2974133 1392/**
17cbe038 1393 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
a2974133
MR
1394 * @size: size of memory block to be allocated in bytes
1395 * @align: alignment of the region and block's size
1396 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1397 *
1398 * Allocates memory block from the specified NUMA node. If the node
1399 * has no available memory, attempts to allocated from any node in the
1400 * system.
1401 *
1402 * Return: physical address of the allocated memory block on success,
1403 * %0 on failure.
1404 */
9a8dd708 1405phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1406{
33755574 1407 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1408 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1409}
1410
26f09e9b 1411/**
eb31d559 1412 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1413 * @size: size of memory block to be allocated in bytes
1414 * @align: alignment of the region and block's size
1415 * @min_addr: the lower bound of the memory region to allocate (phys address)
1416 * @max_addr: the upper bound of the memory region to allocate (phys address)
1417 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1418 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1419 *
92d12f95
MR
1420 * Allocates memory block using memblock_alloc_range_nid() and
1421 * converts the returned physical address to virtual.
26f09e9b 1422 *
92d12f95
MR
1423 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1424 * will fall back to memory below @min_addr. Other constraints, such
1425 * as node and mirrored memory will be handled again in
1426 * memblock_alloc_range_nid().
26f09e9b 1427 *
47cec443 1428 * Return:
26f09e9b
SS
1429 * Virtual address of allocated memory block on success, NULL on failure.
1430 */
eb31d559 1431static void * __init memblock_alloc_internal(
26f09e9b
SS
1432 phys_addr_t size, phys_addr_t align,
1433 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1434 int nid, bool exact_nid)
26f09e9b
SS
1435{
1436 phys_addr_t alloc;
26f09e9b
SS
1437
1438 /*
1439 * Detect any accidental use of these APIs after slab is ready, as at
1440 * this moment memblock may be deinitialized already and its
c6ffc5ca 1441 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1442 */
1443 if (WARN_ON_ONCE(slab_is_available()))
1444 return kzalloc_node(size, GFP_NOWAIT, nid);
1445
f3057ad7
MR
1446 if (max_addr > memblock.current_limit)
1447 max_addr = memblock.current_limit;
1448
0ac398b1
YY
1449 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1450 exact_nid);
26f09e9b 1451
92d12f95
MR
1452 /* retry allocation without lower limit */
1453 if (!alloc && min_addr)
0ac398b1
YY
1454 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1455 exact_nid);
26f09e9b 1456
92d12f95
MR
1457 if (!alloc)
1458 return NULL;
26f09e9b 1459
92d12f95 1460 return phys_to_virt(alloc);
26f09e9b
SS
1461}
1462
0ac398b1
YY
1463/**
1464 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1465 * without zeroing memory
1466 * @size: size of memory block to be allocated in bytes
1467 * @align: alignment of the region and block's size
1468 * @min_addr: the lower bound of the memory region from where the allocation
1469 * is preferred (phys address)
1470 * @max_addr: the upper bound of the memory region from where the allocation
1471 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1472 * allocate only from memory limited by memblock.current_limit value
1473 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1474 *
1475 * Public function, provides additional debug information (including caller
1476 * info), if enabled. Does not zero allocated memory.
1477 *
1478 * Return:
1479 * Virtual address of allocated memory block on success, NULL on failure.
1480 */
1481void * __init memblock_alloc_exact_nid_raw(
1482 phys_addr_t size, phys_addr_t align,
1483 phys_addr_t min_addr, phys_addr_t max_addr,
1484 int nid)
1485{
1486 void *ptr;
1487
1488 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1489 __func__, (u64)size, (u64)align, nid, &min_addr,
1490 &max_addr, (void *)_RET_IP_);
1491
1492 ptr = memblock_alloc_internal(size, align,
1493 min_addr, max_addr, nid, true);
1494 if (ptr && size > 0)
1495 page_init_poison(ptr, size);
1496
1497 return ptr;
1498}
1499
ea1f5f37 1500/**
eb31d559 1501 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1502 * memory and without panicking
1503 * @size: size of memory block to be allocated in bytes
1504 * @align: alignment of the region and block's size
1505 * @min_addr: the lower bound of the memory region from where the allocation
1506 * is preferred (phys address)
1507 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1508 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1509 * allocate only from memory limited by memblock.current_limit value
1510 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1511 *
1512 * Public function, provides additional debug information (including caller
1513 * info), if enabled. Does not zero allocated memory, does not panic if request
1514 * cannot be satisfied.
1515 *
47cec443 1516 * Return:
ea1f5f37
PT
1517 * Virtual address of allocated memory block on success, NULL on failure.
