net: ti: icssg-prueth: Fix r30 CMDs bitmasks
[linux-2.6-block.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
450d0e74
ZG
32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34#endif
35
3e039c5c
MR
36/**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
77649905
DH
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
3e039c5c 54 *
9303c9d5 55 * Each region is represented by struct memblock_region that
3e039c5c 56 * defines the region extents, its attributes and NUMA node id on NUMA
1bf162e4
MCC
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
77649905 59 * the allocator metadata. The "memory" and "reserved" types are nicely
9303c9d5 60 * wrapped with struct memblock. This structure is statically
77649905 61 * initialized at build time. The region arrays are initially sized to
450d0e74
ZG
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
69 *
70 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
3e039c5c 77 *
a2974133
MR
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
6e5af9a8
C
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
a2974133 85 *
df1758d9 86 * Note, that both API variants use implicit assumptions about allowed
a2974133 87 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
3e039c5c 90 *
6e5af9a8
C
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
3e039c5c 93 *
6e5af9a8 94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
77649905
DH
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
3e039c5c
MR
97 */
98
a9ee6cf5 99#ifndef CONFIG_NUMA
bda49a81
MR
100struct pglist_data __refdata contig_page_data;
101EXPORT_SYMBOL(contig_page_data);
102#endif
103
104unsigned long max_low_pfn;
105unsigned long min_low_pfn;
106unsigned long max_pfn;
107unsigned long long max_possible_pfn;
108
450d0e74 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
8a5b403d 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
70210ed9 113#endif
fe091c20
TH
114
115struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
450d0e74 118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
0262d9c8 119 .memory.name = "memory",
fe091c20
TH
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 124 .reserved.name = "reserved",
fe091c20 125
79442ed1 126 .bottom_up = false,
fe091c20
TH
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128};
95f72d1e 129
77649905
DH
130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136};
137#endif
138
9f3d5eaa
MR
139/*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
cd991db8
MR
147#define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
87c55870
MR
152#define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158static int memblock_debug __initdata_memblock;
fc493f83 159static bool system_has_some_mirror __initdata_memblock;
1aadc056 160static int memblock_can_resize __initdata_memblock;
fc493f83
CM
161static int memblock_memory_in_slab __initdata_memblock;
162static int memblock_reserved_in_slab __initdata_memblock;
95f72d1e 163
0db31d63
MW
164bool __init_memblock memblock_has_mirror(void)
165{
166 return system_has_some_mirror;
167}
168
c366ea89 169static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
170{
171 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172}
173
eb18f1b5
TH
174/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
175static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176{
1c4bc43d 177 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
178}
179
6ed311b2
BH
180/*
181 * Address comparison utilities
182 */
10d06439 183static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 184 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
185{
186 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
187}
188
95cf82ec 189bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 190 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
191{
192 unsigned long i;
193
023accf5
MR
194 memblock_cap_size(base, &size);
195
f14516fb
AK
196 for (i = 0; i < type->cnt; i++)
197 if (memblock_addrs_overlap(base, size, type->regions[i].base,
198 type->regions[i].size))
6ed311b2 199 break;
c5c5c9d1 200 return i < type->cnt;
6ed311b2
BH
201}
202
47cec443 203/**
79442ed1
TC
204 * __memblock_find_range_bottom_up - find free area utility in bottom-up
205 * @start: start of candidate range
47cec443
MR
206 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
207 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
208 * @size: size of free area to find
209 * @align: alignment of free area to find
b1154233 210 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 211 * @flags: pick from blocks based on memory attributes
79442ed1
TC
212 *
213 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
214 *
47cec443 215 * Return:
79442ed1
TC
216 * Found address on success, 0 on failure.
217 */
218static phys_addr_t __init_memblock
219__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 220 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 221 enum memblock_flags flags)
79442ed1
TC
222{
223 phys_addr_t this_start, this_end, cand;
224 u64 i;
225
fc6daaf9 226 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
227 this_start = clamp(this_start, start, end);
228 this_end = clamp(this_end, start, end);
229
230 cand = round_up(this_start, align);
231 if (cand < this_end && this_end - cand >= size)
232 return cand;
233 }
234
235 return 0;
236}
237
7bd0b0f0 238/**
1402899e 239 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 240 * @start: start of candidate range
47cec443
MR
241 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
242 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
243 * @size: size of free area to find
244 * @align: alignment of free area to find
b1154233 245 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 246 * @flags: pick from blocks based on memory attributes
7bd0b0f0 247 *
1402899e 248 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 249 *
47cec443 250 * Return:
79442ed1 251 * Found address on success, 0 on failure.
6ed311b2 252 */
1402899e
TC
253static phys_addr_t __init_memblock
254__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 255 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 256 enum memblock_flags flags)
f7210e6c
TC
257{
258 phys_addr_t this_start, this_end, cand;
259 u64 i;
260
fc6daaf9
TL
261 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
262 NULL) {
f7210e6c
TC
263 this_start = clamp(this_start, start, end);
264 this_end = clamp(this_end, start, end);
265
266 if (this_end < size)
267 continue;
268
269 cand = round_down(this_end - size, align);
270 if (cand >= this_start)
271 return cand;
272 }
1402899e 273
f7210e6c
TC
274 return 0;
275}
6ed311b2 276
1402899e
TC
277/**
278 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
279 * @size: size of free area to find
280 * @align: alignment of free area to find
87029ee9 281 * @start: start of candidate range
47cec443
MR
282 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
283 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 284 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 285 * @flags: pick from blocks based on memory attributes
1402899e
TC
286 *
287 * Find @size free area aligned to @align in the specified range and node.
288 *
47cec443 289 * Return:
79442ed1 290 * Found address on success, 0 on failure.
1402899e 291 */
c366ea89 292static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 293 phys_addr_t align, phys_addr_t start,
e1720fee
MR
294 phys_addr_t end, int nid,
295 enum memblock_flags flags)
1402899e
TC
296{
297 /* pump up @end */
fed84c78 298 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
c6975d7c 299 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
1402899e
TC
300 end = memblock.current_limit;
301
302 /* avoid allocating the first page */
303 start = max_t(phys_addr_t, start, PAGE_SIZE);
304 end = max(start, end);
305
2dcb3964
RG
306 if (memblock_bottom_up())
307 return __memblock_find_range_bottom_up(start, end, size, align,
308 nid, flags);
309 else
310 return __memblock_find_range_top_down(start, end, size, align,
311 nid, flags);
1402899e
TC
312}
313
7bd0b0f0
TH
314/**
315 * memblock_find_in_range - find free area in given range
316 * @start: start of candidate range
47cec443
MR
317 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
318 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
319 * @size: size of free area to find
320 * @align: alignment of free area to find
321 *
322 * Find @size free area aligned to @align in the specified range.
323 *
47cec443 324 * Return:
79442ed1 325 * Found address on success, 0 on failure.
fc769a8e 326 */
a7259df7 327static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
7bd0b0f0
TH
328 phys_addr_t end, phys_addr_t size,
329 phys_addr_t align)
6ed311b2 330{
a3f5bafc 331 phys_addr_t ret;
e1720fee 332 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
333
334again:
335 ret = memblock_find_in_range_node(size, align, start, end,
336 NUMA_NO_NODE, flags);
337
338 if (!ret && (flags & MEMBLOCK_MIRROR)) {
14d9a675 339 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
a3f5bafc
TL
340 &size);
341 flags &= ~MEMBLOCK_MIRROR;
342 goto again;
343 }
344
345 return ret;
6ed311b2
BH
346}
347
10d06439 348static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 349{
1440c4e2 350 type->total_size -= type->regions[r].size;
7c0caeb8
TH
351 memmove(&type->regions[r], &type->regions[r + 1],
352 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 353 type->cnt--;
95f72d1e 354
8f7a6605
BH
355 /* Special case for empty arrays */
356 if (type->cnt == 0) {
1440c4e2 357 WARN_ON(type->total_size != 0);
8f7a6605
BH
358 type->cnt = 1;
359 type->regions[0].base = 0;
360 type->regions[0].size = 0;
66a20757 361 type->regions[0].flags = 0;
7c0caeb8 362 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 363 }
95f72d1e
YL
364}
365
350e88ba 366#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 367/**
47cec443 368 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
369 */
370void __init memblock_discard(void)
5e270e25 371{
3010f876 372 phys_addr_t addr, size;
5e270e25 373
3010f876
PT
374 if (memblock.reserved.regions != memblock_reserved_init_regions) {
375 addr = __pa(memblock.reserved.regions);
376 size = PAGE_ALIGN(sizeof(struct memblock_region) *
377 memblock.reserved.max);
c94afc46
ML
378 if (memblock_reserved_in_slab)
379 kfree(memblock.reserved.regions);
380 else
381 memblock_free_late(addr, size);
3010f876 382 }
5e270e25 383
91b540f9 384 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
385 addr = __pa(memblock.memory.regions);
386 size = PAGE_ALIGN(sizeof(struct memblock_region) *
387 memblock.memory.max);
c94afc46
ML
388 if (memblock_memory_in_slab)
389 kfree(memblock.memory.regions);
390 else
391 memblock_free_late(addr, size);
3010f876 392 }
9f3d5eaa
MR
393
394 memblock_memory = NULL;
5e270e25 395}
5e270e25
PH
396#endif
397
48c3b583
GP
398/**
399 * memblock_double_array - double the size of the memblock regions array
400 * @type: memblock type of the regions array being doubled
401 * @new_area_start: starting address of memory range to avoid overlap with
402 * @new_area_size: size of memory range to avoid overlap with
403 *
404 * Double the size of the @type regions array. If memblock is being used to
405 * allocate memory for a new reserved regions array and there is a previously
47cec443 406 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
407 * waiting to be reserved, ensure the memory used by the new array does
408 * not overlap.
