frontswap: simplify frontswap_init
[linux-2.6-block.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
3e039c5c
MR
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
77649905
DH
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
3e039c5c 50 *
9303c9d5 51 * Each region is represented by struct memblock_region that
3e039c5c 52 * defines the region extents, its attributes and NUMA node id on NUMA
1bf162e4
MCC
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
77649905 55 * the allocator metadata. The "memory" and "reserved" types are nicely
9303c9d5 56 * wrapped with struct memblock. This structure is statically
77649905
DH
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
65 *
66 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
3e039c5c 73 *
a2974133
MR
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
6e5af9a8
C
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
a2974133 81 *
df1758d9 82 * Note, that both API variants use implicit assumptions about allowed
a2974133 83 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
3e039c5c 86 *
6e5af9a8
C
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
3e039c5c 89 *
6e5af9a8 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
77649905
DH
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
3e039c5c
MR
93 */
94
a9ee6cf5 95#ifndef CONFIG_NUMA
bda49a81
MR
96struct pglist_data __refdata contig_page_data;
97EXPORT_SYMBOL(contig_page_data);
98#endif
99
100unsigned long max_low_pfn;
101unsigned long min_low_pfn;
102unsigned long max_pfn;
103unsigned long long max_possible_pfn;
104
fe091c20 105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
8a5b403d 106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9 107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
70210ed9 109#endif
fe091c20
TH
110
111struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 115 .memory.name = "memory",
fe091c20
TH
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 120 .reserved.name = "reserved",
fe091c20 121
79442ed1 122 .bottom_up = false,
fe091c20
TH
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124};
95f72d1e 125
77649905
DH
126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132};
133#endif
134
9f3d5eaa
MR
135/*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
cd991db8
MR
143#define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
87c55870
MR
148#define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154static int memblock_debug __initdata_memblock;
a3f5bafc 155static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 156static int memblock_can_resize __initdata_memblock;
181eb394
GS
157static int memblock_memory_in_slab __initdata_memblock = 0;
158static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 159
c366ea89 160static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
161{
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163}
164
eb18f1b5
TH
165/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167{
1c4bc43d 168 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
169}
170
6ed311b2
BH
171/*
172 * Address comparison utilities
173 */
10d06439 174static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 175 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
176{
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178}
179
95cf82ec 180bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 181 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
182{
183 unsigned long i;
184
023accf5
MR
185 memblock_cap_size(base, &size);
186
f14516fb
AK
187 for (i = 0; i < type->cnt; i++)
188 if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 type->regions[i].size))
6ed311b2 190 break;
c5c5c9d1 191 return i < type->cnt;
6ed311b2
BH
192}
193
47cec443 194/**
79442ed1
TC
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
196 * @start: start of candidate range
47cec443
MR
197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
199 * @size: size of free area to find
200 * @align: alignment of free area to find
b1154233 201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 202 * @flags: pick from blocks based on memory attributes
79442ed1
TC
203 *
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205 *
47cec443 206 * Return:
79442ed1
TC
207 * Found address on success, 0 on failure.
208 */
209static phys_addr_t __init_memblock
210__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 211 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 212 enum memblock_flags flags)
79442ed1
TC
213{
214 phys_addr_t this_start, this_end, cand;
215 u64 i;
216
fc6daaf9 217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
218 this_start = clamp(this_start, start, end);
219 this_end = clamp(this_end, start, end);
220
221 cand = round_up(this_start, align);
222 if (cand < this_end && this_end - cand >= size)
223 return cand;
224 }
225
226 return 0;
227}
228
7bd0b0f0 229/**
1402899e 230 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 231 * @start: start of candidate range
47cec443
MR
232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
234 * @size: size of free area to find
235 * @align: alignment of free area to find
b1154233 236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 237 * @flags: pick from blocks based on memory attributes
7bd0b0f0 238 *
1402899e 239 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 240 *
47cec443 241 * Return:
79442ed1 242 * Found address on success, 0 on failure.
6ed311b2 243 */
1402899e
TC
244static phys_addr_t __init_memblock
245__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 246 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 247 enum memblock_flags flags)
f7210e6c
TC
248{
249 phys_addr_t this_start, this_end, cand;
250 u64 i;
251
fc6daaf9
TL
252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 NULL) {
f7210e6c
TC
254 this_start = clamp(this_start, start, end);
255 this_end = clamp(this_end, start, end);
256
257 if (this_end < size)
258 continue;
259
260 cand = round_down(this_end - size, align);
261 if (cand >= this_start)
262 return cand;
263 }
1402899e 264
f7210e6c
TC
265 return 0;
266}
6ed311b2 267
1402899e
TC
268/**
269 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
270 * @size: size of free area to find
271 * @align: alignment of free area to find
87029ee9 272 * @start: start of candidate range
47cec443
MR
273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 276 * @flags: pick from blocks based on memory attributes
1402899e
TC
277 *
278 * Find @size free area aligned to @align in the specified range and node.
279 *
47cec443 280 * Return:
79442ed1 281 * Found address on success, 0 on failure.
1402899e 282 */
c366ea89 283static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 284 phys_addr_t align, phys_addr_t start,
e1720fee
MR
285 phys_addr_t end, int nid,
286 enum memblock_flags flags)
1402899e
TC
287{
288 /* pump up @end */
fed84c78 289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
c6975d7c 290 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
1402899e
TC
291 end = memblock.current_limit;
292
293 /* avoid allocating the first page */
294 start = max_t(phys_addr_t, start, PAGE_SIZE);
295 end = max(start, end);
296
2dcb3964
RG
297 if (memblock_bottom_up())
298 return __memblock_find_range_bottom_up(start, end, size, align,
299 nid, flags);
300 else
301 return __memblock_find_range_top_down(start, end, size, align,
302 nid, flags);
1402899e
TC
303}
304
7bd0b0f0
TH
305/**
306 * memblock_find_in_range - find free area in given range
307 * @start: start of candidate range
47cec443
MR
308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
310 * @size: size of free area to find
311 * @align: alignment of free area to find
312 *
313 * Find @size free area aligned to @align in the specified range.
314 *
47cec443 315 * Return:
79442ed1 316 * Found address on success, 0 on failure.
fc769a8e 317 */
a7259df7 318static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
7bd0b0f0
TH
319 phys_addr_t end, phys_addr_t size,
320 phys_addr_t align)
6ed311b2 321{
a3f5bafc 322 phys_addr_t ret;
e1720fee 323 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
324
325again:
326 ret = memblock_find_in_range_node(size, align, start, end,
327 NUMA_NO_NODE, flags);
328
329 if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 &size);
332 flags &= ~MEMBLOCK_MIRROR;
333 goto again;
334 }
335
336 return ret;
6ed311b2
BH
337}
338
10d06439 339static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 340{
1440c4e2 341 type->total_size -= type->regions[r].size;
7c0caeb8
TH
342 memmove(&type->regions[r], &type->regions[r + 1],
343 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 344 type->cnt--;
95f72d1e 345
8f7a6605
BH
346 /* Special case for empty arrays */
347 if (type->cnt == 0) {
1440c4e2 348 WARN_ON(type->total_size != 0);
8f7a6605
BH
349 type->cnt = 1;
350 type->regions[0].base = 0;
351 type->regions[0].size = 0;
66a20757 352 type->regions[0].flags = 0;
7c0caeb8 353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 354 }
95f72d1e
YL
355}
356
350e88ba 357#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 358/**
47cec443 359 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
360 */
361void __init memblock_discard(void)
5e270e25 362{
3010f876 363 phys_addr_t addr, size;
5e270e25 364
3010f876
PT
365 if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 addr = __pa(memblock.reserved.regions);
367 size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 memblock.reserved.max);
621d9739 369 memblock_free_late(addr, size);
3010f876 370 }
5e270e25 371
91b540f9 372 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
373 addr = __pa(memblock.memory.regions);
374 size = PAGE_ALIGN(sizeof(struct memblock_region) *
375 memblock.memory.max);
621d9739 376 memblock_free_late(addr, size);
3010f876 377 }
9f3d5eaa
MR
378
379 memblock_memory = NULL;
5e270e25 380}
5e270e25
PH
381#endif
382
48c3b583
GP
383/**
384 * memblock_double_array - double the size of the memblock regions array
385 * @type: memblock type of the regions array being doubled
386 * @new_area_start: starting address of memory range to avoid overlap with
387 * @new_area_size: size of memory range to avoid overlap with
388 *
389 * Double the size of the @type regions array. If memblock is being used to
390 * allocate memory for a new reserved regions array and there is a previously
47cec443 391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
392 * waiting to be reserved, ensure the memory used by the new array does
393 * not overlap.