1518 */
eb31d559 1519void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1520 phys_addr_t size, phys_addr_t align,
1521 phys_addr_t min_addr, phys_addr_t max_addr,
1522 int nid)
1523{
1524 void *ptr;
1525
d75f773c 1526 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1527 __func__, (u64)size, (u64)align, nid, &min_addr,
1528 &max_addr, (void *)_RET_IP_);
ea1f5f37 1529
eb31d559 1530 ptr = memblock_alloc_internal(size, align,
0ac398b1 1531 min_addr, max_addr, nid, false);
ea1f5f37 1532 if (ptr && size > 0)
f682a97a
AD
1533 page_init_poison(ptr, size);
1534
ea1f5f37
PT
1535 return ptr;
1536}
1537
26f09e9b 1538/**
c0dbe825 1539 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1540 * @size: size of memory block to be allocated in bytes
1541 * @align: alignment of the region and block's size
1542 * @min_addr: the lower bound of the memory region from where the allocation
1543 * is preferred (phys address)
1544 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1545 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1546 * allocate only from memory limited by memblock.current_limit value
1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548 *
c0dbe825
MR
1549 * Public function, provides additional debug information (including caller
1550 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1551 *
47cec443 1552 * Return:
26f09e9b
SS
1553 * Virtual address of allocated memory block on success, NULL on failure.
1554 */
eb31d559 1555void * __init memblock_alloc_try_nid(
26f09e9b
SS
1556 phys_addr_t size, phys_addr_t align,
1557 phys_addr_t min_addr, phys_addr_t max_addr,
1558 int nid)
1559{
1560 void *ptr;
1561
d75f773c 1562 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1563 __func__, (u64)size, (u64)align, nid, &min_addr,
1564 &max_addr, (void *)_RET_IP_);
eb31d559 1565 ptr = memblock_alloc_internal(size, align,
0ac398b1 1566 min_addr, max_addr, nid, false);
c0dbe825 1567 if (ptr)
ea1f5f37 1568 memset(ptr, 0, size);
26f09e9b 1569
c0dbe825 1570 return ptr;
26f09e9b
SS
1571}
1572
48a833cc 1573/**
a2974133 1574 * __memblock_free_late - free pages directly to buddy allocator
48a833cc 1575 * @base: phys starting address of the boot memory block
26f09e9b
SS
1576 * @size: size of the boot memory block in bytes
1577 *
a2974133 1578 * This is only useful when the memblock allocator has already been torn
26f09e9b 1579 * down, but we are still initializing the system. Pages are released directly
a2974133 1580 * to the buddy allocator.
26f09e9b
SS
1581 */
1582void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1583{
a36aab89 1584 phys_addr_t cursor, end;
26f09e9b 1585
a36aab89 1586 end = base + size - 1;
d75f773c 1587 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1588 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1589 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1590 cursor = PFN_UP(base);
1591 end = PFN_DOWN(base + size);
1592
1593 for (; cursor < end; cursor++) {
7c2ee349 1594 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1595 totalram_pages_inc();
26f09e9b
SS
1596 }
1597}
9d1e2492
BH
1598
1599/*
1600 * Remaining API functions
1601 */
1602
1f1ffb8a 1603phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1604{
1440c4e2 1605 return memblock.memory.total_size;
95f72d1e
YL
1606}
1607
8907de5d
SD
1608phys_addr_t __init_memblock memblock_reserved_size(void)
1609{
1610 return memblock.reserved.total_size;
1611}
1612
0a93ebef
SR
1613/* lowest address */
1614phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1615{
1616 return memblock.memory.regions[0].base;
1617}
1618
10d06439 1619phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1620{
1621 int idx = memblock.memory.cnt - 1;
1622
e3239ff9 1623 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1624}
1625
a571d4eb 1626static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1627{
1c4bc43d 1628 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1629 struct memblock_region *r;
95f72d1e 1630
a571d4eb
DC
1631 /*
1632 * translate the memory @limit size into the max address within one of
1633 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1634 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1635 */
cc6de168 1636 for_each_mem_region(r) {
c0ce8fef
TH
1637 if (limit <= r->size) {
1638 max_addr = r->base + limit;
1639 break;
95f72d1e 1640 }
c0ce8fef 1641 limit -= r->size;
95f72d1e 1642 }
c0ce8fef 1643
a571d4eb
DC
1644 return max_addr;
1645}
1646
1647void __init memblock_enforce_memory_limit(phys_addr_t limit)
