kselftest: vm: fix unused variable warning
[linux-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
d7c0e68d 42#include <linux/pagewalk.h>
f8af4da3 43
31dbd01f 44#include <asm/tlbflush.h>
73848b46 45#include "internal.h"
58730ab6 46#include "mm_slot.h"
31dbd01f 47
e850dcf5
HD
48#ifdef CONFIG_NUMA
49#define NUMA(x) (x)
50#define DO_NUMA(x) do { (x); } while (0)
51#else
52#define NUMA(x) (0)
53#define DO_NUMA(x) do { } while (0)
54#endif
55
5a2ca3ef
MR
56/**
57 * DOC: Overview
58 *
31dbd01f
IE
59 * A few notes about the KSM scanning process,
60 * to make it easier to understand the data structures below:
61 *
62 * In order to reduce excessive scanning, KSM sorts the memory pages by their
63 * contents into a data structure that holds pointers to the pages' locations.
64 *
65 * Since the contents of the pages may change at any moment, KSM cannot just
66 * insert the pages into a normal sorted tree and expect it to find anything.
67 * Therefore KSM uses two data structures - the stable and the unstable tree.
68 *
69 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
70 * by their contents. Because each such page is write-protected, searching on
71 * this tree is fully assured to be working (except when pages are unmapped),
72 * and therefore this tree is called the stable tree.
73 *
5a2ca3ef
MR
74 * The stable tree node includes information required for reverse
75 * mapping from a KSM page to virtual addresses that map this page.
76 *
77 * In order to avoid large latencies of the rmap walks on KSM pages,
78 * KSM maintains two types of nodes in the stable tree:
79 *
80 * * the regular nodes that keep the reverse mapping structures in a
81 * linked list
82 * * the "chains" that link nodes ("dups") that represent the same
83 * write protected memory content, but each "dup" corresponds to a
84 * different KSM page copy of that content
85 *
86 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 87 * using the same struct ksm_stable_node structure.
5a2ca3ef 88 *
31dbd01f
IE
89 * In addition to the stable tree, KSM uses a second data structure called the
90 * unstable tree: this tree holds pointers to pages which have been found to
91 * be "unchanged for a period of time". The unstable tree sorts these pages
92 * by their contents, but since they are not write-protected, KSM cannot rely
93 * upon the unstable tree to work correctly - the unstable tree is liable to
94 * be corrupted as its contents are modified, and so it is called unstable.
95 *
96 * KSM solves this problem by several techniques:
97 *
98 * 1) The unstable tree is flushed every time KSM completes scanning all
99 * memory areas, and then the tree is rebuilt again from the beginning.
100 * 2) KSM will only insert into the unstable tree, pages whose hash value
101 * has not changed since the previous scan of all memory areas.
102 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
103 * colors of the nodes and not on their contents, assuring that even when
104 * the tree gets "corrupted" it won't get out of balance, so scanning time
105 * remains the same (also, searching and inserting nodes in an rbtree uses
106 * the same algorithm, so we have no overhead when we flush and rebuild).
107 * 4) KSM never flushes the stable tree, which means that even if it were to
108 * take 10 attempts to find a page in the unstable tree, once it is found,
109 * it is secured in the stable tree. (When we scan a new page, we first
110 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
111 *
112 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
113 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
114 */
115
116/**
21fbd591 117 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 118 * @slot: hash lookup from mm to mm_slot
6514d511 119 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 120 */
21fbd591 121struct ksm_mm_slot {
58730ab6 122 struct mm_slot slot;
21fbd591 123 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
124};
125
126/**
127 * struct ksm_scan - cursor for scanning
128 * @mm_slot: the current mm_slot we are scanning
129 * @address: the next address inside that to be scanned
6514d511 130 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
131 * @seqnr: count of completed full scans (needed when removing unstable node)
132 *
133 * There is only the one ksm_scan instance of this cursor structure.
134 */
135struct ksm_scan {
21fbd591 136 struct ksm_mm_slot *mm_slot;
31dbd01f 137 unsigned long address;
21fbd591 138 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
139 unsigned long seqnr;
140};
141
7b6ba2c7 142/**
21fbd591 143 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 144 * @node: rb node of this ksm page in the stable tree
4146d2d6 145 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 146 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 147 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 148 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 149 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
150 * @chain_prune_time: time of the last full garbage collection
151 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 152 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 153 */
21fbd591 154struct ksm_stable_node {
4146d2d6
HD
155 union {
156 struct rb_node node; /* when node of stable tree */
157 struct { /* when listed for migration */
158 struct list_head *head;
2c653d0e
AA
159 struct {
160 struct hlist_node hlist_dup;
161 struct list_head list;
162 };
4146d2d6
HD
163 };
164 };
7b6ba2c7 165 struct hlist_head hlist;
2c653d0e
AA
166 union {
167 unsigned long kpfn;
168 unsigned long chain_prune_time;
169 };
170 /*
171 * STABLE_NODE_CHAIN can be any negative number in
172 * rmap_hlist_len negative range, but better not -1 to be able
173 * to reliably detect underflows.
174 */
175#define STABLE_NODE_CHAIN -1024
176 int rmap_hlist_len;
4146d2d6
HD
177#ifdef CONFIG_NUMA
178 int nid;
179#endif
7b6ba2c7
HD
180};
181
31dbd01f 182/**
21fbd591 183 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 184 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 185 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 186 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
187 * @mm: the memory structure this rmap_item is pointing into
188 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
189 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
190 * @node: rb node of this rmap_item in the unstable tree
191 * @head: pointer to stable_node heading this list in the stable tree
192 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f 193 */
21fbd591
QZ
194struct ksm_rmap_item {
195 struct ksm_rmap_item *rmap_list;
bc56620b
HD
196 union {
197 struct anon_vma *anon_vma; /* when stable */
198#ifdef CONFIG_NUMA
199 int nid; /* when node of unstable tree */
200#endif
201 };
31dbd01f
IE
202 struct mm_struct *mm;
203 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 204 unsigned int oldchecksum; /* when unstable */
31dbd01f 205 union {
7b6ba2c7
HD
206 struct rb_node node; /* when node of unstable tree */
207 struct { /* when listed from stable tree */
21fbd591 208 struct ksm_stable_node *head;
7b6ba2c7
HD
209 struct hlist_node hlist;
210 };
31dbd01f
IE
211 };
212};
213
214#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
215#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
216#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
217
218/* The stable and unstable tree heads */
ef53d16c
HD
219static struct rb_root one_stable_tree[1] = { RB_ROOT };
220static struct rb_root one_unstable_tree[1] = { RB_ROOT };
221static struct rb_root *root_stable_tree = one_stable_tree;
222static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 223
4146d2d6
HD
224/* Recently migrated nodes of stable tree, pending proper placement */
225static LIST_HEAD(migrate_nodes);
2c653d0e 226#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 227
4ca3a69b
SL
228#define MM_SLOTS_HASH_BITS 10
229static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 230
21fbd591 231static struct ksm_mm_slot ksm_mm_head = {
