Merge tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
4e5fa4f5 24#include <linux/sched/cputime.h>
31dbd01f
IE
25#include <linux/rwsem.h>
26#include <linux/pagemap.h>
27#include <linux/rmap.h>
28#include <linux/spinlock.h>
59e1a2f4 29#include <linux/xxhash.h>
31dbd01f
IE
30#include <linux/delay.h>
31#include <linux/kthread.h>
32#include <linux/wait.h>
33#include <linux/slab.h>
34#include <linux/rbtree.h>
62b61f61 35#include <linux/memory.h>
31dbd01f 36#include <linux/mmu_notifier.h>
2c6854fd 37#include <linux/swap.h>
f8af4da3 38#include <linux/ksm.h>
4ca3a69b 39#include <linux/hashtable.h>
878aee7d 40#include <linux/freezer.h>
72788c38 41#include <linux/oom.h>
90bd6fd3 42#include <linux/numa.h>
d7c0e68d 43#include <linux/pagewalk.h>
f8af4da3 44
31dbd01f 45#include <asm/tlbflush.h>
73848b46 46#include "internal.h"
58730ab6 47#include "mm_slot.h"
31dbd01f 48
739100c8
SR
49#define CREATE_TRACE_POINTS
50#include <trace/events/ksm.h>
51
e850dcf5
HD
52#ifdef CONFIG_NUMA
53#define NUMA(x) (x)
54#define DO_NUMA(x) do { (x); } while (0)
55#else
56#define NUMA(x) (0)
57#define DO_NUMA(x) do { } while (0)
58#endif
59
5e924ff5
SR
60typedef u8 rmap_age_t;
61
5a2ca3ef
MR
62/**
63 * DOC: Overview
64 *
31dbd01f
IE
65 * A few notes about the KSM scanning process,
66 * to make it easier to understand the data structures below:
67 *
68 * In order to reduce excessive scanning, KSM sorts the memory pages by their
69 * contents into a data structure that holds pointers to the pages' locations.
70 *
71 * Since the contents of the pages may change at any moment, KSM cannot just
72 * insert the pages into a normal sorted tree and expect it to find anything.
73 * Therefore KSM uses two data structures - the stable and the unstable tree.
74 *
75 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76 * by their contents. Because each such page is write-protected, searching on
77 * this tree is fully assured to be working (except when pages are unmapped),
78 * and therefore this tree is called the stable tree.
79 *
5a2ca3ef
MR
80 * The stable tree node includes information required for reverse
81 * mapping from a KSM page to virtual addresses that map this page.
82 *
83 * In order to avoid large latencies of the rmap walks on KSM pages,
84 * KSM maintains two types of nodes in the stable tree:
85 *
86 * * the regular nodes that keep the reverse mapping structures in a
87 * linked list
88 * * the "chains" that link nodes ("dups") that represent the same
89 * write protected memory content, but each "dup" corresponds to a
90 * different KSM page copy of that content
91 *
92 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 93 * using the same struct ksm_stable_node structure.
5a2ca3ef 94 *
31dbd01f
IE
95 * In addition to the stable tree, KSM uses a second data structure called the
96 * unstable tree: this tree holds pointers to pages which have been found to
97 * be "unchanged for a period of time". The unstable tree sorts these pages
98 * by their contents, but since they are not write-protected, KSM cannot rely
99 * upon the unstable tree to work correctly - the unstable tree is liable to
100 * be corrupted as its contents are modified, and so it is called unstable.
101 *
102 * KSM solves this problem by several techniques:
103 *
104 * 1) The unstable tree is flushed every time KSM completes scanning all
105 * memory areas, and then the tree is rebuilt again from the beginning.
106 * 2) KSM will only insert into the unstable tree, pages whose hash value
107 * has not changed since the previous scan of all memory areas.
108 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109 * colors of the nodes and not on their contents, assuring that even when
110 * the tree gets "corrupted" it won't get out of balance, so scanning time
111 * remains the same (also, searching and inserting nodes in an rbtree uses
112 * the same algorithm, so we have no overhead when we flush and rebuild).
113 * 4) KSM never flushes the stable tree, which means that even if it were to
114 * take 10 attempts to find a page in the unstable tree, once it is found,
115 * it is secured in the stable tree. (When we scan a new page, we first
116 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
117 *
118 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
120 */
121
122/**
21fbd591 123 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 124 * @slot: hash lookup from mm to mm_slot
6514d511 125 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 126 */
21fbd591 127struct ksm_mm_slot {
58730ab6 128 struct mm_slot slot;
21fbd591 129 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
130};
131
132/**
133 * struct ksm_scan - cursor for scanning
134 * @mm_slot: the current mm_slot we are scanning
135 * @address: the next address inside that to be scanned
6514d511 136 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
137 * @seqnr: count of completed full scans (needed when removing unstable node)
138 *
139 * There is only the one ksm_scan instance of this cursor structure.
140 */
141struct ksm_scan {
21fbd591 142 struct ksm_mm_slot *mm_slot;
31dbd01f 143 unsigned long address;
21fbd591 144 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
145 unsigned long seqnr;
146};
147
7b6ba2c7 148/**
21fbd591 149 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 150 * @node: rb node of this ksm page in the stable tree
4146d2d6 151 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 152 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 153 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 154 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 155 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
156 * @chain_prune_time: time of the last full garbage collection
157 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 158 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 159 */
21fbd591 160struct ksm_stable_node {
4146d2d6
HD
161 union {
162 struct rb_node node; /* when node of stable tree */
163 struct { /* when listed for migration */
164 struct list_head *head;
2c653d0e
AA
165 struct {
166 struct hlist_node hlist_dup;
167 struct list_head list;
168 };
4146d2d6
HD
169 };
170 };
7b6ba2c7 171 struct hlist_head hlist;
2c653d0e
AA
172 union {
173 unsigned long kpfn;
174 unsigned long chain_prune_time;
175 };
176 /*
177 * STABLE_NODE_CHAIN can be any negative number in
178 * rmap_hlist_len negative range, but better not -1 to be able
179 * to reliably detect underflows.
180 */
181#define STABLE_NODE_CHAIN -1024
182 int rmap_hlist_len;
4146d2d6
HD
183#ifdef CONFIG_NUMA
184 int nid;
185#endif
7b6ba2c7
HD
186};
187
31dbd01f 188/**
21fbd591 189 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 190 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 191 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 192 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
193 * @mm: the memory structure this rmap_item is pointing into
194 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
196 * @node: rb node of this rmap_item in the unstable tree
197 * @head: pointer to stable_node heading this list in the stable tree
198 * @hlist: link into hlist of rmap_items hanging off that stable_node
5e924ff5
SR
199 * @age: number of scan iterations since creation
200 * @remaining_skips: how many scans to skip
31dbd01f 201 */
21fbd591
QZ
202struct ksm_rmap_item {
203 struct ksm_rmap_item *rmap_list;
bc56620b
HD
204 union {
205 struct anon_vma *anon_vma; /* when stable */
206#ifdef CONFIG_NUMA
207 int nid; /* when node of unstable tree */
208#endif
209 };
31dbd01f
IE
210 struct mm_struct *mm;
211 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 212 unsigned int oldchecksum; /* when unstable */
5e924ff5
SR
213 rmap_age_t age;
214 rmap_age_t remaining_skips;
31dbd01f 215 union {
7b6ba2c7
HD
216 struct rb_node node; /* when node of unstable tree */
217 struct { /* when listed from stable tree */
21fbd591 218 struct ksm_stable_node *head;
7b6ba2c7
HD
219 struct hlist_node hlist;
220 };
31dbd01f
IE
221 };
222};
223
224#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
225#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
226#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
227
228/* The stable and unstable tree heads */
ef53d16c
HD
229static struct rb_root one_stable_tree[1] = { RB_ROOT };
230static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231static struct rb_root *root_stable_tree = one_stable_tree;
232static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 233
4146d2d6
HD
234/* Recently migrated nodes of stable tree, pending proper placement */
235static LIST_HEAD(migrate_nodes);
2c653d0e 236#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 237
4ca3a69b
SL
238#define MM_SLOTS_HASH_BITS 10
239static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 240
21fbd591 241static struct ksm_mm_slot ksm_mm_head = {
58730ab6 242 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
243};
244static struct ksm_scan ksm_scan = {
245 .mm_slot = &ksm_mm_head,
246};
247
248static struct kmem_cache *rmap_item_cache;
7b6ba2c7 249static struct kmem_cache *stable_node_cache;
31dbd01f
IE
250static struct kmem_cache *mm_slot_cache;
251
4e5fa4f5
SR
252/* Default number of pages to scan per batch */
253#define DEFAULT_PAGES_TO_SCAN 100
254
b348b5fe
SR
255/* The number of pages scanned */
256static unsigned long ksm_pages_scanned;
257
31dbd01f 258/* The number of nodes in the stable tree */
b4028260 259static unsigned long ksm_pages_shared;
31dbd01f 260
e178dfde 261/* The number of page slots additionally sharing those nodes */
b4028260 262static unsigned long ksm_pages_sharing;
31dbd01f 263
473b0ce4
HD
264/* The number of nodes in the unstable tree */
265static unsigned long ksm_pages_unshared;
266
267/* The number of rmap_items in use: to calculate pages_volatile */
268static unsigned long ksm_rmap_items;
269
2c653d0e
AA
270/* The number of stable_node chains */
271static unsigned long ksm_stable_node_chains;
272
273/* The number of stable_node dups linked to the stable_node chains */
274static unsigned long ksm_stable_node_dups;
275
276/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 277static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
278
279/* Maximum number of page slots sharing a stable node */
280static int ksm_max_page_sharing = 256;
281
31dbd01f 282/* Number of pages ksmd should scan in one batch */
4e5fa4f5 283static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
31dbd01f
IE
284
285/* Milliseconds ksmd should sleep between batches */
2ffd8679 286static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 287
e86c59b1
CI
288/* Checksum of an empty (zeroed) page */
289static unsigned int zero_checksum __read_mostly;
290
291/* Whether to merge empty (zeroed) pages with actual zero pages */
292static bool ksm_use_zero_pages __read_mostly;
293
5e924ff5
SR
294/* Skip pages that couldn't be de-duplicated previously */
295/* Default to true at least temporarily, for testing */
296static bool ksm_smart_scan = true;
297
e2942062 298/* The number of zero pages which is placed by KSM */
c2dc78b8 299atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
e2942062 300
e5a68991
SR
301/* The number of pages that have been skipped due to "smart scanning" */
302static unsigned long ksm_pages_skipped;
303
4e5fa4f5
SR
304/* Don't scan more than max pages per batch. */
305static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306
307/* Min CPU for scanning pages per scan */
308#define KSM_ADVISOR_MIN_CPU 10
309
310/* Max CPU for scanning pages per scan */
311static unsigned int ksm_advisor_max_cpu = 70;
312
313/* Target scan time in seconds to analyze all KSM candidate pages. */
314static unsigned long ksm_advisor_target_scan_time = 200;
315
316/* Exponentially weighted moving average. */
317#define EWMA_WEIGHT 30
318
319/**
320 * struct advisor_ctx - metadata for KSM advisor
321 * @start_scan: start time of the current scan
322 * @scan_time: scan time of previous scan
323 * @change: change in percent to pages_to_scan parameter
324 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325 */
326struct advisor_ctx {
327 ktime_t start_scan;
328 unsigned long scan_time;
329 unsigned long change;
330 unsigned long long cpu_time;
331};
332static struct advisor_ctx advisor_ctx;
333
334/* Define different advisor's */
335enum ksm_advisor_type {
336 KSM_ADVISOR_NONE,
337 KSM_ADVISOR_SCAN_TIME,
338};
339static enum ksm_advisor_type ksm_advisor;
340
66790e9a
SR
341#ifdef CONFIG_SYSFS
342/*
343 * Only called through the sysfs control interface:
344 */
345
346/* At least scan this many pages per batch. */
347static unsigned long ksm_advisor_min_pages_to_scan = 500;
348
349static void set_advisor_defaults(void)
350{
351 if (ksm_advisor == KSM_ADVISOR_NONE) {
352 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354 advisor_ctx = (const struct advisor_ctx){ 0 };
355 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356 }
357}
358#endif /* CONFIG_SYSFS */
359
4e5fa4f5
SR
360static inline void advisor_start_scan(void)
361{
362 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363 advisor_ctx.start_scan = ktime_get();
364}
365
366/*
367 * Use previous scan time if available, otherwise use current scan time as an
368 * approximation for the previous scan time.
369 */
370static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371 unsigned long scan_time)
372{
373 return ctx->scan_time ? ctx->scan_time : scan_time;
374}
375
376/* Calculate exponential weighted moving average */
377static unsigned long ewma(unsigned long prev, unsigned long curr)
378{
379 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380}
381
382/*
383 * The scan time advisor is based on the current scan rate and the target
384 * scan rate.
385 *
386 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387 *
388 * To avoid perturbations it calculates a change factor of previous changes.
389 * A new change factor is calculated for each iteration and it uses an
390 * exponentially weighted moving average. The new pages_to_scan value is
391 * multiplied with that change factor:
392 *
393 * new_pages_to_scan *= change facor
394 *
395 * The new_pages_to_scan value is limited by the cpu min and max values. It
396 * calculates the cpu percent for the last scan and calculates the new
397 * estimated cpu percent cost for the next scan. That value is capped by the
398 * cpu min and max setting.
399 *
400 * In addition the new pages_to_scan value is capped by the max and min
401 * limits.
402 */
403static void scan_time_advisor(void)
404{
405 unsigned int cpu_percent;
406 unsigned long cpu_time;
407 unsigned long cpu_time_diff;
408 unsigned long cpu_time_diff_ms;
409 unsigned long pages;
410 unsigned long per_page_cost;
411 unsigned long factor;
412 unsigned long change;
413 unsigned long last_scan_time;
414 unsigned long scan_time;
415
416 /* Convert scan time to seconds */
417 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418 MSEC_PER_SEC);
419 scan_time = scan_time ? scan_time : 1;
420
421 /* Calculate CPU consumption of ksmd background thread */
422 cpu_time = task_sched_runtime(current);
423 cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425
426 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427 cpu_percent = cpu_percent ? cpu_percent : 1;
428 last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429
430 /* Calculate scan time as percentage of target scan time */
431 factor = ksm_advisor_target_scan_time * 100 / scan_time;
432 factor = factor ? factor : 1;
433
434 /*
435 * Calculate scan time as percentage of last scan time and use
436 * exponentially weighted average to smooth it
437 */
438 change = scan_time * 100 / last_scan_time;
439 change = change ? change : 1;
440 change = ewma(advisor_ctx.change, change);
441
442 /* Calculate new scan rate based on target scan rate. */
443 pages = ksm_thread_pages_to_scan * 100 / factor;
444 /* Update pages_to_scan by weighted change percentage. */
445 pages = pages * change / 100;
446
447 /* Cap new pages_to_scan value */
448 per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449 per_page_cost = per_page_cost ? per_page_cost : 1;
450
451 pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453 pages = min(pages, ksm_advisor_max_pages_to_scan);
454
455 /* Update advisor context */
456 advisor_ctx.change = change;
457 advisor_ctx.scan_time = scan_time;
458 advisor_ctx.cpu_time = cpu_time;
459
460 ksm_thread_pages_to_scan = pages;
5088b497 461 trace_ksm_advisor(scan_time, pages, cpu_percent);
4e5fa4f5
SR
462}
463
464static void advisor_stop_scan(void)
465{
466 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467 scan_time_advisor();
468}
469
e850dcf5 470#ifdef CONFIG_NUMA
90bd6fd3
PH
471/* Zeroed when merging across nodes is not allowed */
472static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 473static int ksm_nr_node_ids = 1;
e850dcf5
HD
474#else
475#define ksm_merge_across_nodes 1U
ef53d16c 476#define ksm_nr_node_ids 1
e850dcf5 477#endif
90bd6fd3 478
31dbd01f
IE
479#define KSM_RUN_STOP 0
480#define KSM_RUN_MERGE 1
481#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
482#define KSM_RUN_OFFLINE 4
483static unsigned long ksm_run = KSM_RUN_STOP;
484static void wait_while_offlining(void);
31dbd01f
IE
485
486static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 487static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
488static DEFINE_MUTEX(ksm_thread_mutex);
489static DEFINE_SPINLOCK(ksm_mmlist_lock);
490
31dbd01f
IE
491static int __init ksm_slab_init(void)
492{
aa1b9489 493 rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
494 if (!rmap_item_cache)
495 goto out;
496
aa1b9489 497 stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
498 if (!stable_node_cache)
499 goto out_free1;
500
aa1b9489 501 mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 502 if (!mm_slot_cache)
7b6ba2c7 503 goto out_free2;
31dbd01f
IE
504
505 return 0;
506
7b6ba2c7
HD
507out_free2:
508 kmem_cache_destroy(stable_node_cache);
509out_free1:
31dbd01f
IE
510 kmem_cache_destroy(rmap_item_cache);
511out:
512 return -ENOMEM;
513}
514
515static void __init ksm_slab_free(void)
516{
517 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 518 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
519 kmem_cache_destroy(rmap_item_cache);
520 mm_slot_cache = NULL;
521}
522
21fbd591 523static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
524{
525 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
526}
527
21fbd591 528static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
529{
530 return dup->head == STABLE_NODE_DUP_HEAD;
531}
532
21fbd591
QZ
533static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
534 struct ksm_stable_node *chain)
2c653d0e
AA
535{
536 VM_BUG_ON(is_stable_node_dup(dup));
537 dup->head = STABLE_NODE_DUP_HEAD;
538 VM_BUG_ON(!is_stable_node_chain(chain));
539 hlist_add_head(&dup->hlist_dup, &chain->hlist);
540 ksm_stable_node_dups++;
541}
542
21fbd591 543static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 544{
b4fecc67 545 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
546 hlist_del(&dup->hlist_dup);
547 ksm_stable_node_dups--;
548}
549
21fbd591 550static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
551{
552 VM_BUG_ON(is_stable_node_chain(dup));
553 if (is_stable_node_dup(dup))
554 __stable_node_dup_del(dup);
555 else
556 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
557#ifdef CONFIG_DEBUG_VM
558 dup->head = NULL;
559#endif
560}
561
21fbd591 562static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 563{
21fbd591 564 struct ksm_rmap_item *rmap_item;
473b0ce4 565
5b398e41 566 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
567 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
568 if (rmap_item)
569 ksm_rmap_items++;
570 return rmap_item;
31dbd01f
IE
571}
572
21fbd591 573static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 574{
473b0ce4 575 ksm_rmap_items--;
cb4df4ca 576 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
577 rmap_item->mm = NULL; /* debug safety */
578 kmem_cache_free(rmap_item_cache, rmap_item);
579}
580
21fbd591 581static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 582{
6213055f 583 /*
584 * The allocation can take too long with GFP_KERNEL when memory is under
585 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
586 * grants access to memory reserves, helping to avoid this problem.
