mm: page_io: fix psi memory pressure error on cold swapins
[linux-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
5a2ca3ef
MR
54/**
55 * DOC: Overview
56 *
31dbd01f
IE
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
5a2ca3ef
MR
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
9303c9d5 85 * using the same struct stable_node structure.
5a2ca3ef 86 *
31dbd01f
IE
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
112 */
113
114/**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
6514d511 124 struct rmap_item *rmap_list;
31dbd01f
IE
125 struct mm_struct *mm;
126};
127
128/**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
6514d511 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
6514d511 140 struct rmap_item **rmap_list;
31dbd01f
IE
141 unsigned long seqnr;
142};
143
7b6ba2c7
HD
144/**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
4146d2d6 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 150 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
155 */
156struct stable_node {
4146d2d6
HD
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
2c653d0e
AA
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
4146d2d6
HD
165 };
166 };
7b6ba2c7 167 struct hlist_head hlist;
2c653d0e
AA
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177#define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
4146d2d6
HD
179#ifdef CONFIG_NUMA
180 int nid;
181#endif
7b6ba2c7
HD
182};
183
31dbd01f
IE
184/**
185 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
195 */
196struct rmap_item {
6514d511 197 struct rmap_item *rmap_list;
bc56620b
HD
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200#ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202#endif
203 };
31dbd01f
IE
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 206 unsigned int oldchecksum; /* when unstable */
31dbd01f 207 union {
7b6ba2c7
HD
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
31dbd01f
IE
213 };
214};
215
216#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
217#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
219
220/* The stable and unstable tree heads */
ef53d16c
HD
221static struct rb_root one_stable_tree[1] = { RB_ROOT };
222static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223static struct rb_root *root_stable_tree = one_stable_tree;
224static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 225
4146d2d6
HD
226/* Recently migrated nodes of stable tree, pending proper placement */
227static LIST_HEAD(migrate_nodes);
2c653d0e 228#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 229
4ca3a69b
SL
230#define MM_SLOTS_HASH_BITS 10
231static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
232
233static struct mm_slot ksm_mm_head = {
234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235};
236static struct ksm_scan ksm_scan = {
237 .mm_slot = &ksm_mm_head,
238};
239
240static struct kmem_cache *rmap_item_cache;
7b6ba2c7 241static struct kmem_cache *stable_node_cache;
31dbd01f
IE
242static struct kmem_cache *mm_slot_cache;
243
244/* The number of nodes in the stable tree */
b4028260 245static unsigned long ksm_pages_shared;
31dbd01f 246
e178dfde 247/* The number of page slots additionally sharing those nodes */
b4028260 248static unsigned long ksm_pages_sharing;
31dbd01f 249
473b0ce4
HD
250/* The number of nodes in the unstable tree */
251static unsigned long ksm_pages_unshared;
252
253/* The number of rmap_items in use: to calculate pages_volatile */
254static unsigned long ksm_rmap_items;
255
2c653d0e
AA
256/* The number of stable_node chains */
257static unsigned long ksm_stable_node_chains;
258
259/* The number of stable_node dups linked to the stable_node chains */
260static unsigned long ksm_stable_node_dups;
261
262/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 263static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
264
265/* Maximum number of page slots sharing a stable node */
266static int ksm_max_page_sharing = 256;
267
31dbd01f 268/* Number of pages ksmd should scan in one batch */
2c6854fd 269static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
270
271/* Milliseconds ksmd should sleep between batches */
2ffd8679 272static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 273
e86c59b1
CI
274/* Checksum of an empty (zeroed) page */
275static unsigned int zero_checksum __read_mostly;
276
277/* Whether to merge empty (zeroed) pages with actual zero pages */
278static bool ksm_use_zero_pages __read_mostly;
279
e850dcf5 280#ifdef CONFIG_NUMA
90bd6fd3
PH
281/* Zeroed when merging across nodes is not allowed */
282static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 283static int ksm_nr_node_ids = 1;
e850dcf5
HD
284#else
285#define ksm_merge_across_nodes 1U
ef53d16c 286#define ksm_nr_node_ids 1
e850dcf5 287#endif
90bd6fd3 288
31dbd01f
IE
289#define KSM_RUN_STOP 0
290#define KSM_RUN_MERGE 1
291#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
292#define KSM_RUN_OFFLINE 4
293static unsigned long ksm_run = KSM_RUN_STOP;
294static void wait_while_offlining(void);
31dbd01f
IE
295
296static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 297static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
298static DEFINE_MUTEX(ksm_thread_mutex);
299static DEFINE_SPINLOCK(ksm_mmlist_lock);
300
301#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302 sizeof(struct __struct), __alignof__(struct __struct),\
303 (__flags), NULL)
304
305static int __init ksm_slab_init(void)
306{
307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308 if (!rmap_item_cache)
309 goto out;
310
7b6ba2c7
HD
311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312 if (!stable_node_cache)
313 goto out_free1;
314
31dbd01f
IE
315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316 if (!mm_slot_cache)
7b6ba2c7 317 goto out_free2;
31dbd01f
IE
318
319 return 0;
320
7b6ba2c7
HD
321out_free2:
322 kmem_cache_destroy(stable_node_cache);
323out_free1:
31dbd01f
IE
324 kmem_cache_destroy(rmap_item_cache);
325out:
326 return -ENOMEM;
327}
328
329static void __init ksm_slab_free(void)
330{
331 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 332 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
333 kmem_cache_destroy(rmap_item_cache);
334 mm_slot_cache = NULL;
335}
336
2c653d0e
AA
337static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338{
339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340}
341
342static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343{
344 return dup->head == STABLE_NODE_DUP_HEAD;
345}
346
347static inline void stable_node_chain_add_dup(struct stable_node *dup,
348 struct stable_node *chain)
349{
350 VM_BUG_ON(is_stable_node_dup(dup));
351 dup->head = STABLE_NODE_DUP_HEAD;
352 VM_BUG_ON(!is_stable_node_chain(chain));
353 hlist_add_head(&dup->hlist_dup, &chain->hlist);
354 ksm_stable_node_dups++;
355}
356
357static inline void __stable_node_dup_del(struct stable_node *dup)
358{
b4fecc67 359 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
360 hlist_del(&dup->hlist_dup);
361 ksm_stable_node_dups--;
362}
363
364static inline void stable_node_dup_del(struct stable_node *dup)
365{
366 VM_BUG_ON(is_stable_node_chain(dup));
367 if (is_stable_node_dup(dup))
368 __stable_node_dup_del(dup);
369 else
370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371#ifdef CONFIG_DEBUG_VM
372 dup->head = NULL;
373#endif
374}
375
31dbd01f
IE
376static inline struct rmap_item *alloc_rmap_item(void)
377{
473b0ce4
HD
378 struct rmap_item *rmap_item;
379
5b398e41 380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
382 if (rmap_item)
383 ksm_rmap_items++;
384 return rmap_item;
31dbd01f
IE
385}
386
387static inline void free_rmap_item(struct rmap_item *rmap_item)
388{
473b0ce4 389 ksm_rmap_items--;
31dbd01f
IE
390 rmap_item->mm = NULL; /* debug safety */
391 kmem_cache_free(rmap_item_cache, rmap_item);
392}
393
7b6ba2c7
HD
394static inline struct stable_node *alloc_stable_node(void)
395{
6213055f 396 /*
397 * The allocation can take too long with GFP_KERNEL when memory is under
398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
399 * grants access to memory reserves, helping to avoid this problem.
400 */
401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
402}
403
404static inline void free_stable_node(struct stable_node *stable_node)
405{
2c653d0e
AA
406 VM_BUG_ON(stable_node->rmap_hlist_len &&
407 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
408 kmem_cache_free(stable_node_cache, stable_node);
409}
410
31dbd01f
IE
411static inline struct mm_slot *alloc_mm_slot(void)
412{
413 if (!mm_slot_cache) /* initialization failed */
414 return NULL;
415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416}
417
418static inline void free_mm_slot(struct mm_slot *mm_slot)
419{
420 kmem_cache_free(mm_slot_cache, mm_slot);
421}
422
31dbd01f
IE
423static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424{
4ca3a69b
SL
425 struct mm_slot *slot;
426
b67bfe0d 427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
428 if (slot->mm == mm)
429 return slot;
31dbd01f 430
31dbd01f
IE
431 return NULL;
432}
433
434static void insert_to_mm_slots_hash(struct mm_struct *mm,
435 struct mm_slot *mm_slot)
436{
31dbd01f 437 mm_slot->mm = mm;
4ca3a69b 438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
439}
440
a913e182
HD
441/*
442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
445 * a special flag: they can just back out as soon as mm_users goes to zero.
446 * ksm_test_exit() is used throughout to make this test for exit: in some
447 * places for correctness, in some places just to avoid unnecessary work.
448 */
449static inline bool ksm_test_exit(struct mm_struct *mm)
450{
451 return atomic_read(&mm->mm_users) == 0;
452}
453
31dbd01f
IE
454/*
455 * We use break_ksm to break COW on a ksm page: it's a stripped down
456 *
7a9547fd 457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
31dbd01f
IE
458 * put_page(page);
459 *
460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461 * in case the application has unmapped and remapped mm,addr meanwhile.
462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 463 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126
DH
464 *
465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466 * of the process that owns 'vma'. We also do not want to enforce
467 * protection keys here anyway.
31dbd01f 468 */
d952b791 469static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
470{
471 struct page *page;
50a7ca3c 472 vm_fault_t ret = 0;
31dbd01f
IE
473
474 do {
475 cond_resched();
1b2ee126
DH
476 page = follow_page(vma, addr,
477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 478 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
479 break;
480 if (PageKsm(page))
dcddffd4 481 ret = handle_mm_fault(vma, addr,
bce617ed
PX
482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483 NULL);
31dbd01f
IE
484 else
485 ret = VM_FAULT_WRITE;
486 put_page(page);
33692f27 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
488 /*
489 * We must loop because handle_mm_fault() may back out if there's
490 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491 *
492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 * COW has been broken, even if the vma does not permit VM_WRITE;
494 * but note that a concurrent fault might break PageKsm for us.
495 *
496 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 * backing file, which also invalidates anonymous pages: that's
498 * okay, that truncation will have unmapped the PageKsm for us.
499 *
500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 * to user; and ksmd, having no mm, would never be chosen for that.
504 *
505 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 * even ksmd can fail in this way - though it's usually breaking ksm
508 * just to undo a merge it made a moment before, so unlikely to oom.
509 *
510 * That's a pity: we might therefore have more kernel pages allocated
511 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 * will retry to break_cow on each pass, so should recover the page
513 * in due course. The important thing is to not let VM_MERGEABLE
514 * be cleared while any such pages might remain in the area.
515 */
516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
517}
518
ef694222
BL
519static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520 unsigned long addr)
521{
522 struct vm_area_struct *vma;
523 if (ksm_test_exit(mm))
524 return NULL;
ff69fb81
LH
525 vma = vma_lookup(mm, addr);
526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
527 return NULL;
528 return vma;
529}
530
8dd3557a 531static void break_cow(struct rmap_item *rmap_item)
31dbd01f 532{
8dd3557a
HD
533 struct mm_struct *mm = rmap_item->mm;
534 unsigned long addr = rmap_item->address;
31dbd01f
IE
535 struct vm_area_struct *vma;
536
4035c07a
HD
537 /*
538 * It is not an accident that whenever we want to break COW
539 * to undo, we also need to drop a reference to the anon_vma.
540 */
9e60109f 541 put_anon_vma(rmap_item->anon_vma);
4035c07a 542
d8ed45c5 543 mmap_read_lock(mm);
ef694222
BL
544 vma = find_mergeable_vma(mm, addr);
545 if (vma)
546 break_ksm(vma, addr);
d8ed45c5 547 mmap_read_unlock(mm);
31dbd01f
IE
548}
549
550static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551{
552 struct mm_struct *mm = rmap_item->mm;
553 unsigned long addr = rmap_item->address;
554 struct vm_area_struct *vma;
555 struct page *page;
556
d8ed45c5 557 mmap_read_lock(mm);
ef694222
BL
558 vma = find_mergeable_vma(mm, addr);
559 if (!vma)
31dbd01f
IE
560 goto out;
561
562 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 563 if (IS_ERR_OR_NULL(page))
31dbd01f 564 goto out;
f765f540 565 if (PageAnon(page)) {
31dbd01f
IE
566 flush_anon_page(vma, page, addr);
567 flush_dcache_page(page);
568 } else {
569 put_page(page);
c8f95ed1
AA
570out:
571 page = NULL;
31dbd01f 572 }
d8ed45c5 573 mmap_read_unlock(mm);
31dbd01f
IE
574 return page;
575}
576
90bd6fd3
PH
577/*
578 * This helper is used for getting right index into array of tree roots.
579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581 * every node has its own stable and unstable tree.
