slab, slub: skip unnecessary kasan_cache_shutdown()
[linux-block.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
28#include <linux/jhash.h>
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
31dbd01f
IE
54/*
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
57 *
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
60 *
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
64 *
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
69 *
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
76 *
77 * KSM solves this problem by several techniques:
78 *
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
92 *
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
95 */
96
97/**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
102 * @mm: the mm that this information is valid for
103 */
104struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
6514d511 107 struct rmap_item *rmap_list;
31dbd01f
IE
108 struct mm_struct *mm;
109};
110
111/**
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
6514d511 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
116 * @seqnr: count of completed full scans (needed when removing unstable node)
117 *
118 * There is only the one ksm_scan instance of this cursor structure.
119 */
120struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
6514d511 123 struct rmap_item **rmap_list;
31dbd01f
IE
124 unsigned long seqnr;
125};
126
7b6ba2c7
HD
127/**
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
4146d2d6 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 132 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 133 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
138 */
139struct stable_node {
4146d2d6
HD
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
2c653d0e
AA
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
147 };
4146d2d6
HD
148 };
149 };
7b6ba2c7 150 struct hlist_head hlist;
2c653d0e
AA
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
154 };
155 /*
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
159 */
160#define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
4146d2d6
HD
162#ifdef CONFIG_NUMA
163 int nid;
164#endif
7b6ba2c7
HD
165};
166
31dbd01f
IE
167/**
168 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
178 */
179struct rmap_item {
6514d511 180 struct rmap_item *rmap_list;
bc56620b
HD
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183#ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185#endif
186 };
31dbd01f
IE
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 189 unsigned int oldchecksum; /* when unstable */
31dbd01f 190 union {
7b6ba2c7
HD
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
195 };
31dbd01f
IE
196 };
197};
198
199#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
200#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
202
203/* The stable and unstable tree heads */
ef53d16c
HD
204static struct rb_root one_stable_tree[1] = { RB_ROOT };
205static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206static struct rb_root *root_stable_tree = one_stable_tree;
207static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 208
4146d2d6
HD
209/* Recently migrated nodes of stable tree, pending proper placement */
210static LIST_HEAD(migrate_nodes);
2c653d0e 211#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 212
4ca3a69b
SL
213#define MM_SLOTS_HASH_BITS 10
214static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
215
216static struct mm_slot ksm_mm_head = {
217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218};
219static struct ksm_scan ksm_scan = {
220 .mm_slot = &ksm_mm_head,
221};
222
223static struct kmem_cache *rmap_item_cache;
7b6ba2c7 224static struct kmem_cache *stable_node_cache;
31dbd01f
IE
225static struct kmem_cache *mm_slot_cache;
226
227/* The number of nodes in the stable tree */
b4028260 228static unsigned long ksm_pages_shared;
31dbd01f 229
e178dfde 230/* The number of page slots additionally sharing those nodes */
b4028260 231static unsigned long ksm_pages_sharing;
31dbd01f 232
473b0ce4
HD
233/* The number of nodes in the unstable tree */
234static unsigned long ksm_pages_unshared;
235
236/* The number of rmap_items in use: to calculate pages_volatile */
237static unsigned long ksm_rmap_items;
238
2c653d0e
AA
239/* The number of stable_node chains */
240static unsigned long ksm_stable_node_chains;
241
242/* The number of stable_node dups linked to the stable_node chains */
243static unsigned long ksm_stable_node_dups;
244
245/* Delay in pruning stale stable_node_dups in the stable_node_chains */
246static int ksm_stable_node_chains_prune_millisecs = 2000;
247
248/* Maximum number of page slots sharing a stable node */
249static int ksm_max_page_sharing = 256;
250
31dbd01f 251/* Number of pages ksmd should scan in one batch */
2c6854fd 252static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
253
254/* Milliseconds ksmd should sleep between batches */
2ffd8679 255static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 256
e86c59b1
CI
257/* Checksum of an empty (zeroed) page */
258static unsigned int zero_checksum __read_mostly;
259
260/* Whether to merge empty (zeroed) pages with actual zero pages */
261static bool ksm_use_zero_pages __read_mostly;
262
e850dcf5 263#ifdef CONFIG_NUMA
90bd6fd3
PH
264/* Zeroed when merging across nodes is not allowed */
265static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 266static int ksm_nr_node_ids = 1;
e850dcf5
HD
267#else
268#define ksm_merge_across_nodes 1U
ef53d16c 269#define ksm_nr_node_ids 1
e850dcf5 270#endif
90bd6fd3 271
31dbd01f
IE
272#define KSM_RUN_STOP 0
273#define KSM_RUN_MERGE 1
274#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
275#define KSM_RUN_OFFLINE 4
276static unsigned long ksm_run = KSM_RUN_STOP;
277static void wait_while_offlining(void);
31dbd01f
IE
278
279static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280static DEFINE_MUTEX(ksm_thread_mutex);
281static DEFINE_SPINLOCK(ksm_mmlist_lock);
282
283#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
285 (__flags), NULL)
286
287static int __init ksm_slab_init(void)
288{
289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 if (!rmap_item_cache)
291 goto out;
292
7b6ba2c7
HD
293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 if (!stable_node_cache)
295 goto out_free1;
296
31dbd01f
IE
297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 if (!mm_slot_cache)
7b6ba2c7 299 goto out_free2;
31dbd01f
IE
300
301 return 0;
302
7b6ba2c7
HD
303out_free2:
304 kmem_cache_destroy(stable_node_cache);
305out_free1:
31dbd01f
IE
306 kmem_cache_destroy(rmap_item_cache);
307out:
308 return -ENOMEM;
309}
310
311static void __init ksm_slab_free(void)
312{
313 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 314 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
315 kmem_cache_destroy(rmap_item_cache);
316 mm_slot_cache = NULL;
317}
318
2c653d0e
AA
319static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320{
321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322}
323
324static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325{
326 return dup->head == STABLE_NODE_DUP_HEAD;
327}
328
329static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 struct stable_node *chain)
331{
332 VM_BUG_ON(is_stable_node_dup(dup));
333 dup->head = STABLE_NODE_DUP_HEAD;
334 VM_BUG_ON(!is_stable_node_chain(chain));
335 hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 ksm_stable_node_dups++;
337}
338
339static inline void __stable_node_dup_del(struct stable_node *dup)
340{
b4fecc67 341 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
342 hlist_del(&dup->hlist_dup);
343 ksm_stable_node_dups--;
344}
345
346static inline void stable_node_dup_del(struct stable_node *dup)
347{
348 VM_BUG_ON(is_stable_node_chain(dup));
349 if (is_stable_node_dup(dup))
350 __stable_node_dup_del(dup);
351 else
352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353#ifdef CONFIG_DEBUG_VM
354 dup->head = NULL;
355#endif
356}
357
31dbd01f
IE
358static inline struct rmap_item *alloc_rmap_item(void)
359{
473b0ce4
HD
360 struct rmap_item *rmap_item;
361
5b398e41 362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
364 if (rmap_item)
365 ksm_rmap_items++;
366 return rmap_item;
31dbd01f
IE
367}
368
369static inline void free_rmap_item(struct rmap_item *rmap_item)
370{
473b0ce4 371 ksm_rmap_items--;
31dbd01f
IE
372 rmap_item->mm = NULL; /* debug safety */
373 kmem_cache_free(rmap_item_cache, rmap_item);
374}
375
7b6ba2c7
HD
376static inline struct stable_node *alloc_stable_node(void)
377{
6213055f 378 /*
379 * The allocation can take too long with GFP_KERNEL when memory is under
380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
381 * grants access to memory reserves, helping to avoid this problem.
382 */
383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
384}
385
386static inline void free_stable_node(struct stable_node *stable_node)
387{
2c653d0e
AA
388 VM_BUG_ON(stable_node->rmap_hlist_len &&
389 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
390 kmem_cache_free(stable_node_cache, stable_node);
391}
392
31dbd01f
IE
393static inline struct mm_slot *alloc_mm_slot(void)
394{
395 if (!mm_slot_cache) /* initialization failed */
396 return NULL;
397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
398}
399
400static inline void free_mm_slot(struct mm_slot *mm_slot)
401{
402 kmem_cache_free(mm_slot_cache, mm_slot);
403}
404
31dbd01f
IE
405static struct mm_slot *get_mm_slot(struct mm_struct *mm)
406{
4ca3a69b
SL
407 struct mm_slot *slot;
408
b67bfe0d 409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
410 if (slot->mm == mm)
411 return slot;
31dbd01f 412
31dbd01f
IE
413 return NULL;
414}
415
416static void insert_to_mm_slots_hash(struct mm_struct *mm,
417 struct mm_slot *mm_slot)
418{
31dbd01f 419 mm_slot->mm = mm;
4ca3a69b 420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
421}
422
a913e182
HD
423/*
424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425 * page tables after it has passed through ksm_exit() - which, if necessary,
426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
427 * a special flag: they can just back out as soon as mm_users goes to zero.
428 * ksm_test_exit() is used throughout to make this test for exit: in some
429 * places for correctness, in some places just to avoid unnecessary work.
430 */
431static inline bool ksm_test_exit(struct mm_struct *mm)
432{
433 return atomic_read(&mm->mm_users) == 0;
434}
435
31dbd01f
IE
436/*
437 * We use break_ksm to break COW on a ksm page: it's a stripped down
438 *
d4edcf0d 439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
31dbd01f
IE
440 * put_page(page);
441 *
442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443 * in case the application has unmapped and remapped mm,addr meanwhile.
444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
1b2ee126
DH
446 *
447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448 * of the process that owns 'vma'. We also do not want to enforce
449 * protection keys here anyway.
31dbd01f 450 */
d952b791 451static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
452{
453 struct page *page;
d952b791 454 int ret = 0;
31dbd01f
IE
455
456 do {
457 cond_resched();
1b2ee126
DH
458 page = follow_page(vma, addr,
459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 460 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
461 break;
462 if (PageKsm(page))
dcddffd4
KS
463 ret = handle_mm_fault(vma, addr,
464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
31dbd01f
IE
465 else
466 ret = VM_FAULT_WRITE;
467 put_page(page);
33692f27 468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
469 /*
470 * We must loop because handle_mm_fault() may back out if there's
471 * any difficulty e.g. if pte accessed bit gets updated concurrently.
472 *
473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 * COW has been broken, even if the vma does not permit VM_WRITE;
475 * but note that a concurrent fault might break PageKsm for us.
476 *
477 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 * backing file, which also invalidates anonymous pages: that's
479 * okay, that truncation will have unmapped the PageKsm for us.
480 *
481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 * to user; and ksmd, having no mm, would never be chosen for that.
485 *
486 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 * even ksmd can fail in this way - though it's usually breaking ksm
489 * just to undo a merge it made a moment before, so unlikely to oom.
490 *
491 * That's a pity: we might therefore have more kernel pages allocated
492 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 * will retry to break_cow on each pass, so should recover the page
494 * in due course. The important thing is to not let VM_MERGEABLE
495 * be cleared while any such pages might remain in the area.
496 */
497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
498}
499
ef694222
BL
500static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501 unsigned long addr)
502{
503 struct vm_area_struct *vma;
504 if (ksm_test_exit(mm))
505 return NULL;
506 vma = find_vma(mm, addr);
507 if (!vma || vma->vm_start > addr)
508 return NULL;
509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510 return NULL;
511 return vma;
512}
513
8dd3557a 514static void break_cow(struct rmap_item *rmap_item)
31dbd01f 515{
8dd3557a
HD
516 struct mm_struct *mm = rmap_item->mm;
517 unsigned long addr = rmap_item->address;
31dbd01f
IE
518 struct vm_area_struct *vma;
519
4035c07a
HD
520 /*
521 * It is not an accident that whenever we want to break COW
522 * to undo, we also need to drop a reference to the anon_vma.
523 */
9e60109f 524 put_anon_vma(rmap_item->anon_vma);
4035c07a 525
81464e30 526 down_read(&mm->mmap_sem);
ef694222
BL
527 vma = find_mergeable_vma(mm, addr);
528 if (vma)
529 break_ksm(vma, addr);
31dbd01f
IE
530 up_read(&mm->mmap_sem);
531}
532
533static struct page *get_mergeable_page(struct rmap_item *rmap_item)
534{
535 struct mm_struct *mm = rmap_item->mm;
536 unsigned long addr = rmap_item->address;
537 struct vm_area_struct *vma;
538 struct page *page;
539
540 down_read(&mm->mmap_sem);
ef694222
BL
541 vma = find_mergeable_vma(mm, addr);
542 if (!vma)
31dbd01f
IE
543 goto out;
544
545 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 546 if (IS_ERR_OR_NULL(page))
31dbd01f 547 goto out;
f765f540 548 if (PageAnon(page)) {
31dbd01f
IE
549 flush_anon_page(vma, page, addr);
550 flush_dcache_page(page);
551 } else {
552 put_page(page);
c8f95ed1
AA
553out:
554 page = NULL;
31dbd01f
IE
555 }
556 up_read(&mm->mmap_sem);
557 return page;
558}
559
90bd6fd3
PH
560/*
561 * This helper is used for getting right index into array of tree roots.
