libfs: fix error cast of negative value in simple_attr_write()
[linux-block.git] / mm / madvise.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9#include <linux/mman.h>
10#include <linux/pagemap.h>
11#include <linux/syscalls.h>
05b74384 12#include <linux/mempolicy.h>
afcf938e 13#include <linux/page-isolation.h>
9c276cc6 14#include <linux/page_idle.h>
05ce7724 15#include <linux/userfaultfd_k.h>
1da177e4 16#include <linux/hugetlb.h>
3f31d075 17#include <linux/falloc.h>
692fe624 18#include <linux/fadvise.h>
e8edc6e0 19#include <linux/sched.h>
ecb8ac8b
MK
20#include <linux/sched/mm.h>
21#include <linux/uio.h>
f8af4da3 22#include <linux/ksm.h>
3f31d075 23#include <linux/fs.h>
9ab4233d 24#include <linux/file.h>
1998cc04 25#include <linux/blkdev.h>
66114cad 26#include <linux/backing-dev.h>
a520110e 27#include <linux/pagewalk.h>
1998cc04
SL
28#include <linux/swap.h>
29#include <linux/swapops.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
854e9ed0
MK
31#include <linux/mmu_notifier.h>
32
33#include <asm/tlb.h>
1da177e4 34
23519073
KS
35#include "internal.h"
36
d616d512
MK
37struct madvise_walk_private {
38 struct mmu_gather *tlb;
39 bool pageout;
40};
41
0a27a14a
NP
42/*
43 * Any behaviour which results in changes to the vma->vm_flags needs to
c1e8d7c6 44 * take mmap_lock for writing. Others, which simply traverse vmas, need
0a27a14a
NP
45 * to only take it for reading.
46 */
47static int madvise_need_mmap_write(int behavior)
48{
49 switch (behavior) {
50 case MADV_REMOVE:
51 case MADV_WILLNEED:
52 case MADV_DONTNEED:
9c276cc6 53 case MADV_COLD:
1a4e58cc 54 case MADV_PAGEOUT:
854e9ed0 55 case MADV_FREE:
0a27a14a
NP
56 return 0;
57 default:
58 /* be safe, default to 1. list exceptions explicitly */
59 return 1;
60 }
61}
62
1da177e4
LT
63/*
64 * We can potentially split a vm area into separate
65 * areas, each area with its own behavior.
66 */
ec9bed9d 67static long madvise_behavior(struct vm_area_struct *vma,
05b74384
PM
68 struct vm_area_struct **prev,
69 unsigned long start, unsigned long end, int behavior)
1da177e4 70{
ec9bed9d 71 struct mm_struct *mm = vma->vm_mm;
1da177e4 72 int error = 0;
05b74384 73 pgoff_t pgoff;
3866ea90 74 unsigned long new_flags = vma->vm_flags;
e798c6e8
PM
75
76 switch (behavior) {
f8225661
MT
77 case MADV_NORMAL:
78 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
79 break;
e798c6e8 80 case MADV_SEQUENTIAL:
f8225661 81 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
e798c6e8
PM
82 break;
83 case MADV_RANDOM:
f8225661 84 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
e798c6e8 85 break;
f8225661
MT
86 case MADV_DONTFORK:
87 new_flags |= VM_DONTCOPY;
88 break;
89 case MADV_DOFORK:
3866ea90
HD
90 if (vma->vm_flags & VM_IO) {
91 error = -EINVAL;
92 goto out;
93 }
f8225661 94 new_flags &= ~VM_DONTCOPY;
e798c6e8 95 break;
d2cd9ede
RR
96 case MADV_WIPEONFORK:
97 /* MADV_WIPEONFORK is only supported on anonymous memory. */
98 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
99 error = -EINVAL;
100 goto out;
101 }
102 new_flags |= VM_WIPEONFORK;
103 break;
104 case MADV_KEEPONFORK:
105 new_flags &= ~VM_WIPEONFORK;
106 break;
accb61fe 107 case MADV_DONTDUMP:
0103bd16 108 new_flags |= VM_DONTDUMP;
accb61fe
JB
109 break;
110 case MADV_DODUMP:
d41aa525 111 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
0103bd16
KK
112 error = -EINVAL;
113 goto out;
114 }
115 new_flags &= ~VM_DONTDUMP;
accb61fe 116 break;
f8af4da3
HD
117 case MADV_MERGEABLE:
118 case MADV_UNMERGEABLE:
119 error = ksm_madvise(vma, start, end, behavior, &new_flags);
f3bc0dba
MR
120 if (error)
121 goto out_convert_errno;
f8af4da3 122 break;
0af4e98b 123 case MADV_HUGEPAGE:
a664b2d8 124 case MADV_NOHUGEPAGE:
60ab3244 125 error = hugepage_madvise(vma, &new_flags, behavior);
f3bc0dba
MR
126 if (error)
127 goto out_convert_errno;
0af4e98b 128 break;
e798c6e8
PM
129 }
130
05b74384
PM
131 if (new_flags == vma->vm_flags) {
132 *prev = vma;
836d5ffd 133 goto out;
05b74384
PM
134 }
135
136 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
137 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
19a809af
AA
138 vma->vm_file, pgoff, vma_policy(vma),
139 vma->vm_userfaultfd_ctx);
05b74384
PM
140 if (*prev) {
141 vma = *prev;
142 goto success;
143 }
144
145 *prev = vma;
1da177e4
LT
146
147 if (start != vma->vm_start) {
def5efe0
DR
148 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
149 error = -ENOMEM;
1da177e4 150 goto out;
def5efe0
DR
151 }
152 error = __split_vma(mm, vma, start, 1);
f3bc0dba
MR
153 if (error)
154 goto out_convert_errno;
1da177e4
LT
155 }
156
157 if (end != vma->vm_end) {
def5efe0
DR
158 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
159 error = -ENOMEM;
1da177e4 160 goto out;
def5efe0
DR
161 }
162 error = __split_vma(mm, vma, end, 0);
f3bc0dba
MR
163 if (error)
164 goto out_convert_errno;
1da177e4
LT
165 }
166
836d5ffd 167success:
1da177e4 168 /*
c1e8d7c6 169 * vm_flags is protected by the mmap_lock held in write mode.
