userfaultfd: wp: declare _UFFDIO_WRITEPROTECT conditionally
[linux-2.6-block.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
3e039c5c
MR
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmap`` - describes the actual physical memory regardless of
48 * the possible restrictions; the ``physmap`` type is only available
49 * on some architectures.
50 *
51 * Each region is represented by :c:type:`struct memblock_region` that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the :c:type:`struct
54 * memblock_type` which contains an array of memory regions along with
55 * the allocator metadata. The memory types are nicely wrapped with
56 * :c:type:`struct memblock`. This structure is statically initialzed
57 * at build time. The region arrays for the "memory" and "reserved"
58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
59 * "physmap" type to %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
60 * The memblock_allow_resize() enables automatic resizing of the region
61 * arrays during addition of new regions. This feature should be used
62 * with care so that memory allocated for the region array will not
63 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
64 *
65 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
66 * memory layout is by using memblock_add() or memblock_add_node()
67 * functions. The first function does not assign the region to a NUMA
68 * node and it is appropriate for UMA systems. Yet, it is possible to
69 * use it on NUMA systems as well and assign the region to a NUMA node
70 * later in the setup process using memblock_set_node(). The
71 * memblock_add_node() performs such an assignment directly.
3e039c5c 72 *
a2974133
MR
73 * Once memblock is setup the memory can be allocated using one of the
74 * API variants:
75 *
6e5af9a8
C
76 * * memblock_phys_alloc*() - these functions return the **physical**
77 * address of the allocated memory
78 * * memblock_alloc*() - these functions return the **virtual** address
79 * of the allocated memory.
a2974133
MR
80 *
81 * Note, that both API variants use implict assumptions about allowed
82 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
83 * of memblock_alloc_internal() and memblock_alloc_range_nid()
84 * functions for more elaborate description.
3e039c5c 85 *
6e5af9a8
C
86 * As the system boot progresses, the architecture specific mem_init()
87 * function frees all the memory to the buddy page allocator.
3e039c5c 88 *
6e5af9a8 89 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
3e039c5c 90 * memblock data structures will be discarded after the system
6e5af9a8 91 * initialization completes.
3e039c5c
MR
92 */
93
bda49a81
MR
94#ifndef CONFIG_NEED_MULTIPLE_NODES
95struct pglist_data __refdata contig_page_data;
96EXPORT_SYMBOL(contig_page_data);
97#endif
98
99unsigned long max_low_pfn;
100unsigned long min_low_pfn;
101unsigned long max_pfn;
102unsigned long long max_possible_pfn;
103
fe091c20 104static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
8a5b403d 105static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9
PH
106#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
107static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
108#endif
fe091c20
TH
109
110struct memblock memblock __initdata_memblock = {
111 .memory.regions = memblock_memory_init_regions,
112 .memory.cnt = 1, /* empty dummy entry */
113 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 114 .memory.name = "memory",
fe091c20
TH
115
116 .reserved.regions = memblock_reserved_init_regions,
117 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 118 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 119 .reserved.name = "reserved",
fe091c20 120
70210ed9
PH
121#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
122 .physmem.regions = memblock_physmem_init_regions,
123 .physmem.cnt = 1, /* empty dummy entry */
124 .physmem.max = INIT_PHYSMEM_REGIONS,
0262d9c8 125 .physmem.name = "physmem",
70210ed9
PH
126#endif
127
79442ed1 128 .bottom_up = false,
fe091c20
TH
129 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
130};
95f72d1e 131
10d06439 132int memblock_debug __initdata_memblock;
a3f5bafc 133static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 134static int memblock_can_resize __initdata_memblock;
181eb394
GS
135static int memblock_memory_in_slab __initdata_memblock = 0;
136static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 137
c366ea89 138static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
139{
140 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
141}
142
eb18f1b5
TH
143/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
144static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
145{
1c4bc43d 146 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
147}
148
6ed311b2
BH
149/*
150 * Address comparison utilities
151 */
10d06439 152static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 153 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
154{
155 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
156}
157
95cf82ec 158bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 159 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
160{
161 unsigned long i;
162
f14516fb
AK
163 for (i = 0; i < type->cnt; i++)
164 if (memblock_addrs_overlap(base, size, type->regions[i].base,
165 type->regions[i].size))
6ed311b2 166 break;
c5c5c9d1 167 return i < type->cnt;
6ed311b2
BH
168}
169
47cec443 170/**
79442ed1
TC
171 * __memblock_find_range_bottom_up - find free area utility in bottom-up
172 * @start: start of candidate range
47cec443
MR
173 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
174 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
175 * @size: size of free area to find
176 * @align: alignment of free area to find
b1154233 177 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 178 * @flags: pick from blocks based on memory attributes
79442ed1
TC
179 *
180 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
181 *
47cec443 182 * Return:
79442ed1
TC
183 * Found address on success, 0 on failure.
184 */
185static phys_addr_t __init_memblock
186__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 187 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 188 enum memblock_flags flags)
79442ed1
TC
189{
190 phys_addr_t this_start, this_end, cand;
191 u64 i;
192
fc6daaf9 193 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
194 this_start = clamp(this_start, start, end);
195 this_end = clamp(this_end, start, end);
196
197 cand = round_up(this_start, align);
198 if (cand < this_end && this_end - cand >= size)
199 return cand;
200 }
201
202 return 0;
203}
204
7bd0b0f0 205/**
1402899e 206 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 207 * @start: start of candidate range
47cec443
MR
208 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
209 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
210 * @size: size of free area to find
211 * @align: alignment of free area to find
b1154233 212 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 213 * @flags: pick from blocks based on memory attributes
7bd0b0f0 214 *
1402899e 215 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 216 *
47cec443 217 * Return:
79442ed1 218 * Found address on success, 0 on failure.
6ed311b2 219 */
1402899e
TC
220static phys_addr_t __init_memblock
221__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 222 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 223 enum memblock_flags flags)
f7210e6c
TC
224{
225 phys_addr_t this_start, this_end, cand;
226 u64 i;
227
fc6daaf9
TL
228 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
229 NULL) {
f7210e6c
TC
230 this_start = clamp(this_start, start, end);
231 this_end = clamp(this_end, start, end);
232
233 if (this_end < size)
234 continue;
235
236 cand = round_down(this_end - size, align);
237 if (cand >= this_start)
238 return cand;
239 }
1402899e 240
f7210e6c
TC
241 return 0;
242}
6ed311b2 243
1402899e
TC
244/**
245 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
246 * @size: size of free area to find
247 * @align: alignment of free area to find
87029ee9 248 * @start: start of candidate range
47cec443
MR
249 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
250 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 251 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 252 * @flags: pick from blocks based on memory attributes
1402899e
TC
253 *
254 * Find @size free area aligned to @align in the specified range and node.
255 *
79442ed1
TC
256 * When allocation direction is bottom-up, the @start should be greater
257 * than the end of the kernel image. Otherwise, it will be trimmed. The
258 * reason is that we want the bottom-up allocation just near the kernel
259 * image so it is highly likely that the allocated memory and the kernel
260 * will reside in the same node.
261 *
262 * If bottom-up allocation failed, will try to allocate memory top-down.
263 *
47cec443 264 * Return:
79442ed1 265 * Found address on success, 0 on failure.
1402899e 266 */
c366ea89 267static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 268 phys_addr_t align, phys_addr_t start,
e1720fee
MR
269 phys_addr_t end, int nid,
270 enum memblock_flags flags)
1402899e 271{
0cfb8f0c 272 phys_addr_t kernel_end, ret;
79442ed1 273
1402899e 274 /* pump up @end */
fed84c78
QC
275 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
276 end == MEMBLOCK_ALLOC_KASAN)
1402899e
TC
277 end = memblock.current_limit;
278
279 /* avoid allocating the first page */
280 start = max_t(phys_addr_t, start, PAGE_SIZE);
281 end = max(start, end);
79442ed1
TC
282 kernel_end = __pa_symbol(_end);
283
284 /*
285 * try bottom-up allocation only when bottom-up mode
286 * is set and @end is above the kernel image.
