mm: make variable names for populate_vma_page_range() consistent
[linux-block.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
3e039c5c
MR
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
77649905
DH
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
3e039c5c 50 *
9303c9d5 51 * Each region is represented by struct memblock_region that
3e039c5c 52 * defines the region extents, its attributes and NUMA node id on NUMA
1bf162e4
MCC
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
77649905 55 * the allocator metadata. The "memory" and "reserved" types are nicely
9303c9d5 56 * wrapped with struct memblock. This structure is statically
77649905
DH
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
65 *
66 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
3e039c5c 73 *
a2974133
MR
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
6e5af9a8
C
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
a2974133 81 *
df1758d9 82 * Note, that both API variants use implicit assumptions about allowed
a2974133 83 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
3e039c5c 86 *
6e5af9a8
C
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
3e039c5c 89 *
6e5af9a8 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
77649905
DH
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
3e039c5c
MR
93 */
94
a9ee6cf5 95#ifndef CONFIG_NUMA
bda49a81
MR
96struct pglist_data __refdata contig_page_data;
97EXPORT_SYMBOL(contig_page_data);
98#endif
99
100unsigned long max_low_pfn;
101unsigned long min_low_pfn;
102unsigned long max_pfn;
103unsigned long long max_possible_pfn;
104
fe091c20 105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
8a5b403d 106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9 107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
70210ed9 109#endif
fe091c20
TH
110
111struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 115 .memory.name = "memory",
fe091c20
TH
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 120 .reserved.name = "reserved",
fe091c20 121
79442ed1 122 .bottom_up = false,
fe091c20
TH
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124};
95f72d1e 125
77649905
DH
126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132};
133#endif
134
9f3d5eaa
MR
135/*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
cd991db8
MR
143#define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
87c55870
MR
148#define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154static int memblock_debug __initdata_memblock;
a3f5bafc 155static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 156static int memblock_can_resize __initdata_memblock;
181eb394
GS
157static int memblock_memory_in_slab __initdata_memblock = 0;
158static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 159
c366ea89 160static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
161{
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163}
164
eb18f1b5
TH
165/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167{
1c4bc43d 168 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
169}
170
6ed311b2
BH
171/*
172 * Address comparison utilities
173 */
10d06439 174static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 175 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
176{
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178}
179
95cf82ec 180bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 181 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
182{
183 unsigned long i;
184
f14516fb
AK
185 for (i = 0; i < type->cnt; i++)
186 if (memblock_addrs_overlap(base, size, type->regions[i].base,
187 type->regions[i].size))
6ed311b2 188 break;
c5c5c9d1 189 return i < type->cnt;
6ed311b2
BH
190}
191
47cec443 192/**
79442ed1
TC
193 * __memblock_find_range_bottom_up - find free area utility in bottom-up
194 * @start: start of candidate range
47cec443
MR
195 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
196 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
197 * @size: size of free area to find
198 * @align: alignment of free area to find
b1154233 199 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 200 * @flags: pick from blocks based on memory attributes
79442ed1
TC
201 *
202 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
203 *
47cec443 204 * Return:
79442ed1
TC
205 * Found address on success, 0 on failure.
206 */
207static phys_addr_t __init_memblock
208__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 209 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 210 enum memblock_flags flags)
79442ed1
TC
211{
212 phys_addr_t this_start, this_end, cand;
213 u64 i;
214
fc6daaf9 215 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
216 this_start = clamp(this_start, start, end);
217 this_end = clamp(this_end, start, end);
218
219 cand = round_up(this_start, align);
220 if (cand < this_end && this_end - cand >= size)
221 return cand;
222 }
223
224 return 0;
225}
226
7bd0b0f0 227/**
1402899e 228 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 229 * @start: start of candidate range
47cec443
MR
230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
231 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
232 * @size: size of free area to find
233 * @align: alignment of free area to find
b1154233 234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 235 * @flags: pick from blocks based on memory attributes
7bd0b0f0 236 *
1402899e 237 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 238 *
47cec443 239 * Return:
79442ed1 240 * Found address on success, 0 on failure.
6ed311b2 241 */
1402899e
TC
242static phys_addr_t __init_memblock
243__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 244 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 245 enum memblock_flags flags)
f7210e6c
TC
246{
247 phys_addr_t this_start, this_end, cand;
248 u64 i;
249
fc6daaf9
TL
250 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
251 NULL) {
f7210e6c
TC
252 this_start = clamp(this_start, start, end);
253 this_end = clamp(this_end, start, end);
254
255 if (this_end < size)
256 continue;
257
258 cand = round_down(this_end - size, align);
259 if (cand >= this_start)
260 return cand;
261 }
1402899e 262
f7210e6c
TC
263 return 0;
264}
6ed311b2 265
1402899e
TC
266/**
267 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
268 * @size: size of free area to find
269 * @align: alignment of free area to find
87029ee9 270 * @start: start of candidate range
47cec443
MR
271 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
272 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 273 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 274 * @flags: pick from blocks based on memory attributes
1402899e
TC
275 *
276 * Find @size free area aligned to @align in the specified range and node.
277 *
47cec443 278 * Return:
79442ed1 279 * Found address on success, 0 on failure.
1402899e 280 */
c366ea89 281static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 282 phys_addr_t align, phys_addr_t start,
e1720fee
MR
283 phys_addr_t end, int nid,
284 enum memblock_flags flags)
1402899e
TC
285{
286 /* pump up @end */
fed84c78
QC
287 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
288 end == MEMBLOCK_ALLOC_KASAN)
1402899e
TC
289 end = memblock.current_limit;
290
291 /* avoid allocating the first page */
292 start = max_t(phys_addr_t, start, PAGE_SIZE);
293 end = max(start, end);
294
2dcb3964
RG
295 if (memblock_bottom_up())
296 return __memblock_find_range_bottom_up(start, end, size, align,
297 nid, flags);
298 else
299 return __memblock_find_range_top_down(start, end, size, align,
300 nid, flags);
1402899e
TC
301}
302
7bd0b0f0
TH
303/**
304 * memblock_find_in_range - find free area in given range
305 * @start: start of candidate range
47cec443
MR
306 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
307 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
308 * @size: size of free area to find
309 * @align: alignment of free area to find
310 *
311 * Find @size free area aligned to @align in the specified range.
312 *
47cec443 313 * Return:
79442ed1 314 * Found address on success, 0 on failure.
fc769a8e 315 */
7bd0b0f0
TH
316phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
317 phys_addr_t end, phys_addr_t size,
318 phys_addr_t align)
6ed311b2 319{
a3f5bafc 320 phys_addr_t ret;
e1720fee 321 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
322
323again:
324 ret = memblock_find_in_range_node(size, align, start, end,
325 NUMA_NO_NODE, flags);
326
327 if (!ret && (flags & MEMBLOCK_MIRROR)) {
328 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
329 &size);
330 flags &= ~MEMBLOCK_MIRROR;
331 goto again;
332 }
333
334 return ret;
6ed311b2
BH
335}
336
10d06439 337static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 338{
1440c4e2 339 type->total_size -= type->regions[r].size;
7c0caeb8
TH
340 memmove(&type->regions[r], &type->regions[r + 1],
341 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 342 type->cnt--;
95f72d1e 343
8f7a6605
BH
344 /* Special case for empty arrays */
345 if (type->cnt == 0) {
1440c4e2 346 WARN_ON(type->total_size != 0);
8f7a6605
BH
347 type->cnt = 1;
348 type->regions[0].base = 0;
349 type->regions[0].size = 0;
66a20757 350 type->regions[0].flags = 0;
7c0caeb8 351 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 352 }
95f72d1e
YL
353}
354
350e88ba 355#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 356/**
47cec443 357 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
358 */
359void __init memblock_discard(void)
5e270e25 360{
3010f876 361 phys_addr_t addr, size;
5e270e25 362
3010f876
PT
363 if (memblock.reserved.regions != memblock_reserved_init_regions) {
364 addr = __pa(memblock.reserved.regions);
365 size = PAGE_ALIGN(sizeof(struct memblock_region) *
366 memblock.reserved.max);
367 __memblock_free_late(addr, size);
368 }
5e270e25 369
91b540f9 370 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
371 addr = __pa(memblock.memory.regions);
372 size = PAGE_ALIGN(sizeof(struct memblock_region) *
373 memblock.memory.max);
374 __memblock_free_late(addr, size);
375 }
9f3d5eaa
MR
376
377 memblock_memory = NULL;
5e270e25 378}
5e270e25
PH
379#endif
380
48c3b583
GP
381/**
382 * memblock_double_array - double the size of the memblock regions array
383 * @type: memblock type of the regions array being doubled
384 * @new_area_start: starting address of memory range to avoid overlap with
385 * @new_area_size: size of memory range to avoid overlap with
386 *
387 * Double the size of the @type regions array. If memblock is being used to
388 * allocate memory for a new reserved regions array and there is a previously
47cec443 389 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
390 * waiting to be reserved, ensure the memory used by the new array does
391 * not overlap.