1da177e4 170 */
e798c6e8 171 vma->vm_flags = new_flags;
f3bc0dba
MR
172
173out_convert_errno:
174 /*
175 * madvise() returns EAGAIN if kernel resources, such as
176 * slab, are temporarily unavailable.
177 */
178 if (error == -ENOMEM)
179 error = -EAGAIN;
1da177e4 180out:
1da177e4
LT
181 return error;
182}
183
1998cc04
SL
184#ifdef CONFIG_SWAP
185static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
186 unsigned long end, struct mm_walk *walk)
187{
188 pte_t *orig_pte;
189 struct vm_area_struct *vma = walk->private;
190 unsigned long index;
191
192 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
193 return 0;
194
195 for (index = start; index != end; index += PAGE_SIZE) {
196 pte_t pte;
197 swp_entry_t entry;
198 struct page *page;
199 spinlock_t *ptl;
200
201 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
202 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
203 pte_unmap_unlock(orig_pte, ptl);
204
0661a336 205 if (pte_present(pte) || pte_none(pte))
1998cc04
SL
206 continue;
207 entry = pte_to_swp_entry(pte);
208 if (unlikely(non_swap_entry(entry)))
209 continue;
210
211 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
23955622 212 vma, index, false);
1998cc04 213 if (page)
09cbfeaf 214 put_page(page);
1998cc04
SL
215 }
216
217 return 0;
218}
219
7b86ac33
CH
220static const struct mm_walk_ops swapin_walk_ops = {
221 .pmd_entry = swapin_walk_pmd_entry,
222};
1998cc04
SL
223
224static void force_shm_swapin_readahead(struct vm_area_struct *vma,
225 unsigned long start, unsigned long end,
226 struct address_space *mapping)
227{
e6e88712
MWO
228 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
229 pgoff_t end_index = end / PAGE_SIZE;
1998cc04 230 struct page *page;
1998cc04 231
e6e88712
MWO
232 rcu_read_lock();
233 xas_for_each(&xas, page, end_index) {
234 swp_entry_t swap;
1998cc04 235
e6e88712 236 if (!xa_is_value(page))
1998cc04 237 continue;
e6e88712
MWO
238 xas_pause(&xas);
239 rcu_read_unlock();
240
1998cc04
SL
241 swap = radix_to_swp_entry(page);
242 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
23955622 243 NULL, 0, false);
1998cc04 244 if (page)
09cbfeaf 245 put_page(page);
e6e88712
MWO
246
247 rcu_read_lock();
1998cc04 248 }
e6e88712 249 rcu_read_unlock();
1998cc04
SL
250
251 lru_add_drain(); /* Push any new pages onto the LRU now */
252}
253#endif /* CONFIG_SWAP */
254
1da177e4
LT
255/*
256 * Schedule all required I/O operations. Do not wait for completion.
257 */
ec9bed9d
VC
258static long madvise_willneed(struct vm_area_struct *vma,
259 struct vm_area_struct **prev,
1da177e4
LT
260 unsigned long start, unsigned long end)
261{
0726b01e 262 struct mm_struct *mm = vma->vm_mm;
1da177e4 263 struct file *file = vma->vm_file;
692fe624 264 loff_t offset;
1da177e4 265
6ea8d958 266 *prev = vma;
1998cc04 267#ifdef CONFIG_SWAP
97b713ba 268 if (!file) {
7b86ac33
CH
269 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
270 lru_add_drain(); /* Push any new pages onto the LRU now */
1998cc04
SL
271 return 0;
272 }
1998cc04 273
97b713ba 274 if (shmem_mapping(file->f_mapping)) {
97b713ba
CH
275 force_shm_swapin_readahead(vma, start, end,
276 file->f_mapping);
277 return 0;
278 }
279#else
1bef4003
S
280 if (!file)
281 return -EBADF;
97b713ba 282#endif
1bef4003 283
e748dcd0 284 if (IS_DAX(file_inode(file))) {
fe77ba6f
CO
285 /* no bad return value, but ignore advice */
286 return 0;
287 }
288
692fe624
JK
289 /*
290 * Filesystem's fadvise may need to take various locks. We need to
291 * explicitly grab a reference because the vma (and hence the
292 * vma's reference to the file) can go away as soon as we drop
c1e8d7c6 293 * mmap_lock.
