mm: deduplicate error handling for map_deny_write_exec
[linux-2.6-block.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
450d0e74
ZG
32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34#endif
35
3e039c5c
MR
36/**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
77649905
DH
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
3e039c5c 54 *
9303c9d5 55 * Each region is represented by struct memblock_region that
3e039c5c 56 * defines the region extents, its attributes and NUMA node id on NUMA
1bf162e4
MCC
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
77649905 59 * the allocator metadata. The "memory" and "reserved" types are nicely
9303c9d5 60 * wrapped with struct memblock. This structure is statically
77649905 61 * initialized at build time. The region arrays are initially sized to
450d0e74
ZG
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
69 *
70 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
3e039c5c 77 *
a2974133
MR
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
6e5af9a8
C
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
a2974133 85 *
df1758d9 86 * Note, that both API variants use implicit assumptions about allowed
a2974133 87 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
3e039c5c 90 *
6e5af9a8
C
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
3e039c5c 93 *
6e5af9a8 94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
77649905
DH
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
3e039c5c
MR
97 */
98
a9ee6cf5 99#ifndef CONFIG_NUMA
bda49a81
MR
100struct pglist_data __refdata contig_page_data;
101EXPORT_SYMBOL(contig_page_data);
102#endif
103
104unsigned long max_low_pfn;
105unsigned long min_low_pfn;
106unsigned long max_pfn;
107unsigned long long max_possible_pfn;
108
450d0e74 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
8a5b403d 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
70210ed9 113#endif
fe091c20
TH
114
115struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
450d0e74 118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
0262d9c8 119 .memory.name = "memory",
fe091c20
TH
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 124 .reserved.name = "reserved",
fe091c20 125
79442ed1 126 .bottom_up = false,
fe091c20
TH
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128};
95f72d1e 129
77649905
DH
130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136};
137#endif
138
9f3d5eaa
MR
139/*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
cd991db8
MR
147#define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
87c55870
MR
152#define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158static int memblock_debug __initdata_memblock;
a3f5bafc 159static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 160static int memblock_can_resize __initdata_memblock;
181eb394
GS
161static int memblock_memory_in_slab __initdata_memblock = 0;
162static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 163
c366ea89 164static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
165{
166 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
167}
168
eb18f1b5
TH
169/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
170static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
171{
1c4bc43d 172 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
173}
174
6ed311b2
BH
175/*
176 * Address comparison utilities
177 */
10d06439 178static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 179 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
180{
181 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
182}
183
95cf82ec 184bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 185 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
186{
187 unsigned long i;
188
023accf5
MR
189 memblock_cap_size(base, &size);
190
f14516fb
AK
191 for (i = 0; i < type->cnt; i++)
192 if (memblock_addrs_overlap(base, size, type->regions[i].base,
193 type->regions[i].size))
6ed311b2 194 break;
c5c5c9d1 195 return i < type->cnt;
6ed311b2
BH
196}
197
47cec443 198/**
79442ed1
TC
199 * __memblock_find_range_bottom_up - find free area utility in bottom-up
200 * @start: start of candidate range
47cec443
MR
201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
202 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
203 * @size: size of free area to find
204 * @align: alignment of free area to find
b1154233 205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 206 * @flags: pick from blocks based on memory attributes
79442ed1
TC
207 *
208 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
209 *
47cec443 210 * Return:
79442ed1
TC
211 * Found address on success, 0 on failure.
212 */
213static phys_addr_t __init_memblock
214__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 215 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 216 enum memblock_flags flags)
79442ed1
TC
217{
218 phys_addr_t this_start, this_end, cand;
219 u64 i;
220
fc6daaf9 221 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
222 this_start = clamp(this_start, start, end);
223 this_end = clamp(this_end, start, end);
224
225 cand = round_up(this_start, align);
226 if (cand < this_end && this_end - cand >= size)
227 return cand;
228 }
229
230 return 0;
231}
232
7bd0b0f0 233/**
1402899e 234 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 235 * @start: start of candidate range
47cec443
MR
236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
237 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
238 * @size: size of free area to find
239 * @align: alignment of free area to find
b1154233 240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 241 * @flags: pick from blocks based on memory attributes
7bd0b0f0 242 *
1402899e 243 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 244 *
47cec443 245 * Return:
79442ed1 246 * Found address on success, 0 on failure.
6ed311b2 247 */
1402899e
TC
248static phys_addr_t __init_memblock
249__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 250 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 251 enum memblock_flags flags)
f7210e6c
TC
252{
253 phys_addr_t this_start, this_end, cand;
254 u64 i;
255
fc6daaf9
TL
256 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
257 NULL) {
f7210e6c
TC
258 this_start = clamp(this_start, start, end);
259 this_end = clamp(this_end, start, end);
260
261 if (this_end < size)
262 continue;
263
264 cand = round_down(this_end - size, align);
265 if (cand >= this_start)
266 return cand;
267 }
1402899e 268
f7210e6c
TC
269 return 0;
270}
6ed311b2 271
1402899e
TC
272/**
273 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
274 * @size: size of free area to find
275 * @align: alignment of free area to find
87029ee9 276 * @start: start of candidate range
47cec443
MR
277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
278 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 280 * @flags: pick from blocks based on memory attributes
1402899e
TC
281 *
282 * Find @size free area aligned to @align in the specified range and node.
283 *
47cec443 284 * Return:
79442ed1 285 * Found address on success, 0 on failure.
1402899e 286 */
c366ea89 287static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 288 phys_addr_t align, phys_addr_t start,
e1720fee
MR
289 phys_addr_t end, int nid,
290 enum memblock_flags flags)
1402899e
TC
291{
292 /* pump up @end */
fed84c78 293 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
c6975d7c 294 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
1402899e
TC
295 end = memblock.current_limit;
296
297 /* avoid allocating the first page */
298 start = max_t(phys_addr_t, start, PAGE_SIZE);
299 end = max(start, end);
300
2dcb3964
RG
301 if (memblock_bottom_up())
302 return __memblock_find_range_bottom_up(start, end, size, align,
303 nid, flags);
304 else
305 return __memblock_find_range_top_down(start, end, size, align,
306 nid, flags);
1402899e
TC
307}
308
7bd0b0f0
TH
309/**
310 * memblock_find_in_range - find free area in given range
311 * @start: start of candidate range
47cec443
MR
312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
313 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
314 * @size: size of free area to find
315 * @align: alignment of free area to find
316 *
317 * Find @size free area aligned to @align in the specified range.
318 *
47cec443 319 * Return:
79442ed1 320 * Found address on success, 0 on failure.
fc769a8e 321 */
a7259df7 322static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
7bd0b0f0
TH
323 phys_addr_t end, phys_addr_t size,
324 phys_addr_t align)
6ed311b2 325{
a3f5bafc 326 phys_addr_t ret;
e1720fee 327 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
328
329again:
330 ret = memblock_find_in_range_node(size, align, start, end,
331 NUMA_NO_NODE, flags);
332
333 if (!ret && (flags & MEMBLOCK_MIRROR)) {
14d9a675 334 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
a3f5bafc
TL
335 &size);
336 flags &= ~MEMBLOCK_MIRROR;
337 goto again;
338 }
339
340 return ret;
6ed311b2
BH
341}
342
10d06439 343static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 344{
1440c4e2 345 type->total_size -= type->regions[r].size;
7c0caeb8
TH
346 memmove(&type->regions[r], &type->regions[r + 1],
347 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 348 type->cnt--;
95f72d1e 349
8f7a6605
BH
350 /* Special case for empty arrays */
351 if (type->cnt == 0) {
1440c4e2 352 WARN_ON(type->total_size != 0);
8f7a6605
BH
353 type->cnt = 1;
354 type->regions[0].base = 0;
355 type->regions[0].size = 0;
66a20757 356 type->regions[0].flags = 0;
7c0caeb8 357 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 358 }
95f72d1e
YL
359}
360
350e88ba 361#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 362/**
47cec443 363 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
364 */
365void __init memblock_discard(void)
5e270e25 366{
3010f876 367 phys_addr_t addr, size;
5e270e25 368
3010f876
PT
369 if (memblock.reserved.regions != memblock_reserved_init_regions) {
370 addr = __pa(memblock.reserved.regions);
371 size = PAGE_ALIGN(sizeof(struct memblock_region) *
372 memblock.reserved.max);
c94afc46
ML
373 if (memblock_reserved_in_slab)
374 kfree(memblock.reserved.regions);
375 else
376 memblock_free_late(addr, size);
3010f876 377 }
5e270e25 378
91b540f9 379 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
380 addr = __pa(memblock.memory.regions);
381 size = PAGE_ALIGN(sizeof(struct memblock_region) *
382 memblock.memory.max);
c94afc46
ML
383 if (memblock_memory_in_slab)
384 kfree(memblock.memory.regions);
385 else
386 memblock_free_late(addr, size);
3010f876 387 }
9f3d5eaa
MR
388
389 memblock_memory = NULL;
5e270e25 390}
5e270e25
PH
391#endif
392
48c3b583
GP
393/**
394 * memblock_double_array - double the size of the memblock regions array
395 * @type: memblock type of the regions array being doubled
396 * @new_area_start: starting address of memory range to avoid overlap with
397 * @new_area_size: size of memory range to avoid overlap with
398 *
399 * Double the size of the @type regions array. If memblock is being used to
400 * allocate memory for a new reserved regions array and there is a previously
47cec443 401 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
402 * waiting to be reserved, ensure the memory used by the new array does
403 * not overlap.