409 *
47cec443 410 * Return:
48c3b583
GP
411 * 0 on success, -1 on failure.
412 */
413static int __init_memblock memblock_double_array(struct memblock_type *type,
414 phys_addr_t new_area_start,
415 phys_addr_t new_area_size)
142b45a7
BH
416{
417 struct memblock_region *new_array, *old_array;
29f67386 418 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 419 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 420 int use_slab = slab_is_available();
181eb394 421 int *in_slab;
142b45a7
BH
422
423 /* We don't allow resizing until we know about the reserved regions
424 * of memory that aren't suitable for allocation
425 */
426 if (!memblock_can_resize)
427 return -1;
428
142b45a7
BH
429 /* Calculate new doubled size */
430 old_size = type->max * sizeof(struct memblock_region);
431 new_size = old_size << 1;
29f67386
YL
432 /*
433 * We need to allocated new one align to PAGE_SIZE,
434 * so we can free them completely later.
435 */
436 old_alloc_size = PAGE_ALIGN(old_size);
437 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 438
181eb394
GS
439 /* Retrieve the slab flag */
440 if (type == &memblock.memory)
441 in_slab = &memblock_memory_in_slab;
442 else
443 in_slab = &memblock_reserved_in_slab;
444
a2974133 445 /* Try to find some space for it */
142b45a7
BH
446 if (use_slab) {
447 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 448 addr = new_array ? __pa(new_array) : 0;
4e2f0775 449 } else {
48c3b583
GP
450 /* only exclude range when trying to double reserved.regions */
451 if (type != &memblock.reserved)
452 new_area_start = new_area_size = 0;
453
454 addr = memblock_find_in_range(new_area_start + new_area_size,
455 memblock.current_limit,
29f67386 456 new_alloc_size, PAGE_SIZE);
48c3b583
GP
457 if (!addr && new_area_size)
458 addr = memblock_find_in_range(0,
fd07383b
AM
459 min(new_area_start, memblock.current_limit),
460 new_alloc_size, PAGE_SIZE);
48c3b583 461
15674868 462 new_array = addr ? __va(addr) : NULL;
4e2f0775 463 }
1f5026a7 464 if (!addr) {
142b45a7 465 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 466 type->name, type->max, type->max * 2);
142b45a7
BH
467 return -1;
468 }
142b45a7 469
a36aab89
MR
470 new_end = addr + new_size - 1;
471 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
472 type->name, type->max * 2, &addr, &new_end);
ea9e4376 473
fd07383b
AM
474 /*
475 * Found space, we now need to move the array over before we add the
476 * reserved region since it may be our reserved array itself that is
477 * full.
142b45a7
BH
478 */
479 memcpy(new_array, type->regions, old_size);
480 memset(new_array + type->max, 0, old_size);
481 old_array = type->regions;
482 type->regions = new_array;
483 type->max <<= 1;
484
fd07383b 485 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
486 if (*in_slab)
487 kfree(old_array);
488 else if (old_array != memblock_memory_init_regions &&
489 old_array != memblock_reserved_init_regions)
4421cca0 490 memblock_free(old_array, old_alloc_size);
142b45a7 491
fd07383b
AM
492 /*
493 * Reserve the new array if that comes from the memblock. Otherwise, we
494 * needn't do it
181eb394
GS
495 */
496 if (!use_slab)
29f67386 497 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
498
499 /* Update slab flag */
500 *in_slab = use_slab;
501
142b45a7
BH
502 return 0;
503}
504
784656f9
TH
505/**
506 * memblock_merge_regions - merge neighboring compatible regions
507 * @type: memblock type to scan
2fe03412
PZ
508 * @start_rgn: start scanning from (@start_rgn - 1)
509 * @end_rgn: end scanning at (@end_rgn - 1)
510 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
784656f9 511 */
2fe03412
PZ
512static void __init_memblock memblock_merge_regions(struct memblock_type *type,
513 unsigned long start_rgn,
514 unsigned long end_rgn)
95f72d1e 515{
784656f9 516 int i = 0;
2fe03412
PZ
517 if (start_rgn)
518 i = start_rgn - 1;
519 end_rgn = min(end_rgn, type->cnt - 1);
520 while (i < end_rgn) {
784656f9
TH
521 struct memblock_region *this = &type->regions[i];
522 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 523
7c0caeb8
TH
524 if (this->base + this->size != next->base ||
525 memblock_get_region_node(this) !=
66a20757
TC
526 memblock_get_region_node(next) ||
527 this->flags != next->flags) {
784656f9
TH
528 BUG_ON(this->base + this->size > next->base);
529 i++;
530 continue;
8f7a6605
BH
531 }
532
784656f9 533 this->size += next->size;
c0232ae8
LF
534 /* move forward from next + 1, index of which is i + 2 */
535 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 536 type->cnt--;
2fe03412 537 end_rgn--;
95f72d1e 538 }
784656f9 539}
95f72d1e 540
784656f9
TH
541/**
542 * memblock_insert_region - insert new memblock region
209ff86d
TC
543 * @type: memblock type to insert into
544 * @idx: index for the insertion point
545 * @base: base address of the new region
546 * @size: size of the new region
547 * @nid: node id of the new region
66a20757 548 * @flags: flags of the new region
784656f9 549 *
47cec443 550 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 551 * @type must already have extra room to accommodate the new region.
784656f9
TH
552 */
553static void __init_memblock memblock_insert_region(struct memblock_type *type,
554 int idx, phys_addr_t base,
66a20757 555 phys_addr_t size,
e1720fee
MR
556 int nid,
557 enum memblock_flags flags)
784656f9
TH
558{
559 struct memblock_region *rgn = &type->regions[idx];
560
561 BUG_ON(type->cnt >= type->max);
562 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
563 rgn->base = base;
564 rgn->size = size;
66a20757 565 rgn->flags = flags;
7c0caeb8 566 memblock_set_region_node(rgn, nid);
784656f9 567 type->cnt++;
1440c4e2 568 type->total_size += size;
784656f9
TH
569}
570
571/**
f1af9d3a 572 * memblock_add_range - add new memblock region
784656f9
TH
573 * @type: memblock type to add new region into
574 * @base: base address of the new region
575 * @size: size of the new region
7fb0bc3f 576 * @nid: nid of the new region
66a20757 577 * @flags: flags of the new region
784656f9 578 *
47cec443 579 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
580 * is allowed to overlap with existing ones - overlaps don't affect already
581 * existing regions. @type is guaranteed to be minimal (all neighbouring
582 * compatible regions are merged) after the addition.
583 *
47cec443 584 * Return:
784656f9
TH
585 * 0 on success, -errno on failure.
586 */
02634a44 587static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 588 phys_addr_t base, phys_addr_t size,
e1720fee 589 int nid, enum memblock_flags flags)
784656f9
TH
590{
591 bool insert = false;
eb18f1b5
TH
592 phys_addr_t obase = base;
593 phys_addr_t end = base + memblock_cap_size(base, &size);
2fe03412 594 int idx, nr_new, start_rgn = -1, end_rgn;
8c9c1701 595 struct memblock_region *rgn;
784656f9 596
b3dc627c
TH
597 if (!size)
598 return 0;
599
784656f9
TH
600 /* special case for empty array */
601 if (type->regions[0].size == 0) {
1440c4e2 602 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
603 type->regions[0].base = base;
604 type->regions[0].size = size;
66a20757 605 type->regions[0].flags = flags;
7fb0bc3f 606 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 607 type->total_size = size;
8f7a6605 608 return 0;
95f72d1e 609 }
28e1a8f4
JT
610
611 /*
612 * The worst case is when new range overlaps all existing regions,
613 * then we'll need type->cnt + 1 empty regions in @type. So if
ad500fb2 614 * type->cnt * 2 + 1 is less than or equal to type->max, we know
28e1a8f4
JT
615 * that there is enough empty regions in @type, and we can insert
616 * regions directly.