562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564 * every node has its own stable and unstable tree.
565 */
566static inline int get_kpfn_nid(unsigned long kpfn)
567{
d8fc16a8 568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
569}
570
2c653d0e
AA
571static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572 struct rb_root *root)
573{
574 struct stable_node *chain = alloc_stable_node();
575 VM_BUG_ON(is_stable_node_chain(dup));
576 if (likely(chain)) {
577 INIT_HLIST_HEAD(&chain->hlist);
578 chain->chain_prune_time = jiffies;
579 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 chain->nid = -1; /* debug */
582#endif
583 ksm_stable_node_chains++;
584
585 /*
586 * Put the stable node chain in the first dimension of
587 * the stable tree and at the same time remove the old
588 * stable node.
589 */
590 rb_replace_node(&dup->node, &chain->node, root);
591
592 /*
593 * Move the old stable node to the second dimension
594 * queued in the hlist_dup. The invariant is that all
595 * dup stable_nodes in the chain->hlist point to pages
596 * that are wrprotected and have the exact same
597 * content.
598 */
599 stable_node_chain_add_dup(dup, chain);
600 }
601 return chain;
602}
603
604static inline void free_stable_node_chain(struct stable_node *chain,
605 struct rb_root *root)
606{
607 rb_erase(&chain->node, root);
608 free_stable_node(chain);
609 ksm_stable_node_chains--;
610}
611
4035c07a
HD
612static void remove_node_from_stable_tree(struct stable_node *stable_node)
613{
614 struct rmap_item *rmap_item;
4035c07a 615
2c653d0e
AA
616 /* check it's not STABLE_NODE_CHAIN or negative */
617 BUG_ON(stable_node->rmap_hlist_len < 0);
618
b67bfe0d 619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
620 if (rmap_item->hlist.next)
621 ksm_pages_sharing--;
622 else
623 ksm_pages_shared--;
2c653d0e
AA
624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625 stable_node->rmap_hlist_len--;
9e60109f 626 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
627 rmap_item->address &= PAGE_MASK;
628 cond_resched();
629 }
630
2c653d0e
AA
631 /*
632 * We need the second aligned pointer of the migrate_nodes
633 * list_head to stay clear from the rb_parent_color union
634 * (aligned and different than any node) and also different
635 * from &migrate_nodes. This will verify that future list.h changes
636 * don't break STABLE_NODE_DUP_HEAD.
637 */
638#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641#endif
642
4146d2d6
HD
643 if (stable_node->head == &migrate_nodes)
644 list_del(&stable_node->list);
645 else
2c653d0e 646 stable_node_dup_del(stable_node);
4035c07a
HD
647 free_stable_node(stable_node);
648}
649
650/*
651 * get_ksm_page: checks if the page indicated by the stable node
652 * is still its ksm page, despite having held no reference to it.
653 * In which case we can trust the content of the page, and it
654 * returns the gotten page; but if the page has now been zapped,
655 * remove the stale node from the stable tree and return NULL.
c8d6553b 656 * But beware, the stable node's page might be being migrated.
4035c07a
HD
657 *
658 * You would expect the stable_node to hold a reference to the ksm page.
659 * But if it increments the page's count, swapping out has to wait for
660 * ksmd to come around again before it can free the page, which may take
661 * seconds or even minutes: much too unresponsive. So instead we use a
662 * "keyhole reference": access to the ksm page from the stable node peeps
663 * out through its keyhole to see if that page still holds the right key,
664 * pointing back to this stable node. This relies on freeing a PageAnon
665 * page to reset its page->mapping to NULL, and relies on no other use of
666 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
667 * is on its way to being freed; but it is an anomaly to bear in mind.
668 */
8fdb3dbf 669static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
670{
671 struct page *page;
672 void *expected_mapping;
c8d6553b 673 unsigned long kpfn;
4035c07a 674
bda807d4
MK
675 expected_mapping = (void *)((unsigned long)stable_node |
676 PAGE_MAPPING_KSM);
c8d6553b 677again:
08df4774 678 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 679 page = pfn_to_page(kpfn);
4db0c3c2 680 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 681 goto stale;
c8d6553b
HD
682
683 /*
684 * We cannot do anything with the page while its refcount is 0.
685 * Usually 0 means free, or tail of a higher-order page: in which
686 * case this node is no longer referenced, and should be freed;
687 * however, it might mean that the page is under page_freeze_refs().
688 * The __remove_mapping() case is easy, again the node is now stale;
689 * but if page is swapcache in migrate_page_move_mapping(), it might
690 * still be our page, in which case it's essential to keep the node.
691 */
692 while (!get_page_unless_zero(page)) {
693 /*
694 * Another check for page->mapping != expected_mapping would
695 * work here too. We have chosen the !PageSwapCache test to
696 * optimize the common case, when the page is or is about to
697 * be freed: PageSwapCache is cleared (under spin_lock_irq)
698 * in the freeze_refs section of __remove_mapping(); but Anon
699 * page->mapping reset to NULL later, in free_pages_prepare().
700 */
701 if (!PageSwapCache(page))
702 goto stale;
703 cpu_relax();
704 }
705
4db0c3c2 706 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
707 put_page(page);
708 goto stale;
709 }
c8d6553b 710
8fdb3dbf 711 if (lock_it) {
8aafa6a4 712 lock_page(page);
4db0c3c2 713 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
714 unlock_page(page);
715 put_page(page);
716 goto stale;
717 }
718 }
4035c07a 719 return page;
c8d6553b 720
4035c07a 721stale:
c8d6553b
HD
722 /*
723 * We come here from above when page->mapping or !PageSwapCache
724 * suggests that the node is stale; but it might be under migration.
725 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
726 * before checking whether node->kpfn has been changed.
727 */
728 smp_rmb();
4db0c3c2 729 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 730 goto again;
4035c07a
HD
731 remove_node_from_stable_tree(stable_node);
732 return NULL;
733}
734
31dbd01f
IE
735/*
736 * Removing rmap_item from stable or unstable tree.
737 * This function will clean the information from the stable/unstable tree.
738 */
739static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
740{
7b6ba2c7
HD
741 if (rmap_item->address & STABLE_FLAG) {
742 struct stable_node *stable_node;
5ad64688 743 struct page *page;
31dbd01f 744
7b6ba2c7 745 stable_node = rmap_item->head;
8aafa6a4 746 page = get_ksm_page(stable_node, true);
4035c07a
HD
747 if (!page)
748 goto out;
5ad64688 749
7b6ba2c7 750 hlist_del(&rmap_item->hlist);
4035c07a
HD
751 unlock_page(page);
752 put_page(page);
08beca44 753
98666f8a 754 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
755 ksm_pages_sharing--;
756 else
7b6ba2c7 757 ksm_pages_shared--;
2c653d0e
AA
758 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
759 stable_node->rmap_hlist_len--;
31dbd01f 760
9e60109f 761 put_anon_vma(rmap_item->anon_vma);
93d17715 762 rmap_item->address &= PAGE_MASK;
31dbd01f 763
7b6ba2c7 764 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
765 unsigned char age;
766 /*
9ba69294 767 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 768 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
769 * But be careful when an mm is exiting: do the rb_erase
770 * if this rmap_item was inserted by this scan, rather
771 * than left over from before.
31dbd01f
IE
772 */
773 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 774 BUG_ON(age > 1);
31dbd01f 775 if (!age)
90bd6fd3 776 rb_erase(&rmap_item->node,
ef53d16c 777 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 778 ksm_pages_unshared--;
93d17715 779 rmap_item->address &= PAGE_MASK;
31dbd01f 780 }
4035c07a 781out:
31dbd01f
IE
782 cond_resched(); /* we're called from many long loops */
783}
784
31dbd01f 785static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 786 struct rmap_item **rmap_list)
31dbd01f 787{
6514d511
HD
788 while (*rmap_list) {
789 struct rmap_item *rmap_item = *rmap_list;
790 *rmap_list = rmap_item->rmap_list;
31dbd01f 791 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
792 free_rmap_item(rmap_item);
793 }
794}
795
796/*
e850dcf5 797 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
798 * than check every pte of a given vma, the locking doesn't quite work for
799 * that - an rmap_item is assigned to the stable tree after inserting ksm
800 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
801 * rmap_items from parent to child at fork time (so as not to waste time
802 * if exit comes before the next scan reaches it).
81464e30
HD
803 *
804 * Similarly, although we'd like to remove rmap_items (so updating counts
805 * and freeing memory) when unmerging an area, it's easier to leave that
806 * to the next pass of ksmd - consider, for example, how ksmd might be
807 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 808 */
d952b791
HD
809static int unmerge_ksm_pages(struct vm_area_struct *vma,
810 unsigned long start, unsigned long end)
31dbd01f
IE
811{
812 unsigned long addr;
d952b791 813 int err = 0;
31dbd01f 814
d952b791 815 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
816 if (ksm_test_exit(vma->vm_mm))
817 break;
d952b791
HD
818 if (signal_pending(current))
819 err = -ERESTARTSYS;
820 else
821 err = break_ksm(vma, addr);
822 }
823 return err;
31dbd01f
IE
824}
825
2ffd8679
HD
826#ifdef CONFIG_SYSFS
827/*
828 * Only called through the sysfs control interface:
829 */
cbf86cfe
HD
830static int remove_stable_node(struct stable_node *stable_node)
831{
832 struct page *page;
833 int err;
834
835 page = get_ksm_page(stable_node, true);
836 if (!page) {
837 /*
838 * get_ksm_page did remove_node_from_stable_tree itself.
839 */
840 return 0;
841 }
842
8fdb3dbf
HD
843 if (WARN_ON_ONCE(page_mapped(page))) {
844 /*
845 * This should not happen: but if it does, just refuse to let
846 * merge_across_nodes be switched - there is no need to panic.
847 */
cbf86cfe 848 err = -EBUSY;
8fdb3dbf 849 } else {
cbf86cfe 850 /*
8fdb3dbf
HD
851 * The stable node did not yet appear stale to get_ksm_page(),
852 * since that allows for an unmapped ksm page to be recognized
853 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
854 * This page might be in a pagevec waiting to be freed,
855 * or it might be PageSwapCache (perhaps under writeback),
856 * or it might have been removed from swapcache a moment ago.