404 *
47cec443 405 * Return:
48c3b583
GP
406 * 0 on success, -1 on failure.
407 */
408static int __init_memblock memblock_double_array(struct memblock_type *type,
409 phys_addr_t new_area_start,
410 phys_addr_t new_area_size)
142b45a7
BH
411{
412 struct memblock_region *new_array, *old_array;
29f67386 413 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 414 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 415 int use_slab = slab_is_available();
181eb394 416 int *in_slab;
142b45a7
BH
417
418 /* We don't allow resizing until we know about the reserved regions
419 * of memory that aren't suitable for allocation
420 */
421 if (!memblock_can_resize)
422 return -1;
423
142b45a7
BH
424 /* Calculate new doubled size */
425 old_size = type->max * sizeof(struct memblock_region);
426 new_size = old_size << 1;
29f67386
YL
427 /*
428 * We need to allocated new one align to PAGE_SIZE,
429 * so we can free them completely later.
430 */
431 old_alloc_size = PAGE_ALIGN(old_size);
432 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 433
181eb394
GS
434 /* Retrieve the slab flag */
435 if (type == &memblock.memory)
436 in_slab = &memblock_memory_in_slab;
437 else
438 in_slab = &memblock_reserved_in_slab;
439
a2974133 440 /* Try to find some space for it */
142b45a7
BH
441 if (use_slab) {
442 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 443 addr = new_array ? __pa(new_array) : 0;
4e2f0775 444 } else {
48c3b583
GP
445 /* only exclude range when trying to double reserved.regions */
446 if (type != &memblock.reserved)
447 new_area_start = new_area_size = 0;
448
449 addr = memblock_find_in_range(new_area_start + new_area_size,
450 memblock.current_limit,
29f67386 451 new_alloc_size, PAGE_SIZE);
48c3b583
GP
452 if (!addr && new_area_size)
453 addr = memblock_find_in_range(0,
fd07383b
AM
454 min(new_area_start, memblock.current_limit),
455 new_alloc_size, PAGE_SIZE);
48c3b583 456
15674868 457 new_array = addr ? __va(addr) : NULL;
4e2f0775 458 }
1f5026a7 459 if (!addr) {
142b45a7 460 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 461 type->name, type->max, type->max * 2);
142b45a7
BH
462 return -1;
463 }
142b45a7 464
a36aab89
MR
465 new_end = addr + new_size - 1;
466 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
467 type->name, type->max * 2, &addr, &new_end);
ea9e4376 468
fd07383b
AM
469 /*
470 * Found space, we now need to move the array over before we add the
471 * reserved region since it may be our reserved array itself that is
472 * full.
142b45a7
BH
473 */
474 memcpy(new_array, type->regions, old_size);
475 memset(new_array + type->max, 0, old_size);
476 old_array = type->regions;
477 type->regions = new_array;
478 type->max <<= 1;
479
fd07383b 480 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
481 if (*in_slab)
482 kfree(old_array);
483 else if (old_array != memblock_memory_init_regions &&
484 old_array != memblock_reserved_init_regions)
4421cca0 485 memblock_free(old_array, old_alloc_size);
142b45a7 486
fd07383b
AM
487 /*
488 * Reserve the new array if that comes from the memblock. Otherwise, we
489 * needn't do it
181eb394
GS
490 */
491 if (!use_slab)
29f67386 492 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
493
494 /* Update slab flag */
495 *in_slab = use_slab;
496
142b45a7
BH
497 return 0;
498}
499
784656f9
TH
500/**
501 * memblock_merge_regions - merge neighboring compatible regions
502 * @type: memblock type to scan
2fe03412
PZ
503 * @start_rgn: start scanning from (@start_rgn - 1)
504 * @end_rgn: end scanning at (@end_rgn - 1)
505 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
784656f9 506 */
2fe03412
PZ
507static void __init_memblock memblock_merge_regions(struct memblock_type *type,
508 unsigned long start_rgn,
509 unsigned long end_rgn)
95f72d1e 510{
784656f9 511 int i = 0;
2fe03412
PZ
512 if (start_rgn)
513 i = start_rgn - 1;
514 end_rgn = min(end_rgn, type->cnt - 1);
515 while (i < end_rgn) {
784656f9
TH
516 struct memblock_region *this = &type->regions[i];
517 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 518
7c0caeb8
TH
519 if (this->base + this->size != next->base ||
520 memblock_get_region_node(this) !=
66a20757
TC
521 memblock_get_region_node(next) ||
522 this->flags != next->flags) {
784656f9
TH
523 BUG_ON(this->base + this->size > next->base);
524 i++;
525 continue;
8f7a6605
BH
526 }
527
784656f9 528 this->size += next->size;
c0232ae8
LF
529 /* move forward from next + 1, index of which is i + 2 */
530 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 531 type->cnt--;
2fe03412 532 end_rgn--;
95f72d1e 533 }
784656f9 534}
95f72d1e 535
784656f9
TH
536/**
537 * memblock_insert_region - insert new memblock region
209ff86d
TC
538 * @type: memblock type to insert into
539 * @idx: index for the insertion point
540 * @base: base address of the new region
541 * @size: size of the new region
542 * @nid: node id of the new region
66a20757 543 * @flags: flags of the new region
784656f9 544 *
47cec443 545 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 546 * @type must already have extra room to accommodate the new region.
784656f9
TH
547 */
548static void __init_memblock memblock_insert_region(struct memblock_type *type,
549 int idx, phys_addr_t base,
66a20757 550 phys_addr_t size,
e1720fee
MR
551 int nid,
552 enum memblock_flags flags)
784656f9
TH
553{
554 struct memblock_region *rgn = &type->regions[idx];
555
556 BUG_ON(type->cnt >= type->max);
557 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
558 rgn->base = base;
559 rgn->size = size;
66a20757 560 rgn->flags = flags;
7c0caeb8 561 memblock_set_region_node(rgn, nid);
784656f9 562 type->cnt++;
1440c4e2 563 type->total_size += size;
784656f9
TH
564}
565
566/**
f1af9d3a 567 * memblock_add_range - add new memblock region
784656f9
TH
568 * @type: memblock type to add new region into
569 * @base: base address of the new region
570 * @size: size of the new region
7fb0bc3f 571 * @nid: nid of the new region
66a20757 572 * @flags: flags of the new region
784656f9 573 *
47cec443 574 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
575 * is allowed to overlap with existing ones - overlaps don't affect already
576 * existing regions. @type is guaranteed to be minimal (all neighbouring
577 * compatible regions are merged) after the addition.
578 *
47cec443 579 * Return:
784656f9
TH
580 * 0 on success, -errno on failure.
581 */
02634a44 582static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 583 phys_addr_t base, phys_addr_t size,
e1720fee 584 int nid, enum memblock_flags flags)
784656f9
TH
585{
586 bool insert = false;
eb18f1b5
TH
587 phys_addr_t obase = base;
588 phys_addr_t end = base + memblock_cap_size(base, &size);
2fe03412 589 int idx, nr_new, start_rgn = -1, end_rgn;
8c9c1701 590 struct memblock_region *rgn;
784656f9 591
b3dc627c
TH
592 if (!size)
593 return 0;
594
784656f9
TH
595 /* special case for empty array */
596 if (type->regions[0].size == 0) {
1440c4e2 597 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
598 type->regions[0].base = base;
599 type->regions[0].size = size;
66a20757 600 type->regions[0].flags = flags;
7fb0bc3f 601 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 602 type->total_size = size;
8f7a6605 603 return 0;
95f72d1e 604 }
28e1a8f4
JT
605
606 /*
607 * The worst case is when new range overlaps all existing regions,
608 * then we'll need type->cnt + 1 empty regions in @type. So if
ad500fb2 609 * type->cnt * 2 + 1 is less than or equal to type->max, we know
28e1a8f4
JT
610 * that there is enough empty regions in @type, and we can insert
611 * regions directly.