582 */
583static inline int get_kpfn_nid(unsigned long kpfn)
584{
d8fc16a8 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
586}
587
2c653d0e
AA
588static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 struct rb_root *root)
590{
591 struct stable_node *chain = alloc_stable_node();
592 VM_BUG_ON(is_stable_node_chain(dup));
593 if (likely(chain)) {
594 INIT_HLIST_HEAD(&chain->hlist);
595 chain->chain_prune_time = jiffies;
596 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 598 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
599#endif
600 ksm_stable_node_chains++;
601
602 /*
603 * Put the stable node chain in the first dimension of
604 * the stable tree and at the same time remove the old
605 * stable node.
606 */
607 rb_replace_node(&dup->node, &chain->node, root);
608
609 /*
610 * Move the old stable node to the second dimension
611 * queued in the hlist_dup. The invariant is that all
612 * dup stable_nodes in the chain->hlist point to pages
457aef94 613 * that are write protected and have the exact same
2c653d0e
AA
614 * content.
615 */
616 stable_node_chain_add_dup(dup, chain);
617 }
618 return chain;
619}
620
621static inline void free_stable_node_chain(struct stable_node *chain,
622 struct rb_root *root)
623{
624 rb_erase(&chain->node, root);
625 free_stable_node(chain);
626 ksm_stable_node_chains--;
627}
628
4035c07a
HD
629static void remove_node_from_stable_tree(struct stable_node *stable_node)
630{
631 struct rmap_item *rmap_item;
4035c07a 632
2c653d0e
AA
633 /* check it's not STABLE_NODE_CHAIN or negative */
634 BUG_ON(stable_node->rmap_hlist_len < 0);
635
b67bfe0d 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
637 if (rmap_item->hlist.next)
638 ksm_pages_sharing--;
639 else
640 ksm_pages_shared--;
2c653d0e
AA
641 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
642 stable_node->rmap_hlist_len--;
9e60109f 643 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
644 rmap_item->address &= PAGE_MASK;
645 cond_resched();
646 }
647
2c653d0e
AA
648 /*
649 * We need the second aligned pointer of the migrate_nodes
650 * list_head to stay clear from the rb_parent_color union
651 * (aligned and different than any node) and also different
652 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 653 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 654 */
2c653d0e
AA
655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
656 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 657
4146d2d6
HD
658 if (stable_node->head == &migrate_nodes)
659 list_del(&stable_node->list);
660 else
2c653d0e 661 stable_node_dup_del(stable_node);
4035c07a
HD
662 free_stable_node(stable_node);
663}
664
2cee57d1
YS
665enum get_ksm_page_flags {
666 GET_KSM_PAGE_NOLOCK,
667 GET_KSM_PAGE_LOCK,
668 GET_KSM_PAGE_TRYLOCK
669};
670
4035c07a
HD
671/*
672 * get_ksm_page: checks if the page indicated by the stable node
673 * is still its ksm page, despite having held no reference to it.
674 * In which case we can trust the content of the page, and it
675 * returns the gotten page; but if the page has now been zapped,
676 * remove the stale node from the stable tree and return NULL.
c8d6553b 677 * But beware, the stable node's page might be being migrated.
4035c07a
HD
678 *
679 * You would expect the stable_node to hold a reference to the ksm page.
680 * But if it increments the page's count, swapping out has to wait for
681 * ksmd to come around again before it can free the page, which may take
682 * seconds or even minutes: much too unresponsive. So instead we use a
683 * "keyhole reference": access to the ksm page from the stable node peeps
684 * out through its keyhole to see if that page still holds the right key,
685 * pointing back to this stable node. This relies on freeing a PageAnon
686 * page to reset its page->mapping to NULL, and relies on no other use of
687 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
688 * is on its way to being freed; but it is an anomaly to bear in mind.
689 */
2cee57d1
YS
690static struct page *get_ksm_page(struct stable_node *stable_node,
691 enum get_ksm_page_flags flags)
4035c07a
HD
692{
693 struct page *page;
694 void *expected_mapping;
c8d6553b 695 unsigned long kpfn;
4035c07a 696
bda807d4
MK
697 expected_mapping = (void *)((unsigned long)stable_node |
698 PAGE_MAPPING_KSM);
c8d6553b 699again:
08df4774 700 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 701 page = pfn_to_page(kpfn);
4db0c3c2 702 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 703 goto stale;
c8d6553b
HD
704
705 /*
706 * We cannot do anything with the page while its refcount is 0.
707 * Usually 0 means free, or tail of a higher-order page: in which
708 * case this node is no longer referenced, and should be freed;
1c4c3b99 709 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 710 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606
KT
711 * the same is in reuse_ksm_page() case; but if page is swapcache
712 * in migrate_page_move_mapping(), it might still be our page,
713 * in which case it's essential to keep the node.
c8d6553b
HD
714 */
715 while (!get_page_unless_zero(page)) {
716 /*
717 * Another check for page->mapping != expected_mapping would
718 * work here too. We have chosen the !PageSwapCache test to
719 * optimize the common case, when the page is or is about to
720 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 721 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
722 * page->mapping reset to NULL later, in free_pages_prepare().
723 */
724 if (!PageSwapCache(page))
725 goto stale;
726 cpu_relax();
727 }
728
4db0c3c2 729 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
730 put_page(page);
731 goto stale;
732 }
c8d6553b 733
2cee57d1
YS
734 if (flags == GET_KSM_PAGE_TRYLOCK) {
735 if (!trylock_page(page)) {
736 put_page(page);
737 return ERR_PTR(-EBUSY);
738 }
739 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 740 lock_page(page);
2cee57d1
YS
741
742 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 743 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
744 unlock_page(page);
745 put_page(page);
746 goto stale;
747 }
748 }
4035c07a 749 return page;
c8d6553b 750
4035c07a 751stale:
c8d6553b
HD
752 /*
753 * We come here from above when page->mapping or !PageSwapCache
754 * suggests that the node is stale; but it might be under migration.
19138349 755 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
756 * before checking whether node->kpfn has been changed.
757 */
758 smp_rmb();
4db0c3c2 759 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 760 goto again;
4035c07a
HD
761 remove_node_from_stable_tree(stable_node);
762 return NULL;
763}
764
31dbd01f
IE
765/*
766 * Removing rmap_item from stable or unstable tree.
767 * This function will clean the information from the stable/unstable tree.
768 */
769static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
770{
7b6ba2c7
HD
771 if (rmap_item->address & STABLE_FLAG) {
772 struct stable_node *stable_node;
5ad64688 773 struct page *page;
31dbd01f 774
7b6ba2c7 775 stable_node = rmap_item->head;
62862290 776 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
777 if (!page)
778 goto out;
5ad64688 779
7b6ba2c7 780 hlist_del(&rmap_item->hlist);
62862290 781 unlock_page(page);
4035c07a 782 put_page(page);
08beca44 783
98666f8a 784 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
785 ksm_pages_sharing--;
786 else
7b6ba2c7 787 ksm_pages_shared--;
2c653d0e
AA
788 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
789 stable_node->rmap_hlist_len--;
31dbd01f 790
9e60109f 791 put_anon_vma(rmap_item->anon_vma);
c89a384e 792 rmap_item->head = NULL;
93d17715 793 rmap_item->address &= PAGE_MASK;
31dbd01f 794
7b6ba2c7 795 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
796 unsigned char age;
797 /*
9ba69294 798 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 799 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
800 * But be careful when an mm is exiting: do the rb_erase
801 * if this rmap_item was inserted by this scan, rather
802 * than left over from before.
31dbd01f
IE
803 */
804 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 805 BUG_ON(age > 1);
31dbd01f 806 if (!age)
90bd6fd3 807 rb_erase(&rmap_item->node,
ef53d16c 808 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 809 ksm_pages_unshared--;
93d17715 810 rmap_item->address &= PAGE_MASK;
31dbd01f 811 }
4035c07a 812out:
31dbd01f
IE
813 cond_resched(); /* we're called from many long loops */
814}
815
420be4ed 816static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
31dbd01f 817{
6514d511
HD
818 while (*rmap_list) {
819 struct rmap_item *rmap_item = *rmap_list;
820 *rmap_list = rmap_item->rmap_list;
31dbd01f 821 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
822 free_rmap_item(rmap_item);
823 }
824}
825
826/*
e850dcf5 827 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
828 * than check every pte of a given vma, the locking doesn't quite work for
829 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 830 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
831 * rmap_items from parent to child at fork time (so as not to waste time
832 * if exit comes before the next scan reaches it).
81464e30
HD
833 *
834 * Similarly, although we'd like to remove rmap_items (so updating counts
835 * and freeing memory) when unmerging an area, it's easier to leave that
836 * to the next pass of ksmd - consider, for example, how ksmd might be
837 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 838 */
d952b791
HD
839static int unmerge_ksm_pages(struct vm_area_struct *vma,
840 unsigned long start, unsigned long end)
31dbd01f
IE
841{
842 unsigned long addr;
d952b791 843 int err = 0;
31dbd01f 844
d952b791 845 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
846 if (ksm_test_exit(vma->vm_mm))
847 break;
d952b791
HD
848 if (signal_pending(current))
849 err = -ERESTARTSYS;
850 else
851 err = break_ksm(vma, addr);
852 }
853 return err;
31dbd01f
IE
854}
855
19138349
MWO
856static inline struct stable_node *folio_stable_node(struct folio *folio)
857{
858 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
859}
860
88484826
MR
861static inline struct stable_node *page_stable_node(struct page *page)
862{
19138349 863 return folio_stable_node(page_folio(page));
88484826
MR
864}
865
866static inline void set_page_stable_node(struct page *page,
867 struct stable_node *stable_node)
868{
869 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
870}
871
2ffd8679
HD
872#ifdef CONFIG_SYSFS
873/*
874 * Only called through the sysfs control interface:
875 */
cbf86cfe
HD
876static int remove_stable_node(struct stable_node *stable_node)
877{
878 struct page *page;
879 int err;
880
2cee57d1 881 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
882 if (!page) {
883 /*
884 * get_ksm_page did remove_node_from_stable_tree itself.
885 */
886 return 0;
887 }
888
9a63236f
AR
889 /*
890 * Page could be still mapped if this races with __mmput() running in
891 * between ksm_exit() and exit_mmap(). Just refuse to let
892 * merge_across_nodes/max_page_sharing be switched.
893 */
894 err = -EBUSY;
895 if (!page_mapped(page)) {
cbf86cfe 896 /*
8fdb3dbf
HD
897 * The stable node did not yet appear stale to get_ksm_page(),
898 * since that allows for an unmapped ksm page to be recognized
899 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
900 * This page might be in a pagevec waiting to be freed,
901 * or it might be PageSwapCache (perhaps under writeback),
902 * or it might have been removed from swapcache a moment ago.
