docs: rename Documentation/vm to Documentation/mm
[linux-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
5a2ca3ef
MR
54/**
55 * DOC: Overview
56 *
31dbd01f
IE
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
5a2ca3ef
MR
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
9303c9d5 85 * using the same struct stable_node structure.
5a2ca3ef 86 *
31dbd01f
IE
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
112 */
113
114/**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
6514d511 124 struct rmap_item *rmap_list;
31dbd01f
IE
125 struct mm_struct *mm;
126};
127
128/**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
6514d511 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
6514d511 140 struct rmap_item **rmap_list;
31dbd01f
IE
141 unsigned long seqnr;
142};
143
7b6ba2c7
HD
144/**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
4146d2d6 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 150 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
155 */
156struct stable_node {
4146d2d6
HD
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
2c653d0e
AA
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
4146d2d6
HD
165 };
166 };
7b6ba2c7 167 struct hlist_head hlist;
2c653d0e
AA
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177#define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
4146d2d6
HD
179#ifdef CONFIG_NUMA
180 int nid;
181#endif
7b6ba2c7
HD
182};
183
31dbd01f
IE
184/**
185 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
195 */
196struct rmap_item {
6514d511 197 struct rmap_item *rmap_list;
bc56620b
HD
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200#ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202#endif
203 };
31dbd01f
IE
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 206 unsigned int oldchecksum; /* when unstable */
31dbd01f 207 union {
7b6ba2c7
HD
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
31dbd01f
IE
213 };
214};
215
216#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
217#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
219
220/* The stable and unstable tree heads */
ef53d16c
HD
221static struct rb_root one_stable_tree[1] = { RB_ROOT };
222static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223static struct rb_root *root_stable_tree = one_stable_tree;
224static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 225
4146d2d6
HD
226/* Recently migrated nodes of stable tree, pending proper placement */
227static LIST_HEAD(migrate_nodes);
2c653d0e 228#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 229
4ca3a69b
SL
230#define MM_SLOTS_HASH_BITS 10
231static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
232
233static struct mm_slot ksm_mm_head = {
234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235};
236static struct ksm_scan ksm_scan = {
237 .mm_slot = &ksm_mm_head,
238};
239
240static struct kmem_cache *rmap_item_cache;
7b6ba2c7 241static struct kmem_cache *stable_node_cache;
31dbd01f
IE
242static struct kmem_cache *mm_slot_cache;
243
244/* The number of nodes in the stable tree */
b4028260 245static unsigned long ksm_pages_shared;
31dbd01f 246
e178dfde 247/* The number of page slots additionally sharing those nodes */
b4028260 248static unsigned long ksm_pages_sharing;
31dbd01f 249
473b0ce4
HD
250/* The number of nodes in the unstable tree */
251static unsigned long ksm_pages_unshared;
252
253/* The number of rmap_items in use: to calculate pages_volatile */
254static unsigned long ksm_rmap_items;
255
2c653d0e
AA
256/* The number of stable_node chains */
257static unsigned long ksm_stable_node_chains;
258
259/* The number of stable_node dups linked to the stable_node chains */
260static unsigned long ksm_stable_node_dups;
261
262/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 263static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
264
265/* Maximum number of page slots sharing a stable node */
266static int ksm_max_page_sharing = 256;
267
31dbd01f 268/* Number of pages ksmd should scan in one batch */
2c6854fd 269static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
270
271/* Milliseconds ksmd should sleep between batches */
2ffd8679 272static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 273
e86c59b1
CI
274/* Checksum of an empty (zeroed) page */
275static unsigned int zero_checksum __read_mostly;
276
277/* Whether to merge empty (zeroed) pages with actual zero pages */
278static bool ksm_use_zero_pages __read_mostly;
279
e850dcf5 280#ifdef CONFIG_NUMA
90bd6fd3
PH
281/* Zeroed when merging across nodes is not allowed */
282static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 283static int ksm_nr_node_ids = 1;
e850dcf5
HD
284#else
285#define ksm_merge_across_nodes 1U
ef53d16c 286#define ksm_nr_node_ids 1
e850dcf5 287#endif
90bd6fd3 288
31dbd01f
IE
289#define KSM_RUN_STOP 0
290#define KSM_RUN_MERGE 1
291#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
292#define KSM_RUN_OFFLINE 4
293static unsigned long ksm_run = KSM_RUN_STOP;
294static void wait_while_offlining(void);
31dbd01f
IE
295
296static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 297static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
298static DEFINE_MUTEX(ksm_thread_mutex);
299static DEFINE_SPINLOCK(ksm_mmlist_lock);
300
301#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302 sizeof(struct __struct), __alignof__(struct __struct),\
303 (__flags), NULL)
304
305static int __init ksm_slab_init(void)
306{
307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308 if (!rmap_item_cache)
309 goto out;
310
7b6ba2c7
HD
311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312 if (!stable_node_cache)
313 goto out_free1;
314
31dbd01f
IE
315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316 if (!mm_slot_cache)
7b6ba2c7 317 goto out_free2;
31dbd01f
IE
318
319 return 0;
320
7b6ba2c7
HD
321out_free2:
322 kmem_cache_destroy(stable_node_cache);
323out_free1:
31dbd01f
IE
324 kmem_cache_destroy(rmap_item_cache);
325out:
326 return -ENOMEM;
327}
328
329static void __init ksm_slab_free(void)
330{
331 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 332 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
333 kmem_cache_destroy(rmap_item_cache);
334 mm_slot_cache = NULL;
335}
336
2c653d0e
AA
337static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338{
339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340}
341
342static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343{
344 return dup->head == STABLE_NODE_DUP_HEAD;
345}
346
347static inline void stable_node_chain_add_dup(struct stable_node *dup,
348 struct stable_node *chain)
349{
350 VM_BUG_ON(is_stable_node_dup(dup));
351 dup->head = STABLE_NODE_DUP_HEAD;
352 VM_BUG_ON(!is_stable_node_chain(chain));
353 hlist_add_head(&dup->hlist_dup, &chain->hlist);
354 ksm_stable_node_dups++;
355}
356
357static inline void __stable_node_dup_del(struct stable_node *dup)
358{
b4fecc67 359 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
360 hlist_del(&dup->hlist_dup);
361 ksm_stable_node_dups--;
362}
363
364static inline void stable_node_dup_del(struct stable_node *dup)
365{
366 VM_BUG_ON(is_stable_node_chain(dup));
367 if (is_stable_node_dup(dup))
368 __stable_node_dup_del(dup);
369 else
370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371#ifdef CONFIG_DEBUG_VM
372 dup->head = NULL;
373#endif
374}
375
31dbd01f
IE
376static inline struct rmap_item *alloc_rmap_item(void)
377{
473b0ce4
HD
378 struct rmap_item *rmap_item;
379
5b398e41 380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
382 if (rmap_item)
383 ksm_rmap_items++;
384 return rmap_item;
31dbd01f
IE
385}
386
387static inline void free_rmap_item(struct rmap_item *rmap_item)
388{
473b0ce4 389 ksm_rmap_items--;
31dbd01f
IE
390 rmap_item->mm = NULL; /* debug safety */
391 kmem_cache_free(rmap_item_cache, rmap_item);
392}
393
7b6ba2c7
HD
394static inline struct stable_node *alloc_stable_node(void)
395{
6213055f 396 /*
397 * The allocation can take too long with GFP_KERNEL when memory is under
398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
399 * grants access to memory reserves, helping to avoid this problem.
400 */
401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
402}
403
404static inline void free_stable_node(struct stable_node *stable_node)
405{
2c653d0e
AA
406 VM_BUG_ON(stable_node->rmap_hlist_len &&
407 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
408 kmem_cache_free(stable_node_cache, stable_node);
409}
410
31dbd01f
IE
411static inline struct mm_slot *alloc_mm_slot(void)
412{
413 if (!mm_slot_cache) /* initialization failed */
414 return NULL;
415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416}
417
418static inline void free_mm_slot(struct mm_slot *mm_slot)
419{
420 kmem_cache_free(mm_slot_cache, mm_slot);
421}
422
31dbd01f
IE
423static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424{
4ca3a69b
SL
425 struct mm_slot *slot;
426
b67bfe0d 427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
428 if (slot->mm == mm)
429 return slot;
31dbd01f 430
31dbd01f
IE
431 return NULL;
432}
433
434static void insert_to_mm_slots_hash(struct mm_struct *mm,
435 struct mm_slot *mm_slot)
436{
31dbd01f 437 mm_slot->mm = mm;
4ca3a69b 438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
439}
440
a913e182
HD
441/*
442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
445 * a special flag: they can just back out as soon as mm_users goes to zero.
446 * ksm_test_exit() is used throughout to make this test for exit: in some
447 * places for correctness, in some places just to avoid unnecessary work.
448 */
449static inline bool ksm_test_exit(struct mm_struct *mm)
450{
451 return atomic_read(&mm->mm_users) == 0;
452}
453
31dbd01f
IE
454/*
455 * We use break_ksm to break COW on a ksm page: it's a stripped down
456 *
7a9547fd 457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
31dbd01f
IE
458 * put_page(page);
459 *
460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461 * in case the application has unmapped and remapped mm,addr meanwhile.
462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 463 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126
DH
464 *
465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466 * of the process that owns 'vma'. We also do not want to enforce
467 * protection keys here anyway.
31dbd01f 468 */
d952b791 469static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
470{
471 struct page *page;
50a7ca3c 472 vm_fault_t ret = 0;
31dbd01f
IE
473
474 do {
475 cond_resched();
1b2ee126
DH
476 page = follow_page(vma, addr,
477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 478 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
479 break;
480 if (PageKsm(page))
dcddffd4 481 ret = handle_mm_fault(vma, addr,
bce617ed
PX
482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483 NULL);
31dbd01f
IE
484 else
485 ret = VM_FAULT_WRITE;
486 put_page(page);
33692f27 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
488 /*
489 * We must loop because handle_mm_fault() may back out if there's
490 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491 *
492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 * COW has been broken, even if the vma does not permit VM_WRITE;
494 * but note that a concurrent fault might break PageKsm for us.
495 *
496 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 * backing file, which also invalidates anonymous pages: that's
498 * okay, that truncation will have unmapped the PageKsm for us.
499 *
500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 * to user; and ksmd, having no mm, would never be chosen for that.
504 *
505 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 * even ksmd can fail in this way - though it's usually breaking ksm
508 * just to undo a merge it made a moment before, so unlikely to oom.
509 *
510 * That's a pity: we might therefore have more kernel pages allocated
511 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 * will retry to break_cow on each pass, so should recover the page
513 * in due course. The important thing is to not let VM_MERGEABLE
514 * be cleared while any such pages might remain in the area.
515 */
516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
517}
518
ef694222
BL
519static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520 unsigned long addr)
521{
522 struct vm_area_struct *vma;
523 if (ksm_test_exit(mm))
524 return NULL;
ff69fb81
LH
525 vma = vma_lookup(mm, addr);
526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
527 return NULL;
528 return vma;
529}
530
8dd3557a 531static void break_cow(struct rmap_item *rmap_item)
31dbd01f 532{
8dd3557a
HD
533 struct mm_struct *mm = rmap_item->mm;
534 unsigned long addr = rmap_item->address;
31dbd01f
IE
535 struct vm_area_struct *vma;
536
4035c07a
HD
537 /*
538 * It is not an accident that whenever we want to break COW
539 * to undo, we also need to drop a reference to the anon_vma.
540 */
9e60109f 541 put_anon_vma(rmap_item->anon_vma);
4035c07a 542
d8ed45c5 543 mmap_read_lock(mm);
ef694222
BL
544 vma = find_mergeable_vma(mm, addr);
545 if (vma)
546 break_ksm(vma, addr);
d8ed45c5 547 mmap_read_unlock(mm);
31dbd01f
IE
548}
549
550static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551{
552 struct mm_struct *mm = rmap_item->mm;
553 unsigned long addr = rmap_item->address;
554 struct vm_area_struct *vma;
555 struct page *page;
556
d8ed45c5 557 mmap_read_lock(mm);
ef694222
BL
558 vma = find_mergeable_vma(mm, addr);
559 if (!vma)
31dbd01f
IE
560 goto out;
561
562 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 563 if (IS_ERR_OR_NULL(page))
31dbd01f 564 goto out;
f765f540 565 if (PageAnon(page)) {
31dbd01f
IE
566 flush_anon_page(vma, page, addr);
567 flush_dcache_page(page);
568 } else {
569 put_page(page);
c8f95ed1
AA
570out:
571 page = NULL;
31dbd01f 572 }
d8ed45c5 573 mmap_read_unlock(mm);
31dbd01f
IE
574 return page;
575}
576
90bd6fd3
PH
577/*
578 * This helper is used for getting right index into array of tree roots.
579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581 * every node has its own stable and unstable tree.