394 *
47cec443 395 * Return:
48c3b583
GP
396 * 0 on success, -1 on failure.
397 */
398static int __init_memblock memblock_double_array(struct memblock_type *type,
399 phys_addr_t new_area_start,
400 phys_addr_t new_area_size)
142b45a7
BH
401{
402 struct memblock_region *new_array, *old_array;
29f67386 403 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 404 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 405 int use_slab = slab_is_available();
181eb394 406 int *in_slab;
142b45a7
BH
407
408 /* We don't allow resizing until we know about the reserved regions
409 * of memory that aren't suitable for allocation
410 */
411 if (!memblock_can_resize)
412 return -1;
413
142b45a7
BH
414 /* Calculate new doubled size */
415 old_size = type->max * sizeof(struct memblock_region);
416 new_size = old_size << 1;
29f67386
YL
417 /*
418 * We need to allocated new one align to PAGE_SIZE,
419 * so we can free them completely later.
420 */
421 old_alloc_size = PAGE_ALIGN(old_size);
422 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 423
181eb394
GS
424 /* Retrieve the slab flag */
425 if (type == &memblock.memory)
426 in_slab = &memblock_memory_in_slab;
427 else
428 in_slab = &memblock_reserved_in_slab;
429
a2974133 430 /* Try to find some space for it */
142b45a7
BH
431 if (use_slab) {
432 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 433 addr = new_array ? __pa(new_array) : 0;
4e2f0775 434 } else {
48c3b583
GP
435 /* only exclude range when trying to double reserved.regions */
436 if (type != &memblock.reserved)
437 new_area_start = new_area_size = 0;
438
439 addr = memblock_find_in_range(new_area_start + new_area_size,
440 memblock.current_limit,
29f67386 441 new_alloc_size, PAGE_SIZE);
48c3b583
GP
442 if (!addr && new_area_size)
443 addr = memblock_find_in_range(0,
fd07383b
AM
444 min(new_area_start, memblock.current_limit),
445 new_alloc_size, PAGE_SIZE);
48c3b583 446
15674868 447 new_array = addr ? __va(addr) : NULL;
4e2f0775 448 }
1f5026a7 449 if (!addr) {
142b45a7 450 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 451 type->name, type->max, type->max * 2);
142b45a7
BH
452 return -1;
453 }
142b45a7 454
a36aab89
MR
455 new_end = addr + new_size - 1;
456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
457 type->name, type->max * 2, &addr, &new_end);
ea9e4376 458
fd07383b
AM
459 /*
460 * Found space, we now need to move the array over before we add the
461 * reserved region since it may be our reserved array itself that is
462 * full.
142b45a7
BH
463 */
464 memcpy(new_array, type->regions, old_size);
465 memset(new_array + type->max, 0, old_size);
466 old_array = type->regions;
467 type->regions = new_array;
468 type->max <<= 1;
469
fd07383b 470 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
471 if (*in_slab)
472 kfree(old_array);
473 else if (old_array != memblock_memory_init_regions &&
474 old_array != memblock_reserved_init_regions)
4421cca0 475 memblock_free(old_array, old_alloc_size);
142b45a7 476
fd07383b
AM
477 /*
478 * Reserve the new array if that comes from the memblock. Otherwise, we
479 * needn't do it
181eb394
GS
480 */
481 if (!use_slab)
29f67386 482 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
483
484 /* Update slab flag */
485 *in_slab = use_slab;
486
142b45a7
BH
487 return 0;
488}
489
784656f9
TH
490/**
491 * memblock_merge_regions - merge neighboring compatible regions
492 * @type: memblock type to scan
493 *
494 * Scan @type and merge neighboring compatible regions.
495 */
496static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 497{
784656f9 498 int i = 0;
95f72d1e 499
784656f9
TH
500 /* cnt never goes below 1 */
501 while (i < type->cnt - 1) {
502 struct memblock_region *this = &type->regions[i];
503 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 504
7c0caeb8
TH
505 if (this->base + this->size != next->base ||
506 memblock_get_region_node(this) !=
66a20757
TC
507 memblock_get_region_node(next) ||
508 this->flags != next->flags) {
784656f9
TH
509 BUG_ON(this->base + this->size > next->base);
510 i++;
511 continue;
8f7a6605
BH
512 }
513
784656f9 514 this->size += next->size;
c0232ae8
LF
515 /* move forward from next + 1, index of which is i + 2 */
516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 517 type->cnt--;
95f72d1e 518 }
784656f9 519}
95f72d1e 520
784656f9
TH
521/**
522 * memblock_insert_region - insert new memblock region
209ff86d
TC
523 * @type: memblock type to insert into
524 * @idx: index for the insertion point
525 * @base: base address of the new region
526 * @size: size of the new region
527 * @nid: node id of the new region
66a20757 528 * @flags: flags of the new region
784656f9 529 *
47cec443 530 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 531 * @type must already have extra room to accommodate the new region.
784656f9
TH
532 */
533static void __init_memblock memblock_insert_region(struct memblock_type *type,
534 int idx, phys_addr_t base,
66a20757 535 phys_addr_t size,
e1720fee
MR
536 int nid,
537 enum memblock_flags flags)
784656f9
TH
538{
539 struct memblock_region *rgn = &type->regions[idx];
540
541 BUG_ON(type->cnt >= type->max);
542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
543 rgn->base = base;
544 rgn->size = size;
66a20757 545 rgn->flags = flags;
7c0caeb8 546 memblock_set_region_node(rgn, nid);
784656f9 547 type->cnt++;
1440c4e2 548 type->total_size += size;
784656f9
TH
549}
550
551/**
f1af9d3a 552 * memblock_add_range - add new memblock region
784656f9
TH
553 * @type: memblock type to add new region into
554 * @base: base address of the new region
555 * @size: size of the new region
7fb0bc3f 556 * @nid: nid of the new region
66a20757 557 * @flags: flags of the new region
784656f9 558 *
47cec443 559 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
560 * is allowed to overlap with existing ones - overlaps don't affect already
561 * existing regions. @type is guaranteed to be minimal (all neighbouring
562 * compatible regions are merged) after the addition.
563 *
47cec443 564 * Return:
784656f9
TH
565 * 0 on success, -errno on failure.
566 */
02634a44 567static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 568 phys_addr_t base, phys_addr_t size,
e1720fee 569 int nid, enum memblock_flags flags)
784656f9
TH
570{
571 bool insert = false;
eb18f1b5
TH
572 phys_addr_t obase = base;
573 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
574 int idx, nr_new;
575 struct memblock_region *rgn;
784656f9 576
b3dc627c
TH
577 if (!size)
578 return 0;
579
784656f9
TH
580 /* special case for empty array */
581 if (type->regions[0].size == 0) {
1440c4e2 582 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
583 type->regions[0].base = base;
584 type->regions[0].size = size;
66a20757 585 type->regions[0].flags = flags;
7fb0bc3f 586 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 587 type->total_size = size;
8f7a6605 588 return 0;
95f72d1e 589 }
784656f9
TH
590repeat:
591 /*
592 * The following is executed twice. Once with %false @insert and
593 * then with %true. The first counts the number of regions needed
412d0008 594 * to accommodate the new area. The second actually inserts them.
142b45a7 595 */
784656f9
TH
596 base = obase;
597 nr_new = 0;
95f72d1e 598
66e8b438 599 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
600 phys_addr_t rbase = rgn->base;
601 phys_addr_t rend = rbase + rgn->size;
602
603 if (rbase >= end)
95f72d1e 604 break;
784656f9
TH
605 if (rend <= base)
606 continue;
607 /*
608 * @rgn overlaps. If it separates the lower part of new
609 * area, insert that portion.