287 */
288 if (memblock_bottom_up() && end > kernel_end) {
289 phys_addr_t bottom_up_start;
290
291 /* make sure we will allocate above the kernel */
292 bottom_up_start = max(start, kernel_end);
293
294 /* ok, try bottom-up allocation first */
295 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 296 size, align, nid, flags);
79442ed1
TC
297 if (ret)
298 return ret;
299
300 /*
301 * we always limit bottom-up allocation above the kernel,
302 * but top-down allocation doesn't have the limit, so
303 * retrying top-down allocation may succeed when bottom-up
304 * allocation failed.
305 *
306 * bottom-up allocation is expected to be fail very rarely,
307 * so we use WARN_ONCE() here to see the stack trace if
308 * fail happens.
309 */
e3d301ca
MH
310 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
311 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
79442ed1 312 }
1402899e 313
fc6daaf9
TL
314 return __memblock_find_range_top_down(start, end, size, align, nid,
315 flags);
1402899e
TC
316}
317
7bd0b0f0
TH
318/**
319 * memblock_find_in_range - find free area in given range
320 * @start: start of candidate range
47cec443
MR
321 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
322 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
323 * @size: size of free area to find
324 * @align: alignment of free area to find
325 *
326 * Find @size free area aligned to @align in the specified range.
327 *
47cec443 328 * Return:
79442ed1 329 * Found address on success, 0 on failure.
fc769a8e 330 */
7bd0b0f0
TH
331phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
332 phys_addr_t end, phys_addr_t size,
333 phys_addr_t align)
6ed311b2 334{
a3f5bafc 335 phys_addr_t ret;
e1720fee 336 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
337
338again:
339 ret = memblock_find_in_range_node(size, align, start, end,
340 NUMA_NO_NODE, flags);
341
342 if (!ret && (flags & MEMBLOCK_MIRROR)) {
343 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
344 &size);
345 flags &= ~MEMBLOCK_MIRROR;
346 goto again;
347 }
348
349 return ret;
6ed311b2
BH
350}
351
10d06439 352static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 353{
1440c4e2 354 type->total_size -= type->regions[r].size;
7c0caeb8
TH
355 memmove(&type->regions[r], &type->regions[r + 1],
356 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 357 type->cnt--;
95f72d1e 358
8f7a6605
BH
359 /* Special case for empty arrays */
360 if (type->cnt == 0) {
1440c4e2 361 WARN_ON(type->total_size != 0);
8f7a6605
BH
362 type->cnt = 1;
363 type->regions[0].base = 0;
364 type->regions[0].size = 0;
66a20757 365 type->regions[0].flags = 0;
7c0caeb8 366 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 367 }
95f72d1e
YL
368}
369
350e88ba 370#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 371/**
47cec443 372 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
373 */
374void __init memblock_discard(void)
5e270e25 375{
3010f876 376 phys_addr_t addr, size;
5e270e25 377
3010f876
PT
378 if (memblock.reserved.regions != memblock_reserved_init_regions) {
379 addr = __pa(memblock.reserved.regions);
380 size = PAGE_ALIGN(sizeof(struct memblock_region) *
381 memblock.reserved.max);
382 __memblock_free_late(addr, size);
383 }
5e270e25 384
91b540f9 385 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
386 addr = __pa(memblock.memory.regions);
387 size = PAGE_ALIGN(sizeof(struct memblock_region) *
388 memblock.memory.max);
389 __memblock_free_late(addr, size);
390 }
5e270e25 391}
5e270e25
PH
392#endif
393
48c3b583
GP
394/**
395 * memblock_double_array - double the size of the memblock regions array
396 * @type: memblock type of the regions array being doubled
397 * @new_area_start: starting address of memory range to avoid overlap with
398 * @new_area_size: size of memory range to avoid overlap with
399 *
400 * Double the size of the @type regions array. If memblock is being used to
401 * allocate memory for a new reserved regions array and there is a previously
47cec443 402 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
403 * waiting to be reserved, ensure the memory used by the new array does
404 * not overlap.
405 *
47cec443 406 * Return:
48c3b583
GP
407 * 0 on success, -1 on failure.
408 */
409static int __init_memblock memblock_double_array(struct memblock_type *type,
410 phys_addr_t new_area_start,
411 phys_addr_t new_area_size)
142b45a7
BH
412{
413 struct memblock_region *new_array, *old_array;
29f67386 414 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 415 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 416 int use_slab = slab_is_available();
181eb394 417 int *in_slab;
142b45a7
BH
418
419 /* We don't allow resizing until we know about the reserved regions
420 * of memory that aren't suitable for allocation
421 */
422 if (!memblock_can_resize)
423 return -1;
424
142b45a7
BH
425 /* Calculate new doubled size */
426 old_size = type->max * sizeof(struct memblock_region);
427 new_size = old_size << 1;
29f67386
YL
428 /*
429 * We need to allocated new one align to PAGE_SIZE,
430 * so we can free them completely later.
431 */
432 old_alloc_size = PAGE_ALIGN(old_size);
433 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 434
181eb394
GS
435 /* Retrieve the slab flag */
436 if (type == &memblock.memory)
437 in_slab = &memblock_memory_in_slab;
438 else
439 in_slab = &memblock_reserved_in_slab;
440
a2974133 441 /* Try to find some space for it */
142b45a7
BH
442 if (use_slab) {
443 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 444 addr = new_array ? __pa(new_array) : 0;
4e2f0775 445 } else {
48c3b583
GP
446 /* only exclude range when trying to double reserved.regions */
447 if (type != &memblock.reserved)
448 new_area_start = new_area_size = 0;
449
450 addr = memblock_find_in_range(new_area_start + new_area_size,
451 memblock.current_limit,
29f67386 452 new_alloc_size, PAGE_SIZE);
48c3b583
GP
453 if (!addr && new_area_size)
454 addr = memblock_find_in_range(0,
fd07383b
AM
455 min(new_area_start, memblock.current_limit),
456 new_alloc_size, PAGE_SIZE);
48c3b583 457
15674868 458 new_array = addr ? __va(addr) : NULL;
4e2f0775 459 }
1f5026a7 460 if (!addr) {
142b45a7 461 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 462 type->name, type->max, type->max * 2);
142b45a7
BH
463 return -1;
464 }
142b45a7 465
a36aab89
MR
466 new_end = addr + new_size - 1;
467 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
468 type->name, type->max * 2, &addr, &new_end);
ea9e4376 469
fd07383b
AM
470 /*
471 * Found space, we now need to move the array over before we add the
472 * reserved region since it may be our reserved array itself that is
473 * full.
142b45a7
BH
474 */
475 memcpy(new_array, type->regions, old_size);
476 memset(new_array + type->max, 0, old_size);
477 old_array = type->regions;
478 type->regions = new_array;
479 type->max <<= 1;
480
fd07383b 481 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
482 if (*in_slab)
483 kfree(old_array);
484 else if (old_array != memblock_memory_init_regions &&
485 old_array != memblock_reserved_init_regions)
29f67386 486 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 487
fd07383b
AM
488 /*
489 * Reserve the new array if that comes from the memblock. Otherwise, we
490 * needn't do it
181eb394
GS
491 */
492 if (!use_slab)
29f67386 493 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
494
495 /* Update slab flag */
496 *in_slab = use_slab;
497
142b45a7
BH
498 return 0;
499}
500
784656f9
TH
501/**
502 * memblock_merge_regions - merge neighboring compatible regions
503 * @type: memblock type to scan
504 *
505 * Scan @type and merge neighboring compatible regions.
506 */
507static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 508{
784656f9 509 int i = 0;
95f72d1e 510
784656f9
TH
511 /* cnt never goes below 1 */
512 while (i < type->cnt - 1) {
513 struct memblock_region *this = &type->regions[i];
514 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 515
7c0caeb8
TH
516 if (this->base + this->size != next->base ||
517 memblock_get_region_node(this) !=
66a20757
TC
518 memblock_get_region_node(next) ||
519 this->flags != next->flags) {
784656f9
TH
520 BUG_ON(this->base + this->size > next->base);
521 i++;
522 continue;
8f7a6605
BH
523 }
524
784656f9 525 this->size += next->size;
c0232ae8
LF
526 /* move forward from next + 1, index of which is i + 2 */
527 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 528 type->cnt--;
95f72d1e 529 }
784656f9 530}
95f72d1e 531
784656f9
TH
532/**
533 * memblock_insert_region - insert new memblock region
209ff86d
TC
534 * @type: memblock type to insert into
535 * @idx: index for the insertion point
536 * @base: base address of the new region
537 * @size: size of the new region
538 * @nid: node id of the new region
66a20757 539 * @flags: flags of the new region
784656f9 540 *
47cec443 541 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 542 * @type must already have extra room to accommodate the new region.