1648{
49aef717 1649 phys_addr_t max_addr;
a571d4eb
DC
1650
1651 if (!limit)
1652 return;
1653
1654 max_addr = __find_max_addr(limit);
1655
1656 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1657 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1658 return;
1659
c0ce8fef 1660 /* truncate both memory and reserved regions */
f1af9d3a 1661 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1662 PHYS_ADDR_MAX);
f1af9d3a 1663 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1664 PHYS_ADDR_MAX);
95f72d1e
YL
1665}
1666
c9ca9b4e
AT
1667void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1668{
1669 int start_rgn, end_rgn;
1670 int i, ret;
1671
1672 if (!size)
1673 return;
1674
1675 ret = memblock_isolate_range(&memblock.memory, base, size,
1676 &start_rgn, &end_rgn);
1677 if (ret)
1678 return;
1679
1680 /* remove all the MAP regions */
1681 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1682 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1683 memblock_remove_region(&memblock.memory, i);
1684
1685 for (i = start_rgn - 1; i >= 0; i--)
1686 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1687 memblock_remove_region(&memblock.memory, i);
1688
1689 /* truncate the reserved regions */
1690 memblock_remove_range(&memblock.reserved, 0, base);
1691 memblock_remove_range(&memblock.reserved,
1c4bc43d 1692 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1693}
1694
a571d4eb
DC
1695void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1696{
a571d4eb 1697 phys_addr_t max_addr;
a571d4eb
DC
1698
1699 if (!limit)
1700 return;
1701
1702 max_addr = __find_max_addr(limit);
1703
1704 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1705 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1706 return;
1707
c9ca9b4e 1708 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1709}
1710
cd79481d 1711static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1712{
1713 unsigned int left = 0, right = type->cnt;
1714
1715 do {
1716 unsigned int mid = (right + left) / 2;
1717
1718 if (addr < type->regions[mid].base)
1719 right = mid;
1720 else if (addr >= (type->regions[mid].base +
1721 type->regions[mid].size))
1722 left = mid + 1;
1723 else
1724 return mid;
1725 } while (left < right);
1726 return -1;
1727}
1728
f5a222dc 1729bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1730{
72d4b0b4
BH
1731 return memblock_search(&memblock.reserved, addr) != -1;
1732}
95f72d1e 1733
b4ad0c7e 1734bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1735{
1736 return memblock_search(&memblock.memory, addr) != -1;
1737}
1738
937f0c26 1739bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1740{
1741 int i = memblock_search(&memblock.memory, addr);
1742
1743 if (i == -1)
1744 return false;
1745 return !memblock_is_nomap(&memblock.memory.regions[i]);
1746}
1747
e76b63f8
YL
1748int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1749 unsigned long *start_pfn, unsigned long *end_pfn)
1750{
1751 struct memblock_type *type = &memblock.memory;
16763230 1752 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1753
1754 if (mid == -1)
1755 return -1;
1756
f7e2f7e8
FF
1757 *start_pfn = PFN_DOWN(type->regions[mid].base);
1758 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8 1759
d622abf7 1760 return memblock_get_region_node(&type->regions[mid]);
e76b63f8 1761}
e76b63f8 1762
eab30949
SB
1763/**
1764 * memblock_is_region_memory - check if a region is a subset of memory
1765 * @base: base of region to check
1766 * @size: size of region to check
1767 *
47cec443 1768 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1769 *
47cec443 1770 * Return:
eab30949
SB
1771 * 0 if false, non-zero if true
1772 */
937f0c26 1773bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1774{
abb65272 1775 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1776 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1777
1778 if (idx == -1)
937f0c26 1779 return false;
ef415ef4 1780 return (memblock.memory.regions[idx].base +
eb18f1b5 1781 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1782}
1783
eab30949
SB
1784/**
1785 * memblock_is_region_reserved - check if a region intersects reserved memory
1786 * @base: base of region to check
1787 * @size: size of region to check
1788 *
47cec443
MR
1789 * Check if the region [@base, @base + @size) intersects a reserved
1790 * memory block.
eab30949 1791 *
47cec443 1792 * Return:
c5c5c9d1 1793 * True if they intersect, false if not.