903 */
904 set_page_stable_node(page, NULL);
905 remove_node_from_stable_tree(stable_node);
906 err = 0;
907 }
908
909 unlock_page(page);
910 put_page(page);
911 return err;
912}
913
2c653d0e
AA
914static int remove_stable_node_chain(struct stable_node *stable_node,
915 struct rb_root *root)
916{
917 struct stable_node *dup;
918 struct hlist_node *hlist_safe;
919
920 if (!is_stable_node_chain(stable_node)) {
921 VM_BUG_ON(is_stable_node_dup(stable_node));
922 if (remove_stable_node(stable_node))
923 return true;
924 else
925 return false;
926 }
927
928 hlist_for_each_entry_safe(dup, hlist_safe,
929 &stable_node->hlist, hlist_dup) {
930 VM_BUG_ON(!is_stable_node_dup(dup));
931 if (remove_stable_node(dup))
932 return true;
933 }
934 BUG_ON(!hlist_empty(&stable_node->hlist));
935 free_stable_node_chain(stable_node, root);
936 return false;
937}
938
cbf86cfe
HD
939static int remove_all_stable_nodes(void)
940{
03640418 941 struct stable_node *stable_node, *next;
cbf86cfe
HD
942 int nid;
943 int err = 0;
944
ef53d16c 945 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
946 while (root_stable_tree[nid].rb_node) {
947 stable_node = rb_entry(root_stable_tree[nid].rb_node,
948 struct stable_node, node);
2c653d0e
AA
949 if (remove_stable_node_chain(stable_node,
950 root_stable_tree + nid)) {
cbf86cfe
HD
951 err = -EBUSY;
952 break; /* proceed to next nid */
953 }
954 cond_resched();
955 }
956 }
03640418 957 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
958 if (remove_stable_node(stable_node))
959 err = -EBUSY;
960 cond_resched();
961 }
cbf86cfe
HD
962 return err;
963}
964
d952b791 965static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
966{
967 struct mm_slot *mm_slot;
968 struct mm_struct *mm;
969 struct vm_area_struct *vma;
d952b791
HD
970 int err = 0;
971
972 spin_lock(&ksm_mmlist_lock);
9ba69294 973 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
974 struct mm_slot, mm_list);
975 spin_unlock(&ksm_mmlist_lock);
31dbd01f 976
9ba69294
HD
977 for (mm_slot = ksm_scan.mm_slot;
978 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f 979 mm = mm_slot->mm;
d8ed45c5 980 mmap_read_lock(mm);
31dbd01f 981 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
982 if (ksm_test_exit(mm))
983 break;
31dbd01f
IE
984 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
985 continue;
d952b791
HD
986 err = unmerge_ksm_pages(vma,
987 vma->vm_start, vma->vm_end);
9ba69294
HD
988 if (err)
989 goto error;
31dbd01f 990 }
9ba69294 991
420be4ed 992 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 993 mmap_read_unlock(mm);
d952b791
HD
994
995 spin_lock(&ksm_mmlist_lock);
9ba69294 996 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 997 struct mm_slot, mm_list);
9ba69294 998 if (ksm_test_exit(mm)) {
4ca3a69b 999 hash_del(&mm_slot->link);
9ba69294
HD
1000 list_del(&mm_slot->mm_list);
1001 spin_unlock(&ksm_mmlist_lock);
1002
1003 free_mm_slot(mm_slot);
1004 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1005 mmdrop(mm);
7496fea9 1006 } else
9ba69294 1007 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1008 }
1009
cbf86cfe
HD
1010 /* Clean up stable nodes, but don't worry if some are still busy */
1011 remove_all_stable_nodes();
d952b791 1012 ksm_scan.seqnr = 0;
9ba69294
HD
1013 return 0;
1014
1015error:
d8ed45c5 1016 mmap_read_unlock(mm);
31dbd01f 1017 spin_lock(&ksm_mmlist_lock);
d952b791 1018 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1019 spin_unlock(&ksm_mmlist_lock);
d952b791 1020 return err;
31dbd01f 1021}
2ffd8679 1022#endif /* CONFIG_SYSFS */
31dbd01f 1023
31dbd01f
IE
1024static u32 calc_checksum(struct page *page)
1025{
1026 u32 checksum;
9b04c5fe 1027 void *addr = kmap_atomic(page);
59e1a2f4 1028 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1029 kunmap_atomic(addr);
31dbd01f
IE
1030 return checksum;
1031}
1032
31dbd01f
IE
1033static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1034 pte_t *orig_pte)
1035{
1036 struct mm_struct *mm = vma->vm_mm;
36eaff33
KS
1037 struct page_vma_mapped_walk pvmw = {
1038 .page = page,
1039 .vma = vma,
1040 };
31dbd01f
IE
1041 int swapped;
1042 int err = -EFAULT;
ac46d4f3 1043 struct mmu_notifier_range range;
31dbd01f 1044
36eaff33
KS
1045 pvmw.address = page_address_in_vma(page, vma);
1046 if (pvmw.address == -EFAULT)
31dbd01f
IE
1047 goto out;
1048
29ad768c 1049 BUG_ON(PageTransCompound(page));
6bdb913f 1050
7269f999 1051 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 1052 pvmw.address,
ac46d4f3
JG
1053 pvmw.address + PAGE_SIZE);
1054 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1055
36eaff33 1056 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1057 goto out_mn;
36eaff33
KS
1058 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1059 goto out_unlock;
31dbd01f 1060
595cd8f2 1061 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08
MK
1062 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1063 mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1064 pte_t entry;
1065
1066 swapped = PageSwapCache(page);
36eaff33 1067 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1068 /*
25985edc 1069 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1070 * take any lock, therefore the check that we are going to make
f0953a1b 1071 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1072 * O_DIRECT can happen right after the check.
1073 * So we clear the pte and flush the tlb before the check
1074 * this assure us that no O_DIRECT can happen after the check
1075 * or in the middle of the check.
0f10851e
JG
1076 *
1077 * No need to notify as we are downgrading page table to read
1078 * only not changing it to point to a new page.
1079 *
ad56b738 1080 * See Documentation/vm/mmu_notifier.rst
31dbd01f 1081 */
0f10851e 1082 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1083 /*
1084 * Check that no O_DIRECT or similar I/O is in progress on the
1085 * page
1086 */
31e855ea 1087 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1088 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1089 goto out_unlock;
1090 }
4e31635c
HD
1091 if (pte_dirty(entry))
1092 set_page_dirty(page);
595cd8f2
AK
1093
1094 if (pte_protnone(entry))
1095 entry = pte_mkclean(pte_clear_savedwrite(entry));
1096 else
1097 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1098 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1099 }
36eaff33 1100 *orig_pte = *pvmw.pte;
31dbd01f
IE
1101 err = 0;
1102
1103out_unlock:
36eaff33 1104 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1105out_mn:
ac46d4f3 1106 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1107out:
1108 return err;
1109}
1110
1111/**
1112 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1113 * @vma: vma that holds the pte pointing to page
1114 * @page: the page we are replacing by kpage
1115 * @kpage: the ksm page we replace page by
31dbd01f
IE
1116 * @orig_pte: the original value of the pte
1117 *
1118 * Returns 0 on success, -EFAULT on failure.
1119 */
8dd3557a
HD
1120static int replace_page(struct vm_area_struct *vma, struct page *page,
1121 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1122{
1123 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1124 pmd_t *pmd;
1125 pte_t *ptep;
e86c59b1 1126 pte_t newpte;
31dbd01f
IE
1127 spinlock_t *ptl;
1128 unsigned long addr;
31dbd01f 1129 int err = -EFAULT;
ac46d4f3 1130 struct mmu_notifier_range range;
31dbd01f 1131
8dd3557a 1132 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1133 if (addr == -EFAULT)
1134 goto out;
1135
6219049a
BL
1136 pmd = mm_find_pmd(mm, addr);
1137 if (!pmd)
31dbd01f 1138 goto out;
31dbd01f 1139
7269f999 1140 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
6f4f13e8 1141 addr + PAGE_SIZE);
ac46d4f3 1142 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1143
31dbd01f
IE
1144 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1145 if (!pte_same(*ptep, orig_pte)) {
1146 pte_unmap_unlock(ptep, ptl);
6bdb913f 1147 goto out_mn;
31dbd01f
IE
1148 }
1149
e86c59b1
CI
1150 /*
1151 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1152 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1153 */
1154 if (!is_zero_pfn(page_to_pfn(kpage))) {
1155 get_page(kpage);
1156 page_add_anon_rmap(kpage, vma, addr, false);
1157 newpte = mk_pte(kpage, vma->vm_page_prot);
1158 } else {
1159 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1160 vma->vm_page_prot));
a38c015f
CI
1161 /*
1162 * We're replacing an anonymous page with a zero page, which is
1163 * not anonymous. We need to do proper accounting otherwise we
1164 * will get wrong values in /proc, and a BUG message in dmesg
1165 * when tearing down the mm.
1166 */
1167 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1168 }
31dbd01f
IE
1169
1170 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1171 /*
1172 * No need to notify as we are replacing a read only page with another
1173 * read only page with the same content.
1174 *
ad56b738 1175 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
1176 */
1177 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1178 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1179
d281ee61 1180 page_remove_rmap(page, false);
ae52a2ad
HD
1181 if (!page_mapped(page))
1182 try_to_free_swap(page);
8dd3557a 1183 put_page(page);
31dbd01f
IE
1184
1185 pte_unmap_unlock(ptep, ptl);
1186 err = 0;
6bdb913f 1187out_mn:
ac46d4f3 1188 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1189out:
1190 return err;
1191}
1192
1193/*
1194 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1195 * @vma: the vma that holds the pte pointing to page
1196 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1197 * @kpage: the PageKsm page that we want to map instead of page,
1198 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1199 *
1200 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1201 */
1202static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1203 struct page *page, struct page *kpage)
31dbd01f
IE
1204{
1205 pte_t orig_pte = __pte(0);
1206 int err = -EFAULT;
1207
db114b83
HD
1208 if (page == kpage) /* ksm page forked */
1209 return 0;
1210
8dd3557a 1211 if (!PageAnon(page))
31dbd01f
IE
1212 goto out;
1213
31dbd01f
IE
1214 /*
1215 * We need the page lock to read a stable PageSwapCache in
1216 * write_protect_page(). We use trylock_page() instead of
1217 * lock_page() because we don't want to wait here - we
1218 * prefer to continue scanning and merging different pages,
1219 * then come back to this page when it is unlocked.
1220 */
8dd3557a 1221 if (!trylock_page(page))
31e855ea 1222 goto out;
f765f540
KS
1223
1224 if (PageTransCompound(page)) {
a7306c34 1225 if (split_huge_page(page))
f765f540
KS
1226 goto out_unlock;
1227 }
1228
31dbd01f
IE
1229 /*
1230 * If this anonymous page is mapped only here, its pte may need
1231 * to be write-protected. If it's mapped elsewhere, all of its
1232 * ptes are necessarily already write-protected. But in either
1233 * case, we need to lock and check page_count is not raised.
1234 */
80e14822
HD
1235 if (write_protect_page(vma, page, &orig_pte) == 0) {
1236 if (!kpage) {
1237 /*
1238 * While we hold page lock, upgrade page from
1239 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1240 * stable_tree_insert() will update stable_node.
1241 */
1242 set_page_stable_node(page, NULL);
1243 mark_page_accessed(page);
337ed7eb
MK
1244 /*
1245 * Page reclaim just frees a clean page with no dirty
1246 * ptes: make sure that the ksm page would be swapped.
1247 */
1248 if (!PageDirty(page))
1249 SetPageDirty(page);
80e14822
HD
1250 err = 0;
1251 } else if (pages_identical(page, kpage))
1252 err = replace_page(vma, page, kpage, orig_pte);
1253 }
31dbd01f 1254
80e14822 1255 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1256 munlock_vma_page(page);
5ad64688
HD
1257 if (!PageMlocked(kpage)) {
1258 unlock_page(page);
5ad64688
HD
1259 lock_page(kpage);
1260 mlock_vma_page(kpage);
1261 page = kpage; /* for final unlock */
1262 }
1263 }
73848b46 1264
f765f540 1265out_unlock:
8dd3557a 1266 unlock_page(page);
31dbd01f
IE
1267out:
1268 return err;
1269}
1270
81464e30
HD
1271/*
1272 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1273 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1274 *
1275 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1276 */
8dd3557a
HD
1277static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1278 struct page *page, struct page *kpage)
81464e30 1279{
8dd3557a 1280 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1281 struct vm_area_struct *vma;
1282 int err = -EFAULT;
1283
d8ed45c5 1284 mmap_read_lock(mm);
85c6e8dd
AA
1285 vma = find_mergeable_vma(mm, rmap_item->address);
1286 if (!vma)
81464e30
HD
1287 goto out;
1288
8dd3557a 1289 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1290 if (err)
1291 goto out;
1292
bc56620b
HD
1293 /* Unstable nid is in union with stable anon_vma: remove first */
1294 remove_rmap_item_from_tree(rmap_item);
1295
c1e8d7c6 1296 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1297 rmap_item->anon_vma = vma->anon_vma;
1298 get_anon_vma(vma->anon_vma);
81464e30 1299out:
d8ed45c5 1300 mmap_read_unlock(mm);
81464e30
HD
1301 return err;
1302}
1303
31dbd01f
IE
1304/*
1305 * try_to_merge_two_pages - take two identical pages and prepare them
1306 * to be merged into one page.
1307 *
8dd3557a
HD
1308 * This function returns the kpage if we successfully merged two identical
1309 * pages into one ksm page, NULL otherwise.
31dbd01f 1310 *
80e14822 1311 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1312 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1313 */
8dd3557a
HD
1314static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1315 struct page *page,
1316 struct rmap_item *tree_rmap_item,
1317 struct page *tree_page)
31dbd01f 1318{
80e14822 1319 int err;
31dbd01f 1320
80e14822 1321 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1322 if (!err) {
8dd3557a 1323 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1324 tree_page, page);
31dbd01f 1325 /*
81464e30
HD
1326 * If that fails, we have a ksm page with only one pte
1327 * pointing to it: so break it.
31dbd01f 1328 */
4035c07a 1329 if (err)
8dd3557a 1330 break_cow(rmap_item);
31dbd01f 1331 }
80e14822 1332 return err ? NULL : page;
31dbd01f
IE
1333}
1334
2c653d0e
AA
1335static __always_inline
1336bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1337{
1338 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1339 /*
1340 * Check that at least one mapping still exists, otherwise
1341 * there's no much point to merge and share with this
1342 * stable_node, as the underlying tree_page of the other
1343 * sharer is going to be freed soon.