392 *
47cec443 393 * Return:
48c3b583
GP
394 * 0 on success, -1 on failure.
395 */
396static int __init_memblock memblock_double_array(struct memblock_type *type,
397 phys_addr_t new_area_start,
398 phys_addr_t new_area_size)
142b45a7
BH
399{
400 struct memblock_region *new_array, *old_array;
29f67386 401 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 402 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 403 int use_slab = slab_is_available();
181eb394 404 int *in_slab;
142b45a7
BH
405
406 /* We don't allow resizing until we know about the reserved regions
407 * of memory that aren't suitable for allocation
408 */
409 if (!memblock_can_resize)
410 return -1;
411
142b45a7
BH
412 /* Calculate new doubled size */
413 old_size = type->max * sizeof(struct memblock_region);
414 new_size = old_size << 1;
29f67386
YL
415 /*
416 * We need to allocated new one align to PAGE_SIZE,
417 * so we can free them completely later.
418 */
419 old_alloc_size = PAGE_ALIGN(old_size);
420 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 421
181eb394
GS
422 /* Retrieve the slab flag */
423 if (type == &memblock.memory)
424 in_slab = &memblock_memory_in_slab;
425 else
426 in_slab = &memblock_reserved_in_slab;
427
a2974133 428 /* Try to find some space for it */
142b45a7
BH
429 if (use_slab) {
430 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 431 addr = new_array ? __pa(new_array) : 0;
4e2f0775 432 } else {
48c3b583
GP
433 /* only exclude range when trying to double reserved.regions */
434 if (type != &memblock.reserved)
435 new_area_start = new_area_size = 0;
436
437 addr = memblock_find_in_range(new_area_start + new_area_size,
438 memblock.current_limit,
29f67386 439 new_alloc_size, PAGE_SIZE);
48c3b583
GP
440 if (!addr && new_area_size)
441 addr = memblock_find_in_range(0,
fd07383b
AM
442 min(new_area_start, memblock.current_limit),
443 new_alloc_size, PAGE_SIZE);
48c3b583 444
15674868 445 new_array = addr ? __va(addr) : NULL;
4e2f0775 446 }
1f5026a7 447 if (!addr) {
142b45a7 448 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 449 type->name, type->max, type->max * 2);
142b45a7
BH
450 return -1;
451 }
142b45a7 452
a36aab89
MR
453 new_end = addr + new_size - 1;
454 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
455 type->name, type->max * 2, &addr, &new_end);
ea9e4376 456
fd07383b
AM
457 /*
458 * Found space, we now need to move the array over before we add the
459 * reserved region since it may be our reserved array itself that is
460 * full.
142b45a7
BH
461 */
462 memcpy(new_array, type->regions, old_size);
463 memset(new_array + type->max, 0, old_size);
464 old_array = type->regions;
465 type->regions = new_array;
466 type->max <<= 1;
467
fd07383b 468 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
469 if (*in_slab)
470 kfree(old_array);
471 else if (old_array != memblock_memory_init_regions &&
472 old_array != memblock_reserved_init_regions)
29f67386 473 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 474
fd07383b
AM
475 /*
476 * Reserve the new array if that comes from the memblock. Otherwise, we
477 * needn't do it
181eb394
GS
478 */
479 if (!use_slab)
29f67386 480 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
481
482 /* Update slab flag */
483 *in_slab = use_slab;
484
142b45a7
BH
485 return 0;
486}
487
784656f9
TH
488/**
489 * memblock_merge_regions - merge neighboring compatible regions
490 * @type: memblock type to scan
491 *
492 * Scan @type and merge neighboring compatible regions.
493 */
494static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 495{
784656f9 496 int i = 0;
95f72d1e 497
784656f9
TH
498 /* cnt never goes below 1 */
499 while (i < type->cnt - 1) {
500 struct memblock_region *this = &type->regions[i];
501 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 502
7c0caeb8
TH
503 if (this->base + this->size != next->base ||
504 memblock_get_region_node(this) !=
66a20757
TC
505 memblock_get_region_node(next) ||
506 this->flags != next->flags) {
784656f9
TH
507 BUG_ON(this->base + this->size > next->base);
508 i++;
509 continue;
8f7a6605
BH
510 }
511
784656f9 512 this->size += next->size;
c0232ae8
LF
513 /* move forward from next + 1, index of which is i + 2 */
514 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 515 type->cnt--;
95f72d1e 516 }
784656f9 517}
95f72d1e 518
784656f9
TH
519/**
520 * memblock_insert_region - insert new memblock region
209ff86d
TC
521 * @type: memblock type to insert into
522 * @idx: index for the insertion point
523 * @base: base address of the new region
524 * @size: size of the new region
525 * @nid: node id of the new region
66a20757 526 * @flags: flags of the new region
784656f9 527 *
47cec443 528 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 529 * @type must already have extra room to accommodate the new region.
784656f9
TH
530 */
531static void __init_memblock memblock_insert_region(struct memblock_type *type,
532 int idx, phys_addr_t base,
66a20757 533 phys_addr_t size,
e1720fee
MR
534 int nid,
535 enum memblock_flags flags)
784656f9
TH
536{
537 struct memblock_region *rgn = &type->regions[idx];
538
539 BUG_ON(type->cnt >= type->max);
540 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
541 rgn->base = base;
542 rgn->size = size;
66a20757 543 rgn->flags = flags;
7c0caeb8 544 memblock_set_region_node(rgn, nid);
784656f9 545 type->cnt++;
1440c4e2 546 type->total_size += size;
784656f9
TH
547}
548
549/**
f1af9d3a 550 * memblock_add_range - add new memblock region
784656f9
TH
551 * @type: memblock type to add new region into
552 * @base: base address of the new region
553 * @size: size of the new region
7fb0bc3f 554 * @nid: nid of the new region
66a20757 555 * @flags: flags of the new region
784656f9 556 *
47cec443 557 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
558 * is allowed to overlap with existing ones - overlaps don't affect already
559 * existing regions. @type is guaranteed to be minimal (all neighbouring
560 * compatible regions are merged) after the addition.
561 *
47cec443 562 * Return:
784656f9
TH
563 * 0 on success, -errno on failure.
564 */
02634a44 565static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 566 phys_addr_t base, phys_addr_t size,
e1720fee 567 int nid, enum memblock_flags flags)
784656f9
TH
568{
569 bool insert = false;
eb18f1b5
TH
570 phys_addr_t obase = base;
571 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
572 int idx, nr_new;
573 struct memblock_region *rgn;
784656f9 574
b3dc627c
TH
575 if (!size)
576 return 0;
577
784656f9
TH
578 /* special case for empty array */
579 if (type->regions[0].size == 0) {
1440c4e2 580 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
581 type->regions[0].base = base;
582 type->regions[0].size = size;
66a20757 583 type->regions[0].flags = flags;
7fb0bc3f 584 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 585 type->total_size = size;
8f7a6605 586 return 0;
95f72d1e 587 }
784656f9
TH
588repeat:
589 /*
590 * The following is executed twice. Once with %false @insert and
591 * then with %true. The first counts the number of regions needed
412d0008 592 * to accommodate the new area. The second actually inserts them.