692fe624 294 */
c1e8d7c6 295 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
692fe624 296 get_file(file);
692fe624
JK
297 offset = (loff_t)(start - vma->vm_start)
298 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
0726b01e 299 mmap_read_unlock(mm);
692fe624
JK
300 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
301 fput(file);
0726b01e 302 mmap_read_lock(mm);
1da177e4
LT
303 return 0;
304}
305
d616d512
MK
306static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
307 unsigned long addr, unsigned long end,
308 struct mm_walk *walk)
9c276cc6 309{
d616d512
MK
310 struct madvise_walk_private *private = walk->private;
311 struct mmu_gather *tlb = private->tlb;
312 bool pageout = private->pageout;
9c276cc6
MK
313 struct mm_struct *mm = tlb->mm;
314 struct vm_area_struct *vma = walk->vma;
315 pte_t *orig_pte, *pte, ptent;
316 spinlock_t *ptl;
d616d512
MK
317 struct page *page = NULL;
318 LIST_HEAD(page_list);
319
320 if (fatal_signal_pending(current))
321 return -EINTR;
9c276cc6
MK
322
323#ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 if (pmd_trans_huge(*pmd)) {
325 pmd_t orig_pmd;
326 unsigned long next = pmd_addr_end(addr, end);
327
328 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
329 ptl = pmd_trans_huge_lock(pmd, vma);
330 if (!ptl)
331 return 0;
332
333 orig_pmd = *pmd;
334 if (is_huge_zero_pmd(orig_pmd))
335 goto huge_unlock;
336
337 if (unlikely(!pmd_present(orig_pmd))) {
338 VM_BUG_ON(thp_migration_supported() &&
339 !is_pmd_migration_entry(orig_pmd));
340 goto huge_unlock;
341 }
342
343 page = pmd_page(orig_pmd);
12e967fd
MH
344
345 /* Do not interfere with other mappings of this page */
346 if (page_mapcount(page) != 1)
347 goto huge_unlock;
348
9c276cc6
MK
349 if (next - addr != HPAGE_PMD_SIZE) {
350 int err;
351
9c276cc6
MK
352 get_page(page);
353 spin_unlock(ptl);
354 lock_page(page);
355 err = split_huge_page(page);
356 unlock_page(page);
357 put_page(page);
358 if (!err)
359 goto regular_page;
360 return 0;
361 }
362
363 if (pmd_young(orig_pmd)) {
364 pmdp_invalidate(vma, addr, pmd);
365 orig_pmd = pmd_mkold(orig_pmd);
366
367 set_pmd_at(mm, addr, pmd, orig_pmd);
368 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
369 }
370
d616d512 371 ClearPageReferenced(page);
9c276cc6 372 test_and_clear_page_young(page);
d616d512 373 if (pageout) {
82072962 374 if (!isolate_lru_page(page)) {
375 if (PageUnevictable(page))
376 putback_lru_page(page);
377 else
378 list_add(&page->lru, &page_list);
379 }
d616d512
MK
380 } else
381 deactivate_page(page);
9c276cc6
MK
382huge_unlock:
383 spin_unlock(ptl);
d616d512
MK
384 if (pageout)
385 reclaim_pages(&page_list);
9c276cc6
MK
386 return 0;
387 }
388
ce268425 389regular_page:
9c276cc6
MK
390 if (pmd_trans_unstable(pmd))
391 return 0;
9c276cc6
MK
392#endif
393 tlb_change_page_size(tlb, PAGE_SIZE);
394 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
395 flush_tlb_batched_pending(mm);
396 arch_enter_lazy_mmu_mode();
397 for (; addr < end; pte++, addr += PAGE_SIZE) {
398 ptent = *pte;
399
400 if (pte_none(ptent))
401 continue;
402
403 if (!pte_present(ptent))
404 continue;
405
406 page = vm_normal_page(vma, addr, ptent);
407 if (!page)
408 continue;
409
410 /*
411 * Creating a THP page is expensive so split it only if we
412 * are sure it's worth. Split it if we are only owner.
413 */
414 if (PageTransCompound(page)) {
415 if (page_mapcount(page) != 1)
416 break;
417 get_page(page);
418 if (!trylock_page(page)) {
419 put_page(page);
420 break;
421 }
422 pte_unmap_unlock(orig_pte, ptl);
423 if (split_huge_page(page)) {
424 unlock_page(page);
425 put_page(page);
426 pte_offset_map_lock(mm, pmd, addr, &ptl);
427 break;
428 }
429 unlock_page(page);
430 put_page(page);
431 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
432 pte--;
433 addr -= PAGE_SIZE;
434 continue;
435 }
436
12e967fd
MH
437 /* Do not interfere with other mappings of this page */
438 if (page_mapcount(page) != 1)
439 continue;
440
9c276cc6
MK
441 VM_BUG_ON_PAGE(PageTransCompound(page), page);
442
443 if (pte_young(ptent)) {
444 ptent = ptep_get_and_clear_full(mm, addr, pte,
445 tlb->fullmm);
446 ptent = pte_mkold(ptent);
447 set_pte_at(mm, addr, pte, ptent);
448 tlb_remove_tlb_entry(tlb, pte, addr);
449 }
450
451 /*
452 * We are deactivating a page for accelerating reclaiming.
453 * VM couldn't reclaim the page unless we clear PG_young.
454 * As a side effect, it makes confuse idle-page tracking
455 * because they will miss recent referenced history.