58730ab6 232 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
233};
234static struct ksm_scan ksm_scan = {
235 .mm_slot = &ksm_mm_head,
236};
237
238static struct kmem_cache *rmap_item_cache;
7b6ba2c7 239static struct kmem_cache *stable_node_cache;
31dbd01f
IE
240static struct kmem_cache *mm_slot_cache;
241
242/* The number of nodes in the stable tree */
b4028260 243static unsigned long ksm_pages_shared;
31dbd01f 244
e178dfde 245/* The number of page slots additionally sharing those nodes */
b4028260 246static unsigned long ksm_pages_sharing;
31dbd01f 247
473b0ce4
HD
248/* The number of nodes in the unstable tree */
249static unsigned long ksm_pages_unshared;
250
251/* The number of rmap_items in use: to calculate pages_volatile */
252static unsigned long ksm_rmap_items;
253
2c653d0e
AA
254/* The number of stable_node chains */
255static unsigned long ksm_stable_node_chains;
256
257/* The number of stable_node dups linked to the stable_node chains */
258static unsigned long ksm_stable_node_dups;
259
260/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 261static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
262
263/* Maximum number of page slots sharing a stable node */
264static int ksm_max_page_sharing = 256;
265
31dbd01f 266/* Number of pages ksmd should scan in one batch */
2c6854fd 267static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
268
269/* Milliseconds ksmd should sleep between batches */
2ffd8679 270static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 271
e86c59b1
CI
272/* Checksum of an empty (zeroed) page */
273static unsigned int zero_checksum __read_mostly;
274
275/* Whether to merge empty (zeroed) pages with actual zero pages */
276static bool ksm_use_zero_pages __read_mostly;
277
e850dcf5 278#ifdef CONFIG_NUMA
90bd6fd3
PH
279/* Zeroed when merging across nodes is not allowed */
280static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 281static int ksm_nr_node_ids = 1;
e850dcf5
HD
282#else
283#define ksm_merge_across_nodes 1U
ef53d16c 284#define ksm_nr_node_ids 1
e850dcf5 285#endif
90bd6fd3 286
31dbd01f
IE
287#define KSM_RUN_STOP 0
288#define KSM_RUN_MERGE 1
289#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
290#define KSM_RUN_OFFLINE 4
291static unsigned long ksm_run = KSM_RUN_STOP;
292static void wait_while_offlining(void);
31dbd01f
IE
293
294static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 295static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
296static DEFINE_MUTEX(ksm_thread_mutex);
297static DEFINE_SPINLOCK(ksm_mmlist_lock);
298
21fbd591 299#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
31dbd01f
IE
300 sizeof(struct __struct), __alignof__(struct __struct),\
301 (__flags), NULL)
302
303static int __init ksm_slab_init(void)
304{
21fbd591 305 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
306 if (!rmap_item_cache)
307 goto out;
308
21fbd591 309 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
310 if (!stable_node_cache)
311 goto out_free1;
312
21fbd591 313 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 314 if (!mm_slot_cache)
7b6ba2c7 315 goto out_free2;
31dbd01f
IE
316
317 return 0;
318
7b6ba2c7
HD
319out_free2:
320 kmem_cache_destroy(stable_node_cache);
321out_free1:
31dbd01f
IE
322 kmem_cache_destroy(rmap_item_cache);
323out:
324 return -ENOMEM;
325}
326
327static void __init ksm_slab_free(void)
328{
329 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 330 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
331 kmem_cache_destroy(rmap_item_cache);
332 mm_slot_cache = NULL;
333}
334
21fbd591 335static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
336{
337 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
338}
339
21fbd591 340static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
341{
342 return dup->head == STABLE_NODE_DUP_HEAD;
343}
344
21fbd591
QZ
345static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
346 struct ksm_stable_node *chain)
2c653d0e
AA
347{
348 VM_BUG_ON(is_stable_node_dup(dup));
349 dup->head = STABLE_NODE_DUP_HEAD;
350 VM_BUG_ON(!is_stable_node_chain(chain));
351 hlist_add_head(&dup->hlist_dup, &chain->hlist);
352 ksm_stable_node_dups++;
353}
354
21fbd591 355static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 356{
b4fecc67 357 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
358 hlist_del(&dup->hlist_dup);
359 ksm_stable_node_dups--;
360}
361
21fbd591 362static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
363{
364 VM_BUG_ON(is_stable_node_chain(dup));
365 if (is_stable_node_dup(dup))
366 __stable_node_dup_del(dup);
367 else
368 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
369#ifdef CONFIG_DEBUG_VM
370 dup->head = NULL;
371#endif
372}
373
21fbd591 374static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 375{
21fbd591 376 struct ksm_rmap_item *rmap_item;
473b0ce4 377
5b398e41 378 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
379 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
380 if (rmap_item)
381 ksm_rmap_items++;
382 return rmap_item;
31dbd01f
IE
383}
384
21fbd591 385static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 386{
473b0ce4 387 ksm_rmap_items--;
cb4df4ca 388 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
389 rmap_item->mm = NULL; /* debug safety */
390 kmem_cache_free(rmap_item_cache, rmap_item);
391}
392
21fbd591 393static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 394{
6213055f 395 /*
396 * The allocation can take too long with GFP_KERNEL when memory is under
397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
398 * grants access to memory reserves, helping to avoid this problem.
399 */
400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
401}
402
21fbd591 403static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 404{
2c653d0e
AA
405 VM_BUG_ON(stable_node->rmap_hlist_len &&
406 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
407 kmem_cache_free(stable_node_cache, stable_node);
408}
409
a913e182
HD
410/*
411 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
412 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 413 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
414 * a special flag: they can just back out as soon as mm_users goes to zero.
415 * ksm_test_exit() is used throughout to make this test for exit: in some
416 * places for correctness, in some places just to avoid unnecessary work.
417 */
418static inline bool ksm_test_exit(struct mm_struct *mm)
419{
420 return atomic_read(&mm->mm_users) == 0;
421}
422
d7c0e68d
DH
423static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
424 struct mm_walk *walk)
425{
426 struct page *page = NULL;
427 spinlock_t *ptl;
428 pte_t *pte;
429 int ret;
430
431 if (pmd_leaf(*pmd) || !pmd_present(*pmd))
432 return 0;
433
434 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
435 if (pte_present(*pte)) {
436 page = vm_normal_page(walk->vma, addr, *pte);
437 } else if (!pte_none(*pte)) {
438 swp_entry_t entry = pte_to_swp_entry(*pte);
439
440 /*
441 * As KSM pages remain KSM pages until freed, no need to wait
442 * here for migration to end.
443 */
444 if (is_migration_entry(entry))
445 page = pfn_swap_entry_to_page(entry);
446 }
447 ret = page && PageKsm(page);
448 pte_unmap_unlock(pte, ptl);
449 return ret;
450}
451
452static const struct mm_walk_ops break_ksm_ops = {
453 .pmd_entry = break_ksm_pmd_entry,
454};
455
31dbd01f 456/*
6cce3314
DH
457 * We use break_ksm to break COW on a ksm page by triggering unsharing,
458 * such that the ksm page will get replaced by an exclusive anonymous page.
31dbd01f 459 *
6cce3314 460 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
31dbd01f
IE
461 * in case the application has unmapped and remapped mm,addr meanwhile.
462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 463 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126 464 *
6cce3314 465 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
1b2ee126
DH
466 * of the process that owns 'vma'. We also do not want to enforce
467 * protection keys here anyway.