617 */
ad500fb2 618 if (type->cnt * 2 + 1 <= type->max)
28e1a8f4
JT
619 insert = true;
620
784656f9
TH
621repeat:
622 /*
623 * The following is executed twice. Once with %false @insert and
624 * then with %true. The first counts the number of regions needed
412d0008 625 * to accommodate the new area. The second actually inserts them.
142b45a7 626 */
784656f9
TH
627 base = obase;
628 nr_new = 0;
95f72d1e 629
66e8b438 630 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
631 phys_addr_t rbase = rgn->base;
632 phys_addr_t rend = rbase + rgn->size;
633
634 if (rbase >= end)
95f72d1e 635 break;
784656f9
TH
636 if (rend <= base)
637 continue;
638 /*
639 * @rgn overlaps. If it separates the lower part of new
640 * area, insert that portion.
641 */
642 if (rbase > base) {
a9ee6cf5 643#ifdef CONFIG_NUMA
c0a29498
WY
644 WARN_ON(nid != memblock_get_region_node(rgn));
645#endif
4fcab5f4 646 WARN_ON(flags != rgn->flags);
784656f9 647 nr_new++;
2fe03412
PZ
648 if (insert) {
649 if (start_rgn == -1)
650 start_rgn = idx;
651 end_rgn = idx + 1;
8c9c1701 652 memblock_insert_region(type, idx++, base,
66a20757
TC
653 rbase - base, nid,
654 flags);
2fe03412 655 }
95f72d1e 656 }
784656f9
TH
657 /* area below @rend is dealt with, forget about it */
658 base = min(rend, end);
95f72d1e 659 }
784656f9
TH
660
661 /* insert the remaining portion */
662 if (base < end) {
663 nr_new++;
2fe03412
PZ
664 if (insert) {
665 if (start_rgn == -1)
666 start_rgn = idx;
667 end_rgn = idx + 1;
8c9c1701 668 memblock_insert_region(type, idx, base, end - base,
66a20757 669 nid, flags);
2fe03412 670 }
95f72d1e 671 }
95f72d1e 672
ef3cc4db 673 if (!nr_new)
674 return 0;
675
784656f9
TH
676 /*
677 * If this was the first round, resize array and repeat for actual
678 * insertions; otherwise, merge and return.
142b45a7 679 */
784656f9
TH
680 if (!insert) {
681 while (type->cnt + nr_new > type->max)
48c3b583 682 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
683 return -ENOMEM;
684 insert = true;
685 goto repeat;
686 } else {
2fe03412 687 memblock_merge_regions(type, start_rgn, end_rgn);
784656f9 688 return 0;
142b45a7 689 }
95f72d1e
YL
690}
691
48a833cc
MR
692/**
693 * memblock_add_node - add new memblock region within a NUMA node
694 * @base: base address of the new region
695 * @size: size of the new region
696 * @nid: nid of the new region
952eea9b 697 * @flags: flags of the new region
48a833cc
MR
698 *
699 * Add new memblock region [@base, @base + @size) to the "memory"
700 * type. See memblock_add_range() description for mode details
701 *
702 * Return:
703 * 0 on success, -errno on failure.
704 */
7fb0bc3f 705int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
952eea9b 706 int nid, enum memblock_flags flags)
7fb0bc3f 707{
00974b9a
GU
708 phys_addr_t end = base + size - 1;
709
952eea9b
DH
710 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
711 &base, &end, nid, flags, (void *)_RET_IP_);
00974b9a 712
952eea9b 713 return memblock_add_range(&memblock.memory, base, size, nid, flags);
7fb0bc3f
TH
714}
715
48a833cc
MR
716/**
717 * memblock_add - add new memblock region
718 * @base: base address of the new region
719 * @size: size of the new region
720 *
721 * Add new memblock region [@base, @base + @size) to the "memory"
722 * type. See memblock_add_range() description for mode details
723 *
724 * Return:
725 * 0 on success, -errno on failure.
726 */
f705ac4b 727int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 728{
5d63f81c
MC
729 phys_addr_t end = base + size - 1;
730
a090d711 731 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 732 &base, &end, (void *)_RET_IP_);
6a4055bc 733
f705ac4b 734 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
735}
736
6a9ceb31
TH
737/**
738 * memblock_isolate_range - isolate given range into disjoint memblocks
739 * @type: memblock type to isolate range for
740 * @base: base of range to isolate
741 * @size: size of range to isolate
742 * @start_rgn: out parameter for the start of isolated region
743 * @end_rgn: out parameter for the end of isolated region
744 *
745 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 746 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
747 * which may create at most two more regions. The index of the first
748 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
749 *
47cec443 750 * Return:
6a9ceb31
TH
751 * 0 on success, -errno on failure.
752 */
753static int __init_memblock memblock_isolate_range(struct memblock_type *type,
754 phys_addr_t base, phys_addr_t size,
755 int *start_rgn, int *end_rgn)
756{
eb18f1b5 757 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
758 int idx;
759 struct memblock_region *rgn;
6a9ceb31
TH
760
761 *start_rgn = *end_rgn = 0;
762
b3dc627c
TH
763 if (!size)
764 return 0;
765
6a9ceb31
TH
766 /* we'll create at most two more regions */
767 while (type->cnt + 2 > type->max)
48c3b583 768 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
769 return -ENOMEM;
770
66e8b438 771 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
772 phys_addr_t rbase = rgn->base;
773 phys_addr_t rend = rbase + rgn->size;
774
775 if (rbase >= end)
776 break;
777 if (rend <= base)
778 continue;
779
780 if (rbase < base) {
781 /*
782 * @rgn intersects from below. Split and continue
783 * to process the next region - the new top half.
784 */
785 rgn->base = base;
1440c4e2
TH
786 rgn->size -= base - rbase;
787 type->total_size -= base - rbase;
8c9c1701 788 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
789 memblock_get_region_node(rgn),
790 rgn->flags);
6a9ceb31
TH
791 } else if (rend > end) {
792 /*
793 * @rgn intersects from above. Split and redo the
794 * current region - the new bottom half.
795 */
796 rgn->base = end;
1440c4e2
TH
797 rgn->size -= end - rbase;
798 type->total_size -= end - rbase;
8c9c1701 799 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
800 memblock_get_region_node(rgn),
801 rgn->flags);
6a9ceb31
TH
802 } else {
803 /* @rgn is fully contained, record it */
804 if (!*end_rgn)
8c9c1701
AK
805 *start_rgn = idx;
806 *end_rgn = idx + 1;
6a9ceb31
TH
807 }
808 }
809
810 return 0;
811}
6a9ceb31 812
35bd16a2 813static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 814 phys_addr_t base, phys_addr_t size)
95f72d1e 815{
71936180
TH
816 int start_rgn, end_rgn;
817 int i, ret;
95f72d1e 818
71936180
TH
819 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
820 if (ret)
821 return ret;
95f72d1e 822
71936180
TH
823 for (i = end_rgn - 1; i >= start_rgn; i--)
824 memblock_remove_region(type, i);
8f7a6605 825 return 0;
95f72d1e
YL
826}
827
581adcbe 828int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 829{
25cf23d7
MK
830 phys_addr_t end = base + size - 1;
831
a090d711 832 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
833 &base, &end, (void *)_RET_IP_);
834
f1af9d3a 835 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
836}
837
77e02cf5 838/**
4421cca0 839 * memblock_free - free boot memory allocation
77e02cf5
LT
840 * @ptr: starting address of the boot memory allocation
841 * @size: size of the boot memory block in bytes
842 *
843 * Free boot memory block previously allocated by memblock_alloc_xx() API.
844 * The freeing memory will not be released to the buddy allocator.
845 */
4421cca0 846void __init_memblock memblock_free(void *ptr, size_t size)
77e02cf5
LT
847{
848 if (ptr)
3ecc6834 849 memblock_phys_free(__pa(ptr), size);
77e02cf5
LT
850}
851
4d72868c 852/**
3ecc6834 853 * memblock_phys_free - free boot memory block
4d72868c
MR
854 * @base: phys starting address of the boot memory block
855 * @size: size of the boot memory block in bytes
856 *
fa81ab49 857 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
4d72868c
MR
858 * The freeing memory will not be released to the buddy allocator.
859 */
3ecc6834 860int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
95f72d1e 861{
5d63f81c
MC
862 phys_addr_t end = base + size - 1;
863
a090d711 864 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 865 &base, &end, (void *)_RET_IP_);
24aa0788 866
9099daed 867 kmemleak_free_part_phys(base, size);
f1af9d3a 868 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
869}
870
f705ac4b 871int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 872{
5d63f81c
MC
873 phys_addr_t end = base + size - 1;
874
a090d711 875 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 876 &base, &end, (void *)_RET_IP_);
95f72d1e 877
f705ac4b 878 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
879}
880
02634a44
AK
881#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
882int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
883{
884 phys_addr_t end = base + size - 1;
885
886 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
887 &base, &end, (void *)_RET_IP_);
888
77649905 889 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
02634a44
AK
890}
891#endif
892
66b16edf 893/**
47cec443
MR
894 * memblock_setclr_flag - set or clear flag for a memory region
895 * @base: base address of the region
896 * @size: size of the region
897 * @set: set or clear the flag
8958b249 898 * @flag: the flag to update
66b16edf 899 *
4308ce17 900 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 901 *
47cec443 902 * Return: 0 on success, -errno on failure.