456 */
d616d512 457 ClearPageReferenced(page);
9c276cc6 458 test_and_clear_page_young(page);
d616d512 459 if (pageout) {
82072962 460 if (!isolate_lru_page(page)) {
461 if (PageUnevictable(page))
462 putback_lru_page(page);
463 else
464 list_add(&page->lru, &page_list);
465 }
d616d512
MK
466 } else
467 deactivate_page(page);
9c276cc6
MK
468 }
469
470 arch_leave_lazy_mmu_mode();
471 pte_unmap_unlock(orig_pte, ptl);
d616d512
MK
472 if (pageout)
473 reclaim_pages(&page_list);
9c276cc6
MK
474 cond_resched();
475
476 return 0;
477}
478
479static const struct mm_walk_ops cold_walk_ops = {
d616d512 480 .pmd_entry = madvise_cold_or_pageout_pte_range,
9c276cc6
MK
481};
482
483static void madvise_cold_page_range(struct mmu_gather *tlb,
484 struct vm_area_struct *vma,
485 unsigned long addr, unsigned long end)
486{
d616d512
MK
487 struct madvise_walk_private walk_private = {
488 .pageout = false,
489 .tlb = tlb,
490 };
491
9c276cc6 492 tlb_start_vma(tlb, vma);
d616d512 493 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
9c276cc6
MK
494 tlb_end_vma(tlb, vma);
495}
496
497static long madvise_cold(struct vm_area_struct *vma,
498 struct vm_area_struct **prev,
499 unsigned long start_addr, unsigned long end_addr)
500{
501 struct mm_struct *mm = vma->vm_mm;
502 struct mmu_gather tlb;
503
504 *prev = vma;
505 if (!can_madv_lru_vma(vma))
506 return -EINVAL;
507
508 lru_add_drain();
509 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
510 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
511 tlb_finish_mmu(&tlb, start_addr, end_addr);
512
513 return 0;
514}
515
1a4e58cc
MK
516static void madvise_pageout_page_range(struct mmu_gather *tlb,
517 struct vm_area_struct *vma,
518 unsigned long addr, unsigned long end)
519{
d616d512
MK
520 struct madvise_walk_private walk_private = {
521 .pageout = true,
522 .tlb = tlb,
523 };
524
1a4e58cc 525 tlb_start_vma(tlb, vma);
d616d512 526 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
1a4e58cc
MK
527 tlb_end_vma(tlb, vma);
528}
529
530static inline bool can_do_pageout(struct vm_area_struct *vma)
531{
532 if (vma_is_anonymous(vma))
533 return true;
534 if (!vma->vm_file)
535 return false;
536 /*
537 * paging out pagecache only for non-anonymous mappings that correspond
538 * to the files the calling process could (if tried) open for writing;
539 * otherwise we'd be including shared non-exclusive mappings, which
540 * opens a side channel.
541 */
542 return inode_owner_or_capable(file_inode(vma->vm_file)) ||
543 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
544}
545
546static long madvise_pageout(struct vm_area_struct *vma,
547 struct vm_area_struct **prev,
548 unsigned long start_addr, unsigned long end_addr)
549{
550 struct mm_struct *mm = vma->vm_mm;
551 struct mmu_gather tlb;
552
553 *prev = vma;
554 if (!can_madv_lru_vma(vma))
555 return -EINVAL;
556
557 if (!can_do_pageout(vma))
558 return 0;
559
560 lru_add_drain();
561 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
562 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
563 tlb_finish_mmu(&tlb, start_addr, end_addr);
564
565 return 0;
566}
567
854e9ed0
MK
568static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
569 unsigned long end, struct mm_walk *walk)
570
571{
572 struct mmu_gather *tlb = walk->private;
573 struct mm_struct *mm = tlb->mm;
574 struct vm_area_struct *vma = walk->vma;
575 spinlock_t *ptl;
576 pte_t *orig_pte, *pte, ptent;
577 struct page *page;
64b42bc1 578 int nr_swap = 0;
b8d3c4c3
MK
579 unsigned long next;
580
581 next = pmd_addr_end(addr, end);
582 if (pmd_trans_huge(*pmd))
583 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
584 goto next;
854e9ed0 585
854e9ed0
MK
586 if (pmd_trans_unstable(pmd))
587 return 0;
588
ed6a7935 589 tlb_change_page_size(tlb, PAGE_SIZE);
854e9ed0 590 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
3ea27719 591 flush_tlb_batched_pending(mm);
854e9ed0
MK
592 arch_enter_lazy_mmu_mode();
593 for (; addr != end; pte++, addr += PAGE_SIZE) {
594 ptent = *pte;
595
64b42bc1 596 if (pte_none(ptent))
854e9ed0 597 continue;
64b42bc1
MK
598 /*
599 * If the pte has swp_entry, just clear page table to
600 * prevent swap-in which is more expensive rather than
601 * (page allocation + zeroing).
602 */
603 if (!pte_present(ptent)) {
604 swp_entry_t entry;
605
606 entry = pte_to_swp_entry(ptent);
607 if (non_swap_entry(entry))
608 continue;
609 nr_swap--;
610 free_swap_and_cache(entry);
611 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
612 continue;
613 }
854e9ed0 614
25b2995a 615 page = vm_normal_page(vma, addr, ptent);
854e9ed0
MK
616 if (!page)
617 continue;
618
619 /*
620 * If pmd isn't transhuge but the page is THP and
621 * is owned by only this process, split it and
622 * deactivate all pages.
623 */
624 if (PageTransCompound(page)) {
625 if (page_mapcount(page) != 1)
626 goto out;
627 get_page(page);
628 if (!trylock_page(page)) {
629 put_page(page);
630 goto out;
631 }
632 pte_unmap_unlock(orig_pte, ptl);
633 if (split_huge_page(page)) {
634 unlock_page(page);
635 put_page(page);
636 pte_offset_map_lock(mm, pmd, addr, &ptl);
637 goto out;
638 }
854e9ed0 639 unlock_page(page);
263630e8 640 put_page(page);
854e9ed0
MK
641 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
642 pte--;
643 addr -= PAGE_SIZE;
644 continue;
645 }
646
647 VM_BUG_ON_PAGE(PageTransCompound(page), page);
648
649 if (PageSwapCache(page) || PageDirty(page)) {
650 if (!trylock_page(page))
651 continue;
652 /*
653 * If page is shared with others, we couldn't clear
654 * PG_dirty of the page.