587 */
588 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
589}
590
21fbd591 591static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 592{
2c653d0e
AA
593 VM_BUG_ON(stable_node->rmap_hlist_len &&
594 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
595 kmem_cache_free(stable_node_cache, stable_node);
596}
597
a913e182
HD
598/*
599 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
600 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 601 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
602 * a special flag: they can just back out as soon as mm_users goes to zero.
603 * ksm_test_exit() is used throughout to make this test for exit: in some
604 * places for correctness, in some places just to avoid unnecessary work.
605 */
606static inline bool ksm_test_exit(struct mm_struct *mm)
607{
608 return atomic_read(&mm->mm_users) == 0;
609}
610
d7c0e68d
DH
611static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
612 struct mm_walk *walk)
613{
614 struct page *page = NULL;
615 spinlock_t *ptl;
616 pte_t *pte;
c33c7948 617 pte_t ptent;
d7c0e68d
DH
618 int ret;
619
d7c0e68d 620 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
04dee9e8
HD
621 if (!pte)
622 return 0;
c33c7948
RR
623 ptent = ptep_get(pte);
624 if (pte_present(ptent)) {
625 page = vm_normal_page(walk->vma, addr, ptent);
626 } else if (!pte_none(ptent)) {
627 swp_entry_t entry = pte_to_swp_entry(ptent);
d7c0e68d
DH
628
629 /*
630 * As KSM pages remain KSM pages until freed, no need to wait
631 * here for migration to end.
632 */
633 if (is_migration_entry(entry))
634 page = pfn_swap_entry_to_page(entry);
635 }
79271476 636 /* return 1 if the page is an normal ksm page or KSM-placed zero page */
afccb080 637 ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
d7c0e68d
DH
638 pte_unmap_unlock(pte, ptl);
639 return ret;
640}
641
642static const struct mm_walk_ops break_ksm_ops = {
643 .pmd_entry = break_ksm_pmd_entry,
49b06385
SB
644 .walk_lock = PGWALK_RDLOCK,
645};
646
647static const struct mm_walk_ops break_ksm_lock_vma_ops = {
648 .pmd_entry = break_ksm_pmd_entry,
649 .walk_lock = PGWALK_WRLOCK,
d7c0e68d
DH
650};
651
31dbd01f 652/*
6cce3314
DH
653 * We use break_ksm to break COW on a ksm page by triggering unsharing,
654 * such that the ksm page will get replaced by an exclusive anonymous page.
31dbd01f 655 *
6cce3314 656 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
31dbd01f
IE
657 * in case the application has unmapped and remapped mm,addr meanwhile.
658 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 659 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126 660 *
6cce3314 661 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
1b2ee126
DH
662 * of the process that owns 'vma'. We also do not want to enforce
663 * protection keys here anyway.
31dbd01f 664 */
49b06385 665static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
31dbd01f 666{
50a7ca3c 667 vm_fault_t ret = 0;
49b06385
SB
668 const struct mm_walk_ops *ops = lock_vma ?
669 &break_ksm_lock_vma_ops : &break_ksm_ops;
31dbd01f
IE
670
671 do {
d7c0e68d 672 int ksm_page;
58f595c6 673
31dbd01f 674 cond_resched();
49b06385 675 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
d7c0e68d
DH
676 if (WARN_ON_ONCE(ksm_page < 0))
677 return ksm_page;
58f595c6
DH
678 if (!ksm_page)
679 return 0;
680 ret = handle_mm_fault(vma, addr,
6cce3314 681 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
58f595c6
DH
682 NULL);
683 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791 684 /*
58f595c6
DH
685 * We must loop until we no longer find a KSM page because
686 * handle_mm_fault() may back out if there's any difficulty e.g. if
687 * pte accessed bit gets updated concurrently.
d952b791
HD
688 *
689 * VM_FAULT_SIGBUS could occur if we race with truncation of the
690 * backing file, which also invalidates anonymous pages: that's
691 * okay, that truncation will have unmapped the PageKsm for us.
692 *
693 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
694 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
695 * current task has TIF_MEMDIE set, and will be OOM killed on return
696 * to user; and ksmd, having no mm, would never be chosen for that.
697 *
698 * But if the mm is in a limited mem_cgroup, then the fault may fail
699 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
700 * even ksmd can fail in this way - though it's usually breaking ksm
701 * just to undo a merge it made a moment before, so unlikely to oom.
702 *
703 * That's a pity: we might therefore have more kernel pages allocated
704 * than we're counting as nodes in the stable tree; but ksm_do_scan
705 * will retry to break_cow on each pass, so should recover the page
706 * in due course. The important thing is to not let VM_MERGEABLE
707 * be cleared while any such pages might remain in the area.
708 */
709 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
710}
711
d7597f59
SR
712static bool vma_ksm_compatible(struct vm_area_struct *vma)
713{
714 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP |
715 VM_IO | VM_DONTEXPAND | VM_HUGETLB |
9651fced 716 VM_MIXEDMAP| VM_DROPPABLE))
d7597f59
SR
717 return false; /* just ignore the advice */
718
719 if (vma_is_dax(vma))
720 return false;
721
722#ifdef VM_SAO
723 if (vma->vm_flags & VM_SAO)
724 return false;
725#endif
726#ifdef VM_SPARC_ADI
727 if (vma->vm_flags & VM_SPARC_ADI)
728 return false;
729#endif
730
731 return true;
732}
733
ef694222
BL
734static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
735 unsigned long addr)
736{
737 struct vm_area_struct *vma;
738 if (ksm_test_exit(mm))
739 return NULL;
ff69fb81
LH
740 vma = vma_lookup(mm, addr);
741 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
742 return NULL;
743 return vma;
744}
745
21fbd591 746static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 747{
8dd3557a
HD
748 struct mm_struct *mm = rmap_item->mm;
749 unsigned long addr = rmap_item->address;
31dbd01f
IE
750 struct vm_area_struct *vma;
751
4035c07a
HD
752 /*
753 * It is not an accident that whenever we want to break COW
754 * to undo, we also need to drop a reference to the anon_vma.
755 */
9e60109f 756 put_anon_vma(rmap_item->anon_vma);
4035c07a 757
d8ed45c5 758 mmap_read_lock(mm);
ef694222
BL
759 vma = find_mergeable_vma(mm, addr);
760 if (vma)
49b06385 761 break_ksm(vma, addr, false);
d8ed45c5 762 mmap_read_unlock(mm);
31dbd01f
IE
763}
764
21fbd591 765static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
766{
767 struct mm_struct *mm = rmap_item->mm;
768 unsigned long addr = rmap_item->address;
769 struct vm_area_struct *vma;
770 struct page *page;
771
d8ed45c5 772 mmap_read_lock(mm);
ef694222
BL
773 vma = find_mergeable_vma(mm, addr);
774 if (!vma)
31dbd01f
IE
775 goto out;
776
777 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 778 if (IS_ERR_OR_NULL(page))
31dbd01f 779 goto out;
f7091ed6
HW
780 if (is_zone_device_page(page))
781 goto out_putpage;
f765f540 782 if (PageAnon(page)) {
31dbd01f
IE
783 flush_anon_page(vma, page, addr);
784 flush_dcache_page(page);
785 } else {
f7091ed6 786out_putpage:
31dbd01f 787 put_page(page);
c8f95ed1
AA
788out:
789 page = NULL;
31dbd01f 790 }
d8ed45c5 791 mmap_read_unlock(mm);
31dbd01f
IE
792 return page;
793}
794
90bd6fd3
PH
795/*
796 * This helper is used for getting right index into array of tree roots.
797 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
798 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
799 * every node has its own stable and unstable tree.
800 */
801static inline int get_kpfn_nid(unsigned long kpfn)
802{
d8fc16a8 803 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
804}
805
21fbd591 806static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
807 struct rb_root *root)
808{
21fbd591 809 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
810 VM_BUG_ON(is_stable_node_chain(dup));
811 if (likely(chain)) {
812 INIT_HLIST_HEAD(&chain->hlist);
813 chain->chain_prune_time = jiffies;
814 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
815#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 816 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
817#endif
818 ksm_stable_node_chains++;
819
820 /*
821 * Put the stable node chain in the first dimension of
822 * the stable tree and at the same time remove the old
823 * stable node.
824 */
825 rb_replace_node(&dup->node, &chain->node, root);
826
827 /*
828 * Move the old stable node to the second dimension
829 * queued in the hlist_dup. The invariant is that all
830 * dup stable_nodes in the chain->hlist point to pages
457aef94 831 * that are write protected and have the exact same
2c653d0e
AA
832 * content.
833 */
834 stable_node_chain_add_dup(dup, chain);
835 }
836 return chain;
837}
838
21fbd591 839static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
840 struct rb_root *root)
841{
842 rb_erase(&chain->node, root);
843 free_stable_node(chain);
844 ksm_stable_node_chains--;
845}
846
21fbd591 847static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 848{
21fbd591 849 struct ksm_rmap_item *rmap_item;
4035c07a 850
2c653d0e
AA
851 /* check it's not STABLE_NODE_CHAIN or negative */
852 BUG_ON(stable_node->rmap_hlist_len < 0);
853
b67bfe0d 854 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
739100c8 855 if (rmap_item->hlist.next) {
4035c07a 856 ksm_pages_sharing--;
739100c8
SR
857 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
858 } else {
4035c07a 859 ksm_pages_shared--;
739100c8 860 }
76093853 861
862 rmap_item->mm->ksm_merging_pages--;
863
2c653d0e
AA
864 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
865 stable_node->rmap_hlist_len--;
9e60109f 866 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
867 rmap_item->address &= PAGE_MASK;
868 cond_resched();
869 }
870
2c653d0e
AA
871 /*
872 * We need the second aligned pointer of the migrate_nodes
873 * list_head to stay clear from the rb_parent_color union
874 * (aligned and different than any node) and also different
875 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 876 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 877 */
2c653d0e
AA
878 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
879 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 880
739100c8 881 trace_ksm_remove_ksm_page(stable_node->kpfn);
4146d2d6
HD
882 if (stable_node->head == &migrate_nodes)
883 list_del(&stable_node->list);
884 else
2c653d0e 885 stable_node_dup_del(stable_node);
4035c07a
HD
886 free_stable_node(stable_node);
887}
888
85b67b01
DH
889enum ksm_get_folio_flags {
890 KSM_GET_FOLIO_NOLOCK,
891 KSM_GET_FOLIO_LOCK,
892 KSM_GET_FOLIO_TRYLOCK
2cee57d1
YS
893};
894
4035c07a 895/*
b91f9472 896 * ksm_get_folio: checks if the page indicated by the stable node
4035c07a
HD
897 * is still its ksm page, despite having held no reference to it.
898 * In which case we can trust the content of the page, and it
899 * returns the gotten page; but if the page has now been zapped,
900 * remove the stale node from the stable tree and return NULL.
c8d6553b 901 * But beware, the stable node's page might be being migrated.
4035c07a
HD
902 *
903 * You would expect the stable_node to hold a reference to the ksm page.
904 * But if it increments the page's count, swapping out has to wait for
905 * ksmd to come around again before it can free the page, which may take
906 * seconds or even minutes: much too unresponsive. So instead we use a
907 * "keyhole reference": access to the ksm page from the stable node peeps
908 * out through its keyhole to see if that page still holds the right key,
909 * pointing back to this stable node. This relies on freeing a PageAnon
910 * page to reset its page->mapping to NULL, and relies on no other use of
911 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
912 * is on its way to being freed; but it is an anomaly to bear in mind.
913 */
b91f9472 914static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
85b67b01 915 enum ksm_get_folio_flags flags)
4035c07a 916{
b91f9472 917 struct folio *folio;
4035c07a 918 void *expected_mapping;
c8d6553b 919 unsigned long kpfn;
4035c07a 920
bda807d4
MK
921 expected_mapping = (void *)((unsigned long)stable_node |
922 PAGE_MAPPING_KSM);
c8d6553b 923again:
08df4774 924 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
b91f9472
AS
925 folio = pfn_folio(kpfn);
926 if (READ_ONCE(folio->mapping) != expected_mapping)
4035c07a 927 goto stale;
c8d6553b
HD
928
929 /*
930 * We cannot do anything with the page while its refcount is 0.
931 * Usually 0 means free, or tail of a higher-order page: in which
932 * case this node is no longer referenced, and should be freed;
1c4c3b99 933 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 934 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 935 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 936 * in folio_migrate_mapping(), it might still be our page,
52d1e606 937 * in which case it's essential to keep the node.
c8d6553b 938 */
b91f9472 939 while (!folio_try_get(folio)) {
c8d6553b
HD
940 /*
941 * Another check for page->mapping != expected_mapping would
942 * work here too. We have chosen the !PageSwapCache test to
943 * optimize the common case, when the page is or is about to
944 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 945 * in the ref_freeze section of __remove_mapping(); but Anon
b91f9472 946 * folio->mapping reset to NULL later, in free_pages_prepare().
c8d6553b 947 */
b91f9472 948 if (!folio_test_swapcache(folio))
c8d6553b
HD
949 goto stale;
950 cpu_relax();
951 }
952
b91f9472
AS
953 if (READ_ONCE(folio->mapping) != expected_mapping) {
954 folio_put(folio);
4035c07a
HD
955 goto stale;
956 }
c8d6553b 957
85b67b01 958 if (flags == KSM_GET_FOLIO_TRYLOCK) {
b91f9472
AS
959 if (!folio_trylock(folio)) {
960 folio_put(folio);
2cee57d1
YS
961 return ERR_PTR(-EBUSY);
962 }
85b67b01 963 } else if (flags == KSM_GET_FOLIO_LOCK)
b91f9472 964 folio_lock(folio);
2cee57d1 965
85b67b01 966 if (flags != KSM_GET_FOLIO_NOLOCK) {
b91f9472
AS
967 if (READ_ONCE(folio->mapping) != expected_mapping) {
968 folio_unlock(folio);
969 folio_put(folio);
8aafa6a4
HD
970 goto stale;
971 }
972 }
b91f9472 973 return folio;
c8d6553b 974
4035c07a 975stale:
c8d6553b
HD
976 /*
977 * We come here from above when page->mapping or !PageSwapCache
978 * suggests that the node is stale; but it might be under migration.
19138349 979 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
980 * before checking whether node->kpfn has been changed.
981 */
982 smp_rmb();
4db0c3c2 983 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 984 goto again;
4035c07a
HD
985 remove_node_from_stable_tree(stable_node);
986 return NULL;
987}
988
31dbd01f
IE
989/*
990 * Removing rmap_item from stable or unstable tree.
991 * This function will clean the information from the stable/unstable tree.