31dbd01f 468 */
d952b791 469static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f 470{
50a7ca3c 471 vm_fault_t ret = 0;
31dbd01f
IE
472
473 do {
d7c0e68d 474 int ksm_page;
58f595c6 475
31dbd01f 476 cond_resched();
d7c0e68d
DH
477 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
478 &break_ksm_ops, NULL);
479 if (WARN_ON_ONCE(ksm_page < 0))
480 return ksm_page;
58f595c6
DH
481 if (!ksm_page)
482 return 0;
483 ret = handle_mm_fault(vma, addr,
6cce3314 484 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
58f595c6
DH
485 NULL);
486 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791 487 /*
58f595c6
DH
488 * We must loop until we no longer find a KSM page because
489 * handle_mm_fault() may back out if there's any difficulty e.g. if
490 * pte accessed bit gets updated concurrently.
d952b791
HD
491 *
492 * VM_FAULT_SIGBUS could occur if we race with truncation of the
493 * backing file, which also invalidates anonymous pages: that's
494 * okay, that truncation will have unmapped the PageKsm for us.
495 *
496 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
497 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
498 * current task has TIF_MEMDIE set, and will be OOM killed on return
499 * to user; and ksmd, having no mm, would never be chosen for that.
500 *
501 * But if the mm is in a limited mem_cgroup, then the fault may fail
502 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
503 * even ksmd can fail in this way - though it's usually breaking ksm
504 * just to undo a merge it made a moment before, so unlikely to oom.
505 *
506 * That's a pity: we might therefore have more kernel pages allocated
507 * than we're counting as nodes in the stable tree; but ksm_do_scan
508 * will retry to break_cow on each pass, so should recover the page
509 * in due course. The important thing is to not let VM_MERGEABLE
510 * be cleared while any such pages might remain in the area.
511 */
512 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
513}
514
ef694222
BL
515static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
516 unsigned long addr)
517{
518 struct vm_area_struct *vma;
519 if (ksm_test_exit(mm))
520 return NULL;
ff69fb81
LH
521 vma = vma_lookup(mm, addr);
522 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
523 return NULL;
524 return vma;
525}
526
21fbd591 527static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 528{
8dd3557a
HD
529 struct mm_struct *mm = rmap_item->mm;
530 unsigned long addr = rmap_item->address;
31dbd01f
IE
531 struct vm_area_struct *vma;
532
4035c07a
HD
533 /*
534 * It is not an accident that whenever we want to break COW
535 * to undo, we also need to drop a reference to the anon_vma.
536 */
9e60109f 537 put_anon_vma(rmap_item->anon_vma);
4035c07a 538
d8ed45c5 539 mmap_read_lock(mm);
ef694222
BL
540 vma = find_mergeable_vma(mm, addr);
541 if (vma)
542 break_ksm(vma, addr);
d8ed45c5 543 mmap_read_unlock(mm);
31dbd01f
IE
544}
545
21fbd591 546static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
547{
548 struct mm_struct *mm = rmap_item->mm;
549 unsigned long addr = rmap_item->address;
550 struct vm_area_struct *vma;
551 struct page *page;
552
d8ed45c5 553 mmap_read_lock(mm);
ef694222
BL
554 vma = find_mergeable_vma(mm, addr);
555 if (!vma)
31dbd01f
IE
556 goto out;
557
558 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 559 if (IS_ERR_OR_NULL(page))
31dbd01f 560 goto out;
f7091ed6
HW
561 if (is_zone_device_page(page))
562 goto out_putpage;
f765f540 563 if (PageAnon(page)) {
31dbd01f
IE
564 flush_anon_page(vma, page, addr);
565 flush_dcache_page(page);
566 } else {
f7091ed6 567out_putpage:
31dbd01f 568 put_page(page);
c8f95ed1
AA
569out:
570 page = NULL;
31dbd01f 571 }
d8ed45c5 572 mmap_read_unlock(mm);
31dbd01f
IE
573 return page;
574}
575
90bd6fd3
PH
576/*
577 * This helper is used for getting right index into array of tree roots.
578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580 * every node has its own stable and unstable tree.
581 */
582static inline int get_kpfn_nid(unsigned long kpfn)
583{
d8fc16a8 584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
585}
586
21fbd591 587static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
588 struct rb_root *root)
589{
21fbd591 590 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
591 VM_BUG_ON(is_stable_node_chain(dup));
592 if (likely(chain)) {
593 INIT_HLIST_HEAD(&chain->hlist);
594 chain->chain_prune_time = jiffies;
595 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 597 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
598#endif
599 ksm_stable_node_chains++;
600
601 /*
602 * Put the stable node chain in the first dimension of
603 * the stable tree and at the same time remove the old
604 * stable node.
605 */
606 rb_replace_node(&dup->node, &chain->node, root);
607
608 /*
609 * Move the old stable node to the second dimension
610 * queued in the hlist_dup. The invariant is that all
611 * dup stable_nodes in the chain->hlist point to pages
457aef94 612 * that are write protected and have the exact same
2c653d0e
AA
613 * content.
614 */
615 stable_node_chain_add_dup(dup, chain);
616 }
617 return chain;
618}
619
21fbd591 620static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
621 struct rb_root *root)
622{
623 rb_erase(&chain->node, root);
624 free_stable_node(chain);
625 ksm_stable_node_chains--;
626}
627
21fbd591 628static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 629{
21fbd591 630 struct ksm_rmap_item *rmap_item;
4035c07a 631
2c653d0e
AA
632 /* check it's not STABLE_NODE_CHAIN or negative */
633 BUG_ON(stable_node->rmap_hlist_len < 0);
634
b67bfe0d 635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
636 if (rmap_item->hlist.next)
637 ksm_pages_sharing--;
638 else
639 ksm_pages_shared--;
76093853 640
641 rmap_item->mm->ksm_merging_pages--;
642
2c653d0e
AA
643 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644 stable_node->rmap_hlist_len--;
9e60109f 645 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
646 rmap_item->address &= PAGE_MASK;
647 cond_resched();
648 }
649
2c653d0e
AA
650 /*
651 * We need the second aligned pointer of the migrate_nodes
652 * list_head to stay clear from the rb_parent_color union
653 * (aligned and different than any node) and also different
654 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 655 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 656 */
2c653d0e
AA
657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 659
4146d2d6
HD
660 if (stable_node->head == &migrate_nodes)
661 list_del(&stable_node->list);
662 else
2c653d0e 663 stable_node_dup_del(stable_node);
4035c07a
HD
664 free_stable_node(stable_node);
665}
666
2cee57d1
YS
667enum get_ksm_page_flags {
668 GET_KSM_PAGE_NOLOCK,
669 GET_KSM_PAGE_LOCK,
670 GET_KSM_PAGE_TRYLOCK
671};
672
4035c07a
HD
673/*
674 * get_ksm_page: checks if the page indicated by the stable node
675 * is still its ksm page, despite having held no reference to it.
676 * In which case we can trust the content of the page, and it
677 * returns the gotten page; but if the page has now been zapped,
678 * remove the stale node from the stable tree and return NULL.
c8d6553b 679 * But beware, the stable node's page might be being migrated.
4035c07a
HD
680 *
681 * You would expect the stable_node to hold a reference to the ksm page.