655 */
656 if (page_mapcount(page) != 1) {
657 unlock_page(page);
658 continue;
659 }
660
661 if (PageSwapCache(page) && !try_to_free_swap(page)) {
662 unlock_page(page);
663 continue;
664 }
665
666 ClearPageDirty(page);
667 unlock_page(page);
668 }
669
670 if (pte_young(ptent) || pte_dirty(ptent)) {
671 /*
672 * Some of architecture(ex, PPC) don't update TLB
673 * with set_pte_at and tlb_remove_tlb_entry so for
674 * the portability, remap the pte with old|clean
675 * after pte clearing.
676 */
677 ptent = ptep_get_and_clear_full(mm, addr, pte,
678 tlb->fullmm);
679
680 ptent = pte_mkold(ptent);
681 ptent = pte_mkclean(ptent);
682 set_pte_at(mm, addr, pte, ptent);
683 tlb_remove_tlb_entry(tlb, pte, addr);
684 }
802a3a92 685 mark_page_lazyfree(page);
854e9ed0
MK
686 }
687out:
64b42bc1
MK
688 if (nr_swap) {
689 if (current->mm == mm)
690 sync_mm_rss(mm);
691
692 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
693 }
854e9ed0
MK
694 arch_leave_lazy_mmu_mode();
695 pte_unmap_unlock(orig_pte, ptl);
696 cond_resched();
b8d3c4c3 697next:
854e9ed0
MK
698 return 0;
699}
700
7b86ac33
CH
701static const struct mm_walk_ops madvise_free_walk_ops = {
702 .pmd_entry = madvise_free_pte_range,
703};
854e9ed0
MK
704
705static int madvise_free_single_vma(struct vm_area_struct *vma,
706 unsigned long start_addr, unsigned long end_addr)
707{
854e9ed0 708 struct mm_struct *mm = vma->vm_mm;
ac46d4f3 709 struct mmu_notifier_range range;
854e9ed0
MK
710 struct mmu_gather tlb;
711
854e9ed0
MK
712 /* MADV_FREE works for only anon vma at the moment */
713 if (!vma_is_anonymous(vma))
714 return -EINVAL;
715
ac46d4f3
JG
716 range.start = max(vma->vm_start, start_addr);
717 if (range.start >= vma->vm_end)
854e9ed0 718 return -EINVAL;
ac46d4f3
JG
719 range.end = min(vma->vm_end, end_addr);
720 if (range.end <= vma->vm_start)
854e9ed0 721 return -EINVAL;
7269f999 722 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 723 range.start, range.end);
854e9ed0
MK
724
725 lru_add_drain();
ac46d4f3 726 tlb_gather_mmu(&tlb, mm, range.start, range.end);
854e9ed0
MK
727 update_hiwater_rss(mm);
728
ac46d4f3 729 mmu_notifier_invalidate_range_start(&range);
7b86ac33
CH
730 tlb_start_vma(&tlb, vma);
731 walk_page_range(vma->vm_mm, range.start, range.end,
732 &madvise_free_walk_ops, &tlb);
733 tlb_end_vma(&tlb, vma);
ac46d4f3
JG
734 mmu_notifier_invalidate_range_end(&range);
735 tlb_finish_mmu(&tlb, range.start, range.end);
854e9ed0
MK
736
737 return 0;
738}
739
1da177e4
LT
740/*
741 * Application no longer needs these pages. If the pages are dirty,
742 * it's OK to just throw them away. The app will be more careful about
743 * data it wants to keep. Be sure to free swap resources too. The
7e6cbea3 744 * zap_page_range call sets things up for shrink_active_list to actually free
1da177e4
LT
745 * these pages later if no one else has touched them in the meantime,
746 * although we could add these pages to a global reuse list for
7e6cbea3 747 * shrink_active_list to pick up before reclaiming other pages.
1da177e4
LT
748 *
749 * NB: This interface discards data rather than pushes it out to swap,
750 * as some implementations do. This has performance implications for
751 * applications like large transactional databases which want to discard
752 * pages in anonymous maps after committing to backing store the data
753 * that was kept in them. There is no reason to write this data out to
754 * the swap area if the application is discarding it.
755 *
756 * An interface that causes the system to free clean pages and flush
757 * dirty pages is already available as msync(MS_INVALIDATE).
758 */
230ca982
MR
759static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
760 unsigned long start, unsigned long end)
761{
762 zap_page_range(vma, start, end - start);
763 return 0;
764}
765
766static long madvise_dontneed_free(struct vm_area_struct *vma,
767 struct vm_area_struct **prev,
768 unsigned long start, unsigned long end,
769 int behavior)
1da177e4 770{
0726b01e
MK
771 struct mm_struct *mm = vma->vm_mm;
772
05b74384 773 *prev = vma;
9c276cc6 774 if (!can_madv_lru_vma(vma))
1da177e4
LT
775 return -EINVAL;
776
70ccb92f 777 if (!userfaultfd_remove(vma, start, end)) {
c1e8d7c6 778 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
70ccb92f 779
0726b01e
MK
780 mmap_read_lock(mm);
781 vma = find_vma(mm, start);
70ccb92f
AA
782 if (!vma)
783 return -ENOMEM;
784 if (start < vma->vm_start) {
785 /*
786 * This "vma" under revalidation is the one
787 * with the lowest vma->vm_start where start
788 * is also < vma->vm_end. If start <
789 * vma->vm_start it means an hole materialized
790 * in the user address space within the
230ca982
MR
791 * virtual range passed to MADV_DONTNEED
792 * or MADV_FREE.
70ccb92f
AA
793 */
794 return -ENOMEM;
795 }
9c276cc6 796 if (!can_madv_lru_vma(vma))
70ccb92f
AA
797 return -EINVAL;
798 if (end > vma->vm_end) {
799 /*
800 * Don't fail if end > vma->vm_end. If the old
c1e8d7c6 801 * vma was splitted while the mmap_lock was
70ccb92f 802 * released the effect of the concurrent
230ca982 803 * operation may not cause madvise() to
70ccb92f
AA
804 * have an undefined result. There may be an
805 * adjacent next vma that we'll walk
806 * next. userfaultfd_remove() will generate an
807 * UFFD_EVENT_REMOVE repetition on the
808 * end-vma->vm_end range, but the manager can
809 * handle a repetition fine.