857 */
858 set_page_stable_node(page, NULL);
859 remove_node_from_stable_tree(stable_node);
860 err = 0;
861 }
862
863 unlock_page(page);
864 put_page(page);
865 return err;
866}
867
2c653d0e
AA
868static int remove_stable_node_chain(struct stable_node *stable_node,
869 struct rb_root *root)
870{
871 struct stable_node *dup;
872 struct hlist_node *hlist_safe;
873
874 if (!is_stable_node_chain(stable_node)) {
875 VM_BUG_ON(is_stable_node_dup(stable_node));
876 if (remove_stable_node(stable_node))
877 return true;
878 else
879 return false;
880 }
881
882 hlist_for_each_entry_safe(dup, hlist_safe,
883 &stable_node->hlist, hlist_dup) {
884 VM_BUG_ON(!is_stable_node_dup(dup));
885 if (remove_stable_node(dup))
886 return true;
887 }
888 BUG_ON(!hlist_empty(&stable_node->hlist));
889 free_stable_node_chain(stable_node, root);
890 return false;
891}
892
cbf86cfe
HD
893static int remove_all_stable_nodes(void)
894{
03640418 895 struct stable_node *stable_node, *next;
cbf86cfe
HD
896 int nid;
897 int err = 0;
898
ef53d16c 899 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
900 while (root_stable_tree[nid].rb_node) {
901 stable_node = rb_entry(root_stable_tree[nid].rb_node,
902 struct stable_node, node);
2c653d0e
AA
903 if (remove_stable_node_chain(stable_node,
904 root_stable_tree + nid)) {
cbf86cfe
HD
905 err = -EBUSY;
906 break; /* proceed to next nid */
907 }
908 cond_resched();
909 }
910 }
03640418 911 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
912 if (remove_stable_node(stable_node))
913 err = -EBUSY;
914 cond_resched();
915 }
cbf86cfe
HD
916 return err;
917}
918
d952b791 919static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
920{
921 struct mm_slot *mm_slot;
922 struct mm_struct *mm;
923 struct vm_area_struct *vma;
d952b791
HD
924 int err = 0;
925
926 spin_lock(&ksm_mmlist_lock);
9ba69294 927 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
928 struct mm_slot, mm_list);
929 spin_unlock(&ksm_mmlist_lock);
31dbd01f 930
9ba69294
HD
931 for (mm_slot = ksm_scan.mm_slot;
932 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
933 mm = mm_slot->mm;
934 down_read(&mm->mmap_sem);
935 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
936 if (ksm_test_exit(mm))
937 break;
31dbd01f
IE
938 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
939 continue;
d952b791
HD
940 err = unmerge_ksm_pages(vma,
941 vma->vm_start, vma->vm_end);
9ba69294
HD
942 if (err)
943 goto error;
31dbd01f 944 }
9ba69294 945
6514d511 946 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
7496fea9 947 up_read(&mm->mmap_sem);
d952b791
HD
948
949 spin_lock(&ksm_mmlist_lock);
9ba69294 950 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 951 struct mm_slot, mm_list);
9ba69294 952 if (ksm_test_exit(mm)) {
4ca3a69b 953 hash_del(&mm_slot->link);
9ba69294
HD
954 list_del(&mm_slot->mm_list);
955 spin_unlock(&ksm_mmlist_lock);
956
957 free_mm_slot(mm_slot);
958 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 959 mmdrop(mm);
7496fea9 960 } else
9ba69294 961 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
962 }
963
cbf86cfe
HD
964 /* Clean up stable nodes, but don't worry if some are still busy */
965 remove_all_stable_nodes();
d952b791 966 ksm_scan.seqnr = 0;
9ba69294
HD
967 return 0;
968
969error:
970 up_read(&mm->mmap_sem);
31dbd01f 971 spin_lock(&ksm_mmlist_lock);
d952b791 972 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 973 spin_unlock(&ksm_mmlist_lock);
d952b791 974 return err;
31dbd01f 975}
2ffd8679 976#endif /* CONFIG_SYSFS */
31dbd01f 977
31dbd01f
IE
978static u32 calc_checksum(struct page *page)
979{
980 u32 checksum;
9b04c5fe 981 void *addr = kmap_atomic(page);
31dbd01f 982 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 983 kunmap_atomic(addr);
31dbd01f
IE
984 return checksum;
985}
986
987static int memcmp_pages(struct page *page1, struct page *page2)
988{
989 char *addr1, *addr2;
990 int ret;
991
9b04c5fe
CW
992 addr1 = kmap_atomic(page1);
993 addr2 = kmap_atomic(page2);
31dbd01f 994 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
995 kunmap_atomic(addr2);
996 kunmap_atomic(addr1);
31dbd01f
IE
997 return ret;
998}
999
1000static inline int pages_identical(struct page *page1, struct page *page2)
1001{
1002 return !memcmp_pages(page1, page2);
1003}
1004
1005static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1006 pte_t *orig_pte)
1007{
1008 struct mm_struct *mm = vma->vm_mm;
36eaff33
KS
1009 struct page_vma_mapped_walk pvmw = {
1010 .page = page,
1011 .vma = vma,
1012 };
31dbd01f
IE
1013 int swapped;
1014 int err = -EFAULT;
6bdb913f
HE
1015 unsigned long mmun_start; /* For mmu_notifiers */
1016 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1017
36eaff33
KS
1018 pvmw.address = page_address_in_vma(page, vma);
1019 if (pvmw.address == -EFAULT)
31dbd01f
IE
1020 goto out;
1021
29ad768c 1022 BUG_ON(PageTransCompound(page));
6bdb913f 1023
36eaff33
KS
1024 mmun_start = pvmw.address;
1025 mmun_end = pvmw.address + PAGE_SIZE;
6bdb913f
HE
1026 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1027
36eaff33 1028 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1029 goto out_mn;
36eaff33
KS
1030 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1031 goto out_unlock;
31dbd01f 1032
595cd8f2 1033 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08
MK
1034 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1035 mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1036 pte_t entry;
1037
1038 swapped = PageSwapCache(page);
36eaff33 1039 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1040 /*
25985edc 1041 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
1042 * take any lock, therefore the check that we are going to make
1043 * with the pagecount against the mapcount is racey and
1044 * O_DIRECT can happen right after the check.
1045 * So we clear the pte and flush the tlb before the check
1046 * this assure us that no O_DIRECT can happen after the check
1047 * or in the middle of the check.
0f10851e
JG
1048 *
1049 * No need to notify as we are downgrading page table to read
1050 * only not changing it to point to a new page.
1051 *
1052 * See Documentation/vm/mmu_notifier.txt
31dbd01f 1053 */
0f10851e 1054 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1055 /*
1056 * Check that no O_DIRECT or similar I/O is in progress on the
1057 * page
1058 */
31e855ea 1059 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1060 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1061 goto out_unlock;
1062 }
4e31635c
HD
1063 if (pte_dirty(entry))
1064 set_page_dirty(page);
595cd8f2
AK
1065
1066 if (pte_protnone(entry))
1067 entry = pte_mkclean(pte_clear_savedwrite(entry));
1068 else
1069 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1070 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1071 }
36eaff33 1072 *orig_pte = *pvmw.pte;
31dbd01f
IE
1073 err = 0;
1074
1075out_unlock:
36eaff33 1076 page_vma_mapped_walk_done(&pvmw);
6bdb913f
HE
1077out_mn:
1078 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1079out:
1080 return err;
1081}
1082
1083/**
1084 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1085 * @vma: vma that holds the pte pointing to page
1086 * @page: the page we are replacing by kpage
1087 * @kpage: the ksm page we replace page by
31dbd01f
IE
1088 * @orig_pte: the original value of the pte
1089 *
1090 * Returns 0 on success, -EFAULT on failure.
1091 */
8dd3557a
HD
1092static int replace_page(struct vm_area_struct *vma, struct page *page,
1093 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1094{
1095 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1096 pmd_t *pmd;
1097 pte_t *ptep;
e86c59b1 1098 pte_t newpte;
31dbd01f
IE
1099 spinlock_t *ptl;
1100 unsigned long addr;
31dbd01f 1101 int err = -EFAULT;
6bdb913f
HE
1102 unsigned long mmun_start; /* For mmu_notifiers */
1103 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1104
8dd3557a 1105 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1106 if (addr == -EFAULT)
1107 goto out;
1108
6219049a
BL
1109 pmd = mm_find_pmd(mm, addr);
1110 if (!pmd)
31dbd01f 1111 goto out;
31dbd01f 1112
6bdb913f
HE
1113 mmun_start = addr;
1114 mmun_end = addr + PAGE_SIZE;
1115 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1116
31dbd01f
IE
1117 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1118 if (!pte_same(*ptep, orig_pte)) {
1119 pte_unmap_unlock(ptep, ptl);
6bdb913f 1120 goto out_mn;
31dbd01f
IE
1121 }
1122
e86c59b1
CI
1123 /*
1124 * No need to check ksm_use_zero_pages here: we can only have a
1125 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1126 */
1127 if (!is_zero_pfn(page_to_pfn(kpage))) {
1128 get_page(kpage);
1129 page_add_anon_rmap(kpage, vma, addr, false);
1130 newpte = mk_pte(kpage, vma->vm_page_prot);
1131 } else {
1132 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1133 vma->vm_page_prot));
1134 }
31dbd01f
IE
1135
1136 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1137 /*
1138 * No need to notify as we are replacing a read only page with another
1139 * read only page with the same content.
1140 *
1141 * See Documentation/vm/mmu_notifier.txt
1142 */
1143 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1144 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1145
d281ee61 1146 page_remove_rmap(page, false);
ae52a2ad
HD
1147 if (!page_mapped(page))
1148 try_to_free_swap(page);
8dd3557a 1149 put_page(page);
31dbd01f
IE
1150
1151 pte_unmap_unlock(ptep, ptl);
1152 err = 0;
6bdb913f
HE
1153out_mn:
1154 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1155out:
1156 return err;
1157}
1158
1159/*
1160 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1161 * @vma: the vma that holds the pte pointing to page
1162 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1163 * @kpage: the PageKsm page that we want to map instead of page,
1164 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1165 *
1166 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1167 */
1168static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1169 struct page *page, struct page *kpage)
31dbd01f
IE
1170{
1171 pte_t orig_pte = __pte(0);
1172 int err = -EFAULT;
1173
db114b83
HD
1174 if (page == kpage) /* ksm page forked */
1175 return 0;
1176
8dd3557a 1177 if (!PageAnon(page))
31dbd01f
IE
1178 goto out;
1179
31dbd01f
IE
1180 /*
1181 * We need the page lock to read a stable PageSwapCache in
1182 * write_protect_page(). We use trylock_page() instead of
1183 * lock_page() because we don't want to wait here - we
1184 * prefer to continue scanning and merging different pages,
1185 * then come back to this page when it is unlocked.
1186 */
8dd3557a 1187 if (!trylock_page(page))
31e855ea 1188 goto out;
f765f540
KS
1189
1190 if (PageTransCompound(page)) {
a7306c34 1191 if (split_huge_page(page))
f765f540
KS
1192 goto out_unlock;
1193 }
1194
31dbd01f
IE
1195 /*
1196 * If this anonymous page is mapped only here, its pte may need
1197 * to be write-protected. If it's mapped elsewhere, all of its
1198 * ptes are necessarily already write-protected. But in either
1199 * case, we need to lock and check page_count is not raised.
1200 */
80e14822
HD
1201 if (write_protect_page(vma, page, &orig_pte) == 0) {
1202 if (!kpage) {
1203 /*
1204 * While we hold page lock, upgrade page from
1205 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1206 * stable_tree_insert() will update stable_node.
1207 */
1208 set_page_stable_node(page, NULL);
1209 mark_page_accessed(page);
337ed7eb
MK
1210 /*
1211 * Page reclaim just frees a clean page with no dirty
1212 * ptes: make sure that the ksm page would be swapped.
1213 */
1214 if (!PageDirty(page))
1215 SetPageDirty(page);
80e14822
HD
1216 err = 0;
1217 } else if (pages_identical(page, kpage))
1218 err = replace_page(vma, page, kpage, orig_pte);
1219 }
31dbd01f 1220
80e14822 1221 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1222 munlock_vma_page(page);
5ad64688
HD
1223 if (!PageMlocked(kpage)) {
1224 unlock_page(page);
5ad64688
HD
1225 lock_page(kpage);
1226 mlock_vma_page(kpage);
1227 page = kpage; /* for final unlock */
1228 }
1229 }
73848b46 1230
f765f540 1231out_unlock:
8dd3557a 1232 unlock_page(page);
31dbd01f
IE
1233out:
1234 return err;
1235}
1236
81464e30
HD
1237/*
1238 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1239 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1240 *
1241 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1242 */
8dd3557a
HD
1243static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1244 struct page *page, struct page *kpage)
81464e30 1245{
8dd3557a 1246 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1247 struct vm_area_struct *vma;
1248 int err = -EFAULT;
1249
8dd3557a 1250 down_read(&mm->mmap_sem);
85c6e8dd
AA
1251 vma = find_mergeable_vma(mm, rmap_item->address);
1252 if (!vma)
81464e30
HD
1253 goto out;
1254
8dd3557a 1255 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1256 if (err)
1257 goto out;
1258
bc56620b
HD
1259 /* Unstable nid is in union with stable anon_vma: remove first */
1260 remove_rmap_item_from_tree(rmap_item);
1261
db114b83 1262 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1263 rmap_item->anon_vma = vma->anon_vma;
1264 get_anon_vma(vma->anon_vma);
81464e30 1265out:
8dd3557a 1266 up_read(&mm->mmap_sem);
81464e30
HD
1267 return err;
1268}
1269
31dbd01f
IE
1270/*
1271 * try_to_merge_two_pages - take two identical pages and prepare them
1272 * to be merged into one page.
1273 *
8dd3557a
HD
1274 * This function returns the kpage if we successfully merged two identical
1275 * pages into one ksm page, NULL otherwise.
31dbd01f 1276 *
80e14822 1277 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1278 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1279 */
8dd3557a
HD
1280static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1281 struct page *page,
1282 struct rmap_item *tree_rmap_item,
1283 struct page *tree_page)
31dbd01f 1284{
80e14822 1285 int err;
31dbd01f 1286
80e14822 1287 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1288 if (!err) {
8dd3557a 1289 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1290 tree_page, page);
31dbd01f 1291 /*
81464e30
HD
1292 * If that fails, we have a ksm page with only one pte
1293 * pointing to it: so break it.