992 */
21fbd591 993static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 994{
7b6ba2c7 995 if (rmap_item->address & STABLE_FLAG) {
21fbd591 996 struct ksm_stable_node *stable_node;
f39b6e2d 997 struct folio *folio;
31dbd01f 998
7b6ba2c7 999 stable_node = rmap_item->head;
85b67b01 1000 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
f39b6e2d 1001 if (!folio)
4035c07a 1002 goto out;
5ad64688 1003
7b6ba2c7 1004 hlist_del(&rmap_item->hlist);
f39b6e2d
AS
1005 folio_unlock(folio);
1006 folio_put(folio);
08beca44 1007
98666f8a 1008 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
1009 ksm_pages_sharing--;
1010 else
7b6ba2c7 1011 ksm_pages_shared--;
76093853 1012
1013 rmap_item->mm->ksm_merging_pages--;
1014
2c653d0e
AA
1015 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1016 stable_node->rmap_hlist_len--;
31dbd01f 1017
9e60109f 1018 put_anon_vma(rmap_item->anon_vma);
c89a384e 1019 rmap_item->head = NULL;
93d17715 1020 rmap_item->address &= PAGE_MASK;
31dbd01f 1021
7b6ba2c7 1022 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
1023 unsigned char age;
1024 /*
9ba69294 1025 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 1026 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
1027 * But be careful when an mm is exiting: do the rb_erase
1028 * if this rmap_item was inserted by this scan, rather
1029 * than left over from before.
31dbd01f
IE
1030 */
1031 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 1032 BUG_ON(age > 1);
31dbd01f 1033 if (!age)
90bd6fd3 1034 rb_erase(&rmap_item->node,
ef53d16c 1035 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 1036 ksm_pages_unshared--;
93d17715 1037 rmap_item->address &= PAGE_MASK;
31dbd01f 1038 }
4035c07a 1039out:
31dbd01f
IE
1040 cond_resched(); /* we're called from many long loops */
1041}
1042
21fbd591 1043static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 1044{
6514d511 1045 while (*rmap_list) {
21fbd591 1046 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 1047 *rmap_list = rmap_item->rmap_list;
31dbd01f 1048 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1049 free_rmap_item(rmap_item);
1050 }
1051}
1052
1053/*
e850dcf5 1054 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
1055 * than check every pte of a given vma, the locking doesn't quite work for
1056 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 1057 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
1058 * rmap_items from parent to child at fork time (so as not to waste time
1059 * if exit comes before the next scan reaches it).
81464e30
HD
1060 *
1061 * Similarly, although we'd like to remove rmap_items (so updating counts
1062 * and freeing memory) when unmerging an area, it's easier to leave that
1063 * to the next pass of ksmd - consider, for example, how ksmd might be
1064 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 1065 */
d952b791 1066static int unmerge_ksm_pages(struct vm_area_struct *vma,
49b06385 1067 unsigned long start, unsigned long end, bool lock_vma)
31dbd01f
IE
1068{
1069 unsigned long addr;
d952b791 1070 int err = 0;
31dbd01f 1071
d952b791 1072 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
1073 if (ksm_test_exit(vma->vm_mm))
1074 break;
d952b791
HD
1075 if (signal_pending(current))
1076 err = -ERESTARTSYS;
1077 else
49b06385 1078 err = break_ksm(vma, addr, lock_vma);
d952b791
HD
1079 }
1080 return err;
31dbd01f
IE
1081}
1082
21fbd591 1083static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
1084{
1085 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1086}
1087
21fbd591 1088static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 1089{
19138349 1090 return folio_stable_node(page_folio(page));
88484826
MR
1091}
1092
b8b0ff24
AS
1093static inline void folio_set_stable_node(struct folio *folio,
1094 struct ksm_stable_node *stable_node)
88484826 1095{
452e862f
AS
1096 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1097 folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
88484826
MR
1098}
1099
2ffd8679
HD
1100#ifdef CONFIG_SYSFS
1101/*
1102 * Only called through the sysfs control interface:
1103 */
21fbd591 1104static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe 1105{
9d5cc140 1106 struct folio *folio;
cbf86cfe
HD
1107 int err;
1108
85b67b01 1109 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
9d5cc140 1110 if (!folio) {
cbf86cfe 1111 /*
9d5cc140 1112 * ksm_get_folio did remove_node_from_stable_tree itself.
cbf86cfe
HD
1113 */
1114 return 0;
1115 }
1116
9a63236f
AR
1117 /*
1118 * Page could be still mapped if this races with __mmput() running in
1119 * between ksm_exit() and exit_mmap(). Just refuse to let
1120 * merge_across_nodes/max_page_sharing be switched.
1121 */
1122 err = -EBUSY;
9d5cc140 1123 if (!folio_mapped(folio)) {
cbf86cfe 1124 /*
9d5cc140
AS
1125 * The stable node did not yet appear stale to ksm_get_folio(),
1126 * since that allows for an unmapped ksm folio to be recognized
8fdb3dbf 1127 * right up until it is freed; but the node is safe to remove.
9d5cc140
AS
1128 * This folio might be in an LRU cache waiting to be freed,
1129 * or it might be in the swapcache (perhaps under writeback),
cbf86cfe
HD
1130 * or it might have been removed from swapcache a moment ago.
1131 */
9d5cc140 1132 folio_set_stable_node(folio, NULL);
cbf86cfe
HD
1133 remove_node_from_stable_tree(stable_node);
1134 err = 0;
1135 }
1136
9d5cc140
AS
1137 folio_unlock(folio);
1138 folio_put(folio);
cbf86cfe
HD
1139 return err;
1140}
1141
21fbd591 1142static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
1143 struct rb_root *root)
1144{
21fbd591 1145 struct ksm_stable_node *dup;
2c653d0e
AA
1146 struct hlist_node *hlist_safe;
1147
1148 if (!is_stable_node_chain(stable_node)) {
1149 VM_BUG_ON(is_stable_node_dup(stable_node));
1150 if (remove_stable_node(stable_node))
1151 return true;
1152 else
1153 return false;
1154 }
1155
1156 hlist_for_each_entry_safe(dup, hlist_safe,
1157 &stable_node->hlist, hlist_dup) {
1158 VM_BUG_ON(!is_stable_node_dup(dup));
1159 if (remove_stable_node(dup))
1160 return true;
1161 }
1162 BUG_ON(!hlist_empty(&stable_node->hlist));
1163 free_stable_node_chain(stable_node, root);
1164 return false;
1165}
1166
cbf86cfe
HD
1167static int remove_all_stable_nodes(void)
1168{
21fbd591 1169 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
1170 int nid;
1171 int err = 0;
1172
ef53d16c 1173 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
1174 while (root_stable_tree[nid].rb_node) {
1175 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 1176 struct ksm_stable_node, node);
2c653d0e
AA
1177 if (remove_stable_node_chain(stable_node,
1178 root_stable_tree + nid)) {
cbf86cfe
HD
1179 err = -EBUSY;
1180 break; /* proceed to next nid */
1181 }
1182 cond_resched();
1183 }
1184 }
03640418 1185 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
1186 if (remove_stable_node(stable_node))
1187 err = -EBUSY;
1188 cond_resched();
1189 }
cbf86cfe
HD
1190 return err;
1191}
1192
d952b791 1193static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 1194{
21fbd591 1195 struct ksm_mm_slot *mm_slot;
58730ab6 1196 struct mm_slot *slot;
31dbd01f
IE
1197 struct mm_struct *mm;
1198 struct vm_area_struct *vma;
d952b791
HD
1199 int err = 0;
1200
1201 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1202 slot = list_entry(ksm_mm_head.slot.mm_node.next,
1203 struct mm_slot, mm_node);
1204 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 1205 spin_unlock(&ksm_mmlist_lock);
31dbd01f 1206
a5f18ba0
MWO
1207 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1208 mm_slot = ksm_scan.mm_slot) {
58730ab6 1209 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 1210
58730ab6 1211 mm = mm_slot->slot.mm;
d8ed45c5 1212 mmap_read_lock(mm);
6db504ce
LH
1213
1214 /*
1215 * Exit right away if mm is exiting to avoid lockdep issue in
1216 * the maple tree
1217 */
1218 if (ksm_test_exit(mm))
1219 goto mm_exiting;
1220
a5f18ba0 1221 for_each_vma(vmi, vma) {
31dbd01f
IE
1222 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1223 continue;
d952b791 1224 err = unmerge_ksm_pages(vma,
49b06385 1225 vma->vm_start, vma->vm_end, false);
9ba69294
HD
1226 if (err)
1227 goto error;
31dbd01f 1228 }
9ba69294 1229
6db504ce 1230mm_exiting:
420be4ed 1231 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1232 mmap_read_unlock(mm);
d952b791
HD
1233
1234 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1235 slot = list_entry(mm_slot->slot.mm_node.next,
1236 struct mm_slot, mm_node);
1237 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 1238 if (ksm_test_exit(mm)) {
58730ab6
QZ
1239 hash_del(&mm_slot->slot.hash);
1240 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
1241 spin_unlock(&ksm_mmlist_lock);
1242
58730ab6 1243 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 1244 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 1245 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294 1246 mmdrop(mm);
7496fea9 1247 } else
9ba69294 1248 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1249 }
1250
cbf86cfe
HD
1251 /* Clean up stable nodes, but don't worry if some are still busy */
1252 remove_all_stable_nodes();
d952b791 1253 ksm_scan.seqnr = 0;
9ba69294
HD
1254 return 0;
1255
1256error:
d8ed45c5 1257 mmap_read_unlock(mm);
31dbd01f 1258 spin_lock(&ksm_mmlist_lock);
d952b791 1259 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1260 spin_unlock(&ksm_mmlist_lock);
d952b791 1261 return err;
31dbd01f 1262}
2ffd8679 1263#endif /* CONFIG_SYSFS */
31dbd01f 1264
31dbd01f
IE
1265static u32 calc_checksum(struct page *page)
1266{
1267 u32 checksum;
b3351989 1268 void *addr = kmap_local_page(page);
59e1a2f4 1269 checksum = xxhash(addr, PAGE_SIZE, 0);
b3351989 1270 kunmap_local(addr);
31dbd01f
IE
1271 return checksum;
1272}
1273
40d707f3 1274static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
31dbd01f
IE
1275 pte_t *orig_pte)
1276{
1277 struct mm_struct *mm = vma->vm_mm;
40d707f3 1278 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
31dbd01f
IE
1279 int swapped;
1280 int err = -EFAULT;
ac46d4f3 1281 struct mmu_notifier_range range;
6c287605 1282 bool anon_exclusive;
c33c7948 1283 pte_t entry;
31dbd01f 1284
40d707f3
AS
1285 if (WARN_ON_ONCE(folio_test_large(folio)))
1286 return err;
1287
1288 pvmw.address = page_address_in_vma(&folio->page, vma);
36eaff33 1289 if (pvmw.address == -EFAULT)
31dbd01f
IE
1290 goto out;
1291
7d4a8be0 1292 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
ac46d4f3
JG
1293 pvmw.address + PAGE_SIZE);
1294 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1295
36eaff33 1296 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1297 goto out_mn;
36eaff33
KS
1298 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1299 goto out_unlock;
31dbd01f 1300
40d707f3 1301 anon_exclusive = PageAnonExclusive(&folio->page);
c33c7948
RR
1302 entry = ptep_get(pvmw.pte);
1303 if (pte_write(entry) || pte_dirty(entry) ||
6c287605 1304 anon_exclusive || mm_tlb_flush_pending(mm)) {
40d707f3
AS
1305 swapped = folio_test_swapcache(folio);
1306 flush_cache_page(vma, pvmw.address, folio_pfn(folio));
31dbd01f 1307 /*
25985edc 1308 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1309 * take any lock, therefore the check that we are going to make
f0953a1b 1310 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1311 * O_DIRECT can happen right after the check.
1312 * So we clear the pte and flush the tlb before the check
1313 * this assure us that no O_DIRECT can happen after the check
1314 * or in the middle of the check.
0f10851e
JG
1315 *
1316 * No need to notify as we are downgrading page table to read
1317 * only not changing it to point to a new page.
1318 *
ee65728e 1319 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1320 */
0f10851e 1321 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1322 /*
1323 * Check that no O_DIRECT or similar I/O is in progress on the
1324 * page
1325 */
40d707f3 1326 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
36eaff33 1327 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1328 goto out_unlock;
1329 }
6c287605 1330
e3b4b137
DH
1331 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1332 if (anon_exclusive &&
40d707f3 1333 folio_try_share_anon_rmap_pte(folio, &folio->page)) {
6c287605
DH
1334 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1335 goto out_unlock;
1336 }
1337
4e31635c 1338 if (pte_dirty(entry))
40d707f3 1339 folio_mark_dirty(folio);
6a56ccbc
DH
1340 entry = pte_mkclean(entry);
1341
1342 if (pte_write(entry))
1343 entry = pte_wrprotect(entry);
595cd8f2 1344
f7842747 1345 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1346 }
c33c7948 1347 *orig_pte = entry;
31dbd01f
IE
1348 err = 0;
1349
1350out_unlock:
36eaff33 1351 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1352out_mn:
ac46d4f3 1353 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1354out:
1355 return err;
1356}
1357
1358/**
1359 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1360 * @vma: vma that holds the pte pointing to page
1361 * @page: the page we are replacing by kpage
1362 * @kpage: the ksm page we replace page by
31dbd01f
IE
1363 * @orig_pte: the original value of the pte
1364 *
1365 * Returns 0 on success, -EFAULT on failure.
1366 */
8dd3557a
HD
1367static int replace_page(struct vm_area_struct *vma, struct page *page,
1368 struct page *kpage, pte_t orig_pte)
31dbd01f 1369{
97729534 1370 struct folio *kfolio = page_folio(kpage);
31dbd01f 1371 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1372 struct folio *folio;
31dbd01f 1373 pmd_t *pmd;
50722804 1374 pmd_t pmde;
31dbd01f 1375 pte_t *ptep;
e86c59b1 1376 pte_t newpte;
31dbd01f
IE
1377 spinlock_t *ptl;
1378 unsigned long addr;
31dbd01f 1379 int err = -EFAULT;
ac46d4f3 1380 struct mmu_notifier_range range;
31dbd01f 1381
8dd3557a 1382 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1383 if (addr == -EFAULT)
1384 goto out;
1385
6219049a
BL
1386 pmd = mm_find_pmd(mm, addr);
1387 if (!pmd)
31dbd01f 1388 goto out;
50722804
ZK
1389 /*
1390 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1391 * without holding anon_vma lock for write. So when looking for a
1392 * genuine pmde (in which to find pte), test present and !THP together.
1393 */
26e1a0c3 1394 pmde = pmdp_get_lockless(pmd);
50722804
ZK
1395 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1396 goto out;
31dbd01f 1397
7d4a8be0 1398 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
6f4f13e8 1399 addr + PAGE_SIZE);
ac46d4f3 1400 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1401
31dbd01f 1402 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
04dee9e8
HD
1403 if (!ptep)
1404 goto out_mn;
c33c7948 1405 if (!pte_same(ptep_get(ptep), orig_pte)) {
31dbd01f 1406 pte_unmap_unlock(ptep, ptl);
6bdb913f 1407 goto out_mn;
31dbd01f 1408 }
6c287605 1409 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
97729534
DH
1410 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1411 kfolio);
31dbd01f 1412
e86c59b1
CI
1413 /*
1414 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1415 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1416 */
1417 if (!is_zero_pfn(page_to_pfn(kpage))) {
97729534
DH
1418 folio_get(kfolio);
1419 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1420 newpte = mk_pte(kpage, vma->vm_page_prot);
1421 } else {
79271476 1422 /*
1423 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1424 * we can easily track all KSM-placed zero pages by checking if
1425 * the dirty bit in zero page's PTE is set.
1426 */
1427 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
c2dc78b8 1428 ksm_map_zero_page(mm);
a38c015f
CI
1429 /*
1430 * We're replacing an anonymous page with a zero page, which is
1431 * not anonymous. We need to do proper accounting otherwise we
1432 * will get wrong values in /proc, and a BUG message in dmesg
1433 * when tearing down the mm.
1434 */
1435 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1436 }
31dbd01f 1437
c33c7948 1438 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
0f10851e
JG
1439 /*
1440 * No need to notify as we are replacing a read only page with another
1441 * read only page with the same content.