810 */
811 end = vma->vm_end;
812 }
813 VM_WARN_ON(start >= end);
814 }
230ca982
MR
815
816 if (behavior == MADV_DONTNEED)
817 return madvise_dontneed_single_vma(vma, start, end);
818 else if (behavior == MADV_FREE)
819 return madvise_free_single_vma(vma, start, end);
820 else
821 return -EINVAL;
1da177e4
LT
822}
823
f6b3ec23
BP
824/*
825 * Application wants to free up the pages and associated backing store.
826 * This is effectively punching a hole into the middle of a file.
f6b3ec23
BP
827 */
828static long madvise_remove(struct vm_area_struct *vma,
00e9fa2d 829 struct vm_area_struct **prev,
f6b3ec23
BP
830 unsigned long start, unsigned long end)
831{
3f31d075 832 loff_t offset;
90ed52eb 833 int error;
9ab4233d 834 struct file *f;
0726b01e 835 struct mm_struct *mm = vma->vm_mm;
f6b3ec23 836
c1e8d7c6 837 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
00e9fa2d 838
72079ba0 839 if (vma->vm_flags & VM_LOCKED)
f6b3ec23
BP
840 return -EINVAL;
841
9ab4233d
AL
842 f = vma->vm_file;
843
844 if (!f || !f->f_mapping || !f->f_mapping->host) {
f6b3ec23
BP
845 return -EINVAL;
846 }
847
69cf0fac
HD
848 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
849 return -EACCES;
850
f6b3ec23
BP
851 offset = (loff_t)(start - vma->vm_start)
852 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
90ed52eb 853
9ab4233d
AL
854 /*
855 * Filesystem's fallocate may need to take i_mutex. We need to
856 * explicitly grab a reference because the vma (and hence the
857 * vma's reference to the file) can go away as soon as we drop
c1e8d7c6 858 * mmap_lock.
9ab4233d
AL
859 */
860 get_file(f);
70ccb92f 861 if (userfaultfd_remove(vma, start, end)) {
c1e8d7c6 862 /* mmap_lock was not released by userfaultfd_remove() */
0726b01e 863 mmap_read_unlock(mm);
70ccb92f 864 }
72c72bdf 865 error = vfs_fallocate(f,
3f31d075
HD
866 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
867 offset, end - start);
9ab4233d 868 fput(f);
0726b01e 869 mmap_read_lock(mm);
90ed52eb 870 return error;
f6b3ec23
BP
871}
872
9893e49d
AK
873#ifdef CONFIG_MEMORY_FAILURE
874/*
875 * Error injection support for memory error handling.
876 */
97167a76
AK
877static int madvise_inject_error(int behavior,
878 unsigned long start, unsigned long end)
9893e49d 879{
c461ad6a 880 struct zone *zone;
d3cd257c 881 unsigned long size;
97167a76 882
9893e49d
AK
883 if (!capable(CAP_SYS_ADMIN))
884 return -EPERM;
97167a76 885
19bfbe22 886
d3cd257c 887 for (; start < end; start += size) {
23e7b5c2 888 unsigned long pfn;
dc7560b4 889 struct page *page;
325c4ef5
AM
890 int ret;
891
97167a76 892 ret = get_user_pages_fast(start, 1, 0, &page);
9893e49d
AK
893 if (ret != 1)
894 return ret;
23e7b5c2 895 pfn = page_to_pfn(page);
325c4ef5 896
19bfbe22
AM
897 /*
898 * When soft offlining hugepages, after migrating the page
899 * we dissolve it, therefore in the second loop "page" will
d3cd257c 900 * no longer be a compound page.
19bfbe22 901 */
d3cd257c 902 size = page_size(compound_head(page));
19bfbe22 903
97167a76
AK
904 if (behavior == MADV_SOFT_OFFLINE) {
905 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
dc7560b4 906 pfn, start);
feec24a6 907 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
dc7560b4
OS
908 } else {
909 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
910 pfn, start);
911 /*
912 * Drop the page reference taken by get_user_pages_fast(). In
913 * the absence of MF_COUNT_INCREASED the memory_failure()
914 * routine is responsible for pinning the page to prevent it
915 * from being released back to the page allocator.