612 */
ad500fb2 613 if (type->cnt * 2 + 1 <= type->max)
28e1a8f4
JT
614 insert = true;
615
784656f9
TH
616repeat:
617 /*
618 * The following is executed twice. Once with %false @insert and
619 * then with %true. The first counts the number of regions needed
412d0008 620 * to accommodate the new area. The second actually inserts them.
142b45a7 621 */
784656f9
TH
622 base = obase;
623 nr_new = 0;
95f72d1e 624
66e8b438 625 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
626 phys_addr_t rbase = rgn->base;
627 phys_addr_t rend = rbase + rgn->size;
628
629 if (rbase >= end)
95f72d1e 630 break;
784656f9
TH
631 if (rend <= base)
632 continue;
633 /*
634 * @rgn overlaps. If it separates the lower part of new
635 * area, insert that portion.
636 */
637 if (rbase > base) {
a9ee6cf5 638#ifdef CONFIG_NUMA
c0a29498
WY
639 WARN_ON(nid != memblock_get_region_node(rgn));
640#endif
4fcab5f4 641 WARN_ON(flags != rgn->flags);
784656f9 642 nr_new++;
2fe03412
PZ
643 if (insert) {
644 if (start_rgn == -1)
645 start_rgn = idx;
646 end_rgn = idx + 1;
8c9c1701 647 memblock_insert_region(type, idx++, base,
66a20757
TC
648 rbase - base, nid,
649 flags);
2fe03412 650 }
95f72d1e 651 }
784656f9
TH
652 /* area below @rend is dealt with, forget about it */
653 base = min(rend, end);
95f72d1e 654 }
784656f9
TH
655
656 /* insert the remaining portion */
657 if (base < end) {
658 nr_new++;
2fe03412
PZ
659 if (insert) {
660 if (start_rgn == -1)
661 start_rgn = idx;
662 end_rgn = idx + 1;
8c9c1701 663 memblock_insert_region(type, idx, base, end - base,
66a20757 664 nid, flags);
2fe03412 665 }
95f72d1e 666 }
95f72d1e 667
ef3cc4db 668 if (!nr_new)
669 return 0;
670
784656f9
TH
671 /*
672 * If this was the first round, resize array and repeat for actual
673 * insertions; otherwise, merge and return.
142b45a7 674 */
784656f9
TH
675 if (!insert) {
676 while (type->cnt + nr_new > type->max)
48c3b583 677 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
678 return -ENOMEM;
679 insert = true;
680 goto repeat;
681 } else {
2fe03412 682 memblock_merge_regions(type, start_rgn, end_rgn);
784656f9 683 return 0;
142b45a7 684 }
95f72d1e
YL
685}
686
48a833cc
MR
687/**
688 * memblock_add_node - add new memblock region within a NUMA node
689 * @base: base address of the new region
690 * @size: size of the new region
691 * @nid: nid of the new region
952eea9b 692 * @flags: flags of the new region
48a833cc
MR
693 *
694 * Add new memblock region [@base, @base + @size) to the "memory"
695 * type. See memblock_add_range() description for mode details
696 *
697 * Return:
698 * 0 on success, -errno on failure.
699 */
7fb0bc3f 700int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
952eea9b 701 int nid, enum memblock_flags flags)
7fb0bc3f 702{
00974b9a
GU
703 phys_addr_t end = base + size - 1;
704
952eea9b
DH
705 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
706 &base, &end, nid, flags, (void *)_RET_IP_);
00974b9a 707
952eea9b 708 return memblock_add_range(&memblock.memory, base, size, nid, flags);
7fb0bc3f
TH
709}
710
48a833cc
MR
711/**
712 * memblock_add - add new memblock region
713 * @base: base address of the new region
714 * @size: size of the new region
715 *
716 * Add new memblock region [@base, @base + @size) to the "memory"
717 * type. See memblock_add_range() description for mode details
718 *
719 * Return:
720 * 0 on success, -errno on failure.
721 */
f705ac4b 722int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 723{
5d63f81c
MC
724 phys_addr_t end = base + size - 1;
725
a090d711 726 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 727 &base, &end, (void *)_RET_IP_);
6a4055bc 728
f705ac4b 729 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
730}
731
6a9ceb31
TH
732/**
733 * memblock_isolate_range - isolate given range into disjoint memblocks
734 * @type: memblock type to isolate range for
735 * @base: base of range to isolate
736 * @size: size of range to isolate
737 * @start_rgn: out parameter for the start of isolated region
738 * @end_rgn: out parameter for the end of isolated region
739 *
740 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 741 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
742 * which may create at most two more regions. The index of the first
743 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
744 *
47cec443 745 * Return:
6a9ceb31
TH
746 * 0 on success, -errno on failure.
747 */
748static int __init_memblock memblock_isolate_range(struct memblock_type *type,
749 phys_addr_t base, phys_addr_t size,
750 int *start_rgn, int *end_rgn)
751{
eb18f1b5 752 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
753 int idx;
754 struct memblock_region *rgn;
6a9ceb31
TH
755
756 *start_rgn = *end_rgn = 0;
757
b3dc627c
TH
758 if (!size)
759 return 0;
760
6a9ceb31
TH
761 /* we'll create at most two more regions */
762 while (type->cnt + 2 > type->max)
48c3b583 763 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
764 return -ENOMEM;
765
66e8b438 766 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
767 phys_addr_t rbase = rgn->base;
768 phys_addr_t rend = rbase + rgn->size;
769
770 if (rbase >= end)
771 break;
772 if (rend <= base)
773 continue;
774
775 if (rbase < base) {
776 /*
777 * @rgn intersects from below. Split and continue
778 * to process the next region - the new top half.
779 */
780 rgn->base = base;
1440c4e2
TH
781 rgn->size -= base - rbase;
782 type->total_size -= base - rbase;
8c9c1701 783 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
784 memblock_get_region_node(rgn),
785 rgn->flags);
6a9ceb31
TH
786 } else if (rend > end) {
787 /*
788 * @rgn intersects from above. Split and redo the
789 * current region - the new bottom half.
790 */
791 rgn->base = end;
1440c4e2
TH
792 rgn->size -= end - rbase;
793 type->total_size -= end - rbase;
8c9c1701 794 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
795 memblock_get_region_node(rgn),
796 rgn->flags);
6a9ceb31
TH
797 } else {
798 /* @rgn is fully contained, record it */
799 if (!*end_rgn)
8c9c1701
AK
800 *start_rgn = idx;
801 *end_rgn = idx + 1;
6a9ceb31
TH
802 }
803 }
804
805 return 0;
806}
6a9ceb31 807
35bd16a2 808static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 809 phys_addr_t base, phys_addr_t size)
95f72d1e 810{
71936180
TH
811 int start_rgn, end_rgn;
812 int i, ret;
95f72d1e 813
71936180
TH
814 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
815 if (ret)
816 return ret;
95f72d1e 817
71936180
TH
818 for (i = end_rgn - 1; i >= start_rgn; i--)
819 memblock_remove_region(type, i);
8f7a6605 820 return 0;
95f72d1e
YL
821}
822
581adcbe 823int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 824{
25cf23d7
MK
825 phys_addr_t end = base + size - 1;
826
a090d711 827 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
828 &base, &end, (void *)_RET_IP_);
829
f1af9d3a 830 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
831}
832
77e02cf5 833/**
4421cca0 834 * memblock_free - free boot memory allocation
77e02cf5
LT
835 * @ptr: starting address of the boot memory allocation
836 * @size: size of the boot memory block in bytes
837 *
838 * Free boot memory block previously allocated by memblock_alloc_xx() API.
839 * The freeing memory will not be released to the buddy allocator.
840 */
4421cca0 841void __init_memblock memblock_free(void *ptr, size_t size)
77e02cf5
LT
842{
843 if (ptr)
3ecc6834 844 memblock_phys_free(__pa(ptr), size);
77e02cf5
LT
845}
846
4d72868c 847/**
3ecc6834 848 * memblock_phys_free - free boot memory block
4d72868c
MR
849 * @base: phys starting address of the boot memory block
850 * @size: size of the boot memory block in bytes
851 *
fa81ab49 852 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
4d72868c
MR
853 * The freeing memory will not be released to the buddy allocator.