610 */
611 if (rbase > base) {
a9ee6cf5 612#ifdef CONFIG_NUMA
c0a29498
WY
613 WARN_ON(nid != memblock_get_region_node(rgn));
614#endif
4fcab5f4 615 WARN_ON(flags != rgn->flags);
784656f9
TH
616 nr_new++;
617 if (insert)
8c9c1701 618 memblock_insert_region(type, idx++, base,
66a20757
TC
619 rbase - base, nid,
620 flags);
95f72d1e 621 }
784656f9
TH
622 /* area below @rend is dealt with, forget about it */
623 base = min(rend, end);
95f72d1e 624 }
784656f9
TH
625
626 /* insert the remaining portion */
627 if (base < end) {
628 nr_new++;
629 if (insert)
8c9c1701 630 memblock_insert_region(type, idx, base, end - base,
66a20757 631 nid, flags);
95f72d1e 632 }
95f72d1e 633
ef3cc4db 634 if (!nr_new)
635 return 0;
636
784656f9
TH
637 /*
638 * If this was the first round, resize array and repeat for actual
639 * insertions; otherwise, merge and return.
142b45a7 640 */
784656f9
TH
641 if (!insert) {
642 while (type->cnt + nr_new > type->max)
48c3b583 643 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
644 return -ENOMEM;
645 insert = true;
646 goto repeat;
647 } else {
648 memblock_merge_regions(type);
649 return 0;
142b45a7 650 }
95f72d1e
YL
651}
652
48a833cc
MR
653/**
654 * memblock_add_node - add new memblock region within a NUMA node
655 * @base: base address of the new region
656 * @size: size of the new region
657 * @nid: nid of the new region
952eea9b 658 * @flags: flags of the new region
48a833cc
MR
659 *
660 * Add new memblock region [@base, @base + @size) to the "memory"
661 * type. See memblock_add_range() description for mode details
662 *
663 * Return:
664 * 0 on success, -errno on failure.
665 */
7fb0bc3f 666int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
952eea9b 667 int nid, enum memblock_flags flags)
7fb0bc3f 668{
00974b9a
GU
669 phys_addr_t end = base + size - 1;
670
952eea9b
DH
671 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
672 &base, &end, nid, flags, (void *)_RET_IP_);
00974b9a 673
952eea9b 674 return memblock_add_range(&memblock.memory, base, size, nid, flags);
7fb0bc3f
TH
675}
676
48a833cc
MR
677/**
678 * memblock_add - add new memblock region
679 * @base: base address of the new region
680 * @size: size of the new region
681 *
682 * Add new memblock region [@base, @base + @size) to the "memory"
683 * type. See memblock_add_range() description for mode details
684 *
685 * Return:
686 * 0 on success, -errno on failure.
687 */
f705ac4b 688int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 689{
5d63f81c
MC
690 phys_addr_t end = base + size - 1;
691
a090d711 692 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 693 &base, &end, (void *)_RET_IP_);
6a4055bc 694
f705ac4b 695 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
696}
697
6a9ceb31
TH
698/**
699 * memblock_isolate_range - isolate given range into disjoint memblocks
700 * @type: memblock type to isolate range for
701 * @base: base of range to isolate
702 * @size: size of range to isolate
703 * @start_rgn: out parameter for the start of isolated region
704 * @end_rgn: out parameter for the end of isolated region
705 *
706 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 707 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
708 * which may create at most two more regions. The index of the first
709 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
710 *
47cec443 711 * Return:
6a9ceb31
TH
712 * 0 on success, -errno on failure.
713 */
714static int __init_memblock memblock_isolate_range(struct memblock_type *type,
715 phys_addr_t base, phys_addr_t size,
716 int *start_rgn, int *end_rgn)
717{
eb18f1b5 718 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
719 int idx;
720 struct memblock_region *rgn;
6a9ceb31
TH
721
722 *start_rgn = *end_rgn = 0;
723
b3dc627c
TH
724 if (!size)
725 return 0;
726
6a9ceb31
TH
727 /* we'll create at most two more regions */
728 while (type->cnt + 2 > type->max)
48c3b583 729 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
730 return -ENOMEM;
731
66e8b438 732 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
733 phys_addr_t rbase = rgn->base;
734 phys_addr_t rend = rbase + rgn->size;
735
736 if (rbase >= end)
737 break;
738 if (rend <= base)
739 continue;
740
741 if (rbase < base) {
742 /*
743 * @rgn intersects from below. Split and continue
744 * to process the next region - the new top half.
745 */
746 rgn->base = base;
1440c4e2
TH
747 rgn->size -= base - rbase;
748 type->total_size -= base - rbase;
8c9c1701 749 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
750 memblock_get_region_node(rgn),
751 rgn->flags);
6a9ceb31
TH
752 } else if (rend > end) {
753 /*
754 * @rgn intersects from above. Split and redo the
755 * current region - the new bottom half.
756 */
757 rgn->base = end;
1440c4e2
TH
758 rgn->size -= end - rbase;
759 type->total_size -= end - rbase;
8c9c1701 760 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
761 memblock_get_region_node(rgn),
762 rgn->flags);
6a9ceb31
TH
763 } else {
764 /* @rgn is fully contained, record it */
765 if (!*end_rgn)
8c9c1701
AK
766 *start_rgn = idx;
767 *end_rgn = idx + 1;
6a9ceb31
TH
768 }
769 }
770
771 return 0;
772}
6a9ceb31 773
35bd16a2 774static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 775 phys_addr_t base, phys_addr_t size)
95f72d1e 776{
71936180
TH
777 int start_rgn, end_rgn;
778 int i, ret;
95f72d1e 779
71936180
TH
780 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
781 if (ret)
782 return ret;
95f72d1e 783
71936180
TH
784 for (i = end_rgn - 1; i >= start_rgn; i--)
785 memblock_remove_region(type, i);
8f7a6605 786 return 0;
95f72d1e
YL
787}
788
581adcbe 789int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 790{
25cf23d7
MK
791 phys_addr_t end = base + size - 1;
792
a090d711 793 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
794 &base, &end, (void *)_RET_IP_);
795
f1af9d3a 796 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
797}
798
77e02cf5 799/**
4421cca0 800 * memblock_free - free boot memory allocation
77e02cf5
LT
801 * @ptr: starting address of the boot memory allocation
802 * @size: size of the boot memory block in bytes
803 *
804 * Free boot memory block previously allocated by memblock_alloc_xx() API.
805 * The freeing memory will not be released to the buddy allocator.
806 */
4421cca0 807void __init_memblock memblock_free(void *ptr, size_t size)
77e02cf5
LT
808{
809 if (ptr)
3ecc6834 810 memblock_phys_free(__pa(ptr), size);
77e02cf5
LT
811}
812
4d72868c 813/**
3ecc6834 814 * memblock_phys_free - free boot memory block
4d72868c
MR
815 * @base: phys starting address of the boot memory block
816 * @size: size of the boot memory block in bytes
817 *
818 * Free boot memory block previously allocated by memblock_alloc_xx() API.
819 * The freeing memory will not be released to the buddy allocator.
820 */
3ecc6834 821int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
95f72d1e 822{
5d63f81c
MC
823 phys_addr_t end = base + size - 1;
824
a090d711 825 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 826 &base, &end, (void *)_RET_IP_);
24aa0788 827
9099daed 828 kmemleak_free_part_phys(base, size);
f1af9d3a 829 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
830}
831
f705ac4b 832int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 833{
5d63f81c
MC
834 phys_addr_t end = base + size - 1;
835
a090d711 836 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 837 &base, &end, (void *)_RET_IP_);
95f72d1e 838
f705ac4b 839 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
840}
841
02634a44
AK
842#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
843int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
844{
845 phys_addr_t end = base + size - 1;
846
847 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
848 &base, &end, (void *)_RET_IP_);
849
77649905 850 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
02634a44
AK
851}
852#endif
853
66b16edf 854/**
47cec443
MR
855 * memblock_setclr_flag - set or clear flag for a memory region
856 * @base: base address of the region
857 * @size: size of the region
858 * @set: set or clear the flag
8958b249 859 * @flag: the flag to update
66b16edf 860 *
4308ce17 861 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 862 *
47cec443 863 * Return: 0 on success, -errno on failure.