682 * But if it increments the page's count, swapping out has to wait for
683 * ksmd to come around again before it can free the page, which may take
684 * seconds or even minutes: much too unresponsive. So instead we use a
685 * "keyhole reference": access to the ksm page from the stable node peeps
686 * out through its keyhole to see if that page still holds the right key,
687 * pointing back to this stable node. This relies on freeing a PageAnon
688 * page to reset its page->mapping to NULL, and relies on no other use of
689 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
690 * is on its way to being freed; but it is an anomaly to bear in mind.
691 */
21fbd591 692static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
2cee57d1 693 enum get_ksm_page_flags flags)
4035c07a
HD
694{
695 struct page *page;
696 void *expected_mapping;
c8d6553b 697 unsigned long kpfn;
4035c07a 698
bda807d4
MK
699 expected_mapping = (void *)((unsigned long)stable_node |
700 PAGE_MAPPING_KSM);
c8d6553b 701again:
08df4774 702 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 703 page = pfn_to_page(kpfn);
4db0c3c2 704 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 705 goto stale;
c8d6553b
HD
706
707 /*
708 * We cannot do anything with the page while its refcount is 0.
709 * Usually 0 means free, or tail of a higher-order page: in which
710 * case this node is no longer referenced, and should be freed;
1c4c3b99 711 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 712 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 713 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 714 * in folio_migrate_mapping(), it might still be our page,
52d1e606 715 * in which case it's essential to keep the node.
c8d6553b
HD
716 */
717 while (!get_page_unless_zero(page)) {
718 /*
719 * Another check for page->mapping != expected_mapping would
720 * work here too. We have chosen the !PageSwapCache test to
721 * optimize the common case, when the page is or is about to
722 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 723 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
724 * page->mapping reset to NULL later, in free_pages_prepare().
725 */
726 if (!PageSwapCache(page))
727 goto stale;
728 cpu_relax();
729 }
730
4db0c3c2 731 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
732 put_page(page);
733 goto stale;
734 }
c8d6553b 735
2cee57d1
YS
736 if (flags == GET_KSM_PAGE_TRYLOCK) {
737 if (!trylock_page(page)) {
738 put_page(page);
739 return ERR_PTR(-EBUSY);
740 }
741 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 742 lock_page(page);
2cee57d1
YS
743
744 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 745 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
746 unlock_page(page);
747 put_page(page);
748 goto stale;
749 }
750 }
4035c07a 751 return page;
c8d6553b 752
4035c07a 753stale:
c8d6553b
HD
754 /*
755 * We come here from above when page->mapping or !PageSwapCache
756 * suggests that the node is stale; but it might be under migration.
19138349 757 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
758 * before checking whether node->kpfn has been changed.
759 */
760 smp_rmb();
4db0c3c2 761 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 762 goto again;
4035c07a
HD
763 remove_node_from_stable_tree(stable_node);
764 return NULL;
765}
766
31dbd01f
IE
767/*
768 * Removing rmap_item from stable or unstable tree.
769 * This function will clean the information from the stable/unstable tree.
770 */
21fbd591 771static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 772{
7b6ba2c7 773 if (rmap_item->address & STABLE_FLAG) {
21fbd591 774 struct ksm_stable_node *stable_node;
5ad64688 775 struct page *page;
31dbd01f 776
7b6ba2c7 777 stable_node = rmap_item->head;
62862290 778 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
779 if (!page)
780 goto out;
5ad64688 781
7b6ba2c7 782 hlist_del(&rmap_item->hlist);
62862290 783 unlock_page(page);
4035c07a 784 put_page(page);
08beca44 785
98666f8a 786 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
787 ksm_pages_sharing--;
788 else
7b6ba2c7 789 ksm_pages_shared--;
76093853 790
791 rmap_item->mm->ksm_merging_pages--;
792
2c653d0e
AA
793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794 stable_node->rmap_hlist_len--;
31dbd01f 795
9e60109f 796 put_anon_vma(rmap_item->anon_vma);
c89a384e 797 rmap_item->head = NULL;
93d17715 798 rmap_item->address &= PAGE_MASK;
31dbd01f 799
7b6ba2c7 800 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
801 unsigned char age;
802 /*
9ba69294 803 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 804 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
805 * But be careful when an mm is exiting: do the rb_erase
806 * if this rmap_item was inserted by this scan, rather
807 * than left over from before.
31dbd01f
IE
808 */
809 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 810 BUG_ON(age > 1);
31dbd01f 811 if (!age)
90bd6fd3 812 rb_erase(&rmap_item->node,
ef53d16c 813 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 814 ksm_pages_unshared--;
93d17715 815 rmap_item->address &= PAGE_MASK;
31dbd01f 816 }
4035c07a 817out:
31dbd01f
IE
818 cond_resched(); /* we're called from many long loops */
819}
820
21fbd591 821static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 822{
6514d511 823 while (*rmap_list) {
21fbd591 824 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 825 *rmap_list = rmap_item->rmap_list;
31dbd01f 826 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
827 free_rmap_item(rmap_item);
828 }
829}
830
831/*
e850dcf5 832 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
833 * than check every pte of a given vma, the locking doesn't quite work for
834 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 835 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
836 * rmap_items from parent to child at fork time (so as not to waste time
837 * if exit comes before the next scan reaches it).
81464e30
HD
838 *
839 * Similarly, although we'd like to remove rmap_items (so updating counts
840 * and freeing memory) when unmerging an area, it's easier to leave that
841 * to the next pass of ksmd - consider, for example, how ksmd might be
842 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 843 */
d952b791
HD
844static int unmerge_ksm_pages(struct vm_area_struct *vma,
845 unsigned long start, unsigned long end)
31dbd01f
IE
846{
847 unsigned long addr;
d952b791 848 int err = 0;
31dbd01f 849
d952b791 850 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
851 if (ksm_test_exit(vma->vm_mm))
852 break;
d952b791
HD
853 if (signal_pending(current))
854 err = -ERESTARTSYS;
855 else
856 err = break_ksm(vma, addr);
857 }
858 return err;
31dbd01f
IE
859}
860
21fbd591 861static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
862{
863 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
864}
865
21fbd591 866static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 867{
19138349 868 return folio_stable_node(page_folio(page));
88484826
MR
869}
870
871static inline void set_page_stable_node(struct page *page,
21fbd591 872 struct ksm_stable_node *stable_node)
88484826 873{
6c287605 874 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
875 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
876}
877
2ffd8679
HD
878#ifdef CONFIG_SYSFS
879/*
880 * Only called through the sysfs control interface:
881 */
21fbd591 882static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe
HD
883{
884 struct page *page;
885 int err;
886
2cee57d1 887 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
888 if (!page) {
889 /*
890 * get_ksm_page did remove_node_from_stable_tree itself.
891 */
892 return 0;
893 }
894
9a63236f
AR
895 /*
896 * Page could be still mapped if this races with __mmput() running in
897 * between ksm_exit() and exit_mmap(). Just refuse to let
898 * merge_across_nodes/max_page_sharing be switched.
899 */
900 err = -EBUSY;
901 if (!page_mapped(page)) {
cbf86cfe 902 /*
8fdb3dbf
HD
903 * The stable node did not yet appear stale to get_ksm_page(),
904 * since that allows for an unmapped ksm page to be recognized
905 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
906 * This page might be in a pagevec waiting to be freed,
907 * or it might be PageSwapCache (perhaps under writeback),
908 * or it might have been removed from swapcache a moment ago.