1344 */
1345 return stable_node->rmap_hlist_len &&
1346 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1347}
1348
1349static __always_inline
1350bool is_page_sharing_candidate(struct stable_node *stable_node)
1351{
1352 return __is_page_sharing_candidate(stable_node, 0);
1353}
1354
c01f0b54
CIK
1355static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1356 struct stable_node **_stable_node,
1357 struct rb_root *root,
1358 bool prune_stale_stable_nodes)
2c653d0e 1359{
b4fecc67 1360 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1361 struct hlist_node *hlist_safe;
8dc5ffcd 1362 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1363 int nr = 0;
1364 int found_rmap_hlist_len;
1365
1366 if (!prune_stale_stable_nodes ||
1367 time_before(jiffies, stable_node->chain_prune_time +
1368 msecs_to_jiffies(
1369 ksm_stable_node_chains_prune_millisecs)))
1370 prune_stale_stable_nodes = false;
1371 else
1372 stable_node->chain_prune_time = jiffies;
1373
1374 hlist_for_each_entry_safe(dup, hlist_safe,
1375 &stable_node->hlist, hlist_dup) {
1376 cond_resched();
1377 /*
1378 * We must walk all stable_node_dup to prune the stale
1379 * stable nodes during lookup.
1380 *
1381 * get_ksm_page can drop the nodes from the
1382 * stable_node->hlist if they point to freed pages
1383 * (that's why we do a _safe walk). The "dup"
1384 * stable_node parameter itself will be freed from
1385 * under us if it returns NULL.
1386 */
2cee57d1 1387 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1388 if (!_tree_page)
1389 continue;
1390 nr += 1;
1391 if (is_page_sharing_candidate(dup)) {
1392 if (!found ||
1393 dup->rmap_hlist_len > found_rmap_hlist_len) {
1394 if (found)
8dc5ffcd 1395 put_page(tree_page);
2c653d0e
AA
1396 found = dup;
1397 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1398 tree_page = _tree_page;
2c653d0e 1399
8dc5ffcd 1400 /* skip put_page for found dup */
2c653d0e
AA
1401 if (!prune_stale_stable_nodes)
1402 break;
2c653d0e
AA
1403 continue;
1404 }
1405 }
1406 put_page(_tree_page);
1407 }
1408
80b18dfa
AA
1409 if (found) {
1410 /*
1411 * nr is counting all dups in the chain only if
1412 * prune_stale_stable_nodes is true, otherwise we may
1413 * break the loop at nr == 1 even if there are
1414 * multiple entries.
1415 */
1416 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1417 /*
1418 * If there's not just one entry it would
1419 * corrupt memory, better BUG_ON. In KSM
1420 * context with no lock held it's not even
1421 * fatal.
1422 */
1423 BUG_ON(stable_node->hlist.first->next);
1424
1425 /*
1426 * There's just one entry and it is below the
1427 * deduplication limit so drop the chain.
1428 */
1429 rb_replace_node(&stable_node->node, &found->node,
1430 root);
1431 free_stable_node(stable_node);
1432 ksm_stable_node_chains--;
1433 ksm_stable_node_dups--;
b4fecc67 1434 /*
0ba1d0f7
AA
1435 * NOTE: the caller depends on the stable_node
1436 * to be equal to stable_node_dup if the chain
1437 * was collapsed.
b4fecc67 1438 */
0ba1d0f7
AA
1439 *_stable_node = found;
1440 /*
f0953a1b 1441 * Just for robustness, as stable_node is
0ba1d0f7
AA
1442 * otherwise left as a stable pointer, the
1443 * compiler shall optimize it away at build
1444 * time.
1445 */
1446 stable_node = NULL;
80b18dfa
AA
1447 } else if (stable_node->hlist.first != &found->hlist_dup &&
1448 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1449 /*
80b18dfa
AA
1450 * If the found stable_node dup can accept one
1451 * more future merge (in addition to the one
1452 * that is underway) and is not at the head of
1453 * the chain, put it there so next search will
1454 * be quicker in the !prune_stale_stable_nodes
1455 * case.
1456 *
1457 * NOTE: it would be inaccurate to use nr > 1
1458 * instead of checking the hlist.first pointer
1459 * directly, because in the
1460 * prune_stale_stable_nodes case "nr" isn't
1461 * the position of the found dup in the chain,
1462 * but the total number of dups in the chain.
2c653d0e
AA
1463 */
1464 hlist_del(&found->hlist_dup);
1465 hlist_add_head(&found->hlist_dup,
1466 &stable_node->hlist);
1467 }
1468 }
1469
8dc5ffcd
AA
1470 *_stable_node_dup = found;
1471 return tree_page;
2c653d0e
AA
1472}
1473
1474static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1475 struct rb_root *root)
1476{
1477 if (!is_stable_node_chain(stable_node))
1478 return stable_node;
1479 if (hlist_empty(&stable_node->hlist)) {
1480 free_stable_node_chain(stable_node, root);
1481 return NULL;
1482 }
1483 return hlist_entry(stable_node->hlist.first,
1484 typeof(*stable_node), hlist_dup);
1485}
1486
8dc5ffcd
AA
1487/*
1488 * Like for get_ksm_page, this function can free the *_stable_node and
1489 * *_stable_node_dup if the returned tree_page is NULL.
1490 *
1491 * It can also free and overwrite *_stable_node with the found
1492 * stable_node_dup if the chain is collapsed (in which case
1493 * *_stable_node will be equal to *_stable_node_dup like if the chain
1494 * never existed). It's up to the caller to verify tree_page is not
1495 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1496 *
1497 * *_stable_node_dup is really a second output parameter of this
1498 * function and will be overwritten in all cases, the caller doesn't
1499 * need to initialize it.
1500 */
1501static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1502 struct stable_node **_stable_node,
1503 struct rb_root *root,
1504 bool prune_stale_stable_nodes)
2c653d0e 1505{
b4fecc67 1506 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1507 if (!is_stable_node_chain(stable_node)) {
1508 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1509 *_stable_node_dup = stable_node;
2cee57d1 1510 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1511 }
8dc5ffcd
AA
1512 /*
1513 * _stable_node_dup set to NULL means the stable_node
1514 * reached the ksm_max_page_sharing limit.
1515 */
1516 *_stable_node_dup = NULL;
2c653d0e
AA
1517 return NULL;
1518 }
8dc5ffcd 1519 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1520 prune_stale_stable_nodes);
1521}
1522
8dc5ffcd
AA
1523static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1524 struct stable_node **s_n,
1525 struct rb_root *root)
2c653d0e 1526{
8dc5ffcd 1527 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1528}
1529
8dc5ffcd
AA
1530static __always_inline struct page *chain(struct stable_node **s_n_d,
1531 struct stable_node *s_n,
1532 struct rb_root *root)
2c653d0e 1533{
8dc5ffcd
AA
1534 struct stable_node *old_stable_node = s_n;
1535 struct page *tree_page;
1536
1537 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1538 /* not pruning dups so s_n cannot have changed */
1539 VM_BUG_ON(s_n != old_stable_node);
1540 return tree_page;
2c653d0e
AA
1541}
1542
31dbd01f 1543/*
8dd3557a 1544 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1545 *
1546 * This function checks if there is a page inside the stable tree
1547 * with identical content to the page that we are scanning right now.
1548 *
7b6ba2c7 1549 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1550 * NULL otherwise.
1551 */
62b61f61 1552static struct page *stable_tree_search(struct page *page)
31dbd01f 1553{
90bd6fd3 1554 int nid;
ef53d16c 1555 struct rb_root *root;
4146d2d6
HD
1556 struct rb_node **new;
1557 struct rb_node *parent;
2c653d0e 1558 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1559 struct stable_node *page_node;
31dbd01f 1560
4146d2d6
HD
1561 page_node = page_stable_node(page);
1562 if (page_node && page_node->head != &migrate_nodes) {
1563 /* ksm page forked */
08beca44 1564 get_page(page);
62b61f61 1565 return page;
08beca44
HD
1566 }
1567
90bd6fd3 1568 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1569 root = root_stable_tree + nid;
4146d2d6 1570again:
ef53d16c 1571 new = &root->rb_node;
4146d2d6 1572 parent = NULL;
90bd6fd3 1573
4146d2d6 1574 while (*new) {
4035c07a 1575 struct page *tree_page;
31dbd01f
IE
1576 int ret;
1577
08beca44 1578 cond_resched();
4146d2d6 1579 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1580 stable_node_any = NULL;
8dc5ffcd 1581 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1582 /*
1583 * NOTE: stable_node may have been freed by
1584 * chain_prune() if the returned stable_node_dup is
1585 * not NULL. stable_node_dup may have been inserted in
1586 * the rbtree instead as a regular stable_node (in
1587 * order to collapse the stable_node chain if a single
0ba1d0f7
AA
1588 * stable_node dup was found in it). In such case the
1589 * stable_node is overwritten by the calleee to point
1590 * to the stable_node_dup that was collapsed in the
1591 * stable rbtree and stable_node will be equal to
1592 * stable_node_dup like if the chain never existed.
b4fecc67 1593 */
2c653d0e
AA
1594 if (!stable_node_dup) {
1595 /*
1596 * Either all stable_node dups were full in
1597 * this stable_node chain, or this chain was
1598 * empty and should be rb_erased.
1599 */
1600 stable_node_any = stable_node_dup_any(stable_node,
1601 root);
1602 if (!stable_node_any) {
1603 /* rb_erase just run */
1604 goto again;
1605 }
1606 /*
1607 * Take any of the stable_node dups page of
1608 * this stable_node chain to let the tree walk
1609 * continue. All KSM pages belonging to the
1610 * stable_node dups in a stable_node chain
1611 * have the same content and they're
457aef94 1612 * write protected at all times. Any will work
2c653d0e
AA
1613 * fine to continue the walk.
1614 */
2cee57d1
YS
1615 tree_page = get_ksm_page(stable_node_any,
1616 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1617 }
1618 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1619 if (!tree_page) {
1620 /*
1621 * If we walked over a stale stable_node,
1622 * get_ksm_page() will call rb_erase() and it
1623 * may rebalance the tree from under us. So
1624 * restart the search from scratch. Returning
1625 * NULL would be safe too, but we'd generate
1626 * false negative insertions just because some
1627 * stable_node was stale.
1628 */
1629 goto again;
1630 }
31dbd01f 1631
4035c07a 1632 ret = memcmp_pages(page, tree_page);
c8d6553b 1633 put_page(tree_page);
31dbd01f 1634
4146d2d6 1635 parent = *new;
c8d6553b 1636 if (ret < 0)
4146d2d6 1637 new = &parent->rb_left;
c8d6553b 1638 else if (ret > 0)
4146d2d6 1639 new = &parent->rb_right;
c8d6553b 1640 else {
2c653d0e
AA
1641 if (page_node) {
1642 VM_BUG_ON(page_node->head != &migrate_nodes);
1643 /*
1644 * Test if the migrated page should be merged
1645 * into a stable node dup. If the mapcount is
1646 * 1 we can migrate it with another KSM page
1647 * without adding it to the chain.
1648 */
1649 if (page_mapcount(page) > 1)
1650 goto chain_append;
1651 }
1652
1653 if (!stable_node_dup) {
1654 /*
1655 * If the stable_node is a chain and
1656 * we got a payload match in memcmp
1657 * but we cannot merge the scanned
1658 * page in any of the existing
1659 * stable_node dups because they're
1660 * all full, we need to wait the
1661 * scanned page to find itself a match
1662 * in the unstable tree to create a
1663 * brand new KSM page to add later to
1664 * the dups of this stable_node.
1665 */
1666 return NULL;
1667 }
1668
c8d6553b
HD
1669 /*
1670 * Lock and unlock the stable_node's page (which
1671 * might already have been migrated) so that page
1672 * migration is sure to notice its raised count.
1673 * It would be more elegant to return stable_node
1674 * than kpage, but that involves more changes.
1675 */
2cee57d1
YS
1676 tree_page = get_ksm_page(stable_node_dup,
1677 GET_KSM_PAGE_TRYLOCK);
1678
1679 if (PTR_ERR(tree_page) == -EBUSY)
1680 return ERR_PTR(-EBUSY);
1681
2c653d0e
AA
1682 if (unlikely(!tree_page))
1683 /*
1684 * The tree may have been rebalanced,
1685 * so re-evaluate parent and new.