66b16edf 864 */
4308ce17
TL
865static int __init_memblock memblock_setclr_flag(phys_addr_t base,
866 phys_addr_t size, int set, int flag)
66b16edf
TC
867{
868 struct memblock_type *type = &memblock.memory;
869 int i, ret, start_rgn, end_rgn;
870
871 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
872 if (ret)
873 return ret;
874
fe145124
MR
875 for (i = start_rgn; i < end_rgn; i++) {
876 struct memblock_region *r = &type->regions[i];
877
4308ce17 878 if (set)
fe145124 879 r->flags |= flag;
4308ce17 880 else
fe145124
MR
881 r->flags &= ~flag;
882 }
66b16edf
TC
883
884 memblock_merge_regions(type);
885 return 0;
886}
887
888/**
4308ce17 889 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
890 * @base: the base phys addr of the region
891 * @size: the size of the region
892 *
47cec443 893 * Return: 0 on success, -errno on failure.
4308ce17
TL
894 */
895int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
896{
897 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
898}
899
900/**
901 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
902 * @base: the base phys addr of the region
903 * @size: the size of the region
66b16edf 904 *
47cec443 905 * Return: 0 on success, -errno on failure.
66b16edf
TC
906 */
907int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
908{
4308ce17 909 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
910}
911
a3f5bafc
TL
912/**
913 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
914 * @base: the base phys addr of the region
915 * @size: the size of the region
916 *
47cec443 917 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
918 */
919int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
920{
921 system_has_some_mirror = true;
922
923 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
924}
925
bf3d3cc5
AB
926/**
927 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
928 * @base: the base phys addr of the region
929 * @size: the size of the region
930 *
9092d4f7
MR
931 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
932 * direct mapping of the physical memory. These regions will still be
933 * covered by the memory map. The struct page representing NOMAP memory
934 * frames in the memory map will be PageReserved()
935 *
658aafc8
MR
936 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
937 * memblock, the caller must inform kmemleak to ignore that memory
938 *
47cec443 939 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
940 */
941int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
942{
6c9a5455 943 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
bf3d3cc5 944}
a3f5bafc 945
4c546b8a
AT
946/**
947 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
948 * @base: the base phys addr of the region
949 * @size: the size of the region
950 *
47cec443 951 * Return: 0 on success, -errno on failure.
4c546b8a
AT
952 */
953int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
954{
955 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
956}
957
9f3d5eaa
MR
958static bool should_skip_region(struct memblock_type *type,
959 struct memblock_region *m,
960 int nid, int flags)
c9a688a3
MR
961{
962 int m_nid = memblock_get_region_node(m);
963
9f3d5eaa
MR
964 /* we never skip regions when iterating memblock.reserved or physmem */
965 if (type != memblock_memory)
966 return false;
967
c9a688a3
MR
968 /* only memory regions are associated with nodes, check it */
969 if (nid != NUMA_NO_NODE && nid != m_nid)
970 return true;
971
972 /* skip hotpluggable memory regions if needed */
79e482e9
MR
973 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
974 !(flags & MEMBLOCK_HOTPLUG))
c9a688a3
MR
975 return true;
976
977 /* if we want mirror memory skip non-mirror memory regions */
978 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
979 return true;
980
981 /* skip nomap memory unless we were asked for it explicitly */
982 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
983 return true;
984
f7892d8e
DH
985 /* skip driver-managed memory unless we were asked for it explicitly */
986 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
987 return true;
988
c9a688a3
MR
989 return false;
990}
991
35fd0808 992/**
a2974133 993 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 994 * @idx: pointer to u64 loop variable
b1154233 995 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 996 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
997 * @type_a: pointer to memblock_type from where the range is taken
998 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
999 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1000 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1001 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 1002 *
f1af9d3a 1003 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 1004 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
1005 * *@idx contains index into type_a and the upper 32bit indexes the
1006 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
1007 * look like the following,
1008 *
1009 * 0:[0-16), 1:[32-48), 2:[128-130)
1010 *
1011 * The upper 32bit indexes the following regions.
1012 *
1013 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1014 *
1015 * As both region arrays are sorted, the function advances the two indices
1016 * in lockstep and returns each intersection.
1017 */
77649905
DH
1018void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1019 struct memblock_type *type_a,
1020 struct memblock_type *type_b, phys_addr_t *out_start,
1021 phys_addr_t *out_end, int *out_nid)
35fd0808 1022{
f1af9d3a
PH
1023 int idx_a = *idx & 0xffffffff;
1024 int idx_b = *idx >> 32;
b1154233 1025
f1af9d3a
PH
1026 if (WARN_ONCE(nid == MAX_NUMNODES,
1027 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 1028 nid = NUMA_NO_NODE;
35fd0808 1029
f1af9d3a
PH
1030 for (; idx_a < type_a->cnt; idx_a++) {
1031 struct memblock_region *m = &type_a->regions[idx_a];
1032
35fd0808
TH
1033 phys_addr_t m_start = m->base;
1034 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1035 int m_nid = memblock_get_region_node(m);
35fd0808 1036
9f3d5eaa 1037 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1038 continue;
1039
f1af9d3a
PH
1040 if (!type_b) {
1041 if (out_start)
1042 *out_start = m_start;
1043 if (out_end)
1044 *out_end = m_end;
1045 if (out_nid)
1046 *out_nid = m_nid;
1047 idx_a++;
1048 *idx = (u32)idx_a | (u64)idx_b << 32;
1049 return;
1050 }
1051
1052 /* scan areas before each reservation */
1053 for (; idx_b < type_b->cnt + 1; idx_b++) {
1054 struct memblock_region *r;
1055 phys_addr_t r_start;
1056 phys_addr_t r_end;
1057
1058 r = &type_b->regions[idx_b];
1059 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1060 r_end = idx_b < type_b->cnt ?
1c4bc43d 1061 r->base : PHYS_ADDR_MAX;
35fd0808 1062
f1af9d3a
PH
1063 /*
1064 * if idx_b advanced past idx_a,
1065 * break out to advance idx_a
1066 */
35fd0808
TH
1067 if (r_start >= m_end)
1068 break;
1069 /* if the two regions intersect, we're done */
1070 if (m_start < r_end) {
1071 if (out_start)
f1af9d3a
PH
1072 *out_start =
1073 max(m_start, r_start);
35fd0808
TH
1074 if (out_end)
1075 *out_end = min(m_end, r_end);
1076 if (out_nid)
f1af9d3a 1077 *out_nid = m_nid;
35fd0808 1078 /*
f1af9d3a
PH
1079 * The region which ends first is
1080 * advanced for the next iteration.
35fd0808
TH
1081 */
1082 if (m_end <= r_end)
f1af9d3a 1083 idx_a++;
35fd0808 1084 else
f1af9d3a
PH
1085 idx_b++;
1086 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1087 return;
1088 }
1089 }
1090 }
1091
1092 /* signal end of iteration */
1093 *idx = ULLONG_MAX;
1094}
1095
7bd0b0f0 1096/**
f1af9d3a
PH
1097 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1098 *
7bd0b0f0 1099 * @idx: pointer to u64 loop variable
ad5ea8cd 1100 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1101 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1102 * @type_a: pointer to memblock_type from where the range is taken
1103 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1104 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1105 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1106 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1107 *
47cec443
MR
1108 * Finds the next range from type_a which is not marked as unsuitable
1109 * in type_b.
1110 *
f1af9d3a 1111 * Reverse of __next_mem_range().
7bd0b0f0 1112 */
e1720fee
MR
1113void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1114 enum memblock_flags flags,
f1af9d3a
PH
1115 struct memblock_type *type_a,
1116 struct memblock_type *type_b,
1117 phys_addr_t *out_start,
1118 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1119{
f1af9d3a
PH
1120 int idx_a = *idx & 0xffffffff;
1121 int idx_b = *idx >> 32;
b1154233 1122
560dca27
GS
1123 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1124 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1125
1126 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1127 idx_a = type_a->cnt - 1;
e47608ab 1128 if (type_b != NULL)
1129 idx_b = type_b->cnt;
1130 else
1131 idx_b = 0;
7bd0b0f0
TH
1132 }
1133
f1af9d3a
PH
1134 for (; idx_a >= 0; idx_a--) {
1135 struct memblock_region *m = &type_a->regions[idx_a];
1136
7bd0b0f0
TH
1137 phys_addr_t m_start = m->base;
1138 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1139 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1140
9f3d5eaa 1141 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1142 continue;
1143
f1af9d3a
PH
1144 if (!type_b) {
1145 if (out_start)
1146 *out_start = m_start;
1147 if (out_end)
1148 *out_end = m_end;
1149 if (out_nid)
1150 *out_nid = m_nid;
fb399b48 1151 idx_a--;
f1af9d3a
PH
1152 *idx = (u32)idx_a | (u64)idx_b << 32;
1153 return;
1154 }
1155
1156 /* scan areas before each reservation */
1157 for (; idx_b >= 0; idx_b--) {
1158 struct memblock_region *r;
1159 phys_addr_t r_start;
1160 phys_addr_t r_end;
1161
1162 r = &type_b->regions[idx_b];
1163 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1164 r_end = idx_b < type_b->cnt ?