909 */
910 set_page_stable_node(page, NULL);
911 remove_node_from_stable_tree(stable_node);
912 err = 0;
913 }
914
915 unlock_page(page);
916 put_page(page);
917 return err;
918}
919
21fbd591 920static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
921 struct rb_root *root)
922{
21fbd591 923 struct ksm_stable_node *dup;
2c653d0e
AA
924 struct hlist_node *hlist_safe;
925
926 if (!is_stable_node_chain(stable_node)) {
927 VM_BUG_ON(is_stable_node_dup(stable_node));
928 if (remove_stable_node(stable_node))
929 return true;
930 else
931 return false;
932 }
933
934 hlist_for_each_entry_safe(dup, hlist_safe,
935 &stable_node->hlist, hlist_dup) {
936 VM_BUG_ON(!is_stable_node_dup(dup));
937 if (remove_stable_node(dup))
938 return true;
939 }
940 BUG_ON(!hlist_empty(&stable_node->hlist));
941 free_stable_node_chain(stable_node, root);
942 return false;
943}
944
cbf86cfe
HD
945static int remove_all_stable_nodes(void)
946{
21fbd591 947 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
948 int nid;
949 int err = 0;
950
ef53d16c 951 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
952 while (root_stable_tree[nid].rb_node) {
953 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 954 struct ksm_stable_node, node);
2c653d0e
AA
955 if (remove_stable_node_chain(stable_node,
956 root_stable_tree + nid)) {
cbf86cfe
HD
957 err = -EBUSY;
958 break; /* proceed to next nid */
959 }
960 cond_resched();
961 }
962 }
03640418 963 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
964 if (remove_stable_node(stable_node))
965 err = -EBUSY;
966 cond_resched();
967 }
cbf86cfe
HD
968 return err;
969}
970
d952b791 971static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 972{
21fbd591 973 struct ksm_mm_slot *mm_slot;
58730ab6 974 struct mm_slot *slot;
31dbd01f
IE
975 struct mm_struct *mm;
976 struct vm_area_struct *vma;
d952b791
HD
977 int err = 0;
978
979 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
980 slot = list_entry(ksm_mm_head.slot.mm_node.next,
981 struct mm_slot, mm_node);
982 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 983 spin_unlock(&ksm_mmlist_lock);
31dbd01f 984
a5f18ba0
MWO
985 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
986 mm_slot = ksm_scan.mm_slot) {
58730ab6 987 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 988
58730ab6 989 mm = mm_slot->slot.mm;
d8ed45c5 990 mmap_read_lock(mm);
a5f18ba0 991 for_each_vma(vmi, vma) {
9ba69294
HD
992 if (ksm_test_exit(mm))
993 break;
31dbd01f
IE
994 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
995 continue;
d952b791
HD
996 err = unmerge_ksm_pages(vma,
997 vma->vm_start, vma->vm_end);
9ba69294
HD
998 if (err)
999 goto error;
31dbd01f 1000 }
9ba69294 1001
420be4ed 1002 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 1003 mmap_read_unlock(mm);
d952b791
HD
1004
1005 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
1006 slot = list_entry(mm_slot->slot.mm_node.next,
1007 struct mm_slot, mm_node);
1008 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 1009 if (ksm_test_exit(mm)) {
58730ab6
QZ
1010 hash_del(&mm_slot->slot.hash);
1011 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
1012 spin_unlock(&ksm_mmlist_lock);
1013
58730ab6 1014 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 1015 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1016 mmdrop(mm);
7496fea9 1017 } else
9ba69294 1018 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1019 }
1020
cbf86cfe
HD
1021 /* Clean up stable nodes, but don't worry if some are still busy */
1022 remove_all_stable_nodes();
d952b791 1023 ksm_scan.seqnr = 0;
9ba69294
HD
1024 return 0;
1025
1026error:
d8ed45c5 1027 mmap_read_unlock(mm);
31dbd01f 1028 spin_lock(&ksm_mmlist_lock);
d952b791 1029 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1030 spin_unlock(&ksm_mmlist_lock);
d952b791 1031 return err;
31dbd01f 1032}
2ffd8679 1033#endif /* CONFIG_SYSFS */
31dbd01f 1034
31dbd01f
IE
1035static u32 calc_checksum(struct page *page)
1036{
1037 u32 checksum;
9b04c5fe 1038 void *addr = kmap_atomic(page);
59e1a2f4 1039 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1040 kunmap_atomic(addr);
31dbd01f
IE
1041 return checksum;
1042}
1043
31dbd01f
IE
1044static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1045 pte_t *orig_pte)
1046{
1047 struct mm_struct *mm = vma->vm_mm;
eed05e54 1048 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1049 int swapped;
1050 int err = -EFAULT;
ac46d4f3 1051 struct mmu_notifier_range range;
6c287605 1052 bool anon_exclusive;
31dbd01f 1053
36eaff33
KS
1054 pvmw.address = page_address_in_vma(page, vma);
1055 if (pvmw.address == -EFAULT)
31dbd01f
IE
1056 goto out;
1057
29ad768c 1058 BUG_ON(PageTransCompound(page));
6bdb913f 1059
7d4a8be0 1060 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
ac46d4f3
JG
1061 pvmw.address + PAGE_SIZE);
1062 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1063
36eaff33 1064 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1065 goto out_mn;
36eaff33
KS
1066 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1067 goto out_unlock;
31dbd01f 1068
6c287605 1069 anon_exclusive = PageAnonExclusive(page);
595cd8f2 1070 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
6c287605 1071 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1072 pte_t entry;
1073
1074 swapped = PageSwapCache(page);
36eaff33 1075 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1076 /*
25985edc 1077 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1078 * take any lock, therefore the check that we are going to make
f0953a1b 1079 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1080 * O_DIRECT can happen right after the check.
1081 * So we clear the pte and flush the tlb before the check
1082 * this assure us that no O_DIRECT can happen after the check
1083 * or in the middle of the check.
0f10851e
JG
1084 *
1085 * No need to notify as we are downgrading page table to read
1086 * only not changing it to point to a new page.
1087 *
ee65728e 1088 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1089 */
0f10851e 1090 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1091 /*
1092 * Check that no O_DIRECT or similar I/O is in progress on the
1093 * page
1094 */
31e855ea 1095 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1096 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1097 goto out_unlock;
1098 }
6c287605 1099
088b8aa5 1100 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1101 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1102 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1103 goto out_unlock;
1104 }
1105
4e31635c
HD
1106 if (pte_dirty(entry))
1107 set_page_dirty(page);
6a56ccbc
DH
1108 entry = pte_mkclean(entry);
1109
1110 if (pte_write(entry))
1111 entry = pte_wrprotect(entry);
595cd8f2 1112
36eaff33 1113 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1114 }
36eaff33 1115 *orig_pte = *pvmw.pte;
31dbd01f
IE
1116 err = 0;
1117
1118out_unlock:
36eaff33 1119 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1120out_mn:
ac46d4f3 1121 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1122out:
1123 return err;
1124}
1125
1126/**
1127 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1128 * @vma: vma that holds the pte pointing to page
1129 * @page: the page we are replacing by kpage
1130 * @kpage: the ksm page we replace page by
31dbd01f
IE
1131 * @orig_pte: the original value of the pte
1132 *
1133 * Returns 0 on success, -EFAULT on failure.