582 */
583static inline int get_kpfn_nid(unsigned long kpfn)
584{
d8fc16a8 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
586}
587
2c653d0e
AA
588static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 struct rb_root *root)
590{
591 struct stable_node *chain = alloc_stable_node();
592 VM_BUG_ON(is_stable_node_chain(dup));
593 if (likely(chain)) {
594 INIT_HLIST_HEAD(&chain->hlist);
595 chain->chain_prune_time = jiffies;
596 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 598 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
599#endif
600 ksm_stable_node_chains++;
601
602 /*
603 * Put the stable node chain in the first dimension of
604 * the stable tree and at the same time remove the old
605 * stable node.
606 */
607 rb_replace_node(&dup->node, &chain->node, root);
608
609 /*
610 * Move the old stable node to the second dimension
611 * queued in the hlist_dup. The invariant is that all
612 * dup stable_nodes in the chain->hlist point to pages
457aef94 613 * that are write protected and have the exact same
2c653d0e
AA
614 * content.
615 */
616 stable_node_chain_add_dup(dup, chain);
617 }
618 return chain;
619}
620
621static inline void free_stable_node_chain(struct stable_node *chain,
622 struct rb_root *root)
623{
624 rb_erase(&chain->node, root);
625 free_stable_node(chain);
626 ksm_stable_node_chains--;
627}
628
4035c07a
HD
629static void remove_node_from_stable_tree(struct stable_node *stable_node)
630{
631 struct rmap_item *rmap_item;
4035c07a 632
2c653d0e
AA
633 /* check it's not STABLE_NODE_CHAIN or negative */
634 BUG_ON(stable_node->rmap_hlist_len < 0);
635
b67bfe0d 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
637 if (rmap_item->hlist.next)
638 ksm_pages_sharing--;
639 else
640 ksm_pages_shared--;
76093853 641
642 rmap_item->mm->ksm_merging_pages--;
643
2c653d0e
AA
644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 stable_node->rmap_hlist_len--;
9e60109f 646 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
647 rmap_item->address &= PAGE_MASK;
648 cond_resched();
649 }
650
2c653d0e
AA
651 /*
652 * We need the second aligned pointer of the migrate_nodes
653 * list_head to stay clear from the rb_parent_color union
654 * (aligned and different than any node) and also different
655 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 657 */
2c653d0e
AA
658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 660
4146d2d6
HD
661 if (stable_node->head == &migrate_nodes)
662 list_del(&stable_node->list);
663 else
2c653d0e 664 stable_node_dup_del(stable_node);
4035c07a
HD
665 free_stable_node(stable_node);
666}
667
2cee57d1
YS
668enum get_ksm_page_flags {
669 GET_KSM_PAGE_NOLOCK,
670 GET_KSM_PAGE_LOCK,
671 GET_KSM_PAGE_TRYLOCK
672};
673
4035c07a
HD
674/*
675 * get_ksm_page: checks if the page indicated by the stable node
676 * is still its ksm page, despite having held no reference to it.
677 * In which case we can trust the content of the page, and it
678 * returns the gotten page; but if the page has now been zapped,
679 * remove the stale node from the stable tree and return NULL.
c8d6553b 680 * But beware, the stable node's page might be being migrated.
4035c07a
HD
681 *
682 * You would expect the stable_node to hold a reference to the ksm page.
683 * But if it increments the page's count, swapping out has to wait for
684 * ksmd to come around again before it can free the page, which may take
685 * seconds or even minutes: much too unresponsive. So instead we use a
686 * "keyhole reference": access to the ksm page from the stable node peeps
687 * out through its keyhole to see if that page still holds the right key,
688 * pointing back to this stable node. This relies on freeing a PageAnon
689 * page to reset its page->mapping to NULL, and relies on no other use of
690 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
691 * is on its way to being freed; but it is an anomaly to bear in mind.
692 */
2cee57d1
YS
693static struct page *get_ksm_page(struct stable_node *stable_node,
694 enum get_ksm_page_flags flags)
4035c07a
HD
695{
696 struct page *page;
697 void *expected_mapping;
c8d6553b 698 unsigned long kpfn;
4035c07a 699
bda807d4
MK
700 expected_mapping = (void *)((unsigned long)stable_node |
701 PAGE_MAPPING_KSM);
c8d6553b 702again:
08df4774 703 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 704 page = pfn_to_page(kpfn);
4db0c3c2 705 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 706 goto stale;
c8d6553b
HD
707
708 /*
709 * We cannot do anything with the page while its refcount is 0.
710 * Usually 0 means free, or tail of a higher-order page: in which
711 * case this node is no longer referenced, and should be freed;
1c4c3b99 712 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 713 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606
KT
714 * the same is in reuse_ksm_page() case; but if page is swapcache
715 * in migrate_page_move_mapping(), it might still be our page,
716 * in which case it's essential to keep the node.
c8d6553b
HD
717 */
718 while (!get_page_unless_zero(page)) {
719 /*
720 * Another check for page->mapping != expected_mapping would
721 * work here too. We have chosen the !PageSwapCache test to
722 * optimize the common case, when the page is or is about to
723 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 724 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
725 * page->mapping reset to NULL later, in free_pages_prepare().
726 */
727 if (!PageSwapCache(page))
728 goto stale;
729 cpu_relax();
730 }
731
4db0c3c2 732 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
733 put_page(page);
734 goto stale;
735 }
c8d6553b 736
2cee57d1
YS
737 if (flags == GET_KSM_PAGE_TRYLOCK) {
738 if (!trylock_page(page)) {
739 put_page(page);
740 return ERR_PTR(-EBUSY);
741 }
742 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 743 lock_page(page);
2cee57d1
YS
744
745 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 746 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
747 unlock_page(page);
748 put_page(page);
749 goto stale;
750 }
751 }
4035c07a 752 return page;
c8d6553b 753
4035c07a 754stale:
c8d6553b
HD
755 /*
756 * We come here from above when page->mapping or !PageSwapCache
757 * suggests that the node is stale; but it might be under migration.
19138349 758 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
759 * before checking whether node->kpfn has been changed.
760 */
761 smp_rmb();
4db0c3c2 762 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 763 goto again;
4035c07a
HD
764 remove_node_from_stable_tree(stable_node);
765 return NULL;
766}
767
31dbd01f
IE
768/*
769 * Removing rmap_item from stable or unstable tree.
770 * This function will clean the information from the stable/unstable tree.
771 */
772static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773{
7b6ba2c7
HD
774 if (rmap_item->address & STABLE_FLAG) {
775 struct stable_node *stable_node;
5ad64688 776 struct page *page;
31dbd01f 777
7b6ba2c7 778 stable_node = rmap_item->head;
62862290 779 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
780 if (!page)
781 goto out;
5ad64688 782
7b6ba2c7 783 hlist_del(&rmap_item->hlist);
62862290 784 unlock_page(page);
4035c07a 785 put_page(page);
08beca44 786
98666f8a 787 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
788 ksm_pages_sharing--;
789 else
7b6ba2c7 790 ksm_pages_shared--;
76093853 791
792 rmap_item->mm->ksm_merging_pages--;
793
2c653d0e
AA
794 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
795 stable_node->rmap_hlist_len--;
31dbd01f 796
9e60109f 797 put_anon_vma(rmap_item->anon_vma);
c89a384e 798 rmap_item->head = NULL;
93d17715 799 rmap_item->address &= PAGE_MASK;
31dbd01f 800
7b6ba2c7 801 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
802 unsigned char age;
803 /*
9ba69294 804 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 805 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
806 * But be careful when an mm is exiting: do the rb_erase
807 * if this rmap_item was inserted by this scan, rather
808 * than left over from before.
31dbd01f
IE
809 */
810 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 811 BUG_ON(age > 1);
31dbd01f 812 if (!age)
90bd6fd3 813 rb_erase(&rmap_item->node,
ef53d16c 814 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 815 ksm_pages_unshared--;
93d17715 816 rmap_item->address &= PAGE_MASK;
31dbd01f 817 }
4035c07a 818out:
31dbd01f
IE
819 cond_resched(); /* we're called from many long loops */
820}
821
420be4ed 822static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
31dbd01f 823{
6514d511
HD
824 while (*rmap_list) {
825 struct rmap_item *rmap_item = *rmap_list;
826 *rmap_list = rmap_item->rmap_list;
31dbd01f 827 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
828 free_rmap_item(rmap_item);
829 }
830}
831
832/*
e850dcf5 833 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
834 * than check every pte of a given vma, the locking doesn't quite work for
835 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 836 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
837 * rmap_items from parent to child at fork time (so as not to waste time
838 * if exit comes before the next scan reaches it).
81464e30
HD
839 *
840 * Similarly, although we'd like to remove rmap_items (so updating counts
841 * and freeing memory) when unmerging an area, it's easier to leave that
842 * to the next pass of ksmd - consider, for example, how ksmd might be
843 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 844 */
d952b791
HD
845static int unmerge_ksm_pages(struct vm_area_struct *vma,
846 unsigned long start, unsigned long end)
31dbd01f
IE
847{
848 unsigned long addr;
d952b791 849 int err = 0;
31dbd01f 850
d952b791 851 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
852 if (ksm_test_exit(vma->vm_mm))
853 break;
d952b791
HD
854 if (signal_pending(current))
855 err = -ERESTARTSYS;
856 else
857 err = break_ksm(vma, addr);
858 }
859 return err;
31dbd01f
IE
860}
861
19138349
MWO
862static inline struct stable_node *folio_stable_node(struct folio *folio)
863{
864 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
865}
866
88484826
MR
867static inline struct stable_node *page_stable_node(struct page *page)
868{
19138349 869 return folio_stable_node(page_folio(page));
88484826
MR
870}
871
872static inline void set_page_stable_node(struct page *page,
873 struct stable_node *stable_node)
874{
6c287605 875 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
876 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
877}
878
2ffd8679
HD
879#ifdef CONFIG_SYSFS
880/*
881 * Only called through the sysfs control interface:
882 */
cbf86cfe
HD
883static int remove_stable_node(struct stable_node *stable_node)
884{
885 struct page *page;
886 int err;
887
2cee57d1 888 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
889 if (!page) {
890 /*
891 * get_ksm_page did remove_node_from_stable_tree itself.
892 */
893 return 0;
894 }
895
9a63236f
AR
896 /*
897 * Page could be still mapped if this races with __mmput() running in
898 * between ksm_exit() and exit_mmap(). Just refuse to let
899 * merge_across_nodes/max_page_sharing be switched.
900 */
901 err = -EBUSY;
902 if (!page_mapped(page)) {
cbf86cfe 903 /*
8fdb3dbf
HD
904 * The stable node did not yet appear stale to get_ksm_page(),
905 * since that allows for an unmapped ksm page to be recognized
906 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
907 * This page might be in a pagevec waiting to be freed,
908 * or it might be PageSwapCache (perhaps under writeback),
909 * or it might have been removed from swapcache a moment ago.