eab30949 1794 */
c5c5c9d1 1795bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1796{
eb18f1b5 1797 memblock_cap_size(base, &size);
c5c5c9d1 1798 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1799}
1800
6ede1fd3
YL
1801void __init_memblock memblock_trim_memory(phys_addr_t align)
1802{
6ede1fd3 1803 phys_addr_t start, end, orig_start, orig_end;
136199f0 1804 struct memblock_region *r;
6ede1fd3 1805
cc6de168 1806 for_each_mem_region(r) {
136199f0
EM
1807 orig_start = r->base;
1808 orig_end = r->base + r->size;
6ede1fd3
YL
1809 start = round_up(orig_start, align);
1810 end = round_down(orig_end, align);
1811
1812 if (start == orig_start && end == orig_end)
1813 continue;
1814
1815 if (start < end) {
136199f0
EM
1816 r->base = start;
1817 r->size = end - start;
6ede1fd3 1818 } else {
136199f0
EM
1819 memblock_remove_region(&memblock.memory,
1820 r - memblock.memory.regions);
1821 r--;
6ede1fd3
YL
1822 }
1823 }
1824}
e63075a3 1825
3661ca66 1826void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1827{
1828 memblock.current_limit = limit;
1829}
1830
fec51014
LA
1831phys_addr_t __init_memblock memblock_get_current_limit(void)
1832{
1833 return memblock.current_limit;
1834}
1835
0262d9c8 1836static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1837{
5d63f81c 1838 phys_addr_t base, end, size;
e1720fee 1839 enum memblock_flags flags;
8c9c1701
AK
1840 int idx;
1841 struct memblock_region *rgn;
6ed311b2 1842
0262d9c8 1843 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1844
66e8b438 1845 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1846 char nid_buf[32] = "";
1847
1848 base = rgn->base;
1849 size = rgn->size;
5d63f81c 1850 end = base + size - 1;
66a20757 1851 flags = rgn->flags;
3f08a302 1852#ifdef CONFIG_NEED_MULTIPLE_NODES
7c0caeb8
TH
1853 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1854 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1855 memblock_get_region_node(rgn));
1856#endif
e1720fee 1857 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1858 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1859 }
1860}
1861
87c55870 1862static void __init_memblock __memblock_dump_all(void)
6ed311b2 1863{
6ed311b2 1864 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1865 pr_info(" memory size = %pa reserved size = %pa\n",
1866 &memblock.memory.total_size,
1867 &memblock.reserved.total_size);
6ed311b2 1868
0262d9c8
HC
1869 memblock_dump(&memblock.memory);
1870 memblock_dump(&memblock.reserved);
409efd4c 1871#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 1872 memblock_dump(&physmem);
409efd4c 1873#endif
6ed311b2
BH
1874}
1875
87c55870
MR
1876void __init_memblock memblock_dump_all(void)
1877{
1878 if (memblock_debug)
1879 __memblock_dump_all();
1880}
1881
1aadc056 1882void __init memblock_allow_resize(void)
6ed311b2 1883{
142b45a7 1884 memblock_can_resize = 1;
6ed311b2
BH
1885}
1886
6ed311b2
BH
1887static int __init early_memblock(char *p)
1888{
1889 if (p && strstr(p, "debug"))
1890 memblock_debug = 1;
1891 return 0;
1892}
1893early_param("memblock", early_memblock);
1894
4f5b0c17
MR
1895static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1896{
1897 struct page *start_pg, *end_pg;
1898 phys_addr_t pg, pgend;
1899
1900 /*
1901 * Convert start_pfn/end_pfn to a struct page pointer.
1902 */
1903 start_pg = pfn_to_page(start_pfn - 1) + 1;
1904 end_pg = pfn_to_page(end_pfn - 1) + 1;
1905
1906 /*
1907 * Convert to physical addresses, and round start upwards and end
1908 * downwards.
1909 */
1910 pg = PAGE_ALIGN(__pa(start_pg));
1911 pgend = __pa(end_pg) & PAGE_MASK;
1912
1913 /*
1914 * If there are free pages between these, free the section of the
1915 * memmap array.
1916 */
1917 if (pg < pgend)
1918 memblock_free(pg, pgend - pg);
1919}
1920
1921/*
1922 * The mem_map array can get very big. Free the unused area of the memory map.
1923 */
1924static void __init free_unused_memmap(void)
1925{
1926 unsigned long start, end, prev_end = 0;
1927 int i;
1928
1929 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1930 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1931 return;
1932
1933 /*
1934 * This relies on each bank being in address order.
1935 * The banks are sorted previously in bootmem_init().
1936 */
1937 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1938#ifdef CONFIG_SPARSEMEM
1939 /*
1940 * Take care not to free memmap entries that don't exist
1941 * due to SPARSEMEM sections which aren't present.
1942 */
1943 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1944#else
1945 /*
1946 * Align down here since the VM subsystem insists that the
1947 * memmap entries are valid from the bank start aligned to
1948 * MAX_ORDER_NR_PAGES.