1442 *
ee65728e 1443 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1444 */
1445 ptep_clear_flush(vma, addr, ptep);
f7842747 1446 set_pte_at(mm, addr, ptep, newpte);
31dbd01f 1447
b4e6f66e 1448 folio = page_folio(page);
18e8612e 1449 folio_remove_rmap_pte(folio, page, vma);
b4e6f66e
MWO
1450 if (!folio_mapped(folio))
1451 folio_free_swap(folio);
1452 folio_put(folio);
31dbd01f
IE
1453
1454 pte_unmap_unlock(ptep, ptl);
1455 err = 0;
6bdb913f 1456out_mn:
ac46d4f3 1457 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1458out:
1459 return err;
1460}
1461
1462/*
1463 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1464 * @vma: the vma that holds the pte pointing to page
1465 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1466 * @kpage: the PageKsm page that we want to map instead of page,
1467 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1468 *
1469 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1470 */
1471static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1472 struct page *page, struct page *kpage)
31dbd01f
IE
1473{
1474 pte_t orig_pte = __pte(0);
1475 int err = -EFAULT;
1476
db114b83
HD
1477 if (page == kpage) /* ksm page forked */
1478 return 0;
1479
8dd3557a 1480 if (!PageAnon(page))
31dbd01f
IE
1481 goto out;
1482
31dbd01f
IE
1483 /*
1484 * We need the page lock to read a stable PageSwapCache in
1485 * write_protect_page(). We use trylock_page() instead of
1486 * lock_page() because we don't want to wait here - we
1487 * prefer to continue scanning and merging different pages,
1488 * then come back to this page when it is unlocked.
1489 */
8dd3557a 1490 if (!trylock_page(page))
31e855ea 1491 goto out;
f765f540
KS
1492
1493 if (PageTransCompound(page)) {
a7306c34 1494 if (split_huge_page(page))
f765f540
KS
1495 goto out_unlock;
1496 }
1497
31dbd01f
IE
1498 /*
1499 * If this anonymous page is mapped only here, its pte may need
1500 * to be write-protected. If it's mapped elsewhere, all of its
1501 * ptes are necessarily already write-protected. But in either
1502 * case, we need to lock and check page_count is not raised.
1503 */
40d707f3 1504 if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
80e14822
HD
1505 if (!kpage) {
1506 /*
1507 * While we hold page lock, upgrade page from
1508 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1509 * stable_tree_insert() will update stable_node.
1510 */
452e862f 1511 folio_set_stable_node(page_folio(page), NULL);
80e14822 1512 mark_page_accessed(page);
337ed7eb
MK
1513 /*
1514 * Page reclaim just frees a clean page with no dirty
1515 * ptes: make sure that the ksm page would be swapped.
1516 */
1517 if (!PageDirty(page))
1518 SetPageDirty(page);
80e14822
HD
1519 err = 0;
1520 } else if (pages_identical(page, kpage))
1521 err = replace_page(vma, page, kpage, orig_pte);
1522 }
31dbd01f 1523
f765f540 1524out_unlock:
8dd3557a 1525 unlock_page(page);
31dbd01f
IE
1526out:
1527 return err;
1528}
1529
ac90c56b
CZ
1530/*
1531 * This function returns 0 if the pages were merged or if they are
1532 * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1533 */
1534static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1535 struct page *page)
1536{
1537 struct mm_struct *mm = rmap_item->mm;
1538 int err = -EFAULT;
1539
1540 /*
1541 * Same checksum as an empty page. We attempt to merge it with the
1542 * appropriate zero page if the user enabled this via sysfs.
1543 */
1544 if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1545 struct vm_area_struct *vma;
1546
1547 mmap_read_lock(mm);
1548 vma = find_mergeable_vma(mm, rmap_item->address);
1549 if (vma) {
1550 err = try_to_merge_one_page(vma, page,
1551 ZERO_PAGE(rmap_item->address));
1552 trace_ksm_merge_one_page(
1553 page_to_pfn(ZERO_PAGE(rmap_item->address)),
1554 rmap_item, mm, err);
1555 } else {
1556 /*
1557 * If the vma is out of date, we do not need to
1558 * continue.
1559 */
1560 err = 0;
1561 }
1562 mmap_read_unlock(mm);
1563 }
1564
1565 return err;
1566}
1567
81464e30
HD
1568/*
1569 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1570 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1571 *
1572 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1573 */
21fbd591 1574static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1575 struct page *page, struct page *kpage)
81464e30 1576{
8dd3557a 1577 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1578 struct vm_area_struct *vma;
1579 int err = -EFAULT;
1580
d8ed45c5 1581 mmap_read_lock(mm);
85c6e8dd
AA
1582 vma = find_mergeable_vma(mm, rmap_item->address);
1583 if (!vma)
81464e30
HD
1584 goto out;
1585
8dd3557a 1586 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1587 if (err)
1588 goto out;
1589
bc56620b
HD
1590 /* Unstable nid is in union with stable anon_vma: remove first */
1591 remove_rmap_item_from_tree(rmap_item);
1592
c1e8d7c6 1593 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1594 rmap_item->anon_vma = vma->anon_vma;
1595 get_anon_vma(vma->anon_vma);
81464e30 1596out:
d8ed45c5 1597 mmap_read_unlock(mm);
739100c8
SR
1598 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1599 rmap_item, mm, err);
81464e30
HD
1600 return err;
1601}
1602
31dbd01f
IE
1603/*
1604 * try_to_merge_two_pages - take two identical pages and prepare them
1605 * to be merged into one page.
1606 *
8dd3557a
HD
1607 * This function returns the kpage if we successfully merged two identical
1608 * pages into one ksm page, NULL otherwise.
31dbd01f 1609 *
80e14822 1610 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1611 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1612 */
21fbd591 1613static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1614 struct page *page,
21fbd591 1615 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1616 struct page *tree_page)
31dbd01f 1617{
80e14822 1618 int err;
31dbd01f 1619
80e14822 1620 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1621 if (!err) {
8dd3557a 1622 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1623 tree_page, page);
31dbd01f 1624 /*
81464e30
HD
1625 * If that fails, we have a ksm page with only one pte
1626 * pointing to it: so break it.
31dbd01f 1627 */
4035c07a 1628 if (err)
8dd3557a 1629 break_cow(rmap_item);
31dbd01f 1630 }
80e14822 1631 return err ? NULL : page;
31dbd01f
IE
1632}
1633
2c653d0e 1634static __always_inline
21fbd591 1635bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1636{
1637 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1638 /*
1639 * Check that at least one mapping still exists, otherwise
1640 * there's no much point to merge and share with this
1641 * stable_node, as the underlying tree_page of the other
1642 * sharer is going to be freed soon.
1643 */
1644 return stable_node->rmap_hlist_len &&
1645 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1646}
1647
1648static __always_inline
21fbd591 1649bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1650{
1651 return __is_page_sharing_candidate(stable_node, 0);
1652}
1653
79899cce
AS
1654static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1655 struct ksm_stable_node **_stable_node,
1656 struct rb_root *root,
1657 bool prune_stale_stable_nodes)
2c653d0e 1658{
21fbd591 1659 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1660 struct hlist_node *hlist_safe;
6f528de2 1661 struct folio *folio, *tree_folio = NULL;
2c653d0e
AA
1662 int found_rmap_hlist_len;
1663
1664 if (!prune_stale_stable_nodes ||
1665 time_before(jiffies, stable_node->chain_prune_time +
1666 msecs_to_jiffies(
1667 ksm_stable_node_chains_prune_millisecs)))
1668 prune_stale_stable_nodes = false;
1669 else
1670 stable_node->chain_prune_time = jiffies;
1671
1672 hlist_for_each_entry_safe(dup, hlist_safe,
1673 &stable_node->hlist, hlist_dup) {
1674 cond_resched();
1675 /*
1676 * We must walk all stable_node_dup to prune the stale
1677 * stable nodes during lookup.
1678 *
6f528de2 1679 * ksm_get_folio can drop the nodes from the
2c653d0e
AA
1680 * stable_node->hlist if they point to freed pages
1681 * (that's why we do a _safe walk). The "dup"
1682 * stable_node parameter itself will be freed from
1683 * under us if it returns NULL.
1684 */
85b67b01 1685 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
6f528de2 1686 if (!folio)
2c653d0e 1687 continue;
a0b856b6
CZ
1688 /* Pick the best candidate if possible. */
1689 if (!found || (is_page_sharing_candidate(dup) &&
1690 (!is_page_sharing_candidate(found) ||
1691 dup->rmap_hlist_len > found_rmap_hlist_len))) {
1692 if (found)
1693 folio_put(tree_folio);
1694 found = dup;
1695 found_rmap_hlist_len = found->rmap_hlist_len;
1696 tree_folio = folio;
1697 /* skip put_page for found candidate */
1698 if (!prune_stale_stable_nodes &&
1699 is_page_sharing_candidate(found))
1700 break;
1701 continue;
2c653d0e 1702 }
6f528de2 1703 folio_put(folio);
2c653d0e
AA
1704 }
1705
80b18dfa 1706 if (found) {
a0b856b6 1707 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
2c653d0e
AA
1708 /*
1709 * If there's not just one entry it would
1710 * corrupt memory, better BUG_ON. In KSM
1711 * context with no lock held it's not even
1712 * fatal.
1713 */
1714 BUG_ON(stable_node->hlist.first->next);
1715
1716 /*
1717 * There's just one entry and it is below the
1718 * deduplication limit so drop the chain.
1719 */
1720 rb_replace_node(&stable_node->node, &found->node,
1721 root);
1722 free_stable_node(stable_node);
1723 ksm_stable_node_chains--;
1724 ksm_stable_node_dups--;
b4fecc67 1725 /*
0ba1d0f7
AA
1726 * NOTE: the caller depends on the stable_node
1727 * to be equal to stable_node_dup if the chain
1728 * was collapsed.
b4fecc67 1729 */
0ba1d0f7
AA
1730 *_stable_node = found;
1731 /*
f0953a1b 1732 * Just for robustness, as stable_node is
0ba1d0f7
AA
1733 * otherwise left as a stable pointer, the
1734 * compiler shall optimize it away at build
1735 * time.
1736 */
1737 stable_node = NULL;
80b18dfa
AA
1738 } else if (stable_node->hlist.first != &found->hlist_dup &&
1739 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1740 /*
80b18dfa
AA
1741 * If the found stable_node dup can accept one
1742 * more future merge (in addition to the one
1743 * that is underway) and is not at the head of
1744 * the chain, put it there so next search will
1745 * be quicker in the !prune_stale_stable_nodes
1746 * case.
1747 *
1748 * NOTE: it would be inaccurate to use nr > 1
1749 * instead of checking the hlist.first pointer
1750 * directly, because in the
1751 * prune_stale_stable_nodes case "nr" isn't
1752 * the position of the found dup in the chain,
1753 * but the total number of dups in the chain.
2c653d0e
AA
1754 */
1755 hlist_del(&found->hlist_dup);
1756 hlist_add_head(&found->hlist_dup,
1757 &stable_node->hlist);
1758 }
a0b856b6
CZ
1759 } else {
1760 /* Its hlist must be empty if no one found. */
1761 free_stable_node_chain(stable_node, root);
2c653d0e
AA
1762 }
1763
8dc5ffcd 1764 *_stable_node_dup = found;
79899cce 1765 return tree_folio;
2c653d0e
AA
1766}
1767
8dc5ffcd 1768/*
79899cce 1769 * Like for ksm_get_folio, this function can free the *_stable_node and
8dc5ffcd
AA
1770 * *_stable_node_dup if the returned tree_page is NULL.
1771 *
1772 * It can also free and overwrite *_stable_node with the found
1773 * stable_node_dup if the chain is collapsed (in which case
1774 * *_stable_node will be equal to *_stable_node_dup like if the chain
1775 * never existed). It's up to the caller to verify tree_page is not
1776 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1777 *
1778 * *_stable_node_dup is really a second output parameter of this
1779 * function and will be overwritten in all cases, the caller doesn't
1780 * need to initialize it.
1781 */
79899cce
AS
1782static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1783 struct ksm_stable_node **_stable_node,
1784 struct rb_root *root,
1785 bool prune_stale_stable_nodes)
2c653d0e 1786{
21fbd591 1787 struct ksm_stable_node *stable_node = *_stable_node;
a0b856b6 1788
2c653d0e 1789 if (!is_stable_node_chain(stable_node)) {
a0b856b6
CZ
1790 *_stable_node_dup = stable_node;
1791 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
2c653d0e 1792 }
8dc5ffcd 1793 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1794 prune_stale_stable_nodes);
1795}
1796
79899cce
AS
1797static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1798 struct ksm_stable_node **s_n,
1799 struct rb_root *root)
2c653d0e 1800{
8dc5ffcd 1801 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1802}
1803
79899cce 1804static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
a0b856b6 1805 struct ksm_stable_node **s_n,
79899cce 1806 struct rb_root *root)
2c653d0e 1807{
a0b856b6 1808 return __stable_node_chain(s_n_d, s_n, root, false);
2c653d0e
AA
1809}
1810
31dbd01f 1811/*
8dd3557a 1812 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1813 *
1814 * This function checks if there is a page inside the stable tree
1815 * with identical content to the page that we are scanning right now.
1816 *
7b6ba2c7 1817 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1818 * NULL otherwise.
1819 */
62b61f61 1820static struct page *stable_tree_search(struct page *page)
31dbd01f 1821{
90bd6fd3 1822 int nid;
ef53d16c 1823 struct rb_root *root;
4146d2d6
HD
1824 struct rb_node **new;
1825 struct rb_node *parent;
a0b856b6 1826 struct ksm_stable_node *stable_node, *stable_node_dup;
21fbd591 1827 struct ksm_stable_node *page_node;
79899cce 1828 struct folio *folio;
31dbd01f 1829
79899cce
AS
1830 folio = page_folio(page);
1831 page_node = folio_stable_node(folio);
4146d2d6
HD
1832 if (page_node && page_node->head != &migrate_nodes) {
1833 /* ksm page forked */
79899cce
AS
1834 folio_get(folio);
1835 return &folio->page;
08beca44
HD
1836 }
1837
79899cce 1838 nid = get_kpfn_nid(folio_pfn(folio));
ef53d16c 1839 root = root_stable_tree + nid;
4146d2d6 1840again:
ef53d16c 1841 new = &root->rb_node;
4146d2d6 1842 parent = NULL;
90bd6fd3 1843
4146d2d6 1844 while (*new) {
79899cce 1845 struct folio *tree_folio;
31dbd01f
IE
1846 int ret;
1847
08beca44 1848 cond_resched();
21fbd591 1849 stable_node = rb_entry(*new, struct ksm_stable_node, node);
79899cce 1850 tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
79899cce 1851 if (!tree_folio) {
f2e5ff85
AA
1852 /*
1853 * If we walked over a stale stable_node,
79899cce 1854 * ksm_get_folio() will call rb_erase() and it
f2e5ff85
AA
1855 * may rebalance the tree from under us. So
1856 * restart the search from scratch. Returning
1857 * NULL would be safe too, but we'd generate
1858 * false negative insertions just because some
1859 * stable_node was stale.
1860 */
1861 goto again;
1862 }
31dbd01f 1863
79899cce
AS
1864 ret = memcmp_pages(page, &tree_folio->page);
1865 folio_put(tree_folio);
31dbd01f 1866
4146d2d6 1867 parent = *new;
c8d6553b 1868 if (ret < 0)
4146d2d6 1869 new = &parent->rb_left;
c8d6553b 1870 else if (ret > 0)
4146d2d6 1871 new = &parent->rb_right;
c8d6553b 1872 else {
2c653d0e
AA
1873 if (page_node) {
1874 VM_BUG_ON(page_node->head != &migrate_nodes);
1875 /*
2aa33912
DH
1876 * If the mapcount of our migrated KSM folio is
1877 * at most 1, we can merge it with another
1878 * KSM folio where we know that we have space
1879 * for one more mapping without exceeding the
1880 * ksm_max_page_sharing limit: see
1881 * chain_prune(). This way, we can avoid adding
1882 * this stable node to the chain.
2c653d0e 1883 */
2aa33912 1884 if (folio_mapcount(folio) > 1)
2c653d0e
AA
1885 goto chain_append;
1886 }
1887
a0b856b6 1888 if (!is_page_sharing_candidate(stable_node_dup)) {
2c653d0e
AA
1889 /*
1890 * If the stable_node is a chain and
1891 * we got a payload match in memcmp
1892 * but we cannot merge the scanned
1893 * page in any of the existing
1894 * stable_node dups because they're
1895 * all full, we need to wait the
1896 * scanned page to find itself a match
1897 * in the unstable tree to create a
1898 * brand new KSM page to add later to
1899 * the dups of this stable_node.
1900 */
1901 return NULL;
1902 }
1903
c8d6553b
HD
1904 /*
1905 * Lock and unlock the stable_node's page (which
1906 * might already have been migrated) so that page
1907 * migration is sure to notice its raised count.
1908 * It would be more elegant to return stable_node
1909 * than kpage, but that involves more changes.