1c4bc43d 1165 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1166 /*
1167 * if idx_b advanced past idx_a,
1168 * break out to advance idx_a
1169 */
7bd0b0f0 1170
7bd0b0f0
TH
1171 if (r_end <= m_start)
1172 break;
1173 /* if the two regions intersect, we're done */
1174 if (m_end > r_start) {
1175 if (out_start)
1176 *out_start = max(m_start, r_start);
1177 if (out_end)
1178 *out_end = min(m_end, r_end);
1179 if (out_nid)
f1af9d3a 1180 *out_nid = m_nid;
7bd0b0f0 1181 if (m_start >= r_start)
f1af9d3a 1182 idx_a--;
7bd0b0f0 1183 else
f1af9d3a
PH
1184 idx_b--;
1185 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1186 return;
1187 }
1188 }
1189 }
f1af9d3a 1190 /* signal end of iteration */
7bd0b0f0
TH
1191 *idx = ULLONG_MAX;
1192}
1193
7c0caeb8 1194/*
45e79815 1195 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1196 */
1197void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1198 unsigned long *out_start_pfn,
1199 unsigned long *out_end_pfn, int *out_nid)
1200{
1201 struct memblock_type *type = &memblock.memory;
1202 struct memblock_region *r;
d622abf7 1203 int r_nid;
7c0caeb8
TH
1204
1205 while (++*idx < type->cnt) {
1206 r = &type->regions[*idx];
d622abf7 1207 r_nid = memblock_get_region_node(r);
7c0caeb8
TH
1208
1209 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1210 continue;
d622abf7 1211 if (nid == MAX_NUMNODES || nid == r_nid)
7c0caeb8
TH
1212 break;
1213 }
1214 if (*idx >= type->cnt) {
1215 *idx = -1;
1216 return;
1217 }
1218
1219 if (out_start_pfn)
1220 *out_start_pfn = PFN_UP(r->base);
1221 if (out_end_pfn)
1222 *out_end_pfn = PFN_DOWN(r->base + r->size);
1223 if (out_nid)
d622abf7 1224 *out_nid = r_nid;
7c0caeb8
TH
1225}
1226
1227/**
1228 * memblock_set_node - set node ID on memblock regions
1229 * @base: base of area to set node ID for
1230 * @size: size of area to set node ID for
e7e8de59 1231 * @type: memblock type to set node ID for
7c0caeb8
TH
1232 * @nid: node ID to set
1233 *
47cec443 1234 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1235 * Regions which cross the area boundaries are split as necessary.
1236 *
47cec443 1237 * Return:
7c0caeb8
TH
1238 * 0 on success, -errno on failure.
1239 */
1240int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1241 struct memblock_type *type, int nid)
7c0caeb8 1242{
a9ee6cf5 1243#ifdef CONFIG_NUMA
6a9ceb31
TH
1244 int start_rgn, end_rgn;
1245 int i, ret;
7c0caeb8 1246
6a9ceb31
TH
1247 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1248 if (ret)
1249 return ret;
7c0caeb8 1250
6a9ceb31 1251 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1252 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1253
1254 memblock_merge_regions(type);
3f08a302 1255#endif
7c0caeb8
TH
1256 return 0;
1257}
3f08a302 1258
837566e7
AD
1259#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1260/**
1261 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1262 *
1263 * @idx: pointer to u64 loop variable
1264 * @zone: zone in which all of the memory blocks reside
1265 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1266 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1267 *
1268 * This function is meant to be a zone/pfn specific wrapper for the
1269 * for_each_mem_range type iterators. Specifically they are used in the
1270 * deferred memory init routines and as such we were duplicating much of
1271 * this logic throughout the code. So instead of having it in multiple
1272 * locations it seemed like it would make more sense to centralize this to
1273 * one new iterator that does everything they need.
1274 */
1275void __init_memblock
1276__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1277 unsigned long *out_spfn, unsigned long *out_epfn)
1278{
1279 int zone_nid = zone_to_nid(zone);
1280 phys_addr_t spa, epa;
1281 int nid;
1282
1283 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1284 &memblock.memory, &memblock.reserved,
1285 &spa, &epa, &nid);
1286
1287 while (*idx != U64_MAX) {
1288 unsigned long epfn = PFN_DOWN(epa);
1289 unsigned long spfn = PFN_UP(spa);
1290
1291 /*
1292 * Verify the end is at least past the start of the zone and
1293 * that we have at least one PFN to initialize.
1294 */
1295 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1296 /* if we went too far just stop searching */
1297 if (zone_end_pfn(zone) <= spfn) {
1298 *idx = U64_MAX;
1299 break;
1300 }
1301
1302 if (out_spfn)
1303 *out_spfn = max(zone->zone_start_pfn, spfn);
1304 if (out_epfn)
1305 *out_epfn = min(zone_end_pfn(zone), epfn);
1306
1307 return;
1308 }
1309
1310 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1311 &memblock.memory, &memblock.reserved,
1312 &spa, &epa, &nid);
1313 }
1314
1315 /* signal end of iteration */
1316 if (out_spfn)
1317 *out_spfn = ULONG_MAX;
1318 if (out_epfn)
1319 *out_epfn = 0;
1320}
1321
1322#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1323
92d12f95
MR
1324/**
1325 * memblock_alloc_range_nid - allocate boot memory block
1326 * @size: size of memory block to be allocated in bytes
1327 * @align: alignment of the region and block's size
1328 * @start: the lower bound of the memory region to allocate (phys address)
1329 * @end: the upper bound of the memory region to allocate (phys address)
1330 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1331 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1332 *
1333 * The allocation is performed from memory region limited by
95830666 1334 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1335 *
0ac398b1
YY
1336 * If the specified node can not hold the requested memory and @exact_nid
1337 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1338 *
1339 * For systems with memory mirroring, the allocation is attempted first
1340 * from the regions with mirroring enabled and then retried from any
1341 * memory region.
1342 *
1343 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1344 * allocated boot memory block, so that it is never reported as leaks.
1345 *
1346 * Return:
1347 * Physical address of allocated memory block on success, %0 on failure.
1348 */
8676af1f 1349phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
2bfc2862 1350 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1351 phys_addr_t end, int nid,
1352 bool exact_nid)
95f72d1e 1353{
92d12f95 1354 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1355 phys_addr_t found;
95f72d1e 1356
92d12f95
MR
1357 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1358 nid = NUMA_NO_NODE;
1359
2f770806
MR
1360 if (!align) {
1361 /* Can't use WARNs this early in boot on powerpc */
1362 dump_stack();
1363 align = SMP_CACHE_BYTES;
1364 }
1365
92d12f95 1366again:
fc6daaf9
TL
1367 found = memblock_find_in_range_node(size, align, start, end, nid,
1368 flags);
92d12f95
MR
1369 if (found && !memblock_reserve(found, size))
1370 goto done;
1371
0ac398b1 1372 if (nid != NUMA_NO_NODE && !exact_nid) {
92d12f95
MR
1373 found = memblock_find_in_range_node(size, align, start,
1374 end, NUMA_NO_NODE,
1375 flags);
1376 if (found && !memblock_reserve(found, size))
1377 goto done;
1378 }
1379
1380 if (flags & MEMBLOCK_MIRROR) {
1381 flags &= ~MEMBLOCK_MIRROR;
1382 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1383 &size);
1384 goto again;
1385 }
1386
1387 return 0;
1388
1389done:
c6975d7c
QC
1390 /*
1391 * Skip kmemleak for those places like kasan_init() and
1392 * early_pgtable_alloc() due to high volume.