854 */
3ecc6834 855int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
95f72d1e 856{
5d63f81c
MC
857 phys_addr_t end = base + size - 1;
858
a090d711 859 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 860 &base, &end, (void *)_RET_IP_);
24aa0788 861
9099daed 862 kmemleak_free_part_phys(base, size);
f1af9d3a 863 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
864}
865
f705ac4b 866int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 867{
5d63f81c
MC
868 phys_addr_t end = base + size - 1;
869
a090d711 870 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 871 &base, &end, (void *)_RET_IP_);
95f72d1e 872
f705ac4b 873 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
874}
875
02634a44
AK
876#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
877int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
878{
879 phys_addr_t end = base + size - 1;
880
881 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
882 &base, &end, (void *)_RET_IP_);
883
77649905 884 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
02634a44
AK
885}
886#endif
887
66b16edf 888/**
47cec443
MR
889 * memblock_setclr_flag - set or clear flag for a memory region
890 * @base: base address of the region
891 * @size: size of the region
892 * @set: set or clear the flag
8958b249 893 * @flag: the flag to update
66b16edf 894 *
4308ce17 895 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 896 *
47cec443 897 * Return: 0 on success, -errno on failure.
66b16edf 898 */
4308ce17
TL
899static int __init_memblock memblock_setclr_flag(phys_addr_t base,
900 phys_addr_t size, int set, int flag)
66b16edf
TC
901{
902 struct memblock_type *type = &memblock.memory;
903 int i, ret, start_rgn, end_rgn;
904
905 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
906 if (ret)
907 return ret;
908
fe145124
MR
909 for (i = start_rgn; i < end_rgn; i++) {
910 struct memblock_region *r = &type->regions[i];
911
4308ce17 912 if (set)
fe145124 913 r->flags |= flag;
4308ce17 914 else
fe145124
MR
915 r->flags &= ~flag;
916 }
66b16edf 917
2fe03412 918 memblock_merge_regions(type, start_rgn, end_rgn);
66b16edf
TC
919 return 0;
920}
921
922/**
4308ce17 923 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
924 * @base: the base phys addr of the region
925 * @size: the size of the region
926 *
47cec443 927 * Return: 0 on success, -errno on failure.
4308ce17
TL
928 */
929int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
930{
931 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
932}
933
934/**
935 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
936 * @base: the base phys addr of the region
937 * @size: the size of the region
66b16edf 938 *
47cec443 939 * Return: 0 on success, -errno on failure.
66b16edf
TC
940 */
941int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
942{
4308ce17 943 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
944}
945
a3f5bafc
TL
946/**
947 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
948 * @base: the base phys addr of the region
949 * @size: the size of the region
950 *
47cec443 951 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
952 */
953int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
954{
902c2d91
MW
955 if (!mirrored_kernelcore)
956 return 0;
957
a3f5bafc
TL
958 system_has_some_mirror = true;
959
960 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
961}
962
bf3d3cc5
AB
963/**
964 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
965 * @base: the base phys addr of the region
966 * @size: the size of the region
967 *
9092d4f7
MR
968 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
969 * direct mapping of the physical memory. These regions will still be
970 * covered by the memory map. The struct page representing NOMAP memory
971 * frames in the memory map will be PageReserved()
972 *
658aafc8
MR
973 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
974 * memblock, the caller must inform kmemleak to ignore that memory
975 *
47cec443 976 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
977 */
978int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
979{
6c9a5455 980 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
bf3d3cc5 981}
a3f5bafc 982
4c546b8a
AT
983/**
984 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
985 * @base: the base phys addr of the region
986 * @size: the size of the region
987 *
47cec443 988 * Return: 0 on success, -errno on failure.
4c546b8a
AT
989 */
990int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
991{
992 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
993}
994
9f3d5eaa
MR
995static bool should_skip_region(struct memblock_type *type,
996 struct memblock_region *m,
997 int nid, int flags)
c9a688a3
MR
998{
999 int m_nid = memblock_get_region_node(m);
1000
9f3d5eaa
MR
1001 /* we never skip regions when iterating memblock.reserved or physmem */
1002 if (type != memblock_memory)
1003 return false;
1004
c9a688a3
MR
1005 /* only memory regions are associated with nodes, check it */
1006 if (nid != NUMA_NO_NODE && nid != m_nid)
1007 return true;
1008
1009 /* skip hotpluggable memory regions if needed */
79e482e9
MR
1010 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1011 !(flags & MEMBLOCK_HOTPLUG))
c9a688a3
MR
1012 return true;
1013
1014 /* if we want mirror memory skip non-mirror memory regions */
1015 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1016 return true;
1017
1018 /* skip nomap memory unless we were asked for it explicitly */
1019 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1020 return true;
1021
f7892d8e
DH
1022 /* skip driver-managed memory unless we were asked for it explicitly */
1023 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1024 return true;
1025
c9a688a3
MR
1026 return false;
1027}
1028
35fd0808 1029/**
a2974133 1030 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 1031 * @idx: pointer to u64 loop variable
b1154233 1032 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1033 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1034 * @type_a: pointer to memblock_type from where the range is taken
1035 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1036 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1037 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1038 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 1039 *
f1af9d3a 1040 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 1041 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
1042 * *@idx contains index into type_a and the upper 32bit indexes the
1043 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
1044 * look like the following,
1045 *
1046 * 0:[0-16), 1:[32-48), 2:[128-130)
1047 *
1048 * The upper 32bit indexes the following regions.
1049 *
1050 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1051 *
1052 * As both region arrays are sorted, the function advances the two indices
1053 * in lockstep and returns each intersection.
1054 */
77649905
DH
1055void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1056 struct memblock_type *type_a,
1057 struct memblock_type *type_b, phys_addr_t *out_start,
1058 phys_addr_t *out_end, int *out_nid)
35fd0808 1059{
f1af9d3a
PH
1060 int idx_a = *idx & 0xffffffff;
1061 int idx_b = *idx >> 32;
b1154233 1062
f1af9d3a
PH
1063 if (WARN_ONCE(nid == MAX_NUMNODES,
1064 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 1065 nid = NUMA_NO_NODE;
35fd0808 1066
f1af9d3a
PH
1067 for (; idx_a < type_a->cnt; idx_a++) {
1068 struct memblock_region *m = &type_a->regions[idx_a];
1069
35fd0808
TH
1070 phys_addr_t m_start = m->base;
1071 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1072 int m_nid = memblock_get_region_node(m);
35fd0808 1073
9f3d5eaa 1074 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1075 continue;
1076
f1af9d3a
PH
1077 if (!type_b) {
1078 if (out_start)
1079 *out_start = m_start;
1080 if (out_end)
1081 *out_end = m_end;
1082 if (out_nid)
1083 *out_nid = m_nid;
1084 idx_a++;
1085 *idx = (u32)idx_a | (u64)idx_b << 32;
1086 return;
1087 }
1088
1089 /* scan areas before each reservation */
1090 for (; idx_b < type_b->cnt + 1; idx_b++) {
1091 struct memblock_region *r;
1092 phys_addr_t r_start;
1093 phys_addr_t r_end;
1094
1095 r = &type_b->regions[idx_b];
1096 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1097 r_end = idx_b < type_b->cnt ?
1c4bc43d 1098 r->base : PHYS_ADDR_MAX;
35fd0808 1099
f1af9d3a
PH
1100 /*
1101 * if idx_b advanced past idx_a,
1102 * break out to advance idx_a
1103 */
35fd0808
TH
1104 if (r_start >= m_end)
1105 break;
1106 /* if the two regions intersect, we're done */
1107 if (m_start < r_end) {
1108 if (out_start)
f1af9d3a
PH
1109 *out_start =
1110 max(m_start, r_start);
35fd0808
TH
1111 if (out_end)
1112 *out_end = min(m_end, r_end);
1113 if (out_nid)
f1af9d3a 1114 *out_nid = m_nid;
35fd0808 1115 /*
f1af9d3a
PH
1116 * The region which ends first is
1117 * advanced for the next iteration.
35fd0808
TH
1118 */
1119 if (m_end <= r_end)
f1af9d3a 1120 idx_a++;
35fd0808 1121 else
f1af9d3a
PH
1122 idx_b++;
1123 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1124 return;
1125 }
1126 }
1127 }
1128
1129 /* signal end of iteration */
1130 *idx = ULLONG_MAX;
1131}
1132
7bd0b0f0 1133/**
f1af9d3a
PH
1134 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1135 *
7bd0b0f0 1136 * @idx: pointer to u64 loop variable
ad5ea8cd 1137 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1138 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1139 * @type_a: pointer to memblock_type from where the range is taken
1140 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1141 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1142 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1143 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1144 *
47cec443
MR
1145 * Finds the next range from type_a which is not marked as unsuitable
1146 * in type_b.