910 */
911 set_page_stable_node(page, NULL);
912 remove_node_from_stable_tree(stable_node);
913 err = 0;
914 }
915
916 unlock_page(page);
917 put_page(page);
918 return err;
919}
920
2c653d0e
AA
921static int remove_stable_node_chain(struct stable_node *stable_node,
922 struct rb_root *root)
923{
924 struct stable_node *dup;
925 struct hlist_node *hlist_safe;
926
927 if (!is_stable_node_chain(stable_node)) {
928 VM_BUG_ON(is_stable_node_dup(stable_node));
929 if (remove_stable_node(stable_node))
930 return true;
931 else
932 return false;
933 }
934
935 hlist_for_each_entry_safe(dup, hlist_safe,
936 &stable_node->hlist, hlist_dup) {
937 VM_BUG_ON(!is_stable_node_dup(dup));
938 if (remove_stable_node(dup))
939 return true;
940 }
941 BUG_ON(!hlist_empty(&stable_node->hlist));
942 free_stable_node_chain(stable_node, root);
943 return false;
944}
945
cbf86cfe
HD
946static int remove_all_stable_nodes(void)
947{
03640418 948 struct stable_node *stable_node, *next;
cbf86cfe
HD
949 int nid;
950 int err = 0;
951
ef53d16c 952 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
953 while (root_stable_tree[nid].rb_node) {
954 stable_node = rb_entry(root_stable_tree[nid].rb_node,
955 struct stable_node, node);
2c653d0e
AA
956 if (remove_stable_node_chain(stable_node,
957 root_stable_tree + nid)) {
cbf86cfe
HD
958 err = -EBUSY;
959 break; /* proceed to next nid */
960 }
961 cond_resched();
962 }
963 }
03640418 964 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
965 if (remove_stable_node(stable_node))
966 err = -EBUSY;
967 cond_resched();
968 }
cbf86cfe
HD
969 return err;
970}
971
d952b791 972static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
973{
974 struct mm_slot *mm_slot;
975 struct mm_struct *mm;
976 struct vm_area_struct *vma;
d952b791
HD
977 int err = 0;
978
979 spin_lock(&ksm_mmlist_lock);
9ba69294 980 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
981 struct mm_slot, mm_list);
982 spin_unlock(&ksm_mmlist_lock);
31dbd01f 983
9ba69294
HD
984 for (mm_slot = ksm_scan.mm_slot;
985 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f 986 mm = mm_slot->mm;
d8ed45c5 987 mmap_read_lock(mm);
31dbd01f 988 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
989 if (ksm_test_exit(mm))
990 break;
31dbd01f
IE
991 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
992 continue;
d952b791
HD
993 err = unmerge_ksm_pages(vma,
994 vma->vm_start, vma->vm_end);
9ba69294
HD
995 if (err)
996 goto error;
31dbd01f 997 }
9ba69294 998
420be4ed 999 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1000 mmap_read_unlock(mm);
d952b791
HD
1001
1002 spin_lock(&ksm_mmlist_lock);
9ba69294 1003 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 1004 struct mm_slot, mm_list);
9ba69294 1005 if (ksm_test_exit(mm)) {
4ca3a69b 1006 hash_del(&mm_slot->link);
9ba69294
HD
1007 list_del(&mm_slot->mm_list);
1008 spin_unlock(&ksm_mmlist_lock);
1009
1010 free_mm_slot(mm_slot);
1011 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1012 mmdrop(mm);
7496fea9 1013 } else
9ba69294 1014 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1015 }
1016
cbf86cfe
HD
1017 /* Clean up stable nodes, but don't worry if some are still busy */
1018 remove_all_stable_nodes();
d952b791 1019 ksm_scan.seqnr = 0;
9ba69294
HD
1020 return 0;
1021
1022error:
d8ed45c5 1023 mmap_read_unlock(mm);
31dbd01f 1024 spin_lock(&ksm_mmlist_lock);
d952b791 1025 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1026 spin_unlock(&ksm_mmlist_lock);
d952b791 1027 return err;
31dbd01f 1028}
2ffd8679 1029#endif /* CONFIG_SYSFS */
31dbd01f 1030
31dbd01f
IE
1031static u32 calc_checksum(struct page *page)
1032{
1033 u32 checksum;
9b04c5fe 1034 void *addr = kmap_atomic(page);
59e1a2f4 1035 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1036 kunmap_atomic(addr);
31dbd01f
IE
1037 return checksum;
1038}
1039
31dbd01f
IE
1040static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1041 pte_t *orig_pte)
1042{
1043 struct mm_struct *mm = vma->vm_mm;
eed05e54 1044 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1045 int swapped;
1046 int err = -EFAULT;
ac46d4f3 1047 struct mmu_notifier_range range;
6c287605 1048 bool anon_exclusive;
31dbd01f 1049
36eaff33
KS
1050 pvmw.address = page_address_in_vma(page, vma);
1051 if (pvmw.address == -EFAULT)
31dbd01f
IE
1052 goto out;
1053
29ad768c 1054 BUG_ON(PageTransCompound(page));
6bdb913f 1055
7269f999 1056 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 1057 pvmw.address,
ac46d4f3
JG
1058 pvmw.address + PAGE_SIZE);
1059 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1060
36eaff33 1061 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1062 goto out_mn;
36eaff33
KS
1063 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1064 goto out_unlock;
31dbd01f 1065
6c287605 1066 anon_exclusive = PageAnonExclusive(page);
595cd8f2 1067 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08 1068 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
6c287605 1069 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1070 pte_t entry;
1071
1072 swapped = PageSwapCache(page);
36eaff33 1073 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1074 /*
25985edc 1075 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1076 * take any lock, therefore the check that we are going to make
f0953a1b 1077 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1078 * O_DIRECT can happen right after the check.
1079 * So we clear the pte and flush the tlb before the check
1080 * this assure us that no O_DIRECT can happen after the check
1081 * or in the middle of the check.
0f10851e
JG
1082 *
1083 * No need to notify as we are downgrading page table to read
1084 * only not changing it to point to a new page.
1085 *
ee65728e 1086 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1087 */
0f10851e 1088 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1089 /*
1090 * Check that no O_DIRECT or similar I/O is in progress on the
1091 * page
1092 */
31e855ea 1093 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1094 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1095 goto out_unlock;
1096 }
6c287605
DH
1097
1098 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1099 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1100 goto out_unlock;
1101 }
1102
4e31635c
HD
1103 if (pte_dirty(entry))
1104 set_page_dirty(page);
595cd8f2
AK
1105
1106 if (pte_protnone(entry))
1107 entry = pte_mkclean(pte_clear_savedwrite(entry));
1108 else
1109 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1110 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1111 }
36eaff33 1112 *orig_pte = *pvmw.pte;
31dbd01f
IE
1113 err = 0;
1114
1115out_unlock:
36eaff33 1116 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1117out_mn:
ac46d4f3 1118 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1119out:
1120 return err;
1121}
1122
1123/**
1124 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1125 * @vma: vma that holds the pte pointing to page
1126 * @page: the page we are replacing by kpage
1127 * @kpage: the ksm page we replace page by
31dbd01f
IE
1128 * @orig_pte: the original value of the pte
1129 *
1130 * Returns 0 on success, -EFAULT on failure.
1131 */
8dd3557a
HD
1132static int replace_page(struct vm_area_struct *vma, struct page *page,
1133 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1134{
1135 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1136 pmd_t *pmd;
1137 pte_t *ptep;
e86c59b1 1138 pte_t newpte;
31dbd01f
IE
1139 spinlock_t *ptl;
1140 unsigned long addr;
31dbd01f 1141 int err = -EFAULT;
ac46d4f3 1142 struct mmu_notifier_range range;
31dbd01f 1143
8dd3557a 1144 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1145 if (addr == -EFAULT)
1146 goto out;
1147
6219049a
BL
1148 pmd = mm_find_pmd(mm, addr);
1149 if (!pmd)
31dbd01f 1150 goto out;
31dbd01f 1151
7269f999 1152 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
6f4f13e8 1153 addr + PAGE_SIZE);
ac46d4f3 1154 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1155
31dbd01f
IE
1156 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1157 if (!pte_same(*ptep, orig_pte)) {
1158 pte_unmap_unlock(ptep, ptl);
6bdb913f 1159 goto out_mn;
31dbd01f 1160 }
6c287605
DH
1161 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1162 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
31dbd01f 1163
e86c59b1
CI
1164 /*
1165 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1166 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1167 */
1168 if (!is_zero_pfn(page_to_pfn(kpage))) {
1169 get_page(kpage);
f1e2db12 1170 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1171 newpte = mk_pte(kpage, vma->vm_page_prot);
1172 } else {
1173 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1174 vma->vm_page_prot));
a38c015f
CI
1175 /*
1176 * We're replacing an anonymous page with a zero page, which is
1177 * not anonymous. We need to do proper accounting otherwise we
1178 * will get wrong values in /proc, and a BUG message in dmesg
1179 * when tearing down the mm.
1180 */
1181 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1182 }
31dbd01f
IE
1183
1184 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1185 /*
1186 * No need to notify as we are replacing a read only page with another
1187 * read only page with the same content.
1188 *
ee65728e 1189 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1190 */
1191 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1192 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1193
cea86fe2 1194 page_remove_rmap(page, vma, false);
ae52a2ad
HD
1195 if (!page_mapped(page))
1196 try_to_free_swap(page);
8dd3557a 1197 put_page(page);
31dbd01f
IE
1198
1199 pte_unmap_unlock(ptep, ptl);
1200 err = 0;
6bdb913f 1201out_mn:
ac46d4f3 1202 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1203out:
1204 return err;
1205}
1206
1207/*
1208 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1209 * @vma: the vma that holds the pte pointing to page
1210 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1211 * @kpage: the PageKsm page that we want to map instead of page,
1212 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1213 *
1214 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1215 */
1216static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1217 struct page *page, struct page *kpage)
31dbd01f
IE
1218{
1219 pte_t orig_pte = __pte(0);
1220 int err = -EFAULT;
1221
db114b83
HD
1222 if (page == kpage) /* ksm page forked */
1223 return 0;
1224
8dd3557a 1225 if (!PageAnon(page))
31dbd01f
IE
1226 goto out;
1227
31dbd01f
IE
1228 /*
1229 * We need the page lock to read a stable PageSwapCache in
1230 * write_protect_page(). We use trylock_page() instead of
1231 * lock_page() because we don't want to wait here - we
1232 * prefer to continue scanning and merging different pages,
1233 * then come back to this page when it is unlocked.
1234 */
8dd3557a 1235 if (!trylock_page(page))
31e855ea 1236 goto out;
f765f540
KS
1237
1238 if (PageTransCompound(page)) {
a7306c34 1239 if (split_huge_page(page))
f765f540
KS
1240 goto out_unlock;
1241 }
1242
31dbd01f
IE
1243 /*
1244 * If this anonymous page is mapped only here, its pte may need
1245 * to be write-protected. If it's mapped elsewhere, all of its
1246 * ptes are necessarily already write-protected. But in either
1247 * case, we need to lock and check page_count is not raised.
1248 */
80e14822
HD
1249 if (write_protect_page(vma, page, &orig_pte) == 0) {
1250 if (!kpage) {
1251 /*
1252 * While we hold page lock, upgrade page from
1253 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1254 * stable_tree_insert() will update stable_node.
1255 */
1256 set_page_stable_node(page, NULL);
1257 mark_page_accessed(page);
337ed7eb
MK
1258 /*
1259 * Page reclaim just frees a clean page with no dirty
1260 * ptes: make sure that the ksm page would be swapped.
1261 */
1262 if (!PageDirty(page))
1263 SetPageDirty(page);
80e14822
HD
1264 err = 0;
1265 } else if (pages_identical(page, kpage))
1266 err = replace_page(vma, page, kpage, orig_pte);
1267 }
31dbd01f 1268
f765f540 1269out_unlock:
8dd3557a 1270 unlock_page(page);
31dbd01f
IE
1271out:
1272 return err;
1273}
1274
81464e30
HD
1275/*
1276 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1277 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1278 *
1279 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1280 */
8dd3557a
HD
1281static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1282 struct page *page, struct page *kpage)
81464e30 1283{
8dd3557a 1284 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1285 struct vm_area_struct *vma;
1286 int err = -EFAULT;
1287
d8ed45c5 1288 mmap_read_lock(mm);
85c6e8dd
AA
1289 vma = find_mergeable_vma(mm, rmap_item->address);
1290 if (!vma)
81464e30
HD
1291 goto out;
1292
8dd3557a 1293 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1294 if (err)
1295 goto out;
1296
bc56620b
HD
1297 /* Unstable nid is in union with stable anon_vma: remove first */
1298 remove_rmap_item_from_tree(rmap_item);
1299
c1e8d7c6 1300 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1301 rmap_item->anon_vma = vma->anon_vma;
1302 get_anon_vma(vma->anon_vma);
81464e30 1303out:
d8ed45c5 1304 mmap_read_unlock(mm);
81464e30
HD
1305 return err;
1306}
1307
31dbd01f
IE
1308/*
1309 * try_to_merge_two_pages - take two identical pages and prepare them
1310 * to be merged into one page.
1311 *
8dd3557a
HD
1312 * This function returns the kpage if we successfully merged two identical
1313 * pages into one ksm page, NULL otherwise.
31dbd01f 1314 *
80e14822 1315 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1316 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1317 */
8dd3557a
HD
1318static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1319 struct page *page,
1320 struct rmap_item *tree_rmap_item,
1321 struct page *tree_page)
31dbd01f 1322{
80e14822 1323 int err;
31dbd01f 1324
80e14822 1325 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1326 if (!err) {
8dd3557a 1327 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1328 tree_page, page);
31dbd01f 1329 /*
81464e30
HD
1330 * If that fails, we have a ksm page with only one pte
1331 * pointing to it: so break it.
31dbd01f 1332 */
4035c07a 1333 if (err)
8dd3557a 1334 break_cow(rmap_item);
31dbd01f 1335 }
80e14822 1336 return err ? NULL : page;
31dbd01f
IE
1337}
1338
2c653d0e
AA
1339static __always_inline
1340bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1341{
1342 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1343 /*
1344 * Check that at least one mapping still exists, otherwise
1345 * there's no much point to merge and share with this
1346 * stable_node, as the underlying tree_page of the other
1347 * sharer is going to be freed soon.