66b16edf 903 */
4308ce17
TL
904static int __init_memblock memblock_setclr_flag(phys_addr_t base,
905 phys_addr_t size, int set, int flag)
66b16edf
TC
906{
907 struct memblock_type *type = &memblock.memory;
908 int i, ret, start_rgn, end_rgn;
909
910 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
911 if (ret)
912 return ret;
913
fe145124
MR
914 for (i = start_rgn; i < end_rgn; i++) {
915 struct memblock_region *r = &type->regions[i];
916
4308ce17 917 if (set)
fe145124 918 r->flags |= flag;
4308ce17 919 else
fe145124
MR
920 r->flags &= ~flag;
921 }
66b16edf 922
2fe03412 923 memblock_merge_regions(type, start_rgn, end_rgn);
66b16edf
TC
924 return 0;
925}
926
927/**
4308ce17 928 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
929 * @base: the base phys addr of the region
930 * @size: the size of the region
931 *
47cec443 932 * Return: 0 on success, -errno on failure.
4308ce17
TL
933 */
934int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
935{
936 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
937}
938
939/**
940 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
941 * @base: the base phys addr of the region
942 * @size: the size of the region
66b16edf 943 *
47cec443 944 * Return: 0 on success, -errno on failure.
66b16edf
TC
945 */
946int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
947{
4308ce17 948 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
949}
950
a3f5bafc
TL
951/**
952 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
953 * @base: the base phys addr of the region
954 * @size: the size of the region
955 *
47cec443 956 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
957 */
958int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
959{
902c2d91
MW
960 if (!mirrored_kernelcore)
961 return 0;
962
a3f5bafc
TL
963 system_has_some_mirror = true;
964
965 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
966}
967
bf3d3cc5
AB
968/**
969 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
970 * @base: the base phys addr of the region
971 * @size: the size of the region
972 *
9092d4f7
MR
973 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
974 * direct mapping of the physical memory. These regions will still be
975 * covered by the memory map. The struct page representing NOMAP memory
976 * frames in the memory map will be PageReserved()
977 *
658aafc8
MR
978 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
979 * memblock, the caller must inform kmemleak to ignore that memory
980 *
47cec443 981 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
982 */
983int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
984{
6c9a5455 985 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
bf3d3cc5 986}
a3f5bafc 987
4c546b8a
AT
988/**
989 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
990 * @base: the base phys addr of the region
991 * @size: the size of the region
992 *
47cec443 993 * Return: 0 on success, -errno on failure.
4c546b8a
AT
994 */
995int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
996{
997 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
998}
999
9f3d5eaa
MR
1000static bool should_skip_region(struct memblock_type *type,
1001 struct memblock_region *m,
1002 int nid, int flags)
c9a688a3
MR
1003{
1004 int m_nid = memblock_get_region_node(m);
1005
9f3d5eaa
MR
1006 /* we never skip regions when iterating memblock.reserved or physmem */
1007 if (type != memblock_memory)
1008 return false;
1009
c9a688a3
MR
1010 /* only memory regions are associated with nodes, check it */
1011 if (nid != NUMA_NO_NODE && nid != m_nid)
1012 return true;
1013
1014 /* skip hotpluggable memory regions if needed */
79e482e9
MR
1015 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1016 !(flags & MEMBLOCK_HOTPLUG))
c9a688a3
MR
1017 return true;
1018
1019 /* if we want mirror memory skip non-mirror memory regions */
1020 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1021 return true;
1022
1023 /* skip nomap memory unless we were asked for it explicitly */
1024 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1025 return true;
1026
f7892d8e
DH
1027 /* skip driver-managed memory unless we were asked for it explicitly */
1028 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1029 return true;
1030
c9a688a3
MR
1031 return false;
1032}
1033
35fd0808 1034/**
a2974133 1035 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 1036 * @idx: pointer to u64 loop variable
b1154233 1037 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1038 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1039 * @type_a: pointer to memblock_type from where the range is taken
1040 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1041 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1042 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1043 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 1044 *
f1af9d3a 1045 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 1046 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
1047 * *@idx contains index into type_a and the upper 32bit indexes the
1048 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
1049 * look like the following,
1050 *
1051 * 0:[0-16), 1:[32-48), 2:[128-130)
1052 *
1053 * The upper 32bit indexes the following regions.
1054 *
1055 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1056 *
1057 * As both region arrays are sorted, the function advances the two indices
1058 * in lockstep and returns each intersection.
1059 */
77649905
DH
1060void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1061 struct memblock_type *type_a,
1062 struct memblock_type *type_b, phys_addr_t *out_start,
1063 phys_addr_t *out_end, int *out_nid)
35fd0808 1064{
f1af9d3a
PH
1065 int idx_a = *idx & 0xffffffff;
1066 int idx_b = *idx >> 32;
b1154233 1067
f1af9d3a
PH
1068 if (WARN_ONCE(nid == MAX_NUMNODES,
1069 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 1070 nid = NUMA_NO_NODE;
35fd0808 1071
f1af9d3a
PH
1072 for (; idx_a < type_a->cnt; idx_a++) {
1073 struct memblock_region *m = &type_a->regions[idx_a];
1074
35fd0808
TH
1075 phys_addr_t m_start = m->base;
1076 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1077 int m_nid = memblock_get_region_node(m);
35fd0808 1078
9f3d5eaa 1079 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1080 continue;
1081
f1af9d3a
PH
1082 if (!type_b) {
1083 if (out_start)
1084 *out_start = m_start;
1085 if (out_end)
1086 *out_end = m_end;
1087 if (out_nid)
1088 *out_nid = m_nid;
1089 idx_a++;
1090 *idx = (u32)idx_a | (u64)idx_b << 32;
1091 return;
1092 }
1093
1094 /* scan areas before each reservation */
1095 for (; idx_b < type_b->cnt + 1; idx_b++) {
1096 struct memblock_region *r;
1097 phys_addr_t r_start;
1098 phys_addr_t r_end;
1099
1100 r = &type_b->regions[idx_b];
1101 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1102 r_end = idx_b < type_b->cnt ?
1c4bc43d 1103 r->base : PHYS_ADDR_MAX;
35fd0808 1104
f1af9d3a
PH
1105 /*
1106 * if idx_b advanced past idx_a,
1107 * break out to advance idx_a
1108 */
35fd0808
TH
1109 if (r_start >= m_end)
1110 break;
1111 /* if the two regions intersect, we're done */
1112 if (m_start < r_end) {
1113 if (out_start)
f1af9d3a
PH
1114 *out_start =
1115 max(m_start, r_start);
35fd0808
TH
1116 if (out_end)
1117 *out_end = min(m_end, r_end);
1118 if (out_nid)
f1af9d3a 1119 *out_nid = m_nid;
35fd0808 1120 /*
f1af9d3a
PH
1121 * The region which ends first is
1122 * advanced for the next iteration.
35fd0808
TH
1123 */
1124 if (m_end <= r_end)
f1af9d3a 1125 idx_a++;
35fd0808 1126 else
f1af9d3a
PH
1127 idx_b++;
1128 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1129 return;
1130 }
1131 }
1132 }
1133
1134 /* signal end of iteration */
1135 *idx = ULLONG_MAX;
1136}
1137
7bd0b0f0 1138/**
f1af9d3a
PH
1139 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1140 *
7bd0b0f0 1141 * @idx: pointer to u64 loop variable
ad5ea8cd 1142 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1143 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1144 * @type_a: pointer to memblock_type from where the range is taken
1145 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1146 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1147 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1148 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1149 *
47cec443
MR
1150 * Finds the next range from type_a which is not marked as unsuitable
1151 * in type_b.
1152 *
f1af9d3a 1153 * Reverse of __next_mem_range().