1147 *
f1af9d3a 1148 * Reverse of __next_mem_range().
7bd0b0f0 1149 */
e1720fee
MR
1150void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1151 enum memblock_flags flags,
f1af9d3a
PH
1152 struct memblock_type *type_a,
1153 struct memblock_type *type_b,
1154 phys_addr_t *out_start,
1155 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1156{
f1af9d3a
PH
1157 int idx_a = *idx & 0xffffffff;
1158 int idx_b = *idx >> 32;
b1154233 1159
560dca27
GS
1160 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1161 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1162
1163 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1164 idx_a = type_a->cnt - 1;
e47608ab 1165 if (type_b != NULL)
1166 idx_b = type_b->cnt;
1167 else
1168 idx_b = 0;
7bd0b0f0
TH
1169 }
1170
f1af9d3a
PH
1171 for (; idx_a >= 0; idx_a--) {
1172 struct memblock_region *m = &type_a->regions[idx_a];
1173
7bd0b0f0
TH
1174 phys_addr_t m_start = m->base;
1175 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1176 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1177
9f3d5eaa 1178 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1179 continue;
1180
f1af9d3a
PH
1181 if (!type_b) {
1182 if (out_start)
1183 *out_start = m_start;
1184 if (out_end)
1185 *out_end = m_end;
1186 if (out_nid)
1187 *out_nid = m_nid;
fb399b48 1188 idx_a--;
f1af9d3a
PH
1189 *idx = (u32)idx_a | (u64)idx_b << 32;
1190 return;
1191 }
1192
1193 /* scan areas before each reservation */
1194 for (; idx_b >= 0; idx_b--) {
1195 struct memblock_region *r;
1196 phys_addr_t r_start;
1197 phys_addr_t r_end;
1198
1199 r = &type_b->regions[idx_b];
1200 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1201 r_end = idx_b < type_b->cnt ?
1c4bc43d 1202 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1203 /*
1204 * if idx_b advanced past idx_a,
1205 * break out to advance idx_a
1206 */
7bd0b0f0 1207
7bd0b0f0
TH
1208 if (r_end <= m_start)
1209 break;
1210 /* if the two regions intersect, we're done */
1211 if (m_end > r_start) {
1212 if (out_start)
1213 *out_start = max(m_start, r_start);
1214 if (out_end)
1215 *out_end = min(m_end, r_end);
1216 if (out_nid)
f1af9d3a 1217 *out_nid = m_nid;
7bd0b0f0 1218 if (m_start >= r_start)
f1af9d3a 1219 idx_a--;
7bd0b0f0 1220 else
f1af9d3a
PH
1221 idx_b--;
1222 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1223 return;
1224 }
1225 }
1226 }
f1af9d3a 1227 /* signal end of iteration */
7bd0b0f0
TH
1228 *idx = ULLONG_MAX;
1229}
1230
7c0caeb8 1231/*
45e79815 1232 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1233 */
1234void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1235 unsigned long *out_start_pfn,
1236 unsigned long *out_end_pfn, int *out_nid)
1237{
1238 struct memblock_type *type = &memblock.memory;
1239 struct memblock_region *r;
d622abf7 1240 int r_nid;
7c0caeb8
TH
1241
1242 while (++*idx < type->cnt) {
1243 r = &type->regions[*idx];
d622abf7 1244 r_nid = memblock_get_region_node(r);
7c0caeb8
TH
1245
1246 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1247 continue;
d622abf7 1248 if (nid == MAX_NUMNODES || nid == r_nid)
7c0caeb8
TH
1249 break;
1250 }
1251 if (*idx >= type->cnt) {
1252 *idx = -1;
1253 return;
1254 }
1255
1256 if (out_start_pfn)
1257 *out_start_pfn = PFN_UP(r->base);
1258 if (out_end_pfn)
1259 *out_end_pfn = PFN_DOWN(r->base + r->size);
1260 if (out_nid)
d622abf7 1261 *out_nid = r_nid;
7c0caeb8
TH
1262}
1263
1264/**
1265 * memblock_set_node - set node ID on memblock regions
1266 * @base: base of area to set node ID for
1267 * @size: size of area to set node ID for
e7e8de59 1268 * @type: memblock type to set node ID for
7c0caeb8
TH
1269 * @nid: node ID to set
1270 *
47cec443 1271 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1272 * Regions which cross the area boundaries are split as necessary.
1273 *
47cec443 1274 * Return:
7c0caeb8
TH
1275 * 0 on success, -errno on failure.
1276 */
1277int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1278 struct memblock_type *type, int nid)
7c0caeb8 1279{
a9ee6cf5 1280#ifdef CONFIG_NUMA
6a9ceb31
TH
1281 int start_rgn, end_rgn;
1282 int i, ret;
7c0caeb8 1283
6a9ceb31
TH
1284 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1285 if (ret)
1286 return ret;
7c0caeb8 1287
6a9ceb31 1288 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1289 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8 1290
2fe03412 1291 memblock_merge_regions(type, start_rgn, end_rgn);
3f08a302 1292#endif
7c0caeb8
TH
1293 return 0;
1294}
3f08a302 1295
837566e7
AD
1296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1297/**
1298 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1299 *
1300 * @idx: pointer to u64 loop variable
1301 * @zone: zone in which all of the memory blocks reside
1302 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1303 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1304 *
1305 * This function is meant to be a zone/pfn specific wrapper for the
1306 * for_each_mem_range type iterators. Specifically they are used in the
1307 * deferred memory init routines and as such we were duplicating much of
1308 * this logic throughout the code. So instead of having it in multiple
1309 * locations it seemed like it would make more sense to centralize this to
1310 * one new iterator that does everything they need.
1311 */
1312void __init_memblock
1313__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1314 unsigned long *out_spfn, unsigned long *out_epfn)
1315{
1316 int zone_nid = zone_to_nid(zone);
1317 phys_addr_t spa, epa;
837566e7
AD
1318
1319 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1320 &memblock.memory, &memblock.reserved,
f30b002c 1321 &spa, &epa, NULL);
837566e7
AD
1322
1323 while (*idx != U64_MAX) {
1324 unsigned long epfn = PFN_DOWN(epa);
1325 unsigned long spfn = PFN_UP(spa);
1326
1327 /*
1328 * Verify the end is at least past the start of the zone and
1329 * that we have at least one PFN to initialize.
1330 */
1331 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1332 /* if we went too far just stop searching */
1333 if (zone_end_pfn(zone) <= spfn) {
1334 *idx = U64_MAX;
1335 break;
1336 }
1337
1338 if (out_spfn)
1339 *out_spfn = max(zone->zone_start_pfn, spfn);
1340 if (out_epfn)
1341 *out_epfn = min(zone_end_pfn(zone), epfn);
1342
1343 return;
1344 }
1345
1346 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1347 &memblock.memory, &memblock.reserved,
f30b002c 1348 &spa, &epa, NULL);
837566e7
AD
1349 }
1350
1351 /* signal end of iteration */
1352 if (out_spfn)
1353 *out_spfn = ULONG_MAX;
1354 if (out_epfn)
1355 *out_epfn = 0;
1356}
1357
1358#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1359
92d12f95
MR
1360/**
1361 * memblock_alloc_range_nid - allocate boot memory block
1362 * @size: size of memory block to be allocated in bytes
1363 * @align: alignment of the region and block's size
1364 * @start: the lower bound of the memory region to allocate (phys address)
1365 * @end: the upper bound of the memory region to allocate (phys address)
1366 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1367 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1368 *
1369 * The allocation is performed from memory region limited by
95830666 1370 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1371 *
0ac398b1
YY
1372 * If the specified node can not hold the requested memory and @exact_nid
1373 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1374 *
1375 * For systems with memory mirroring, the allocation is attempted first
1376 * from the regions with mirroring enabled and then retried from any
1377 * memory region.
1378 *
c200d900
PW
1379 * In addition, function using kmemleak_alloc_phys for allocated boot
1380 * memory block, it is never reported as leaks.
92d12f95
MR
1381 *
1382 * Return:
1383 * Physical address of allocated memory block on success, %0 on failure.