1686 */
4146d2d6 1687 goto again;
2c653d0e
AA
1688 unlock_page(tree_page);
1689
1690 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1691 NUMA(stable_node_dup->nid)) {
1692 put_page(tree_page);
1693 goto replace;
1694 }
1695 return tree_page;
c8d6553b 1696 }
31dbd01f
IE
1697 }
1698
4146d2d6
HD
1699 if (!page_node)
1700 return NULL;
1701
1702 list_del(&page_node->list);
1703 DO_NUMA(page_node->nid = nid);
1704 rb_link_node(&page_node->node, parent, new);
ef53d16c 1705 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1706out:
1707 if (is_page_sharing_candidate(page_node)) {
1708 get_page(page);
1709 return page;
1710 } else
1711 return NULL;
4146d2d6
HD
1712
1713replace:
b4fecc67
AA
1714 /*
1715 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1716 * stable_node has been updated to be the new regular
1717 * stable_node. A collapse of the chain is indistinguishable
1718 * from the case there was no chain in the stable
1719 * rbtree. Otherwise stable_node is the chain and
1720 * stable_node_dup is the dup to replace.
b4fecc67 1721 */
0ba1d0f7 1722 if (stable_node_dup == stable_node) {
b4fecc67
AA
1723 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1724 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1725 /* there is no chain */
1726 if (page_node) {
1727 VM_BUG_ON(page_node->head != &migrate_nodes);
1728 list_del(&page_node->list);
1729 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1730 rb_replace_node(&stable_node_dup->node,
1731 &page_node->node,
2c653d0e
AA
1732 root);
1733 if (is_page_sharing_candidate(page_node))
1734 get_page(page);
1735 else
1736 page = NULL;
1737 } else {
b4fecc67 1738 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1739 page = NULL;
1740 }
4146d2d6 1741 } else {
2c653d0e
AA
1742 VM_BUG_ON(!is_stable_node_chain(stable_node));
1743 __stable_node_dup_del(stable_node_dup);
1744 if (page_node) {
1745 VM_BUG_ON(page_node->head != &migrate_nodes);
1746 list_del(&page_node->list);
1747 DO_NUMA(page_node->nid = nid);
1748 stable_node_chain_add_dup(page_node, stable_node);
1749 if (is_page_sharing_candidate(page_node))
1750 get_page(page);
1751 else
1752 page = NULL;
1753 } else {
1754 page = NULL;
1755 }
4146d2d6 1756 }
2c653d0e
AA
1757 stable_node_dup->head = &migrate_nodes;
1758 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1759 return page;
2c653d0e
AA
1760
1761chain_append:
1762 /* stable_node_dup could be null if it reached the limit */
1763 if (!stable_node_dup)
1764 stable_node_dup = stable_node_any;
b4fecc67
AA
1765 /*
1766 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1767 * stable_node has been updated to be the new regular
1768 * stable_node. A collapse of the chain is indistinguishable
1769 * from the case there was no chain in the stable
1770 * rbtree. Otherwise stable_node is the chain and
1771 * stable_node_dup is the dup to replace.
b4fecc67 1772 */
0ba1d0f7 1773 if (stable_node_dup == stable_node) {
b4fecc67 1774 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1775 /* chain is missing so create it */
1776 stable_node = alloc_stable_node_chain(stable_node_dup,
1777 root);
1778 if (!stable_node)
1779 return NULL;
1780 }
1781 /*
1782 * Add this stable_node dup that was
1783 * migrated to the stable_node chain
1784 * of the current nid for this page
1785 * content.
1786 */
b4fecc67 1787 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1788 VM_BUG_ON(page_node->head != &migrate_nodes);
1789 list_del(&page_node->list);
1790 DO_NUMA(page_node->nid = nid);
1791 stable_node_chain_add_dup(page_node, stable_node);
1792 goto out;
31dbd01f
IE
1793}
1794
1795/*
e850dcf5 1796 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1797 * into the stable tree.
1798 *
7b6ba2c7
HD
1799 * This function returns the stable tree node just allocated on success,
1800 * NULL otherwise.
31dbd01f 1801 */
7b6ba2c7 1802static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1803{
90bd6fd3
PH
1804 int nid;
1805 unsigned long kpfn;
ef53d16c 1806 struct rb_root *root;
90bd6fd3 1807 struct rb_node **new;
f2e5ff85 1808 struct rb_node *parent;
2c653d0e
AA
1809 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1810 bool need_chain = false;
31dbd01f 1811
90bd6fd3
PH
1812 kpfn = page_to_pfn(kpage);
1813 nid = get_kpfn_nid(kpfn);
ef53d16c 1814 root = root_stable_tree + nid;
f2e5ff85
AA
1815again:
1816 parent = NULL;
ef53d16c 1817 new = &root->rb_node;
90bd6fd3 1818
31dbd01f 1819 while (*new) {
4035c07a 1820 struct page *tree_page;
31dbd01f
IE
1821 int ret;
1822
08beca44 1823 cond_resched();
7b6ba2c7 1824 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1825 stable_node_any = NULL;
8dc5ffcd 1826 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1827 if (!stable_node_dup) {
1828 /*
1829 * Either all stable_node dups were full in
1830 * this stable_node chain, or this chain was
1831 * empty and should be rb_erased.
1832 */
1833 stable_node_any = stable_node_dup_any(stable_node,
1834 root);
1835 if (!stable_node_any) {
1836 /* rb_erase just run */
1837 goto again;
1838 }
1839 /*
1840 * Take any of the stable_node dups page of
1841 * this stable_node chain to let the tree walk
1842 * continue. All KSM pages belonging to the
1843 * stable_node dups in a stable_node chain
1844 * have the same content and they're
457aef94 1845 * write protected at all times. Any will work
2c653d0e
AA
1846 * fine to continue the walk.
1847 */
2cee57d1
YS
1848 tree_page = get_ksm_page(stable_node_any,
1849 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1850 }
1851 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1852 if (!tree_page) {
1853 /*
1854 * If we walked over a stale stable_node,
1855 * get_ksm_page() will call rb_erase() and it
1856 * may rebalance the tree from under us. So
1857 * restart the search from scratch. Returning
1858 * NULL would be safe too, but we'd generate
1859 * false negative insertions just because some
1860 * stable_node was stale.
1861 */
1862 goto again;
1863 }
31dbd01f 1864
4035c07a
HD
1865 ret = memcmp_pages(kpage, tree_page);
1866 put_page(tree_page);
31dbd01f
IE
1867
1868 parent = *new;
1869 if (ret < 0)
1870 new = &parent->rb_left;
1871 else if (ret > 0)
1872 new = &parent->rb_right;
1873 else {
2c653d0e
AA
1874 need_chain = true;
1875 break;
31dbd01f
IE
1876 }
1877 }
1878
2c653d0e
AA
1879 stable_node_dup = alloc_stable_node();
1880 if (!stable_node_dup)
7b6ba2c7 1881 return NULL;
31dbd01f 1882
2c653d0e
AA
1883 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1884 stable_node_dup->kpfn = kpfn;
1885 set_page_stable_node(kpage, stable_node_dup);
1886 stable_node_dup->rmap_hlist_len = 0;
1887 DO_NUMA(stable_node_dup->nid = nid);
1888 if (!need_chain) {
1889 rb_link_node(&stable_node_dup->node, parent, new);
1890 rb_insert_color(&stable_node_dup->node, root);
1891 } else {
1892 if (!is_stable_node_chain(stable_node)) {
1893 struct stable_node *orig = stable_node;
1894 /* chain is missing so create it */
1895 stable_node = alloc_stable_node_chain(orig, root);
1896 if (!stable_node) {
1897 free_stable_node(stable_node_dup);
1898 return NULL;
1899 }
1900 }
1901 stable_node_chain_add_dup(stable_node_dup, stable_node);
1902 }
08beca44 1903
2c653d0e 1904 return stable_node_dup;
31dbd01f
IE
1905}
1906
1907/*
8dd3557a
HD
1908 * unstable_tree_search_insert - search for identical page,
1909 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1910 *
1911 * This function searches for a page in the unstable tree identical to the
1912 * page currently being scanned; and if no identical page is found in the
1913 * tree, we insert rmap_item as a new object into the unstable tree.
1914 *
1915 * This function returns pointer to rmap_item found to be identical
1916 * to the currently scanned page, NULL otherwise.
1917 *
1918 * This function does both searching and inserting, because they share
1919 * the same walking algorithm in an rbtree.
1920 */
8dd3557a
HD
1921static
1922struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1923 struct page *page,
1924 struct page **tree_pagep)
31dbd01f 1925{
90bd6fd3
PH
1926 struct rb_node **new;
1927 struct rb_root *root;
31dbd01f 1928 struct rb_node *parent = NULL;
90bd6fd3
PH
1929 int nid;
1930
1931 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1932 root = root_unstable_tree + nid;
90bd6fd3 1933 new = &root->rb_node;
31dbd01f
IE
1934
1935 while (*new) {
1936 struct rmap_item *tree_rmap_item;
8dd3557a 1937 struct page *tree_page;
31dbd01f
IE
1938 int ret;
1939
d178f27f 1940 cond_resched();
31dbd01f 1941 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1942 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1943 if (!tree_page)
31dbd01f
IE
1944 return NULL;
1945
1946 /*
8dd3557a 1947 * Don't substitute a ksm page for a forked page.
31dbd01f 1948 */
8dd3557a
HD
1949 if (page == tree_page) {
1950 put_page(tree_page);
31dbd01f
IE
1951 return NULL;
1952 }
1953
8dd3557a 1954 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1955
1956 parent = *new;
1957 if (ret < 0) {
8dd3557a 1958 put_page(tree_page);
31dbd01f
IE
1959 new = &parent->rb_left;
1960 } else if (ret > 0) {
8dd3557a 1961 put_page(tree_page);
31dbd01f 1962 new = &parent->rb_right;
b599cbdf
HD
1963 } else if (!ksm_merge_across_nodes &&
1964 page_to_nid(tree_page) != nid) {
1965 /*
1966 * If tree_page has been migrated to another NUMA node,
1967 * it will be flushed out and put in the right unstable
1968 * tree next time: only merge with it when across_nodes.
1969 */
1970 put_page(tree_page);
1971 return NULL;
31dbd01f 1972 } else {
8dd3557a 1973 *tree_pagep = tree_page;
31dbd01f
IE
1974 return tree_rmap_item;
1975 }
1976 }
1977
7b6ba2c7 1978 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1979 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1980 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1981 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1982 rb_insert_color(&rmap_item->node, root);
31dbd01f 1983
473b0ce4 1984 ksm_pages_unshared++;
31dbd01f
IE
1985 return NULL;
1986}
1987
1988/*
1989 * stable_tree_append - add another rmap_item to the linked list of
1990 * rmap_items hanging off a given node of the stable tree, all sharing
1991 * the same ksm page.
1992 */
1993static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1994 struct stable_node *stable_node,
1995 bool max_page_sharing_bypass)
31dbd01f 1996{
2c653d0e
AA
1997 /*
1998 * rmap won't find this mapping if we don't insert the
1999 * rmap_item in the right stable_node
2000 * duplicate. page_migration could break later if rmap breaks,
2001 * so we can as well crash here. We really need to check for
2002 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2003 * for other negative values as an underflow if detected here
2c653d0e
AA
2004 * for the first time (and not when decreasing rmap_hlist_len)
2005 * would be sign of memory corruption in the stable_node.
2006 */
2007 BUG_ON(stable_node->rmap_hlist_len < 0);
2008
2009 stable_node->rmap_hlist_len++;
2010 if (!max_page_sharing_bypass)
2011 /* possibly non fatal but unexpected overflow, only warn */
2012 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2013 ksm_max_page_sharing);
2014
7b6ba2c7 2015 rmap_item->head = stable_node;
31dbd01f 2016 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2017 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2018
7b6ba2c7
HD
2019 if (rmap_item->hlist.next)
2020 ksm_pages_sharing++;
2021 else
2022 ksm_pages_shared++;
31dbd01f
IE
2023}
2024
2025/*
81464e30
HD
2026 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2027 * if not, compare checksum to previous and if it's the same, see if page can
2028 * be inserted into the unstable tree, or merged with a page already there and
2029 * both transferred to the stable tree.
31dbd01f
IE
2030 *
2031 * @page: the page that we are searching identical page to.
2032 * @rmap_item: the reverse mapping into the virtual address of this page
2033 */
2034static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2035{
4b22927f 2036 struct mm_struct *mm = rmap_item->mm;
31dbd01f 2037 struct rmap_item *tree_rmap_item;
8dd3557a 2038 struct page *tree_page = NULL;
7b6ba2c7 2039 struct stable_node *stable_node;
8dd3557a 2040 struct page *kpage;
31dbd01f
IE
2041 unsigned int checksum;
2042 int err;
2c653d0e 2043 bool max_page_sharing_bypass = false;
31dbd01f 2044
4146d2d6
HD
2045 stable_node = page_stable_node(page);
2046 if (stable_node) {
2047 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2048 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2049 NUMA(stable_node->nid)) {
2050 stable_node_dup_del(stable_node);
4146d2d6
HD
2051 stable_node->head = &migrate_nodes;
2052 list_add(&stable_node->list, stable_node->head);
2053 }
2054 if (stable_node->head != &migrate_nodes &&
2055 rmap_item->head == stable_node)
2056 return;
2c653d0e
AA
2057 /*
2058 * If it's a KSM fork, allow it to go over the sharing limit
2059 * without warnings.