142b45a7 593 */
784656f9
TH
594 base = obase;
595 nr_new = 0;
95f72d1e 596
66e8b438 597 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
598 phys_addr_t rbase = rgn->base;
599 phys_addr_t rend = rbase + rgn->size;
600
601 if (rbase >= end)
95f72d1e 602 break;
784656f9
TH
603 if (rend <= base)
604 continue;
605 /*
606 * @rgn overlaps. If it separates the lower part of new
607 * area, insert that portion.
608 */
609 if (rbase > base) {
a9ee6cf5 610#ifdef CONFIG_NUMA
c0a29498
WY
611 WARN_ON(nid != memblock_get_region_node(rgn));
612#endif
4fcab5f4 613 WARN_ON(flags != rgn->flags);
784656f9
TH
614 nr_new++;
615 if (insert)
8c9c1701 616 memblock_insert_region(type, idx++, base,
66a20757
TC
617 rbase - base, nid,
618 flags);
95f72d1e 619 }
784656f9
TH
620 /* area below @rend is dealt with, forget about it */
621 base = min(rend, end);
95f72d1e 622 }
784656f9
TH
623
624 /* insert the remaining portion */
625 if (base < end) {
626 nr_new++;
627 if (insert)
8c9c1701 628 memblock_insert_region(type, idx, base, end - base,
66a20757 629 nid, flags);
95f72d1e 630 }
95f72d1e 631
ef3cc4db 632 if (!nr_new)
633 return 0;
634
784656f9
TH
635 /*
636 * If this was the first round, resize array and repeat for actual
637 * insertions; otherwise, merge and return.
142b45a7 638 */
784656f9
TH
639 if (!insert) {
640 while (type->cnt + nr_new > type->max)
48c3b583 641 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
642 return -ENOMEM;
643 insert = true;
644 goto repeat;
645 } else {
646 memblock_merge_regions(type);
647 return 0;
142b45a7 648 }
95f72d1e
YL
649}
650
48a833cc
MR
651/**
652 * memblock_add_node - add new memblock region within a NUMA node
653 * @base: base address of the new region
654 * @size: size of the new region
655 * @nid: nid of the new region
656 *
657 * Add new memblock region [@base, @base + @size) to the "memory"
658 * type. See memblock_add_range() description for mode details
659 *
660 * Return:
661 * 0 on success, -errno on failure.
662 */
7fb0bc3f
TH
663int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
664 int nid)
665{
f1af9d3a 666 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
667}
668
48a833cc
MR
669/**
670 * memblock_add - add new memblock region
671 * @base: base address of the new region
672 * @size: size of the new region
673 *
674 * Add new memblock region [@base, @base + @size) to the "memory"
675 * type. See memblock_add_range() description for mode details
676 *
677 * Return:
678 * 0 on success, -errno on failure.
679 */
f705ac4b 680int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 681{
5d63f81c
MC
682 phys_addr_t end = base + size - 1;
683
a090d711 684 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 685 &base, &end, (void *)_RET_IP_);
6a4055bc 686
f705ac4b 687 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
688}
689
6a9ceb31
TH
690/**
691 * memblock_isolate_range - isolate given range into disjoint memblocks
692 * @type: memblock type to isolate range for
693 * @base: base of range to isolate
694 * @size: size of range to isolate
695 * @start_rgn: out parameter for the start of isolated region
696 * @end_rgn: out parameter for the end of isolated region
697 *
698 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 699 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
700 * which may create at most two more regions. The index of the first
701 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
702 *
47cec443 703 * Return:
6a9ceb31
TH
704 * 0 on success, -errno on failure.
705 */
706static int __init_memblock memblock_isolate_range(struct memblock_type *type,
707 phys_addr_t base, phys_addr_t size,
708 int *start_rgn, int *end_rgn)
709{
eb18f1b5 710 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
711 int idx;
712 struct memblock_region *rgn;
6a9ceb31
TH
713
714 *start_rgn = *end_rgn = 0;
715
b3dc627c
TH
716 if (!size)
717 return 0;
718
6a9ceb31
TH
719 /* we'll create at most two more regions */
720 while (type->cnt + 2 > type->max)
48c3b583 721 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
722 return -ENOMEM;
723
66e8b438 724 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
725 phys_addr_t rbase = rgn->base;
726 phys_addr_t rend = rbase + rgn->size;
727
728 if (rbase >= end)
729 break;
730 if (rend <= base)
731 continue;
732
733 if (rbase < base) {
734 /*
735 * @rgn intersects from below. Split and continue
736 * to process the next region - the new top half.
737 */
738 rgn->base = base;
1440c4e2
TH
739 rgn->size -= base - rbase;
740 type->total_size -= base - rbase;
8c9c1701 741 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
742 memblock_get_region_node(rgn),
743 rgn->flags);
6a9ceb31
TH
744 } else if (rend > end) {
745 /*
746 * @rgn intersects from above. Split and redo the
747 * current region - the new bottom half.
748 */
749 rgn->base = end;
1440c4e2
TH
750 rgn->size -= end - rbase;
751 type->total_size -= end - rbase;
8c9c1701 752 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
753 memblock_get_region_node(rgn),
754 rgn->flags);
6a9ceb31
TH
755 } else {
756 /* @rgn is fully contained, record it */
757 if (!*end_rgn)
8c9c1701
AK
758 *start_rgn = idx;
759 *end_rgn = idx + 1;
6a9ceb31
TH
760 }
761 }
762
763 return 0;
764}
6a9ceb31 765
35bd16a2 766static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 767 phys_addr_t base, phys_addr_t size)
95f72d1e 768{
71936180
TH
769 int start_rgn, end_rgn;
770 int i, ret;
95f72d1e 771
71936180
TH
772 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
773 if (ret)
774 return ret;
95f72d1e 775
71936180
TH
776 for (i = end_rgn - 1; i >= start_rgn; i--)
777 memblock_remove_region(type, i);
8f7a6605 778 return 0;
95f72d1e
YL
779}
780
581adcbe 781int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 782{
25cf23d7
MK
783 phys_addr_t end = base + size - 1;
784
a090d711 785 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
786 &base, &end, (void *)_RET_IP_);
787
f1af9d3a 788 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
789}
790
4d72868c
MR
791/**
792 * memblock_free - free boot memory block
793 * @base: phys starting address of the boot memory block
794 * @size: size of the boot memory block in bytes
795 *
796 * Free boot memory block previously allocated by memblock_alloc_xx() API.
797 * The freeing memory will not be released to the buddy allocator.
798 */
581adcbe 799int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 800{
5d63f81c
MC
801 phys_addr_t end = base + size - 1;
802
a090d711 803 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 804 &base, &end, (void *)_RET_IP_);
24aa0788 805
9099daed 806 kmemleak_free_part_phys(base, size);
f1af9d3a 807 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
808}
809
f705ac4b 810int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 811{
5d63f81c
MC
812 phys_addr_t end = base + size - 1;
813
a090d711 814 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 815 &base, &end, (void *)_RET_IP_);
95f72d1e 816
f705ac4b 817 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
818}
819
02634a44
AK
820#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
821int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
822{
823 phys_addr_t end = base + size - 1;
824
825 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
826 &base, &end, (void *)_RET_IP_);
827
77649905 828 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
02634a44
AK
829}
830#endif
831
66b16edf 832/**
47cec443
MR
833 * memblock_setclr_flag - set or clear flag for a memory region
834 * @base: base address of the region
835 * @size: size of the region
836 * @set: set or clear the flag
8958b249 837 * @flag: the flag to update
66b16edf 838 *
4308ce17 839 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 840 *
47cec443 841 * Return: 0 on success, -errno on failure.