1949 */
1950 start = round_down(start, MAX_ORDER_NR_PAGES);
1951#endif
1952
1953 /*
1954 * If we had a previous bank, and there is a space
1955 * between the current bank and the previous, free it.
1956 */
1957 if (prev_end && prev_end < start)
1958 free_memmap(prev_end, start);
1959
1960 /*
1961 * Align up here since the VM subsystem insists that the
1962 * memmap entries are valid from the bank end aligned to
1963 * MAX_ORDER_NR_PAGES.
1964 */
1965 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
1966 }
1967
1968#ifdef CONFIG_SPARSEMEM
1969 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
1970 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
1971#endif
1972}
1973
bda49a81
MR
1974static void __init __free_pages_memory(unsigned long start, unsigned long end)
1975{
1976 int order;
1977
1978 while (start < end) {
1979 order = min(MAX_ORDER - 1UL, __ffs(start));
1980
1981 while (start + (1UL << order) > end)
1982 order--;
1983
1984 memblock_free_pages(pfn_to_page(start), start, order);
1985
1986 start += (1UL << order);
1987 }
1988}
1989
1990static unsigned long __init __free_memory_core(phys_addr_t start,
1991 phys_addr_t end)
1992{
1993 unsigned long start_pfn = PFN_UP(start);
1994 unsigned long end_pfn = min_t(unsigned long,
1995 PFN_DOWN(end), max_low_pfn);
1996
1997 if (start_pfn >= end_pfn)
1998 return 0;
1999
2000 __free_pages_memory(start_pfn, end_pfn);
2001
2002 return end_pfn - start_pfn;
2003}
2004
2005static unsigned long __init free_low_memory_core_early(void)
2006{
2007 unsigned long count = 0;
2008 phys_addr_t start, end;
2009 u64 i;
2010
2011 memblock_clear_hotplug(0, -1);
2012
9f3d5eaa 2013 for_each_reserved_mem_range(i, &start, &end)
bda49a81
MR
2014 reserve_bootmem_region(start, end);
2015
2016 /*
2017 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2018 * because in some case like Node0 doesn't have RAM installed
2019 * low ram will be on Node1
2020 */
2021 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2022 NULL)
2023 count += __free_memory_core(start, end);
2024
2025 return count;
2026}
2027
2028static int reset_managed_pages_done __initdata;
2029
2030void reset_node_managed_pages(pg_data_t *pgdat)
2031{
2032 struct zone *z;
2033
2034 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2035 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2036}
2037
2038void __init reset_all_zones_managed_pages(void)
2039{
2040 struct pglist_data *pgdat;
2041
2042 if (reset_managed_pages_done)
2043 return;
2044
2045 for_each_online_pgdat(pgdat)
2046 reset_node_managed_pages(pgdat);
2047
2048 reset_managed_pages_done = 1;
2049}
2050
2051/**
2052 * memblock_free_all - release free pages to the buddy allocator
bda49a81 2053 */
097d43d8 2054void __init memblock_free_all(void)
bda49a81
MR
2055{
2056 unsigned long pages;
2057
4f5b0c17 2058 free_unused_memmap();
bda49a81
MR
2059 reset_all_zones_managed_pages();
2060
2061 pages = free_low_memory_core_early();
ca79b0c2 2062 totalram_pages_add(pages);
bda49a81
MR
2063}
2064
350e88ba 2065#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
6d03b885
BH
2066
2067static int memblock_debug_show(struct seq_file *m, void *private)
2068{
2069 struct memblock_type *type = m->private;
2070 struct memblock_region *reg;
2071 int i;
5d63f81c 2072 phys_addr_t end;
6d03b885
BH
2073
2074 for (i = 0; i < type->cnt; i++) {
2075 reg = &type->regions[i];
5d63f81c 2076 end = reg->base + reg->size - 1;
6d03b885 2077
5d63f81c
MC
2078 seq_printf(m, "%4d: ", i);
2079 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
2080 }
2081 return 0;
2082}
5ad35093 2083DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2084
2085static int __init memblock_init_debugfs(void)
2086{
2087 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2088
0825a6f9
JP
2089 debugfs_create_file("memory", 0444, root,
2090 &memblock.memory, &memblock_debug_fops);
2091 debugfs_create_file("reserved", 0444, root,
2092 &memblock.reserved, &memblock_debug_fops);
70210ed9 2093#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905
DH
2094 debugfs_create_file("physmem", 0444, root, &physmem,
2095 &memblock_debug_fops);
70210ed9 2096#endif
6d03b885
BH
2097
2098 return 0;
2099}
2100__initcall(memblock_init_debugfs);
2101
2102#endif /* CONFIG_DEBUG_FS */