2060 */
2061 if (!is_page_sharing_candidate(stable_node))
2062 max_page_sharing_bypass = true;
4146d2d6 2063 }
31dbd01f
IE
2064
2065 /* We first start with searching the page inside the stable tree */
62b61f61 2066 kpage = stable_tree_search(page);
4146d2d6
HD
2067 if (kpage == page && rmap_item->head == stable_node) {
2068 put_page(kpage);
2069 return;
2070 }
2071
2072 remove_rmap_item_from_tree(rmap_item);
2073
62b61f61 2074 if (kpage) {
2cee57d1
YS
2075 if (PTR_ERR(kpage) == -EBUSY)
2076 return;
2077
08beca44 2078 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2079 if (!err) {
2080 /*
2081 * The page was successfully merged:
2082 * add its rmap_item to the stable tree.
2083 */
5ad64688 2084 lock_page(kpage);
2c653d0e
AA
2085 stable_tree_append(rmap_item, page_stable_node(kpage),
2086 max_page_sharing_bypass);
5ad64688 2087 unlock_page(kpage);
31dbd01f 2088 }
8dd3557a 2089 put_page(kpage);
31dbd01f
IE
2090 return;
2091 }
2092
2093 /*
4035c07a
HD
2094 * If the hash value of the page has changed from the last time
2095 * we calculated it, this page is changing frequently: therefore we
2096 * don't want to insert it in the unstable tree, and we don't want
2097 * to waste our time searching for something identical to it there.
31dbd01f
IE
2098 */
2099 checksum = calc_checksum(page);
2100 if (rmap_item->oldchecksum != checksum) {
2101 rmap_item->oldchecksum = checksum;
2102 return;
2103 }
2104
e86c59b1
CI
2105 /*
2106 * Same checksum as an empty page. We attempt to merge it with the
2107 * appropriate zero page if the user enabled this via sysfs.
2108 */
2109 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2110 struct vm_area_struct *vma;
2111
d8ed45c5 2112 mmap_read_lock(mm);
4b22927f 2113 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2114 if (vma) {
2115 err = try_to_merge_one_page(vma, page,
2116 ZERO_PAGE(rmap_item->address));
2117 } else {
2118 /*
2119 * If the vma is out of date, we do not need to
2120 * continue.
2121 */
2122 err = 0;
2123 }
d8ed45c5 2124 mmap_read_unlock(mm);
e86c59b1
CI
2125 /*
2126 * In case of failure, the page was not really empty, so we
2127 * need to continue. Otherwise we're done.
2128 */
2129 if (!err)
2130 return;
2131 }
8dd3557a
HD
2132 tree_rmap_item =
2133 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2134 if (tree_rmap_item) {
77da2ba0
CI
2135 bool split;
2136
8dd3557a
HD
2137 kpage = try_to_merge_two_pages(rmap_item, page,
2138 tree_rmap_item, tree_page);
77da2ba0
CI
2139 /*
2140 * If both pages we tried to merge belong to the same compound
2141 * page, then we actually ended up increasing the reference
2142 * count of the same compound page twice, and split_huge_page
2143 * failed.
2144 * Here we set a flag if that happened, and we use it later to
2145 * try split_huge_page again. Since we call put_page right
2146 * afterwards, the reference count will be correct and
2147 * split_huge_page should succeed.
2148 */
2149 split = PageTransCompound(page)
2150 && compound_head(page) == compound_head(tree_page);
8dd3557a 2151 put_page(tree_page);
8dd3557a 2152 if (kpage) {
bc56620b
HD
2153 /*
2154 * The pages were successfully merged: insert new
2155 * node in the stable tree and add both rmap_items.
2156 */
5ad64688 2157 lock_page(kpage);
7b6ba2c7
HD
2158 stable_node = stable_tree_insert(kpage);
2159 if (stable_node) {
2c653d0e
AA
2160 stable_tree_append(tree_rmap_item, stable_node,
2161 false);
2162 stable_tree_append(rmap_item, stable_node,
2163 false);
7b6ba2c7 2164 }
5ad64688 2165 unlock_page(kpage);
7b6ba2c7 2166
31dbd01f
IE
2167 /*
2168 * If we fail to insert the page into the stable tree,
2169 * we will have 2 virtual addresses that are pointing
2170 * to a ksm page left outside the stable tree,
2171 * in which case we need to break_cow on both.
2172 */
7b6ba2c7 2173 if (!stable_node) {
8dd3557a
HD
2174 break_cow(tree_rmap_item);
2175 break_cow(rmap_item);
31dbd01f 2176 }
77da2ba0
CI
2177 } else if (split) {
2178 /*
2179 * We are here if we tried to merge two pages and
2180 * failed because they both belonged to the same
2181 * compound page. We will split the page now, but no
2182 * merging will take place.
2183 * We do not want to add the cost of a full lock; if
2184 * the page is locked, it is better to skip it and
2185 * perhaps try again later.
2186 */
2187 if (!trylock_page(page))
2188 return;
2189 split_huge_page(page);
2190 unlock_page(page);
31dbd01f 2191 }
31dbd01f
IE
2192 }
2193}
2194
2195static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2196 struct rmap_item **rmap_list,
31dbd01f
IE
2197 unsigned long addr)
2198{
2199 struct rmap_item *rmap_item;
2200
6514d511
HD
2201 while (*rmap_list) {
2202 rmap_item = *rmap_list;
93d17715 2203 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2204 return rmap_item;
31dbd01f
IE
2205 if (rmap_item->address > addr)
2206 break;
6514d511 2207 *rmap_list = rmap_item->rmap_list;
31dbd01f 2208 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2209 free_rmap_item(rmap_item);
2210 }
2211
2212 rmap_item = alloc_rmap_item();
2213 if (rmap_item) {
2214 /* It has already been zeroed */
2215 rmap_item->mm = mm_slot->mm;
2216 rmap_item->address = addr;
6514d511
HD
2217 rmap_item->rmap_list = *rmap_list;
2218 *rmap_list = rmap_item;
31dbd01f
IE
2219 }
2220 return rmap_item;
2221}
2222
2223static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2224{
2225 struct mm_struct *mm;
2226 struct mm_slot *slot;
2227 struct vm_area_struct *vma;
2228 struct rmap_item *rmap_item;
90bd6fd3 2229 int nid;
31dbd01f
IE
2230
2231 if (list_empty(&ksm_mm_head.mm_list))
2232 return NULL;
2233
2234 slot = ksm_scan.mm_slot;
2235 if (slot == &ksm_mm_head) {
2919bfd0
HD
2236 /*
2237 * A number of pages can hang around indefinitely on per-cpu
2238 * pagevecs, raised page count preventing write_protect_page
2239 * from merging them. Though it doesn't really matter much,
2240 * it is puzzling to see some stuck in pages_volatile until
2241 * other activity jostles them out, and they also prevented
2242 * LTP's KSM test from succeeding deterministically; so drain
2243 * them here (here rather than on entry to ksm_do_scan(),
2244 * so we don't IPI too often when pages_to_scan is set low).
2245 */
2246 lru_add_drain_all();
2247
4146d2d6
HD
2248 /*
2249 * Whereas stale stable_nodes on the stable_tree itself
2250 * get pruned in the regular course of stable_tree_search(),
2251 * those moved out to the migrate_nodes list can accumulate:
2252 * so prune them once before each full scan.
2253 */
2254 if (!ksm_merge_across_nodes) {
03640418 2255 struct stable_node *stable_node, *next;
4146d2d6
HD
2256 struct page *page;
2257
03640418
GT
2258 list_for_each_entry_safe(stable_node, next,
2259 &migrate_nodes, list) {
2cee57d1
YS
2260 page = get_ksm_page(stable_node,
2261 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2262 if (page)
2263 put_page(page);
2264 cond_resched();
2265 }
2266 }
2267
ef53d16c 2268 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2269 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2270
2271 spin_lock(&ksm_mmlist_lock);
2272 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2273 ksm_scan.mm_slot = slot;
2274 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2275 /*
2276 * Although we tested list_empty() above, a racing __ksm_exit
2277 * of the last mm on the list may have removed it since then.
2278 */
2279 if (slot == &ksm_mm_head)
2280 return NULL;
31dbd01f
IE
2281next_mm:
2282 ksm_scan.address = 0;
6514d511 2283 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2284 }
2285
2286 mm = slot->mm;
d8ed45c5 2287 mmap_read_lock(mm);
9ba69294
HD
2288 if (ksm_test_exit(mm))
2289 vma = NULL;
2290 else
2291 vma = find_vma(mm, ksm_scan.address);
2292
2293 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2294 if (!(vma->vm_flags & VM_MERGEABLE))
2295 continue;
2296 if (ksm_scan.address < vma->vm_start)
2297 ksm_scan.address = vma->vm_start;
2298 if (!vma->anon_vma)
2299 ksm_scan.address = vma->vm_end;
2300
2301 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2302 if (ksm_test_exit(mm))
2303 break;
31dbd01f 2304 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2305 if (IS_ERR_OR_NULL(*page)) {
2306 ksm_scan.address += PAGE_SIZE;
2307 cond_resched();
2308 continue;
2309 }
f765f540 2310 if (PageAnon(*page)) {
31dbd01f
IE
2311 flush_anon_page(vma, *page, ksm_scan.address);
2312 flush_dcache_page(*page);
2313 rmap_item = get_next_rmap_item(slot,
6514d511 2314 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2315 if (rmap_item) {
6514d511
HD
2316 ksm_scan.rmap_list =
2317 &rmap_item->rmap_list;
31dbd01f
IE
2318 ksm_scan.address += PAGE_SIZE;
2319 } else
2320 put_page(*page);
d8ed45c5 2321 mmap_read_unlock(mm);
31dbd01f
IE
2322 return rmap_item;
2323 }
21ae5b01 2324 put_page(*page);
31dbd01f
IE
2325 ksm_scan.address += PAGE_SIZE;
2326 cond_resched();
2327 }
2328 }
2329
9ba69294
HD
2330 if (ksm_test_exit(mm)) {
2331 ksm_scan.address = 0;
6514d511 2332 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2333 }
31dbd01f
IE
2334 /*
2335 * Nuke all the rmap_items that are above this current rmap:
2336 * because there were no VM_MERGEABLE vmas with such addresses.
2337 */
420be4ed 2338 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2339
2340 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2341 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2342 struct mm_slot, mm_list);
2343 if (ksm_scan.address == 0) {
2344 /*
c1e8d7c6 2345 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2346 * throughout, and found no VM_MERGEABLE: so do the same as
2347 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2348 * This applies either when cleaning up after __ksm_exit
2349 * (but beware: we can reach here even before __ksm_exit),
2350 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2351 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2352 */
4ca3a69b 2353 hash_del(&slot->link);
cd551f97 2354 list_del(&slot->mm_list);
9ba69294
HD
2355 spin_unlock(&ksm_mmlist_lock);
2356
cd551f97
HD
2357 free_mm_slot(slot);
2358 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d8ed45c5 2359 mmap_read_unlock(mm);
9ba69294
HD
2360 mmdrop(mm);
2361 } else {
d8ed45c5 2362 mmap_read_unlock(mm);
7496fea9 2363 /*
3e4e28c5 2364 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2365 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2366 * already have been freed under us by __ksm_exit()
2367 * because the "mm_slot" is still hashed and
2368 * ksm_scan.mm_slot doesn't point to it anymore.
2369 */
2370 spin_unlock(&ksm_mmlist_lock);
cd551f97 2371 }
31dbd01f
IE
2372
2373 /* Repeat until we've completed scanning the whole list */
cd551f97 2374 slot = ksm_scan.mm_slot;
31dbd01f
IE
2375 if (slot != &ksm_mm_head)
2376 goto next_mm;
2377
31dbd01f
IE
2378 ksm_scan.seqnr++;
2379 return NULL;
2380}
2381
2382/**
2383 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2384 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2385 */
2386static void ksm_do_scan(unsigned int scan_npages)
2387{
2388 struct rmap_item *rmap_item;
3f649ab7 2389 struct page *page;
31dbd01f 2390
878aee7d 2391 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2392 cond_resched();
2393 rmap_item = scan_get_next_rmap_item(&page);
2394 if (!rmap_item)
2395 return;
4146d2d6 2396 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2397 put_page(page);
2398 }
2399}
2400
6e158384
HD
2401static int ksmd_should_run(void)
2402{
2403 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2404}
2405
31dbd01f
IE
2406static int ksm_scan_thread(void *nothing)
2407{
fcf9a0ef
KT
2408 unsigned int sleep_ms;
2409
878aee7d 2410 set_freezable();
339aa624 2411 set_user_nice(current, 5);
31dbd01f
IE
2412
2413 while (!kthread_should_stop()) {
6e158384 2414 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2415 wait_while_offlining();
6e158384 2416 if (ksmd_should_run())
31dbd01f 2417 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2418 mutex_unlock(&ksm_thread_mutex);
2419
878aee7d
AA
2420 try_to_freeze();
2421
6e158384 2422 if (ksmd_should_run()) {
fcf9a0ef
KT
2423 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2424 wait_event_interruptible_timeout(ksm_iter_wait,
2425 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2426 msecs_to_jiffies(sleep_ms));
31dbd01f 2427 } else {
878aee7d 2428 wait_event_freezable(ksm_thread_wait,
6e158384 2429 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2430 }
2431 }
2432 return 0;
2433}
2434
f8af4da3
HD
2435int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2436 unsigned long end, int advice, unsigned long *vm_flags)
2437{
2438 struct mm_struct *mm = vma->vm_mm;
d952b791 2439 int err;
f8af4da3
HD
2440
2441 switch (advice) {
2442 case MADV_MERGEABLE:
2443 /*
2444 * Be somewhat over-protective for now!