31dbd01f 1294 */
4035c07a 1295 if (err)
8dd3557a 1296 break_cow(rmap_item);
31dbd01f 1297 }
80e14822 1298 return err ? NULL : page;
31dbd01f
IE
1299}
1300
2c653d0e
AA
1301static __always_inline
1302bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1303{
1304 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1305 /*
1306 * Check that at least one mapping still exists, otherwise
1307 * there's no much point to merge and share with this
1308 * stable_node, as the underlying tree_page of the other
1309 * sharer is going to be freed soon.
1310 */
1311 return stable_node->rmap_hlist_len &&
1312 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1313}
1314
1315static __always_inline
1316bool is_page_sharing_candidate(struct stable_node *stable_node)
1317{
1318 return __is_page_sharing_candidate(stable_node, 0);
1319}
1320
8dc5ffcd
AA
1321struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1322 struct stable_node **_stable_node,
1323 struct rb_root *root,
1324 bool prune_stale_stable_nodes)
2c653d0e 1325{
b4fecc67 1326 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1327 struct hlist_node *hlist_safe;
8dc5ffcd 1328 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1329 int nr = 0;
1330 int found_rmap_hlist_len;
1331
1332 if (!prune_stale_stable_nodes ||
1333 time_before(jiffies, stable_node->chain_prune_time +
1334 msecs_to_jiffies(
1335 ksm_stable_node_chains_prune_millisecs)))
1336 prune_stale_stable_nodes = false;
1337 else
1338 stable_node->chain_prune_time = jiffies;
1339
1340 hlist_for_each_entry_safe(dup, hlist_safe,
1341 &stable_node->hlist, hlist_dup) {
1342 cond_resched();
1343 /*
1344 * We must walk all stable_node_dup to prune the stale
1345 * stable nodes during lookup.
1346 *
1347 * get_ksm_page can drop the nodes from the
1348 * stable_node->hlist if they point to freed pages
1349 * (that's why we do a _safe walk). The "dup"
1350 * stable_node parameter itself will be freed from
1351 * under us if it returns NULL.
1352 */
1353 _tree_page = get_ksm_page(dup, false);
1354 if (!_tree_page)
1355 continue;
1356 nr += 1;
1357 if (is_page_sharing_candidate(dup)) {
1358 if (!found ||
1359 dup->rmap_hlist_len > found_rmap_hlist_len) {
1360 if (found)
8dc5ffcd 1361 put_page(tree_page);
2c653d0e
AA
1362 found = dup;
1363 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1364 tree_page = _tree_page;
2c653d0e 1365
8dc5ffcd 1366 /* skip put_page for found dup */
2c653d0e
AA
1367 if (!prune_stale_stable_nodes)
1368 break;
2c653d0e
AA
1369 continue;
1370 }
1371 }
1372 put_page(_tree_page);
1373 }
1374
80b18dfa
AA
1375 if (found) {
1376 /*
1377 * nr is counting all dups in the chain only if
1378 * prune_stale_stable_nodes is true, otherwise we may
1379 * break the loop at nr == 1 even if there are
1380 * multiple entries.
1381 */
1382 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1383 /*
1384 * If there's not just one entry it would
1385 * corrupt memory, better BUG_ON. In KSM
1386 * context with no lock held it's not even
1387 * fatal.
1388 */
1389 BUG_ON(stable_node->hlist.first->next);
1390
1391 /*
1392 * There's just one entry and it is below the
1393 * deduplication limit so drop the chain.
1394 */
1395 rb_replace_node(&stable_node->node, &found->node,
1396 root);
1397 free_stable_node(stable_node);
1398 ksm_stable_node_chains--;
1399 ksm_stable_node_dups--;
b4fecc67 1400 /*
0ba1d0f7
AA
1401 * NOTE: the caller depends on the stable_node
1402 * to be equal to stable_node_dup if the chain
1403 * was collapsed.
b4fecc67 1404 */
0ba1d0f7
AA
1405 *_stable_node = found;
1406 /*
1407 * Just for robustneess as stable_node is
1408 * otherwise left as a stable pointer, the
1409 * compiler shall optimize it away at build
1410 * time.
1411 */
1412 stable_node = NULL;
80b18dfa
AA
1413 } else if (stable_node->hlist.first != &found->hlist_dup &&
1414 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1415 /*
80b18dfa
AA
1416 * If the found stable_node dup can accept one
1417 * more future merge (in addition to the one
1418 * that is underway) and is not at the head of
1419 * the chain, put it there so next search will
1420 * be quicker in the !prune_stale_stable_nodes
1421 * case.
1422 *
1423 * NOTE: it would be inaccurate to use nr > 1
1424 * instead of checking the hlist.first pointer
1425 * directly, because in the
1426 * prune_stale_stable_nodes case "nr" isn't
1427 * the position of the found dup in the chain,
1428 * but the total number of dups in the chain.
2c653d0e
AA
1429 */
1430 hlist_del(&found->hlist_dup);
1431 hlist_add_head(&found->hlist_dup,
1432 &stable_node->hlist);
1433 }
1434 }
1435
8dc5ffcd
AA
1436 *_stable_node_dup = found;
1437 return tree_page;
2c653d0e
AA
1438}
1439
1440static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1441 struct rb_root *root)
1442{
1443 if (!is_stable_node_chain(stable_node))
1444 return stable_node;
1445 if (hlist_empty(&stable_node->hlist)) {
1446 free_stable_node_chain(stable_node, root);
1447 return NULL;
1448 }
1449 return hlist_entry(stable_node->hlist.first,
1450 typeof(*stable_node), hlist_dup);
1451}
1452
8dc5ffcd
AA
1453/*
1454 * Like for get_ksm_page, this function can free the *_stable_node and
1455 * *_stable_node_dup if the returned tree_page is NULL.
1456 *
1457 * It can also free and overwrite *_stable_node with the found
1458 * stable_node_dup if the chain is collapsed (in which case
1459 * *_stable_node will be equal to *_stable_node_dup like if the chain
1460 * never existed). It's up to the caller to verify tree_page is not
1461 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1462 *
1463 * *_stable_node_dup is really a second output parameter of this
1464 * function and will be overwritten in all cases, the caller doesn't
1465 * need to initialize it.
1466 */
1467static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1468 struct stable_node **_stable_node,
1469 struct rb_root *root,
1470 bool prune_stale_stable_nodes)
2c653d0e 1471{
b4fecc67 1472 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1473 if (!is_stable_node_chain(stable_node)) {
1474 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd
AA
1475 *_stable_node_dup = stable_node;
1476 return get_ksm_page(stable_node, false);
2c653d0e 1477 }
8dc5ffcd
AA
1478 /*
1479 * _stable_node_dup set to NULL means the stable_node
1480 * reached the ksm_max_page_sharing limit.
1481 */
1482 *_stable_node_dup = NULL;
2c653d0e
AA
1483 return NULL;
1484 }
8dc5ffcd 1485 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1486 prune_stale_stable_nodes);
1487}
1488
8dc5ffcd
AA
1489static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1490 struct stable_node **s_n,
1491 struct rb_root *root)
2c653d0e 1492{
8dc5ffcd 1493 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1494}
1495
8dc5ffcd
AA
1496static __always_inline struct page *chain(struct stable_node **s_n_d,
1497 struct stable_node *s_n,
1498 struct rb_root *root)
2c653d0e 1499{
8dc5ffcd
AA
1500 struct stable_node *old_stable_node = s_n;
1501 struct page *tree_page;
1502
1503 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1504 /* not pruning dups so s_n cannot have changed */
1505 VM_BUG_ON(s_n != old_stable_node);
1506 return tree_page;
2c653d0e
AA
1507}
1508
31dbd01f 1509/*
8dd3557a 1510 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1511 *
1512 * This function checks if there is a page inside the stable tree
1513 * with identical content to the page that we are scanning right now.
1514 *
7b6ba2c7 1515 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1516 * NULL otherwise.
1517 */
62b61f61 1518static struct page *stable_tree_search(struct page *page)
31dbd01f 1519{
90bd6fd3 1520 int nid;
ef53d16c 1521 struct rb_root *root;
4146d2d6
HD
1522 struct rb_node **new;
1523 struct rb_node *parent;
2c653d0e 1524 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1525 struct stable_node *page_node;
31dbd01f 1526
4146d2d6
HD
1527 page_node = page_stable_node(page);
1528 if (page_node && page_node->head != &migrate_nodes) {
1529 /* ksm page forked */
08beca44 1530 get_page(page);
62b61f61 1531 return page;
08beca44
HD
1532 }
1533
90bd6fd3 1534 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1535 root = root_stable_tree + nid;
4146d2d6 1536again:
ef53d16c 1537 new = &root->rb_node;
4146d2d6 1538 parent = NULL;
90bd6fd3 1539
4146d2d6 1540 while (*new) {
4035c07a 1541 struct page *tree_page;
31dbd01f
IE
1542 int ret;
1543
08beca44 1544 cond_resched();
4146d2d6 1545 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1546 stable_node_any = NULL;
8dc5ffcd 1547 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1548 /*
1549 * NOTE: stable_node may have been freed by
1550 * chain_prune() if the returned stable_node_dup is
1551 * not NULL. stable_node_dup may have been inserted in
1552 * the rbtree instead as a regular stable_node (in
1553 * order to collapse the stable_node chain if a single
0ba1d0f7
AA
1554 * stable_node dup was found in it). In such case the
1555 * stable_node is overwritten by the calleee to point
1556 * to the stable_node_dup that was collapsed in the
1557 * stable rbtree and stable_node will be equal to
1558 * stable_node_dup like if the chain never existed.
b4fecc67 1559 */
2c653d0e
AA
1560 if (!stable_node_dup) {
1561 /*
1562 * Either all stable_node dups were full in
1563 * this stable_node chain, or this chain was
1564 * empty and should be rb_erased.
1565 */
1566 stable_node_any = stable_node_dup_any(stable_node,
1567 root);
1568 if (!stable_node_any) {
1569 /* rb_erase just run */
1570 goto again;
1571 }
1572 /*
1573 * Take any of the stable_node dups page of
1574 * this stable_node chain to let the tree walk
1575 * continue. All KSM pages belonging to the
1576 * stable_node dups in a stable_node chain
1577 * have the same content and they're
1578 * wrprotected at all times. Any will work
1579 * fine to continue the walk.
1580 */
1581 tree_page = get_ksm_page(stable_node_any, false);
1582 }
1583 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1584 if (!tree_page) {
1585 /*
1586 * If we walked over a stale stable_node,
1587 * get_ksm_page() will call rb_erase() and it
1588 * may rebalance the tree from under us. So
1589 * restart the search from scratch. Returning
1590 * NULL would be safe too, but we'd generate
1591 * false negative insertions just because some
1592 * stable_node was stale.
1593 */
1594 goto again;
1595 }
31dbd01f 1596
4035c07a 1597 ret = memcmp_pages(page, tree_page);
c8d6553b 1598 put_page(tree_page);
31dbd01f 1599
4146d2d6 1600 parent = *new;
c8d6553b 1601 if (ret < 0)
4146d2d6 1602 new = &parent->rb_left;
c8d6553b 1603 else if (ret > 0)
4146d2d6 1604 new = &parent->rb_right;
c8d6553b 1605 else {
2c653d0e
AA
1606 if (page_node) {
1607 VM_BUG_ON(page_node->head != &migrate_nodes);
1608 /*
1609 * Test if the migrated page should be merged
1610 * into a stable node dup. If the mapcount is
1611 * 1 we can migrate it with another KSM page
1612 * without adding it to the chain.
1613 */
1614 if (page_mapcount(page) > 1)
1615 goto chain_append;
1616 }
1617
1618 if (!stable_node_dup) {
1619 /*
1620 * If the stable_node is a chain and
1621 * we got a payload match in memcmp
1622 * but we cannot merge the scanned
1623 * page in any of the existing
1624 * stable_node dups because they're
1625 * all full, we need to wait the
1626 * scanned page to find itself a match
1627 * in the unstable tree to create a
1628 * brand new KSM page to add later to
1629 * the dups of this stable_node.
1630 */
1631 return NULL;
1632 }
1633
c8d6553b
HD
1634 /*
1635 * Lock and unlock the stable_node's page (which
1636 * might already have been migrated) so that page
1637 * migration is sure to notice its raised count.
1638 * It would be more elegant to return stable_node
1639 * than kpage, but that involves more changes.
1640 */
2c653d0e
AA
1641 tree_page = get_ksm_page(stable_node_dup, true);
1642 if (unlikely(!tree_page))
1643 /*
1644 * The tree may have been rebalanced,
1645 * so re-evaluate parent and new.