1393 */
1394 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
aedf95ea 1395 /*
92d12f95
MR
1396 * The min_count is set to 0 so that memblock allocated
1397 * blocks are never reported as leaks. This is because many
1398 * of these blocks are only referred via the physical
1399 * address which is not looked up by kmemleak.
aedf95ea 1400 */
9099daed 1401 kmemleak_alloc_phys(found, size, 0, 0);
92d12f95
MR
1402
1403 return found;
95f72d1e
YL
1404}
1405
a2974133
MR
1406/**
1407 * memblock_phys_alloc_range - allocate a memory block inside specified range
1408 * @size: size of memory block to be allocated in bytes
1409 * @align: alignment of the region and block's size
1410 * @start: the lower bound of the memory region to allocate (physical address)
1411 * @end: the upper bound of the memory region to allocate (physical address)
1412 *
1413 * Allocate @size bytes in the between @start and @end.
1414 *
1415 * Return: physical address of the allocated memory block on success,
1416 * %0 on failure.
1417 */
8a770c2a
MR
1418phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1419 phys_addr_t align,
1420 phys_addr_t start,
1421 phys_addr_t end)
2bfc2862 1422{
b5cf2d6c
FM
1423 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1424 __func__, (u64)size, (u64)align, &start, &end,
1425 (void *)_RET_IP_);
0ac398b1
YY
1426 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1427 false);
7bd0b0f0
TH
1428}
1429
a2974133 1430/**
17cbe038 1431 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
a2974133
MR
1432 * @size: size of memory block to be allocated in bytes
1433 * @align: alignment of the region and block's size
1434 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1435 *
1436 * Allocates memory block from the specified NUMA node. If the node
1437 * has no available memory, attempts to allocated from any node in the
1438 * system.
1439 *
1440 * Return: physical address of the allocated memory block on success,
1441 * %0 on failure.
1442 */
9a8dd708 1443phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1444{
33755574 1445 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1446 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1447}
1448
26f09e9b 1449/**
eb31d559 1450 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1451 * @size: size of memory block to be allocated in bytes
1452 * @align: alignment of the region and block's size
1453 * @min_addr: the lower bound of the memory region to allocate (phys address)
1454 * @max_addr: the upper bound of the memory region to allocate (phys address)
1455 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1456 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1457 *
92d12f95
MR
1458 * Allocates memory block using memblock_alloc_range_nid() and
1459 * converts the returned physical address to virtual.
26f09e9b 1460 *
92d12f95
MR
1461 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1462 * will fall back to memory below @min_addr. Other constraints, such
1463 * as node and mirrored memory will be handled again in
1464 * memblock_alloc_range_nid().
26f09e9b 1465 *
47cec443 1466 * Return:
26f09e9b
SS
1467 * Virtual address of allocated memory block on success, NULL on failure.
1468 */
eb31d559 1469static void * __init memblock_alloc_internal(
26f09e9b
SS
1470 phys_addr_t size, phys_addr_t align,
1471 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1472 int nid, bool exact_nid)
26f09e9b
SS
1473{
1474 phys_addr_t alloc;
26f09e9b
SS
1475
1476 /*
1477 * Detect any accidental use of these APIs after slab is ready, as at
1478 * this moment memblock may be deinitialized already and its
c6ffc5ca 1479 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1480 */
1481 if (WARN_ON_ONCE(slab_is_available()))
1482 return kzalloc_node(size, GFP_NOWAIT, nid);
1483
f3057ad7
MR
1484 if (max_addr > memblock.current_limit)
1485 max_addr = memblock.current_limit;
1486
0ac398b1
YY
1487 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1488 exact_nid);
26f09e9b 1489
92d12f95
MR
1490 /* retry allocation without lower limit */
1491 if (!alloc && min_addr)
0ac398b1
YY
1492 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1493 exact_nid);
26f09e9b 1494
92d12f95
MR
1495 if (!alloc)
1496 return NULL;
26f09e9b 1497
92d12f95 1498 return phys_to_virt(alloc);
26f09e9b
SS
1499}
1500
0ac398b1
YY
1501/**
1502 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1503 * without zeroing memory
1504 * @size: size of memory block to be allocated in bytes
1505 * @align: alignment of the region and block's size
1506 * @min_addr: the lower bound of the memory region from where the allocation
1507 * is preferred (phys address)
1508 * @max_addr: the upper bound of the memory region from where the allocation
1509 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1510 * allocate only from memory limited by memblock.current_limit value
1511 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1512 *
1513 * Public function, provides additional debug information (including caller
1514 * info), if enabled. Does not zero allocated memory.
1515 *
1516 * Return:
1517 * Virtual address of allocated memory block on success, NULL on failure.
1518 */
1519void * __init memblock_alloc_exact_nid_raw(
1520 phys_addr_t size, phys_addr_t align,
1521 phys_addr_t min_addr, phys_addr_t max_addr,
1522 int nid)
1523{
0ac398b1
YY
1524 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1525 __func__, (u64)size, (u64)align, nid, &min_addr,
1526 &max_addr, (void *)_RET_IP_);
1527
08678804
MR
1528 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1529 true);
0ac398b1
YY
1530}
1531
ea1f5f37 1532/**
eb31d559 1533 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1534 * memory and without panicking
1535 * @size: size of memory block to be allocated in bytes
1536 * @align: alignment of the region and block's size
1537 * @min_addr: the lower bound of the memory region from where the allocation
1538 * is preferred (phys address)
1539 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1540 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1541 * allocate only from memory limited by memblock.current_limit value
1542 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1543 *
1544 * Public function, provides additional debug information (including caller
1545 * info), if enabled. Does not zero allocated memory, does not panic if request
1546 * cannot be satisfied.
1547 *
47cec443 1548 * Return:
ea1f5f37
PT
1549 * Virtual address of allocated memory block on success, NULL on failure.
1550 */
eb31d559 1551void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1552 phys_addr_t size, phys_addr_t align,
1553 phys_addr_t min_addr, phys_addr_t max_addr,
1554 int nid)
1555{
d75f773c 1556 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1557 __func__, (u64)size, (u64)align, nid, &min_addr,
1558 &max_addr, (void *)_RET_IP_);
ea1f5f37 1559
08678804
MR
1560 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1561 false);
ea1f5f37
PT
1562}
1563
26f09e9b 1564/**
c0dbe825 1565 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1566 * @size: size of memory block to be allocated in bytes
1567 * @align: alignment of the region and block's size
1568 * @min_addr: the lower bound of the memory region from where the allocation
1569 * is preferred (phys address)
1570 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1571 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1572 * allocate only from memory limited by memblock.current_limit value
1573 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1574 *
c0dbe825
MR
1575 * Public function, provides additional debug information (including caller
1576 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1577 *
47cec443 1578 * Return:
26f09e9b
SS
1579 * Virtual address of allocated memory block on success, NULL on failure.
1580 */
eb31d559 1581void * __init memblock_alloc_try_nid(
26f09e9b
SS
1582 phys_addr_t size, phys_addr_t align,
1583 phys_addr_t min_addr, phys_addr_t max_addr,
1584 int nid)
1585{
1586 void *ptr;
1587
d75f773c 1588 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1589 __func__, (u64)size, (u64)align, nid, &min_addr,
1590 &max_addr, (void *)_RET_IP_);
eb31d559 1591 ptr = memblock_alloc_internal(size, align,
0ac398b1 1592 min_addr, max_addr, nid, false);
c0dbe825 1593 if (ptr)
ea1f5f37 1594 memset(ptr, 0, size);
26f09e9b 1595
c0dbe825 1596 return ptr;
26f09e9b
SS
1597}
1598
48a833cc 1599/**
621d9739 1600 * memblock_free_late - free pages directly to buddy allocator
48a833cc 1601 * @base: phys starting address of the boot memory block
26f09e9b
SS
1602 * @size: size of the boot memory block in bytes
1603 *
a2974133 1604 * This is only useful when the memblock allocator has already been torn
26f09e9b 1605 * down, but we are still initializing the system. Pages are released directly
a2974133 1606 * to the buddy allocator.