784656f9
TH
543 */
544static void __init_memblock memblock_insert_region(struct memblock_type *type,
545 int idx, phys_addr_t base,
66a20757 546 phys_addr_t size,
e1720fee
MR
547 int nid,
548 enum memblock_flags flags)
784656f9
TH
549{
550 struct memblock_region *rgn = &type->regions[idx];
551
552 BUG_ON(type->cnt >= type->max);
553 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
554 rgn->base = base;
555 rgn->size = size;
66a20757 556 rgn->flags = flags;
7c0caeb8 557 memblock_set_region_node(rgn, nid);
784656f9 558 type->cnt++;
1440c4e2 559 type->total_size += size;
784656f9
TH
560}
561
562/**
f1af9d3a 563 * memblock_add_range - add new memblock region
784656f9
TH
564 * @type: memblock type to add new region into
565 * @base: base address of the new region
566 * @size: size of the new region
7fb0bc3f 567 * @nid: nid of the new region
66a20757 568 * @flags: flags of the new region
784656f9 569 *
47cec443 570 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
571 * is allowed to overlap with existing ones - overlaps don't affect already
572 * existing regions. @type is guaranteed to be minimal (all neighbouring
573 * compatible regions are merged) after the addition.
574 *
47cec443 575 * Return:
784656f9
TH
576 * 0 on success, -errno on failure.
577 */
02634a44 578static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 579 phys_addr_t base, phys_addr_t size,
e1720fee 580 int nid, enum memblock_flags flags)
784656f9
TH
581{
582 bool insert = false;
eb18f1b5
TH
583 phys_addr_t obase = base;
584 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
585 int idx, nr_new;
586 struct memblock_region *rgn;
784656f9 587
b3dc627c
TH
588 if (!size)
589 return 0;
590
784656f9
TH
591 /* special case for empty array */
592 if (type->regions[0].size == 0) {
1440c4e2 593 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
594 type->regions[0].base = base;
595 type->regions[0].size = size;
66a20757 596 type->regions[0].flags = flags;
7fb0bc3f 597 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 598 type->total_size = size;
8f7a6605 599 return 0;
95f72d1e 600 }
784656f9
TH
601repeat:
602 /*
603 * The following is executed twice. Once with %false @insert and
604 * then with %true. The first counts the number of regions needed
412d0008 605 * to accommodate the new area. The second actually inserts them.
142b45a7 606 */
784656f9
TH
607 base = obase;
608 nr_new = 0;
95f72d1e 609
66e8b438 610 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
611 phys_addr_t rbase = rgn->base;
612 phys_addr_t rend = rbase + rgn->size;
613
614 if (rbase >= end)
95f72d1e 615 break;
784656f9
TH
616 if (rend <= base)
617 continue;
618 /*
619 * @rgn overlaps. If it separates the lower part of new
620 * area, insert that portion.
621 */
622 if (rbase > base) {
c0a29498
WY
623#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
624 WARN_ON(nid != memblock_get_region_node(rgn));
625#endif
4fcab5f4 626 WARN_ON(flags != rgn->flags);
784656f9
TH
627 nr_new++;
628 if (insert)
8c9c1701 629 memblock_insert_region(type, idx++, base,
66a20757
TC
630 rbase - base, nid,
631 flags);
95f72d1e 632 }
784656f9
TH
633 /* area below @rend is dealt with, forget about it */
634 base = min(rend, end);
95f72d1e 635 }
784656f9
TH
636
637 /* insert the remaining portion */
638 if (base < end) {
639 nr_new++;
640 if (insert)
8c9c1701 641 memblock_insert_region(type, idx, base, end - base,
66a20757 642 nid, flags);
95f72d1e 643 }
95f72d1e 644
ef3cc4db 645 if (!nr_new)
646 return 0;
647
784656f9
TH
648 /*
649 * If this was the first round, resize array and repeat for actual
650 * insertions; otherwise, merge and return.
142b45a7 651 */
784656f9
TH
652 if (!insert) {
653 while (type->cnt + nr_new > type->max)
48c3b583 654 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
655 return -ENOMEM;
656 insert = true;
657 goto repeat;
658 } else {
659 memblock_merge_regions(type);
660 return 0;
142b45a7 661 }
95f72d1e
YL
662}
663
48a833cc
MR
664/**
665 * memblock_add_node - add new memblock region within a NUMA node
666 * @base: base address of the new region
667 * @size: size of the new region
668 * @nid: nid of the new region
669 *
670 * Add new memblock region [@base, @base + @size) to the "memory"
671 * type. See memblock_add_range() description for mode details
672 *
673 * Return:
674 * 0 on success, -errno on failure.
675 */
7fb0bc3f
TH
676int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
677 int nid)
678{
f1af9d3a 679 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
680}
681
48a833cc
MR
682/**
683 * memblock_add - add new memblock region
684 * @base: base address of the new region
685 * @size: size of the new region
686 *
687 * Add new memblock region [@base, @base + @size) to the "memory"
688 * type. See memblock_add_range() description for mode details
689 *
690 * Return:
691 * 0 on success, -errno on failure.
692 */
f705ac4b 693int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 694{
5d63f81c
MC
695 phys_addr_t end = base + size - 1;
696
a090d711 697 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 698 &base, &end, (void *)_RET_IP_);
6a4055bc 699
f705ac4b 700 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
701}
702
6a9ceb31
TH
703/**
704 * memblock_isolate_range - isolate given range into disjoint memblocks
705 * @type: memblock type to isolate range for
706 * @base: base of range to isolate
707 * @size: size of range to isolate
708 * @start_rgn: out parameter for the start of isolated region
709 * @end_rgn: out parameter for the end of isolated region
710 *
711 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 712 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
713 * which may create at most two more regions. The index of the first
714 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
715 *
47cec443 716 * Return:
6a9ceb31
TH
717 * 0 on success, -errno on failure.
718 */
719static int __init_memblock memblock_isolate_range(struct memblock_type *type,
720 phys_addr_t base, phys_addr_t size,
721 int *start_rgn, int *end_rgn)
722{
eb18f1b5 723 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
724 int idx;
725 struct memblock_region *rgn;
6a9ceb31
TH
726
727 *start_rgn = *end_rgn = 0;
728
b3dc627c
TH
729 if (!size)
730 return 0;
731
6a9ceb31
TH
732 /* we'll create at most two more regions */
733 while (type->cnt + 2 > type->max)
48c3b583 734 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
735 return -ENOMEM;
736
66e8b438 737 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
738 phys_addr_t rbase = rgn->base;
739 phys_addr_t rend = rbase + rgn->size;
740
741 if (rbase >= end)
742 break;
743 if (rend <= base)
744 continue;
745
746 if (rbase < base) {
747 /*
748 * @rgn intersects from below. Split and continue
749 * to process the next region - the new top half.
750 */
751 rgn->base = base;
1440c4e2
TH
752 rgn->size -= base - rbase;
753 type->total_size -= base - rbase;
8c9c1701 754 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
755 memblock_get_region_node(rgn),
756 rgn->flags);
6a9ceb31
TH
757 } else if (rend > end) {
758 /*
759 * @rgn intersects from above. Split and redo the
760 * current region - the new bottom half.