1646 */
4146d2d6 1647 goto again;
2c653d0e
AA
1648 unlock_page(tree_page);
1649
1650 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1651 NUMA(stable_node_dup->nid)) {
1652 put_page(tree_page);
1653 goto replace;
1654 }
1655 return tree_page;
c8d6553b 1656 }
31dbd01f
IE
1657 }
1658
4146d2d6
HD
1659 if (!page_node)
1660 return NULL;
1661
1662 list_del(&page_node->list);
1663 DO_NUMA(page_node->nid = nid);
1664 rb_link_node(&page_node->node, parent, new);
ef53d16c 1665 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1666out:
1667 if (is_page_sharing_candidate(page_node)) {
1668 get_page(page);
1669 return page;
1670 } else
1671 return NULL;
4146d2d6
HD
1672
1673replace:
b4fecc67
AA
1674 /*
1675 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1676 * stable_node has been updated to be the new regular
1677 * stable_node. A collapse of the chain is indistinguishable
1678 * from the case there was no chain in the stable
1679 * rbtree. Otherwise stable_node is the chain and
1680 * stable_node_dup is the dup to replace.
b4fecc67 1681 */
0ba1d0f7 1682 if (stable_node_dup == stable_node) {
b4fecc67
AA
1683 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1684 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1685 /* there is no chain */
1686 if (page_node) {
1687 VM_BUG_ON(page_node->head != &migrate_nodes);
1688 list_del(&page_node->list);
1689 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1690 rb_replace_node(&stable_node_dup->node,
1691 &page_node->node,
2c653d0e
AA
1692 root);
1693 if (is_page_sharing_candidate(page_node))
1694 get_page(page);
1695 else
1696 page = NULL;
1697 } else {
b4fecc67 1698 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1699 page = NULL;
1700 }
4146d2d6 1701 } else {
2c653d0e
AA
1702 VM_BUG_ON(!is_stable_node_chain(stable_node));
1703 __stable_node_dup_del(stable_node_dup);
1704 if (page_node) {
1705 VM_BUG_ON(page_node->head != &migrate_nodes);
1706 list_del(&page_node->list);
1707 DO_NUMA(page_node->nid = nid);
1708 stable_node_chain_add_dup(page_node, stable_node);
1709 if (is_page_sharing_candidate(page_node))
1710 get_page(page);
1711 else
1712 page = NULL;
1713 } else {
1714 page = NULL;
1715 }
4146d2d6 1716 }
2c653d0e
AA
1717 stable_node_dup->head = &migrate_nodes;
1718 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1719 return page;
2c653d0e
AA
1720
1721chain_append:
1722 /* stable_node_dup could be null if it reached the limit */
1723 if (!stable_node_dup)
1724 stable_node_dup = stable_node_any;
b4fecc67
AA
1725 /*
1726 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1727 * stable_node has been updated to be the new regular
1728 * stable_node. A collapse of the chain is indistinguishable
1729 * from the case there was no chain in the stable
1730 * rbtree. Otherwise stable_node is the chain and
1731 * stable_node_dup is the dup to replace.
b4fecc67 1732 */
0ba1d0f7 1733 if (stable_node_dup == stable_node) {
b4fecc67
AA
1734 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1735 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1736 /* chain is missing so create it */
1737 stable_node = alloc_stable_node_chain(stable_node_dup,
1738 root);
1739 if (!stable_node)
1740 return NULL;
1741 }
1742 /*
1743 * Add this stable_node dup that was
1744 * migrated to the stable_node chain
1745 * of the current nid for this page
1746 * content.
1747 */
b4fecc67
AA
1748 VM_BUG_ON(!is_stable_node_chain(stable_node));
1749 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1750 VM_BUG_ON(page_node->head != &migrate_nodes);
1751 list_del(&page_node->list);
1752 DO_NUMA(page_node->nid = nid);
1753 stable_node_chain_add_dup(page_node, stable_node);
1754 goto out;
31dbd01f
IE
1755}
1756
1757/*
e850dcf5 1758 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1759 * into the stable tree.
1760 *
7b6ba2c7
HD
1761 * This function returns the stable tree node just allocated on success,
1762 * NULL otherwise.
31dbd01f 1763 */
7b6ba2c7 1764static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1765{
90bd6fd3
PH
1766 int nid;
1767 unsigned long kpfn;
ef53d16c 1768 struct rb_root *root;
90bd6fd3 1769 struct rb_node **new;
f2e5ff85 1770 struct rb_node *parent;
2c653d0e
AA
1771 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1772 bool need_chain = false;
31dbd01f 1773
90bd6fd3
PH
1774 kpfn = page_to_pfn(kpage);
1775 nid = get_kpfn_nid(kpfn);
ef53d16c 1776 root = root_stable_tree + nid;
f2e5ff85
AA
1777again:
1778 parent = NULL;
ef53d16c 1779 new = &root->rb_node;
90bd6fd3 1780
31dbd01f 1781 while (*new) {
4035c07a 1782 struct page *tree_page;
31dbd01f
IE
1783 int ret;
1784
08beca44 1785 cond_resched();
7b6ba2c7 1786 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1787 stable_node_any = NULL;
8dc5ffcd 1788 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1789 if (!stable_node_dup) {
1790 /*
1791 * Either all stable_node dups were full in
1792 * this stable_node chain, or this chain was
1793 * empty and should be rb_erased.
1794 */
1795 stable_node_any = stable_node_dup_any(stable_node,
1796 root);
1797 if (!stable_node_any) {
1798 /* rb_erase just run */
1799 goto again;
1800 }
1801 /*
1802 * Take any of the stable_node dups page of
1803 * this stable_node chain to let the tree walk
1804 * continue. All KSM pages belonging to the
1805 * stable_node dups in a stable_node chain
1806 * have the same content and they're
1807 * wrprotected at all times. Any will work
1808 * fine to continue the walk.
1809 */
1810 tree_page = get_ksm_page(stable_node_any, false);
1811 }
1812 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1813 if (!tree_page) {
1814 /*
1815 * If we walked over a stale stable_node,
1816 * get_ksm_page() will call rb_erase() and it
1817 * may rebalance the tree from under us. So
1818 * restart the search from scratch. Returning
1819 * NULL would be safe too, but we'd generate
1820 * false negative insertions just because some
1821 * stable_node was stale.
1822 */
1823 goto again;
1824 }
31dbd01f 1825
4035c07a
HD
1826 ret = memcmp_pages(kpage, tree_page);
1827 put_page(tree_page);
31dbd01f
IE
1828
1829 parent = *new;
1830 if (ret < 0)
1831 new = &parent->rb_left;
1832 else if (ret > 0)
1833 new = &parent->rb_right;
1834 else {
2c653d0e
AA
1835 need_chain = true;
1836 break;
31dbd01f
IE
1837 }
1838 }
1839
2c653d0e
AA
1840 stable_node_dup = alloc_stable_node();
1841 if (!stable_node_dup)
7b6ba2c7 1842 return NULL;
31dbd01f 1843
2c653d0e
AA
1844 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1845 stable_node_dup->kpfn = kpfn;
1846 set_page_stable_node(kpage, stable_node_dup);
1847 stable_node_dup->rmap_hlist_len = 0;
1848 DO_NUMA(stable_node_dup->nid = nid);
1849 if (!need_chain) {
1850 rb_link_node(&stable_node_dup->node, parent, new);
1851 rb_insert_color(&stable_node_dup->node, root);
1852 } else {
1853 if (!is_stable_node_chain(stable_node)) {
1854 struct stable_node *orig = stable_node;
1855 /* chain is missing so create it */
1856 stable_node = alloc_stable_node_chain(orig, root);
1857 if (!stable_node) {
1858 free_stable_node(stable_node_dup);
1859 return NULL;
1860 }
1861 }
1862 stable_node_chain_add_dup(stable_node_dup, stable_node);
1863 }
08beca44 1864
2c653d0e 1865 return stable_node_dup;
31dbd01f
IE
1866}
1867
1868/*
8dd3557a
HD
1869 * unstable_tree_search_insert - search for identical page,
1870 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1871 *
1872 * This function searches for a page in the unstable tree identical to the
1873 * page currently being scanned; and if no identical page is found in the
1874 * tree, we insert rmap_item as a new object into the unstable tree.
1875 *
1876 * This function returns pointer to rmap_item found to be identical
1877 * to the currently scanned page, NULL otherwise.
1878 *
1879 * This function does both searching and inserting, because they share
1880 * the same walking algorithm in an rbtree.
1881 */
8dd3557a
HD
1882static
1883struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1884 struct page *page,
1885 struct page **tree_pagep)
31dbd01f 1886{
90bd6fd3
PH
1887 struct rb_node **new;
1888 struct rb_root *root;
31dbd01f 1889 struct rb_node *parent = NULL;
90bd6fd3
PH
1890 int nid;
1891
1892 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1893 root = root_unstable_tree + nid;
90bd6fd3 1894 new = &root->rb_node;
31dbd01f
IE
1895
1896 while (*new) {
1897 struct rmap_item *tree_rmap_item;
8dd3557a 1898 struct page *tree_page;
31dbd01f
IE
1899 int ret;
1900
d178f27f 1901 cond_resched();
31dbd01f 1902 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1903 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1904 if (!tree_page)
31dbd01f
IE
1905 return NULL;
1906
1907 /*
8dd3557a 1908 * Don't substitute a ksm page for a forked page.
31dbd01f 1909 */
8dd3557a
HD
1910 if (page == tree_page) {
1911 put_page(tree_page);
31dbd01f
IE
1912 return NULL;
1913 }
1914
8dd3557a 1915 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1916
1917 parent = *new;
1918 if (ret < 0) {
8dd3557a 1919 put_page(tree_page);
31dbd01f
IE
1920 new = &parent->rb_left;
1921 } else if (ret > 0) {
8dd3557a 1922 put_page(tree_page);
31dbd01f 1923 new = &parent->rb_right;
b599cbdf
HD
1924 } else if (!ksm_merge_across_nodes &&
1925 page_to_nid(tree_page) != nid) {
1926 /*
1927 * If tree_page has been migrated to another NUMA node,
1928 * it will be flushed out and put in the right unstable
1929 * tree next time: only merge with it when across_nodes.
1930 */
1931 put_page(tree_page);
1932 return NULL;
31dbd01f 1933 } else {
8dd3557a 1934 *tree_pagep = tree_page;
31dbd01f
IE
1935 return tree_rmap_item;
1936 }
1937 }
1938
7b6ba2c7 1939 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1940 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1941 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1942 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1943 rb_insert_color(&rmap_item->node, root);
31dbd01f 1944
473b0ce4 1945 ksm_pages_unshared++;
31dbd01f
IE
1946 return NULL;
1947}
1948
1949/*
1950 * stable_tree_append - add another rmap_item to the linked list of
1951 * rmap_items hanging off a given node of the stable tree, all sharing
1952 * the same ksm page.
1953 */
1954static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1955 struct stable_node *stable_node,
1956 bool max_page_sharing_bypass)
31dbd01f 1957{
2c653d0e
AA
1958 /*
1959 * rmap won't find this mapping if we don't insert the
1960 * rmap_item in the right stable_node
1961 * duplicate. page_migration could break later if rmap breaks,
1962 * so we can as well crash here. We really need to check for
1963 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1964 * for other negative values as an undeflow if detected here
1965 * for the first time (and not when decreasing rmap_hlist_len)
1966 * would be sign of memory corruption in the stable_node.
1967 */
1968 BUG_ON(stable_node->rmap_hlist_len < 0);
1969
1970 stable_node->rmap_hlist_len++;
1971 if (!max_page_sharing_bypass)
1972 /* possibly non fatal but unexpected overflow, only warn */
1973 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1974 ksm_max_page_sharing);
1975
7b6ba2c7 1976 rmap_item->head = stable_node;
31dbd01f 1977 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1978 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1979
7b6ba2c7
HD
1980 if (rmap_item->hlist.next)
1981 ksm_pages_sharing++;
1982 else
1983 ksm_pages_shared++;
31dbd01f
IE
1984}
1985
1986/*
81464e30
HD
1987 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1988 * if not, compare checksum to previous and if it's the same, see if page can
1989 * be inserted into the unstable tree, or merged with a page already there and
1990 * both transferred to the stable tree.
31dbd01f
IE
1991 *
1992 * @page: the page that we are searching identical page to.