1384 */
8676af1f 1385phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
2bfc2862 1386 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1387 phys_addr_t end, int nid,
1388 bool exact_nid)
95f72d1e 1389{
92d12f95 1390 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1391 phys_addr_t found;
95f72d1e 1392
92d12f95
MR
1393 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1394 nid = NUMA_NO_NODE;
1395
2f770806
MR
1396 if (!align) {
1397 /* Can't use WARNs this early in boot on powerpc */
1398 dump_stack();
1399 align = SMP_CACHE_BYTES;
1400 }
1401
92d12f95 1402again:
fc6daaf9
TL
1403 found = memblock_find_in_range_node(size, align, start, end, nid,
1404 flags);
92d12f95
MR
1405 if (found && !memblock_reserve(found, size))
1406 goto done;
1407
0ac398b1 1408 if (nid != NUMA_NO_NODE && !exact_nid) {
92d12f95
MR
1409 found = memblock_find_in_range_node(size, align, start,
1410 end, NUMA_NO_NODE,
1411 flags);
1412 if (found && !memblock_reserve(found, size))
1413 goto done;
1414 }
1415
1416 if (flags & MEMBLOCK_MIRROR) {
1417 flags &= ~MEMBLOCK_MIRROR;
14d9a675 1418 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
92d12f95
MR
1419 &size);
1420 goto again;
1421 }
1422
1423 return 0;
1424
1425done:
c6975d7c
QC
1426 /*
1427 * Skip kmemleak for those places like kasan_init() and
1428 * early_pgtable_alloc() due to high volume.
1429 */
1430 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
aedf95ea 1431 /*
c200d900
PW
1432 * Memblock allocated blocks are never reported as
1433 * leaks. This is because many of these blocks are
1434 * only referred via the physical address which is
1435 * not looked up by kmemleak.
aedf95ea 1436 */
c200d900 1437 kmemleak_alloc_phys(found, size, 0);
92d12f95
MR
1438
1439 return found;
95f72d1e
YL
1440}
1441
a2974133
MR
1442/**
1443 * memblock_phys_alloc_range - allocate a memory block inside specified range
1444 * @size: size of memory block to be allocated in bytes
1445 * @align: alignment of the region and block's size
1446 * @start: the lower bound of the memory region to allocate (physical address)
1447 * @end: the upper bound of the memory region to allocate (physical address)
1448 *
1449 * Allocate @size bytes in the between @start and @end.
1450 *
1451 * Return: physical address of the allocated memory block on success,
1452 * %0 on failure.
1453 */
8a770c2a
MR
1454phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1455 phys_addr_t align,
1456 phys_addr_t start,
1457 phys_addr_t end)
2bfc2862 1458{
b5cf2d6c
FM
1459 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1460 __func__, (u64)size, (u64)align, &start, &end,
1461 (void *)_RET_IP_);
0ac398b1
YY
1462 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1463 false);
7bd0b0f0
TH
1464}
1465
a2974133 1466/**
17cbe038 1467 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
a2974133
MR
1468 * @size: size of memory block to be allocated in bytes
1469 * @align: alignment of the region and block's size
1470 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1471 *
1472 * Allocates memory block from the specified NUMA node. If the node
1473 * has no available memory, attempts to allocated from any node in the
1474 * system.
1475 *
1476 * Return: physical address of the allocated memory block on success,
1477 * %0 on failure.
1478 */
9a8dd708 1479phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1480{
33755574 1481 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1482 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1483}
1484
26f09e9b 1485/**
eb31d559 1486 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1487 * @size: size of memory block to be allocated in bytes
1488 * @align: alignment of the region and block's size
1489 * @min_addr: the lower bound of the memory region to allocate (phys address)
1490 * @max_addr: the upper bound of the memory region to allocate (phys address)
1491 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1492 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1493 *
92d12f95
MR
1494 * Allocates memory block using memblock_alloc_range_nid() and
1495 * converts the returned physical address to virtual.
26f09e9b 1496 *
92d12f95
MR
1497 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1498 * will fall back to memory below @min_addr. Other constraints, such
1499 * as node and mirrored memory will be handled again in
1500 * memblock_alloc_range_nid().
26f09e9b 1501 *
47cec443 1502 * Return:
26f09e9b
SS
1503 * Virtual address of allocated memory block on success, NULL on failure.
1504 */
eb31d559 1505static void * __init memblock_alloc_internal(
26f09e9b
SS
1506 phys_addr_t size, phys_addr_t align,
1507 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1508 int nid, bool exact_nid)
26f09e9b
SS
1509{
1510 phys_addr_t alloc;
26f09e9b
SS
1511
1512 /*
1513 * Detect any accidental use of these APIs after slab is ready, as at
1514 * this moment memblock may be deinitialized already and its
c6ffc5ca 1515 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1516 */
1517 if (WARN_ON_ONCE(slab_is_available()))
1518 return kzalloc_node(size, GFP_NOWAIT, nid);
1519
f3057ad7
MR
1520 if (max_addr > memblock.current_limit)
1521 max_addr = memblock.current_limit;
1522
0ac398b1
YY
1523 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1524 exact_nid);
26f09e9b 1525
92d12f95
MR
1526 /* retry allocation without lower limit */
1527 if (!alloc && min_addr)
0ac398b1
YY
1528 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1529 exact_nid);
26f09e9b 1530
92d12f95
MR
1531 if (!alloc)
1532 return NULL;
26f09e9b 1533
92d12f95 1534 return phys_to_virt(alloc);
26f09e9b
SS
1535}
1536
0ac398b1
YY
1537/**
1538 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1539 * without zeroing memory
1540 * @size: size of memory block to be allocated in bytes
1541 * @align: alignment of the region and block's size
1542 * @min_addr: the lower bound of the memory region from where the allocation
1543 * is preferred (phys address)
1544 * @max_addr: the upper bound of the memory region from where the allocation
1545 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1546 * allocate only from memory limited by memblock.current_limit value
1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548 *
1549 * Public function, provides additional debug information (including caller
1550 * info), if enabled. Does not zero allocated memory.
1551 *
1552 * Return:
1553 * Virtual address of allocated memory block on success, NULL on failure.
1554 */
1555void * __init memblock_alloc_exact_nid_raw(
1556 phys_addr_t size, phys_addr_t align,
1557 phys_addr_t min_addr, phys_addr_t max_addr,
1558 int nid)
1559{
0ac398b1
YY
1560 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1561 __func__, (u64)size, (u64)align, nid, &min_addr,
1562 &max_addr, (void *)_RET_IP_);
1563
08678804
MR
1564 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1565 true);
0ac398b1
YY
1566}
1567
ea1f5f37 1568/**
eb31d559 1569 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1570 * memory and without panicking
1571 * @size: size of memory block to be allocated in bytes
1572 * @align: alignment of the region and block's size
1573 * @min_addr: the lower bound of the memory region from where the allocation
1574 * is preferred (phys address)
1575 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1576 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1577 * allocate only from memory limited by memblock.current_limit value
1578 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1579 *
1580 * Public function, provides additional debug information (including caller
1581 * info), if enabled. Does not zero allocated memory, does not panic if request
1582 * cannot be satisfied.
1583 *
47cec443 1584 * Return:
ea1f5f37
PT
1585 * Virtual address of allocated memory block on success, NULL on failure.
1586 */
eb31d559 1587void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1588 phys_addr_t size, phys_addr_t align,
1589 phys_addr_t min_addr, phys_addr_t max_addr,
1590 int nid)
1591{
d75f773c 1592 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1593 __func__, (u64)size, (u64)align, nid, &min_addr,
1594 &max_addr, (void *)_RET_IP_);
ea1f5f37 1595
08678804
MR
1596 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1597 false);
ea1f5f37
PT
1598}
1599
26f09e9b 1600/**
c0dbe825 1601 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1602 * @size: size of memory block to be allocated in bytes
1603 * @align: alignment of the region and block's size
1604 * @min_addr: the lower bound of the memory region from where the allocation
1605 * is preferred (phys address)
1606 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1607 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1608 * allocate only from memory limited by memblock.current_limit value
1609 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1610 *
c0dbe825
MR
1611 * Public function, provides additional debug information (including caller
1612 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1613 *
47cec443 1614 * Return:
26f09e9b
SS
1615 * Virtual address of allocated memory block on success, NULL on failure.
1616 */
eb31d559 1617void * __init memblock_alloc_try_nid(
26f09e9b
SS
1618 phys_addr_t size, phys_addr_t align,
1619 phys_addr_t min_addr, phys_addr_t max_addr,
1620 int nid)
1621{
1622 void *ptr;
1623
d75f773c 1624 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1625 __func__, (u64)size, (u64)align, nid, &min_addr,
1626 &max_addr, (void *)_RET_IP_);
eb31d559 1627 ptr = memblock_alloc_internal(size, align,
0ac398b1 1628 min_addr, max_addr, nid, false);
c0dbe825 1629 if (ptr)
ea1f5f37 1630 memset(ptr, 0, size);
26f09e9b 1631
c0dbe825 1632 return ptr;
26f09e9b
SS
1633}
1634
48a833cc 1635/**
621d9739 1636 * memblock_free_late - free pages directly to buddy allocator
48a833cc 1637 * @base: phys starting address of the boot memory block
26f09e9b
SS
1638 * @size: size of the boot memory block in bytes
1639 *
a2974133 1640 * This is only useful when the memblock allocator has already been torn
26f09e9b 1641 * down, but we are still initializing the system. Pages are released directly
a2974133 1642 * to the buddy allocator.