761 */
762 rgn->base = end;
1440c4e2
TH
763 rgn->size -= end - rbase;
764 type->total_size -= end - rbase;
8c9c1701 765 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
766 memblock_get_region_node(rgn),
767 rgn->flags);
6a9ceb31
TH
768 } else {
769 /* @rgn is fully contained, record it */
770 if (!*end_rgn)
8c9c1701
AK
771 *start_rgn = idx;
772 *end_rgn = idx + 1;
6a9ceb31
TH
773 }
774 }
775
776 return 0;
777}
6a9ceb31 778
35bd16a2 779static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 780 phys_addr_t base, phys_addr_t size)
95f72d1e 781{
71936180
TH
782 int start_rgn, end_rgn;
783 int i, ret;
95f72d1e 784
71936180
TH
785 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
786 if (ret)
787 return ret;
95f72d1e 788
71936180
TH
789 for (i = end_rgn - 1; i >= start_rgn; i--)
790 memblock_remove_region(type, i);
8f7a6605 791 return 0;
95f72d1e
YL
792}
793
581adcbe 794int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 795{
25cf23d7
MK
796 phys_addr_t end = base + size - 1;
797
a090d711 798 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
799 &base, &end, (void *)_RET_IP_);
800
f1af9d3a 801 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
802}
803
4d72868c
MR
804/**
805 * memblock_free - free boot memory block
806 * @base: phys starting address of the boot memory block
807 * @size: size of the boot memory block in bytes
808 *
809 * Free boot memory block previously allocated by memblock_alloc_xx() API.
810 * The freeing memory will not be released to the buddy allocator.
811 */
581adcbe 812int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 813{
5d63f81c
MC
814 phys_addr_t end = base + size - 1;
815
a090d711 816 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 817 &base, &end, (void *)_RET_IP_);
24aa0788 818
9099daed 819 kmemleak_free_part_phys(base, size);
f1af9d3a 820 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
821}
822
f705ac4b 823int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 824{
5d63f81c
MC
825 phys_addr_t end = base + size - 1;
826
a090d711 827 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 828 &base, &end, (void *)_RET_IP_);
95f72d1e 829
f705ac4b 830 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
831}
832
02634a44
AK
833#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
834int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
835{
836 phys_addr_t end = base + size - 1;
837
838 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
839 &base, &end, (void *)_RET_IP_);
840
841 return memblock_add_range(&memblock.physmem, base, size, MAX_NUMNODES, 0);
842}
843#endif
844
66b16edf 845/**
47cec443
MR
846 * memblock_setclr_flag - set or clear flag for a memory region
847 * @base: base address of the region
848 * @size: size of the region
849 * @set: set or clear the flag
850 * @flag: the flag to udpate
66b16edf 851 *
4308ce17 852 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 853 *
47cec443 854 * Return: 0 on success, -errno on failure.
66b16edf 855 */
4308ce17
TL
856static int __init_memblock memblock_setclr_flag(phys_addr_t base,
857 phys_addr_t size, int set, int flag)
66b16edf
TC
858{
859 struct memblock_type *type = &memblock.memory;
860 int i, ret, start_rgn, end_rgn;
861
862 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
863 if (ret)
864 return ret;
865
fe145124
MR
866 for (i = start_rgn; i < end_rgn; i++) {
867 struct memblock_region *r = &type->regions[i];
868
4308ce17 869 if (set)
fe145124 870 r->flags |= flag;
4308ce17 871 else
fe145124
MR
872 r->flags &= ~flag;
873 }
66b16edf
TC
874
875 memblock_merge_regions(type);
876 return 0;
877}
878
879/**
4308ce17 880 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
881 * @base: the base phys addr of the region
882 * @size: the size of the region
883 *
47cec443 884 * Return: 0 on success, -errno on failure.
4308ce17
TL
885 */
886int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
887{
888 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
889}
890
891/**
892 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
893 * @base: the base phys addr of the region
894 * @size: the size of the region
66b16edf 895 *
47cec443 896 * Return: 0 on success, -errno on failure.
66b16edf
TC
897 */
898int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
899{
4308ce17 900 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
901}
902
a3f5bafc
TL
903/**
904 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
905 * @base: the base phys addr of the region
906 * @size: the size of the region
907 *
47cec443 908 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
909 */
910int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
911{
912 system_has_some_mirror = true;
913
914 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
915}
916
bf3d3cc5
AB
917/**
918 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
919 * @base: the base phys addr of the region
920 * @size: the size of the region
921 *
47cec443 922 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
923 */
924int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
925{
926 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
927}
a3f5bafc 928
4c546b8a
AT
929/**
930 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
931 * @base: the base phys addr of the region
932 * @size: the size of the region
933 *
47cec443 934 * Return: 0 on success, -errno on failure.
4c546b8a
AT
935 */
936int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
937{
938 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
939}
940
8e7a7f86
RH
941/**
942 * __next_reserved_mem_region - next function for for_each_reserved_region()
943 * @idx: pointer to u64 loop variable
944 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
945 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
946 *
947 * Iterate over all reserved memory regions.
948 */
949void __init_memblock __next_reserved_mem_region(u64 *idx,
950 phys_addr_t *out_start,
951 phys_addr_t *out_end)
952{
567d117b 953 struct memblock_type *type = &memblock.reserved;
8e7a7f86 954
cd33a76b 955 if (*idx < type->cnt) {
567d117b 956 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
957 phys_addr_t base = r->base;
958 phys_addr_t size = r->size;
959
960 if (out_start)
961 *out_start = base;
962 if (out_end)
963 *out_end = base + size - 1;
964
965 *idx += 1;
966 return;
967 }
968
969 /* signal end of iteration */
970 *idx = ULLONG_MAX;
971}
972
c9a688a3
MR
973static bool should_skip_region(struct memblock_region *m, int nid, int flags)
974{
975 int m_nid = memblock_get_region_node(m);
976
977 /* only memory regions are associated with nodes, check it */
978 if (nid != NUMA_NO_NODE && nid != m_nid)
979 return true;
980
981 /* skip hotpluggable memory regions if needed */
982 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
983 return true;
984
985 /* if we want mirror memory skip non-mirror memory regions */
986 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
987 return true;
988
989 /* skip nomap memory unless we were asked for it explicitly */
990 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
991 return true;
992
993 return false;
994}
995
35fd0808 996/**
a2974133 997 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 998 * @idx: pointer to u64 loop variable
b1154233 999 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1000 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1001 * @type_a: pointer to memblock_type from where the range is taken
1002 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1003 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1004 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1005 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 1006 *
f1af9d3a 1007 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 1008 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
1009 * *@idx contains index into type_a and the upper 32bit indexes the
1010 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
1011 * look like the following,
1012 *
1013 * 0:[0-16), 1:[32-48), 2:[128-130)
1014 *
1015 * The upper 32bit indexes the following regions.
1016 *
1017 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1018 *
1019 * As both region arrays are sorted, the function advances the two indices
1020 * in lockstep and returns each intersection.
1021 */
e1720fee
MR
1022void __init_memblock __next_mem_range(u64 *idx, int nid,
1023 enum memblock_flags flags,
f1af9d3a
PH
1024 struct memblock_type *type_a,
1025 struct memblock_type *type_b,
1026 phys_addr_t *out_start,
1027 phys_addr_t *out_end, int *out_nid)
35fd0808 1028{
f1af9d3a
PH
1029 int idx_a = *idx & 0xffffffff;
1030 int idx_b = *idx >> 32;
b1154233 1031
f1af9d3a
PH
1032 if (WARN_ONCE(nid == MAX_NUMNODES,
1033 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 1034 nid = NUMA_NO_NODE;
35fd0808 1035
f1af9d3a
PH
1036 for (; idx_a < type_a->cnt; idx_a++) {
1037 struct memblock_region *m = &type_a->regions[idx_a];
1038
35fd0808
TH
1039 phys_addr_t m_start = m->base;
1040 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1041 int m_nid = memblock_get_region_node(m);
35fd0808 1042
c9a688a3 1043 if (should_skip_region(m, nid, flags))
bf3d3cc5
AB
1044 continue;
1045
f1af9d3a
PH
1046 if (!type_b) {
1047 if (out_start)
1048 *out_start = m_start;
1049 if (out_end)
1050 *out_end = m_end;
1051 if (out_nid)
1052 *out_nid = m_nid;
1053 idx_a++;
1054 *idx = (u32)idx_a | (u64)idx_b << 32;
1055 return;
1056 }
1057
1058 /* scan areas before each reservation */
1059 for (; idx_b < type_b->cnt + 1; idx_b++) {
1060 struct memblock_region *r;
1061 phys_addr_t r_start;
1062 phys_addr_t r_end;
1063
1064 r = &type_b->regions[idx_b];
1065 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1066 r_end = idx_b < type_b->cnt ?