26f09e9b 1607 */
621d9739 1608void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
26f09e9b 1609{
a36aab89 1610 phys_addr_t cursor, end;
26f09e9b 1611
a36aab89 1612 end = base + size - 1;
d75f773c 1613 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1614 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1615 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1616 cursor = PFN_UP(base);
1617 end = PFN_DOWN(base + size);
1618
1619 for (; cursor < end; cursor++) {
7c2ee349 1620 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1621 totalram_pages_inc();
26f09e9b
SS
1622 }
1623}
9d1e2492
BH
1624
1625/*
1626 * Remaining API functions
1627 */
1628
1f1ffb8a 1629phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1630{
1440c4e2 1631 return memblock.memory.total_size;
95f72d1e
YL
1632}
1633
8907de5d
SD
1634phys_addr_t __init_memblock memblock_reserved_size(void)
1635{
1636 return memblock.reserved.total_size;
1637}
1638
0a93ebef
SR
1639/* lowest address */
1640phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1641{
1642 return memblock.memory.regions[0].base;
1643}
1644
10d06439 1645phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1646{
1647 int idx = memblock.memory.cnt - 1;
1648
e3239ff9 1649 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1650}
1651
a571d4eb 1652static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1653{
1c4bc43d 1654 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1655 struct memblock_region *r;
95f72d1e 1656
a571d4eb
DC
1657 /*
1658 * translate the memory @limit size into the max address within one of
1659 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1660 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1661 */
cc6de168 1662 for_each_mem_region(r) {
c0ce8fef
TH
1663 if (limit <= r->size) {
1664 max_addr = r->base + limit;
1665 break;
95f72d1e 1666 }
c0ce8fef 1667 limit -= r->size;
95f72d1e 1668 }
c0ce8fef 1669
a571d4eb
DC
1670 return max_addr;
1671}
1672
1673void __init memblock_enforce_memory_limit(phys_addr_t limit)
1674{
49aef717 1675 phys_addr_t max_addr;
a571d4eb
DC
1676
1677 if (!limit)
1678 return;
1679
1680 max_addr = __find_max_addr(limit);
1681
1682 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1683 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1684 return;
1685
c0ce8fef 1686 /* truncate both memory and reserved regions */
f1af9d3a 1687 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1688 PHYS_ADDR_MAX);
f1af9d3a 1689 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1690 PHYS_ADDR_MAX);
95f72d1e
YL
1691}
1692
c9ca9b4e
AT
1693void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1694{
1695 int start_rgn, end_rgn;
1696 int i, ret;
1697
1698 if (!size)
1699 return;
1700
5173ed72 1701 if (!memblock_memory->total_size) {
e888fa7b
GU
1702 pr_warn("%s: No memory registered yet\n", __func__);
1703 return;
1704 }
1705
c9ca9b4e
AT
1706 ret = memblock_isolate_range(&memblock.memory, base, size,
1707 &start_rgn, &end_rgn);
1708 if (ret)
1709 return;
1710
1711 /* remove all the MAP regions */
1712 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1713 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1714 memblock_remove_region(&memblock.memory, i);
1715
1716 for (i = start_rgn - 1; i >= 0; i--)
1717 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1718 memblock_remove_region(&memblock.memory, i);
1719
1720 /* truncate the reserved regions */
1721 memblock_remove_range(&memblock.reserved, 0, base);
1722 memblock_remove_range(&memblock.reserved,
1c4bc43d 1723 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1724}
1725
a571d4eb
DC
1726void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1727{
a571d4eb 1728 phys_addr_t max_addr;
a571d4eb
DC
1729
1730 if (!limit)
1731 return;
1732
1733 max_addr = __find_max_addr(limit);
1734
1735 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1736 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1737 return;
1738
c9ca9b4e 1739 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1740}
1741
cd79481d 1742static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1743{
1744 unsigned int left = 0, right = type->cnt;
1745
1746 do {
1747 unsigned int mid = (right + left) / 2;
1748
1749 if (addr < type->regions[mid].base)
1750 right = mid;
1751 else if (addr >= (type->regions[mid].base +
1752 type->regions[mid].size))
1753 left = mid + 1;
1754 else
1755 return mid;
1756 } while (left < right);
1757 return -1;
1758}
1759
f5a222dc 1760bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1761{
72d4b0b4
BH
1762 return memblock_search(&memblock.reserved, addr) != -1;
1763}
95f72d1e 1764
b4ad0c7e 1765bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1766{
1767 return memblock_search(&memblock.memory, addr) != -1;
1768}
1769
937f0c26 1770bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1771{
1772 int i = memblock_search(&memblock.memory, addr);
1773
1774 if (i == -1)
1775 return false;
1776 return !memblock_is_nomap(&memblock.memory.regions[i]);
1777}
1778
e76b63f8
YL
1779int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1780 unsigned long *start_pfn, unsigned long *end_pfn)
1781{
1782 struct memblock_type *type = &memblock.memory;
16763230 1783 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1784
1785 if (mid == -1)
1786 return -1;
1787
f7e2f7e8
FF
1788 *start_pfn = PFN_DOWN(type->regions[mid].base);
1789 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8 1790
d622abf7 1791 return memblock_get_region_node(&type->regions[mid]);
e76b63f8 1792}
e76b63f8 1793
eab30949
SB
1794/**
1795 * memblock_is_region_memory - check if a region is a subset of memory
1796 * @base: base of region to check
1797 * @size: size of region to check
1798 *
47cec443 1799 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1800 *
47cec443 1801 * Return:
eab30949
SB
1802 * 0 if false, non-zero if true
1803 */
937f0c26 1804bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1805{
abb65272 1806 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1807 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1808
1809 if (idx == -1)
937f0c26 1810 return false;
ef415ef4 1811 return (memblock.memory.regions[idx].base +
eb18f1b5 1812 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1813}
1814
eab30949
SB
1815/**
1816 * memblock_is_region_reserved - check if a region intersects reserved memory
1817 * @base: base of region to check
1818 * @size: size of region to check
1819 *
47cec443
MR
1820 * Check if the region [@base, @base + @size) intersects a reserved
1821 * memory block.
eab30949 1822 *
47cec443 1823 * Return:
c5c5c9d1 1824 * True if they intersect, false if not.
eab30949 1825 */
c5c5c9d1 1826bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1827{
c5c5c9d1 1828 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1829}
1830
6ede1fd3
YL
1831void __init_memblock memblock_trim_memory(phys_addr_t align)
1832{
6ede1fd3 1833 phys_addr_t start, end, orig_start, orig_end;
136199f0 1834 struct memblock_region *r;
6ede1fd3 1835
cc6de168 1836 for_each_mem_region(r) {
136199f0
EM
1837 orig_start = r->base;
1838 orig_end = r->base + r->size;
6ede1fd3
YL
1839 start = round_up(orig_start, align);
1840 end = round_down(orig_end, align);
1841
1842 if (start == orig_start && end == orig_end)
1843 continue;
1844
1845 if (start < end) {
136199f0
EM
1846 r->base = start;
1847 r->size = end - start;
6ede1fd3 1848 } else {
136199f0
EM
1849 memblock_remove_region(&memblock.memory,
1850 r - memblock.memory.regions);
1851 r--;
6ede1fd3
YL
1852 }
1853 }
1854}
e63075a3 1855
3661ca66 1856void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1857{
1858 memblock.current_limit = limit;
1859}
1860
fec51014
LA
1861phys_addr_t __init_memblock memblock_get_current_limit(void)
1862{
1863 return memblock.current_limit;
1864}
1865
0262d9c8 1866static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1867{
5d63f81c 1868 phys_addr_t base, end, size;
e1720fee 1869 enum memblock_flags flags;
8c9c1701
AK
1870 int idx;
1871 struct memblock_region *rgn;
6ed311b2 1872
0262d9c8 1873 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1874
66e8b438 1875 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1876 char nid_buf[32] = "";
1877
1878 base = rgn->base;
1879 size = rgn->size;
5d63f81c 1880 end = base + size - 1;
66a20757 1881 flags = rgn->flags;
a9ee6cf5 1882#ifdef CONFIG_NUMA
7c0caeb8
TH
1883 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1884 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1885 memblock_get_region_node(rgn));
1886#endif
e1720fee 1887 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1888 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1889 }
1890}
1891
87c55870 1892static void __init_memblock __memblock_dump_all(void)
6ed311b2 1893{
6ed311b2 1894 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1895 pr_info(" memory size = %pa reserved size = %pa\n",
1896 &memblock.memory.total_size,
1897 &memblock.reserved.total_size);
6ed311b2 1898
0262d9c8
HC
1899 memblock_dump(&memblock.memory);
1900 memblock_dump(&memblock.reserved);
409efd4c 1901#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 1902 memblock_dump(&physmem);
409efd4c 1903#endif
6ed311b2
BH
1904}
1905
87c55870
MR
1906void __init_memblock memblock_dump_all(void)
1907{
1908 if (memblock_debug)
1909 __memblock_dump_all();
1910}
1911
1aadc056 1912void __init memblock_allow_resize(void)
6ed311b2 1913{
142b45a7 1914 memblock_can_resize = 1;
6ed311b2
BH
1915}
1916
6ed311b2
BH
1917static int __init early_memblock(char *p)
1918{
1919 if (p && strstr(p, "debug"))
1920 memblock_debug = 1;
1921 return 0;
1922}
1923early_param("memblock", early_memblock);
1924
4f5b0c17
MR
1925static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1926{
1927 struct page *start_pg, *end_pg;
1928 phys_addr_t pg, pgend;
1929
1930 /*
1931 * Convert start_pfn/end_pfn to a struct page pointer.