26f09e9b 1643 */
621d9739 1644void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
26f09e9b 1645{
a36aab89 1646 phys_addr_t cursor, end;
26f09e9b 1647
a36aab89 1648 end = base + size - 1;
d75f773c 1649 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1650 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1651 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1652 cursor = PFN_UP(base);
1653 end = PFN_DOWN(base + size);
1654
1655 for (; cursor < end; cursor++) {
647037ad 1656 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1657 totalram_pages_inc();
26f09e9b
SS
1658 }
1659}
9d1e2492
BH
1660
1661/*
1662 * Remaining API functions
1663 */
1664
1f1ffb8a 1665phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1666{
1440c4e2 1667 return memblock.memory.total_size;
95f72d1e
YL
1668}
1669
8907de5d
SD
1670phys_addr_t __init_memblock memblock_reserved_size(void)
1671{
1672 return memblock.reserved.total_size;
1673}
1674
0a93ebef
SR
1675/* lowest address */
1676phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1677{
1678 return memblock.memory.regions[0].base;
1679}
1680
10d06439 1681phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1682{
1683 int idx = memblock.memory.cnt - 1;
1684
e3239ff9 1685 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1686}
1687
a571d4eb 1688static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1689{
1c4bc43d 1690 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1691 struct memblock_region *r;
95f72d1e 1692
a571d4eb
DC
1693 /*
1694 * translate the memory @limit size into the max address within one of
1695 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1696 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1697 */
cc6de168 1698 for_each_mem_region(r) {
c0ce8fef
TH
1699 if (limit <= r->size) {
1700 max_addr = r->base + limit;
1701 break;
95f72d1e 1702 }
c0ce8fef 1703 limit -= r->size;
95f72d1e 1704 }
c0ce8fef 1705
a571d4eb
DC
1706 return max_addr;
1707}
1708
1709void __init memblock_enforce_memory_limit(phys_addr_t limit)
1710{
49aef717 1711 phys_addr_t max_addr;
a571d4eb
DC
1712
1713 if (!limit)
1714 return;
1715
1716 max_addr = __find_max_addr(limit);
1717
1718 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1719 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1720 return;
1721
c0ce8fef 1722 /* truncate both memory and reserved regions */
f1af9d3a 1723 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1724 PHYS_ADDR_MAX);
f1af9d3a 1725 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1726 PHYS_ADDR_MAX);
95f72d1e
YL
1727}
1728
c9ca9b4e
AT
1729void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1730{
1731 int start_rgn, end_rgn;
1732 int i, ret;
1733
1734 if (!size)
1735 return;
1736
5173ed72 1737 if (!memblock_memory->total_size) {
e888fa7b
GU
1738 pr_warn("%s: No memory registered yet\n", __func__);
1739 return;
1740 }
1741
c9ca9b4e
AT
1742 ret = memblock_isolate_range(&memblock.memory, base, size,
1743 &start_rgn, &end_rgn);
1744 if (ret)
1745 return;
1746
1747 /* remove all the MAP regions */
1748 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1749 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1750 memblock_remove_region(&memblock.memory, i);
1751
1752 for (i = start_rgn - 1; i >= 0; i--)
1753 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1754 memblock_remove_region(&memblock.memory, i);
1755
1756 /* truncate the reserved regions */
1757 memblock_remove_range(&memblock.reserved, 0, base);
1758 memblock_remove_range(&memblock.reserved,
1c4bc43d 1759 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1760}
1761
a571d4eb
DC
1762void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1763{
a571d4eb 1764 phys_addr_t max_addr;
a571d4eb
DC
1765
1766 if (!limit)
1767 return;
1768
1769 max_addr = __find_max_addr(limit);
1770
1771 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1772 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1773 return;
1774
c9ca9b4e 1775 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1776}
1777
cd79481d 1778static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1779{
1780 unsigned int left = 0, right = type->cnt;
1781
1782 do {
1783 unsigned int mid = (right + left) / 2;
1784
1785 if (addr < type->regions[mid].base)
1786 right = mid;
1787 else if (addr >= (type->regions[mid].base +
1788 type->regions[mid].size))
1789 left = mid + 1;
1790 else
1791 return mid;
1792 } while (left < right);
1793 return -1;
1794}
1795
f5a222dc 1796bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1797{
72d4b0b4
BH
1798 return memblock_search(&memblock.reserved, addr) != -1;
1799}
95f72d1e 1800
b4ad0c7e 1801bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1802{
1803 return memblock_search(&memblock.memory, addr) != -1;
1804}
1805
937f0c26 1806bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1807{
1808 int i = memblock_search(&memblock.memory, addr);
1809
1810 if (i == -1)
1811 return false;
1812 return !memblock_is_nomap(&memblock.memory.regions[i]);
1813}
1814
e76b63f8
YL
1815int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1816 unsigned long *start_pfn, unsigned long *end_pfn)
1817{
1818 struct memblock_type *type = &memblock.memory;
16763230 1819 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1820
1821 if (mid == -1)
1822 return -1;
1823
f7e2f7e8
FF
1824 *start_pfn = PFN_DOWN(type->regions[mid].base);
1825 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8 1826
d622abf7 1827 return memblock_get_region_node(&type->regions[mid]);
e76b63f8 1828}
e76b63f8 1829
eab30949
SB
1830/**
1831 * memblock_is_region_memory - check if a region is a subset of memory
1832 * @base: base of region to check
1833 * @size: size of region to check
1834 *
47cec443 1835 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1836 *
47cec443 1837 * Return:
eab30949
SB
1838 * 0 if false, non-zero if true
1839 */
937f0c26 1840bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1841{
abb65272 1842 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1843 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1844
1845 if (idx == -1)
937f0c26 1846 return false;
ef415ef4 1847 return (memblock.memory.regions[idx].base +
eb18f1b5 1848 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1849}
1850
eab30949
SB
1851/**
1852 * memblock_is_region_reserved - check if a region intersects reserved memory
1853 * @base: base of region to check
1854 * @size: size of region to check
1855 *
47cec443
MR
1856 * Check if the region [@base, @base + @size) intersects a reserved
1857 * memory block.
eab30949 1858 *
47cec443 1859 * Return:
c5c5c9d1 1860 * True if they intersect, false if not.
eab30949 1861 */
c5c5c9d1 1862bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1863{
c5c5c9d1 1864 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1865}
1866
6ede1fd3
YL
1867void __init_memblock memblock_trim_memory(phys_addr_t align)
1868{
6ede1fd3 1869 phys_addr_t start, end, orig_start, orig_end;
136199f0 1870 struct memblock_region *r;
6ede1fd3 1871
cc6de168 1872 for_each_mem_region(r) {
136199f0
EM
1873 orig_start = r->base;
1874 orig_end = r->base + r->size;
6ede1fd3
YL
1875 start = round_up(orig_start, align);
1876 end = round_down(orig_end, align);
1877
1878 if (start == orig_start && end == orig_end)
1879 continue;
1880
1881 if (start < end) {
136199f0
EM
1882 r->base = start;
1883 r->size = end - start;
6ede1fd3 1884 } else {
136199f0
EM
1885 memblock_remove_region(&memblock.memory,
1886 r - memblock.memory.regions);
1887 r--;
6ede1fd3
YL
1888 }
1889 }
1890}
e63075a3 1891
3661ca66 1892void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1893{
1894 memblock.current_limit = limit;
1895}
1896
fec51014
LA
1897phys_addr_t __init_memblock memblock_get_current_limit(void)
1898{
1899 return memblock.current_limit;
1900}
1901
0262d9c8 1902static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1903{
5d63f81c 1904 phys_addr_t base, end, size;
e1720fee 1905 enum memblock_flags flags;
8c9c1701
AK
1906 int idx;
1907 struct memblock_region *rgn;
6ed311b2 1908
0262d9c8 1909 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1910
66e8b438 1911 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1912 char nid_buf[32] = "";
1913
1914 base = rgn->base;
1915 size = rgn->size;
5d63f81c 1916 end = base + size - 1;
66a20757 1917 flags = rgn->flags;
a9ee6cf5 1918#ifdef CONFIG_NUMA
7c0caeb8
TH
1919 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1920 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1921 memblock_get_region_node(rgn));
1922#endif
e1720fee 1923 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1924 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1925 }
1926}
1927
87c55870 1928static void __init_memblock __memblock_dump_all(void)
6ed311b2 1929{
6ed311b2 1930 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1931 pr_info(" memory size = %pa reserved size = %pa\n",
1932 &memblock.memory.total_size,
1933 &memblock.reserved.total_size);
6ed311b2 1934
0262d9c8
HC
1935 memblock_dump(&memblock.memory);
1936 memblock_dump(&memblock.reserved);
409efd4c 1937#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 1938 memblock_dump(&physmem);
409efd4c 1939#endif
6ed311b2
BH
1940}
1941
87c55870
MR
1942void __init_memblock memblock_dump_all(void)
1943{
1944 if (memblock_debug)
1945 __memblock_dump_all();
1946}
1947
1aadc056 1948void __init memblock_allow_resize(void)
6ed311b2 1949{
142b45a7 1950 memblock_can_resize = 1;
6ed311b2
BH
1951}
1952
6ed311b2
BH
1953static int __init early_memblock(char *p)
1954{
1955 if (p && strstr(p, "debug"))
1956 memblock_debug = 1;
1957 return 0;
1958}
1959early_param("memblock", early_memblock);
1960
4f5b0c17
MR
1961static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1962{
1963 struct page *start_pg, *end_pg;
1964 phys_addr_t pg, pgend;
1965
1966 /*
1967 * Convert start_pfn/end_pfn to a struct page pointer.