1993 * @rmap_item: the reverse mapping into the virtual address of this page
1994 */
1995static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1996{
4b22927f 1997 struct mm_struct *mm = rmap_item->mm;
31dbd01f 1998 struct rmap_item *tree_rmap_item;
8dd3557a 1999 struct page *tree_page = NULL;
7b6ba2c7 2000 struct stable_node *stable_node;
8dd3557a 2001 struct page *kpage;
31dbd01f
IE
2002 unsigned int checksum;
2003 int err;
2c653d0e 2004 bool max_page_sharing_bypass = false;
31dbd01f 2005
4146d2d6
HD
2006 stable_node = page_stable_node(page);
2007 if (stable_node) {
2008 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2009 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2010 NUMA(stable_node->nid)) {
2011 stable_node_dup_del(stable_node);
4146d2d6
HD
2012 stable_node->head = &migrate_nodes;
2013 list_add(&stable_node->list, stable_node->head);
2014 }
2015 if (stable_node->head != &migrate_nodes &&
2016 rmap_item->head == stable_node)
2017 return;
2c653d0e
AA
2018 /*
2019 * If it's a KSM fork, allow it to go over the sharing limit
2020 * without warnings.
2021 */
2022 if (!is_page_sharing_candidate(stable_node))
2023 max_page_sharing_bypass = true;
4146d2d6 2024 }
31dbd01f
IE
2025
2026 /* We first start with searching the page inside the stable tree */
62b61f61 2027 kpage = stable_tree_search(page);
4146d2d6
HD
2028 if (kpage == page && rmap_item->head == stable_node) {
2029 put_page(kpage);
2030 return;
2031 }
2032
2033 remove_rmap_item_from_tree(rmap_item);
2034
62b61f61 2035 if (kpage) {
08beca44 2036 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2037 if (!err) {
2038 /*
2039 * The page was successfully merged:
2040 * add its rmap_item to the stable tree.
2041 */
5ad64688 2042 lock_page(kpage);
2c653d0e
AA
2043 stable_tree_append(rmap_item, page_stable_node(kpage),
2044 max_page_sharing_bypass);
5ad64688 2045 unlock_page(kpage);
31dbd01f 2046 }
8dd3557a 2047 put_page(kpage);
31dbd01f
IE
2048 return;
2049 }
2050
2051 /*
4035c07a
HD
2052 * If the hash value of the page has changed from the last time
2053 * we calculated it, this page is changing frequently: therefore we
2054 * don't want to insert it in the unstable tree, and we don't want
2055 * to waste our time searching for something identical to it there.
31dbd01f
IE
2056 */
2057 checksum = calc_checksum(page);
2058 if (rmap_item->oldchecksum != checksum) {
2059 rmap_item->oldchecksum = checksum;
2060 return;
2061 }
2062
e86c59b1
CI
2063 /*
2064 * Same checksum as an empty page. We attempt to merge it with the
2065 * appropriate zero page if the user enabled this via sysfs.
2066 */
2067 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2068 struct vm_area_struct *vma;
2069
4b22927f
KT
2070 down_read(&mm->mmap_sem);
2071 vma = find_mergeable_vma(mm, rmap_item->address);
e86c59b1
CI
2072 err = try_to_merge_one_page(vma, page,
2073 ZERO_PAGE(rmap_item->address));
4b22927f 2074 up_read(&mm->mmap_sem);
e86c59b1
CI
2075 /*
2076 * In case of failure, the page was not really empty, so we
2077 * need to continue. Otherwise we're done.
2078 */
2079 if (!err)
2080 return;
2081 }
8dd3557a
HD
2082 tree_rmap_item =
2083 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2084 if (tree_rmap_item) {
8dd3557a
HD
2085 kpage = try_to_merge_two_pages(rmap_item, page,
2086 tree_rmap_item, tree_page);
2087 put_page(tree_page);
8dd3557a 2088 if (kpage) {
bc56620b
HD
2089 /*
2090 * The pages were successfully merged: insert new
2091 * node in the stable tree and add both rmap_items.
2092 */
5ad64688 2093 lock_page(kpage);
7b6ba2c7
HD
2094 stable_node = stable_tree_insert(kpage);
2095 if (stable_node) {
2c653d0e
AA
2096 stable_tree_append(tree_rmap_item, stable_node,
2097 false);
2098 stable_tree_append(rmap_item, stable_node,
2099 false);
7b6ba2c7 2100 }
5ad64688 2101 unlock_page(kpage);
7b6ba2c7 2102
31dbd01f
IE
2103 /*
2104 * If we fail to insert the page into the stable tree,
2105 * we will have 2 virtual addresses that are pointing
2106 * to a ksm page left outside the stable tree,
2107 * in which case we need to break_cow on both.
2108 */
7b6ba2c7 2109 if (!stable_node) {
8dd3557a
HD
2110 break_cow(tree_rmap_item);
2111 break_cow(rmap_item);
31dbd01f
IE
2112 }
2113 }
31dbd01f
IE
2114 }
2115}
2116
2117static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2118 struct rmap_item **rmap_list,
31dbd01f
IE
2119 unsigned long addr)
2120{
2121 struct rmap_item *rmap_item;
2122
6514d511
HD
2123 while (*rmap_list) {
2124 rmap_item = *rmap_list;
93d17715 2125 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2126 return rmap_item;
31dbd01f
IE
2127 if (rmap_item->address > addr)
2128 break;
6514d511 2129 *rmap_list = rmap_item->rmap_list;
31dbd01f 2130 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2131 free_rmap_item(rmap_item);
2132 }
2133
2134 rmap_item = alloc_rmap_item();
2135 if (rmap_item) {
2136 /* It has already been zeroed */
2137 rmap_item->mm = mm_slot->mm;
2138 rmap_item->address = addr;
6514d511
HD
2139 rmap_item->rmap_list = *rmap_list;
2140 *rmap_list = rmap_item;
31dbd01f
IE
2141 }
2142 return rmap_item;
2143}
2144
2145static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2146{
2147 struct mm_struct *mm;
2148 struct mm_slot *slot;
2149 struct vm_area_struct *vma;
2150 struct rmap_item *rmap_item;
90bd6fd3 2151 int nid;
31dbd01f
IE
2152
2153 if (list_empty(&ksm_mm_head.mm_list))
2154 return NULL;
2155
2156 slot = ksm_scan.mm_slot;
2157 if (slot == &ksm_mm_head) {
2919bfd0
HD
2158 /*
2159 * A number of pages can hang around indefinitely on per-cpu
2160 * pagevecs, raised page count preventing write_protect_page
2161 * from merging them. Though it doesn't really matter much,
2162 * it is puzzling to see some stuck in pages_volatile until
2163 * other activity jostles them out, and they also prevented
2164 * LTP's KSM test from succeeding deterministically; so drain
2165 * them here (here rather than on entry to ksm_do_scan(),
2166 * so we don't IPI too often when pages_to_scan is set low).
2167 */
2168 lru_add_drain_all();
2169
4146d2d6
HD
2170 /*
2171 * Whereas stale stable_nodes on the stable_tree itself
2172 * get pruned in the regular course of stable_tree_search(),
2173 * those moved out to the migrate_nodes list can accumulate:
2174 * so prune them once before each full scan.
2175 */
2176 if (!ksm_merge_across_nodes) {
03640418 2177 struct stable_node *stable_node, *next;
4146d2d6
HD
2178 struct page *page;
2179
03640418
GT
2180 list_for_each_entry_safe(stable_node, next,
2181 &migrate_nodes, list) {
4146d2d6
HD
2182 page = get_ksm_page(stable_node, false);
2183 if (page)
2184 put_page(page);
2185 cond_resched();
2186 }
2187 }
2188
ef53d16c 2189 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2190 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2191
2192 spin_lock(&ksm_mmlist_lock);
2193 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2194 ksm_scan.mm_slot = slot;
2195 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2196 /*
2197 * Although we tested list_empty() above, a racing __ksm_exit
2198 * of the last mm on the list may have removed it since then.
2199 */
2200 if (slot == &ksm_mm_head)
2201 return NULL;
31dbd01f
IE
2202next_mm:
2203 ksm_scan.address = 0;
6514d511 2204 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2205 }
2206
2207 mm = slot->mm;
2208 down_read(&mm->mmap_sem);
9ba69294
HD
2209 if (ksm_test_exit(mm))
2210 vma = NULL;
2211 else
2212 vma = find_vma(mm, ksm_scan.address);
2213
2214 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2215 if (!(vma->vm_flags & VM_MERGEABLE))
2216 continue;
2217 if (ksm_scan.address < vma->vm_start)
2218 ksm_scan.address = vma->vm_start;
2219 if (!vma->anon_vma)
2220 ksm_scan.address = vma->vm_end;
2221
2222 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2223 if (ksm_test_exit(mm))
2224 break;
31dbd01f 2225 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2226 if (IS_ERR_OR_NULL(*page)) {
2227 ksm_scan.address += PAGE_SIZE;
2228 cond_resched();
2229 continue;
2230 }
f765f540 2231 if (PageAnon(*page)) {
31dbd01f
IE
2232 flush_anon_page(vma, *page, ksm_scan.address);
2233 flush_dcache_page(*page);
2234 rmap_item = get_next_rmap_item(slot,
6514d511 2235 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2236 if (rmap_item) {
6514d511
HD
2237 ksm_scan.rmap_list =
2238 &rmap_item->rmap_list;
31dbd01f
IE
2239 ksm_scan.address += PAGE_SIZE;
2240 } else
2241 put_page(*page);
2242 up_read(&mm->mmap_sem);
2243 return rmap_item;
2244 }
21ae5b01 2245 put_page(*page);
31dbd01f
IE
2246 ksm_scan.address += PAGE_SIZE;
2247 cond_resched();
2248 }
2249 }
2250
9ba69294
HD
2251 if (ksm_test_exit(mm)) {
2252 ksm_scan.address = 0;
6514d511 2253 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2254 }
31dbd01f
IE
2255 /*
2256 * Nuke all the rmap_items that are above this current rmap:
2257 * because there were no VM_MERGEABLE vmas with such addresses.
2258 */
6514d511 2259 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
2260
2261 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2262 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2263 struct mm_slot, mm_list);
2264 if (ksm_scan.address == 0) {
2265 /*
2266 * We've completed a full scan of all vmas, holding mmap_sem
2267 * throughout, and found no VM_MERGEABLE: so do the same as
2268 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2269 * This applies either when cleaning up after __ksm_exit
2270 * (but beware: we can reach here even before __ksm_exit),
2271 * or when all VM_MERGEABLE areas have been unmapped (and
2272 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 2273 */
4ca3a69b 2274 hash_del(&slot->link);
cd551f97 2275 list_del(&slot->mm_list);
9ba69294
HD
2276 spin_unlock(&ksm_mmlist_lock);
2277
cd551f97
HD
2278 free_mm_slot(slot);
2279 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
2280 up_read(&mm->mmap_sem);
2281 mmdrop(mm);
2282 } else {
9ba69294 2283 up_read(&mm->mmap_sem);
7496fea9
ZC
2284 /*
2285 * up_read(&mm->mmap_sem) first because after
2286 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2287 * already have been freed under us by __ksm_exit()
2288 * because the "mm_slot" is still hashed and
2289 * ksm_scan.mm_slot doesn't point to it anymore.
2290 */
2291 spin_unlock(&ksm_mmlist_lock);
cd551f97 2292 }
31dbd01f
IE
2293
2294 /* Repeat until we've completed scanning the whole list */
cd551f97 2295 slot = ksm_scan.mm_slot;
31dbd01f
IE
2296 if (slot != &ksm_mm_head)
2297 goto next_mm;
2298
31dbd01f
IE
2299 ksm_scan.seqnr++;
2300 return NULL;
2301}
2302
2303/**
2304 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2305 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2306 */
2307static void ksm_do_scan(unsigned int scan_npages)
2308{
2309 struct rmap_item *rmap_item;
22eccdd7 2310 struct page *uninitialized_var(page);
31dbd01f 2311
878aee7d 2312 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2313 cond_resched();
2314 rmap_item = scan_get_next_rmap_item(&page);
2315 if (!rmap_item)
2316 return;
4146d2d6 2317 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2318 put_page(page);
2319 }
2320}
2321
6e158384
HD
2322static int ksmd_should_run(void)
2323{
2324 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2325}
2326
31dbd01f
IE
2327static int ksm_scan_thread(void *nothing)
2328{
878aee7d 2329 set_freezable();
339aa624 2330 set_user_nice(current, 5);
31dbd01f
IE
2331
2332 while (!kthread_should_stop()) {
6e158384 2333 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2334 wait_while_offlining();
6e158384 2335 if (ksmd_should_run())
31dbd01f 2336 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2337 mutex_unlock(&ksm_thread_mutex);
2338
878aee7d
AA
2339 try_to_freeze();
2340
6e158384 2341 if (ksmd_should_run()) {
31dbd01f
IE
2342 schedule_timeout_interruptible(
2343 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2344 } else {
878aee7d 2345 wait_event_freezable(ksm_thread_wait,
6e158384 2346 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2347 }
2348 }
2349 return 0;
2350}
2351
f8af4da3
HD
2352int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2353 unsigned long end, int advice, unsigned long *vm_flags)
2354{
2355 struct mm_struct *mm = vma->vm_mm;
d952b791 2356 int err;
f8af4da3
HD
2357
2358 switch (advice) {
2359 case MADV_MERGEABLE:
2360 /*
2361 * Be somewhat over-protective for now!