1910 */
79899cce 1911 tree_folio = ksm_get_folio(stable_node_dup,
85b67b01 1912 KSM_GET_FOLIO_TRYLOCK);
2cee57d1 1913
79899cce 1914 if (PTR_ERR(tree_folio) == -EBUSY)
2cee57d1
YS
1915 return ERR_PTR(-EBUSY);
1916
79899cce 1917 if (unlikely(!tree_folio))
2c653d0e
AA
1918 /*
1919 * The tree may have been rebalanced,
1920 * so re-evaluate parent and new.
1921 */
4146d2d6 1922 goto again;
79899cce 1923 folio_unlock(tree_folio);
2c653d0e
AA
1924
1925 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1926 NUMA(stable_node_dup->nid)) {
79899cce 1927 folio_put(tree_folio);
2c653d0e
AA
1928 goto replace;
1929 }
79899cce 1930 return &tree_folio->page;
c8d6553b 1931 }
31dbd01f
IE
1932 }
1933
4146d2d6
HD
1934 if (!page_node)
1935 return NULL;
1936
1937 list_del(&page_node->list);
1938 DO_NUMA(page_node->nid = nid);
1939 rb_link_node(&page_node->node, parent, new);
ef53d16c 1940 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1941out:
1942 if (is_page_sharing_candidate(page_node)) {
79899cce
AS
1943 folio_get(folio);
1944 return &folio->page;
2c653d0e
AA
1945 } else
1946 return NULL;
4146d2d6
HD
1947
1948replace:
b4fecc67
AA
1949 /*
1950 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1951 * stable_node has been updated to be the new regular
1952 * stable_node. A collapse of the chain is indistinguishable
1953 * from the case there was no chain in the stable
1954 * rbtree. Otherwise stable_node is the chain and
1955 * stable_node_dup is the dup to replace.
b4fecc67 1956 */
0ba1d0f7 1957 if (stable_node_dup == stable_node) {
b4fecc67
AA
1958 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1959 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1960 /* there is no chain */
1961 if (page_node) {
1962 VM_BUG_ON(page_node->head != &migrate_nodes);
1963 list_del(&page_node->list);
1964 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1965 rb_replace_node(&stable_node_dup->node,
1966 &page_node->node,
2c653d0e
AA
1967 root);
1968 if (is_page_sharing_candidate(page_node))
79899cce 1969 folio_get(folio);
2c653d0e 1970 else
79899cce 1971 folio = NULL;
2c653d0e 1972 } else {
b4fecc67 1973 rb_erase(&stable_node_dup->node, root);
79899cce 1974 folio = NULL;
2c653d0e 1975 }
4146d2d6 1976 } else {
2c653d0e
AA
1977 VM_BUG_ON(!is_stable_node_chain(stable_node));
1978 __stable_node_dup_del(stable_node_dup);
1979 if (page_node) {
1980 VM_BUG_ON(page_node->head != &migrate_nodes);
1981 list_del(&page_node->list);
1982 DO_NUMA(page_node->nid = nid);
1983 stable_node_chain_add_dup(page_node, stable_node);
1984 if (is_page_sharing_candidate(page_node))
79899cce 1985 folio_get(folio);
2c653d0e 1986 else
79899cce 1987 folio = NULL;
2c653d0e 1988 } else {
79899cce 1989 folio = NULL;
2c653d0e 1990 }
4146d2d6 1991 }
2c653d0e
AA
1992 stable_node_dup->head = &migrate_nodes;
1993 list_add(&stable_node_dup->list, stable_node_dup->head);
79899cce 1994 return &folio->page;
2c653d0e
AA
1995
1996chain_append:
b4fecc67
AA
1997 /*
1998 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1999 * stable_node has been updated to be the new regular
2000 * stable_node. A collapse of the chain is indistinguishable
2001 * from the case there was no chain in the stable
2002 * rbtree. Otherwise stable_node is the chain and
2003 * stable_node_dup is the dup to replace.
b4fecc67 2004 */
0ba1d0f7 2005 if (stable_node_dup == stable_node) {
b4fecc67 2006 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2007 /* chain is missing so create it */
2008 stable_node = alloc_stable_node_chain(stable_node_dup,
2009 root);
2010 if (!stable_node)
2011 return NULL;
2012 }
2013 /*
2014 * Add this stable_node dup that was
2015 * migrated to the stable_node chain
2016 * of the current nid for this page
2017 * content.
2018 */
b4fecc67 2019 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
2020 VM_BUG_ON(page_node->head != &migrate_nodes);
2021 list_del(&page_node->list);
2022 DO_NUMA(page_node->nid = nid);
2023 stable_node_chain_add_dup(page_node, stable_node);
2024 goto out;
31dbd01f
IE
2025}
2026
2027/*
e850dcf5 2028 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
2029 * into the stable tree.
2030 *
7b6ba2c7
HD
2031 * This function returns the stable tree node just allocated on success,
2032 * NULL otherwise.
31dbd01f 2033 */
79899cce 2034static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
31dbd01f 2035{
90bd6fd3
PH
2036 int nid;
2037 unsigned long kpfn;
ef53d16c 2038 struct rb_root *root;
90bd6fd3 2039 struct rb_node **new;
f2e5ff85 2040 struct rb_node *parent;
a0b856b6 2041 struct ksm_stable_node *stable_node, *stable_node_dup;
2c653d0e 2042 bool need_chain = false;
31dbd01f 2043
79899cce 2044 kpfn = folio_pfn(kfolio);
90bd6fd3 2045 nid = get_kpfn_nid(kpfn);
ef53d16c 2046 root = root_stable_tree + nid;
f2e5ff85
AA
2047again:
2048 parent = NULL;
ef53d16c 2049 new = &root->rb_node;
90bd6fd3 2050
31dbd01f 2051 while (*new) {
79899cce 2052 struct folio *tree_folio;
31dbd01f
IE
2053 int ret;
2054
08beca44 2055 cond_resched();
21fbd591 2056 stable_node = rb_entry(*new, struct ksm_stable_node, node);
a0b856b6 2057 tree_folio = chain(&stable_node_dup, &stable_node, root);
79899cce 2058 if (!tree_folio) {
f2e5ff85
AA
2059 /*
2060 * If we walked over a stale stable_node,
79899cce 2061 * ksm_get_folio() will call rb_erase() and it
f2e5ff85
AA
2062 * may rebalance the tree from under us. So
2063 * restart the search from scratch. Returning
2064 * NULL would be safe too, but we'd generate
2065 * false negative insertions just because some
2066 * stable_node was stale.
2067 */
2068 goto again;
2069 }
31dbd01f 2070
79899cce
AS
2071 ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2072 folio_put(tree_folio);
31dbd01f
IE
2073
2074 parent = *new;
2075 if (ret < 0)
2076 new = &parent->rb_left;
2077 else if (ret > 0)
2078 new = &parent->rb_right;
2079 else {
2c653d0e
AA
2080 need_chain = true;
2081 break;
31dbd01f
IE
2082 }
2083 }
2084
2c653d0e
AA
2085 stable_node_dup = alloc_stable_node();
2086 if (!stable_node_dup)
7b6ba2c7 2087 return NULL;
31dbd01f 2088
2c653d0e
AA
2089 INIT_HLIST_HEAD(&stable_node_dup->hlist);
2090 stable_node_dup->kpfn = kpfn;
2c653d0e
AA
2091 stable_node_dup->rmap_hlist_len = 0;
2092 DO_NUMA(stable_node_dup->nid = nid);
2093 if (!need_chain) {
2094 rb_link_node(&stable_node_dup->node, parent, new);
2095 rb_insert_color(&stable_node_dup->node, root);
2096 } else {
2097 if (!is_stable_node_chain(stable_node)) {
21fbd591 2098 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
2099 /* chain is missing so create it */
2100 stable_node = alloc_stable_node_chain(orig, root);
2101 if (!stable_node) {
2102 free_stable_node(stable_node_dup);
2103 return NULL;
2104 }
2105 }
2106 stable_node_chain_add_dup(stable_node_dup, stable_node);
2107 }
08beca44 2108
90e82349
CZ
2109 folio_set_stable_node(kfolio, stable_node_dup);
2110
2c653d0e 2111 return stable_node_dup;
31dbd01f
IE
2112}
2113
2114/*
8dd3557a
HD
2115 * unstable_tree_search_insert - search for identical page,
2116 * else insert rmap_item into the unstable tree.
31dbd01f
IE
2117 *
2118 * This function searches for a page in the unstable tree identical to the
2119 * page currently being scanned; and if no identical page is found in the
2120 * tree, we insert rmap_item as a new object into the unstable tree.
2121 *
2122 * This function returns pointer to rmap_item found to be identical
2123 * to the currently scanned page, NULL otherwise.
2124 *
2125 * This function does both searching and inserting, because they share
2126 * the same walking algorithm in an rbtree.
2127 */
8dd3557a 2128static
21fbd591 2129struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
2130 struct page *page,
2131 struct page **tree_pagep)
31dbd01f 2132{
90bd6fd3
PH
2133 struct rb_node **new;
2134 struct rb_root *root;
31dbd01f 2135 struct rb_node *parent = NULL;
90bd6fd3
PH
2136 int nid;
2137
2138 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 2139 root = root_unstable_tree + nid;
90bd6fd3 2140 new = &root->rb_node;
31dbd01f
IE
2141
2142 while (*new) {
21fbd591 2143 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2144 struct page *tree_page;
31dbd01f
IE
2145 int ret;
2146
d178f27f 2147 cond_resched();
21fbd591 2148 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 2149 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 2150 if (!tree_page)
31dbd01f
IE
2151 return NULL;
2152
2153 /*
8dd3557a 2154 * Don't substitute a ksm page for a forked page.
31dbd01f 2155 */
8dd3557a
HD
2156 if (page == tree_page) {
2157 put_page(tree_page);
31dbd01f
IE
2158 return NULL;
2159 }
2160
8dd3557a 2161 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
2162
2163 parent = *new;
2164 if (ret < 0) {
8dd3557a 2165 put_page(tree_page);
31dbd01f
IE
2166 new = &parent->rb_left;
2167 } else if (ret > 0) {
8dd3557a 2168 put_page(tree_page);
31dbd01f 2169 new = &parent->rb_right;
b599cbdf
HD
2170 } else if (!ksm_merge_across_nodes &&
2171 page_to_nid(tree_page) != nid) {
2172 /*
2173 * If tree_page has been migrated to another NUMA node,
2174 * it will be flushed out and put in the right unstable
2175 * tree next time: only merge with it when across_nodes.
2176 */
2177 put_page(tree_page);
2178 return NULL;
31dbd01f 2179 } else {
8dd3557a 2180 *tree_pagep = tree_page;
31dbd01f
IE
2181 return tree_rmap_item;
2182 }
2183 }
2184
7b6ba2c7 2185 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 2186 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 2187 DO_NUMA(rmap_item->nid = nid);
31dbd01f 2188 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 2189 rb_insert_color(&rmap_item->node, root);
31dbd01f 2190
473b0ce4 2191 ksm_pages_unshared++;
31dbd01f
IE
2192 return NULL;
2193}
2194
2195/*
2196 * stable_tree_append - add another rmap_item to the linked list of
2197 * rmap_items hanging off a given node of the stable tree, all sharing
2198 * the same ksm page.
2199 */
21fbd591
QZ
2200static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2201 struct ksm_stable_node *stable_node,
2c653d0e 2202 bool max_page_sharing_bypass)
31dbd01f 2203{
2c653d0e
AA
2204 /*
2205 * rmap won't find this mapping if we don't insert the
2206 * rmap_item in the right stable_node
2207 * duplicate. page_migration could break later if rmap breaks,
2208 * so we can as well crash here. We really need to check for
2209 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2210 * for other negative values as an underflow if detected here
2c653d0e
AA
2211 * for the first time (and not when decreasing rmap_hlist_len)
2212 * would be sign of memory corruption in the stable_node.
2213 */
2214 BUG_ON(stable_node->rmap_hlist_len < 0);
2215
2216 stable_node->rmap_hlist_len++;
2217 if (!max_page_sharing_bypass)
2218 /* possibly non fatal but unexpected overflow, only warn */
2219 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2220 ksm_max_page_sharing);
2221
7b6ba2c7 2222 rmap_item->head = stable_node;
31dbd01f 2223 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2224 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2225
7b6ba2c7
HD
2226 if (rmap_item->hlist.next)
2227 ksm_pages_sharing++;
2228 else
2229 ksm_pages_shared++;
76093853 2230
2231 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2232}
2233
2234/*
81464e30
HD
2235 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2236 * if not, compare checksum to previous and if it's the same, see if page can
2237 * be inserted into the unstable tree, or merged with a page already there and
2238 * both transferred to the stable tree.
31dbd01f
IE
2239 *
2240 * @page: the page that we are searching identical page to.
2241 * @rmap_item: the reverse mapping into the virtual address of this page
2242 */
21fbd591 2243static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2244{
21fbd591 2245 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2246 struct page *tree_page = NULL;
21fbd591 2247 struct ksm_stable_node *stable_node;
8dd3557a 2248 struct page *kpage;
31dbd01f
IE
2249 unsigned int checksum;
2250 int err;
2c653d0e 2251 bool max_page_sharing_bypass = false;
31dbd01f 2252
4146d2d6
HD
2253 stable_node = page_stable_node(page);
2254 if (stable_node) {
2255 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2256 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2257 NUMA(stable_node->nid)) {
2258 stable_node_dup_del(stable_node);
4146d2d6
HD
2259 stable_node->head = &migrate_nodes;
2260 list_add(&stable_node->list, stable_node->head);
2261 }
2262 if (stable_node->head != &migrate_nodes &&
2263 rmap_item->head == stable_node)
2264 return;
2c653d0e
AA
2265 /*
2266 * If it's a KSM fork, allow it to go over the sharing limit
2267 * without warnings.
2268 */
2269 if (!is_page_sharing_candidate(stable_node))
2270 max_page_sharing_bypass = true;
d58a361b
CZ
2271 } else {
2272 remove_rmap_item_from_tree(rmap_item);
2273
2274 /*
2275 * If the hash value of the page has changed from the last time
2276 * we calculated it, this page is changing frequently: therefore we
2277 * don't want to insert it in the unstable tree, and we don't want
2278 * to waste our time searching for something identical to it there.
2279 */
2280 checksum = calc_checksum(page);
2281 if (rmap_item->oldchecksum != checksum) {
2282 rmap_item->oldchecksum = checksum;
2283 return;
2284 }
2285
2286 if (!try_to_merge_with_zero_page(rmap_item, page))
2287 return;
4146d2d6 2288 }
31dbd01f
IE
2289
2290 /* We first start with searching the page inside the stable tree */
62b61f61 2291 kpage = stable_tree_search(page);
4146d2d6
HD
2292 if (kpage == page && rmap_item->head == stable_node) {
2293 put_page(kpage);
2294 return;
2295 }
2296
2297 remove_rmap_item_from_tree(rmap_item);
2298
62b61f61 2299 if (kpage) {
2cee57d1
YS
2300 if (PTR_ERR(kpage) == -EBUSY)
2301 return;
2302
08beca44 2303 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2304 if (!err) {
2305 /*
2306 * The page was successfully merged:
2307 * add its rmap_item to the stable tree.
2308 */
5ad64688 2309 lock_page(kpage);
2c653d0e
AA
2310 stable_tree_append(rmap_item, page_stable_node(kpage),
2311 max_page_sharing_bypass);
5ad64688 2312 unlock_page(kpage);
31dbd01f 2313 }
8dd3557a 2314 put_page(kpage);
31dbd01f
IE
2315 return;
2316 }
2317
8dd3557a
HD
2318 tree_rmap_item =
2319 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2320 if (tree_rmap_item) {
77da2ba0
CI
2321 bool split;
2322
8dd3557a
HD
2323 kpage = try_to_merge_two_pages(rmap_item, page,
2324 tree_rmap_item, tree_page);
77da2ba0
CI
2325 /*
2326 * If both pages we tried to merge belong to the same compound
2327 * page, then we actually ended up increasing the reference
2328 * count of the same compound page twice, and split_huge_page
2329 * failed.
2330 * Here we set a flag if that happened, and we use it later to
2331 * try split_huge_page again. Since we call put_page right
2332 * afterwards, the reference count will be correct and
2333 * split_huge_page should succeed.
2334 */
2335 split = PageTransCompound(page)
2336 && compound_head(page) == compound_head(tree_page);
8dd3557a 2337 put_page(tree_page);
8dd3557a 2338 if (kpage) {
bc56620b
HD
2339 /*
2340 * The pages were successfully merged: insert new
2341 * node in the stable tree and add both rmap_items.