1968 */
1969 start_pg = pfn_to_page(start_pfn - 1) + 1;
1970 end_pg = pfn_to_page(end_pfn - 1) + 1;
1971
1972 /*
1973 * Convert to physical addresses, and round start upwards and end
1974 * downwards.
1975 */
1976 pg = PAGE_ALIGN(__pa(start_pg));
1977 pgend = __pa(end_pg) & PAGE_MASK;
1978
1979 /*
1980 * If there are free pages between these, free the section of the
1981 * memmap array.
1982 */
1983 if (pg < pgend)
3ecc6834 1984 memblock_phys_free(pg, pgend - pg);
4f5b0c17
MR
1985}
1986
1987/*
1988 * The mem_map array can get very big. Free the unused area of the memory map.
1989 */
1990static void __init free_unused_memmap(void)
1991{
1992 unsigned long start, end, prev_end = 0;
1993 int i;
1994
1995 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1996 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1997 return;
1998
1999 /*
2000 * This relies on each bank being in address order.
2001 * The banks are sorted previously in bootmem_init().
2002 */
2003 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2004#ifdef CONFIG_SPARSEMEM
2005 /*
2006 * Take care not to free memmap entries that don't exist
2007 * due to SPARSEMEM sections which aren't present.
2008 */
2009 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 2010#endif
4f5b0c17 2011 /*
e2a86800
MR
2012 * Align down here since many operations in VM subsystem
2013 * presume that there are no holes in the memory map inside
2014 * a pageblock
4f5b0c17 2015 */
4f9bc69a 2016 start = pageblock_start_pfn(start);
4f5b0c17
MR
2017
2018 /*
2019 * If we had a previous bank, and there is a space
2020 * between the current bank and the previous, free it.
2021 */
2022 if (prev_end && prev_end < start)
2023 free_memmap(prev_end, start);
2024
2025 /*
e2a86800
MR
2026 * Align up here since many operations in VM subsystem
2027 * presume that there are no holes in the memory map inside
2028 * a pageblock
4f5b0c17 2029 */
5f7fa13f 2030 prev_end = pageblock_align(end);
4f5b0c17
MR
2031 }
2032
2033#ifdef CONFIG_SPARSEMEM
f921f53e 2034 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
5f7fa13f 2035 prev_end = pageblock_align(end);
4f5b0c17 2036 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 2037 }
4f5b0c17
MR
2038#endif
2039}
2040
bda49a81
MR
2041static void __init __free_pages_memory(unsigned long start, unsigned long end)
2042{
2043 int order;
2044
2045 while (start < end) {
2046 order = min(MAX_ORDER - 1UL, __ffs(start));
2047
2048 while (start + (1UL << order) > end)
2049 order--;
2050
2051 memblock_free_pages(pfn_to_page(start), start, order);
2052
2053 start += (1UL << order);
2054 }
2055}
2056
2057static unsigned long __init __free_memory_core(phys_addr_t start,
2058 phys_addr_t end)
2059{
2060 unsigned long start_pfn = PFN_UP(start);
2061 unsigned long end_pfn = min_t(unsigned long,
2062 PFN_DOWN(end), max_low_pfn);
2063
2064 if (start_pfn >= end_pfn)
2065 return 0;
2066
2067 __free_pages_memory(start_pfn, end_pfn);
2068
2069 return end_pfn - start_pfn;
2070}
2071
9092d4f7
MR
2072static void __init memmap_init_reserved_pages(void)
2073{
2074 struct memblock_region *region;
2075 phys_addr_t start, end;
2076 u64 i;
2077
2078 /* initialize struct pages for the reserved regions */
2079 for_each_reserved_mem_range(i, &start, &end)
2080 reserve_bootmem_region(start, end);
2081
2082 /* and also treat struct pages for the NOMAP regions as PageReserved */
2083 for_each_mem_region(region) {
2084 if (memblock_is_nomap(region)) {
2085 start = region->base;
2086 end = start + region->size;
2087 reserve_bootmem_region(start, end);
2088 }
2089 }
2090}
2091
bda49a81
MR
2092static unsigned long __init free_low_memory_core_early(void)
2093{
2094 unsigned long count = 0;
2095 phys_addr_t start, end;
2096 u64 i;
2097
2098 memblock_clear_hotplug(0, -1);
2099
9092d4f7 2100 memmap_init_reserved_pages();
bda49a81
MR
2101
2102 /*
2103 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2104 * because in some case like Node0 doesn't have RAM installed
2105 * low ram will be on Node1
2106 */
2107 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2108 NULL)
2109 count += __free_memory_core(start, end);
2110
2111 return count;
2112}
2113
2114static int reset_managed_pages_done __initdata;
2115
2116void reset_node_managed_pages(pg_data_t *pgdat)
2117{
2118 struct zone *z;
2119
2120 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2121 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2122}
2123
2124void __init reset_all_zones_managed_pages(void)
2125{
2126 struct pglist_data *pgdat;
2127
2128 if (reset_managed_pages_done)
2129 return;
2130
2131 for_each_online_pgdat(pgdat)
2132 reset_node_managed_pages(pgdat);
2133
2134 reset_managed_pages_done = 1;
2135}
2136
2137/**
2138 * memblock_free_all - release free pages to the buddy allocator
bda49a81 2139 */
097d43d8 2140void __init memblock_free_all(void)
bda49a81
MR
2141{
2142 unsigned long pages;
2143
4f5b0c17 2144 free_unused_memmap();
bda49a81
MR
2145 reset_all_zones_managed_pages();
2146
2147 pages = free_low_memory_core_early();
ca79b0c2 2148 totalram_pages_add(pages);
bda49a81
MR
2149}
2150
350e88ba 2151#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
6d03b885
BH
2152
2153static int memblock_debug_show(struct seq_file *m, void *private)
2154{
2155 struct memblock_type *type = m->private;
2156 struct memblock_region *reg;
2157 int i;
5d63f81c 2158 phys_addr_t end;
6d03b885
BH
2159
2160 for (i = 0; i < type->cnt; i++) {
2161 reg = &type->regions[i];
5d63f81c 2162 end = reg->base + reg->size - 1;
6d03b885 2163
5d63f81c
MC
2164 seq_printf(m, "%4d: ", i);
2165 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
2166 }
2167 return 0;
2168}
5ad35093 2169DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2170
2171static int __init memblock_init_debugfs(void)
2172{
2173 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2174
0825a6f9
JP
2175 debugfs_create_file("memory", 0444, root,
2176 &memblock.memory, &memblock_debug_fops);
2177 debugfs_create_file("reserved", 0444, root,
2178 &memblock.reserved, &memblock_debug_fops);
70210ed9 2179#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905
DH
2180 debugfs_create_file("physmem", 0444, root, &physmem,
2181 &memblock_debug_fops);
70210ed9 2182#endif
6d03b885
BH
2183
2184 return 0;
2185}
2186__initcall(memblock_init_debugfs);
2187
2188#endif /* CONFIG_DEBUG_FS */