66b16edf 842 */
4308ce17
TL
843static int __init_memblock memblock_setclr_flag(phys_addr_t base,
844 phys_addr_t size, int set, int flag)
66b16edf
TC
845{
846 struct memblock_type *type = &memblock.memory;
847 int i, ret, start_rgn, end_rgn;
848
849 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
850 if (ret)
851 return ret;
852
fe145124
MR
853 for (i = start_rgn; i < end_rgn; i++) {
854 struct memblock_region *r = &type->regions[i];
855
4308ce17 856 if (set)
fe145124 857 r->flags |= flag;
4308ce17 858 else
fe145124
MR
859 r->flags &= ~flag;
860 }
66b16edf
TC
861
862 memblock_merge_regions(type);
863 return 0;
864}
865
866/**
4308ce17 867 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
868 * @base: the base phys addr of the region
869 * @size: the size of the region
870 *
47cec443 871 * Return: 0 on success, -errno on failure.
4308ce17
TL
872 */
873int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
874{
875 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
876}
877
878/**
879 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
880 * @base: the base phys addr of the region
881 * @size: the size of the region
66b16edf 882 *
47cec443 883 * Return: 0 on success, -errno on failure.
66b16edf
TC
884 */
885int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
886{
4308ce17 887 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
888}
889
a3f5bafc
TL
890/**
891 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
892 * @base: the base phys addr of the region
893 * @size: the size of the region
894 *
47cec443 895 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
896 */
897int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
898{
899 system_has_some_mirror = true;
900
901 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
902}
903
bf3d3cc5
AB
904/**
905 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
906 * @base: the base phys addr of the region
907 * @size: the size of the region
908 *
9092d4f7
MR
909 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
910 * direct mapping of the physical memory. These regions will still be
911 * covered by the memory map. The struct page representing NOMAP memory
912 * frames in the memory map will be PageReserved()
913 *
47cec443 914 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
915 */
916int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
917{
918 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
919}
a3f5bafc 920
4c546b8a
AT
921/**
922 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
923 * @base: the base phys addr of the region
924 * @size: the size of the region
925 *
47cec443 926 * Return: 0 on success, -errno on failure.
4c546b8a
AT
927 */
928int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
929{
930 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
931}
932
9f3d5eaa
MR
933static bool should_skip_region(struct memblock_type *type,
934 struct memblock_region *m,
935 int nid, int flags)
c9a688a3
MR
936{
937 int m_nid = memblock_get_region_node(m);
938
9f3d5eaa
MR
939 /* we never skip regions when iterating memblock.reserved or physmem */
940 if (type != memblock_memory)
941 return false;
942
c9a688a3
MR
943 /* only memory regions are associated with nodes, check it */
944 if (nid != NUMA_NO_NODE && nid != m_nid)
945 return true;
946
947 /* skip hotpluggable memory regions if needed */
948 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
949 return true;
950
951 /* if we want mirror memory skip non-mirror memory regions */
952 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
953 return true;
954
955 /* skip nomap memory unless we were asked for it explicitly */
956 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
957 return true;
958
959 return false;
960}
961
35fd0808 962/**
a2974133 963 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 964 * @idx: pointer to u64 loop variable
b1154233 965 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 966 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
967 * @type_a: pointer to memblock_type from where the range is taken
968 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
969 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
970 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
971 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 972 *
f1af9d3a 973 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 974 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
975 * *@idx contains index into type_a and the upper 32bit indexes the
976 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
977 * look like the following,
978 *
979 * 0:[0-16), 1:[32-48), 2:[128-130)
980 *
981 * The upper 32bit indexes the following regions.
982 *
983 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
984 *
985 * As both region arrays are sorted, the function advances the two indices
986 * in lockstep and returns each intersection.
987 */
77649905
DH
988void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
989 struct memblock_type *type_a,
990 struct memblock_type *type_b, phys_addr_t *out_start,
991 phys_addr_t *out_end, int *out_nid)
35fd0808 992{
f1af9d3a
PH
993 int idx_a = *idx & 0xffffffff;
994 int idx_b = *idx >> 32;
b1154233 995
f1af9d3a
PH
996 if (WARN_ONCE(nid == MAX_NUMNODES,
997 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 998 nid = NUMA_NO_NODE;
35fd0808 999
f1af9d3a
PH
1000 for (; idx_a < type_a->cnt; idx_a++) {
1001 struct memblock_region *m = &type_a->regions[idx_a];
1002
35fd0808
TH
1003 phys_addr_t m_start = m->base;
1004 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1005 int m_nid = memblock_get_region_node(m);
35fd0808 1006
9f3d5eaa 1007 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1008 continue;
1009
f1af9d3a
PH
1010 if (!type_b) {
1011 if (out_start)
1012 *out_start = m_start;
1013 if (out_end)
1014 *out_end = m_end;
1015 if (out_nid)
1016 *out_nid = m_nid;
1017 idx_a++;
1018 *idx = (u32)idx_a | (u64)idx_b << 32;
1019 return;
1020 }
1021
1022 /* scan areas before each reservation */
1023 for (; idx_b < type_b->cnt + 1; idx_b++) {
1024 struct memblock_region *r;
1025 phys_addr_t r_start;
1026 phys_addr_t r_end;
1027
1028 r = &type_b->regions[idx_b];
1029 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1030 r_end = idx_b < type_b->cnt ?
1c4bc43d 1031 r->base : PHYS_ADDR_MAX;
35fd0808 1032
f1af9d3a
PH
1033 /*
1034 * if idx_b advanced past idx_a,
1035 * break out to advance idx_a
1036 */
35fd0808
TH
1037 if (r_start >= m_end)
1038 break;
1039 /* if the two regions intersect, we're done */
1040 if (m_start < r_end) {
1041 if (out_start)
f1af9d3a
PH
1042 *out_start =
1043 max(m_start, r_start);
35fd0808
TH
1044 if (out_end)
1045 *out_end = min(m_end, r_end);
1046 if (out_nid)
f1af9d3a 1047 *out_nid = m_nid;
35fd0808 1048 /*
f1af9d3a
PH
1049 * The region which ends first is
1050 * advanced for the next iteration.
35fd0808
TH
1051 */
1052 if (m_end <= r_end)
f1af9d3a 1053 idx_a++;
35fd0808 1054 else
f1af9d3a
PH
1055 idx_b++;
1056 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1057 return;
1058 }
1059 }
1060 }
1061
1062 /* signal end of iteration */
1063 *idx = ULLONG_MAX;
1064}
1065
7bd0b0f0 1066/**
f1af9d3a
PH
1067 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1068 *
7bd0b0f0 1069 * @idx: pointer to u64 loop variable
ad5ea8cd 1070 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1071 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1072 * @type_a: pointer to memblock_type from where the range is taken
1073 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1074 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1075 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1076 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1077 *
47cec443
MR
1078 * Finds the next range from type_a which is not marked as unsuitable
1079 * in type_b.
1080 *
f1af9d3a 1081 * Reverse of __next_mem_range().
7bd0b0f0 1082 */
e1720fee
MR
1083void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1084 enum memblock_flags flags,
f1af9d3a
PH
1085 struct memblock_type *type_a,
1086 struct memblock_type *type_b,
1087 phys_addr_t *out_start,
1088 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1089{
f1af9d3a
PH
1090 int idx_a = *idx & 0xffffffff;
1091 int idx_b = *idx >> 32;
b1154233 1092
560dca27
GS
1093 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1094 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1095
1096 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1097 idx_a = type_a->cnt - 1;
e47608ab 1098 if (type_b != NULL)
1099 idx_b = type_b->cnt;
1100 else
1101 idx_b = 0;
7bd0b0f0
TH
1102 }
1103
f1af9d3a
PH
1104 for (; idx_a >= 0; idx_a--) {
1105 struct memblock_region *m = &type_a->regions[idx_a];
1106
7bd0b0f0
TH
1107 phys_addr_t m_start = m->base;
1108 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1109 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1110
9f3d5eaa 1111 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1112 continue;
1113
f1af9d3a
PH
1114 if (!type_b) {
1115 if (out_start)
1116 *out_start = m_start;
1117 if (out_end)
1118 *out_end = m_end;
1119 if (out_nid)
1120 *out_nid = m_nid;
fb399b48 1121 idx_a--;
f1af9d3a
PH
1122 *idx = (u32)idx_a | (u64)idx_b << 32;
1123 return;
1124 }
1125
1126 /* scan areas before each reservation */
1127 for (; idx_b >= 0; idx_b--) {
1128 struct memblock_region *r;
1129 phys_addr_t r_start;
1130 phys_addr_t r_end;
1131
1132 r = &type_b->regions[idx_b];
1133 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1134 r_end = idx_b < type_b->cnt ?