2342 */
5ad64688 2343 lock_page(kpage);
79899cce 2344 stable_node = stable_tree_insert(page_folio(kpage));
7b6ba2c7 2345 if (stable_node) {
2c653d0e
AA
2346 stable_tree_append(tree_rmap_item, stable_node,
2347 false);
2348 stable_tree_append(rmap_item, stable_node,
2349 false);
7b6ba2c7 2350 }
5ad64688 2351 unlock_page(kpage);
7b6ba2c7 2352
31dbd01f
IE
2353 /*
2354 * If we fail to insert the page into the stable tree,
2355 * we will have 2 virtual addresses that are pointing
2356 * to a ksm page left outside the stable tree,
2357 * in which case we need to break_cow on both.
2358 */
7b6ba2c7 2359 if (!stable_node) {
8dd3557a
HD
2360 break_cow(tree_rmap_item);
2361 break_cow(rmap_item);
31dbd01f 2362 }
77da2ba0
CI
2363 } else if (split) {
2364 /*
2365 * We are here if we tried to merge two pages and
2366 * failed because they both belonged to the same
2367 * compound page. We will split the page now, but no
2368 * merging will take place.
2369 * We do not want to add the cost of a full lock; if
2370 * the page is locked, it is better to skip it and
2371 * perhaps try again later.
2372 */
2373 if (!trylock_page(page))
2374 return;
2375 split_huge_page(page);
2376 unlock_page(page);
31dbd01f 2377 }
31dbd01f
IE
2378 }
2379}
2380
21fbd591
QZ
2381static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2382 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2383 unsigned long addr)
2384{
21fbd591 2385 struct ksm_rmap_item *rmap_item;
31dbd01f 2386
6514d511
HD
2387 while (*rmap_list) {
2388 rmap_item = *rmap_list;
93d17715 2389 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2390 return rmap_item;
31dbd01f
IE
2391 if (rmap_item->address > addr)
2392 break;
6514d511 2393 *rmap_list = rmap_item->rmap_list;
31dbd01f 2394 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2395 free_rmap_item(rmap_item);
2396 }
2397
2398 rmap_item = alloc_rmap_item();
2399 if (rmap_item) {
2400 /* It has already been zeroed */
58730ab6 2401 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2402 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2403 rmap_item->address = addr;
6514d511
HD
2404 rmap_item->rmap_list = *rmap_list;
2405 *rmap_list = rmap_item;
31dbd01f
IE
2406 }
2407 return rmap_item;
2408}
2409
5e924ff5
SR
2410/*
2411 * Calculate skip age for the ksm page age. The age determines how often
2412 * de-duplicating has already been tried unsuccessfully. If the age is
2413 * smaller, the scanning of this page is skipped for less scans.
2414 *
2415 * @age: rmap_item age of page
2416 */
2417static unsigned int skip_age(rmap_age_t age)
2418{
2419 if (age <= 3)
2420 return 1;
2421 if (age <= 5)
2422 return 2;
2423 if (age <= 8)
2424 return 4;
2425
2426 return 8;
2427}
2428
2429/*
2430 * Determines if a page should be skipped for the current scan.
2431 *
2432 * @page: page to check
2433 * @rmap_item: associated rmap_item of page
2434 */
2435static bool should_skip_rmap_item(struct page *page,
2436 struct ksm_rmap_item *rmap_item)
2437{
2438 rmap_age_t age;
2439
2440 if (!ksm_smart_scan)
2441 return false;
2442
2443 /*
2444 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2445 * will essentially ignore them, but we still have to process them
2446 * properly.
2447 */
2448 if (PageKsm(page))
2449 return false;
2450
2451 age = rmap_item->age;
2452 if (age != U8_MAX)
2453 rmap_item->age++;
2454
2455 /*
2456 * Smaller ages are not skipped, they need to get a chance to go
2457 * through the different phases of the KSM merging.
2458 */
2459 if (age < 3)
2460 return false;
2461
2462 /*
2463 * Are we still allowed to skip? If not, then don't skip it
2464 * and determine how much more often we are allowed to skip next.
2465 */
2466 if (!rmap_item->remaining_skips) {
2467 rmap_item->remaining_skips = skip_age(age);
2468 return false;
2469 }
2470
2471 /* Skip this page */
e5a68991 2472 ksm_pages_skipped++;
5e924ff5
SR
2473 rmap_item->remaining_skips--;
2474 remove_rmap_item_from_tree(rmap_item);
2475 return true;
2476}
2477
21fbd591 2478static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2479{
2480 struct mm_struct *mm;
58730ab6
QZ
2481 struct ksm_mm_slot *mm_slot;
2482 struct mm_slot *slot;
31dbd01f 2483 struct vm_area_struct *vma;
21fbd591 2484 struct ksm_rmap_item *rmap_item;
a5f18ba0 2485 struct vma_iterator vmi;
90bd6fd3 2486 int nid;
31dbd01f 2487
58730ab6 2488 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2489 return NULL;
2490
58730ab6
QZ
2491 mm_slot = ksm_scan.mm_slot;
2492 if (mm_slot == &ksm_mm_head) {
4e5fa4f5 2493 advisor_start_scan();
739100c8
SR
2494 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2495
2919bfd0 2496 /*
1fec6890
MWO
2497 * A number of pages can hang around indefinitely in per-cpu
2498 * LRU cache, raised page count preventing write_protect_page
2919bfd0
HD
2499 * from merging them. Though it doesn't really matter much,
2500 * it is puzzling to see some stuck in pages_volatile until
2501 * other activity jostles them out, and they also prevented
2502 * LTP's KSM test from succeeding deterministically; so drain
2503 * them here (here rather than on entry to ksm_do_scan(),
2504 * so we don't IPI too often when pages_to_scan is set low).
2505 */
2506 lru_add_drain_all();
2507
4146d2d6
HD
2508 /*
2509 * Whereas stale stable_nodes on the stable_tree itself
2510 * get pruned in the regular course of stable_tree_search(),
2511 * those moved out to the migrate_nodes list can accumulate:
2512 * so prune them once before each full scan.
2513 */
2514 if (!ksm_merge_across_nodes) {
21fbd591 2515 struct ksm_stable_node *stable_node, *next;
72556a4c 2516 struct folio *folio;
4146d2d6 2517
03640418
GT
2518 list_for_each_entry_safe(stable_node, next,
2519 &migrate_nodes, list) {
72556a4c 2520 folio = ksm_get_folio(stable_node,
85b67b01 2521 KSM_GET_FOLIO_NOLOCK);
72556a4c
AS
2522 if (folio)
2523 folio_put(folio);
4146d2d6
HD
2524 cond_resched();
2525 }
2526 }
2527
ef53d16c 2528 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2529 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2530
2531 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2532 slot = list_entry(mm_slot->slot.mm_node.next,
2533 struct mm_slot, mm_node);
2534 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2535 ksm_scan.mm_slot = mm_slot;
31dbd01f 2536 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2537 /*
2538 * Although we tested list_empty() above, a racing __ksm_exit
2539 * of the last mm on the list may have removed it since then.
2540 */
58730ab6 2541 if (mm_slot == &ksm_mm_head)
2b472611 2542 return NULL;
31dbd01f
IE
2543next_mm:
2544 ksm_scan.address = 0;
58730ab6 2545 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2546 }
2547
58730ab6 2548 slot = &mm_slot->slot;
31dbd01f 2549 mm = slot->mm;
a5f18ba0
MWO
2550 vma_iter_init(&vmi, mm, ksm_scan.address);
2551
d8ed45c5 2552 mmap_read_lock(mm);
9ba69294 2553 if (ksm_test_exit(mm))
a5f18ba0 2554 goto no_vmas;
9ba69294 2555
a5f18ba0 2556 for_each_vma(vmi, vma) {
31dbd01f
IE
2557 if (!(vma->vm_flags & VM_MERGEABLE))
2558 continue;
2559 if (ksm_scan.address < vma->vm_start)
2560 ksm_scan.address = vma->vm_start;
2561 if (!vma->anon_vma)
2562 ksm_scan.address = vma->vm_end;
2563
2564 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2565 if (ksm_test_exit(mm))
2566 break;
31dbd01f 2567 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2568 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2569 ksm_scan.address += PAGE_SIZE;
2570 cond_resched();
2571 continue;
2572 }
f7091ed6
HW
2573 if (is_zone_device_page(*page))
2574 goto next_page;
f765f540 2575 if (PageAnon(*page)) {
31dbd01f
IE
2576 flush_anon_page(vma, *page, ksm_scan.address);
2577 flush_dcache_page(*page);
58730ab6 2578 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2579 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2580 if (rmap_item) {
6514d511
HD
2581 ksm_scan.rmap_list =
2582 &rmap_item->rmap_list;
5e924ff5
SR
2583
2584 if (should_skip_rmap_item(*page, rmap_item))
2585 goto next_page;
2586
31dbd01f
IE
2587 ksm_scan.address += PAGE_SIZE;
2588 } else
2589 put_page(*page);
d8ed45c5 2590 mmap_read_unlock(mm);
31dbd01f
IE
2591 return rmap_item;
2592 }
f7091ed6 2593next_page:
21ae5b01 2594 put_page(*page);
31dbd01f
IE
2595 ksm_scan.address += PAGE_SIZE;
2596 cond_resched();
2597 }
2598 }
2599
9ba69294 2600 if (ksm_test_exit(mm)) {
a5f18ba0 2601no_vmas:
9ba69294 2602 ksm_scan.address = 0;
58730ab6 2603 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2604 }
31dbd01f
IE
2605 /*
2606 * Nuke all the rmap_items that are above this current rmap:
2607 * because there were no VM_MERGEABLE vmas with such addresses.
2608 */
420be4ed 2609 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2610
2611 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2612 slot = list_entry(mm_slot->slot.mm_node.next,
2613 struct mm_slot, mm_node);
2614 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2615 if (ksm_scan.address == 0) {
2616 /*
c1e8d7c6 2617 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2618 * throughout, and found no VM_MERGEABLE: so do the same as
2619 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2620 * This applies either when cleaning up after __ksm_exit
2621 * (but beware: we can reach here even before __ksm_exit),
2622 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2623 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2624 */
58730ab6
QZ
2625 hash_del(&mm_slot->slot.hash);
2626 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2627 spin_unlock(&ksm_mmlist_lock);
2628
58730ab6 2629 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2630 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d7597f59 2631 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
d8ed45c5 2632 mmap_read_unlock(mm);
9ba69294
HD
2633 mmdrop(mm);
2634 } else {
d8ed45c5 2635 mmap_read_unlock(mm);
7496fea9 2636 /*
3e4e28c5 2637 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2638 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2639 * already have been freed under us by __ksm_exit()
2640 * because the "mm_slot" is still hashed and
2641 * ksm_scan.mm_slot doesn't point to it anymore.
2642 */
2643 spin_unlock(&ksm_mmlist_lock);
cd551f97 2644 }
31dbd01f
IE
2645
2646 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2647 mm_slot = ksm_scan.mm_slot;
2648 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2649 goto next_mm;
2650
4e5fa4f5
SR
2651 advisor_stop_scan();
2652
739100c8 2653 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
31dbd01f
IE
2654 ksm_scan.seqnr++;
2655 return NULL;
2656}
2657
2658/**
2659 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2660 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2661 */
2662static void ksm_do_scan(unsigned int scan_npages)
2663{
21fbd591 2664 struct ksm_rmap_item *rmap_item;
3f649ab7 2665 struct page *page;
31dbd01f 2666
730cdc2c 2667 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2668 cond_resched();
2669 rmap_item = scan_get_next_rmap_item(&page);
2670 if (!rmap_item)
2671 return;
4146d2d6 2672 cmp_and_merge_page(page, rmap_item);
31dbd01f 2673 put_page(page);
730cdc2c 2674 ksm_pages_scanned++;
31dbd01f
IE
2675 }
2676}
2677
6e158384
HD
2678static int ksmd_should_run(void)
2679{
58730ab6 2680 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2681}
2682
31dbd01f
IE
2683static int ksm_scan_thread(void *nothing)
2684{
fcf9a0ef
KT
2685 unsigned int sleep_ms;
2686
878aee7d 2687 set_freezable();
339aa624 2688 set_user_nice(current, 5);
31dbd01f
IE
2689
2690 while (!kthread_should_stop()) {
6e158384 2691 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2692 wait_while_offlining();
6e158384 2693 if (ksmd_should_run())
31dbd01f 2694 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2695 mutex_unlock(&ksm_thread_mutex);
2696
2697 if (ksmd_should_run()) {
fcf9a0ef 2698 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
f55afd95 2699 wait_event_freezable_timeout(ksm_iter_wait,
fcf9a0ef
KT
2700 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2701 msecs_to_jiffies(sleep_ms));
31dbd01f 2702 } else {
878aee7d 2703 wait_event_freezable(ksm_thread_wait,
6e158384 2704 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2705 }
2706 }
2707 return 0;
2708}
2709
d7597f59
SR
2710static void __ksm_add_vma(struct vm_area_struct *vma)
2711{
2712 unsigned long vm_flags = vma->vm_flags;
2713
2714 if (vm_flags & VM_MERGEABLE)
2715 return;
2716
2717 if (vma_ksm_compatible(vma))
2718 vm_flags_set(vma, VM_MERGEABLE);
2719}
2720
24139c07
DH
2721static int __ksm_del_vma(struct vm_area_struct *vma)
2722{
2723 int err;
2724
2725 if (!(vma->vm_flags & VM_MERGEABLE))
2726 return 0;
2727
2728 if (vma->anon_vma) {
49b06385 2729 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
24139c07
DH
2730 if (err)
2731 return err;
2732 }
2733
2734 vm_flags_clear(vma, VM_MERGEABLE);
2735 return 0;
2736}
d7597f59
SR
2737/**
2738 * ksm_add_vma - Mark vma as mergeable if compatible
2739 *
2740 * @vma: Pointer to vma
2741 */
2742void ksm_add_vma(struct vm_area_struct *vma)
2743{
2744 struct mm_struct *mm = vma->vm_mm;
2745
2746 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2747 __ksm_add_vma(vma);
2748}
2749
2750static void ksm_add_vmas(struct mm_struct *mm)
2751{
2752 struct vm_area_struct *vma;
2753
2754 VMA_ITERATOR(vmi, mm, 0);
2755 for_each_vma(vmi, vma)
2756 __ksm_add_vma(vma);
2757}
2758
24139c07
DH
2759static int ksm_del_vmas(struct mm_struct *mm)
2760{
2761 struct vm_area_struct *vma;
2762 int err;
2763
2764 VMA_ITERATOR(vmi, mm, 0);
2765 for_each_vma(vmi, vma) {
2766 err = __ksm_del_vma(vma);
2767 if (err)
2768 return err;
2769 }
2770 return 0;
2771}
2772
d7597f59
SR
2773/**
2774 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2775 * compatible VMA's
2776 *
2777 * @mm: Pointer to mm
2778 *
2779 * Returns 0 on success, otherwise error code
2780 */
2781int ksm_enable_merge_any(struct mm_struct *mm)
2782{
2783 int err;
2784
2785 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2786 return 0;
2787
2788 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2789 err = __ksm_enter(mm);
2790 if (err)
2791 return err;
2792 }
2793
2794 set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2795 ksm_add_vmas(mm);
2796
2797 return 0;
2798}
2799
24139c07
DH
2800/**
2801 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2802 * previously enabled via ksm_enable_merge_any().
2803 *
2804 * Disabling merging implies unmerging any merged pages, like setting
2805 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2806 * merging on all compatible VMA's remains enabled.