1c4bc43d 1067 r->base : PHYS_ADDR_MAX;
35fd0808 1068
f1af9d3a
PH
1069 /*
1070 * if idx_b advanced past idx_a,
1071 * break out to advance idx_a
1072 */
35fd0808
TH
1073 if (r_start >= m_end)
1074 break;
1075 /* if the two regions intersect, we're done */
1076 if (m_start < r_end) {
1077 if (out_start)
f1af9d3a
PH
1078 *out_start =
1079 max(m_start, r_start);
35fd0808
TH
1080 if (out_end)
1081 *out_end = min(m_end, r_end);
1082 if (out_nid)
f1af9d3a 1083 *out_nid = m_nid;
35fd0808 1084 /*
f1af9d3a
PH
1085 * The region which ends first is
1086 * advanced for the next iteration.
35fd0808
TH
1087 */
1088 if (m_end <= r_end)
f1af9d3a 1089 idx_a++;
35fd0808 1090 else
f1af9d3a
PH
1091 idx_b++;
1092 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1093 return;
1094 }
1095 }
1096 }
1097
1098 /* signal end of iteration */
1099 *idx = ULLONG_MAX;
1100}
1101
7bd0b0f0 1102/**
f1af9d3a
PH
1103 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1104 *
7bd0b0f0 1105 * @idx: pointer to u64 loop variable
ad5ea8cd 1106 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1107 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1108 * @type_a: pointer to memblock_type from where the range is taken
1109 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1110 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1111 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1112 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1113 *
47cec443
MR
1114 * Finds the next range from type_a which is not marked as unsuitable
1115 * in type_b.
1116 *
f1af9d3a 1117 * Reverse of __next_mem_range().
7bd0b0f0 1118 */
e1720fee
MR
1119void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1120 enum memblock_flags flags,
f1af9d3a
PH
1121 struct memblock_type *type_a,
1122 struct memblock_type *type_b,
1123 phys_addr_t *out_start,
1124 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1125{
f1af9d3a
PH
1126 int idx_a = *idx & 0xffffffff;
1127 int idx_b = *idx >> 32;
b1154233 1128
560dca27
GS
1129 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1130 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1131
1132 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1133 idx_a = type_a->cnt - 1;
e47608ab 1134 if (type_b != NULL)
1135 idx_b = type_b->cnt;
1136 else
1137 idx_b = 0;
7bd0b0f0
TH
1138 }
1139
f1af9d3a
PH
1140 for (; idx_a >= 0; idx_a--) {
1141 struct memblock_region *m = &type_a->regions[idx_a];
1142
7bd0b0f0
TH
1143 phys_addr_t m_start = m->base;
1144 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1145 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1146
c9a688a3 1147 if (should_skip_region(m, nid, flags))
bf3d3cc5
AB
1148 continue;
1149
f1af9d3a
PH
1150 if (!type_b) {
1151 if (out_start)
1152 *out_start = m_start;
1153 if (out_end)
1154 *out_end = m_end;
1155 if (out_nid)
1156 *out_nid = m_nid;
fb399b48 1157 idx_a--;
f1af9d3a
PH
1158 *idx = (u32)idx_a | (u64)idx_b << 32;
1159 return;
1160 }
1161
1162 /* scan areas before each reservation */
1163 for (; idx_b >= 0; idx_b--) {
1164 struct memblock_region *r;
1165 phys_addr_t r_start;
1166 phys_addr_t r_end;
1167
1168 r = &type_b->regions[idx_b];
1169 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1170 r_end = idx_b < type_b->cnt ?
1c4bc43d 1171 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1172 /*
1173 * if idx_b advanced past idx_a,
1174 * break out to advance idx_a
1175 */
7bd0b0f0 1176
7bd0b0f0
TH
1177 if (r_end <= m_start)
1178 break;
1179 /* if the two regions intersect, we're done */
1180 if (m_end > r_start) {
1181 if (out_start)
1182 *out_start = max(m_start, r_start);
1183 if (out_end)
1184 *out_end = min(m_end, r_end);
1185 if (out_nid)
f1af9d3a 1186 *out_nid = m_nid;
7bd0b0f0 1187 if (m_start >= r_start)
f1af9d3a 1188 idx_a--;
7bd0b0f0 1189 else
f1af9d3a
PH
1190 idx_b--;
1191 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1192 return;
1193 }
1194 }
1195 }
f1af9d3a 1196 /* signal end of iteration */
7bd0b0f0
TH
1197 *idx = ULLONG_MAX;
1198}
1199
7c0caeb8
TH
1200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1201/*
45e79815 1202 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1203 */
1204void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1205 unsigned long *out_start_pfn,
1206 unsigned long *out_end_pfn, int *out_nid)
1207{
1208 struct memblock_type *type = &memblock.memory;
1209 struct memblock_region *r;
1210
1211 while (++*idx < type->cnt) {
1212 r = &type->regions[*idx];
1213
1214 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1215 continue;
1216 if (nid == MAX_NUMNODES || nid == r->nid)
1217 break;
1218 }
1219 if (*idx >= type->cnt) {
1220 *idx = -1;
1221 return;
1222 }
1223
1224 if (out_start_pfn)
1225 *out_start_pfn = PFN_UP(r->base);
1226 if (out_end_pfn)
1227 *out_end_pfn = PFN_DOWN(r->base + r->size);
1228 if (out_nid)
1229 *out_nid = r->nid;
1230}
1231
1232/**
1233 * memblock_set_node - set node ID on memblock regions
1234 * @base: base of area to set node ID for
1235 * @size: size of area to set node ID for
e7e8de59 1236 * @type: memblock type to set node ID for
7c0caeb8
TH
1237 * @nid: node ID to set
1238 *
47cec443 1239 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1240 * Regions which cross the area boundaries are split as necessary.
1241 *
47cec443 1242 * Return:
7c0caeb8
TH
1243 * 0 on success, -errno on failure.
1244 */
1245int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1246 struct memblock_type *type, int nid)
7c0caeb8 1247{
6a9ceb31
TH
1248 int start_rgn, end_rgn;
1249 int i, ret;
7c0caeb8 1250
6a9ceb31
TH
1251 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1252 if (ret)
1253 return ret;
7c0caeb8 1254
6a9ceb31 1255 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1256 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1257
1258 memblock_merge_regions(type);
1259 return 0;
1260}
1261#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
837566e7
AD
1262#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1263/**
1264 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1265 *
1266 * @idx: pointer to u64 loop variable
1267 * @zone: zone in which all of the memory blocks reside
1268 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1269 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1270 *
1271 * This function is meant to be a zone/pfn specific wrapper for the
1272 * for_each_mem_range type iterators. Specifically they are used in the
1273 * deferred memory init routines and as such we were duplicating much of
1274 * this logic throughout the code. So instead of having it in multiple
1275 * locations it seemed like it would make more sense to centralize this to
1276 * one new iterator that does everything they need.
1277 */
1278void __init_memblock
1279__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1280 unsigned long *out_spfn, unsigned long *out_epfn)
1281{
1282 int zone_nid = zone_to_nid(zone);
1283 phys_addr_t spa, epa;
1284 int nid;
1285
1286 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1287 &memblock.memory, &memblock.reserved,
1288 &spa, &epa, &nid);
1289
1290 while (*idx != U64_MAX) {
1291 unsigned long epfn = PFN_DOWN(epa);
1292 unsigned long spfn = PFN_UP(spa);
1293
1294 /*
1295 * Verify the end is at least past the start of the zone and
1296 * that we have at least one PFN to initialize.