1c4bc43d 1135 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1136 /*
1137 * if idx_b advanced past idx_a,
1138 * break out to advance idx_a
1139 */
7bd0b0f0 1140
7bd0b0f0
TH
1141 if (r_end <= m_start)
1142 break;
1143 /* if the two regions intersect, we're done */
1144 if (m_end > r_start) {
1145 if (out_start)
1146 *out_start = max(m_start, r_start);
1147 if (out_end)
1148 *out_end = min(m_end, r_end);
1149 if (out_nid)
f1af9d3a 1150 *out_nid = m_nid;
7bd0b0f0 1151 if (m_start >= r_start)
f1af9d3a 1152 idx_a--;
7bd0b0f0 1153 else
f1af9d3a
PH
1154 idx_b--;
1155 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1156 return;
1157 }
1158 }
1159 }
f1af9d3a 1160 /* signal end of iteration */
7bd0b0f0
TH
1161 *idx = ULLONG_MAX;
1162}
1163
7c0caeb8 1164/*
45e79815 1165 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1166 */
1167void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1168 unsigned long *out_start_pfn,
1169 unsigned long *out_end_pfn, int *out_nid)
1170{
1171 struct memblock_type *type = &memblock.memory;
1172 struct memblock_region *r;
d622abf7 1173 int r_nid;
7c0caeb8
TH
1174
1175 while (++*idx < type->cnt) {
1176 r = &type->regions[*idx];
d622abf7 1177 r_nid = memblock_get_region_node(r);
7c0caeb8
TH
1178
1179 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1180 continue;
d622abf7 1181 if (nid == MAX_NUMNODES || nid == r_nid)
7c0caeb8
TH
1182 break;
1183 }
1184 if (*idx >= type->cnt) {
1185 *idx = -1;
1186 return;
1187 }
1188
1189 if (out_start_pfn)
1190 *out_start_pfn = PFN_UP(r->base);
1191 if (out_end_pfn)
1192 *out_end_pfn = PFN_DOWN(r->base + r->size);
1193 if (out_nid)
d622abf7 1194 *out_nid = r_nid;
7c0caeb8
TH
1195}
1196
1197/**
1198 * memblock_set_node - set node ID on memblock regions
1199 * @base: base of area to set node ID for
1200 * @size: size of area to set node ID for
e7e8de59 1201 * @type: memblock type to set node ID for
7c0caeb8
TH
1202 * @nid: node ID to set
1203 *
47cec443 1204 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1205 * Regions which cross the area boundaries are split as necessary.
1206 *
47cec443 1207 * Return:
7c0caeb8
TH
1208 * 0 on success, -errno on failure.
1209 */
1210int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1211 struct memblock_type *type, int nid)
7c0caeb8 1212{
a9ee6cf5 1213#ifdef CONFIG_NUMA
6a9ceb31
TH
1214 int start_rgn, end_rgn;
1215 int i, ret;
7c0caeb8 1216
6a9ceb31
TH
1217 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1218 if (ret)
1219 return ret;
7c0caeb8 1220
6a9ceb31 1221 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1222 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1223
1224 memblock_merge_regions(type);
3f08a302 1225#endif
7c0caeb8
TH
1226 return 0;
1227}
3f08a302 1228
837566e7
AD
1229#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1230/**
1231 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1232 *
1233 * @idx: pointer to u64 loop variable
1234 * @zone: zone in which all of the memory blocks reside
1235 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1236 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1237 *
1238 * This function is meant to be a zone/pfn specific wrapper for the
1239 * for_each_mem_range type iterators. Specifically they are used in the
1240 * deferred memory init routines and as such we were duplicating much of
1241 * this logic throughout the code. So instead of having it in multiple
1242 * locations it seemed like it would make more sense to centralize this to
1243 * one new iterator that does everything they need.
1244 */
1245void __init_memblock
1246__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1247 unsigned long *out_spfn, unsigned long *out_epfn)
1248{
1249 int zone_nid = zone_to_nid(zone);
1250 phys_addr_t spa, epa;
1251 int nid;
1252
1253 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1254 &memblock.memory, &memblock.reserved,
1255 &spa, &epa, &nid);
1256
1257 while (*idx != U64_MAX) {
1258 unsigned long epfn = PFN_DOWN(epa);
1259 unsigned long spfn = PFN_UP(spa);
1260
1261 /*
1262 * Verify the end is at least past the start of the zone and
1263 * that we have at least one PFN to initialize.
1264 */
1265 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1266 /* if we went too far just stop searching */
1267 if (zone_end_pfn(zone) <= spfn) {
1268 *idx = U64_MAX;
1269 break;
1270 }
1271
1272 if (out_spfn)
1273 *out_spfn = max(zone->zone_start_pfn, spfn);
1274 if (out_epfn)
1275 *out_epfn = min(zone_end_pfn(zone), epfn);
1276
1277 return;
1278 }
1279
1280 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1281 &memblock.memory, &memblock.reserved,
1282 &spa, &epa, &nid);
1283 }
1284
1285 /* signal end of iteration */
1286 if (out_spfn)
1287 *out_spfn = ULONG_MAX;
1288 if (out_epfn)
1289 *out_epfn = 0;
1290}
1291
1292#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1293
92d12f95
MR
1294/**
1295 * memblock_alloc_range_nid - allocate boot memory block
1296 * @size: size of memory block to be allocated in bytes
1297 * @align: alignment of the region and block's size
1298 * @start: the lower bound of the memory region to allocate (phys address)
1299 * @end: the upper bound of the memory region to allocate (phys address)
1300 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1301 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1302 *
1303 * The allocation is performed from memory region limited by
95830666 1304 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1305 *
0ac398b1
YY
1306 * If the specified node can not hold the requested memory and @exact_nid
1307 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1308 *
1309 * For systems with memory mirroring, the allocation is attempted first
1310 * from the regions with mirroring enabled and then retried from any
1311 * memory region.
1312 *
1313 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1314 * allocated boot memory block, so that it is never reported as leaks.
1315 *
1316 * Return:
1317 * Physical address of allocated memory block on success, %0 on failure.
1318 */
8676af1f 1319phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
2bfc2862 1320 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1321 phys_addr_t end, int nid,
1322 bool exact_nid)
95f72d1e 1323{
92d12f95 1324 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1325 phys_addr_t found;
95f72d1e 1326
92d12f95
MR
1327 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1328 nid = NUMA_NO_NODE;
1329
2f770806
MR
1330 if (!align) {
1331 /* Can't use WARNs this early in boot on powerpc */
1332 dump_stack();
1333 align = SMP_CACHE_BYTES;
1334 }
1335
92d12f95 1336again:
fc6daaf9
TL
1337 found = memblock_find_in_range_node(size, align, start, end, nid,
1338 flags);
92d12f95
MR
1339 if (found && !memblock_reserve(found, size))
1340 goto done;
1341
0ac398b1 1342 if (nid != NUMA_NO_NODE && !exact_nid) {
92d12f95
MR
1343 found = memblock_find_in_range_node(size, align, start,
1344 end, NUMA_NO_NODE,
1345 flags);
1346 if (found && !memblock_reserve(found, size))
1347 goto done;
1348 }
1349
1350 if (flags & MEMBLOCK_MIRROR) {
1351 flags &= ~MEMBLOCK_MIRROR;
1352 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1353 &size);
1354 goto again;
1355 }
1356
1357 return 0;
1358
1359done:
1360 /* Skip kmemleak for kasan_init() due to high volume. */
1361 if (end != MEMBLOCK_ALLOC_KASAN)
aedf95ea 1362 /*
92d12f95
MR
1363 * The min_count is set to 0 so that memblock allocated
1364 * blocks are never reported as leaks. This is because many
1365 * of these blocks are only referred via the physical
1366 * address which is not looked up by kmemleak.
aedf95ea 1367 */
9099daed 1368 kmemleak_alloc_phys(found, size, 0, 0);
92d12f95
MR
1369
1370 return found;
95f72d1e
YL
1371}
1372
a2974133
MR
1373/**
1374 * memblock_phys_alloc_range - allocate a memory block inside specified range
1375 * @size: size of memory block to be allocated in bytes
1376 * @align: alignment of the region and block's size
1377 * @start: the lower bound of the memory region to allocate (physical address)
1378 * @end: the upper bound of the memory region to allocate (physical address)
1379 *
1380 * Allocate @size bytes in the between @start and @end.