2445 */
2446 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2447 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2448 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2449 return 0; /* just ignore the advice */
2450
e1fb4a08
DJ
2451 if (vma_is_dax(vma))
2452 return 0;
2453
12564485
SA
2454#ifdef VM_SAO
2455 if (*vm_flags & VM_SAO)
2456 return 0;
2457#endif
74a04967
KA
2458#ifdef VM_SPARC_ADI
2459 if (*vm_flags & VM_SPARC_ADI)
2460 return 0;
2461#endif
cc2383ec 2462
d952b791
HD
2463 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2464 err = __ksm_enter(mm);
2465 if (err)
2466 return err;
2467 }
f8af4da3
HD
2468
2469 *vm_flags |= VM_MERGEABLE;
2470 break;
2471
2472 case MADV_UNMERGEABLE:
2473 if (!(*vm_flags & VM_MERGEABLE))
2474 return 0; /* just ignore the advice */
2475
d952b791
HD
2476 if (vma->anon_vma) {
2477 err = unmerge_ksm_pages(vma, start, end);
2478 if (err)
2479 return err;
2480 }
f8af4da3
HD
2481
2482 *vm_flags &= ~VM_MERGEABLE;
2483 break;
2484 }
2485
2486 return 0;
2487}
33cf1707 2488EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2489
2490int __ksm_enter(struct mm_struct *mm)
2491{
6e158384
HD
2492 struct mm_slot *mm_slot;
2493 int needs_wakeup;
2494
2495 mm_slot = alloc_mm_slot();
31dbd01f
IE
2496 if (!mm_slot)
2497 return -ENOMEM;
2498
6e158384
HD
2499 /* Check ksm_run too? Would need tighter locking */
2500 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2501
31dbd01f
IE
2502 spin_lock(&ksm_mmlist_lock);
2503 insert_to_mm_slots_hash(mm, mm_slot);
2504 /*
cbf86cfe
HD
2505 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2506 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2507 * down a little; when fork is followed by immediate exec, we don't
2508 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2509 *
2510 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2511 * scanning cursor, otherwise KSM pages in newly forked mms will be
2512 * missed: then we might as well insert at the end of the list.
31dbd01f 2513 */
cbf86cfe
HD
2514 if (ksm_run & KSM_RUN_UNMERGE)
2515 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2516 else
2517 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2518 spin_unlock(&ksm_mmlist_lock);
2519
f8af4da3 2520 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2521 mmgrab(mm);
6e158384
HD
2522
2523 if (needs_wakeup)
2524 wake_up_interruptible(&ksm_thread_wait);
2525
f8af4da3
HD
2526 return 0;
2527}
2528
1c2fb7a4 2529void __ksm_exit(struct mm_struct *mm)
f8af4da3 2530{
cd551f97 2531 struct mm_slot *mm_slot;
9ba69294 2532 int easy_to_free = 0;
cd551f97 2533
31dbd01f 2534 /*
9ba69294
HD
2535 * This process is exiting: if it's straightforward (as is the
2536 * case when ksmd was never running), free mm_slot immediately.
2537 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2538 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2539 * are freed, and leave the mm_slot on the list for ksmd to free.
2540 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2541 */
9ba69294 2542
cd551f97
HD
2543 spin_lock(&ksm_mmlist_lock);
2544 mm_slot = get_mm_slot(mm);
9ba69294 2545 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2546 if (!mm_slot->rmap_list) {
4ca3a69b 2547 hash_del(&mm_slot->link);
9ba69294
HD
2548 list_del(&mm_slot->mm_list);
2549 easy_to_free = 1;
2550 } else {
2551 list_move(&mm_slot->mm_list,
2552 &ksm_scan.mm_slot->mm_list);
2553 }
cd551f97 2554 }
cd551f97
HD
2555 spin_unlock(&ksm_mmlist_lock);
2556
9ba69294
HD
2557 if (easy_to_free) {
2558 free_mm_slot(mm_slot);
2559 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2560 mmdrop(mm);
2561 } else if (mm_slot) {
d8ed45c5
ML
2562 mmap_write_lock(mm);
2563 mmap_write_unlock(mm);
9ba69294 2564 }
31dbd01f
IE
2565}
2566
cbf86cfe 2567struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2568 struct vm_area_struct *vma, unsigned long address)
2569{
cbf86cfe 2570 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2571 struct page *new_page;
2572
cbf86cfe
HD
2573 if (PageKsm(page)) {
2574 if (page_stable_node(page) &&
2575 !(ksm_run & KSM_RUN_UNMERGE))
2576 return page; /* no need to copy it */
2577 } else if (!anon_vma) {
2578 return page; /* no need to copy it */
e1c63e11
NS
2579 } else if (page->index == linear_page_index(vma, address) &&
2580 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2581 return page; /* still no need to copy it */
2582 }
2583 if (!PageUptodate(page))
2584 return page; /* let do_swap_page report the error */
2585
5ad64688 2586 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2587 if (new_page &&
2588 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2589 put_page(new_page);
2590 new_page = NULL;
2591 }
5ad64688
HD
2592 if (new_page) {
2593 copy_user_highpage(new_page, page, address, vma);
2594
2595 SetPageDirty(new_page);
2596 __SetPageUptodate(new_page);
48c935ad 2597 __SetPageLocked(new_page);
5ad64688
HD
2598 }
2599
5ad64688
HD
2600 return new_page;
2601}
2602
1df631ae 2603void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2604{
2605 struct stable_node *stable_node;
e9995ef9 2606 struct rmap_item *rmap_item;
e9995ef9
HD
2607 int search_new_forks = 0;
2608
309381fe 2609 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2610
2611 /*
2612 * Rely on the page lock to protect against concurrent modifications
2613 * to that page's node of the stable tree.
2614 */
309381fe 2615 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2616
2617 stable_node = page_stable_node(page);
2618 if (!stable_node)
1df631ae 2619 return;
e9995ef9 2620again:
b67bfe0d 2621 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2622 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2623 struct anon_vma_chain *vmac;
e9995ef9
HD
2624 struct vm_area_struct *vma;
2625
ad12695f 2626 cond_resched();
b6b19f25 2627 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2628 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2629 0, ULONG_MAX) {
1105a2fc
JH
2630 unsigned long addr;
2631
ad12695f 2632 cond_resched();
5beb4930 2633 vma = vmac->vma;
1105a2fc
JH
2634
2635 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2636 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2637
2638 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2639 continue;
2640 /*
2641 * Initially we examine only the vma which covers this
2642 * rmap_item; but later, if there is still work to do,
2643 * we examine covering vmas in other mms: in case they
2644 * were forked from the original since ksmd passed.
2645 */
2646 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2647 continue;
2648
0dd1c7bb
JK
2649 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2650 continue;
2651
1105a2fc 2652 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
b6b19f25 2653 anon_vma_unlock_read(anon_vma);
1df631ae 2654 return;
e9995ef9 2655 }
0dd1c7bb
JK
2656 if (rwc->done && rwc->done(page)) {
2657 anon_vma_unlock_read(anon_vma);
1df631ae 2658 return;
0dd1c7bb 2659 }
e9995ef9 2660 }
b6b19f25 2661 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2662 }
2663 if (!search_new_forks++)
2664 goto again;
e9995ef9
HD
2665}
2666
52629506 2667#ifdef CONFIG_MIGRATION
19138349 2668void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9
HD
2669{
2670 struct stable_node *stable_node;
2671
19138349
MWO
2672 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2673 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2674 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2675
19138349 2676 stable_node = folio_stable_node(folio);
e9995ef9 2677 if (stable_node) {
19138349
MWO
2678 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2679 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2680 /*
19138349 2681 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2682 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2683 * to get_ksm_page() before it can see that folio->mapping
2684 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2685 */
2686 smp_wmb();
19138349 2687 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2688 }
2689}
2690#endif /* CONFIG_MIGRATION */
2691
62b61f61 2692#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2693static void wait_while_offlining(void)
2694{
2695 while (ksm_run & KSM_RUN_OFFLINE) {
2696 mutex_unlock(&ksm_thread_mutex);
2697 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2698 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2699 mutex_lock(&ksm_thread_mutex);
2700 }
2701}
2702
2c653d0e
AA
2703static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2704 unsigned long start_pfn,
2705 unsigned long end_pfn)
2706{
2707 if (stable_node->kpfn >= start_pfn &&
2708 stable_node->kpfn < end_pfn) {
2709 /*
2710 * Don't get_ksm_page, page has already gone:
2711 * which is why we keep kpfn instead of page*
2712 */
2713 remove_node_from_stable_tree(stable_node);
2714 return true;
2715 }
2716 return false;
2717}
2718
2719static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2720 unsigned long start_pfn,
2721 unsigned long end_pfn,
2722 struct rb_root *root)
2723{
2724 struct stable_node *dup;
2725 struct hlist_node *hlist_safe;
2726
2727 if (!is_stable_node_chain(stable_node)) {
2728 VM_BUG_ON(is_stable_node_dup(stable_node));
2729 return stable_node_dup_remove_range(stable_node, start_pfn,
2730 end_pfn);
2731 }
2732
2733 hlist_for_each_entry_safe(dup, hlist_safe,
2734 &stable_node->hlist, hlist_dup) {
2735 VM_BUG_ON(!is_stable_node_dup(dup));
2736 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2737 }
2738 if (hlist_empty(&stable_node->hlist)) {
2739 free_stable_node_chain(stable_node, root);
2740 return true; /* notify caller that tree was rebalanced */
2741 } else
2742 return false;
2743}
2744
ee0ea59c
HD
2745static void ksm_check_stable_tree(unsigned long start_pfn,
2746 unsigned long end_pfn)
62b61f61 2747{
03640418 2748 struct stable_node *stable_node, *next;
62b61f61 2749 struct rb_node *node;
90bd6fd3 2750 int nid;
62b61f61 2751
ef53d16c
HD
2752 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2753 node = rb_first(root_stable_tree + nid);
ee0ea59c 2754 while (node) {
90bd6fd3 2755 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2756 if (stable_node_chain_remove_range(stable_node,
2757 start_pfn, end_pfn,
2758 root_stable_tree +
2759 nid))
ef53d16c 2760 node = rb_first(root_stable_tree + nid);
2c653d0e 2761 else
ee0ea59c
HD
2762 node = rb_next(node);
2763 cond_resched();
90bd6fd3 2764 }
ee0ea59c 2765 }
03640418 2766 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2767 if (stable_node->kpfn >= start_pfn &&
2768 stable_node->kpfn < end_pfn)
2769 remove_node_from_stable_tree(stable_node);
2770 cond_resched();
2771 }
62b61f61
HD
2772}
2773
2774static int ksm_memory_callback(struct notifier_block *self,
2775 unsigned long action, void *arg)
2776{
2777 struct memory_notify *mn = arg;
62b61f61
HD
2778
2779 switch (action) {
2780 case MEM_GOING_OFFLINE:
2781 /*
ef4d43a8
HD
2782 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2783 * and remove_all_stable_nodes() while memory is going offline:
2784 * it is unsafe for them to touch the stable tree at this time.
2785 * But unmerge_ksm_pages(), rmap lookups and other entry points
2786 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2787 */
ef4d43a8
HD
2788 mutex_lock(&ksm_thread_mutex);
2789 ksm_run |= KSM_RUN_OFFLINE;
2790 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2791 break;
2792
2793 case MEM_OFFLINE:
2794 /*
2795 * Most of the work is done by page migration; but there might
2796 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2797 * pages which have been offlined: prune those from the tree,
2798 * otherwise get_ksm_page() might later try to access a
2799 * non-existent struct page.