7bd0b0f0 1154 */
e1720fee
MR
1155void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1156 enum memblock_flags flags,
f1af9d3a
PH
1157 struct memblock_type *type_a,
1158 struct memblock_type *type_b,
1159 phys_addr_t *out_start,
1160 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1161{
f1af9d3a
PH
1162 int idx_a = *idx & 0xffffffff;
1163 int idx_b = *idx >> 32;
b1154233 1164
560dca27
GS
1165 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1166 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1167
1168 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1169 idx_a = type_a->cnt - 1;
e47608ab 1170 if (type_b != NULL)
1171 idx_b = type_b->cnt;
1172 else
1173 idx_b = 0;
7bd0b0f0
TH
1174 }
1175
f1af9d3a
PH
1176 for (; idx_a >= 0; idx_a--) {
1177 struct memblock_region *m = &type_a->regions[idx_a];
1178
7bd0b0f0
TH
1179 phys_addr_t m_start = m->base;
1180 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1181 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1182
9f3d5eaa 1183 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1184 continue;
1185
f1af9d3a
PH
1186 if (!type_b) {
1187 if (out_start)
1188 *out_start = m_start;
1189 if (out_end)
1190 *out_end = m_end;
1191 if (out_nid)
1192 *out_nid = m_nid;
fb399b48 1193 idx_a--;
f1af9d3a
PH
1194 *idx = (u32)idx_a | (u64)idx_b << 32;
1195 return;
1196 }
1197
1198 /* scan areas before each reservation */
1199 for (; idx_b >= 0; idx_b--) {
1200 struct memblock_region *r;
1201 phys_addr_t r_start;
1202 phys_addr_t r_end;
1203
1204 r = &type_b->regions[idx_b];
1205 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1206 r_end = idx_b < type_b->cnt ?
1c4bc43d 1207 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1208 /*
1209 * if idx_b advanced past idx_a,
1210 * break out to advance idx_a
1211 */
7bd0b0f0 1212
7bd0b0f0
TH
1213 if (r_end <= m_start)
1214 break;
1215 /* if the two regions intersect, we're done */
1216 if (m_end > r_start) {
1217 if (out_start)
1218 *out_start = max(m_start, r_start);
1219 if (out_end)
1220 *out_end = min(m_end, r_end);
1221 if (out_nid)
f1af9d3a 1222 *out_nid = m_nid;
7bd0b0f0 1223 if (m_start >= r_start)
f1af9d3a 1224 idx_a--;
7bd0b0f0 1225 else
f1af9d3a
PH
1226 idx_b--;
1227 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1228 return;
1229 }
1230 }
1231 }
f1af9d3a 1232 /* signal end of iteration */
7bd0b0f0
TH
1233 *idx = ULLONG_MAX;
1234}
1235
7c0caeb8 1236/*
45e79815 1237 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1238 */
1239void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1240 unsigned long *out_start_pfn,
1241 unsigned long *out_end_pfn, int *out_nid)
1242{
1243 struct memblock_type *type = &memblock.memory;
1244 struct memblock_region *r;
d622abf7 1245 int r_nid;
7c0caeb8
TH
1246
1247 while (++*idx < type->cnt) {
1248 r = &type->regions[*idx];
d622abf7 1249 r_nid = memblock_get_region_node(r);
7c0caeb8
TH
1250
1251 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1252 continue;
d622abf7 1253 if (nid == MAX_NUMNODES || nid == r_nid)
7c0caeb8
TH
1254 break;
1255 }
1256 if (*idx >= type->cnt) {
1257 *idx = -1;
1258 return;
1259 }
1260
1261 if (out_start_pfn)
1262 *out_start_pfn = PFN_UP(r->base);
1263 if (out_end_pfn)
1264 *out_end_pfn = PFN_DOWN(r->base + r->size);
1265 if (out_nid)
d622abf7 1266 *out_nid = r_nid;
7c0caeb8
TH
1267}
1268
1269/**
1270 * memblock_set_node - set node ID on memblock regions
1271 * @base: base of area to set node ID for
1272 * @size: size of area to set node ID for
e7e8de59 1273 * @type: memblock type to set node ID for
7c0caeb8
TH
1274 * @nid: node ID to set
1275 *
47cec443 1276 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1277 * Regions which cross the area boundaries are split as necessary.
1278 *
47cec443 1279 * Return:
7c0caeb8
TH
1280 * 0 on success, -errno on failure.
1281 */
1282int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1283 struct memblock_type *type, int nid)
7c0caeb8 1284{
a9ee6cf5 1285#ifdef CONFIG_NUMA
6a9ceb31
TH
1286 int start_rgn, end_rgn;
1287 int i, ret;
7c0caeb8 1288
6a9ceb31
TH
1289 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1290 if (ret)
1291 return ret;
7c0caeb8 1292
6a9ceb31 1293 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1294 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8 1295
2fe03412 1296 memblock_merge_regions(type, start_rgn, end_rgn);
3f08a302 1297#endif
7c0caeb8
TH
1298 return 0;
1299}
3f08a302 1300
837566e7
AD
1301#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1302/**
1303 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1304 *
1305 * @idx: pointer to u64 loop variable
1306 * @zone: zone in which all of the memory blocks reside
1307 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1308 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1309 *
1310 * This function is meant to be a zone/pfn specific wrapper for the
1311 * for_each_mem_range type iterators. Specifically they are used in the
1312 * deferred memory init routines and as such we were duplicating much of
1313 * this logic throughout the code. So instead of having it in multiple
1314 * locations it seemed like it would make more sense to centralize this to
1315 * one new iterator that does everything they need.
1316 */
1317void __init_memblock
1318__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1319 unsigned long *out_spfn, unsigned long *out_epfn)
1320{
1321 int zone_nid = zone_to_nid(zone);
1322 phys_addr_t spa, epa;
837566e7
AD
1323
1324 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1325 &memblock.memory, &memblock.reserved,
f30b002c 1326 &spa, &epa, NULL);
837566e7
AD
1327
1328 while (*idx != U64_MAX) {
1329 unsigned long epfn = PFN_DOWN(epa);
1330 unsigned long spfn = PFN_UP(spa);
1331
1332 /*
1333 * Verify the end is at least past the start of the zone and
1334 * that we have at least one PFN to initialize.
1335 */
1336 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1337 /* if we went too far just stop searching */
1338 if (zone_end_pfn(zone) <= spfn) {
1339 *idx = U64_MAX;
1340 break;
1341 }
1342
1343 if (out_spfn)
1344 *out_spfn = max(zone->zone_start_pfn, spfn);
1345 if (out_epfn)
1346 *out_epfn = min(zone_end_pfn(zone), epfn);
1347
1348 return;
1349 }
1350
1351 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1352 &memblock.memory, &memblock.reserved,
f30b002c 1353 &spa, &epa, NULL);
837566e7
AD
1354 }
1355
1356 /* signal end of iteration */
1357 if (out_spfn)
1358 *out_spfn = ULONG_MAX;
1359 if (out_epfn)
1360 *out_epfn = 0;
1361}
1362
1363#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1364
92d12f95
MR
1365/**
1366 * memblock_alloc_range_nid - allocate boot memory block
1367 * @size: size of memory block to be allocated in bytes
1368 * @align: alignment of the region and block's size
1369 * @start: the lower bound of the memory region to allocate (phys address)
1370 * @end: the upper bound of the memory region to allocate (phys address)
1371 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1372 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1373 *
1374 * The allocation is performed from memory region limited by
95830666 1375 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1376 *
0ac398b1
YY
1377 * If the specified node can not hold the requested memory and @exact_nid
1378 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1379 *
1380 * For systems with memory mirroring, the allocation is attempted first
1381 * from the regions with mirroring enabled and then retried from any
1382 * memory region.
1383 *
c200d900
PW
1384 * In addition, function using kmemleak_alloc_phys for allocated boot
1385 * memory block, it is never reported as leaks.
92d12f95
MR
1386 *
1387 * Return:
1388 * Physical address of allocated memory block on success, %0 on failure.
1389 */
8676af1f 1390phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
2bfc2862 1391 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1392 phys_addr_t end, int nid,
1393 bool exact_nid)
95f72d1e 1394{
92d12f95 1395 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1396 phys_addr_t found;
95f72d1e 1397
92d12f95
MR
1398 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1399 nid = NUMA_NO_NODE;
1400
2f770806
MR
1401 if (!align) {
1402 /* Can't use WARNs this early in boot on powerpc */
1403 dump_stack();
1404 align = SMP_CACHE_BYTES;
1405 }
1406
92d12f95 1407again:
fc6daaf9
TL
1408 found = memblock_find_in_range_node(size, align, start, end, nid,
1409 flags);
92d12f95
MR
1410 if (found && !memblock_reserve(found, size))
1411 goto done;
1412
0ac398b1 1413 if (nid != NUMA_NO_NODE && !exact_nid) {
92d12f95
MR
1414 found = memblock_find_in_range_node(size, align, start,
1415 end, NUMA_NO_NODE,
1416 flags);
1417 if (found && !memblock_reserve(found, size))
1418 goto done;
1419 }
1420
1421 if (flags & MEMBLOCK_MIRROR) {
1422 flags &= ~MEMBLOCK_MIRROR;
14d9a675 1423 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
92d12f95
MR
1424 &size);
1425 goto again;
1426 }
1427
1428 return 0;
1429
1430done:
c6975d7c
QC
1431 /*
1432 * Skip kmemleak for those places like kasan_init() and
1433 * early_pgtable_alloc() due to high volume.