916 */
917 put_page(page);
918 ret = memory_failure(pfn, 0);
afcf938e 919 }
23e7b5c2 920
23a003bf
NH
921 if (ret)
922 return ret;
9893e49d 923 }
c461ad6a
MG
924
925 /* Ensure that all poisoned pages are removed from per-cpu lists */
926 for_each_populated_zone(zone)
927 drain_all_pages(zone);
928
325c4ef5 929 return 0;
9893e49d
AK
930}
931#endif
932
165cd402 933static long
934madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
935 unsigned long start, unsigned long end, int behavior)
1da177e4 936{
1da177e4 937 switch (behavior) {
f6b3ec23 938 case MADV_REMOVE:
3866ea90 939 return madvise_remove(vma, prev, start, end);
1da177e4 940 case MADV_WILLNEED:
3866ea90 941 return madvise_willneed(vma, prev, start, end);
9c276cc6
MK
942 case MADV_COLD:
943 return madvise_cold(vma, prev, start, end);
1a4e58cc
MK
944 case MADV_PAGEOUT:
945 return madvise_pageout(vma, prev, start, end);
854e9ed0 946 case MADV_FREE:
1da177e4 947 case MADV_DONTNEED:
230ca982 948 return madvise_dontneed_free(vma, prev, start, end, behavior);
1da177e4 949 default:
3866ea90 950 return madvise_behavior(vma, prev, start, end, behavior);
1da177e4 951 }
1da177e4
LT
952}
953
1ecef9ed 954static bool
75927af8
NP
955madvise_behavior_valid(int behavior)
956{
957 switch (behavior) {
958 case MADV_DOFORK:
959 case MADV_DONTFORK:
960 case MADV_NORMAL:
961 case MADV_SEQUENTIAL:
962 case MADV_RANDOM:
963 case MADV_REMOVE:
964 case MADV_WILLNEED:
965 case MADV_DONTNEED:
854e9ed0 966 case MADV_FREE:
9c276cc6 967 case MADV_COLD:
1a4e58cc 968 case MADV_PAGEOUT:
f8af4da3
HD
969#ifdef CONFIG_KSM
970 case MADV_MERGEABLE:
971 case MADV_UNMERGEABLE:
0af4e98b
AA
972#endif
973#ifdef CONFIG_TRANSPARENT_HUGEPAGE
974 case MADV_HUGEPAGE:
a664b2d8 975 case MADV_NOHUGEPAGE:
f8af4da3 976#endif
accb61fe
JB
977 case MADV_DONTDUMP:
978 case MADV_DODUMP:
d2cd9ede
RR
979 case MADV_WIPEONFORK:
980 case MADV_KEEPONFORK:
5e451be7
AK
981#ifdef CONFIG_MEMORY_FAILURE
982 case MADV_SOFT_OFFLINE:
983 case MADV_HWPOISON:
984#endif
1ecef9ed 985 return true;
75927af8
NP
986
987 default:
1ecef9ed 988 return false;
75927af8
NP
989 }
990}
3866ea90 991
ecb8ac8b
MK
992static bool
993process_madvise_behavior_valid(int behavior)
994{
995 switch (behavior) {
996 case MADV_COLD:
997 case MADV_PAGEOUT:
998 return true;
999 default:
1000 return false;
1001 }
1002}
1003
1da177e4
LT
1004/*
1005 * The madvise(2) system call.
1006 *
1007 * Applications can use madvise() to advise the kernel how it should
1008 * handle paging I/O in this VM area. The idea is to help the kernel
1009 * use appropriate read-ahead and caching techniques. The information
1010 * provided is advisory only, and can be safely disregarded by the
1011 * kernel without affecting the correct operation of the application.
1012 *
1013 * behavior values:
1014 * MADV_NORMAL - the default behavior is to read clusters. This
1015 * results in some read-ahead and read-behind.
1016 * MADV_RANDOM - the system should read the minimum amount of data
1017 * on any access, since it is unlikely that the appli-
1018 * cation will need more than what it asks for.
1019 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1020 * once, so they can be aggressively read ahead, and
1021 * can be freed soon after they are accessed.
1022 * MADV_WILLNEED - the application is notifying the system to read
1023 * some pages ahead.
1024 * MADV_DONTNEED - the application is finished with the given range,
1025 * so the kernel can free resources associated with it.
d7206a70
NH
1026 * MADV_FREE - the application marks pages in the given range as lazy free,
1027 * where actual purges are postponed until memory pressure happens.
f6b3ec23
BP
1028 * MADV_REMOVE - the application wants to free up the given range of
1029 * pages and associated backing store.
3866ea90
HD
1030 * MADV_DONTFORK - omit this area from child's address space when forking:
1031 * typically, to avoid COWing pages pinned by get_user_pages().
1032 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
c02c3009
YS
1033 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1034 * range after a fork.
1035 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
d7206a70
NH
1036 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1037 * were corrupted by unrecoverable hardware memory failure.
1038 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
f8af4da3
HD
1039 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1040 * this area with pages of identical content from other such areas.
1041 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
d7206a70
NH
1042 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1043 * huge pages in the future. Existing pages might be coalesced and
1044 * new pages might be allocated as THP.
1045 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1046 * transparent huge pages so the existing pages will not be
1047 * coalesced into THP and new pages will not be allocated as THP.
1048 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1049 * from being included in its core dump.
1050 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
ecb8ac8b
MK
1051 * MADV_COLD - the application is not expected to use this memory soon,
1052 * deactivate pages in this range so that they can be reclaimed
1053 * easily if memory pressure hanppens.
1054 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1055 * page out the pages in this range immediately.
1da177e4
LT
1056 *
1057 * return values:
1058 * zero - success
1059 * -EINVAL - start + len < 0, start is not page-aligned,
1060 * "behavior" is not a valid value, or application
c02c3009
YS
1061 * is attempting to release locked or shared pages,
1062 * or the specified address range includes file, Huge TLB,
1063 * MAP_SHARED or VMPFNMAP range.
1da177e4
LT
1064 * -ENOMEM - addresses in the specified range are not currently
1065 * mapped, or are outside the AS of the process.
1066 * -EIO - an I/O error occurred while paging in data.
1067 * -EBADF - map exists, but area maps something that isn't a file.
1068 * -EAGAIN - a kernel resource was temporarily unavailable.