2807 *
2808 * @mm: Pointer to mm
2809 *
2810 * Returns 0 on success, otherwise error code
2811 */
2812int ksm_disable_merge_any(struct mm_struct *mm)
2813{
2814 int err;
2815
2816 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2817 return 0;
2818
2819 err = ksm_del_vmas(mm);
2820 if (err) {
2821 ksm_add_vmas(mm);
2822 return err;
2823 }
2824
2825 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2826 return 0;
2827}
2828
2c281f54
DH
2829int ksm_disable(struct mm_struct *mm)
2830{
2831 mmap_assert_write_locked(mm);
2832
2833 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2834 return 0;
2835 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2836 return ksm_disable_merge_any(mm);
2837 return ksm_del_vmas(mm);
2838}
2839
f8af4da3
HD
2840int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2841 unsigned long end, int advice, unsigned long *vm_flags)
2842{
2843 struct mm_struct *mm = vma->vm_mm;
d952b791 2844 int err;
f8af4da3
HD
2845
2846 switch (advice) {
2847 case MADV_MERGEABLE:
d7597f59 2848 if (vma->vm_flags & VM_MERGEABLE)
e1fb4a08 2849 return 0;
d7597f59 2850 if (!vma_ksm_compatible(vma))
74a04967 2851 return 0;
cc2383ec 2852
d952b791
HD
2853 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2854 err = __ksm_enter(mm);
2855 if (err)
2856 return err;
2857 }
f8af4da3
HD
2858
2859 *vm_flags |= VM_MERGEABLE;
2860 break;
2861
2862 case MADV_UNMERGEABLE:
2863 if (!(*vm_flags & VM_MERGEABLE))
2864 return 0; /* just ignore the advice */
2865
d952b791 2866 if (vma->anon_vma) {
49b06385 2867 err = unmerge_ksm_pages(vma, start, end, true);
d952b791
HD
2868 if (err)
2869 return err;
2870 }
f8af4da3
HD
2871
2872 *vm_flags &= ~VM_MERGEABLE;
2873 break;
2874 }
2875
2876 return 0;
2877}
33cf1707 2878EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2879
2880int __ksm_enter(struct mm_struct *mm)
2881{
21fbd591 2882 struct ksm_mm_slot *mm_slot;
58730ab6 2883 struct mm_slot *slot;
6e158384
HD
2884 int needs_wakeup;
2885
58730ab6 2886 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2887 if (!mm_slot)
2888 return -ENOMEM;
2889
58730ab6
QZ
2890 slot = &mm_slot->slot;
2891
6e158384 2892 /* Check ksm_run too? Would need tighter locking */
58730ab6 2893 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2894
31dbd01f 2895 spin_lock(&ksm_mmlist_lock);
58730ab6 2896 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2897 /*
cbf86cfe
HD
2898 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2899 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2900 * down a little; when fork is followed by immediate exec, we don't
2901 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2902 *
2903 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2904 * scanning cursor, otherwise KSM pages in newly forked mms will be
2905 * missed: then we might as well insert at the end of the list.
31dbd01f 2906 */
cbf86cfe 2907 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 2908 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 2909 else
58730ab6 2910 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
2911 spin_unlock(&ksm_mmlist_lock);
2912
f8af4da3 2913 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2914 mmgrab(mm);
6e158384
HD
2915
2916 if (needs_wakeup)
2917 wake_up_interruptible(&ksm_thread_wait);
2918
739100c8 2919 trace_ksm_enter(mm);
f8af4da3
HD
2920 return 0;
2921}
2922
1c2fb7a4 2923void __ksm_exit(struct mm_struct *mm)
f8af4da3 2924{
21fbd591 2925 struct ksm_mm_slot *mm_slot;
58730ab6 2926 struct mm_slot *slot;
9ba69294 2927 int easy_to_free = 0;
cd551f97 2928
31dbd01f 2929 /*
9ba69294
HD
2930 * This process is exiting: if it's straightforward (as is the
2931 * case when ksmd was never running), free mm_slot immediately.
2932 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2933 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2934 * are freed, and leave the mm_slot on the list for ksmd to free.
2935 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2936 */
9ba69294 2937
cd551f97 2938 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2939 slot = mm_slot_lookup(mm_slots_hash, mm);
2940 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 2941 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2942 if (!mm_slot->rmap_list) {
58730ab6
QZ
2943 hash_del(&slot->hash);
2944 list_del(&slot->mm_node);
9ba69294
HD
2945 easy_to_free = 1;
2946 } else {
58730ab6
QZ
2947 list_move(&slot->mm_node,
2948 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 2949 }
cd551f97 2950 }
cd551f97
HD
2951 spin_unlock(&ksm_mmlist_lock);
2952
9ba69294 2953 if (easy_to_free) {
58730ab6 2954 mm_slot_free(mm_slot_cache, mm_slot);
d7597f59 2955 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
9ba69294
HD
2956 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2957 mmdrop(mm);
2958 } else if (mm_slot) {
d8ed45c5
ML
2959 mmap_write_lock(mm);
2960 mmap_write_unlock(mm);
9ba69294 2961 }
739100c8
SR
2962
2963 trace_ksm_exit(mm);
31dbd01f
IE
2964}
2965
96db66d9 2966struct folio *ksm_might_need_to_copy(struct folio *folio,
1486fb50 2967 struct vm_area_struct *vma, unsigned long addr)
5ad64688 2968{
96db66d9 2969 struct page *page = folio_page(folio, 0);
e05b3453 2970 struct anon_vma *anon_vma = folio_anon_vma(folio);
1486fb50 2971 struct folio *new_folio;
5ad64688 2972
1486fb50 2973 if (folio_test_large(folio))
96db66d9 2974 return folio;
1486fb50
KW
2975
2976 if (folio_test_ksm(folio)) {
2977 if (folio_stable_node(folio) &&
cbf86cfe 2978 !(ksm_run & KSM_RUN_UNMERGE))
96db66d9 2979 return folio; /* no need to copy it */
cbf86cfe 2980 } else if (!anon_vma) {
96db66d9 2981 return folio; /* no need to copy it */
1486fb50 2982 } else if (folio->index == linear_page_index(vma, addr) &&
e1c63e11 2983 anon_vma->root == vma->anon_vma->root) {
96db66d9 2984 return folio; /* still no need to copy it */
cbf86cfe 2985 }
f985fc32
ML
2986 if (PageHWPoison(page))
2987 return ERR_PTR(-EHWPOISON);
1486fb50 2988 if (!folio_test_uptodate(folio))
96db66d9 2989 return folio; /* let do_swap_page report the error */
cbf86cfe 2990
1486fb50
KW
2991 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
2992 if (new_folio &&
2993 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2994 folio_put(new_folio);
2995 new_folio = NULL;
62fdb163 2996 }
1486fb50 2997 if (new_folio) {
96db66d9
MWO
2998 if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
2999 addr, vma)) {
1486fb50 3000 folio_put(new_folio);
6b970599
KW
3001 return ERR_PTR(-EHWPOISON);
3002 }
1486fb50
KW
3003 folio_set_dirty(new_folio);
3004 __folio_mark_uptodate(new_folio);
3005 __folio_set_locked(new_folio);
4d45c3af
YY
3006#ifdef CONFIG_SWAP
3007 count_vm_event(KSM_SWPIN_COPY);
3008#endif
5ad64688
HD
3009 }
3010
96db66d9 3011 return new_folio;
5ad64688
HD
3012}
3013
6d4675e6 3014void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 3015{
21fbd591
QZ
3016 struct ksm_stable_node *stable_node;
3017 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
3018 int search_new_forks = 0;
3019
2f031c6f 3020 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
3021
3022 /*
3023 * Rely on the page lock to protect against concurrent modifications
3024 * to that page's node of the stable tree.
3025 */
2f031c6f 3026 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 3027
2f031c6f 3028 stable_node = folio_stable_node(folio);
e9995ef9 3029 if (!stable_node)
1df631ae 3030 return;
e9995ef9 3031again:
b67bfe0d 3032 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 3033 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 3034 struct anon_vma_chain *vmac;
e9995ef9
HD
3035 struct vm_area_struct *vma;
3036
ad12695f 3037 cond_resched();
6d4675e6
MK
3038 if (!anon_vma_trylock_read(anon_vma)) {
3039 if (rwc->try_lock) {
3040 rwc->contended = true;
3041 return;
3042 }
3043 anon_vma_lock_read(anon_vma);
3044 }
bf181b9f
ML
3045 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3046 0, ULONG_MAX) {
1105a2fc
JH
3047 unsigned long addr;
3048
ad12695f 3049 cond_resched();
5beb4930 3050 vma = vmac->vma;
1105a2fc
JH
3051
3052 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 3053 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
3054
3055 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
3056 continue;
3057 /*
3058 * Initially we examine only the vma which covers this
3059 * rmap_item; but later, if there is still work to do,
3060 * we examine covering vmas in other mms: in case they
3061 * were forked from the original since ksmd passed.
3062 */
3063 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3064 continue;
3065
0dd1c7bb
JK
3066 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3067 continue;
3068
2f031c6f 3069 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 3070 anon_vma_unlock_read(anon_vma);
1df631ae 3071 return;
e9995ef9 3072 }
2f031c6f 3073 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 3074 anon_vma_unlock_read(anon_vma);
1df631ae 3075 return;
0dd1c7bb 3076 }
e9995ef9 3077 }
b6b19f25 3078 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
3079 }
3080 if (!search_new_forks++)
3081 goto again;
e9995ef9
HD
3082}
3083
4248d008
LX
3084#ifdef CONFIG_MEMORY_FAILURE
3085/*
3086 * Collect processes when the error hit an ksm page.
3087 */
b650e1d2
MWO
3088void collect_procs_ksm(struct folio *folio, struct page *page,
3089 struct list_head *to_kill, int force_early)
4248d008
LX
3090{
3091 struct ksm_stable_node *stable_node;
3092 struct ksm_rmap_item *rmap_item;
4248d008
LX
3093 struct vm_area_struct *vma;
3094 struct task_struct *tsk;
3095
3096 stable_node = folio_stable_node(folio);
3097 if (!stable_node)
3098 return;
3099 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3100 struct anon_vma *av = rmap_item->anon_vma;
3101
3102 anon_vma_lock_read(av);
d256d1cd 3103 rcu_read_lock();
4248d008
LX
3104 for_each_process(tsk) {
3105 struct anon_vma_chain *vmac;
3106 unsigned long addr;
3107 struct task_struct *t =
3108 task_early_kill(tsk, force_early);
3109 if (!t)
3110 continue;
3111 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3112 ULONG_MAX)
3113 {
3114 vma = vmac->vma;
3115 if (vma->vm_mm == t->mm) {
3116 addr = rmap_item->address & PAGE_MASK;
3117 add_to_kill_ksm(t, page, vma, to_kill,
3118 addr);
3119 }
3120 }
3121 }
d256d1cd 3122 rcu_read_unlock();
4248d008
LX
3123 anon_vma_unlock_read(av);
3124 }
3125}
3126#endif
3127
52629506 3128#ifdef CONFIG_MIGRATION
19138349 3129void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 3130{
21fbd591 3131 struct ksm_stable_node *stable_node;
e9995ef9 3132
19138349
MWO
3133 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3134 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3135 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 3136
19138349 3137 stable_node = folio_stable_node(folio);
e9995ef9 3138 if (stable_node) {
19138349
MWO
3139 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3140 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 3141 /*
19138349 3142 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 3143 * to make sure that the new stable_node->kpfn is visible
79899cce 3144 * to ksm_get_folio() before it can see that folio->mapping
19138349 3145 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
3146 */
3147 smp_wmb();
b8b0ff24 3148 folio_set_stable_node(folio, NULL);
e9995ef9
HD
3149 }
3150}
3151#endif /* CONFIG_MIGRATION */
3152
62b61f61 3153#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
3154static void wait_while_offlining(void)
3155{
3156 while (ksm_run & KSM_RUN_OFFLINE) {
3157 mutex_unlock(&ksm_thread_mutex);
3158 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 3159 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
3160 mutex_lock(&ksm_thread_mutex);
3161 }
3162}
3163
21fbd591 3164static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
3165 unsigned long start_pfn,
3166 unsigned long end_pfn)
3167{
3168 if (stable_node->kpfn >= start_pfn &&
3169 stable_node->kpfn < end_pfn) {
3170 /*
79899cce 3171 * Don't ksm_get_folio, page has already gone:
2c653d0e
AA
3172 * which is why we keep kpfn instead of page*
3173 */
3174 remove_node_from_stable_tree(stable_node);
3175 return true;
3176 }
3177 return false;
3178}
3179
21fbd591 3180static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
3181 unsigned long start_pfn,
3182 unsigned long end_pfn,
3183 struct rb_root *root)
3184{
21fbd591 3185 struct ksm_stable_node *dup;
2c653d0e
AA
3186 struct hlist_node *hlist_safe;
3187
3188 if (!is_stable_node_chain(stable_node)) {
3189 VM_BUG_ON(is_stable_node_dup(stable_node));
3190 return stable_node_dup_remove_range(stable_node, start_pfn,
3191 end_pfn);
3192 }
3193
3194 hlist_for_each_entry_safe(dup, hlist_safe,
3195 &stable_node->hlist, hlist_dup) {
3196 VM_BUG_ON(!is_stable_node_dup(dup));
3197 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3198 }
3199 if (hlist_empty(&stable_node->hlist)) {
3200 free_stable_node_chain(stable_node, root);
3201 return true; /* notify caller that tree was rebalanced */
3202 } else
3203 return false;
3204}
3205
ee0ea59c
HD
3206static void ksm_check_stable_tree(unsigned long start_pfn,
3207 unsigned long end_pfn)
62b61f61 3208{
21fbd591 3209 struct ksm_stable_node *stable_node, *next;
62b61f61 3210 struct rb_node *node;
90bd6fd3 3211 int nid;
62b61f61 3212
ef53d16c
HD
3213 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3214 node = rb_first(root_stable_tree + nid);
ee0ea59c 3215 while (node) {
21fbd591 3216 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
3217 if (stable_node_chain_remove_range(stable_node,
3218 start_pfn, end_pfn,
3219 root_stable_tree +
3220 nid))
ef53d16c 3221 node = rb_first(root_stable_tree + nid);
2c653d0e 3222 else
ee0ea59c
HD
3223 node = rb_next(node);
3224 cond_resched();
90bd6fd3 3225 }
ee0ea59c 3226 }
03640418 3227 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
3228 if (stable_node->kpfn >= start_pfn &&
3229 stable_node->kpfn < end_pfn)
3230 remove_node_from_stable_tree(stable_node);
3231 cond_resched();
3232 }
62b61f61
HD
3233}
3234
3235static int ksm_memory_callback(struct notifier_block *self,
3236 unsigned long action, void *arg)
3237{
3238 struct memory_notify *mn = arg;
62b61f61
HD
3239
3240 switch (action) {
3241 case MEM_GOING_OFFLINE:
3242 /*
ef4d43a8
HD
3243 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3244 * and remove_all_stable_nodes() while memory is going offline:
3245 * it is unsafe for them to touch the stable tree at this time.
3246 * But unmerge_ksm_pages(), rmap lookups and other entry points
3247 * which do not need the ksm_thread_mutex are all safe.
62b61f61 3248 */
ef4d43a8
HD
3249 mutex_lock(&ksm_thread_mutex);
3250 ksm_run |= KSM_RUN_OFFLINE;
3251 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
3252 break;
3253
3254 case MEM_OFFLINE:
3255 /*
3256 * Most of the work is done by page migration; but there might
3257 * be a few stable_nodes left over, still pointing to struct
ee0ea59c 3258 * pages which have been offlined: prune those from the tree,
79899cce 3259 * otherwise ksm_get_folio() might later try to access a
ee0ea59c 3260 * non-existent struct page.
62b61f61 3261 */
ee0ea59c
HD
3262 ksm_check_stable_tree(mn->start_pfn,
3263 mn->start_pfn + mn->nr_pages);
e4a9bc58 3264 fallthrough;
62b61f61 3265 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
3266 mutex_lock(&ksm_thread_mutex);
3267 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 3268 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
3269
3270 smp_mb(); /* wake_up_bit advises this */
3271 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
3272 break;
3273 }
3274 return NOTIFY_OK;
3275}
ef4d43a8
HD
3276#else
3277static void wait_while_offlining(void)
3278{
3279}
62b61f61
HD
3280#endif /* CONFIG_MEMORY_HOTREMOVE */
3281
d21077fb
SR
3282#ifdef CONFIG_PROC_FS
3283long ksm_process_profit(struct mm_struct *mm)
3284{
c2dc78b8 3285 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
d21077fb
SR
3286 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3287}
3288#endif /* CONFIG_PROC_FS */
3289
2ffd8679
HD
3290#ifdef CONFIG_SYSFS
3291/*
3292 * This all compiles without CONFIG_SYSFS, but is a waste of space.
3293 */
3294
31dbd01f
IE
3295#define KSM_ATTR_RO(_name) \
3296 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3297#define KSM_ATTR(_name) \
1bad2e5c 3298 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
3299
3300static ssize_t sleep_millisecs_show(struct kobject *kobj,
3301 struct kobj_attribute *attr, char *buf)
3302{
ae7a927d 3303 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
3304}
3305
3306static ssize_t sleep_millisecs_store(struct kobject *kobj,
3307 struct kobj_attribute *attr,
3308 const char *buf, size_t count)
3309{
dfefd226 3310 unsigned int msecs;
31dbd01f
IE
3311 int err;
3312
dfefd226
AD
3313 err = kstrtouint(buf, 10, &msecs);
3314 if (err)
31dbd01f
IE
3315 return -EINVAL;
3316
3317 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 3318 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
3319
3320 return count;
3321}
3322KSM_ATTR(sleep_millisecs);
3323
3324static ssize_t pages_to_scan_show(struct kobject *kobj,
3325 struct kobj_attribute *attr, char *buf)
3326{
ae7a927d 3327 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
3328}
3329
3330static ssize_t pages_to_scan_store(struct kobject *kobj,
3331 struct kobj_attribute *attr,
3332 const char *buf, size_t count)
3333{
dfefd226 3334 unsigned int nr_pages;
31dbd01f 3335 int err;
31dbd01f 3336
4e5fa4f5
SR
3337 if (ksm_advisor != KSM_ADVISOR_NONE)
3338 return -EINVAL;
3339
dfefd226
AD
3340 err = kstrtouint(buf, 10, &nr_pages);
3341 if (err)
31dbd01f
IE
3342 return -EINVAL;
3343
3344 ksm_thread_pages_to_scan = nr_pages;
3345
3346 return count;
3347}
3348KSM_ATTR(pages_to_scan);
3349
3350static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3351 char *buf)
3352{
ae7a927d 3353 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
3354}
3355
3356static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3357 const char *buf, size_t count)
3358{
dfefd226 3359 unsigned int flags;
31dbd01f 3360 int err;
31dbd01f 3361
dfefd226
AD
3362 err = kstrtouint(buf, 10, &flags);
3363 if (err)
31dbd01f
IE
3364 return -EINVAL;
3365 if (flags > KSM_RUN_UNMERGE)
3366 return -EINVAL;
3367
3368 /*
3369 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3370 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
3371 * breaking COW to free the pages_shared (but leaves mm_slots
3372 * on the list for when ksmd may be set running again).