62b61f61 2800 */
ee0ea59c
HD
2801 ksm_check_stable_tree(mn->start_pfn,
2802 mn->start_pfn + mn->nr_pages);
e4a9bc58 2803 fallthrough;
62b61f61 2804 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2805 mutex_lock(&ksm_thread_mutex);
2806 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2807 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2808
2809 smp_mb(); /* wake_up_bit advises this */
2810 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2811 break;
2812 }
2813 return NOTIFY_OK;
2814}
ef4d43a8
HD
2815#else
2816static void wait_while_offlining(void)
2817{
2818}
62b61f61
HD
2819#endif /* CONFIG_MEMORY_HOTREMOVE */
2820
2ffd8679
HD
2821#ifdef CONFIG_SYSFS
2822/*
2823 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2824 */
2825
31dbd01f
IE
2826#define KSM_ATTR_RO(_name) \
2827 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2828#define KSM_ATTR(_name) \
2829 static struct kobj_attribute _name##_attr = \
2830 __ATTR(_name, 0644, _name##_show, _name##_store)
2831
2832static ssize_t sleep_millisecs_show(struct kobject *kobj,
2833 struct kobj_attribute *attr, char *buf)
2834{
ae7a927d 2835 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
2836}
2837
2838static ssize_t sleep_millisecs_store(struct kobject *kobj,
2839 struct kobj_attribute *attr,
2840 const char *buf, size_t count)
2841{
dfefd226 2842 unsigned int msecs;
31dbd01f
IE
2843 int err;
2844
dfefd226
AD
2845 err = kstrtouint(buf, 10, &msecs);
2846 if (err)
31dbd01f
IE
2847 return -EINVAL;
2848
2849 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2850 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2851
2852 return count;
2853}
2854KSM_ATTR(sleep_millisecs);
2855
2856static ssize_t pages_to_scan_show(struct kobject *kobj,
2857 struct kobj_attribute *attr, char *buf)
2858{
ae7a927d 2859 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
2860}
2861
2862static ssize_t pages_to_scan_store(struct kobject *kobj,
2863 struct kobj_attribute *attr,
2864 const char *buf, size_t count)
2865{
dfefd226 2866 unsigned int nr_pages;
31dbd01f 2867 int err;
31dbd01f 2868
dfefd226
AD
2869 err = kstrtouint(buf, 10, &nr_pages);
2870 if (err)
31dbd01f
IE
2871 return -EINVAL;
2872
2873 ksm_thread_pages_to_scan = nr_pages;
2874
2875 return count;
2876}
2877KSM_ATTR(pages_to_scan);
2878
2879static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2880 char *buf)
2881{
ae7a927d 2882 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
2883}
2884
2885static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2886 const char *buf, size_t count)
2887{
dfefd226 2888 unsigned int flags;
31dbd01f 2889 int err;
31dbd01f 2890
dfefd226
AD
2891 err = kstrtouint(buf, 10, &flags);
2892 if (err)
31dbd01f
IE
2893 return -EINVAL;
2894 if (flags > KSM_RUN_UNMERGE)
2895 return -EINVAL;
2896
2897 /*
2898 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2899 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2900 * breaking COW to free the pages_shared (but leaves mm_slots
2901 * on the list for when ksmd may be set running again).
31dbd01f
IE
2902 */
2903
2904 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2905 wait_while_offlining();
31dbd01f
IE
2906 if (ksm_run != flags) {
2907 ksm_run = flags;
d952b791 2908 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2909 set_current_oom_origin();
d952b791 2910 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2911 clear_current_oom_origin();
d952b791
HD
2912 if (err) {
2913 ksm_run = KSM_RUN_STOP;
2914 count = err;
2915 }
2916 }
31dbd01f
IE
2917 }
2918 mutex_unlock(&ksm_thread_mutex);
2919
2920 if (flags & KSM_RUN_MERGE)
2921 wake_up_interruptible(&ksm_thread_wait);
2922
2923 return count;
2924}
2925KSM_ATTR(run);
2926
90bd6fd3
PH
2927#ifdef CONFIG_NUMA
2928static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 2929 struct kobj_attribute *attr, char *buf)
90bd6fd3 2930{
ae7a927d 2931 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
2932}
2933
2934static ssize_t merge_across_nodes_store(struct kobject *kobj,
2935 struct kobj_attribute *attr,
2936 const char *buf, size_t count)
2937{
2938 int err;
2939 unsigned long knob;
2940
2941 err = kstrtoul(buf, 10, &knob);
2942 if (err)
2943 return err;
2944 if (knob > 1)
2945 return -EINVAL;
2946
2947 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2948 wait_while_offlining();
90bd6fd3 2949 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2950 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2951 err = -EBUSY;
ef53d16c
HD
2952 else if (root_stable_tree == one_stable_tree) {
2953 struct rb_root *buf;
2954 /*
2955 * This is the first time that we switch away from the
2956 * default of merging across nodes: must now allocate
2957 * a buffer to hold as many roots as may be needed.
2958 * Allocate stable and unstable together:
2959 * MAXSMP NODES_SHIFT 10 will use 16kB.
2960 */
bafe1e14
JP
2961 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2962 GFP_KERNEL);
ef53d16c
HD
2963 /* Let us assume that RB_ROOT is NULL is zero */
2964 if (!buf)
2965 err = -ENOMEM;
2966 else {
2967 root_stable_tree = buf;
2968 root_unstable_tree = buf + nr_node_ids;
2969 /* Stable tree is empty but not the unstable */
2970 root_unstable_tree[0] = one_unstable_tree[0];
2971 }
2972 }
2973 if (!err) {
90bd6fd3 2974 ksm_merge_across_nodes = knob;
ef53d16c
HD
2975 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2976 }
90bd6fd3
PH
2977 }
2978 mutex_unlock(&ksm_thread_mutex);
2979
2980 return err ? err : count;
2981}
2982KSM_ATTR(merge_across_nodes);
2983#endif
2984
e86c59b1 2985static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 2986 struct kobj_attribute *attr, char *buf)
e86c59b1 2987{
ae7a927d 2988 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
2989}
2990static ssize_t use_zero_pages_store(struct kobject *kobj,
2991 struct kobj_attribute *attr,
2992 const char *buf, size_t count)
2993{
2994 int err;
2995 bool value;
2996
2997 err = kstrtobool(buf, &value);
2998 if (err)
2999 return -EINVAL;
3000
3001 ksm_use_zero_pages = value;
3002
3003 return count;
3004}
3005KSM_ATTR(use_zero_pages);
3006
2c653d0e
AA
3007static ssize_t max_page_sharing_show(struct kobject *kobj,
3008 struct kobj_attribute *attr, char *buf)
3009{
ae7a927d 3010 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3011}
3012
3013static ssize_t max_page_sharing_store(struct kobject *kobj,
3014 struct kobj_attribute *attr,
3015 const char *buf, size_t count)
3016{
3017 int err;
3018 int knob;
3019
3020 err = kstrtoint(buf, 10, &knob);
3021 if (err)
3022 return err;
3023 /*
3024 * When a KSM page is created it is shared by 2 mappings. This
3025 * being a signed comparison, it implicitly verifies it's not
3026 * negative.
3027 */
3028 if (knob < 2)
3029 return -EINVAL;
3030
3031 if (READ_ONCE(ksm_max_page_sharing) == knob)
3032 return count;
3033
3034 mutex_lock(&ksm_thread_mutex);
3035 wait_while_offlining();
3036 if (ksm_max_page_sharing != knob) {
3037 if (ksm_pages_shared || remove_all_stable_nodes())
3038 err = -EBUSY;
3039 else
3040 ksm_max_page_sharing = knob;
3041 }
3042 mutex_unlock(&ksm_thread_mutex);
3043
3044 return err ? err : count;
3045}
3046KSM_ATTR(max_page_sharing);
3047
b4028260
HD
3048static ssize_t pages_shared_show(struct kobject *kobj,
3049 struct kobj_attribute *attr, char *buf)
3050{
ae7a927d 3051 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3052}
3053KSM_ATTR_RO(pages_shared);
3054
3055static ssize_t pages_sharing_show(struct kobject *kobj,
3056 struct kobj_attribute *attr, char *buf)
3057{
ae7a927d 3058 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3059}
3060KSM_ATTR_RO(pages_sharing);
3061
473b0ce4
HD
3062static ssize_t pages_unshared_show(struct kobject *kobj,
3063 struct kobj_attribute *attr, char *buf)
3064{
ae7a927d 3065 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3066}
3067KSM_ATTR_RO(pages_unshared);
3068
3069static ssize_t pages_volatile_show(struct kobject *kobj,
3070 struct kobj_attribute *attr, char *buf)
3071{
3072 long ksm_pages_volatile;
3073
3074 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3075 - ksm_pages_sharing - ksm_pages_unshared;
3076 /*
3077 * It was not worth any locking to calculate that statistic,
3078 * but it might therefore sometimes be negative: conceal that.
3079 */
3080 if (ksm_pages_volatile < 0)
3081 ksm_pages_volatile = 0;
ae7a927d 3082 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3083}
3084KSM_ATTR_RO(pages_volatile);
3085
2c653d0e
AA
3086static ssize_t stable_node_dups_show(struct kobject *kobj,
3087 struct kobj_attribute *attr, char *buf)
3088{
ae7a927d 3089 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3090}
3091KSM_ATTR_RO(stable_node_dups);
3092
3093static ssize_t stable_node_chains_show(struct kobject *kobj,
3094 struct kobj_attribute *attr, char *buf)
3095{
ae7a927d 3096 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3097}
3098KSM_ATTR_RO(stable_node_chains);
3099
3100static ssize_t
3101stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3102 struct kobj_attribute *attr,
3103 char *buf)
3104{
ae7a927d 3105 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3106}
3107
3108static ssize_t
3109stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3110 struct kobj_attribute *attr,
3111 const char *buf, size_t count)
3112{
584ff0df 3113 unsigned int msecs;
2c653d0e
AA
3114 int err;
3115
584ff0df
ZB
3116 err = kstrtouint(buf, 10, &msecs);
3117 if (err)
2c653d0e
AA
3118 return -EINVAL;
3119
3120 ksm_stable_node_chains_prune_millisecs = msecs;
3121
3122 return count;
3123}
3124KSM_ATTR(stable_node_chains_prune_millisecs);
3125
473b0ce4
HD
3126static ssize_t full_scans_show(struct kobject *kobj,
3127 struct kobj_attribute *attr, char *buf)
3128{
ae7a927d 3129 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3130}
3131KSM_ATTR_RO(full_scans);
3132
31dbd01f
IE
3133static struct attribute *ksm_attrs[] = {
3134 &sleep_millisecs_attr.attr,
3135 &pages_to_scan_attr.attr,
3136 &run_attr.attr,
b4028260
HD
3137 &pages_shared_attr.attr,
3138 &pages_sharing_attr.attr,
473b0ce4
HD
3139 &pages_unshared_attr.attr,
3140 &pages_volatile_attr.attr,
3141 &full_scans_attr.attr,
90bd6fd3
PH
3142#ifdef CONFIG_NUMA
3143 &merge_across_nodes_attr.attr,
3144#endif
2c653d0e
AA
3145 &max_page_sharing_attr.attr,
3146 &stable_node_chains_attr.attr,
3147 &stable_node_dups_attr.attr,
3148 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3149 &use_zero_pages_attr.attr,
31dbd01f
IE
3150 NULL,
3151};
3152
f907c26a 3153static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3154 .attrs = ksm_attrs,
3155 .name = "ksm",
3156};
2ffd8679 3157#endif /* CONFIG_SYSFS */
31dbd01f
IE
3158
3159static int __init ksm_init(void)
3160{
3161 struct task_struct *ksm_thread;
3162 int err;
3163
e86c59b1
CI
3164 /* The correct value depends on page size and endianness */
3165 zero_checksum = calc_checksum(ZERO_PAGE(0));
3166 /* Default to false for backwards compatibility */
3167 ksm_use_zero_pages = false;
3168
31dbd01f
IE
3169 err = ksm_slab_init();
3170 if (err)
3171 goto out;
3172
31dbd01f
IE
3173 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3174 if (IS_ERR(ksm_thread)) {
25acde31 3175 pr_err("ksm: creating kthread failed\n");
31dbd01f 3176 err = PTR_ERR(ksm_thread);
d9f8984c 3177 goto out_free;
31dbd01f
IE
3178 }
3179
2ffd8679 3180#ifdef CONFIG_SYSFS
31dbd01f
IE
3181 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3182 if (err) {
25acde31 3183 pr_err("ksm: register sysfs failed\n");
2ffd8679 3184 kthread_stop(ksm_thread);
d9f8984c 3185 goto out_free;
31dbd01f 3186 }
c73602ad
HD
3187#else
3188 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3189
2ffd8679 3190#endif /* CONFIG_SYSFS */
31dbd01f 3191
62b61f61 3192#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3193 /* There is no significance to this priority 100 */
62b61f61
HD
3194 hotplug_memory_notifier(ksm_memory_callback, 100);
3195#endif
31dbd01f
IE
3196 return 0;
3197
d9f8984c 3198out_free:
31dbd01f
IE
3199 ksm_slab_free();
3200out:
3201 return err;
f8af4da3 3202}
a64fb3cd 3203subsys_initcall(ksm_init);