1348 */
1349 return stable_node->rmap_hlist_len &&
1350 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1351}
1352
1353static __always_inline
1354bool is_page_sharing_candidate(struct stable_node *stable_node)
1355{
1356 return __is_page_sharing_candidate(stable_node, 0);
1357}
1358
c01f0b54
CIK
1359static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1360 struct stable_node **_stable_node,
1361 struct rb_root *root,
1362 bool prune_stale_stable_nodes)
2c653d0e 1363{
b4fecc67 1364 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1365 struct hlist_node *hlist_safe;
8dc5ffcd 1366 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1367 int nr = 0;
1368 int found_rmap_hlist_len;
1369
1370 if (!prune_stale_stable_nodes ||
1371 time_before(jiffies, stable_node->chain_prune_time +
1372 msecs_to_jiffies(
1373 ksm_stable_node_chains_prune_millisecs)))
1374 prune_stale_stable_nodes = false;
1375 else
1376 stable_node->chain_prune_time = jiffies;
1377
1378 hlist_for_each_entry_safe(dup, hlist_safe,
1379 &stable_node->hlist, hlist_dup) {
1380 cond_resched();
1381 /*
1382 * We must walk all stable_node_dup to prune the stale
1383 * stable nodes during lookup.
1384 *
1385 * get_ksm_page can drop the nodes from the
1386 * stable_node->hlist if they point to freed pages
1387 * (that's why we do a _safe walk). The "dup"
1388 * stable_node parameter itself will be freed from
1389 * under us if it returns NULL.
1390 */
2cee57d1 1391 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1392 if (!_tree_page)
1393 continue;
1394 nr += 1;
1395 if (is_page_sharing_candidate(dup)) {
1396 if (!found ||
1397 dup->rmap_hlist_len > found_rmap_hlist_len) {
1398 if (found)
8dc5ffcd 1399 put_page(tree_page);
2c653d0e
AA
1400 found = dup;
1401 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1402 tree_page = _tree_page;
2c653d0e 1403
8dc5ffcd 1404 /* skip put_page for found dup */
2c653d0e
AA
1405 if (!prune_stale_stable_nodes)
1406 break;
2c653d0e
AA
1407 continue;
1408 }
1409 }
1410 put_page(_tree_page);
1411 }
1412
80b18dfa
AA
1413 if (found) {
1414 /*
1415 * nr is counting all dups in the chain only if
1416 * prune_stale_stable_nodes is true, otherwise we may
1417 * break the loop at nr == 1 even if there are
1418 * multiple entries.
1419 */
1420 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1421 /*
1422 * If there's not just one entry it would
1423 * corrupt memory, better BUG_ON. In KSM
1424 * context with no lock held it's not even
1425 * fatal.
1426 */
1427 BUG_ON(stable_node->hlist.first->next);
1428
1429 /*
1430 * There's just one entry and it is below the
1431 * deduplication limit so drop the chain.
1432 */
1433 rb_replace_node(&stable_node->node, &found->node,
1434 root);
1435 free_stable_node(stable_node);
1436 ksm_stable_node_chains--;
1437 ksm_stable_node_dups--;
b4fecc67 1438 /*
0ba1d0f7
AA
1439 * NOTE: the caller depends on the stable_node
1440 * to be equal to stable_node_dup if the chain
1441 * was collapsed.
b4fecc67 1442 */
0ba1d0f7
AA
1443 *_stable_node = found;
1444 /*
f0953a1b 1445 * Just for robustness, as stable_node is
0ba1d0f7
AA
1446 * otherwise left as a stable pointer, the
1447 * compiler shall optimize it away at build
1448 * time.
1449 */
1450 stable_node = NULL;
80b18dfa
AA
1451 } else if (stable_node->hlist.first != &found->hlist_dup &&
1452 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1453 /*
80b18dfa
AA
1454 * If the found stable_node dup can accept one
1455 * more future merge (in addition to the one
1456 * that is underway) and is not at the head of
1457 * the chain, put it there so next search will
1458 * be quicker in the !prune_stale_stable_nodes
1459 * case.
1460 *
1461 * NOTE: it would be inaccurate to use nr > 1
1462 * instead of checking the hlist.first pointer
1463 * directly, because in the
1464 * prune_stale_stable_nodes case "nr" isn't
1465 * the position of the found dup in the chain,
1466 * but the total number of dups in the chain.
2c653d0e
AA
1467 */
1468 hlist_del(&found->hlist_dup);
1469 hlist_add_head(&found->hlist_dup,
1470 &stable_node->hlist);
1471 }
1472 }
1473
8dc5ffcd
AA
1474 *_stable_node_dup = found;
1475 return tree_page;
2c653d0e
AA
1476}
1477
1478static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1479 struct rb_root *root)
1480{
1481 if (!is_stable_node_chain(stable_node))
1482 return stable_node;
1483 if (hlist_empty(&stable_node->hlist)) {
1484 free_stable_node_chain(stable_node, root);
1485 return NULL;
1486 }
1487 return hlist_entry(stable_node->hlist.first,
1488 typeof(*stable_node), hlist_dup);
1489}
1490
8dc5ffcd
AA
1491/*
1492 * Like for get_ksm_page, this function can free the *_stable_node and
1493 * *_stable_node_dup if the returned tree_page is NULL.
1494 *
1495 * It can also free and overwrite *_stable_node with the found
1496 * stable_node_dup if the chain is collapsed (in which case
1497 * *_stable_node will be equal to *_stable_node_dup like if the chain
1498 * never existed). It's up to the caller to verify tree_page is not
1499 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1500 *
1501 * *_stable_node_dup is really a second output parameter of this
1502 * function and will be overwritten in all cases, the caller doesn't
1503 * need to initialize it.
1504 */
1505static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1506 struct stable_node **_stable_node,
1507 struct rb_root *root,
1508 bool prune_stale_stable_nodes)
2c653d0e 1509{
b4fecc67 1510 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1511 if (!is_stable_node_chain(stable_node)) {
1512 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1513 *_stable_node_dup = stable_node;
2cee57d1 1514 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1515 }
8dc5ffcd
AA
1516 /*
1517 * _stable_node_dup set to NULL means the stable_node
1518 * reached the ksm_max_page_sharing limit.
1519 */
1520 *_stable_node_dup = NULL;
2c653d0e
AA
1521 return NULL;
1522 }
8dc5ffcd 1523 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1524 prune_stale_stable_nodes);
1525}
1526
8dc5ffcd
AA
1527static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1528 struct stable_node **s_n,
1529 struct rb_root *root)
2c653d0e 1530{
8dc5ffcd 1531 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1532}
1533
8dc5ffcd
AA
1534static __always_inline struct page *chain(struct stable_node **s_n_d,
1535 struct stable_node *s_n,
1536 struct rb_root *root)
2c653d0e 1537{
8dc5ffcd
AA
1538 struct stable_node *old_stable_node = s_n;
1539 struct page *tree_page;
1540
1541 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1542 /* not pruning dups so s_n cannot have changed */
1543 VM_BUG_ON(s_n != old_stable_node);
1544 return tree_page;
2c653d0e
AA
1545}
1546
31dbd01f 1547/*
8dd3557a 1548 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1549 *
1550 * This function checks if there is a page inside the stable tree
1551 * with identical content to the page that we are scanning right now.
1552 *
7b6ba2c7 1553 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1554 * NULL otherwise.
1555 */
62b61f61 1556static struct page *stable_tree_search(struct page *page)
31dbd01f 1557{
90bd6fd3 1558 int nid;
ef53d16c 1559 struct rb_root *root;
4146d2d6
HD
1560 struct rb_node **new;
1561 struct rb_node *parent;
2c653d0e 1562 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1563 struct stable_node *page_node;
31dbd01f 1564
4146d2d6
HD
1565 page_node = page_stable_node(page);
1566 if (page_node && page_node->head != &migrate_nodes) {
1567 /* ksm page forked */
08beca44 1568 get_page(page);
62b61f61 1569 return page;
08beca44
HD
1570 }
1571
90bd6fd3 1572 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1573 root = root_stable_tree + nid;
4146d2d6 1574again:
ef53d16c 1575 new = &root->rb_node;
4146d2d6 1576 parent = NULL;
90bd6fd3 1577
4146d2d6 1578 while (*new) {
4035c07a 1579 struct page *tree_page;
31dbd01f
IE
1580 int ret;
1581
08beca44 1582 cond_resched();
4146d2d6 1583 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1584 stable_node_any = NULL;
8dc5ffcd 1585 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1586 /*
1587 * NOTE: stable_node may have been freed by
1588 * chain_prune() if the returned stable_node_dup is
1589 * not NULL. stable_node_dup may have been inserted in
1590 * the rbtree instead as a regular stable_node (in
1591 * order to collapse the stable_node chain if a single
0ba1d0f7 1592 * stable_node dup was found in it). In such case the
3413b2c8 1593 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1594 * to the stable_node_dup that was collapsed in the
1595 * stable rbtree and stable_node will be equal to
1596 * stable_node_dup like if the chain never existed.
b4fecc67 1597 */
2c653d0e
AA
1598 if (!stable_node_dup) {
1599 /*
1600 * Either all stable_node dups were full in
1601 * this stable_node chain, or this chain was
1602 * empty and should be rb_erased.
1603 */
1604 stable_node_any = stable_node_dup_any(stable_node,
1605 root);
1606 if (!stable_node_any) {
1607 /* rb_erase just run */
1608 goto again;
1609 }
1610 /*
1611 * Take any of the stable_node dups page of
1612 * this stable_node chain to let the tree walk
1613 * continue. All KSM pages belonging to the
1614 * stable_node dups in a stable_node chain
1615 * have the same content and they're
457aef94 1616 * write protected at all times. Any will work
2c653d0e
AA
1617 * fine to continue the walk.
1618 */
2cee57d1
YS
1619 tree_page = get_ksm_page(stable_node_any,
1620 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1621 }
1622 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1623 if (!tree_page) {
1624 /*
1625 * If we walked over a stale stable_node,
1626 * get_ksm_page() will call rb_erase() and it
1627 * may rebalance the tree from under us. So
1628 * restart the search from scratch. Returning
1629 * NULL would be safe too, but we'd generate
1630 * false negative insertions just because some
1631 * stable_node was stale.
1632 */
1633 goto again;
1634 }
31dbd01f 1635
4035c07a 1636 ret = memcmp_pages(page, tree_page);
c8d6553b 1637 put_page(tree_page);
31dbd01f 1638
4146d2d6 1639 parent = *new;
c8d6553b 1640 if (ret < 0)
4146d2d6 1641 new = &parent->rb_left;
c8d6553b 1642 else if (ret > 0)
4146d2d6 1643 new = &parent->rb_right;
c8d6553b 1644 else {
2c653d0e
AA
1645 if (page_node) {
1646 VM_BUG_ON(page_node->head != &migrate_nodes);
1647 /*
1648 * Test if the migrated page should be merged
1649 * into a stable node dup. If the mapcount is
1650 * 1 we can migrate it with another KSM page
1651 * without adding it to the chain.
1652 */
1653 if (page_mapcount(page) > 1)
1654 goto chain_append;
1655 }
1656
1657 if (!stable_node_dup) {
1658 /*
1659 * If the stable_node is a chain and
1660 * we got a payload match in memcmp
1661 * but we cannot merge the scanned
1662 * page in any of the existing
1663 * stable_node dups because they're
1664 * all full, we need to wait the
1665 * scanned page to find itself a match
1666 * in the unstable tree to create a
1667 * brand new KSM page to add later to
1668 * the dups of this stable_node.
1669 */
1670 return NULL;
1671 }
1672
c8d6553b
HD
1673 /*
1674 * Lock and unlock the stable_node's page (which
1675 * might already have been migrated) so that page
1676 * migration is sure to notice its raised count.
1677 * It would be more elegant to return stable_node
1678 * than kpage, but that involves more changes.
1679 */
2cee57d1
YS
1680 tree_page = get_ksm_page(stable_node_dup,
1681 GET_KSM_PAGE_TRYLOCK);
1682
1683 if (PTR_ERR(tree_page) == -EBUSY)
1684 return ERR_PTR(-EBUSY);
1685
2c653d0e
AA
1686 if (unlikely(!tree_page))
1687 /*
1688 * The tree may have been rebalanced,
1689 * so re-evaluate parent and new.