1381 *
1382 * Return: physical address of the allocated memory block on success,
1383 * %0 on failure.
1384 */
8a770c2a
MR
1385phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1386 phys_addr_t align,
1387 phys_addr_t start,
1388 phys_addr_t end)
2bfc2862 1389{
b5cf2d6c
FM
1390 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1391 __func__, (u64)size, (u64)align, &start, &end,
1392 (void *)_RET_IP_);
0ac398b1
YY
1393 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1394 false);
7bd0b0f0
TH
1395}
1396
a2974133 1397/**
17cbe038 1398 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
a2974133
MR
1399 * @size: size of memory block to be allocated in bytes
1400 * @align: alignment of the region and block's size
1401 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1402 *
1403 * Allocates memory block from the specified NUMA node. If the node
1404 * has no available memory, attempts to allocated from any node in the
1405 * system.
1406 *
1407 * Return: physical address of the allocated memory block on success,
1408 * %0 on failure.
1409 */
9a8dd708 1410phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1411{
33755574 1412 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1413 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1414}
1415
26f09e9b 1416/**
eb31d559 1417 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1418 * @size: size of memory block to be allocated in bytes
1419 * @align: alignment of the region and block's size
1420 * @min_addr: the lower bound of the memory region to allocate (phys address)
1421 * @max_addr: the upper bound of the memory region to allocate (phys address)
1422 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1423 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1424 *
92d12f95
MR
1425 * Allocates memory block using memblock_alloc_range_nid() and
1426 * converts the returned physical address to virtual.
26f09e9b 1427 *
92d12f95
MR
1428 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1429 * will fall back to memory below @min_addr. Other constraints, such
1430 * as node and mirrored memory will be handled again in
1431 * memblock_alloc_range_nid().
26f09e9b 1432 *
47cec443 1433 * Return:
26f09e9b
SS
1434 * Virtual address of allocated memory block on success, NULL on failure.
1435 */
eb31d559 1436static void * __init memblock_alloc_internal(
26f09e9b
SS
1437 phys_addr_t size, phys_addr_t align,
1438 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1439 int nid, bool exact_nid)
26f09e9b
SS
1440{
1441 phys_addr_t alloc;
26f09e9b
SS
1442
1443 /*
1444 * Detect any accidental use of these APIs after slab is ready, as at
1445 * this moment memblock may be deinitialized already and its
c6ffc5ca 1446 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1447 */
1448 if (WARN_ON_ONCE(slab_is_available()))
1449 return kzalloc_node(size, GFP_NOWAIT, nid);
1450
f3057ad7
MR
1451 if (max_addr > memblock.current_limit)
1452 max_addr = memblock.current_limit;
1453
0ac398b1
YY
1454 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1455 exact_nid);
26f09e9b 1456
92d12f95
MR
1457 /* retry allocation without lower limit */
1458 if (!alloc && min_addr)
0ac398b1
YY
1459 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1460 exact_nid);
26f09e9b 1461
92d12f95
MR
1462 if (!alloc)
1463 return NULL;
26f09e9b 1464
92d12f95 1465 return phys_to_virt(alloc);
26f09e9b
SS
1466}
1467
0ac398b1
YY
1468/**
1469 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1470 * without zeroing memory
1471 * @size: size of memory block to be allocated in bytes
1472 * @align: alignment of the region and block's size
1473 * @min_addr: the lower bound of the memory region from where the allocation
1474 * is preferred (phys address)
1475 * @max_addr: the upper bound of the memory region from where the allocation
1476 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1477 * allocate only from memory limited by memblock.current_limit value
1478 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1479 *
1480 * Public function, provides additional debug information (including caller
1481 * info), if enabled. Does not zero allocated memory.
1482 *
1483 * Return:
1484 * Virtual address of allocated memory block on success, NULL on failure.
1485 */
1486void * __init memblock_alloc_exact_nid_raw(
1487 phys_addr_t size, phys_addr_t align,
1488 phys_addr_t min_addr, phys_addr_t max_addr,
1489 int nid)
1490{
1491 void *ptr;
1492
1493 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1494 __func__, (u64)size, (u64)align, nid, &min_addr,
1495 &max_addr, (void *)_RET_IP_);
1496
1497 ptr = memblock_alloc_internal(size, align,
1498 min_addr, max_addr, nid, true);
1499 if (ptr && size > 0)
1500 page_init_poison(ptr, size);
1501
1502 return ptr;
1503}
1504
ea1f5f37 1505/**
eb31d559 1506 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1507 * memory and without panicking
1508 * @size: size of memory block to be allocated in bytes
1509 * @align: alignment of the region and block's size
1510 * @min_addr: the lower bound of the memory region from where the allocation
1511 * is preferred (phys address)
1512 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1513 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1514 * allocate only from memory limited by memblock.current_limit value
1515 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1516 *
1517 * Public function, provides additional debug information (including caller
1518 * info), if enabled. Does not zero allocated memory, does not panic if request
1519 * cannot be satisfied.
1520 *
47cec443 1521 * Return:
ea1f5f37
PT
1522 * Virtual address of allocated memory block on success, NULL on failure.
1523 */
eb31d559 1524void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1525 phys_addr_t size, phys_addr_t align,
1526 phys_addr_t min_addr, phys_addr_t max_addr,
1527 int nid)
1528{
1529 void *ptr;
1530
d75f773c 1531 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1532 __func__, (u64)size, (u64)align, nid, &min_addr,
1533 &max_addr, (void *)_RET_IP_);
ea1f5f37 1534
eb31d559 1535 ptr = memblock_alloc_internal(size, align,
0ac398b1 1536 min_addr, max_addr, nid, false);
ea1f5f37 1537 if (ptr && size > 0)
f682a97a
AD
1538 page_init_poison(ptr, size);
1539
ea1f5f37
PT
1540 return ptr;
1541}
1542
26f09e9b 1543/**
c0dbe825 1544 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1545 * @size: size of memory block to be allocated in bytes
1546 * @align: alignment of the region and block's size
1547 * @min_addr: the lower bound of the memory region from where the allocation
1548 * is preferred (phys address)
1549 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1550 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1551 * allocate only from memory limited by memblock.current_limit value
1552 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1553 *
c0dbe825
MR
1554 * Public function, provides additional debug information (including caller
1555 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1556 *
47cec443 1557 * Return:
26f09e9b
SS
1558 * Virtual address of allocated memory block on success, NULL on failure.
1559 */
eb31d559 1560void * __init memblock_alloc_try_nid(
26f09e9b
SS
1561 phys_addr_t size, phys_addr_t align,
1562 phys_addr_t min_addr, phys_addr_t max_addr,
1563 int nid)
1564{
1565 void *ptr;
1566
d75f773c 1567 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1568 __func__, (u64)size, (u64)align, nid, &min_addr,
1569 &max_addr, (void *)_RET_IP_);
eb31d559 1570 ptr = memblock_alloc_internal(size, align,
0ac398b1 1571 min_addr, max_addr, nid, false);
c0dbe825 1572 if (ptr)
ea1f5f37 1573 memset(ptr, 0, size);
26f09e9b 1574
c0dbe825 1575 return ptr;
26f09e9b
SS
1576}
1577
48a833cc 1578/**
a2974133 1579 * __memblock_free_late - free pages directly to buddy allocator
48a833cc 1580 * @base: phys starting address of the boot memory block
26f09e9b
SS
1581 * @size: size of the boot memory block in bytes
1582 *
a2974133 1583 * This is only useful when the memblock allocator has already been torn
26f09e9b 1584 * down, but we are still initializing the system. Pages are released directly
a2974133 1585 * to the buddy allocator.