1297 */
1298 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1299 /* if we went too far just stop searching */
1300 if (zone_end_pfn(zone) <= spfn) {
1301 *idx = U64_MAX;
1302 break;
1303 }
1304
1305 if (out_spfn)
1306 *out_spfn = max(zone->zone_start_pfn, spfn);
1307 if (out_epfn)
1308 *out_epfn = min(zone_end_pfn(zone), epfn);
1309
1310 return;
1311 }
1312
1313 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1314 &memblock.memory, &memblock.reserved,
1315 &spa, &epa, &nid);
1316 }
1317
1318 /* signal end of iteration */
1319 if (out_spfn)
1320 *out_spfn = ULONG_MAX;
1321 if (out_epfn)
1322 *out_epfn = 0;
1323}
1324
1325#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1326
92d12f95
MR
1327/**
1328 * memblock_alloc_range_nid - allocate boot memory block
1329 * @size: size of memory block to be allocated in bytes
1330 * @align: alignment of the region and block's size
1331 * @start: the lower bound of the memory region to allocate (phys address)
1332 * @end: the upper bound of the memory region to allocate (phys address)
1333 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1334 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1335 *
1336 * The allocation is performed from memory region limited by
95830666 1337 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1338 *
0ac398b1
YY
1339 * If the specified node can not hold the requested memory and @exact_nid
1340 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1341 *
1342 * For systems with memory mirroring, the allocation is attempted first
1343 * from the regions with mirroring enabled and then retried from any
1344 * memory region.
1345 *
1346 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1347 * allocated boot memory block, so that it is never reported as leaks.
1348 *
1349 * Return:
1350 * Physical address of allocated memory block on success, %0 on failure.
1351 */
2bfc2862
AM
1352static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1353 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1354 phys_addr_t end, int nid,
1355 bool exact_nid)
95f72d1e 1356{
92d12f95 1357 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1358 phys_addr_t found;
95f72d1e 1359
92d12f95
MR
1360 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1361 nid = NUMA_NO_NODE;
1362
2f770806
MR
1363 if (!align) {
1364 /* Can't use WARNs this early in boot on powerpc */
1365 dump_stack();
1366 align = SMP_CACHE_BYTES;
1367 }
1368
92d12f95 1369again:
fc6daaf9
TL
1370 found = memblock_find_in_range_node(size, align, start, end, nid,
1371 flags);
92d12f95
MR
1372 if (found && !memblock_reserve(found, size))
1373 goto done;
1374
0ac398b1 1375 if (nid != NUMA_NO_NODE && !exact_nid) {
92d12f95
MR
1376 found = memblock_find_in_range_node(size, align, start,
1377 end, NUMA_NO_NODE,
1378 flags);
1379 if (found && !memblock_reserve(found, size))
1380 goto done;
1381 }
1382
1383 if (flags & MEMBLOCK_MIRROR) {
1384 flags &= ~MEMBLOCK_MIRROR;
1385 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1386 &size);
1387 goto again;
1388 }
1389
1390 return 0;
1391
1392done:
1393 /* Skip kmemleak for kasan_init() due to high volume. */
1394 if (end != MEMBLOCK_ALLOC_KASAN)
aedf95ea 1395 /*
92d12f95
MR
1396 * The min_count is set to 0 so that memblock allocated
1397 * blocks are never reported as leaks. This is because many
1398 * of these blocks are only referred via the physical
1399 * address which is not looked up by kmemleak.
aedf95ea 1400 */
9099daed 1401 kmemleak_alloc_phys(found, size, 0, 0);
92d12f95
MR
1402
1403 return found;
95f72d1e
YL
1404}
1405
a2974133
MR
1406/**
1407 * memblock_phys_alloc_range - allocate a memory block inside specified range
1408 * @size: size of memory block to be allocated in bytes
1409 * @align: alignment of the region and block's size
1410 * @start: the lower bound of the memory region to allocate (physical address)
1411 * @end: the upper bound of the memory region to allocate (physical address)
1412 *
1413 * Allocate @size bytes in the between @start and @end.
1414 *
1415 * Return: physical address of the allocated memory block on success,
1416 * %0 on failure.
1417 */
8a770c2a
MR
1418phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1419 phys_addr_t align,
1420 phys_addr_t start,
1421 phys_addr_t end)
2bfc2862 1422{
0ac398b1
YY
1423 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1424 false);
7bd0b0f0
TH
1425}
1426
a2974133
MR
1427/**
1428 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1429 * @size: size of memory block to be allocated in bytes
1430 * @align: alignment of the region and block's size
1431 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1432 *
1433 * Allocates memory block from the specified NUMA node. If the node
1434 * has no available memory, attempts to allocated from any node in the
1435 * system.
1436 *
1437 * Return: physical address of the allocated memory block on success,
1438 * %0 on failure.
1439 */
9a8dd708 1440phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1441{
33755574 1442 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1443 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1444}
1445
26f09e9b 1446/**
eb31d559 1447 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1448 * @size: size of memory block to be allocated in bytes
1449 * @align: alignment of the region and block's size
1450 * @min_addr: the lower bound of the memory region to allocate (phys address)
1451 * @max_addr: the upper bound of the memory region to allocate (phys address)
1452 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1453 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1454 *
92d12f95
MR
1455 * Allocates memory block using memblock_alloc_range_nid() and
1456 * converts the returned physical address to virtual.
26f09e9b 1457 *
92d12f95
MR
1458 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1459 * will fall back to memory below @min_addr. Other constraints, such
1460 * as node and mirrored memory will be handled again in
1461 * memblock_alloc_range_nid().
26f09e9b 1462 *
47cec443 1463 * Return:
26f09e9b
SS
1464 * Virtual address of allocated memory block on success, NULL on failure.
1465 */
eb31d559 1466static void * __init memblock_alloc_internal(
26f09e9b
SS
1467 phys_addr_t size, phys_addr_t align,
1468 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1469 int nid, bool exact_nid)
26f09e9b
SS
1470{
1471 phys_addr_t alloc;
26f09e9b
SS
1472
1473 /*
1474 * Detect any accidental use of these APIs after slab is ready, as at
1475 * this moment memblock may be deinitialized already and its
c6ffc5ca 1476 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1477 */
1478 if (WARN_ON_ONCE(slab_is_available()))
1479 return kzalloc_node(size, GFP_NOWAIT, nid);
1480
f3057ad7
MR
1481 if (max_addr > memblock.current_limit)
1482 max_addr = memblock.current_limit;
1483
0ac398b1
YY
1484 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1485 exact_nid);
26f09e9b 1486
92d12f95
MR
1487 /* retry allocation without lower limit */
1488 if (!alloc && min_addr)
0ac398b1
YY
1489 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1490 exact_nid);
26f09e9b 1491
92d12f95
MR
1492 if (!alloc)
1493 return NULL;
26f09e9b 1494
92d12f95 1495 return phys_to_virt(alloc);
26f09e9b
SS
1496}
1497
0ac398b1
YY
1498/**
1499 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1500 * without zeroing memory
1501 * @size: size of memory block to be allocated in bytes
1502 * @align: alignment of the region and block's size
1503 * @min_addr: the lower bound of the memory region from where the allocation
1504 * is preferred (phys address)
1505 * @max_addr: the upper bound of the memory region from where the allocation
1506 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1507 * allocate only from memory limited by memblock.current_limit value
1508 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1509 *
1510 * Public function, provides additional debug information (including caller
1511 * info), if enabled. Does not zero allocated memory.
1512 *
1513 * Return:
1514 * Virtual address of allocated memory block on success, NULL on failure.
1515 */
1516void * __init memblock_alloc_exact_nid_raw(
1517 phys_addr_t size, phys_addr_t align,
1518 phys_addr_t min_addr, phys_addr_t max_addr,
1519 int nid)
1520{
1521 void *ptr;
1522
1523 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1524 __func__, (u64)size, (u64)align, nid, &min_addr,
1525 &max_addr, (void *)_RET_IP_);
1526
1527 ptr = memblock_alloc_internal(size, align,
1528 min_addr, max_addr, nid, true);
1529 if (ptr && size > 0)
1530 page_init_poison(ptr, size);
1531
1532 return ptr;
1533}
1534
ea1f5f37 1535/**
eb31d559 1536 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1537 * memory and without panicking
1538 * @size: size of memory block to be allocated in bytes
1539 * @align: alignment of the region and block's size
1540 * @min_addr: the lower bound of the memory region from where the allocation
1541 * is preferred (phys address)
1542 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1543 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1544 * allocate only from memory limited by memblock.current_limit value
1545 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1546 *
1547 * Public function, provides additional debug information (including caller
1548 * info), if enabled. Does not zero allocated memory, does not panic if request
1549 * cannot be satisfied.