1690 */
4146d2d6 1691 goto again;
2c653d0e
AA
1692 unlock_page(tree_page);
1693
1694 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1695 NUMA(stable_node_dup->nid)) {
1696 put_page(tree_page);
1697 goto replace;
1698 }
1699 return tree_page;
c8d6553b 1700 }
31dbd01f
IE
1701 }
1702
4146d2d6
HD
1703 if (!page_node)
1704 return NULL;
1705
1706 list_del(&page_node->list);
1707 DO_NUMA(page_node->nid = nid);
1708 rb_link_node(&page_node->node, parent, new);
ef53d16c 1709 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1710out:
1711 if (is_page_sharing_candidate(page_node)) {
1712 get_page(page);
1713 return page;
1714 } else
1715 return NULL;
4146d2d6
HD
1716
1717replace:
b4fecc67
AA
1718 /*
1719 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1720 * stable_node has been updated to be the new regular
1721 * stable_node. A collapse of the chain is indistinguishable
1722 * from the case there was no chain in the stable
1723 * rbtree. Otherwise stable_node is the chain and
1724 * stable_node_dup is the dup to replace.
b4fecc67 1725 */
0ba1d0f7 1726 if (stable_node_dup == stable_node) {
b4fecc67
AA
1727 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1728 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1729 /* there is no chain */
1730 if (page_node) {
1731 VM_BUG_ON(page_node->head != &migrate_nodes);
1732 list_del(&page_node->list);
1733 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1734 rb_replace_node(&stable_node_dup->node,
1735 &page_node->node,
2c653d0e
AA
1736 root);
1737 if (is_page_sharing_candidate(page_node))
1738 get_page(page);
1739 else
1740 page = NULL;
1741 } else {
b4fecc67 1742 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1743 page = NULL;
1744 }
4146d2d6 1745 } else {
2c653d0e
AA
1746 VM_BUG_ON(!is_stable_node_chain(stable_node));
1747 __stable_node_dup_del(stable_node_dup);
1748 if (page_node) {
1749 VM_BUG_ON(page_node->head != &migrate_nodes);
1750 list_del(&page_node->list);
1751 DO_NUMA(page_node->nid = nid);
1752 stable_node_chain_add_dup(page_node, stable_node);
1753 if (is_page_sharing_candidate(page_node))
1754 get_page(page);
1755 else
1756 page = NULL;
1757 } else {
1758 page = NULL;
1759 }
4146d2d6 1760 }
2c653d0e
AA
1761 stable_node_dup->head = &migrate_nodes;
1762 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1763 return page;
2c653d0e
AA
1764
1765chain_append:
1766 /* stable_node_dup could be null if it reached the limit */
1767 if (!stable_node_dup)
1768 stable_node_dup = stable_node_any;
b4fecc67
AA
1769 /*
1770 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1771 * stable_node has been updated to be the new regular
1772 * stable_node. A collapse of the chain is indistinguishable
1773 * from the case there was no chain in the stable
1774 * rbtree. Otherwise stable_node is the chain and
1775 * stable_node_dup is the dup to replace.
b4fecc67 1776 */
0ba1d0f7 1777 if (stable_node_dup == stable_node) {
b4fecc67 1778 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1779 /* chain is missing so create it */
1780 stable_node = alloc_stable_node_chain(stable_node_dup,
1781 root);
1782 if (!stable_node)
1783 return NULL;
1784 }
1785 /*
1786 * Add this stable_node dup that was
1787 * migrated to the stable_node chain
1788 * of the current nid for this page
1789 * content.
1790 */
b4fecc67 1791 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1792 VM_BUG_ON(page_node->head != &migrate_nodes);
1793 list_del(&page_node->list);
1794 DO_NUMA(page_node->nid = nid);
1795 stable_node_chain_add_dup(page_node, stable_node);
1796 goto out;
31dbd01f
IE
1797}
1798
1799/*
e850dcf5 1800 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1801 * into the stable tree.
1802 *
7b6ba2c7
HD
1803 * This function returns the stable tree node just allocated on success,
1804 * NULL otherwise.
31dbd01f 1805 */
7b6ba2c7 1806static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1807{
90bd6fd3
PH
1808 int nid;
1809 unsigned long kpfn;
ef53d16c 1810 struct rb_root *root;
90bd6fd3 1811 struct rb_node **new;
f2e5ff85 1812 struct rb_node *parent;
2c653d0e
AA
1813 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1814 bool need_chain = false;
31dbd01f 1815
90bd6fd3
PH
1816 kpfn = page_to_pfn(kpage);
1817 nid = get_kpfn_nid(kpfn);
ef53d16c 1818 root = root_stable_tree + nid;
f2e5ff85
AA
1819again:
1820 parent = NULL;
ef53d16c 1821 new = &root->rb_node;
90bd6fd3 1822
31dbd01f 1823 while (*new) {
4035c07a 1824 struct page *tree_page;
31dbd01f
IE
1825 int ret;
1826
08beca44 1827 cond_resched();
7b6ba2c7 1828 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1829 stable_node_any = NULL;
8dc5ffcd 1830 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1831 if (!stable_node_dup) {
1832 /*
1833 * Either all stable_node dups were full in
1834 * this stable_node chain, or this chain was
1835 * empty and should be rb_erased.
1836 */
1837 stable_node_any = stable_node_dup_any(stable_node,
1838 root);
1839 if (!stable_node_any) {
1840 /* rb_erase just run */
1841 goto again;
1842 }
1843 /*
1844 * Take any of the stable_node dups page of
1845 * this stable_node chain to let the tree walk
1846 * continue. All KSM pages belonging to the
1847 * stable_node dups in a stable_node chain
1848 * have the same content and they're
457aef94 1849 * write protected at all times. Any will work
2c653d0e
AA
1850 * fine to continue the walk.
1851 */
2cee57d1
YS
1852 tree_page = get_ksm_page(stable_node_any,
1853 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1854 }
1855 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1856 if (!tree_page) {
1857 /*
1858 * If we walked over a stale stable_node,
1859 * get_ksm_page() will call rb_erase() and it
1860 * may rebalance the tree from under us. So
1861 * restart the search from scratch. Returning
1862 * NULL would be safe too, but we'd generate
1863 * false negative insertions just because some
1864 * stable_node was stale.
1865 */
1866 goto again;
1867 }
31dbd01f 1868
4035c07a
HD
1869 ret = memcmp_pages(kpage, tree_page);
1870 put_page(tree_page);
31dbd01f
IE
1871
1872 parent = *new;
1873 if (ret < 0)
1874 new = &parent->rb_left;
1875 else if (ret > 0)
1876 new = &parent->rb_right;
1877 else {
2c653d0e
AA
1878 need_chain = true;
1879 break;
31dbd01f
IE
1880 }
1881 }
1882
2c653d0e
AA
1883 stable_node_dup = alloc_stable_node();
1884 if (!stable_node_dup)
7b6ba2c7 1885 return NULL;
31dbd01f 1886
2c653d0e
AA
1887 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1888 stable_node_dup->kpfn = kpfn;
1889 set_page_stable_node(kpage, stable_node_dup);
1890 stable_node_dup->rmap_hlist_len = 0;
1891 DO_NUMA(stable_node_dup->nid = nid);
1892 if (!need_chain) {
1893 rb_link_node(&stable_node_dup->node, parent, new);
1894 rb_insert_color(&stable_node_dup->node, root);
1895 } else {
1896 if (!is_stable_node_chain(stable_node)) {
1897 struct stable_node *orig = stable_node;
1898 /* chain is missing so create it */
1899 stable_node = alloc_stable_node_chain(orig, root);
1900 if (!stable_node) {
1901 free_stable_node(stable_node_dup);
1902 return NULL;
1903 }
1904 }
1905 stable_node_chain_add_dup(stable_node_dup, stable_node);
1906 }
08beca44 1907
2c653d0e 1908 return stable_node_dup;
31dbd01f
IE
1909}
1910
1911/*
8dd3557a
HD
1912 * unstable_tree_search_insert - search for identical page,
1913 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1914 *
1915 * This function searches for a page in the unstable tree identical to the
1916 * page currently being scanned; and if no identical page is found in the
1917 * tree, we insert rmap_item as a new object into the unstable tree.
1918 *
1919 * This function returns pointer to rmap_item found to be identical
1920 * to the currently scanned page, NULL otherwise.
1921 *
1922 * This function does both searching and inserting, because they share
1923 * the same walking algorithm in an rbtree.
1924 */
8dd3557a
HD
1925static
1926struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1927 struct page *page,
1928 struct page **tree_pagep)
31dbd01f 1929{
90bd6fd3
PH
1930 struct rb_node **new;
1931 struct rb_root *root;
31dbd01f 1932 struct rb_node *parent = NULL;
90bd6fd3
PH
1933 int nid;
1934
1935 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1936 root = root_unstable_tree + nid;
90bd6fd3 1937 new = &root->rb_node;
31dbd01f
IE
1938
1939 while (*new) {
1940 struct rmap_item *tree_rmap_item;
8dd3557a 1941 struct page *tree_page;
31dbd01f
IE
1942 int ret;
1943
d178f27f 1944 cond_resched();
31dbd01f 1945 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1946 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1947 if (!tree_page)
31dbd01f
IE
1948 return NULL;
1949
1950 /*
8dd3557a 1951 * Don't substitute a ksm page for a forked page.
31dbd01f 1952 */
8dd3557a
HD
1953 if (page == tree_page) {
1954 put_page(tree_page);
31dbd01f
IE
1955 return NULL;
1956 }
1957
8dd3557a 1958 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1959
1960 parent = *new;
1961 if (ret < 0) {
8dd3557a 1962 put_page(tree_page);
31dbd01f
IE
1963 new = &parent->rb_left;
1964 } else if (ret > 0) {
8dd3557a 1965 put_page(tree_page);
31dbd01f 1966 new = &parent->rb_right;
b599cbdf
HD
1967 } else if (!ksm_merge_across_nodes &&
1968 page_to_nid(tree_page) != nid) {
1969 /*
1970 * If tree_page has been migrated to another NUMA node,
1971 * it will be flushed out and put in the right unstable
1972 * tree next time: only merge with it when across_nodes.
1973 */
1974 put_page(tree_page);
1975 return NULL;
31dbd01f 1976 } else {
8dd3557a 1977 *tree_pagep = tree_page;
31dbd01f
IE
1978 return tree_rmap_item;
1979 }
1980 }
1981
7b6ba2c7 1982 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1983 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1984 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1985 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1986 rb_insert_color(&rmap_item->node, root);
31dbd01f 1987
473b0ce4 1988 ksm_pages_unshared++;
31dbd01f
IE
1989 return NULL;
1990}
1991
1992/*
1993 * stable_tree_append - add another rmap_item to the linked list of
1994 * rmap_items hanging off a given node of the stable tree, all sharing
1995 * the same ksm page.
1996 */
1997static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1998 struct stable_node *stable_node,
1999 bool max_page_sharing_bypass)
31dbd01f 2000{
2c653d0e
AA
2001 /*
2002 * rmap won't find this mapping if we don't insert the
2003 * rmap_item in the right stable_node
2004 * duplicate. page_migration could break later if rmap breaks,
2005 * so we can as well crash here. We really need to check for
2006 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2007 * for other negative values as an underflow if detected here
2c653d0e
AA
2008 * for the first time (and not when decreasing rmap_hlist_len)
2009 * would be sign of memory corruption in the stable_node.
2010 */
2011 BUG_ON(stable_node->rmap_hlist_len < 0);
2012
2013 stable_node->rmap_hlist_len++;
2014 if (!max_page_sharing_bypass)
2015 /* possibly non fatal but unexpected overflow, only warn */
2016 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2017 ksm_max_page_sharing);
2018
7b6ba2c7 2019 rmap_item->head = stable_node;
31dbd01f 2020 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2021 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2022
7b6ba2c7
HD
2023 if (rmap_item->hlist.next)
2024 ksm_pages_sharing++;
2025 else
2026 ksm_pages_shared++;
76093853 2027
2028 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2029}
2030
2031/*
81464e30
HD
2032 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2033 * if not, compare checksum to previous and if it's the same, see if page can
2034 * be inserted into the unstable tree, or merged with a page already there and
2035 * both transferred to the stable tree.
31dbd01f
IE
2036 *
2037 * @page: the page that we are searching identical page to.
2038 * @rmap_item: the reverse mapping into the virtual address of this page
2039 */
2040static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2041{
4b22927f 2042 struct mm_struct *mm = rmap_item->mm;
31dbd01f 2043 struct rmap_item *tree_rmap_item;
8dd3557a 2044 struct page *tree_page = NULL;
7b6ba2c7 2045 struct stable_node *stable_node;
8dd3557a 2046 struct page *kpage;
31dbd01f
IE
2047 unsigned int checksum;
2048 int err;
2c653d0e 2049 bool max_page_sharing_bypass = false;
31dbd01f 2050
4146d2d6
HD
2051 stable_node = page_stable_node(page);
2052 if (stable_node) {
2053 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2054 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2055 NUMA(stable_node->nid)) {
2056 stable_node_dup_del(stable_node);
4146d2d6
HD
2057 stable_node->head = &migrate_nodes;
2058 list_add(&stable_node->list, stable_node->head);
2059 }
2060 if (stable_node->head != &migrate_nodes &&
2061 rmap_item->head == stable_node)
2062 return;
2c653d0e
AA
2063 /*
2064 * If it's a KSM fork, allow it to go over the sharing limit
2065 * without warnings.
2066 */
2067 if (!is_page_sharing_candidate(stable_node))
2068 max_page_sharing_bypass = true;
4146d2d6 2069 }
31dbd01f
IE
2070
2071 /* We first start with searching the page inside the stable tree */
62b61f61 2072 kpage = stable_tree_search(page);
4146d2d6
HD
2073 if (kpage == page && rmap_item->head == stable_node) {
2074 put_page(kpage);
2075 return;
2076 }
2077
2078 remove_rmap_item_from_tree(rmap_item);
2079
62b61f61 2080 if (kpage) {
2cee57d1
YS
2081 if (PTR_ERR(kpage) == -EBUSY)
2082 return;
2083
08beca44 2084 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2085 if (!err) {
2086 /*
2087 * The page was successfully merged:
2088 * add its rmap_item to the stable tree.