1434 */
1435 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
aedf95ea 1436 /*
c200d900
PW
1437 * Memblock allocated blocks are never reported as
1438 * leaks. This is because many of these blocks are
1439 * only referred via the physical address which is
1440 * not looked up by kmemleak.
aedf95ea 1441 */
c200d900 1442 kmemleak_alloc_phys(found, size, 0);
92d12f95 1443
dcdfdd40
KS
1444 /*
1445 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1446 * require memory to be accepted before it can be used by the
1447 * guest.
1448 *
1449 * Accept the memory of the allocated buffer.
1450 */
1451 accept_memory(found, found + size);
1452
92d12f95 1453 return found;
95f72d1e
YL
1454}
1455
a2974133
MR
1456/**
1457 * memblock_phys_alloc_range - allocate a memory block inside specified range
1458 * @size: size of memory block to be allocated in bytes
1459 * @align: alignment of the region and block's size
1460 * @start: the lower bound of the memory region to allocate (physical address)
1461 * @end: the upper bound of the memory region to allocate (physical address)
1462 *
1463 * Allocate @size bytes in the between @start and @end.
1464 *
1465 * Return: physical address of the allocated memory block on success,
1466 * %0 on failure.
1467 */
8a770c2a
MR
1468phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1469 phys_addr_t align,
1470 phys_addr_t start,
1471 phys_addr_t end)
2bfc2862 1472{
b5cf2d6c
FM
1473 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1474 __func__, (u64)size, (u64)align, &start, &end,
1475 (void *)_RET_IP_);
0ac398b1
YY
1476 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1477 false);
7bd0b0f0
TH
1478}
1479
a2974133 1480/**
17cbe038 1481 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
a2974133
MR
1482 * @size: size of memory block to be allocated in bytes
1483 * @align: alignment of the region and block's size
1484 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1485 *
1486 * Allocates memory block from the specified NUMA node. If the node
1487 * has no available memory, attempts to allocated from any node in the
1488 * system.
1489 *
1490 * Return: physical address of the allocated memory block on success,
1491 * %0 on failure.
1492 */
9a8dd708 1493phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1494{
33755574 1495 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1496 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1497}
1498
26f09e9b 1499/**
eb31d559 1500 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1501 * @size: size of memory block to be allocated in bytes
1502 * @align: alignment of the region and block's size
1503 * @min_addr: the lower bound of the memory region to allocate (phys address)
1504 * @max_addr: the upper bound of the memory region to allocate (phys address)
1505 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1506 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1507 *
92d12f95
MR
1508 * Allocates memory block using memblock_alloc_range_nid() and
1509 * converts the returned physical address to virtual.
26f09e9b 1510 *
92d12f95
MR
1511 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1512 * will fall back to memory below @min_addr. Other constraints, such
1513 * as node and mirrored memory will be handled again in
1514 * memblock_alloc_range_nid().
26f09e9b 1515 *
47cec443 1516 * Return:
26f09e9b
SS
1517 * Virtual address of allocated memory block on success, NULL on failure.
1518 */
eb31d559 1519static void * __init memblock_alloc_internal(
26f09e9b
SS
1520 phys_addr_t size, phys_addr_t align,
1521 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1522 int nid, bool exact_nid)
26f09e9b
SS
1523{
1524 phys_addr_t alloc;
26f09e9b
SS
1525
1526 /*
1527 * Detect any accidental use of these APIs after slab is ready, as at
1528 * this moment memblock may be deinitialized already and its
c6ffc5ca 1529 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1530 */
1531 if (WARN_ON_ONCE(slab_is_available()))
1532 return kzalloc_node(size, GFP_NOWAIT, nid);
1533
f3057ad7
MR
1534 if (max_addr > memblock.current_limit)
1535 max_addr = memblock.current_limit;
1536
0ac398b1
YY
1537 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1538 exact_nid);
26f09e9b 1539
92d12f95
MR
1540 /* retry allocation without lower limit */
1541 if (!alloc && min_addr)
0ac398b1
YY
1542 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1543 exact_nid);
26f09e9b 1544
92d12f95
MR
1545 if (!alloc)
1546 return NULL;
26f09e9b 1547
92d12f95 1548 return phys_to_virt(alloc);
26f09e9b
SS
1549}
1550
0ac398b1
YY
1551/**
1552 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1553 * without zeroing memory
1554 * @size: size of memory block to be allocated in bytes
1555 * @align: alignment of the region and block's size
1556 * @min_addr: the lower bound of the memory region from where the allocation
1557 * is preferred (phys address)
1558 * @max_addr: the upper bound of the memory region from where the allocation
1559 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1560 * allocate only from memory limited by memblock.current_limit value
1561 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1562 *
1563 * Public function, provides additional debug information (including caller
1564 * info), if enabled. Does not zero allocated memory.
1565 *
1566 * Return:
1567 * Virtual address of allocated memory block on success, NULL on failure.
1568 */
1569void * __init memblock_alloc_exact_nid_raw(
1570 phys_addr_t size, phys_addr_t align,
1571 phys_addr_t min_addr, phys_addr_t max_addr,
1572 int nid)
1573{
0ac398b1
YY
1574 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1575 __func__, (u64)size, (u64)align, nid, &min_addr,
1576 &max_addr, (void *)_RET_IP_);
1577
08678804
MR
1578 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1579 true);
0ac398b1
YY
1580}
1581
ea1f5f37 1582/**
eb31d559 1583 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1584 * memory and without panicking
1585 * @size: size of memory block to be allocated in bytes
1586 * @align: alignment of the region and block's size
1587 * @min_addr: the lower bound of the memory region from where the allocation
1588 * is preferred (phys address)
1589 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1590 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1591 * allocate only from memory limited by memblock.current_limit value
1592 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1593 *
1594 * Public function, provides additional debug information (including caller
1595 * info), if enabled. Does not zero allocated memory, does not panic if request
1596 * cannot be satisfied.
1597 *
47cec443 1598 * Return:
ea1f5f37
PT
1599 * Virtual address of allocated memory block on success, NULL on failure.
1600 */
eb31d559 1601void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1602 phys_addr_t size, phys_addr_t align,
1603 phys_addr_t min_addr, phys_addr_t max_addr,
1604 int nid)
1605{
d75f773c 1606 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1607 __func__, (u64)size, (u64)align, nid, &min_addr,
1608 &max_addr, (void *)_RET_IP_);
ea1f5f37 1609
08678804
MR
1610 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1611 false);
ea1f5f37
PT
1612}
1613
26f09e9b 1614/**
c0dbe825 1615 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1616 * @size: size of memory block to be allocated in bytes
1617 * @align: alignment of the region and block's size
1618 * @min_addr: the lower bound of the memory region from where the allocation
1619 * is preferred (phys address)
1620 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1621 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1622 * allocate only from memory limited by memblock.current_limit value
1623 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1624 *
c0dbe825
MR
1625 * Public function, provides additional debug information (including caller
1626 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1627 *
47cec443 1628 * Return:
26f09e9b
SS
1629 * Virtual address of allocated memory block on success, NULL on failure.
1630 */
eb31d559 1631void * __init memblock_alloc_try_nid(
26f09e9b
SS
1632 phys_addr_t size, phys_addr_t align,
1633 phys_addr_t min_addr, phys_addr_t max_addr,
1634 int nid)
1635{
1636 void *ptr;
1637
d75f773c 1638 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1639 __func__, (u64)size, (u64)align, nid, &min_addr,
1640 &max_addr, (void *)_RET_IP_);
eb31d559 1641 ptr = memblock_alloc_internal(size, align,
0ac398b1 1642 min_addr, max_addr, nid, false);
c0dbe825 1643 if (ptr)
ea1f5f37 1644 memset(ptr, 0, size);
26f09e9b 1645
c0dbe825 1646 return ptr;
26f09e9b
SS
1647}
1648
48a833cc 1649/**
621d9739 1650 * memblock_free_late - free pages directly to buddy allocator
48a833cc 1651 * @base: phys starting address of the boot memory block
26f09e9b
SS
1652 * @size: size of the boot memory block in bytes
1653 *
a2974133 1654 * This is only useful when the memblock allocator has already been torn
26f09e9b 1655 * down, but we are still initializing the system. Pages are released directly
a2974133 1656 * to the buddy allocator.