1550 *
47cec443 1551 * Return:
ea1f5f37
PT
1552 * Virtual address of allocated memory block on success, NULL on failure.
1553 */
eb31d559 1554void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1555 phys_addr_t size, phys_addr_t align,
1556 phys_addr_t min_addr, phys_addr_t max_addr,
1557 int nid)
1558{
1559 void *ptr;
1560
d75f773c 1561 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1562 __func__, (u64)size, (u64)align, nid, &min_addr,
1563 &max_addr, (void *)_RET_IP_);
ea1f5f37 1564
eb31d559 1565 ptr = memblock_alloc_internal(size, align,
0ac398b1 1566 min_addr, max_addr, nid, false);
ea1f5f37 1567 if (ptr && size > 0)
f682a97a
AD
1568 page_init_poison(ptr, size);
1569
ea1f5f37
PT
1570 return ptr;
1571}
1572
26f09e9b 1573/**
c0dbe825 1574 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1575 * @size: size of memory block to be allocated in bytes
1576 * @align: alignment of the region and block's size
1577 * @min_addr: the lower bound of the memory region from where the allocation
1578 * is preferred (phys address)
1579 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1580 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1581 * allocate only from memory limited by memblock.current_limit value
1582 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1583 *
c0dbe825
MR
1584 * Public function, provides additional debug information (including caller
1585 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1586 *
47cec443 1587 * Return:
26f09e9b
SS
1588 * Virtual address of allocated memory block on success, NULL on failure.
1589 */
eb31d559 1590void * __init memblock_alloc_try_nid(
26f09e9b
SS
1591 phys_addr_t size, phys_addr_t align,
1592 phys_addr_t min_addr, phys_addr_t max_addr,
1593 int nid)
1594{
1595 void *ptr;
1596
d75f773c 1597 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1598 __func__, (u64)size, (u64)align, nid, &min_addr,
1599 &max_addr, (void *)_RET_IP_);
eb31d559 1600 ptr = memblock_alloc_internal(size, align,
0ac398b1 1601 min_addr, max_addr, nid, false);
c0dbe825 1602 if (ptr)
ea1f5f37 1603 memset(ptr, 0, size);
26f09e9b 1604
c0dbe825 1605 return ptr;
26f09e9b
SS
1606}
1607
48a833cc 1608/**
a2974133 1609 * __memblock_free_late - free pages directly to buddy allocator
48a833cc 1610 * @base: phys starting address of the boot memory block
26f09e9b
SS
1611 * @size: size of the boot memory block in bytes
1612 *
a2974133 1613 * This is only useful when the memblock allocator has already been torn
26f09e9b 1614 * down, but we are still initializing the system. Pages are released directly
a2974133 1615 * to the buddy allocator.
26f09e9b
SS
1616 */
1617void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1618{
a36aab89 1619 phys_addr_t cursor, end;
26f09e9b 1620
a36aab89 1621 end = base + size - 1;
d75f773c 1622 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1623 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1624 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1625 cursor = PFN_UP(base);
1626 end = PFN_DOWN(base + size);
1627
1628 for (; cursor < end; cursor++) {
7c2ee349 1629 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1630 totalram_pages_inc();
26f09e9b
SS
1631 }
1632}
9d1e2492
BH
1633
1634/*
1635 * Remaining API functions
1636 */
1637
1f1ffb8a 1638phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1639{
1440c4e2 1640 return memblock.memory.total_size;
95f72d1e
YL
1641}
1642
8907de5d
SD
1643phys_addr_t __init_memblock memblock_reserved_size(void)
1644{
1645 return memblock.reserved.total_size;
1646}
1647
595ad9af
YL
1648phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1649{
1650 unsigned long pages = 0;
1651 struct memblock_region *r;
1652 unsigned long start_pfn, end_pfn;
1653
1654 for_each_memblock(memory, r) {
1655 start_pfn = memblock_region_memory_base_pfn(r);
1656 end_pfn = memblock_region_memory_end_pfn(r);
1657 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1658 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1659 pages += end_pfn - start_pfn;
1660 }
1661
16763230 1662 return PFN_PHYS(pages);
595ad9af
YL
1663}
1664
0a93ebef
SR
1665/* lowest address */
1666phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1667{
1668 return memblock.memory.regions[0].base;
1669}
1670
10d06439 1671phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1672{
1673 int idx = memblock.memory.cnt - 1;
1674
e3239ff9 1675 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1676}
1677
a571d4eb 1678static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1679{
1c4bc43d 1680 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1681 struct memblock_region *r;
95f72d1e 1682
a571d4eb
DC
1683 /*
1684 * translate the memory @limit size into the max address within one of
1685 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1686 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1687 */
136199f0 1688 for_each_memblock(memory, r) {
c0ce8fef
TH
1689 if (limit <= r->size) {
1690 max_addr = r->base + limit;
1691 break;
95f72d1e 1692 }
c0ce8fef 1693 limit -= r->size;
95f72d1e 1694 }
c0ce8fef 1695
a571d4eb
DC
1696 return max_addr;
1697}
1698
1699void __init memblock_enforce_memory_limit(phys_addr_t limit)
1700{
49aef717 1701 phys_addr_t max_addr;
a571d4eb
DC
1702
1703 if (!limit)
1704 return;
1705
1706 max_addr = __find_max_addr(limit);
1707
1708 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1709 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1710 return;
1711
c0ce8fef 1712 /* truncate both memory and reserved regions */
f1af9d3a 1713 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1714 PHYS_ADDR_MAX);
f1af9d3a 1715 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1716 PHYS_ADDR_MAX);
95f72d1e
YL
1717}
1718
c9ca9b4e
AT
1719void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1720{
1721 int start_rgn, end_rgn;
1722 int i, ret;
1723
1724 if (!size)
1725 return;
1726
1727 ret = memblock_isolate_range(&memblock.memory, base, size,
1728 &start_rgn, &end_rgn);
1729 if (ret)
1730 return;
1731
1732 /* remove all the MAP regions */
1733 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1734 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1735 memblock_remove_region(&memblock.memory, i);
1736
1737 for (i = start_rgn - 1; i >= 0; i--)
1738 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1739 memblock_remove_region(&memblock.memory, i);
1740
1741 /* truncate the reserved regions */
1742 memblock_remove_range(&memblock.reserved, 0, base);
1743 memblock_remove_range(&memblock.reserved,
1c4bc43d 1744 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1745}
1746
a571d4eb
DC
1747void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1748{
a571d4eb 1749 phys_addr_t max_addr;
a571d4eb
DC
1750
1751 if (!limit)
1752 return;
1753
1754 max_addr = __find_max_addr(limit);
1755
1756 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1757 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1758 return;
1759
c9ca9b4e 1760 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1761}
1762
cd79481d 1763static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1764{
1765 unsigned int left = 0, right = type->cnt;
1766
1767 do {
1768 unsigned int mid = (right + left) / 2;
1769
1770 if (addr < type->regions[mid].base)
1771 right = mid;
1772 else if (addr >= (type->regions[mid].base +
1773 type->regions[mid].size))
1774 left = mid + 1;
1775 else
1776 return mid;
1777 } while (left < right);
1778 return -1;
1779}
1780
f5a222dc 1781bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1782{
72d4b0b4
BH
1783 return memblock_search(&memblock.reserved, addr) != -1;
1784}
95f72d1e 1785
b4ad0c7e 1786bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1787{
1788 return memblock_search(&memblock.memory, addr) != -1;
1789}
1790
937f0c26 1791bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1792{
1793 int i = memblock_search(&memblock.memory, addr);
1794
1795 if (i == -1)
1796 return false;
1797 return !memblock_is_nomap(&memblock.memory.regions[i]);
1798}
1799
e76b63f8
YL
1800#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1801int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1802 unsigned long *start_pfn, unsigned long *end_pfn)
1803{
1804 struct memblock_type *type = &memblock.memory;
16763230 1805 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1806
1807 if (mid == -1)
1808 return -1;
1809
f7e2f7e8
FF
1810 *start_pfn = PFN_DOWN(type->regions[mid].base);
1811 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8
YL
1812
1813 return type->regions[mid].nid;
1814}
1815#endif
1816
eab30949
SB
1817/**
1818 * memblock_is_region_memory - check if a region is a subset of memory
1819 * @base: base of region to check
1820 * @size: size of region to check
1821 *
47cec443 1822 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1823 *
47cec443 1824 * Return:
eab30949
SB
1825 * 0 if false, non-zero if true
1826 */
937f0c26 1827bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1828{
abb65272 1829 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1830 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1831
1832 if (idx == -1)
937f0c26 1833 return false;
ef415ef4 1834 return (memblock.memory.regions[idx].base +
eb18f1b5 1835 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1836}
1837
eab30949
SB
1838/**
1839 * memblock_is_region_reserved - check if a region intersects reserved memory
1840 * @base: base of region to check
1841 * @size: size of region to check
1842 *
47cec443
MR
1843 * Check if the region [@base, @base + @size) intersects a reserved
1844 * memory block.