2089 */
5ad64688 2090 lock_page(kpage);
2c653d0e
AA
2091 stable_tree_append(rmap_item, page_stable_node(kpage),
2092 max_page_sharing_bypass);
5ad64688 2093 unlock_page(kpage);
31dbd01f 2094 }
8dd3557a 2095 put_page(kpage);
31dbd01f
IE
2096 return;
2097 }
2098
2099 /*
4035c07a
HD
2100 * If the hash value of the page has changed from the last time
2101 * we calculated it, this page is changing frequently: therefore we
2102 * don't want to insert it in the unstable tree, and we don't want
2103 * to waste our time searching for something identical to it there.
31dbd01f
IE
2104 */
2105 checksum = calc_checksum(page);
2106 if (rmap_item->oldchecksum != checksum) {
2107 rmap_item->oldchecksum = checksum;
2108 return;
2109 }
2110
e86c59b1
CI
2111 /*
2112 * Same checksum as an empty page. We attempt to merge it with the
2113 * appropriate zero page if the user enabled this via sysfs.
2114 */
2115 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2116 struct vm_area_struct *vma;
2117
d8ed45c5 2118 mmap_read_lock(mm);
4b22927f 2119 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2120 if (vma) {
2121 err = try_to_merge_one_page(vma, page,
2122 ZERO_PAGE(rmap_item->address));
2123 } else {
2124 /*
2125 * If the vma is out of date, we do not need to
2126 * continue.
2127 */
2128 err = 0;
2129 }
d8ed45c5 2130 mmap_read_unlock(mm);
e86c59b1
CI
2131 /*
2132 * In case of failure, the page was not really empty, so we
2133 * need to continue. Otherwise we're done.
2134 */
2135 if (!err)
2136 return;
2137 }
8dd3557a
HD
2138 tree_rmap_item =
2139 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2140 if (tree_rmap_item) {
77da2ba0
CI
2141 bool split;
2142
8dd3557a
HD
2143 kpage = try_to_merge_two_pages(rmap_item, page,
2144 tree_rmap_item, tree_page);
77da2ba0
CI
2145 /*
2146 * If both pages we tried to merge belong to the same compound
2147 * page, then we actually ended up increasing the reference
2148 * count of the same compound page twice, and split_huge_page
2149 * failed.
2150 * Here we set a flag if that happened, and we use it later to
2151 * try split_huge_page again. Since we call put_page right
2152 * afterwards, the reference count will be correct and
2153 * split_huge_page should succeed.
2154 */
2155 split = PageTransCompound(page)
2156 && compound_head(page) == compound_head(tree_page);
8dd3557a 2157 put_page(tree_page);
8dd3557a 2158 if (kpage) {
bc56620b
HD
2159 /*
2160 * The pages were successfully merged: insert new
2161 * node in the stable tree and add both rmap_items.
2162 */
5ad64688 2163 lock_page(kpage);
7b6ba2c7
HD
2164 stable_node = stable_tree_insert(kpage);
2165 if (stable_node) {
2c653d0e
AA
2166 stable_tree_append(tree_rmap_item, stable_node,
2167 false);
2168 stable_tree_append(rmap_item, stable_node,
2169 false);
7b6ba2c7 2170 }
5ad64688 2171 unlock_page(kpage);
7b6ba2c7 2172
31dbd01f
IE
2173 /*
2174 * If we fail to insert the page into the stable tree,
2175 * we will have 2 virtual addresses that are pointing
2176 * to a ksm page left outside the stable tree,
2177 * in which case we need to break_cow on both.
2178 */
7b6ba2c7 2179 if (!stable_node) {
8dd3557a
HD
2180 break_cow(tree_rmap_item);
2181 break_cow(rmap_item);
31dbd01f 2182 }
77da2ba0
CI
2183 } else if (split) {
2184 /*
2185 * We are here if we tried to merge two pages and
2186 * failed because they both belonged to the same
2187 * compound page. We will split the page now, but no
2188 * merging will take place.
2189 * We do not want to add the cost of a full lock; if
2190 * the page is locked, it is better to skip it and
2191 * perhaps try again later.
2192 */
2193 if (!trylock_page(page))
2194 return;
2195 split_huge_page(page);
2196 unlock_page(page);
31dbd01f 2197 }
31dbd01f
IE
2198 }
2199}
2200
2201static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2202 struct rmap_item **rmap_list,
31dbd01f
IE
2203 unsigned long addr)
2204{
2205 struct rmap_item *rmap_item;
2206
6514d511
HD
2207 while (*rmap_list) {
2208 rmap_item = *rmap_list;
93d17715 2209 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2210 return rmap_item;
31dbd01f
IE
2211 if (rmap_item->address > addr)
2212 break;
6514d511 2213 *rmap_list = rmap_item->rmap_list;
31dbd01f 2214 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2215 free_rmap_item(rmap_item);
2216 }
2217
2218 rmap_item = alloc_rmap_item();
2219 if (rmap_item) {
2220 /* It has already been zeroed */
2221 rmap_item->mm = mm_slot->mm;
2222 rmap_item->address = addr;
6514d511
HD
2223 rmap_item->rmap_list = *rmap_list;
2224 *rmap_list = rmap_item;
31dbd01f
IE
2225 }
2226 return rmap_item;
2227}
2228
2229static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2230{
2231 struct mm_struct *mm;
2232 struct mm_slot *slot;
2233 struct vm_area_struct *vma;
2234 struct rmap_item *rmap_item;
90bd6fd3 2235 int nid;
31dbd01f
IE
2236
2237 if (list_empty(&ksm_mm_head.mm_list))
2238 return NULL;
2239
2240 slot = ksm_scan.mm_slot;
2241 if (slot == &ksm_mm_head) {
2919bfd0
HD
2242 /*
2243 * A number of pages can hang around indefinitely on per-cpu
2244 * pagevecs, raised page count preventing write_protect_page
2245 * from merging them. Though it doesn't really matter much,
2246 * it is puzzling to see some stuck in pages_volatile until
2247 * other activity jostles them out, and they also prevented
2248 * LTP's KSM test from succeeding deterministically; so drain
2249 * them here (here rather than on entry to ksm_do_scan(),
2250 * so we don't IPI too often when pages_to_scan is set low).
2251 */
2252 lru_add_drain_all();
2253
4146d2d6
HD
2254 /*
2255 * Whereas stale stable_nodes on the stable_tree itself
2256 * get pruned in the regular course of stable_tree_search(),
2257 * those moved out to the migrate_nodes list can accumulate:
2258 * so prune them once before each full scan.
2259 */
2260 if (!ksm_merge_across_nodes) {
03640418 2261 struct stable_node *stable_node, *next;
4146d2d6
HD
2262 struct page *page;
2263
03640418
GT
2264 list_for_each_entry_safe(stable_node, next,
2265 &migrate_nodes, list) {
2cee57d1
YS
2266 page = get_ksm_page(stable_node,
2267 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2268 if (page)
2269 put_page(page);
2270 cond_resched();
2271 }
2272 }
2273
ef53d16c 2274 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2275 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2276
2277 spin_lock(&ksm_mmlist_lock);
2278 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2279 ksm_scan.mm_slot = slot;
2280 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2281 /*
2282 * Although we tested list_empty() above, a racing __ksm_exit
2283 * of the last mm on the list may have removed it since then.
2284 */
2285 if (slot == &ksm_mm_head)
2286 return NULL;
31dbd01f
IE
2287next_mm:
2288 ksm_scan.address = 0;
6514d511 2289 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2290 }
2291
2292 mm = slot->mm;
d8ed45c5 2293 mmap_read_lock(mm);
9ba69294
HD
2294 if (ksm_test_exit(mm))
2295 vma = NULL;
2296 else
2297 vma = find_vma(mm, ksm_scan.address);
2298
2299 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2300 if (!(vma->vm_flags & VM_MERGEABLE))
2301 continue;
2302 if (ksm_scan.address < vma->vm_start)
2303 ksm_scan.address = vma->vm_start;
2304 if (!vma->anon_vma)
2305 ksm_scan.address = vma->vm_end;
2306
2307 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2308 if (ksm_test_exit(mm))
2309 break;
31dbd01f 2310 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2311 if (IS_ERR_OR_NULL(*page)) {
2312 ksm_scan.address += PAGE_SIZE;
2313 cond_resched();
2314 continue;
2315 }
f765f540 2316 if (PageAnon(*page)) {
31dbd01f
IE
2317 flush_anon_page(vma, *page, ksm_scan.address);
2318 flush_dcache_page(*page);
2319 rmap_item = get_next_rmap_item(slot,
6514d511 2320 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2321 if (rmap_item) {
6514d511
HD
2322 ksm_scan.rmap_list =
2323 &rmap_item->rmap_list;
31dbd01f
IE
2324 ksm_scan.address += PAGE_SIZE;
2325 } else
2326 put_page(*page);
d8ed45c5 2327 mmap_read_unlock(mm);
31dbd01f
IE
2328 return rmap_item;
2329 }
21ae5b01 2330 put_page(*page);
31dbd01f
IE
2331 ksm_scan.address += PAGE_SIZE;
2332 cond_resched();
2333 }
2334 }
2335
9ba69294
HD
2336 if (ksm_test_exit(mm)) {
2337 ksm_scan.address = 0;
6514d511 2338 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2339 }
31dbd01f
IE
2340 /*
2341 * Nuke all the rmap_items that are above this current rmap:
2342 * because there were no VM_MERGEABLE vmas with such addresses.
2343 */
420be4ed 2344 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2345
2346 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2347 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2348 struct mm_slot, mm_list);
2349 if (ksm_scan.address == 0) {
2350 /*
c1e8d7c6 2351 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2352 * throughout, and found no VM_MERGEABLE: so do the same as
2353 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2354 * This applies either when cleaning up after __ksm_exit
2355 * (but beware: we can reach here even before __ksm_exit),
2356 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2357 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2358 */
4ca3a69b 2359 hash_del(&slot->link);
cd551f97 2360 list_del(&slot->mm_list);
9ba69294
HD
2361 spin_unlock(&ksm_mmlist_lock);
2362
cd551f97
HD
2363 free_mm_slot(slot);
2364 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d8ed45c5 2365 mmap_read_unlock(mm);
9ba69294
HD
2366 mmdrop(mm);
2367 } else {
d8ed45c5 2368 mmap_read_unlock(mm);
7496fea9 2369 /*
3e4e28c5 2370 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2371 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2372 * already have been freed under us by __ksm_exit()
2373 * because the "mm_slot" is still hashed and
2374 * ksm_scan.mm_slot doesn't point to it anymore.
2375 */
2376 spin_unlock(&ksm_mmlist_lock);
cd551f97 2377 }
31dbd01f
IE
2378
2379 /* Repeat until we've completed scanning the whole list */
cd551f97 2380 slot = ksm_scan.mm_slot;
31dbd01f
IE
2381 if (slot != &ksm_mm_head)
2382 goto next_mm;
2383
31dbd01f
IE
2384 ksm_scan.seqnr++;
2385 return NULL;
2386}
2387
2388/**
2389 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2390 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2391 */
2392static void ksm_do_scan(unsigned int scan_npages)
2393{
2394 struct rmap_item *rmap_item;
3f649ab7 2395 struct page *page;
31dbd01f 2396
878aee7d 2397 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2398 cond_resched();
2399 rmap_item = scan_get_next_rmap_item(&page);
2400 if (!rmap_item)
2401 return;
4146d2d6 2402 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2403 put_page(page);
2404 }
2405}
2406
6e158384
HD
2407static int ksmd_should_run(void)
2408{
2409 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2410}
2411
31dbd01f
IE
2412static int ksm_scan_thread(void *nothing)
2413{
fcf9a0ef
KT
2414 unsigned int sleep_ms;
2415
878aee7d 2416 set_freezable();
339aa624 2417 set_user_nice(current, 5);
31dbd01f
IE
2418
2419 while (!kthread_should_stop()) {
6e158384 2420 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2421 wait_while_offlining();
6e158384 2422 if (ksmd_should_run())
31dbd01f 2423 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2424 mutex_unlock(&ksm_thread_mutex);
2425
878aee7d
AA
2426 try_to_freeze();
2427
6e158384 2428 if (ksmd_should_run()) {
fcf9a0ef
KT
2429 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2430 wait_event_interruptible_timeout(ksm_iter_wait,
2431 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2432 msecs_to_jiffies(sleep_ms));
31dbd01f 2433 } else {
878aee7d 2434 wait_event_freezable(ksm_thread_wait,
6e158384 2435 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2436 }
2437 }
2438 return 0;
2439}
2440
f8af4da3
HD
2441int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2442 unsigned long end, int advice, unsigned long *vm_flags)
2443{
2444 struct mm_struct *mm = vma->vm_mm;
d952b791 2445 int err;
f8af4da3
HD
2446
2447 switch (advice) {
2448 case MADV_MERGEABLE:
2449 /*
2450 * Be somewhat over-protective for now!