26f09e9b 1657 */
621d9739 1658void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
26f09e9b 1659{
a36aab89 1660 phys_addr_t cursor, end;
26f09e9b 1661
a36aab89 1662 end = base + size - 1;
d75f773c 1663 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1664 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1665 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1666 cursor = PFN_UP(base);
1667 end = PFN_DOWN(base + size);
1668
1669 for (; cursor < end; cursor++) {
647037ad 1670 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1671 totalram_pages_inc();
26f09e9b
SS
1672 }
1673}
9d1e2492
BH
1674
1675/*
1676 * Remaining API functions
1677 */
1678
1f1ffb8a 1679phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1680{
1440c4e2 1681 return memblock.memory.total_size;
95f72d1e
YL
1682}
1683
8907de5d
SD
1684phys_addr_t __init_memblock memblock_reserved_size(void)
1685{
1686 return memblock.reserved.total_size;
1687}
1688
0a93ebef
SR
1689/* lowest address */
1690phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1691{
1692 return memblock.memory.regions[0].base;
1693}
1694
10d06439 1695phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1696{
1697 int idx = memblock.memory.cnt - 1;
1698
e3239ff9 1699 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1700}
1701
a571d4eb 1702static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1703{
1c4bc43d 1704 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1705 struct memblock_region *r;
95f72d1e 1706
a571d4eb
DC
1707 /*
1708 * translate the memory @limit size into the max address within one of
1709 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1710 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1711 */
cc6de168 1712 for_each_mem_region(r) {
c0ce8fef
TH
1713 if (limit <= r->size) {
1714 max_addr = r->base + limit;
1715 break;
95f72d1e 1716 }
c0ce8fef 1717 limit -= r->size;
95f72d1e 1718 }
c0ce8fef 1719
a571d4eb
DC
1720 return max_addr;
1721}
1722
1723void __init memblock_enforce_memory_limit(phys_addr_t limit)
1724{
49aef717 1725 phys_addr_t max_addr;
a571d4eb
DC
1726
1727 if (!limit)
1728 return;
1729
1730 max_addr = __find_max_addr(limit);
1731
1732 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1733 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1734 return;
1735
c0ce8fef 1736 /* truncate both memory and reserved regions */
f1af9d3a 1737 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1738 PHYS_ADDR_MAX);
f1af9d3a 1739 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1740 PHYS_ADDR_MAX);
95f72d1e
YL
1741}
1742
c9ca9b4e
AT
1743void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1744{
1745 int start_rgn, end_rgn;
1746 int i, ret;
1747
1748 if (!size)
1749 return;
1750
5173ed72 1751 if (!memblock_memory->total_size) {
e888fa7b
GU
1752 pr_warn("%s: No memory registered yet\n", __func__);
1753 return;
1754 }
1755
c9ca9b4e
AT
1756 ret = memblock_isolate_range(&memblock.memory, base, size,
1757 &start_rgn, &end_rgn);
1758 if (ret)
1759 return;
1760
1761 /* remove all the MAP regions */
1762 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1763 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1764 memblock_remove_region(&memblock.memory, i);
1765
1766 for (i = start_rgn - 1; i >= 0; i--)
1767 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1768 memblock_remove_region(&memblock.memory, i);
1769
1770 /* truncate the reserved regions */
1771 memblock_remove_range(&memblock.reserved, 0, base);
1772 memblock_remove_range(&memblock.reserved,
1c4bc43d 1773 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1774}
1775
a571d4eb
DC
1776void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1777{
a571d4eb 1778 phys_addr_t max_addr;
a571d4eb
DC
1779
1780 if (!limit)
1781 return;
1782
1783 max_addr = __find_max_addr(limit);
1784
1785 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1786 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1787 return;
1788
c9ca9b4e 1789 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1790}
1791
cd79481d 1792static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1793{
1794 unsigned int left = 0, right = type->cnt;
1795
1796 do {
1797 unsigned int mid = (right + left) / 2;
1798
1799 if (addr < type->regions[mid].base)
1800 right = mid;
1801 else if (addr >= (type->regions[mid].base +
1802 type->regions[mid].size))
1803 left = mid + 1;
1804 else
1805 return mid;
1806 } while (left < right);
1807 return -1;
1808}
1809
f5a222dc 1810bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1811{
72d4b0b4
BH
1812 return memblock_search(&memblock.reserved, addr) != -1;
1813}
95f72d1e 1814
b4ad0c7e 1815bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1816{
1817 return memblock_search(&memblock.memory, addr) != -1;
1818}
1819
937f0c26 1820bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1821{
1822 int i = memblock_search(&memblock.memory, addr);
1823
1824 if (i == -1)
1825 return false;
1826 return !memblock_is_nomap(&memblock.memory.regions[i]);
1827}
1828
e76b63f8
YL
1829int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1830 unsigned long *start_pfn, unsigned long *end_pfn)
1831{
1832 struct memblock_type *type = &memblock.memory;
16763230 1833 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1834
1835 if (mid == -1)
1836 return -1;
1837
f7e2f7e8
FF
1838 *start_pfn = PFN_DOWN(type->regions[mid].base);
1839 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8 1840
d622abf7 1841 return memblock_get_region_node(&type->regions[mid]);
e76b63f8 1842}
e76b63f8 1843
eab30949
SB
1844/**
1845 * memblock_is_region_memory - check if a region is a subset of memory
1846 * @base: base of region to check
1847 * @size: size of region to check
1848 *
47cec443 1849 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1850 *
47cec443 1851 * Return:
eab30949
SB
1852 * 0 if false, non-zero if true
1853 */
937f0c26 1854bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1855{
abb65272 1856 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1857 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1858
1859 if (idx == -1)
937f0c26 1860 return false;
ef415ef4 1861 return (memblock.memory.regions[idx].base +
eb18f1b5 1862 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1863}
1864
eab30949
SB
1865/**
1866 * memblock_is_region_reserved - check if a region intersects reserved memory
1867 * @base: base of region to check
1868 * @size: size of region to check
1869 *
47cec443
MR
1870 * Check if the region [@base, @base + @size) intersects a reserved
1871 * memory block.
eab30949 1872 *
47cec443 1873 * Return:
c5c5c9d1 1874 * True if they intersect, false if not.
eab30949 1875 */
c5c5c9d1 1876bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1877{
c5c5c9d1 1878 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1879}
1880
6ede1fd3
YL
1881void __init_memblock memblock_trim_memory(phys_addr_t align)
1882{
6ede1fd3 1883 phys_addr_t start, end, orig_start, orig_end;
136199f0 1884 struct memblock_region *r;
6ede1fd3 1885
cc6de168 1886 for_each_mem_region(r) {
136199f0
EM
1887 orig_start = r->base;
1888 orig_end = r->base + r->size;
6ede1fd3
YL
1889 start = round_up(orig_start, align);
1890 end = round_down(orig_end, align);
1891
1892 if (start == orig_start && end == orig_end)
1893 continue;
1894
1895 if (start < end) {
136199f0
EM
1896 r->base = start;
1897 r->size = end - start;
6ede1fd3 1898 } else {
136199f0
EM
1899 memblock_remove_region(&memblock.memory,
1900 r - memblock.memory.regions);
1901 r--;
6ede1fd3
YL
1902 }
1903 }
1904}
e63075a3 1905
3661ca66 1906void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1907{
1908 memblock.current_limit = limit;
1909}
1910
fec51014
LA
1911phys_addr_t __init_memblock memblock_get_current_limit(void)
1912{
1913 return memblock.current_limit;
1914}
1915
0262d9c8 1916static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1917{
5d63f81c 1918 phys_addr_t base, end, size;
e1720fee 1919 enum memblock_flags flags;
8c9c1701
AK
1920 int idx;
1921 struct memblock_region *rgn;
6ed311b2 1922
0262d9c8 1923 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1924
66e8b438 1925 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1926 char nid_buf[32] = "";
1927
1928 base = rgn->base;
1929 size = rgn->size;
5d63f81c 1930 end = base + size - 1;
66a20757 1931 flags = rgn->flags;
a9ee6cf5 1932#ifdef CONFIG_NUMA
7c0caeb8
TH
1933 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1934 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1935 memblock_get_region_node(rgn));
1936#endif
e1720fee 1937 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1938 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1939 }
1940}
1941
87c55870 1942static void __init_memblock __memblock_dump_all(void)
6ed311b2 1943{
6ed311b2 1944 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1945 pr_info(" memory size = %pa reserved size = %pa\n",
1946 &memblock.memory.total_size,
1947 &memblock.reserved.total_size);
6ed311b2 1948
0262d9c8
HC
1949 memblock_dump(&memblock.memory);
1950 memblock_dump(&memblock.reserved);
409efd4c 1951#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 1952 memblock_dump(&physmem);
409efd4c 1953#endif
6ed311b2
BH
1954}
1955
87c55870
MR
1956void __init_memblock memblock_dump_all(void)
1957{
1958 if (memblock_debug)
1959 __memblock_dump_all();
1960}
1961
1aadc056 1962void __init memblock_allow_resize(void)
6ed311b2 1963{
142b45a7 1964 memblock_can_resize = 1;
6ed311b2
BH
1965}
1966
6ed311b2
BH
1967static int __init early_memblock(char *p)
1968{
1969 if (p && strstr(p, "debug"))
1970 memblock_debug = 1;
1971 return 0;
1972}
1973early_param("memblock", early_memblock);
1974
4f5b0c17
MR
1975static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1976{
1977 struct page *start_pg, *end_pg;
1978 phys_addr_t pg, pgend;
1979
1980 /*
1981 * Convert start_pfn/end_pfn to a struct page pointer.