eab30949 1845 *
47cec443 1846 * Return:
c5c5c9d1 1847 * True if they intersect, false if not.
eab30949 1848 */
c5c5c9d1 1849bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1850{
eb18f1b5 1851 memblock_cap_size(base, &size);
c5c5c9d1 1852 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1853}
1854
6ede1fd3
YL
1855void __init_memblock memblock_trim_memory(phys_addr_t align)
1856{
6ede1fd3 1857 phys_addr_t start, end, orig_start, orig_end;
136199f0 1858 struct memblock_region *r;
6ede1fd3 1859
136199f0
EM
1860 for_each_memblock(memory, r) {
1861 orig_start = r->base;
1862 orig_end = r->base + r->size;
6ede1fd3
YL
1863 start = round_up(orig_start, align);
1864 end = round_down(orig_end, align);
1865
1866 if (start == orig_start && end == orig_end)
1867 continue;
1868
1869 if (start < end) {
136199f0
EM
1870 r->base = start;
1871 r->size = end - start;
6ede1fd3 1872 } else {
136199f0
EM
1873 memblock_remove_region(&memblock.memory,
1874 r - memblock.memory.regions);
1875 r--;
6ede1fd3
YL
1876 }
1877 }
1878}
e63075a3 1879
3661ca66 1880void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1881{
1882 memblock.current_limit = limit;
1883}
1884
fec51014
LA
1885phys_addr_t __init_memblock memblock_get_current_limit(void)
1886{
1887 return memblock.current_limit;
1888}
1889
0262d9c8 1890static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1891{
5d63f81c 1892 phys_addr_t base, end, size;
e1720fee 1893 enum memblock_flags flags;
8c9c1701
AK
1894 int idx;
1895 struct memblock_region *rgn;
6ed311b2 1896
0262d9c8 1897 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1898
66e8b438 1899 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1900 char nid_buf[32] = "";
1901
1902 base = rgn->base;
1903 size = rgn->size;
5d63f81c 1904 end = base + size - 1;
66a20757 1905 flags = rgn->flags;
7c0caeb8
TH
1906#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1907 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1908 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1909 memblock_get_region_node(rgn));
1910#endif
e1720fee 1911 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1912 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1913 }
1914}
1915
4ff7b82f 1916void __init_memblock __memblock_dump_all(void)
6ed311b2 1917{
6ed311b2 1918 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1919 pr_info(" memory size = %pa reserved size = %pa\n",
1920 &memblock.memory.total_size,
1921 &memblock.reserved.total_size);
6ed311b2 1922
0262d9c8
HC
1923 memblock_dump(&memblock.memory);
1924 memblock_dump(&memblock.reserved);
409efd4c 1925#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0262d9c8 1926 memblock_dump(&memblock.physmem);
409efd4c 1927#endif
6ed311b2
BH
1928}
1929
1aadc056 1930void __init memblock_allow_resize(void)
6ed311b2 1931{
142b45a7 1932 memblock_can_resize = 1;
6ed311b2
BH
1933}
1934
6ed311b2
BH
1935static int __init early_memblock(char *p)
1936{
1937 if (p && strstr(p, "debug"))
1938 memblock_debug = 1;
1939 return 0;
1940}
1941early_param("memblock", early_memblock);
1942
bda49a81
MR
1943static void __init __free_pages_memory(unsigned long start, unsigned long end)
1944{
1945 int order;
1946
1947 while (start < end) {
1948 order = min(MAX_ORDER - 1UL, __ffs(start));
1949
1950 while (start + (1UL << order) > end)
1951 order--;
1952
1953 memblock_free_pages(pfn_to_page(start), start, order);
1954
1955 start += (1UL << order);
1956 }
1957}
1958
1959static unsigned long __init __free_memory_core(phys_addr_t start,
1960 phys_addr_t end)
1961{
1962 unsigned long start_pfn = PFN_UP(start);
1963 unsigned long end_pfn = min_t(unsigned long,
1964 PFN_DOWN(end), max_low_pfn);
1965
1966 if (start_pfn >= end_pfn)
1967 return 0;
1968
1969 __free_pages_memory(start_pfn, end_pfn);
1970
1971 return end_pfn - start_pfn;
1972}
1973
1974static unsigned long __init free_low_memory_core_early(void)
1975{
1976 unsigned long count = 0;
1977 phys_addr_t start, end;
1978 u64 i;
1979
1980 memblock_clear_hotplug(0, -1);
1981
1982 for_each_reserved_mem_region(i, &start, &end)
1983 reserve_bootmem_region(start, end);
1984
1985 /*
1986 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1987 * because in some case like Node0 doesn't have RAM installed
1988 * low ram will be on Node1
1989 */
1990 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1991 NULL)
1992 count += __free_memory_core(start, end);
1993
1994 return count;
1995}
1996
1997static int reset_managed_pages_done __initdata;
1998
1999void reset_node_managed_pages(pg_data_t *pgdat)
2000{
2001 struct zone *z;
2002
2003 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2004 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2005}
2006
2007void __init reset_all_zones_managed_pages(void)
2008{
2009 struct pglist_data *pgdat;
2010
2011 if (reset_managed_pages_done)
2012 return;
2013
2014 for_each_online_pgdat(pgdat)
2015 reset_node_managed_pages(pgdat);
2016
2017 reset_managed_pages_done = 1;
2018}
2019
2020/**
2021 * memblock_free_all - release free pages to the buddy allocator
2022 *
2023 * Return: the number of pages actually released.
2024 */
2025unsigned long __init memblock_free_all(void)
2026{
2027 unsigned long pages;
2028
2029 reset_all_zones_managed_pages();
2030
2031 pages = free_low_memory_core_early();
ca79b0c2 2032 totalram_pages_add(pages);
bda49a81
MR
2033
2034 return pages;
2035}
2036
350e88ba 2037#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
6d03b885
BH
2038
2039static int memblock_debug_show(struct seq_file *m, void *private)
2040{
2041 struct memblock_type *type = m->private;
2042 struct memblock_region *reg;
2043 int i;
5d63f81c 2044 phys_addr_t end;
6d03b885
BH
2045
2046 for (i = 0; i < type->cnt; i++) {
2047 reg = &type->regions[i];
5d63f81c 2048 end = reg->base + reg->size - 1;
6d03b885 2049
5d63f81c
MC
2050 seq_printf(m, "%4d: ", i);
2051 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
2052 }
2053 return 0;
2054}
5ad35093 2055DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2056
2057static int __init memblock_init_debugfs(void)
2058{
2059 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2060
0825a6f9
JP
2061 debugfs_create_file("memory", 0444, root,
2062 &memblock.memory, &memblock_debug_fops);
2063 debugfs_create_file("reserved", 0444, root,
2064 &memblock.reserved, &memblock_debug_fops);
70210ed9 2065#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0825a6f9
JP
2066 debugfs_create_file("physmem", 0444, root,
2067 &memblock.physmem, &memblock_debug_fops);
70210ed9 2068#endif
6d03b885
BH
2069
2070 return 0;
2071}
2072__initcall(memblock_init_debugfs);
2073
2074#endif /* CONFIG_DEBUG_FS */