2451 */
2452 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2453 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2454 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2455 return 0; /* just ignore the advice */
2456
e1fb4a08
DJ
2457 if (vma_is_dax(vma))
2458 return 0;
2459
12564485
SA
2460#ifdef VM_SAO
2461 if (*vm_flags & VM_SAO)
2462 return 0;
2463#endif
74a04967
KA
2464#ifdef VM_SPARC_ADI
2465 if (*vm_flags & VM_SPARC_ADI)
2466 return 0;
2467#endif
cc2383ec 2468
d952b791
HD
2469 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2470 err = __ksm_enter(mm);
2471 if (err)
2472 return err;
2473 }
f8af4da3
HD
2474
2475 *vm_flags |= VM_MERGEABLE;
2476 break;
2477
2478 case MADV_UNMERGEABLE:
2479 if (!(*vm_flags & VM_MERGEABLE))
2480 return 0; /* just ignore the advice */
2481
d952b791
HD
2482 if (vma->anon_vma) {
2483 err = unmerge_ksm_pages(vma, start, end);
2484 if (err)
2485 return err;
2486 }
f8af4da3
HD
2487
2488 *vm_flags &= ~VM_MERGEABLE;
2489 break;
2490 }
2491
2492 return 0;
2493}
33cf1707 2494EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2495
2496int __ksm_enter(struct mm_struct *mm)
2497{
6e158384
HD
2498 struct mm_slot *mm_slot;
2499 int needs_wakeup;
2500
2501 mm_slot = alloc_mm_slot();
31dbd01f
IE
2502 if (!mm_slot)
2503 return -ENOMEM;
2504
6e158384
HD
2505 /* Check ksm_run too? Would need tighter locking */
2506 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2507
31dbd01f
IE
2508 spin_lock(&ksm_mmlist_lock);
2509 insert_to_mm_slots_hash(mm, mm_slot);
2510 /*
cbf86cfe
HD
2511 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2512 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2513 * down a little; when fork is followed by immediate exec, we don't
2514 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2515 *
2516 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2517 * scanning cursor, otherwise KSM pages in newly forked mms will be
2518 * missed: then we might as well insert at the end of the list.
31dbd01f 2519 */
cbf86cfe
HD
2520 if (ksm_run & KSM_RUN_UNMERGE)
2521 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2522 else
2523 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2524 spin_unlock(&ksm_mmlist_lock);
2525
f8af4da3 2526 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2527 mmgrab(mm);
6e158384
HD
2528
2529 if (needs_wakeup)
2530 wake_up_interruptible(&ksm_thread_wait);
2531
f8af4da3
HD
2532 return 0;
2533}
2534
1c2fb7a4 2535void __ksm_exit(struct mm_struct *mm)
f8af4da3 2536{
cd551f97 2537 struct mm_slot *mm_slot;
9ba69294 2538 int easy_to_free = 0;
cd551f97 2539
31dbd01f 2540 /*
9ba69294
HD
2541 * This process is exiting: if it's straightforward (as is the
2542 * case when ksmd was never running), free mm_slot immediately.
2543 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2544 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2545 * are freed, and leave the mm_slot on the list for ksmd to free.
2546 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2547 */
9ba69294 2548
cd551f97
HD
2549 spin_lock(&ksm_mmlist_lock);
2550 mm_slot = get_mm_slot(mm);
9ba69294 2551 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2552 if (!mm_slot->rmap_list) {
4ca3a69b 2553 hash_del(&mm_slot->link);
9ba69294
HD
2554 list_del(&mm_slot->mm_list);
2555 easy_to_free = 1;
2556 } else {
2557 list_move(&mm_slot->mm_list,
2558 &ksm_scan.mm_slot->mm_list);
2559 }
cd551f97 2560 }
cd551f97
HD
2561 spin_unlock(&ksm_mmlist_lock);
2562
9ba69294
HD
2563 if (easy_to_free) {
2564 free_mm_slot(mm_slot);
2565 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2566 mmdrop(mm);
2567 } else if (mm_slot) {
d8ed45c5
ML
2568 mmap_write_lock(mm);
2569 mmap_write_unlock(mm);
9ba69294 2570 }
31dbd01f
IE
2571}
2572
cbf86cfe 2573struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2574 struct vm_area_struct *vma, unsigned long address)
2575{
e05b3453
MWO
2576 struct folio *folio = page_folio(page);
2577 struct anon_vma *anon_vma = folio_anon_vma(folio);
5ad64688
HD
2578 struct page *new_page;
2579
cbf86cfe
HD
2580 if (PageKsm(page)) {
2581 if (page_stable_node(page) &&
2582 !(ksm_run & KSM_RUN_UNMERGE))
2583 return page; /* no need to copy it */
2584 } else if (!anon_vma) {
2585 return page; /* no need to copy it */
e1c63e11
NS
2586 } else if (page->index == linear_page_index(vma, address) &&
2587 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2588 return page; /* still no need to copy it */
2589 }
2590 if (!PageUptodate(page))
2591 return page; /* let do_swap_page report the error */
2592
5ad64688 2593 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2594 if (new_page &&
2595 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2596 put_page(new_page);
2597 new_page = NULL;
2598 }
5ad64688
HD
2599 if (new_page) {
2600 copy_user_highpage(new_page, page, address, vma);
2601
2602 SetPageDirty(new_page);
2603 __SetPageUptodate(new_page);
48c935ad 2604 __SetPageLocked(new_page);
4d45c3af
YY
2605#ifdef CONFIG_SWAP
2606 count_vm_event(KSM_SWPIN_COPY);
2607#endif
5ad64688
HD
2608 }
2609
5ad64688
HD
2610 return new_page;
2611}
2612
6d4675e6 2613void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9
HD
2614{
2615 struct stable_node *stable_node;
e9995ef9 2616 struct rmap_item *rmap_item;
e9995ef9
HD
2617 int search_new_forks = 0;
2618
2f031c6f 2619 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
2620
2621 /*
2622 * Rely on the page lock to protect against concurrent modifications
2623 * to that page's node of the stable tree.
2624 */
2f031c6f 2625 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 2626
2f031c6f 2627 stable_node = folio_stable_node(folio);
e9995ef9 2628 if (!stable_node)
1df631ae 2629 return;
e9995ef9 2630again:
b67bfe0d 2631 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2632 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2633 struct anon_vma_chain *vmac;
e9995ef9
HD
2634 struct vm_area_struct *vma;
2635
ad12695f 2636 cond_resched();
6d4675e6
MK
2637 if (!anon_vma_trylock_read(anon_vma)) {
2638 if (rwc->try_lock) {
2639 rwc->contended = true;
2640 return;
2641 }
2642 anon_vma_lock_read(anon_vma);
2643 }
bf181b9f
ML
2644 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2645 0, ULONG_MAX) {
1105a2fc
JH
2646 unsigned long addr;
2647
ad12695f 2648 cond_resched();
5beb4930 2649 vma = vmac->vma;
1105a2fc
JH
2650
2651 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2652 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2653
2654 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2655 continue;
2656 /*
2657 * Initially we examine only the vma which covers this
2658 * rmap_item; but later, if there is still work to do,
2659 * we examine covering vmas in other mms: in case they
2660 * were forked from the original since ksmd passed.
2661 */
2662 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2663 continue;
2664
0dd1c7bb
JK
2665 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2666 continue;
2667
2f031c6f 2668 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 2669 anon_vma_unlock_read(anon_vma);
1df631ae 2670 return;
e9995ef9 2671 }
2f031c6f 2672 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 2673 anon_vma_unlock_read(anon_vma);
1df631ae 2674 return;
0dd1c7bb 2675 }
e9995ef9 2676 }
b6b19f25 2677 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2678 }
2679 if (!search_new_forks++)
2680 goto again;
e9995ef9
HD
2681}
2682
52629506 2683#ifdef CONFIG_MIGRATION
19138349 2684void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9
HD
2685{
2686 struct stable_node *stable_node;
2687
19138349
MWO
2688 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2689 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2690 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2691
19138349 2692 stable_node = folio_stable_node(folio);
e9995ef9 2693 if (stable_node) {
19138349
MWO
2694 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2695 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2696 /*
19138349 2697 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2698 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2699 * to get_ksm_page() before it can see that folio->mapping
2700 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2701 */
2702 smp_wmb();
19138349 2703 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2704 }
2705}
2706#endif /* CONFIG_MIGRATION */
2707
62b61f61 2708#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2709static void wait_while_offlining(void)
2710{
2711 while (ksm_run & KSM_RUN_OFFLINE) {
2712 mutex_unlock(&ksm_thread_mutex);
2713 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2714 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2715 mutex_lock(&ksm_thread_mutex);
2716 }
2717}
2718
2c653d0e
AA
2719static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2720 unsigned long start_pfn,
2721 unsigned long end_pfn)
2722{
2723 if (stable_node->kpfn >= start_pfn &&
2724 stable_node->kpfn < end_pfn) {
2725 /*
2726 * Don't get_ksm_page, page has already gone:
2727 * which is why we keep kpfn instead of page*
2728 */
2729 remove_node_from_stable_tree(stable_node);
2730 return true;
2731 }
2732 return false;
2733}
2734
2735static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2736 unsigned long start_pfn,
2737 unsigned long end_pfn,
2738 struct rb_root *root)
2739{
2740 struct stable_node *dup;
2741 struct hlist_node *hlist_safe;
2742
2743 if (!is_stable_node_chain(stable_node)) {
2744 VM_BUG_ON(is_stable_node_dup(stable_node));
2745 return stable_node_dup_remove_range(stable_node, start_pfn,
2746 end_pfn);
2747 }
2748
2749 hlist_for_each_entry_safe(dup, hlist_safe,
2750 &stable_node->hlist, hlist_dup) {
2751 VM_BUG_ON(!is_stable_node_dup(dup));
2752 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2753 }
2754 if (hlist_empty(&stable_node->hlist)) {
2755 free_stable_node_chain(stable_node, root);
2756 return true; /* notify caller that tree was rebalanced */
2757 } else
2758 return false;
2759}
2760
ee0ea59c
HD
2761static void ksm_check_stable_tree(unsigned long start_pfn,
2762 unsigned long end_pfn)
62b61f61 2763{
03640418 2764 struct stable_node *stable_node, *next;
62b61f61 2765 struct rb_node *node;
90bd6fd3 2766 int nid;
62b61f61 2767
ef53d16c
HD
2768 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2769 node = rb_first(root_stable_tree + nid);
ee0ea59c 2770 while (node) {
90bd6fd3 2771 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2772 if (stable_node_chain_remove_range(stable_node,
2773 start_pfn, end_pfn,
2774 root_stable_tree +
2775 nid))
ef53d16c 2776 node = rb_first(root_stable_tree + nid);
2c653d0e 2777 else
ee0ea59c
HD
2778 node = rb_next(node);
2779 cond_resched();
90bd6fd3 2780 }
ee0ea59c 2781 }
03640418 2782 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2783 if (stable_node->kpfn >= start_pfn &&
2784 stable_node->kpfn < end_pfn)
2785 remove_node_from_stable_tree(stable_node);
2786 cond_resched();
2787 }
62b61f61
HD
2788}
2789
2790static int ksm_memory_callback(struct notifier_block *self,
2791 unsigned long action, void *arg)
2792{
2793 struct memory_notify *mn = arg;
62b61f61
HD
2794
2795 switch (action) {
2796 case MEM_GOING_OFFLINE:
2797 /*
ef4d43a8
HD
2798 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2799 * and remove_all_stable_nodes() while memory is going offline:
2800 * it is unsafe for them to touch the stable tree at this time.
2801 * But unmerge_ksm_pages(), rmap lookups and other entry points
2802 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2803 */
ef4d43a8
HD
2804 mutex_lock(&ksm_thread_mutex);
2805 ksm_run |= KSM_RUN_OFFLINE;
2806 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2807 break;
2808
2809 case MEM_OFFLINE:
2810 /*
2811 * Most of the work is done by page migration; but there might
2812 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2813 * pages which have been offlined: prune those from the tree,
2814 * otherwise get_ksm_page() might later try to access a
2815 * non-existent struct page.