1134 */
8dd3557a
HD
1135static int replace_page(struct vm_area_struct *vma, struct page *page,
1136 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1137{
1138 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1139 struct folio *folio;
31dbd01f 1140 pmd_t *pmd;
50722804 1141 pmd_t pmde;
31dbd01f 1142 pte_t *ptep;
e86c59b1 1143 pte_t newpte;
31dbd01f
IE
1144 spinlock_t *ptl;
1145 unsigned long addr;
31dbd01f 1146 int err = -EFAULT;
ac46d4f3 1147 struct mmu_notifier_range range;
31dbd01f 1148
8dd3557a 1149 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1150 if (addr == -EFAULT)
1151 goto out;
1152
6219049a
BL
1153 pmd = mm_find_pmd(mm, addr);
1154 if (!pmd)
31dbd01f 1155 goto out;
50722804
ZK
1156 /*
1157 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1158 * without holding anon_vma lock for write. So when looking for a
1159 * genuine pmde (in which to find pte), test present and !THP together.
1160 */
1161 pmde = *pmd;
1162 barrier();
1163 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1164 goto out;
31dbd01f 1165
7d4a8be0 1166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
6f4f13e8 1167 addr + PAGE_SIZE);
ac46d4f3 1168 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1169
31dbd01f
IE
1170 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1171 if (!pte_same(*ptep, orig_pte)) {
1172 pte_unmap_unlock(ptep, ptl);
6bdb913f 1173 goto out_mn;
31dbd01f 1174 }
6c287605
DH
1175 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1176 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
31dbd01f 1177
e86c59b1
CI
1178 /*
1179 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1180 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1181 */
1182 if (!is_zero_pfn(page_to_pfn(kpage))) {
1183 get_page(kpage);
f1e2db12 1184 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1185 newpte = mk_pte(kpage, vma->vm_page_prot);
1186 } else {
1187 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1188 vma->vm_page_prot));
a38c015f
CI
1189 /*
1190 * We're replacing an anonymous page with a zero page, which is
1191 * not anonymous. We need to do proper accounting otherwise we
1192 * will get wrong values in /proc, and a BUG message in dmesg
1193 * when tearing down the mm.
1194 */
1195 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1196 }
31dbd01f
IE
1197
1198 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1199 /*
1200 * No need to notify as we are replacing a read only page with another
1201 * read only page with the same content.
1202 *
ee65728e 1203 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1204 */
1205 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1206 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1207
b4e6f66e 1208 folio = page_folio(page);
cea86fe2 1209 page_remove_rmap(page, vma, false);
b4e6f66e
MWO
1210 if (!folio_mapped(folio))
1211 folio_free_swap(folio);
1212 folio_put(folio);
31dbd01f
IE
1213
1214 pte_unmap_unlock(ptep, ptl);
1215 err = 0;
6bdb913f 1216out_mn:
ac46d4f3 1217 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1218out:
1219 return err;
1220}
1221
1222/*
1223 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1224 * @vma: the vma that holds the pte pointing to page
1225 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1226 * @kpage: the PageKsm page that we want to map instead of page,
1227 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1228 *
1229 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1230 */
1231static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1232 struct page *page, struct page *kpage)
31dbd01f
IE
1233{
1234 pte_t orig_pte = __pte(0);
1235 int err = -EFAULT;
1236
db114b83
HD
1237 if (page == kpage) /* ksm page forked */
1238 return 0;
1239
8dd3557a 1240 if (!PageAnon(page))
31dbd01f
IE
1241 goto out;
1242
31dbd01f
IE
1243 /*
1244 * We need the page lock to read a stable PageSwapCache in
1245 * write_protect_page(). We use trylock_page() instead of
1246 * lock_page() because we don't want to wait here - we
1247 * prefer to continue scanning and merging different pages,
1248 * then come back to this page when it is unlocked.
1249 */
8dd3557a 1250 if (!trylock_page(page))
31e855ea 1251 goto out;
f765f540
KS
1252
1253 if (PageTransCompound(page)) {
a7306c34 1254 if (split_huge_page(page))
f765f540
KS
1255 goto out_unlock;
1256 }
1257
31dbd01f
IE
1258 /*
1259 * If this anonymous page is mapped only here, its pte may need
1260 * to be write-protected. If it's mapped elsewhere, all of its
1261 * ptes are necessarily already write-protected. But in either
1262 * case, we need to lock and check page_count is not raised.
1263 */
80e14822
HD
1264 if (write_protect_page(vma, page, &orig_pte) == 0) {
1265 if (!kpage) {
1266 /*
1267 * While we hold page lock, upgrade page from
1268 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1269 * stable_tree_insert() will update stable_node.
1270 */
1271 set_page_stable_node(page, NULL);
1272 mark_page_accessed(page);
337ed7eb
MK
1273 /*
1274 * Page reclaim just frees a clean page with no dirty
1275 * ptes: make sure that the ksm page would be swapped.
1276 */
1277 if (!PageDirty(page))
1278 SetPageDirty(page);
80e14822
HD
1279 err = 0;
1280 } else if (pages_identical(page, kpage))
1281 err = replace_page(vma, page, kpage, orig_pte);
1282 }
31dbd01f 1283
f765f540 1284out_unlock:
8dd3557a 1285 unlock_page(page);
31dbd01f
IE
1286out:
1287 return err;
1288}
1289
81464e30
HD
1290/*
1291 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1292 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1293 *
1294 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1295 */
21fbd591 1296static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1297 struct page *page, struct page *kpage)
81464e30 1298{
8dd3557a 1299 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1300 struct vm_area_struct *vma;
1301 int err = -EFAULT;
1302
d8ed45c5 1303 mmap_read_lock(mm);
85c6e8dd
AA
1304 vma = find_mergeable_vma(mm, rmap_item->address);
1305 if (!vma)
81464e30
HD
1306 goto out;
1307
8dd3557a 1308 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1309 if (err)
1310 goto out;
1311
bc56620b
HD
1312 /* Unstable nid is in union with stable anon_vma: remove first */
1313 remove_rmap_item_from_tree(rmap_item);
1314
c1e8d7c6 1315 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1316 rmap_item->anon_vma = vma->anon_vma;
1317 get_anon_vma(vma->anon_vma);
81464e30 1318out:
d8ed45c5 1319 mmap_read_unlock(mm);
81464e30
HD
1320 return err;
1321}
1322
31dbd01f
IE
1323/*
1324 * try_to_merge_two_pages - take two identical pages and prepare them
1325 * to be merged into one page.
1326 *
8dd3557a
HD
1327 * This function returns the kpage if we successfully merged two identical
1328 * pages into one ksm page, NULL otherwise.
31dbd01f 1329 *
80e14822 1330 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1331 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1332 */
21fbd591 1333static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1334 struct page *page,
21fbd591 1335 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1336 struct page *tree_page)
31dbd01f 1337{
80e14822 1338 int err;
31dbd01f 1339
80e14822 1340 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1341 if (!err) {
8dd3557a 1342 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1343 tree_page, page);
31dbd01f 1344 /*
81464e30
HD
1345 * If that fails, we have a ksm page with only one pte
1346 * pointing to it: so break it.