26f09e9b
SS
1586 */
1587void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1588{
a36aab89 1589 phys_addr_t cursor, end;
26f09e9b 1590
a36aab89 1591 end = base + size - 1;
d75f773c 1592 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1593 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1594 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1595 cursor = PFN_UP(base);
1596 end = PFN_DOWN(base + size);
1597
1598 for (; cursor < end; cursor++) {
7c2ee349 1599 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1600 totalram_pages_inc();
26f09e9b
SS
1601 }
1602}
9d1e2492
BH
1603
1604/*
1605 * Remaining API functions
1606 */
1607
1f1ffb8a 1608phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1609{
1440c4e2 1610 return memblock.memory.total_size;
95f72d1e
YL
1611}
1612
8907de5d
SD
1613phys_addr_t __init_memblock memblock_reserved_size(void)
1614{
1615 return memblock.reserved.total_size;
1616}
1617
0a93ebef
SR
1618/* lowest address */
1619phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1620{
1621 return memblock.memory.regions[0].base;
1622}
1623
10d06439 1624phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1625{
1626 int idx = memblock.memory.cnt - 1;
1627
e3239ff9 1628 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1629}
1630
a571d4eb 1631static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1632{
1c4bc43d 1633 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1634 struct memblock_region *r;
95f72d1e 1635
a571d4eb
DC
1636 /*
1637 * translate the memory @limit size into the max address within one of
1638 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1639 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1640 */
cc6de168 1641 for_each_mem_region(r) {
c0ce8fef
TH
1642 if (limit <= r->size) {
1643 max_addr = r->base + limit;
1644 break;
95f72d1e 1645 }
c0ce8fef 1646 limit -= r->size;
95f72d1e 1647 }
c0ce8fef 1648
a571d4eb
DC
1649 return max_addr;
1650}
1651
1652void __init memblock_enforce_memory_limit(phys_addr_t limit)
1653{
49aef717 1654 phys_addr_t max_addr;
a571d4eb
DC
1655
1656 if (!limit)
1657 return;
1658
1659 max_addr = __find_max_addr(limit);
1660
1661 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1662 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1663 return;
1664
c0ce8fef 1665 /* truncate both memory and reserved regions */
f1af9d3a 1666 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1667 PHYS_ADDR_MAX);
f1af9d3a 1668 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1669 PHYS_ADDR_MAX);
95f72d1e
YL
1670}
1671
c9ca9b4e
AT
1672void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1673{
1674 int start_rgn, end_rgn;
1675 int i, ret;
1676
1677 if (!size)
1678 return;
1679
1680 ret = memblock_isolate_range(&memblock.memory, base, size,
1681 &start_rgn, &end_rgn);
1682 if (ret)
1683 return;
1684
1685 /* remove all the MAP regions */
1686 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1687 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688 memblock_remove_region(&memblock.memory, i);
1689
1690 for (i = start_rgn - 1; i >= 0; i--)
1691 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1692 memblock_remove_region(&memblock.memory, i);
1693
1694 /* truncate the reserved regions */
1695 memblock_remove_range(&memblock.reserved, 0, base);
1696 memblock_remove_range(&memblock.reserved,
1c4bc43d 1697 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1698}
1699
a571d4eb
DC
1700void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1701{
a571d4eb 1702 phys_addr_t max_addr;
a571d4eb
DC
1703
1704 if (!limit)
1705 return;
1706
1707 max_addr = __find_max_addr(limit);
1708
1709 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1710 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1711 return;
1712
c9ca9b4e 1713 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1714}
1715
cd79481d 1716static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1717{
1718 unsigned int left = 0, right = type->cnt;
1719
1720 do {
1721 unsigned int mid = (right + left) / 2;
1722
1723 if (addr < type->regions[mid].base)
1724 right = mid;
1725 else if (addr >= (type->regions[mid].base +
1726 type->regions[mid].size))
1727 left = mid + 1;
1728 else
1729 return mid;
1730 } while (left < right);
1731 return -1;
1732}
1733
f5a222dc 1734bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1735{
72d4b0b4
BH
1736 return memblock_search(&memblock.reserved, addr) != -1;
1737}
95f72d1e 1738
b4ad0c7e 1739bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1740{
1741 return memblock_search(&memblock.memory, addr) != -1;
1742}
1743
937f0c26 1744bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1745{
1746 int i = memblock_search(&memblock.memory, addr);
1747
1748 if (i == -1)
1749 return false;
1750 return !memblock_is_nomap(&memblock.memory.regions[i]);
1751}
1752
e76b63f8
YL
1753int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1754 unsigned long *start_pfn, unsigned long *end_pfn)
1755{
1756 struct memblock_type *type = &memblock.memory;
16763230 1757 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1758
1759 if (mid == -1)
1760 return -1;
1761
f7e2f7e8
FF
1762 *start_pfn = PFN_DOWN(type->regions[mid].base);
1763 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8 1764
d622abf7 1765 return memblock_get_region_node(&type->regions[mid]);
e76b63f8 1766}
e76b63f8 1767
eab30949
SB
1768/**
1769 * memblock_is_region_memory - check if a region is a subset of memory
1770 * @base: base of region to check
1771 * @size: size of region to check
1772 *
47cec443 1773 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1774 *
47cec443 1775 * Return:
eab30949
SB
1776 * 0 if false, non-zero if true
1777 */
937f0c26 1778bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1779{
abb65272 1780 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1781 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1782
1783 if (idx == -1)
937f0c26 1784 return false;
ef415ef4 1785 return (memblock.memory.regions[idx].base +
eb18f1b5 1786 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1787}
1788
eab30949
SB
1789/**
1790 * memblock_is_region_reserved - check if a region intersects reserved memory
1791 * @base: base of region to check
1792 * @size: size of region to check
1793 *
47cec443
MR
1794 * Check if the region [@base, @base + @size) intersects a reserved
1795 * memory block.
eab30949 1796 *
47cec443 1797 * Return:
c5c5c9d1 1798 * True if they intersect, false if not.
eab30949 1799 */
c5c5c9d1 1800bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1801{
eb18f1b5 1802 memblock_cap_size(base, &size);
c5c5c9d1 1803 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1804}
1805
6ede1fd3
YL
1806void __init_memblock memblock_trim_memory(phys_addr_t align)
1807{
6ede1fd3 1808 phys_addr_t start, end, orig_start, orig_end;
136199f0 1809 struct memblock_region *r;
6ede1fd3 1810
cc6de168 1811 for_each_mem_region(r) {
136199f0
EM
1812 orig_start = r->base;
1813 orig_end = r->base + r->size;
6ede1fd3
YL
1814 start = round_up(orig_start, align);
1815 end = round_down(orig_end, align);
1816
1817 if (start == orig_start && end == orig_end)
1818 continue;
1819
1820 if (start < end) {
136199f0
EM
1821 r->base = start;
1822 r->size = end - start;
6ede1fd3 1823 } else {
136199f0
EM
1824 memblock_remove_region(&memblock.memory,
1825 r - memblock.memory.regions);
1826 r--;
6ede1fd3
YL
1827 }
1828 }
1829}
e63075a3 1830
3661ca66 1831void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1832{
1833 memblock.current_limit = limit;
1834}
1835
fec51014
LA
1836phys_addr_t __init_memblock memblock_get_current_limit(void)
1837{
1838 return memblock.current_limit;
1839}
1840
0262d9c8 1841static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1842{
5d63f81c 1843 phys_addr_t base, end, size;
e1720fee 1844 enum memblock_flags flags;
8c9c1701
AK
1845 int idx;
1846 struct memblock_region *rgn;
6ed311b2 1847
0262d9c8 1848 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1849
66e8b438 1850 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1851 char nid_buf[32] = "";
1852
1853 base = rgn->base;
1854 size = rgn->size;
5d63f81c 1855 end = base + size - 1;
66a20757 1856 flags = rgn->flags;
a9ee6cf5 1857#ifdef CONFIG_NUMA
7c0caeb8
TH
1858 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1859 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1860 memblock_get_region_node(rgn));
1861#endif
e1720fee 1862 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1863 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1864 }
1865}
1866
87c55870 1867static void __init_memblock __memblock_dump_all(void)
6ed311b2 1868{
6ed311b2 1869 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1870 pr_info(" memory size = %pa reserved size = %pa\n",
1871 &memblock.memory.total_size,
1872 &memblock.reserved.total_size);
6ed311b2 1873
0262d9c8
HC
1874 memblock_dump(&memblock.memory);
1875 memblock_dump(&memblock.reserved);
409efd4c 1876#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 1877 memblock_dump(&physmem);
409efd4c 1878#endif
6ed311b2
BH
1879}
1880
87c55870
MR
1881void __init_memblock memblock_dump_all(void)
1882{
1883 if (memblock_debug)
1884 __memblock_dump_all();
1885}
1886
1aadc056 1887void __init memblock_allow_resize(void)
6ed311b2 1888{
142b45a7 1889 memblock_can_resize = 1;
6ed311b2
BH
1890}
1891
6ed311b2
BH
1892static int __init early_memblock(char *p)
1893{
1894 if (p && strstr(p, "debug"))
1895 memblock_debug = 1;
1896 return 0;
1897}
1898early_param("memblock", early_memblock);
1899
4f5b0c17
MR
1900static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1901{
1902 struct page *start_pg, *end_pg;
1903 phys_addr_t pg, pgend;
1904
1905 /*
1906 * Convert start_pfn/end_pfn to a struct page pointer.