31dbd01f
IE
3373 */
3374
3375 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3376 wait_while_offlining();
31dbd01f
IE
3377 if (ksm_run != flags) {
3378 ksm_run = flags;
d952b791 3379 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 3380 set_current_oom_origin();
d952b791 3381 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 3382 clear_current_oom_origin();
d952b791
HD
3383 if (err) {
3384 ksm_run = KSM_RUN_STOP;
3385 count = err;
3386 }
3387 }
31dbd01f
IE
3388 }
3389 mutex_unlock(&ksm_thread_mutex);
3390
3391 if (flags & KSM_RUN_MERGE)
3392 wake_up_interruptible(&ksm_thread_wait);
3393
3394 return count;
3395}
3396KSM_ATTR(run);
3397
90bd6fd3
PH
3398#ifdef CONFIG_NUMA
3399static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 3400 struct kobj_attribute *attr, char *buf)
90bd6fd3 3401{
ae7a927d 3402 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
3403}
3404
3405static ssize_t merge_across_nodes_store(struct kobject *kobj,
3406 struct kobj_attribute *attr,
3407 const char *buf, size_t count)
3408{
3409 int err;
3410 unsigned long knob;
3411
3412 err = kstrtoul(buf, 10, &knob);
3413 if (err)
3414 return err;
3415 if (knob > 1)
3416 return -EINVAL;
3417
3418 mutex_lock(&ksm_thread_mutex);
ef4d43a8 3419 wait_while_offlining();
90bd6fd3 3420 if (ksm_merge_across_nodes != knob) {
cbf86cfe 3421 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 3422 err = -EBUSY;
ef53d16c
HD
3423 else if (root_stable_tree == one_stable_tree) {
3424 struct rb_root *buf;
3425 /*
3426 * This is the first time that we switch away from the
3427 * default of merging across nodes: must now allocate
3428 * a buffer to hold as many roots as may be needed.
3429 * Allocate stable and unstable together:
3430 * MAXSMP NODES_SHIFT 10 will use 16kB.
3431 */
bafe1e14
JP
3432 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3433 GFP_KERNEL);
ef53d16c
HD
3434 /* Let us assume that RB_ROOT is NULL is zero */
3435 if (!buf)
3436 err = -ENOMEM;
3437 else {
3438 root_stable_tree = buf;
3439 root_unstable_tree = buf + nr_node_ids;
3440 /* Stable tree is empty but not the unstable */
3441 root_unstable_tree[0] = one_unstable_tree[0];
3442 }
3443 }
3444 if (!err) {
90bd6fd3 3445 ksm_merge_across_nodes = knob;
ef53d16c
HD
3446 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3447 }
90bd6fd3
PH
3448 }
3449 mutex_unlock(&ksm_thread_mutex);
3450
3451 return err ? err : count;
3452}
3453KSM_ATTR(merge_across_nodes);
3454#endif
3455
e86c59b1 3456static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3457 struct kobj_attribute *attr, char *buf)
e86c59b1 3458{
ae7a927d 3459 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3460}
3461static ssize_t use_zero_pages_store(struct kobject *kobj,
3462 struct kobj_attribute *attr,
3463 const char *buf, size_t count)
3464{
3465 int err;
3466 bool value;
3467
3468 err = kstrtobool(buf, &value);
3469 if (err)
3470 return -EINVAL;
3471
3472 ksm_use_zero_pages = value;
3473
3474 return count;
3475}
3476KSM_ATTR(use_zero_pages);
3477
2c653d0e
AA
3478static ssize_t max_page_sharing_show(struct kobject *kobj,
3479 struct kobj_attribute *attr, char *buf)
3480{
ae7a927d 3481 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3482}
3483
3484static ssize_t max_page_sharing_store(struct kobject *kobj,
3485 struct kobj_attribute *attr,
3486 const char *buf, size_t count)
3487{
3488 int err;
3489 int knob;
3490
3491 err = kstrtoint(buf, 10, &knob);
3492 if (err)
3493 return err;
3494 /*
3495 * When a KSM page is created it is shared by 2 mappings. This
3496 * being a signed comparison, it implicitly verifies it's not
3497 * negative.
3498 */
3499 if (knob < 2)
3500 return -EINVAL;
3501
3502 if (READ_ONCE(ksm_max_page_sharing) == knob)
3503 return count;
3504
3505 mutex_lock(&ksm_thread_mutex);
3506 wait_while_offlining();
3507 if (ksm_max_page_sharing != knob) {
3508 if (ksm_pages_shared || remove_all_stable_nodes())
3509 err = -EBUSY;
3510 else
3511 ksm_max_page_sharing = knob;
3512 }
3513 mutex_unlock(&ksm_thread_mutex);
3514
3515 return err ? err : count;
3516}
3517KSM_ATTR(max_page_sharing);
3518
b348b5fe
SR
3519static ssize_t pages_scanned_show(struct kobject *kobj,
3520 struct kobj_attribute *attr, char *buf)
3521{
3522 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3523}
3524KSM_ATTR_RO(pages_scanned);
3525
b4028260
HD
3526static ssize_t pages_shared_show(struct kobject *kobj,
3527 struct kobj_attribute *attr, char *buf)
3528{
ae7a927d 3529 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3530}
3531KSM_ATTR_RO(pages_shared);
3532
3533static ssize_t pages_sharing_show(struct kobject *kobj,
3534 struct kobj_attribute *attr, char *buf)
3535{
ae7a927d 3536 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3537}
3538KSM_ATTR_RO(pages_sharing);
3539
473b0ce4
HD
3540static ssize_t pages_unshared_show(struct kobject *kobj,
3541 struct kobj_attribute *attr, char *buf)
3542{
ae7a927d 3543 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3544}
3545KSM_ATTR_RO(pages_unshared);
3546
3547static ssize_t pages_volatile_show(struct kobject *kobj,
3548 struct kobj_attribute *attr, char *buf)
3549{
3550 long ksm_pages_volatile;
3551
3552 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3553 - ksm_pages_sharing - ksm_pages_unshared;
3554 /*
3555 * It was not worth any locking to calculate that statistic,
3556 * but it might therefore sometimes be negative: conceal that.
3557 */
3558 if (ksm_pages_volatile < 0)
3559 ksm_pages_volatile = 0;
ae7a927d 3560 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3561}
3562KSM_ATTR_RO(pages_volatile);
3563
e5a68991
SR
3564static ssize_t pages_skipped_show(struct kobject *kobj,
3565 struct kobj_attribute *attr, char *buf)
3566{
3567 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3568}
3569KSM_ATTR_RO(pages_skipped);
3570
e2942062 3571static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3572 struct kobj_attribute *attr, char *buf)
3573{
c2dc78b8 3574 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
e2942062 3575}
3576KSM_ATTR_RO(ksm_zero_pages);
3577
d21077fb
SR
3578static ssize_t general_profit_show(struct kobject *kobj,
3579 struct kobj_attribute *attr, char *buf)
3580{
3581 long general_profit;
3582
c2dc78b8 3583 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
d21077fb
SR
3584 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3585
3586 return sysfs_emit(buf, "%ld\n", general_profit);
3587}
3588KSM_ATTR_RO(general_profit);
3589
2c653d0e
AA
3590static ssize_t stable_node_dups_show(struct kobject *kobj,
3591 struct kobj_attribute *attr, char *buf)
3592{
ae7a927d 3593 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3594}
3595KSM_ATTR_RO(stable_node_dups);
3596
3597static ssize_t stable_node_chains_show(struct kobject *kobj,
3598 struct kobj_attribute *attr, char *buf)
3599{
ae7a927d 3600 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3601}
3602KSM_ATTR_RO(stable_node_chains);
3603
3604static ssize_t
3605stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3606 struct kobj_attribute *attr,
3607 char *buf)
3608{
ae7a927d 3609 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3610}
3611
3612static ssize_t
3613stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3614 struct kobj_attribute *attr,
3615 const char *buf, size_t count)
3616{
584ff0df 3617 unsigned int msecs;
2c653d0e
AA
3618 int err;
3619
584ff0df
ZB
3620 err = kstrtouint(buf, 10, &msecs);
3621 if (err)
2c653d0e
AA
3622 return -EINVAL;
3623
3624 ksm_stable_node_chains_prune_millisecs = msecs;
3625
3626 return count;
3627}
3628KSM_ATTR(stable_node_chains_prune_millisecs);
3629
473b0ce4
HD
3630static ssize_t full_scans_show(struct kobject *kobj,
3631 struct kobj_attribute *attr, char *buf)
3632{
ae7a927d 3633 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3634}
3635KSM_ATTR_RO(full_scans);
3636
5e924ff5
SR
3637static ssize_t smart_scan_show(struct kobject *kobj,
3638 struct kobj_attribute *attr, char *buf)
3639{
3640 return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3641}
3642
3643static ssize_t smart_scan_store(struct kobject *kobj,
3644 struct kobj_attribute *attr,
3645 const char *buf, size_t count)
3646{
3647 int err;
3648 bool value;
3649
3650 err = kstrtobool(buf, &value);
3651 if (err)
3652 return -EINVAL;
3653
3654 ksm_smart_scan = value;
3655 return count;
3656}
3657KSM_ATTR(smart_scan);
3658
66790e9a
SR
3659static ssize_t advisor_mode_show(struct kobject *kobj,
3660 struct kobj_attribute *attr, char *buf)
3661{
3662 const char *output;
3663
3664 if (ksm_advisor == KSM_ADVISOR_NONE)
3665 output = "[none] scan-time";
3666 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3667 output = "none [scan-time]";
3668
3669 return sysfs_emit(buf, "%s\n", output);
3670}
3671
3672static ssize_t advisor_mode_store(struct kobject *kobj,
3673 struct kobj_attribute *attr, const char *buf,
3674 size_t count)
3675{
3676 enum ksm_advisor_type curr_advisor = ksm_advisor;
3677
3678 if (sysfs_streq("scan-time", buf))
3679 ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3680 else if (sysfs_streq("none", buf))
3681 ksm_advisor = KSM_ADVISOR_NONE;
3682 else
3683 return -EINVAL;
3684
3685 /* Set advisor default values */
3686 if (curr_advisor != ksm_advisor)
3687 set_advisor_defaults();
3688
3689 return count;
3690}
3691KSM_ATTR(advisor_mode);
3692
3693static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3694 struct kobj_attribute *attr, char *buf)
3695{
3696 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3697}
3698
3699static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3700 struct kobj_attribute *attr,
3701 const char *buf, size_t count)
3702{
3703 int err;
3704 unsigned long value;
3705
3706 err = kstrtoul(buf, 10, &value);
3707 if (err)
3708 return -EINVAL;
3709
3710 ksm_advisor_max_cpu = value;
3711 return count;
3712}
3713KSM_ATTR(advisor_max_cpu);
3714
3715static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3716 struct kobj_attribute *attr, char *buf)
3717{
3718 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3719}
3720
3721static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3722 struct kobj_attribute *attr,
3723 const char *buf, size_t count)
3724{
3725 int err;
3726 unsigned long value;
3727
3728 err = kstrtoul(buf, 10, &value);
3729 if (err)
3730 return -EINVAL;
3731
3732 ksm_advisor_min_pages_to_scan = value;
3733 return count;
3734}
3735KSM_ATTR(advisor_min_pages_to_scan);
3736
3737static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3738 struct kobj_attribute *attr, char *buf)
3739{
3740 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3741}
3742
3743static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3744 struct kobj_attribute *attr,
3745 const char *buf, size_t count)
3746{
3747 int err;
3748 unsigned long value;
3749
3750 err = kstrtoul(buf, 10, &value);
3751 if (err)
3752 return -EINVAL;
3753
3754 ksm_advisor_max_pages_to_scan = value;
3755 return count;
3756}
3757KSM_ATTR(advisor_max_pages_to_scan);
3758
3759static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3760 struct kobj_attribute *attr, char *buf)
3761{
3762 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3763}
3764
3765static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3766 struct kobj_attribute *attr,
3767 const char *buf, size_t count)
3768{
3769 int err;
3770 unsigned long value;
3771
3772 err = kstrtoul(buf, 10, &value);
3773 if (err)
3774 return -EINVAL;
3775 if (value < 1)
3776 return -EINVAL;
3777
3778 ksm_advisor_target_scan_time = value;
3779 return count;
3780}
3781KSM_ATTR(advisor_target_scan_time);
3782
31dbd01f
IE
3783static struct attribute *ksm_attrs[] = {
3784 &sleep_millisecs_attr.attr,
3785 &pages_to_scan_attr.attr,
3786 &run_attr.attr,
b348b5fe 3787 &pages_scanned_attr.attr,
b4028260
HD
3788 &pages_shared_attr.attr,
3789 &pages_sharing_attr.attr,
473b0ce4
HD
3790 &pages_unshared_attr.attr,
3791 &pages_volatile_attr.attr,
e5a68991 3792 &pages_skipped_attr.attr,
e2942062 3793 &ksm_zero_pages_attr.attr,
473b0ce4 3794 &full_scans_attr.attr,
90bd6fd3
PH
3795#ifdef CONFIG_NUMA
3796 &merge_across_nodes_attr.attr,
3797#endif
2c653d0e
AA
3798 &max_page_sharing_attr.attr,
3799 &stable_node_chains_attr.attr,
3800 &stable_node_dups_attr.attr,
3801 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3802 &use_zero_pages_attr.attr,
d21077fb 3803 &general_profit_attr.attr,
5e924ff5 3804 &smart_scan_attr.attr,
66790e9a
SR
3805 &advisor_mode_attr.attr,
3806 &advisor_max_cpu_attr.attr,
3807 &advisor_min_pages_to_scan_attr.attr,
3808 &advisor_max_pages_to_scan_attr.attr,
3809 &advisor_target_scan_time_attr.attr,
31dbd01f
IE
3810 NULL,
3811};
3812
f907c26a 3813static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3814 .attrs = ksm_attrs,
3815 .name = "ksm",
3816};
2ffd8679 3817#endif /* CONFIG_SYSFS */
31dbd01f
IE
3818
3819static int __init ksm_init(void)
3820{
3821 struct task_struct *ksm_thread;
3822 int err;
3823
e86c59b1
CI
3824 /* The correct value depends on page size and endianness */
3825 zero_checksum = calc_checksum(ZERO_PAGE(0));
3826 /* Default to false for backwards compatibility */
3827 ksm_use_zero_pages = false;
3828
31dbd01f
IE
3829 err = ksm_slab_init();
3830 if (err)
3831 goto out;
3832
31dbd01f
IE
3833 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3834 if (IS_ERR(ksm_thread)) {
25acde31 3835 pr_err("ksm: creating kthread failed\n");
31dbd01f 3836 err = PTR_ERR(ksm_thread);
d9f8984c 3837 goto out_free;
31dbd01f
IE
3838 }
3839
2ffd8679 3840#ifdef CONFIG_SYSFS
31dbd01f
IE
3841 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3842 if (err) {
25acde31 3843 pr_err("ksm: register sysfs failed\n");
2ffd8679 3844 kthread_stop(ksm_thread);
d9f8984c 3845 goto out_free;
31dbd01f 3846 }
c73602ad
HD
3847#else
3848 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3849
2ffd8679 3850#endif /* CONFIG_SYSFS */
31dbd01f 3851
62b61f61 3852#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3853 /* There is no significance to this priority 100 */
1eeaa4fd 3854 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3855#endif
31dbd01f
IE
3856 return 0;
3857
d9f8984c 3858out_free:
31dbd01f
IE
3859 ksm_slab_free();
3860out:
3861 return err;
f8af4da3 3862}
a64fb3cd 3863subsys_initcall(ksm_init);