62b61f61 2816 */
ee0ea59c
HD
2817 ksm_check_stable_tree(mn->start_pfn,
2818 mn->start_pfn + mn->nr_pages);
e4a9bc58 2819 fallthrough;
62b61f61 2820 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2821 mutex_lock(&ksm_thread_mutex);
2822 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2823 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2824
2825 smp_mb(); /* wake_up_bit advises this */
2826 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2827 break;
2828 }
2829 return NOTIFY_OK;
2830}
ef4d43a8
HD
2831#else
2832static void wait_while_offlining(void)
2833{
2834}
62b61f61
HD
2835#endif /* CONFIG_MEMORY_HOTREMOVE */
2836
2ffd8679
HD
2837#ifdef CONFIG_SYSFS
2838/*
2839 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2840 */
2841
31dbd01f
IE
2842#define KSM_ATTR_RO(_name) \
2843 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2844#define KSM_ATTR(_name) \
1bad2e5c 2845 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
2846
2847static ssize_t sleep_millisecs_show(struct kobject *kobj,
2848 struct kobj_attribute *attr, char *buf)
2849{
ae7a927d 2850 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
2851}
2852
2853static ssize_t sleep_millisecs_store(struct kobject *kobj,
2854 struct kobj_attribute *attr,
2855 const char *buf, size_t count)
2856{
dfefd226 2857 unsigned int msecs;
31dbd01f
IE
2858 int err;
2859
dfefd226
AD
2860 err = kstrtouint(buf, 10, &msecs);
2861 if (err)
31dbd01f
IE
2862 return -EINVAL;
2863
2864 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2865 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2866
2867 return count;
2868}
2869KSM_ATTR(sleep_millisecs);
2870
2871static ssize_t pages_to_scan_show(struct kobject *kobj,
2872 struct kobj_attribute *attr, char *buf)
2873{
ae7a927d 2874 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
2875}
2876
2877static ssize_t pages_to_scan_store(struct kobject *kobj,
2878 struct kobj_attribute *attr,
2879 const char *buf, size_t count)
2880{
dfefd226 2881 unsigned int nr_pages;
31dbd01f 2882 int err;
31dbd01f 2883
dfefd226
AD
2884 err = kstrtouint(buf, 10, &nr_pages);
2885 if (err)
31dbd01f
IE
2886 return -EINVAL;
2887
2888 ksm_thread_pages_to_scan = nr_pages;
2889
2890 return count;
2891}
2892KSM_ATTR(pages_to_scan);
2893
2894static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2895 char *buf)
2896{
ae7a927d 2897 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
2898}
2899
2900static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2901 const char *buf, size_t count)
2902{
dfefd226 2903 unsigned int flags;
31dbd01f 2904 int err;
31dbd01f 2905
dfefd226
AD
2906 err = kstrtouint(buf, 10, &flags);
2907 if (err)
31dbd01f
IE
2908 return -EINVAL;
2909 if (flags > KSM_RUN_UNMERGE)
2910 return -EINVAL;
2911
2912 /*
2913 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2914 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2915 * breaking COW to free the pages_shared (but leaves mm_slots
2916 * on the list for when ksmd may be set running again).
31dbd01f
IE
2917 */
2918
2919 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2920 wait_while_offlining();
31dbd01f
IE
2921 if (ksm_run != flags) {
2922 ksm_run = flags;
d952b791 2923 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2924 set_current_oom_origin();
d952b791 2925 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2926 clear_current_oom_origin();
d952b791
HD
2927 if (err) {
2928 ksm_run = KSM_RUN_STOP;
2929 count = err;
2930 }
2931 }
31dbd01f
IE
2932 }
2933 mutex_unlock(&ksm_thread_mutex);
2934
2935 if (flags & KSM_RUN_MERGE)
2936 wake_up_interruptible(&ksm_thread_wait);
2937
2938 return count;
2939}
2940KSM_ATTR(run);
2941
90bd6fd3
PH
2942#ifdef CONFIG_NUMA
2943static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 2944 struct kobj_attribute *attr, char *buf)
90bd6fd3 2945{
ae7a927d 2946 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
2947}
2948
2949static ssize_t merge_across_nodes_store(struct kobject *kobj,
2950 struct kobj_attribute *attr,
2951 const char *buf, size_t count)
2952{
2953 int err;
2954 unsigned long knob;
2955
2956 err = kstrtoul(buf, 10, &knob);
2957 if (err)
2958 return err;
2959 if (knob > 1)
2960 return -EINVAL;
2961
2962 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2963 wait_while_offlining();
90bd6fd3 2964 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2965 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2966 err = -EBUSY;
ef53d16c
HD
2967 else if (root_stable_tree == one_stable_tree) {
2968 struct rb_root *buf;
2969 /*
2970 * This is the first time that we switch away from the
2971 * default of merging across nodes: must now allocate
2972 * a buffer to hold as many roots as may be needed.
2973 * Allocate stable and unstable together:
2974 * MAXSMP NODES_SHIFT 10 will use 16kB.
2975 */
bafe1e14
JP
2976 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2977 GFP_KERNEL);
ef53d16c
HD
2978 /* Let us assume that RB_ROOT is NULL is zero */
2979 if (!buf)
2980 err = -ENOMEM;
2981 else {
2982 root_stable_tree = buf;
2983 root_unstable_tree = buf + nr_node_ids;
2984 /* Stable tree is empty but not the unstable */
2985 root_unstable_tree[0] = one_unstable_tree[0];
2986 }
2987 }
2988 if (!err) {
90bd6fd3 2989 ksm_merge_across_nodes = knob;
ef53d16c
HD
2990 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2991 }
90bd6fd3
PH
2992 }
2993 mutex_unlock(&ksm_thread_mutex);
2994
2995 return err ? err : count;
2996}
2997KSM_ATTR(merge_across_nodes);
2998#endif
2999
e86c59b1 3000static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3001 struct kobj_attribute *attr, char *buf)
e86c59b1 3002{
ae7a927d 3003 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3004}
3005static ssize_t use_zero_pages_store(struct kobject *kobj,
3006 struct kobj_attribute *attr,
3007 const char *buf, size_t count)
3008{
3009 int err;
3010 bool value;
3011
3012 err = kstrtobool(buf, &value);
3013 if (err)
3014 return -EINVAL;
3015
3016 ksm_use_zero_pages = value;
3017
3018 return count;
3019}
3020KSM_ATTR(use_zero_pages);
3021
2c653d0e
AA
3022static ssize_t max_page_sharing_show(struct kobject *kobj,
3023 struct kobj_attribute *attr, char *buf)
3024{
ae7a927d 3025 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3026}
3027
3028static ssize_t max_page_sharing_store(struct kobject *kobj,
3029 struct kobj_attribute *attr,
3030 const char *buf, size_t count)
3031{
3032 int err;
3033 int knob;
3034
3035 err = kstrtoint(buf, 10, &knob);
3036 if (err)
3037 return err;
3038 /*
3039 * When a KSM page is created it is shared by 2 mappings. This
3040 * being a signed comparison, it implicitly verifies it's not
3041 * negative.
3042 */
3043 if (knob < 2)
3044 return -EINVAL;
3045
3046 if (READ_ONCE(ksm_max_page_sharing) == knob)
3047 return count;
3048
3049 mutex_lock(&ksm_thread_mutex);
3050 wait_while_offlining();
3051 if (ksm_max_page_sharing != knob) {
3052 if (ksm_pages_shared || remove_all_stable_nodes())
3053 err = -EBUSY;
3054 else
3055 ksm_max_page_sharing = knob;
3056 }
3057 mutex_unlock(&ksm_thread_mutex);
3058
3059 return err ? err : count;
3060}
3061KSM_ATTR(max_page_sharing);
3062
b4028260
HD
3063static ssize_t pages_shared_show(struct kobject *kobj,
3064 struct kobj_attribute *attr, char *buf)
3065{
ae7a927d 3066 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3067}
3068KSM_ATTR_RO(pages_shared);
3069
3070static ssize_t pages_sharing_show(struct kobject *kobj,
3071 struct kobj_attribute *attr, char *buf)
3072{
ae7a927d 3073 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3074}
3075KSM_ATTR_RO(pages_sharing);
3076
473b0ce4
HD
3077static ssize_t pages_unshared_show(struct kobject *kobj,
3078 struct kobj_attribute *attr, char *buf)
3079{
ae7a927d 3080 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3081}
3082KSM_ATTR_RO(pages_unshared);
3083
3084static ssize_t pages_volatile_show(struct kobject *kobj,
3085 struct kobj_attribute *attr, char *buf)
3086{
3087 long ksm_pages_volatile;
3088
3089 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3090 - ksm_pages_sharing - ksm_pages_unshared;
3091 /*
3092 * It was not worth any locking to calculate that statistic,
3093 * but it might therefore sometimes be negative: conceal that.
3094 */
3095 if (ksm_pages_volatile < 0)
3096 ksm_pages_volatile = 0;
ae7a927d 3097 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3098}
3099KSM_ATTR_RO(pages_volatile);
3100
2c653d0e
AA
3101static ssize_t stable_node_dups_show(struct kobject *kobj,
3102 struct kobj_attribute *attr, char *buf)
3103{
ae7a927d 3104 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3105}
3106KSM_ATTR_RO(stable_node_dups);
3107
3108static ssize_t stable_node_chains_show(struct kobject *kobj,
3109 struct kobj_attribute *attr, char *buf)
3110{
ae7a927d 3111 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3112}
3113KSM_ATTR_RO(stable_node_chains);
3114
3115static ssize_t
3116stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3117 struct kobj_attribute *attr,
3118 char *buf)
3119{
ae7a927d 3120 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3121}
3122
3123static ssize_t
3124stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3125 struct kobj_attribute *attr,
3126 const char *buf, size_t count)
3127{
584ff0df 3128 unsigned int msecs;
2c653d0e
AA
3129 int err;
3130
584ff0df
ZB
3131 err = kstrtouint(buf, 10, &msecs);
3132 if (err)
2c653d0e
AA
3133 return -EINVAL;
3134
3135 ksm_stable_node_chains_prune_millisecs = msecs;
3136
3137 return count;
3138}
3139KSM_ATTR(stable_node_chains_prune_millisecs);
3140
473b0ce4
HD
3141static ssize_t full_scans_show(struct kobject *kobj,
3142 struct kobj_attribute *attr, char *buf)
3143{
ae7a927d 3144 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3145}
3146KSM_ATTR_RO(full_scans);
3147
31dbd01f
IE
3148static struct attribute *ksm_attrs[] = {
3149 &sleep_millisecs_attr.attr,
3150 &pages_to_scan_attr.attr,
3151 &run_attr.attr,
b4028260
HD
3152 &pages_shared_attr.attr,
3153 &pages_sharing_attr.attr,
473b0ce4
HD
3154 &pages_unshared_attr.attr,
3155 &pages_volatile_attr.attr,
3156 &full_scans_attr.attr,
90bd6fd3
PH
3157#ifdef CONFIG_NUMA
3158 &merge_across_nodes_attr.attr,
3159#endif
2c653d0e
AA
3160 &max_page_sharing_attr.attr,
3161 &stable_node_chains_attr.attr,
3162 &stable_node_dups_attr.attr,
3163 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3164 &use_zero_pages_attr.attr,
31dbd01f
IE
3165 NULL,
3166};
3167
f907c26a 3168static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3169 .attrs = ksm_attrs,
3170 .name = "ksm",
3171};
2ffd8679 3172#endif /* CONFIG_SYSFS */
31dbd01f
IE
3173
3174static int __init ksm_init(void)
3175{
3176 struct task_struct *ksm_thread;
3177 int err;
3178
e86c59b1
CI
3179 /* The correct value depends on page size and endianness */
3180 zero_checksum = calc_checksum(ZERO_PAGE(0));
3181 /* Default to false for backwards compatibility */
3182 ksm_use_zero_pages = false;
3183
31dbd01f
IE
3184 err = ksm_slab_init();
3185 if (err)
3186 goto out;
3187
31dbd01f
IE
3188 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3189 if (IS_ERR(ksm_thread)) {
25acde31 3190 pr_err("ksm: creating kthread failed\n");
31dbd01f 3191 err = PTR_ERR(ksm_thread);
d9f8984c 3192 goto out_free;
31dbd01f
IE
3193 }
3194
2ffd8679 3195#ifdef CONFIG_SYSFS
31dbd01f
IE
3196 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3197 if (err) {
25acde31 3198 pr_err("ksm: register sysfs failed\n");
2ffd8679 3199 kthread_stop(ksm_thread);
d9f8984c 3200 goto out_free;
31dbd01f 3201 }
c73602ad
HD
3202#else
3203 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3204
2ffd8679 3205#endif /* CONFIG_SYSFS */
31dbd01f 3206
62b61f61 3207#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3208 /* There is no significance to this priority 100 */
62b61f61
HD
3209 hotplug_memory_notifier(ksm_memory_callback, 100);
3210#endif
31dbd01f
IE
3211 return 0;
3212
d9f8984c 3213out_free:
31dbd01f
IE
3214 ksm_slab_free();
3215out:
3216 return err;
f8af4da3 3217}
a64fb3cd 3218subsys_initcall(ksm_init);