1907 */
1908 start_pg = pfn_to_page(start_pfn - 1) + 1;
1909 end_pg = pfn_to_page(end_pfn - 1) + 1;
1910
1911 /*
1912 * Convert to physical addresses, and round start upwards and end
1913 * downwards.
1914 */
1915 pg = PAGE_ALIGN(__pa(start_pg));
1916 pgend = __pa(end_pg) & PAGE_MASK;
1917
1918 /*
1919 * If there are free pages between these, free the section of the
1920 * memmap array.
1921 */
1922 if (pg < pgend)
1923 memblock_free(pg, pgend - pg);
1924}
1925
1926/*
1927 * The mem_map array can get very big. Free the unused area of the memory map.
1928 */
1929static void __init free_unused_memmap(void)
1930{
1931 unsigned long start, end, prev_end = 0;
1932 int i;
1933
1934 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1935 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1936 return;
1937
1938 /*
1939 * This relies on each bank being in address order.
1940 * The banks are sorted previously in bootmem_init().
1941 */
1942 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1943#ifdef CONFIG_SPARSEMEM
1944 /*
1945 * Take care not to free memmap entries that don't exist
1946 * due to SPARSEMEM sections which aren't present.
1947 */
1948 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1949#else
1950 /*
1951 * Align down here since the VM subsystem insists that the
1952 * memmap entries are valid from the bank start aligned to
1953 * MAX_ORDER_NR_PAGES.
1954 */
1955 start = round_down(start, MAX_ORDER_NR_PAGES);
1956#endif
1957
1958 /*
1959 * If we had a previous bank, and there is a space
1960 * between the current bank and the previous, free it.
1961 */
1962 if (prev_end && prev_end < start)
1963 free_memmap(prev_end, start);
1964
1965 /*
1966 * Align up here since the VM subsystem insists that the
1967 * memmap entries are valid from the bank end aligned to
1968 * MAX_ORDER_NR_PAGES.
1969 */
1970 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
1971 }
1972
1973#ifdef CONFIG_SPARSEMEM
1974 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
1975 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
1976#endif
1977}
1978
bda49a81
MR
1979static void __init __free_pages_memory(unsigned long start, unsigned long end)
1980{
1981 int order;
1982
1983 while (start < end) {
1984 order = min(MAX_ORDER - 1UL, __ffs(start));
1985
1986 while (start + (1UL << order) > end)
1987 order--;
1988
1989 memblock_free_pages(pfn_to_page(start), start, order);
1990
1991 start += (1UL << order);
1992 }
1993}
1994
1995static unsigned long __init __free_memory_core(phys_addr_t start,
1996 phys_addr_t end)
1997{
1998 unsigned long start_pfn = PFN_UP(start);
1999 unsigned long end_pfn = min_t(unsigned long,
2000 PFN_DOWN(end), max_low_pfn);
2001
2002 if (start_pfn >= end_pfn)
2003 return 0;
2004
2005 __free_pages_memory(start_pfn, end_pfn);
2006
2007 return end_pfn - start_pfn;
2008}
2009
9092d4f7
MR
2010static void __init memmap_init_reserved_pages(void)
2011{
2012 struct memblock_region *region;
2013 phys_addr_t start, end;
2014 u64 i;
2015
2016 /* initialize struct pages for the reserved regions */
2017 for_each_reserved_mem_range(i, &start, &end)
2018 reserve_bootmem_region(start, end);
2019
2020 /* and also treat struct pages for the NOMAP regions as PageReserved */
2021 for_each_mem_region(region) {
2022 if (memblock_is_nomap(region)) {
2023 start = region->base;
2024 end = start + region->size;
2025 reserve_bootmem_region(start, end);
2026 }
2027 }
2028}
2029
bda49a81
MR
2030static unsigned long __init free_low_memory_core_early(void)
2031{
2032 unsigned long count = 0;
2033 phys_addr_t start, end;
2034 u64 i;
2035
2036 memblock_clear_hotplug(0, -1);
2037
9092d4f7 2038 memmap_init_reserved_pages();
bda49a81
MR
2039
2040 /*
2041 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2042 * because in some case like Node0 doesn't have RAM installed
2043 * low ram will be on Node1
2044 */
2045 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2046 NULL)
2047 count += __free_memory_core(start, end);
2048
2049 return count;
2050}
2051
2052static int reset_managed_pages_done __initdata;
2053
2054void reset_node_managed_pages(pg_data_t *pgdat)
2055{
2056 struct zone *z;
2057
2058 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2059 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2060}
2061
2062void __init reset_all_zones_managed_pages(void)
2063{
2064 struct pglist_data *pgdat;
2065
2066 if (reset_managed_pages_done)
2067 return;
2068
2069 for_each_online_pgdat(pgdat)
2070 reset_node_managed_pages(pgdat);
2071
2072 reset_managed_pages_done = 1;
2073}
2074
2075/**
2076 * memblock_free_all - release free pages to the buddy allocator
bda49a81 2077 */
097d43d8 2078void __init memblock_free_all(void)
bda49a81
MR
2079{
2080 unsigned long pages;
2081
4f5b0c17 2082 free_unused_memmap();
bda49a81
MR
2083 reset_all_zones_managed_pages();
2084
2085 pages = free_low_memory_core_early();
ca79b0c2 2086 totalram_pages_add(pages);
bda49a81
MR
2087}
2088
350e88ba 2089#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
6d03b885
BH
2090
2091static int memblock_debug_show(struct seq_file *m, void *private)
2092{
2093 struct memblock_type *type = m->private;
2094 struct memblock_region *reg;
2095 int i;
5d63f81c 2096 phys_addr_t end;
6d03b885
BH
2097
2098 for (i = 0; i < type->cnt; i++) {
2099 reg = &type->regions[i];
5d63f81c 2100 end = reg->base + reg->size - 1;
6d03b885 2101
5d63f81c
MC
2102 seq_printf(m, "%4d: ", i);
2103 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
2104 }
2105 return 0;
2106}
5ad35093 2107DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2108
2109static int __init memblock_init_debugfs(void)
2110{
2111 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2112
0825a6f9
JP
2113 debugfs_create_file("memory", 0444, root,
2114 &memblock.memory, &memblock_debug_fops);
2115 debugfs_create_file("reserved", 0444, root,
2116 &memblock.reserved, &memblock_debug_fops);
70210ed9 2117#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905
DH
2118 debugfs_create_file("physmem", 0444, root, &physmem,
2119 &memblock_debug_fops);
70210ed9 2120#endif
6d03b885
BH
2121
2122 return 0;
2123}
2124__initcall(memblock_init_debugfs);
2125
2126#endif /* CONFIG_DEBUG_FS */