2362 */
2363 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2364 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2365 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2366 return 0; /* just ignore the advice */
2367
cc2383ec
KK
2368#ifdef VM_SAO
2369 if (*vm_flags & VM_SAO)
2370 return 0;
2371#endif
74a04967
KA
2372#ifdef VM_SPARC_ADI
2373 if (*vm_flags & VM_SPARC_ADI)
2374 return 0;
2375#endif
cc2383ec 2376
d952b791
HD
2377 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2378 err = __ksm_enter(mm);
2379 if (err)
2380 return err;
2381 }
f8af4da3
HD
2382
2383 *vm_flags |= VM_MERGEABLE;
2384 break;
2385
2386 case MADV_UNMERGEABLE:
2387 if (!(*vm_flags & VM_MERGEABLE))
2388 return 0; /* just ignore the advice */
2389
d952b791
HD
2390 if (vma->anon_vma) {
2391 err = unmerge_ksm_pages(vma, start, end);
2392 if (err)
2393 return err;
2394 }
f8af4da3
HD
2395
2396 *vm_flags &= ~VM_MERGEABLE;
2397 break;
2398 }
2399
2400 return 0;
2401}
2402
2403int __ksm_enter(struct mm_struct *mm)
2404{
6e158384
HD
2405 struct mm_slot *mm_slot;
2406 int needs_wakeup;
2407
2408 mm_slot = alloc_mm_slot();
31dbd01f
IE
2409 if (!mm_slot)
2410 return -ENOMEM;
2411
6e158384
HD
2412 /* Check ksm_run too? Would need tighter locking */
2413 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2414
31dbd01f
IE
2415 spin_lock(&ksm_mmlist_lock);
2416 insert_to_mm_slots_hash(mm, mm_slot);
2417 /*
cbf86cfe
HD
2418 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2419 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2420 * down a little; when fork is followed by immediate exec, we don't
2421 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2422 *
2423 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2424 * scanning cursor, otherwise KSM pages in newly forked mms will be
2425 * missed: then we might as well insert at the end of the list.
31dbd01f 2426 */
cbf86cfe
HD
2427 if (ksm_run & KSM_RUN_UNMERGE)
2428 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2429 else
2430 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2431 spin_unlock(&ksm_mmlist_lock);
2432
f8af4da3 2433 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2434 mmgrab(mm);
6e158384
HD
2435
2436 if (needs_wakeup)
2437 wake_up_interruptible(&ksm_thread_wait);
2438
f8af4da3
HD
2439 return 0;
2440}
2441
1c2fb7a4 2442void __ksm_exit(struct mm_struct *mm)
f8af4da3 2443{
cd551f97 2444 struct mm_slot *mm_slot;
9ba69294 2445 int easy_to_free = 0;
cd551f97 2446
31dbd01f 2447 /*
9ba69294
HD
2448 * This process is exiting: if it's straightforward (as is the
2449 * case when ksmd was never running), free mm_slot immediately.
2450 * But if it's at the cursor or has rmap_items linked to it, use
2451 * mmap_sem to synchronize with any break_cows before pagetables
2452 * are freed, and leave the mm_slot on the list for ksmd to free.
2453 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2454 */
9ba69294 2455
cd551f97
HD
2456 spin_lock(&ksm_mmlist_lock);
2457 mm_slot = get_mm_slot(mm);
9ba69294 2458 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2459 if (!mm_slot->rmap_list) {
4ca3a69b 2460 hash_del(&mm_slot->link);
9ba69294
HD
2461 list_del(&mm_slot->mm_list);
2462 easy_to_free = 1;
2463 } else {
2464 list_move(&mm_slot->mm_list,
2465 &ksm_scan.mm_slot->mm_list);
2466 }
cd551f97 2467 }
cd551f97
HD
2468 spin_unlock(&ksm_mmlist_lock);
2469
9ba69294
HD
2470 if (easy_to_free) {
2471 free_mm_slot(mm_slot);
2472 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2473 mmdrop(mm);
2474 } else if (mm_slot) {
9ba69294
HD
2475 down_write(&mm->mmap_sem);
2476 up_write(&mm->mmap_sem);
9ba69294 2477 }
31dbd01f
IE
2478}
2479
cbf86cfe 2480struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2481 struct vm_area_struct *vma, unsigned long address)
2482{
cbf86cfe 2483 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2484 struct page *new_page;
2485
cbf86cfe
HD
2486 if (PageKsm(page)) {
2487 if (page_stable_node(page) &&
2488 !(ksm_run & KSM_RUN_UNMERGE))
2489 return page; /* no need to copy it */
2490 } else if (!anon_vma) {
2491 return page; /* no need to copy it */
2492 } else if (anon_vma->root == vma->anon_vma->root &&
2493 page->index == linear_page_index(vma, address)) {
2494 return page; /* still no need to copy it */
2495 }
2496 if (!PageUptodate(page))
2497 return page; /* let do_swap_page report the error */
2498
5ad64688
HD
2499 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2500 if (new_page) {
2501 copy_user_highpage(new_page, page, address, vma);
2502
2503 SetPageDirty(new_page);
2504 __SetPageUptodate(new_page);
48c935ad 2505 __SetPageLocked(new_page);
5ad64688
HD
2506 }
2507
5ad64688
HD
2508 return new_page;
2509}
2510
1df631ae 2511void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2512{
2513 struct stable_node *stable_node;
e9995ef9 2514 struct rmap_item *rmap_item;
e9995ef9
HD
2515 int search_new_forks = 0;
2516
309381fe 2517 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2518
2519 /*
2520 * Rely on the page lock to protect against concurrent modifications
2521 * to that page's node of the stable tree.
2522 */
309381fe 2523 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2524
2525 stable_node = page_stable_node(page);
2526 if (!stable_node)
1df631ae 2527 return;
e9995ef9 2528again:
b67bfe0d 2529 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2530 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2531 struct anon_vma_chain *vmac;
e9995ef9
HD
2532 struct vm_area_struct *vma;
2533
ad12695f 2534 cond_resched();
b6b19f25 2535 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2536 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2537 0, ULONG_MAX) {
ad12695f 2538 cond_resched();
5beb4930 2539 vma = vmac->vma;
e9995ef9
HD
2540 if (rmap_item->address < vma->vm_start ||
2541 rmap_item->address >= vma->vm_end)
2542 continue;
2543 /*
2544 * Initially we examine only the vma which covers this
2545 * rmap_item; but later, if there is still work to do,
2546 * we examine covering vmas in other mms: in case they
2547 * were forked from the original since ksmd passed.
2548 */
2549 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2550 continue;
2551
0dd1c7bb
JK
2552 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2553 continue;
2554
e4b82222 2555 if (!rwc->rmap_one(page, vma,
1df631ae 2556 rmap_item->address, rwc->arg)) {
b6b19f25 2557 anon_vma_unlock_read(anon_vma);
1df631ae 2558 return;
e9995ef9 2559 }
0dd1c7bb
JK
2560 if (rwc->done && rwc->done(page)) {
2561 anon_vma_unlock_read(anon_vma);
1df631ae 2562 return;
0dd1c7bb 2563 }
e9995ef9 2564 }
b6b19f25 2565 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2566 }
2567 if (!search_new_forks++)
2568 goto again;
e9995ef9
HD
2569}
2570
52629506 2571#ifdef CONFIG_MIGRATION
e9995ef9
HD
2572void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2573{
2574 struct stable_node *stable_node;
2575
309381fe
SL
2576 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2577 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2578 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2579
2580 stable_node = page_stable_node(newpage);
2581 if (stable_node) {
309381fe 2582 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2583 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2584 /*
2585 * newpage->mapping was set in advance; now we need smp_wmb()
2586 * to make sure that the new stable_node->kpfn is visible
2587 * to get_ksm_page() before it can see that oldpage->mapping
2588 * has gone stale (or that PageSwapCache has been cleared).
2589 */
2590 smp_wmb();
2591 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2592 }
2593}
2594#endif /* CONFIG_MIGRATION */
2595
62b61f61 2596#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2597static void wait_while_offlining(void)
2598{
2599 while (ksm_run & KSM_RUN_OFFLINE) {
2600 mutex_unlock(&ksm_thread_mutex);
2601 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2602 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2603 mutex_lock(&ksm_thread_mutex);
2604 }
2605}
2606
2c653d0e
AA
2607static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2608 unsigned long start_pfn,
2609 unsigned long end_pfn)
2610{
2611 if (stable_node->kpfn >= start_pfn &&
2612 stable_node->kpfn < end_pfn) {
2613 /*
2614 * Don't get_ksm_page, page has already gone:
2615 * which is why we keep kpfn instead of page*
2616 */
2617 remove_node_from_stable_tree(stable_node);
2618 return true;
2619 }
2620 return false;
2621}
2622
2623static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2624 unsigned long start_pfn,
2625 unsigned long end_pfn,
2626 struct rb_root *root)
2627{
2628 struct stable_node *dup;
2629 struct hlist_node *hlist_safe;
2630
2631 if (!is_stable_node_chain(stable_node)) {
2632 VM_BUG_ON(is_stable_node_dup(stable_node));
2633 return stable_node_dup_remove_range(stable_node, start_pfn,
2634 end_pfn);
2635 }
2636
2637 hlist_for_each_entry_safe(dup, hlist_safe,
2638 &stable_node->hlist, hlist_dup) {
2639 VM_BUG_ON(!is_stable_node_dup(dup));
2640 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2641 }
2642 if (hlist_empty(&stable_node->hlist)) {
2643 free_stable_node_chain(stable_node, root);
2644 return true; /* notify caller that tree was rebalanced */
2645 } else
2646 return false;
2647}
2648
ee0ea59c
HD
2649static void ksm_check_stable_tree(unsigned long start_pfn,
2650 unsigned long end_pfn)
62b61f61 2651{
03640418 2652 struct stable_node *stable_node, *next;
62b61f61 2653 struct rb_node *node;
90bd6fd3 2654 int nid;
62b61f61 2655
ef53d16c
HD
2656 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2657 node = rb_first(root_stable_tree + nid);
ee0ea59c 2658 while (node) {
90bd6fd3 2659 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2660 if (stable_node_chain_remove_range(stable_node,
2661 start_pfn, end_pfn,
2662 root_stable_tree +
2663 nid))
ef53d16c 2664 node = rb_first(root_stable_tree + nid);
2c653d0e 2665 else
ee0ea59c
HD
2666 node = rb_next(node);
2667 cond_resched();
90bd6fd3 2668 }
ee0ea59c 2669 }
03640418 2670 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2671 if (stable_node->kpfn >= start_pfn &&
2672 stable_node->kpfn < end_pfn)
2673 remove_node_from_stable_tree(stable_node);
2674 cond_resched();
2675 }
62b61f61
HD
2676}
2677
2678static int ksm_memory_callback(struct notifier_block *self,
2679 unsigned long action, void *arg)
2680{
2681 struct memory_notify *mn = arg;
62b61f61
HD
2682
2683 switch (action) {
2684 case MEM_GOING_OFFLINE:
2685 /*
ef4d43a8
HD
2686 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2687 * and remove_all_stable_nodes() while memory is going offline:
2688 * it is unsafe for them to touch the stable tree at this time.
2689 * But unmerge_ksm_pages(), rmap lookups and other entry points
2690 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2691 */
ef4d43a8
HD
2692 mutex_lock(&ksm_thread_mutex);
2693 ksm_run |= KSM_RUN_OFFLINE;
2694 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2695 break;
2696
2697 case MEM_OFFLINE:
2698 /*
2699 * Most of the work is done by page migration; but there might
2700 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2701 * pages which have been offlined: prune those from the tree,
2702 * otherwise get_ksm_page() might later try to access a
2703 * non-existent struct page.