1982 */
1983 start_pg = pfn_to_page(start_pfn - 1) + 1;
1984 end_pg = pfn_to_page(end_pfn - 1) + 1;
1985
1986 /*
1987 * Convert to physical addresses, and round start upwards and end
1988 * downwards.
1989 */
1990 pg = PAGE_ALIGN(__pa(start_pg));
1991 pgend = __pa(end_pg) & PAGE_MASK;
1992
1993 /*
1994 * If there are free pages between these, free the section of the
1995 * memmap array.
1996 */
1997 if (pg < pgend)
3ecc6834 1998 memblock_phys_free(pg, pgend - pg);
4f5b0c17
MR
1999}
2000
2001/*
2002 * The mem_map array can get very big. Free the unused area of the memory map.
2003 */
2004static void __init free_unused_memmap(void)
2005{
2006 unsigned long start, end, prev_end = 0;
2007 int i;
2008
2009 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2010 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2011 return;
2012
2013 /*
2014 * This relies on each bank being in address order.
2015 * The banks are sorted previously in bootmem_init().
2016 */
2017 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2018#ifdef CONFIG_SPARSEMEM
2019 /*
2020 * Take care not to free memmap entries that don't exist
2021 * due to SPARSEMEM sections which aren't present.
2022 */
2023 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 2024#endif
4f5b0c17 2025 /*
e2a86800
MR
2026 * Align down here since many operations in VM subsystem
2027 * presume that there are no holes in the memory map inside
2028 * a pageblock
4f5b0c17 2029 */
4f9bc69a 2030 start = pageblock_start_pfn(start);
4f5b0c17
MR
2031
2032 /*
2033 * If we had a previous bank, and there is a space
2034 * between the current bank and the previous, free it.
2035 */
2036 if (prev_end && prev_end < start)
2037 free_memmap(prev_end, start);
2038
2039 /*
e2a86800
MR
2040 * Align up here since many operations in VM subsystem
2041 * presume that there are no holes in the memory map inside
2042 * a pageblock
4f5b0c17 2043 */
5f7fa13f 2044 prev_end = pageblock_align(end);
4f5b0c17
MR
2045 }
2046
2047#ifdef CONFIG_SPARSEMEM
f921f53e 2048 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
5f7fa13f 2049 prev_end = pageblock_align(end);
4f5b0c17 2050 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 2051 }
4f5b0c17
MR
2052#endif
2053}
2054
bda49a81
MR
2055static void __init __free_pages_memory(unsigned long start, unsigned long end)
2056{
2057 int order;
2058
2059 while (start < end) {
59f876fb
KS
2060 /*
2061 * Free the pages in the largest chunks alignment allows.
2062 *
2063 * __ffs() behaviour is undefined for 0. start == 0 is
2064 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2065 */
2066 if (start)
2067 order = min_t(int, MAX_ORDER, __ffs(start));
2068 else
2069 order = MAX_ORDER;
bda49a81
MR
2070
2071 while (start + (1UL << order) > end)
2072 order--;
2073
2074 memblock_free_pages(pfn_to_page(start), start, order);
2075
2076 start += (1UL << order);
2077 }
2078}
2079
2080static unsigned long __init __free_memory_core(phys_addr_t start,
2081 phys_addr_t end)
2082{
2083 unsigned long start_pfn = PFN_UP(start);
2084 unsigned long end_pfn = min_t(unsigned long,
2085 PFN_DOWN(end), max_low_pfn);
2086
2087 if (start_pfn >= end_pfn)
2088 return 0;
2089
2090 __free_pages_memory(start_pfn, end_pfn);
2091
2092 return end_pfn - start_pfn;
2093}
2094
9092d4f7
MR
2095static void __init memmap_init_reserved_pages(void)
2096{
2097 struct memblock_region *region;
2098 phys_addr_t start, end;
61167ad5
YD
2099 int nid;
2100
2101 /*
2102 * set nid on all reserved pages and also treat struct
2103 * pages for the NOMAP regions as PageReserved
2104 */
2105 for_each_mem_region(region) {
2106 nid = memblock_get_region_node(region);
2107 start = region->base;
2108 end = start + region->size;
2109
2110 if (memblock_is_nomap(region))
2111 reserve_bootmem_region(start, end, nid);
2112
2113 memblock_set_node(start, end, &memblock.reserved, nid);
2114 }
9092d4f7
MR
2115
2116 /* initialize struct pages for the reserved regions */
61167ad5
YD
2117 for_each_reserved_mem_region(region) {
2118 nid = memblock_get_region_node(region);
2119 start = region->base;
2120 end = start + region->size;
9092d4f7 2121
61167ad5 2122 reserve_bootmem_region(start, end, nid);
9092d4f7
MR
2123 }
2124}
2125
bda49a81
MR
2126static unsigned long __init free_low_memory_core_early(void)
2127{
2128 unsigned long count = 0;
2129 phys_addr_t start, end;
2130 u64 i;
2131
2132 memblock_clear_hotplug(0, -1);
2133
9092d4f7 2134 memmap_init_reserved_pages();
bda49a81
MR
2135
2136 /*
2137 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2138 * because in some case like Node0 doesn't have RAM installed
2139 * low ram will be on Node1
2140 */
2141 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2142 NULL)
2143 count += __free_memory_core(start, end);
2144
2145 return count;
2146}
2147
2148static int reset_managed_pages_done __initdata;
2149
a668968f 2150static void __init reset_node_managed_pages(pg_data_t *pgdat)
bda49a81
MR
2151{
2152 struct zone *z;
2153
2154 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2155 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2156}
2157
2158void __init reset_all_zones_managed_pages(void)
2159{
2160 struct pglist_data *pgdat;
2161
2162 if (reset_managed_pages_done)
2163 return;
2164
2165 for_each_online_pgdat(pgdat)
2166 reset_node_managed_pages(pgdat);
2167
2168 reset_managed_pages_done = 1;
2169}
2170
2171/**
2172 * memblock_free_all - release free pages to the buddy allocator
bda49a81 2173 */
097d43d8 2174void __init memblock_free_all(void)
bda49a81
MR
2175{
2176 unsigned long pages;
2177
4f5b0c17 2178 free_unused_memmap();
bda49a81
MR
2179 reset_all_zones_managed_pages();
2180
2181 pages = free_low_memory_core_early();
ca79b0c2 2182 totalram_pages_add(pages);
bda49a81
MR
2183}
2184
350e88ba 2185#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
493f349e
YG
2186static const char * const flagname[] = {
2187 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2188 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2189 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2190 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2191};
6d03b885
BH
2192
2193static int memblock_debug_show(struct seq_file *m, void *private)
2194{
2195 struct memblock_type *type = m->private;
2196 struct memblock_region *reg;
de649e7f 2197 int i, j, nid;
493f349e 2198 unsigned int count = ARRAY_SIZE(flagname);
5d63f81c 2199 phys_addr_t end;
6d03b885
BH
2200
2201 for (i = 0; i < type->cnt; i++) {
2202 reg = &type->regions[i];
5d63f81c 2203 end = reg->base + reg->size - 1;
de649e7f 2204 nid = memblock_get_region_node(reg);
6d03b885 2205
5d63f81c 2206 seq_printf(m, "%4d: ", i);
493f349e 2207 seq_printf(m, "%pa..%pa ", &reg->base, &end);
de649e7f
YG
2208 if (nid != MAX_NUMNODES)
2209 seq_printf(m, "%4d ", nid);
2210 else
2211 seq_printf(m, "%4c ", 'x');
493f349e
YG
2212 if (reg->flags) {
2213 for (j = 0; j < count; j++) {
2214 if (reg->flags & (1U << j)) {
2215 seq_printf(m, "%s\n", flagname[j]);
2216 break;
2217 }
2218 }
2219 if (j == count)
2220 seq_printf(m, "%s\n", "UNKNOWN");
2221 } else {
2222 seq_printf(m, "%s\n", "NONE");
2223 }
6d03b885
BH
2224 }
2225 return 0;
2226}
5ad35093 2227DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2228
2229static int __init memblock_init_debugfs(void)
2230{
2231 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2232
0825a6f9
JP
2233 debugfs_create_file("memory", 0444, root,
2234 &memblock.memory, &memblock_debug_fops);
2235 debugfs_create_file("reserved", 0444, root,
2236 &memblock.reserved, &memblock_debug_fops);
70210ed9 2237#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905
DH
2238 debugfs_create_file("physmem", 0444, root, &physmem,
2239 &memblock_debug_fops);
70210ed9 2240#endif
6d03b885
BH
2241
2242 return 0;
2243}
2244__initcall(memblock_init_debugfs);
2245
2246#endif /* CONFIG_DEBUG_FS */