1932 */
1933 start_pg = pfn_to_page(start_pfn - 1) + 1;
1934 end_pg = pfn_to_page(end_pfn - 1) + 1;
1935
1936 /*
1937 * Convert to physical addresses, and round start upwards and end
1938 * downwards.
1939 */
1940 pg = PAGE_ALIGN(__pa(start_pg));
1941 pgend = __pa(end_pg) & PAGE_MASK;
1942
1943 /*
1944 * If there are free pages between these, free the section of the
1945 * memmap array.
1946 */
1947 if (pg < pgend)
3ecc6834 1948 memblock_phys_free(pg, pgend - pg);
4f5b0c17
MR
1949}
1950
1951/*
1952 * The mem_map array can get very big. Free the unused area of the memory map.
1953 */
1954static void __init free_unused_memmap(void)
1955{
1956 unsigned long start, end, prev_end = 0;
1957 int i;
1958
1959 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1960 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1961 return;
1962
1963 /*
1964 * This relies on each bank being in address order.
1965 * The banks are sorted previously in bootmem_init().
1966 */
1967 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1968#ifdef CONFIG_SPARSEMEM
1969 /*
1970 * Take care not to free memmap entries that don't exist
1971 * due to SPARSEMEM sections which aren't present.
1972 */
1973 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 1974#endif
4f5b0c17 1975 /*
e2a86800
MR
1976 * Align down here since many operations in VM subsystem
1977 * presume that there are no holes in the memory map inside
1978 * a pageblock
4f5b0c17 1979 */
e2a86800 1980 start = round_down(start, pageblock_nr_pages);
4f5b0c17
MR
1981
1982 /*
1983 * If we had a previous bank, and there is a space
1984 * between the current bank and the previous, free it.
1985 */
1986 if (prev_end && prev_end < start)
1987 free_memmap(prev_end, start);
1988
1989 /*
e2a86800
MR
1990 * Align up here since many operations in VM subsystem
1991 * presume that there are no holes in the memory map inside
1992 * a pageblock
4f5b0c17 1993 */
e2a86800 1994 prev_end = ALIGN(end, pageblock_nr_pages);
4f5b0c17
MR
1995 }
1996
1997#ifdef CONFIG_SPARSEMEM
f921f53e
MR
1998 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
1999 prev_end = ALIGN(end, pageblock_nr_pages);
4f5b0c17 2000 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
f921f53e 2001 }
4f5b0c17
MR
2002#endif
2003}
2004
bda49a81
MR
2005static void __init __free_pages_memory(unsigned long start, unsigned long end)
2006{
2007 int order;
2008
2009 while (start < end) {
2010 order = min(MAX_ORDER - 1UL, __ffs(start));
2011
2012 while (start + (1UL << order) > end)
2013 order--;
2014
2015 memblock_free_pages(pfn_to_page(start), start, order);
2016
2017 start += (1UL << order);
2018 }
2019}
2020
2021static unsigned long __init __free_memory_core(phys_addr_t start,
2022 phys_addr_t end)
2023{
2024 unsigned long start_pfn = PFN_UP(start);
2025 unsigned long end_pfn = min_t(unsigned long,
2026 PFN_DOWN(end), max_low_pfn);
2027
2028 if (start_pfn >= end_pfn)
2029 return 0;
2030
2031 __free_pages_memory(start_pfn, end_pfn);
2032
2033 return end_pfn - start_pfn;
2034}
2035
9092d4f7
MR
2036static void __init memmap_init_reserved_pages(void)
2037{
2038 struct memblock_region *region;
2039 phys_addr_t start, end;
2040 u64 i;
2041
2042 /* initialize struct pages for the reserved regions */
2043 for_each_reserved_mem_range(i, &start, &end)
2044 reserve_bootmem_region(start, end);
2045
2046 /* and also treat struct pages for the NOMAP regions as PageReserved */
2047 for_each_mem_region(region) {
2048 if (memblock_is_nomap(region)) {
2049 start = region->base;
2050 end = start + region->size;
2051 reserve_bootmem_region(start, end);
2052 }
2053 }
2054}
2055
bda49a81
MR
2056static unsigned long __init free_low_memory_core_early(void)
2057{
2058 unsigned long count = 0;
2059 phys_addr_t start, end;
2060 u64 i;
2061
2062 memblock_clear_hotplug(0, -1);
2063
9092d4f7 2064 memmap_init_reserved_pages();
bda49a81
MR
2065
2066 /*
2067 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2068 * because in some case like Node0 doesn't have RAM installed
2069 * low ram will be on Node1
2070 */
2071 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2072 NULL)
2073 count += __free_memory_core(start, end);
2074
2075 return count;
2076}
2077
2078static int reset_managed_pages_done __initdata;
2079
2080void reset_node_managed_pages(pg_data_t *pgdat)
2081{
2082 struct zone *z;
2083
2084 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2085 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2086}
2087
2088void __init reset_all_zones_managed_pages(void)
2089{
2090 struct pglist_data *pgdat;
2091
2092 if (reset_managed_pages_done)
2093 return;
2094
2095 for_each_online_pgdat(pgdat)
2096 reset_node_managed_pages(pgdat);
2097
2098 reset_managed_pages_done = 1;
2099}
2100
2101/**
2102 * memblock_free_all - release free pages to the buddy allocator
bda49a81 2103 */
097d43d8 2104void __init memblock_free_all(void)
bda49a81
MR
2105{
2106 unsigned long pages;
2107
4f5b0c17 2108 free_unused_memmap();
bda49a81
MR
2109 reset_all_zones_managed_pages();
2110
2111 pages = free_low_memory_core_early();
ca79b0c2 2112 totalram_pages_add(pages);
bda49a81
MR
2113}
2114
350e88ba 2115#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
6d03b885
BH
2116
2117static int memblock_debug_show(struct seq_file *m, void *private)
2118{
2119 struct memblock_type *type = m->private;
2120 struct memblock_region *reg;
2121 int i;
5d63f81c 2122 phys_addr_t end;
6d03b885
BH
2123
2124 for (i = 0; i < type->cnt; i++) {
2125 reg = &type->regions[i];
5d63f81c 2126 end = reg->base + reg->size - 1;
6d03b885 2127
5d63f81c
MC
2128 seq_printf(m, "%4d: ", i);
2129 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
2130 }
2131 return 0;
2132}
5ad35093 2133DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2134
2135static int __init memblock_init_debugfs(void)
2136{
2137 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2138
0825a6f9
JP
2139 debugfs_create_file("memory", 0444, root,
2140 &memblock.memory, &memblock_debug_fops);
2141 debugfs_create_file("reserved", 0444, root,
2142 &memblock.reserved, &memblock_debug_fops);
70210ed9 2143#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905
DH
2144 debugfs_create_file("physmem", 0444, root, &physmem,
2145 &memblock_debug_fops);
70210ed9 2146#endif
6d03b885
BH
2147
2148 return 0;
2149}
2150__initcall(memblock_init_debugfs);
2151
2152#endif /* CONFIG_DEBUG_FS */