1069 */
0726b01e 1070int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1da177e4 1071{
05b74384 1072 unsigned long end, tmp;
ec9bed9d 1073 struct vm_area_struct *vma, *prev;
1da177e4
LT
1074 int unmapped_error = 0;
1075 int error = -EINVAL;
f7977793 1076 int write;
1da177e4 1077 size_t len;
1998cc04 1078 struct blk_plug plug;
1da177e4 1079
057d3389
AK
1080 start = untagged_addr(start);
1081
75927af8
NP
1082 if (!madvise_behavior_valid(behavior))
1083 return error;
1084
df6c6500 1085 if (!PAGE_ALIGNED(start))
84d96d89 1086 return error;
df6c6500 1087 len = PAGE_ALIGN(len_in);
1da177e4
LT
1088
1089 /* Check to see whether len was rounded up from small -ve to zero */
1090 if (len_in && !len)
84d96d89 1091 return error;
1da177e4
LT
1092
1093 end = start + len;
1094 if (end < start)
84d96d89 1095 return error;
1da177e4
LT
1096
1097 error = 0;
1098 if (end == start)
84d96d89
RV
1099 return error;
1100
5e451be7
AK
1101#ifdef CONFIG_MEMORY_FAILURE
1102 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1103 return madvise_inject_error(behavior, start, start + len_in);
1104#endif
1105
84d96d89 1106 write = madvise_need_mmap_write(behavior);
dc0ef0df 1107 if (write) {
0726b01e 1108 if (mmap_write_lock_killable(mm))
dc0ef0df
MH
1109 return -EINTR;
1110 } else {
0726b01e 1111 mmap_read_lock(mm);
dc0ef0df 1112 }
1da177e4
LT
1113
1114 /*
1115 * If the interval [start,end) covers some unmapped address
1116 * ranges, just ignore them, but return -ENOMEM at the end.
05b74384 1117 * - different from the way of handling in mlock etc.
1da177e4 1118 */
0726b01e 1119 vma = find_vma_prev(mm, start, &prev);
836d5ffd
HD
1120 if (vma && start > vma->vm_start)
1121 prev = vma;
1122
1998cc04 1123 blk_start_plug(&plug);
1da177e4
LT
1124 for (;;) {
1125 /* Still start < end. */
1126 error = -ENOMEM;
1127 if (!vma)
84d96d89 1128 goto out;
1da177e4 1129
05b74384 1130 /* Here start < (end|vma->vm_end). */
1da177e4
LT
1131 if (start < vma->vm_start) {
1132 unmapped_error = -ENOMEM;
1133 start = vma->vm_start;
05b74384 1134 if (start >= end)
84d96d89 1135 goto out;
1da177e4
LT
1136 }
1137
05b74384
PM
1138 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1139 tmp = vma->vm_end;
1140 if (end < tmp)
1141 tmp = end;
1da177e4 1142
05b74384
PM
1143 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1144 error = madvise_vma(vma, &prev, start, tmp, behavior);
1da177e4 1145 if (error)
84d96d89 1146 goto out;
05b74384 1147 start = tmp;
90ed52eb 1148 if (prev && start < prev->vm_end)
05b74384
PM
1149 start = prev->vm_end;
1150 error = unmapped_error;
1151 if (start >= end)
84d96d89 1152 goto out;
90ed52eb
HD
1153 if (prev)
1154 vma = prev->vm_next;
c1e8d7c6 1155 else /* madvise_remove dropped mmap_lock */
0726b01e 1156 vma = find_vma(mm, start);
1da177e4 1157 }
1da177e4 1158out:
84d96d89 1159 blk_finish_plug(&plug);
f7977793 1160 if (write)
0726b01e 1161 mmap_write_unlock(mm);
0a27a14a 1162 else
0726b01e 1163 mmap_read_unlock(mm);
0a27a14a 1164
1da177e4
LT
1165 return error;
1166}
db08ca25
JA
1167
1168SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1169{
0726b01e 1170 return do_madvise(current->mm, start, len_in, behavior);
db08ca25 1171}
ecb8ac8b
MK
1172
1173SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1174 size_t, vlen, int, behavior, unsigned int, flags)
1175{
1176 ssize_t ret;
1177 struct iovec iovstack[UIO_FASTIOV], iovec;
1178 struct iovec *iov = iovstack;
1179 struct iov_iter iter;
1180 struct pid *pid;
1181 struct task_struct *task;
1182 struct mm_struct *mm;
1183 size_t total_len;
1184 unsigned int f_flags;
1185
1186 if (flags != 0) {
1187 ret = -EINVAL;
1188 goto out;
1189 }
1190
1191 ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1192 if (ret < 0)
1193 goto out;
1194
1195 pid = pidfd_get_pid(pidfd, &f_flags);
1196 if (IS_ERR(pid)) {
1197 ret = PTR_ERR(pid);
1198 goto free_iov;
1199 }
1200
1201 task = get_pid_task(pid, PIDTYPE_PID);
1202 if (!task) {
1203 ret = -ESRCH;
1204 goto put_pid;
1205 }
1206
1207 if (task->mm != current->mm &&
1208 !process_madvise_behavior_valid(behavior)) {
1209 ret = -EINVAL;
1210 goto release_task;
1211 }
1212
1213 mm = mm_access(task, PTRACE_MODE_ATTACH_FSCREDS);
1214 if (IS_ERR_OR_NULL(mm)) {
1215 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1216 goto release_task;
1217 }
1218
1219 total_len = iov_iter_count(&iter);
1220
1221 while (iov_iter_count(&iter)) {
1222 iovec = iov_iter_iovec(&iter);
1223 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1224 iovec.iov_len, behavior);
1225 if (ret < 0)
1226 break;
1227 iov_iter_advance(&iter, iovec.iov_len);
1228 }
1229
1230 if (ret == 0)
1231 ret = total_len - iov_iter_count(&iter);
1232
1233 mmput(mm);
ecb8ac8b
MK
1234release_task:
1235 put_task_struct(task);
1236put_pid:
1237 put_pid(pid);
1238free_iov:
1239 kfree(iov);
1240out:
1241 return ret;
1242}