31dbd01f 1347 */
4035c07a 1348 if (err)
8dd3557a 1349 break_cow(rmap_item);
31dbd01f 1350 }
80e14822 1351 return err ? NULL : page;
31dbd01f
IE
1352}
1353
2c653d0e 1354static __always_inline
21fbd591 1355bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1356{
1357 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1358 /*
1359 * Check that at least one mapping still exists, otherwise
1360 * there's no much point to merge and share with this
1361 * stable_node, as the underlying tree_page of the other
1362 * sharer is going to be freed soon.
1363 */
1364 return stable_node->rmap_hlist_len &&
1365 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1366}
1367
1368static __always_inline
21fbd591 1369bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1370{
1371 return __is_page_sharing_candidate(stable_node, 0);
1372}
1373
21fbd591
QZ
1374static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1375 struct ksm_stable_node **_stable_node,
c01f0b54
CIK
1376 struct rb_root *root,
1377 bool prune_stale_stable_nodes)
2c653d0e 1378{
21fbd591 1379 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1380 struct hlist_node *hlist_safe;
8dc5ffcd 1381 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1382 int nr = 0;
1383 int found_rmap_hlist_len;
1384
1385 if (!prune_stale_stable_nodes ||
1386 time_before(jiffies, stable_node->chain_prune_time +
1387 msecs_to_jiffies(
1388 ksm_stable_node_chains_prune_millisecs)))
1389 prune_stale_stable_nodes = false;
1390 else
1391 stable_node->chain_prune_time = jiffies;
1392
1393 hlist_for_each_entry_safe(dup, hlist_safe,
1394 &stable_node->hlist, hlist_dup) {
1395 cond_resched();
1396 /*
1397 * We must walk all stable_node_dup to prune the stale
1398 * stable nodes during lookup.
1399 *
1400 * get_ksm_page can drop the nodes from the
1401 * stable_node->hlist if they point to freed pages
1402 * (that's why we do a _safe walk). The "dup"
1403 * stable_node parameter itself will be freed from
1404 * under us if it returns NULL.
1405 */
2cee57d1 1406 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1407 if (!_tree_page)
1408 continue;
1409 nr += 1;
1410 if (is_page_sharing_candidate(dup)) {
1411 if (!found ||
1412 dup->rmap_hlist_len > found_rmap_hlist_len) {
1413 if (found)
8dc5ffcd 1414 put_page(tree_page);
2c653d0e
AA
1415 found = dup;
1416 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1417 tree_page = _tree_page;
2c653d0e 1418
8dc5ffcd 1419 /* skip put_page for found dup */
2c653d0e
AA
1420 if (!prune_stale_stable_nodes)
1421 break;
2c653d0e
AA
1422 continue;
1423 }
1424 }
1425 put_page(_tree_page);
1426 }
1427
80b18dfa
AA
1428 if (found) {
1429 /*
1430 * nr is counting all dups in the chain only if
1431 * prune_stale_stable_nodes is true, otherwise we may
1432 * break the loop at nr == 1 even if there are
1433 * multiple entries.
1434 */
1435 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1436 /*
1437 * If there's not just one entry it would
1438 * corrupt memory, better BUG_ON. In KSM
1439 * context with no lock held it's not even
1440 * fatal.
1441 */
1442 BUG_ON(stable_node->hlist.first->next);
1443
1444 /*
1445 * There's just one entry and it is below the
1446 * deduplication limit so drop the chain.
1447 */
1448 rb_replace_node(&stable_node->node, &found->node,
1449 root);
1450 free_stable_node(stable_node);
1451 ksm_stable_node_chains--;
1452 ksm_stable_node_dups--;
b4fecc67 1453 /*
0ba1d0f7
AA
1454 * NOTE: the caller depends on the stable_node
1455 * to be equal to stable_node_dup if the chain
1456 * was collapsed.
b4fecc67 1457 */
0ba1d0f7
AA
1458 *_stable_node = found;
1459 /*
f0953a1b 1460 * Just for robustness, as stable_node is
0ba1d0f7
AA
1461 * otherwise left as a stable pointer, the
1462 * compiler shall optimize it away at build
1463 * time.
1464 */
1465 stable_node = NULL;
80b18dfa
AA
1466 } else if (stable_node->hlist.first != &found->hlist_dup &&
1467 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1468 /*
80b18dfa
AA
1469 * If the found stable_node dup can accept one
1470 * more future merge (in addition to the one
1471 * that is underway) and is not at the head of
1472 * the chain, put it there so next search will
1473 * be quicker in the !prune_stale_stable_nodes
1474 * case.
1475 *
1476 * NOTE: it would be inaccurate to use nr > 1
1477 * instead of checking the hlist.first pointer
1478 * directly, because in the
1479 * prune_stale_stable_nodes case "nr" isn't
1480 * the position of the found dup in the chain,
1481 * but the total number of dups in the chain.
2c653d0e
AA
1482 */
1483 hlist_del(&found->hlist_dup);
1484 hlist_add_head(&found->hlist_dup,
1485 &stable_node->hlist);
1486 }
1487 }
1488
8dc5ffcd
AA
1489 *_stable_node_dup = found;
1490 return tree_page;
2c653d0e
AA
1491}
1492
21fbd591 1493static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
2c653d0e
AA
1494 struct rb_root *root)
1495{
1496 if (!is_stable_node_chain(stable_node))
1497 return stable_node;
1498 if (hlist_empty(&stable_node->hlist)) {
1499 free_stable_node_chain(stable_node, root);
1500 return NULL;
1501 }
1502 return hlist_entry(stable_node->hlist.first,
1503 typeof(*stable_node), hlist_dup);
1504}
1505
8dc5ffcd
AA
1506/*
1507 * Like for get_ksm_page, this function can free the *_stable_node and
1508 * *_stable_node_dup if the returned tree_page is NULL.
1509 *
1510 * It can also free and overwrite *_stable_node with the found
1511 * stable_node_dup if the chain is collapsed (in which case
1512 * *_stable_node will be equal to *_stable_node_dup like if the chain
1513 * never existed). It's up to the caller to verify tree_page is not
1514 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1515 *
1516 * *_stable_node_dup is really a second output parameter of this
1517 * function and will be overwritten in all cases, the caller doesn't
1518 * need to initialize it.
1519 */
21fbd591
QZ
1520static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1521 struct ksm_stable_node **_stable_node,
8dc5ffcd
AA
1522 struct rb_root *root,
1523 bool prune_stale_stable_nodes)
2c653d0e 1524{
21fbd591 1525 struct ksm_stable_node *stable_node = *_stable_node;
2c653d0e
AA
1526 if (!is_stable_node_chain(stable_node)) {
1527 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1528 *_stable_node_dup = stable_node;
2cee57d1 1529 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1530 }
8dc5ffcd
AA
1531 /*
1532 * _stable_node_dup set to NULL means the stable_node
1533 * reached the ksm_max_page_sharing limit.