62b61f61 2704 */
ee0ea59c
HD
2705 ksm_check_stable_tree(mn->start_pfn,
2706 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2707 /* fallthrough */
2708
2709 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2710 mutex_lock(&ksm_thread_mutex);
2711 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2712 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2713
2714 smp_mb(); /* wake_up_bit advises this */
2715 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2716 break;
2717 }
2718 return NOTIFY_OK;
2719}
ef4d43a8
HD
2720#else
2721static void wait_while_offlining(void)
2722{
2723}
62b61f61
HD
2724#endif /* CONFIG_MEMORY_HOTREMOVE */
2725
2ffd8679
HD
2726#ifdef CONFIG_SYSFS
2727/*
2728 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2729 */
2730
31dbd01f
IE
2731#define KSM_ATTR_RO(_name) \
2732 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2733#define KSM_ATTR(_name) \
2734 static struct kobj_attribute _name##_attr = \
2735 __ATTR(_name, 0644, _name##_show, _name##_store)
2736
2737static ssize_t sleep_millisecs_show(struct kobject *kobj,
2738 struct kobj_attribute *attr, char *buf)
2739{
2740 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2741}
2742
2743static ssize_t sleep_millisecs_store(struct kobject *kobj,
2744 struct kobj_attribute *attr,
2745 const char *buf, size_t count)
2746{
2747 unsigned long msecs;
2748 int err;
2749
3dbb95f7 2750 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2751 if (err || msecs > UINT_MAX)
2752 return -EINVAL;
2753
2754 ksm_thread_sleep_millisecs = msecs;
2755
2756 return count;
2757}
2758KSM_ATTR(sleep_millisecs);
2759
2760static ssize_t pages_to_scan_show(struct kobject *kobj,
2761 struct kobj_attribute *attr, char *buf)
2762{
2763 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2764}
2765
2766static ssize_t pages_to_scan_store(struct kobject *kobj,
2767 struct kobj_attribute *attr,
2768 const char *buf, size_t count)
2769{
2770 int err;
2771 unsigned long nr_pages;
2772
3dbb95f7 2773 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2774 if (err || nr_pages > UINT_MAX)
2775 return -EINVAL;
2776
2777 ksm_thread_pages_to_scan = nr_pages;
2778
2779 return count;
2780}
2781KSM_ATTR(pages_to_scan);
2782
2783static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2784 char *buf)
2785{
ef4d43a8 2786 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2787}
2788
2789static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2790 const char *buf, size_t count)
2791{
2792 int err;
2793 unsigned long flags;
2794
3dbb95f7 2795 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2796 if (err || flags > UINT_MAX)
2797 return -EINVAL;
2798 if (flags > KSM_RUN_UNMERGE)
2799 return -EINVAL;
2800
2801 /*
2802 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2803 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2804 * breaking COW to free the pages_shared (but leaves mm_slots
2805 * on the list for when ksmd may be set running again).
31dbd01f
IE
2806 */
2807
2808 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2809 wait_while_offlining();
31dbd01f
IE
2810 if (ksm_run != flags) {
2811 ksm_run = flags;
d952b791 2812 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2813 set_current_oom_origin();
d952b791 2814 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2815 clear_current_oom_origin();
d952b791
HD
2816 if (err) {
2817 ksm_run = KSM_RUN_STOP;
2818 count = err;
2819 }
2820 }
31dbd01f
IE
2821 }
2822 mutex_unlock(&ksm_thread_mutex);
2823
2824 if (flags & KSM_RUN_MERGE)
2825 wake_up_interruptible(&ksm_thread_wait);
2826
2827 return count;
2828}
2829KSM_ATTR(run);
2830
90bd6fd3
PH
2831#ifdef CONFIG_NUMA
2832static ssize_t merge_across_nodes_show(struct kobject *kobj,
2833 struct kobj_attribute *attr, char *buf)
2834{
2835 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2836}
2837
2838static ssize_t merge_across_nodes_store(struct kobject *kobj,
2839 struct kobj_attribute *attr,
2840 const char *buf, size_t count)
2841{
2842 int err;
2843 unsigned long knob;
2844
2845 err = kstrtoul(buf, 10, &knob);
2846 if (err)
2847 return err;
2848 if (knob > 1)
2849 return -EINVAL;
2850
2851 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2852 wait_while_offlining();
90bd6fd3 2853 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2854 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2855 err = -EBUSY;
ef53d16c
HD
2856 else if (root_stable_tree == one_stable_tree) {
2857 struct rb_root *buf;
2858 /*
2859 * This is the first time that we switch away from the
2860 * default of merging across nodes: must now allocate
2861 * a buffer to hold as many roots as may be needed.
2862 * Allocate stable and unstable together:
2863 * MAXSMP NODES_SHIFT 10 will use 16kB.
2864 */
bafe1e14
JP
2865 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2866 GFP_KERNEL);
ef53d16c
HD
2867 /* Let us assume that RB_ROOT is NULL is zero */
2868 if (!buf)
2869 err = -ENOMEM;
2870 else {
2871 root_stable_tree = buf;
2872 root_unstable_tree = buf + nr_node_ids;
2873 /* Stable tree is empty but not the unstable */
2874 root_unstable_tree[0] = one_unstable_tree[0];
2875 }
2876 }
2877 if (!err) {
90bd6fd3 2878 ksm_merge_across_nodes = knob;
ef53d16c
HD
2879 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2880 }
90bd6fd3
PH
2881 }
2882 mutex_unlock(&ksm_thread_mutex);
2883
2884 return err ? err : count;
2885}
2886KSM_ATTR(merge_across_nodes);
2887#endif
2888
e86c59b1
CI
2889static ssize_t use_zero_pages_show(struct kobject *kobj,
2890 struct kobj_attribute *attr, char *buf)
2891{
2892 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2893}
2894static ssize_t use_zero_pages_store(struct kobject *kobj,
2895 struct kobj_attribute *attr,
2896 const char *buf, size_t count)
2897{
2898 int err;
2899 bool value;
2900
2901 err = kstrtobool(buf, &value);
2902 if (err)
2903 return -EINVAL;
2904
2905 ksm_use_zero_pages = value;
2906
2907 return count;
2908}
2909KSM_ATTR(use_zero_pages);
2910
2c653d0e
AA
2911static ssize_t max_page_sharing_show(struct kobject *kobj,
2912 struct kobj_attribute *attr, char *buf)
2913{
2914 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2915}
2916
2917static ssize_t max_page_sharing_store(struct kobject *kobj,
2918 struct kobj_attribute *attr,
2919 const char *buf, size_t count)
2920{
2921 int err;
2922 int knob;
2923
2924 err = kstrtoint(buf, 10, &knob);
2925 if (err)
2926 return err;
2927 /*
2928 * When a KSM page is created it is shared by 2 mappings. This
2929 * being a signed comparison, it implicitly verifies it's not
2930 * negative.
2931 */
2932 if (knob < 2)
2933 return -EINVAL;
2934
2935 if (READ_ONCE(ksm_max_page_sharing) == knob)
2936 return count;
2937
2938 mutex_lock(&ksm_thread_mutex);
2939 wait_while_offlining();
2940 if (ksm_max_page_sharing != knob) {
2941 if (ksm_pages_shared || remove_all_stable_nodes())
2942 err = -EBUSY;
2943 else
2944 ksm_max_page_sharing = knob;
2945 }
2946 mutex_unlock(&ksm_thread_mutex);
2947
2948 return err ? err : count;
2949}
2950KSM_ATTR(max_page_sharing);
2951
b4028260
HD
2952static ssize_t pages_shared_show(struct kobject *kobj,
2953 struct kobj_attribute *attr, char *buf)
2954{
2955 return sprintf(buf, "%lu\n", ksm_pages_shared);
2956}
2957KSM_ATTR_RO(pages_shared);
2958
2959static ssize_t pages_sharing_show(struct kobject *kobj,
2960 struct kobj_attribute *attr, char *buf)
2961{
e178dfde 2962 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2963}
2964KSM_ATTR_RO(pages_sharing);
2965
473b0ce4
HD
2966static ssize_t pages_unshared_show(struct kobject *kobj,
2967 struct kobj_attribute *attr, char *buf)
2968{
2969 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2970}
2971KSM_ATTR_RO(pages_unshared);
2972
2973static ssize_t pages_volatile_show(struct kobject *kobj,
2974 struct kobj_attribute *attr, char *buf)
2975{
2976 long ksm_pages_volatile;
2977
2978 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2979 - ksm_pages_sharing - ksm_pages_unshared;
2980 /*
2981 * It was not worth any locking to calculate that statistic,
2982 * but it might therefore sometimes be negative: conceal that.
2983 */
2984 if (ksm_pages_volatile < 0)
2985 ksm_pages_volatile = 0;
2986 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2987}
2988KSM_ATTR_RO(pages_volatile);
2989
2c653d0e
AA
2990static ssize_t stable_node_dups_show(struct kobject *kobj,
2991 struct kobj_attribute *attr, char *buf)
2992{
2993 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2994}
2995KSM_ATTR_RO(stable_node_dups);
2996
2997static ssize_t stable_node_chains_show(struct kobject *kobj,
2998 struct kobj_attribute *attr, char *buf)
2999{
3000 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3001}
3002KSM_ATTR_RO(stable_node_chains);
3003
3004static ssize_t
3005stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3006 struct kobj_attribute *attr,
3007 char *buf)
3008{
3009 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3010}
3011
3012static ssize_t
3013stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3014 struct kobj_attribute *attr,
3015 const char *buf, size_t count)
3016{
3017 unsigned long msecs;
3018 int err;
3019
3020 err = kstrtoul(buf, 10, &msecs);
3021 if (err || msecs > UINT_MAX)
3022 return -EINVAL;
3023
3024 ksm_stable_node_chains_prune_millisecs = msecs;
3025
3026 return count;
3027}
3028KSM_ATTR(stable_node_chains_prune_millisecs);
3029
473b0ce4
HD
3030static ssize_t full_scans_show(struct kobject *kobj,
3031 struct kobj_attribute *attr, char *buf)
3032{
3033 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3034}
3035KSM_ATTR_RO(full_scans);
3036
31dbd01f
IE
3037static struct attribute *ksm_attrs[] = {
3038 &sleep_millisecs_attr.attr,
3039 &pages_to_scan_attr.attr,
3040 &run_attr.attr,
b4028260
HD
3041 &pages_shared_attr.attr,
3042 &pages_sharing_attr.attr,
473b0ce4
HD
3043 &pages_unshared_attr.attr,
3044 &pages_volatile_attr.attr,
3045 &full_scans_attr.attr,
90bd6fd3
PH
3046#ifdef CONFIG_NUMA
3047 &merge_across_nodes_attr.attr,
3048#endif
2c653d0e
AA
3049 &max_page_sharing_attr.attr,
3050 &stable_node_chains_attr.attr,
3051 &stable_node_dups_attr.attr,
3052 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3053 &use_zero_pages_attr.attr,
31dbd01f
IE
3054 NULL,
3055};
3056
f907c26a 3057static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3058 .attrs = ksm_attrs,
3059 .name = "ksm",
3060};
2ffd8679 3061#endif /* CONFIG_SYSFS */
31dbd01f
IE
3062
3063static int __init ksm_init(void)
3064{
3065 struct task_struct *ksm_thread;
3066 int err;
3067
e86c59b1
CI
3068 /* The correct value depends on page size and endianness */
3069 zero_checksum = calc_checksum(ZERO_PAGE(0));
3070 /* Default to false for backwards compatibility */
3071 ksm_use_zero_pages = false;
3072
31dbd01f
IE
3073 err = ksm_slab_init();
3074 if (err)
3075 goto out;
3076
31dbd01f
IE
3077 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3078 if (IS_ERR(ksm_thread)) {
25acde31 3079 pr_err("ksm: creating kthread failed\n");
31dbd01f 3080 err = PTR_ERR(ksm_thread);
d9f8984c 3081 goto out_free;
31dbd01f
IE
3082 }
3083
2ffd8679 3084#ifdef CONFIG_SYSFS
31dbd01f
IE
3085 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3086 if (err) {
25acde31 3087 pr_err("ksm: register sysfs failed\n");
2ffd8679 3088 kthread_stop(ksm_thread);
d9f8984c 3089 goto out_free;
31dbd01f 3090 }
c73602ad
HD
3091#else
3092 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3093
2ffd8679 3094#endif /* CONFIG_SYSFS */
31dbd01f 3095
62b61f61 3096#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3097 /* There is no significance to this priority 100 */
62b61f61
HD
3098 hotplug_memory_notifier(ksm_memory_callback, 100);
3099#endif
31dbd01f
IE
3100 return 0;
3101
d9f8984c 3102out_free:
31dbd01f
IE
3103 ksm_slab_free();
3104out:
3105 return err;
f8af4da3 3106}
a64fb3cd 3107subsys_initcall(ksm_init);