1534 */
1535 *_stable_node_dup = NULL;
2c653d0e
AA
1536 return NULL;
1537 }
8dc5ffcd 1538 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1539 prune_stale_stable_nodes);
1540}
1541
21fbd591
QZ
1542static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1543 struct ksm_stable_node **s_n,
8dc5ffcd 1544 struct rb_root *root)
2c653d0e 1545{
8dc5ffcd 1546 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1547}
1548
21fbd591
QZ
1549static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1550 struct ksm_stable_node *s_n,
8dc5ffcd 1551 struct rb_root *root)
2c653d0e 1552{
21fbd591 1553 struct ksm_stable_node *old_stable_node = s_n;
8dc5ffcd
AA
1554 struct page *tree_page;
1555
1556 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1557 /* not pruning dups so s_n cannot have changed */
1558 VM_BUG_ON(s_n != old_stable_node);
1559 return tree_page;
2c653d0e
AA
1560}
1561
31dbd01f 1562/*
8dd3557a 1563 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1564 *
1565 * This function checks if there is a page inside the stable tree
1566 * with identical content to the page that we are scanning right now.
1567 *
7b6ba2c7 1568 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1569 * NULL otherwise.
1570 */
62b61f61 1571static struct page *stable_tree_search(struct page *page)
31dbd01f 1572{
90bd6fd3 1573 int nid;
ef53d16c 1574 struct rb_root *root;
4146d2d6
HD
1575 struct rb_node **new;
1576 struct rb_node *parent;
21fbd591
QZ
1577 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1578 struct ksm_stable_node *page_node;
31dbd01f 1579
4146d2d6
HD
1580 page_node = page_stable_node(page);
1581 if (page_node && page_node->head != &migrate_nodes) {
1582 /* ksm page forked */
08beca44 1583 get_page(page);
62b61f61 1584 return page;
08beca44
HD
1585 }
1586
90bd6fd3 1587 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1588 root = root_stable_tree + nid;
4146d2d6 1589again:
ef53d16c 1590 new = &root->rb_node;
4146d2d6 1591 parent = NULL;
90bd6fd3 1592
4146d2d6 1593 while (*new) {
4035c07a 1594 struct page *tree_page;
31dbd01f
IE
1595 int ret;
1596
08beca44 1597 cond_resched();
21fbd591 1598 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1599 stable_node_any = NULL;
8dc5ffcd 1600 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1601 /*
1602 * NOTE: stable_node may have been freed by
1603 * chain_prune() if the returned stable_node_dup is
1604 * not NULL. stable_node_dup may have been inserted in
1605 * the rbtree instead as a regular stable_node (in
1606 * order to collapse the stable_node chain if a single
0ba1d0f7 1607 * stable_node dup was found in it). In such case the
3413b2c8 1608 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1609 * to the stable_node_dup that was collapsed in the
1610 * stable rbtree and stable_node will be equal to
1611 * stable_node_dup like if the chain never existed.
b4fecc67 1612 */
2c653d0e
AA
1613 if (!stable_node_dup) {
1614 /*
1615 * Either all stable_node dups were full in
1616 * this stable_node chain, or this chain was
1617 * empty and should be rb_erased.
1618 */
1619 stable_node_any = stable_node_dup_any(stable_node,
1620 root);
1621 if (!stable_node_any) {
1622 /* rb_erase just run */
1623 goto again;
1624 }
1625 /*
1626 * Take any of the stable_node dups page of
1627 * this stable_node chain to let the tree walk
1628 * continue. All KSM pages belonging to the
1629 * stable_node dups in a stable_node chain
1630 * have the same content and they're
457aef94 1631 * write protected at all times. Any will work
2c653d0e
AA
1632 * fine to continue the walk.
1633 */
2cee57d1
YS
1634 tree_page = get_ksm_page(stable_node_any,
1635 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1636 }
1637 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1638 if (!tree_page) {
1639 /*
1640 * If we walked over a stale stable_node,
1641 * get_ksm_page() will call rb_erase() and it
1642 * may rebalance the tree from under us. So
1643 * restart the search from scratch. Returning
1644 * NULL would be safe too, but we'd generate
1645 * false negative insertions just because some
1646 * stable_node was stale.
1647 */
1648 goto again;
1649 }
31dbd01f 1650
4035c07a 1651 ret = memcmp_pages(page, tree_page);
c8d6553b 1652 put_page(tree_page);
31dbd01f 1653
4146d2d6 1654 parent = *new;
c8d6553b 1655 if (ret < 0)
4146d2d6 1656 new = &parent->rb_left;
c8d6553b 1657 else if (ret > 0)
4146d2d6 1658 new = &parent->rb_right;
c8d6553b 1659 else {
2c653d0e
AA
1660 if (page_node) {
1661 VM_BUG_ON(page_node->head != &migrate_nodes);
1662 /*
1663 * Test if the migrated page should be merged
1664 * into a stable node dup. If the mapcount is
1665 * 1 we can migrate it with another KSM page
1666 * without adding it to the chain.
1667 */
1668 if (page_mapcount(page) > 1)
1669 goto chain_append;
1670 }
1671
1672 if (!stable_node_dup) {
1673 /*
1674 * If the stable_node is a chain and
1675 * we got a payload match in memcmp
1676 * but we cannot merge the scanned
1677 * page in any of the existing
1678 * stable_node dups because they're
1679 * all full, we need to wait the
1680 * scanned page to find itself a match
1681 * in the unstable tree to create a
1682 * brand new KSM page to add later to
1683 * the dups of this stable_node.
1684 */
1685 return NULL;
1686 }
1687
c8d6553b
HD
1688 /*
1689 * Lock and unlock the stable_node's page (which
1690 * might already have been migrated) so that page
1691 * migration is sure to notice its raised count.
1692 * It would be more elegant to return stable_node
1693 * than kpage, but that involves more changes.
1694 */
2cee57d1
YS
1695 tree_page = get_ksm_page(stable_node_dup,
1696 GET_KSM_PAGE_TRYLOCK);
1697
1698 if (PTR_ERR(tree_page) == -EBUSY)
1699 return ERR_PTR(-EBUSY);
1700
2c653d0e
AA
1701 if (unlikely(!tree_page))
1702 /*
1703 * The tree may have been rebalanced,
1704 * so re-evaluate parent and new.
1705 */
4146d2d6 1706 goto again;
2c653d0e
AA
1707 unlock_page(tree_page);
1708
1709 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1710 NUMA(stable_node_dup->nid)) {
1711 put_page(tree_page);
1712 goto replace;
1713 }
1714 return tree_page;
c8d6553b 1715 }
31dbd01f
IE
1716 }
1717
4146d2d6
HD
1718 if (!page_node)
1719 return NULL;
1720
1721 list_del(&page_node->list);
1722 DO_NUMA(page_node->nid = nid);
1723 rb_link_node(&page_node->node, parent, new);
ef53d16c 1724 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1725out:
1726 if (is_page_sharing_candidate(page_node)) {
1727 get_page(page);
1728 return page;
1729 } else
1730 return NULL;
4146d2d6
HD
1731
1732replace:
b4fecc67
AA
1733 /*
1734 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1735 * stable_node has been updated to be the new regular
1736 * stable_node. A collapse of the chain is indistinguishable
1737 * from the case there was no chain in the stable
1738 * rbtree. Otherwise stable_node is the chain and
1739 * stable_node_dup is the dup to replace.
b4fecc67 1740 */
0ba1d0f7 1741 if (stable_node_dup == stable_node) {
b4fecc67
AA
1742 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1743 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1744 /* there is no chain */
1745 if (page_node) {
1746 VM_BUG_ON(page_node->head != &migrate_nodes);
1747 list_del(&page_node->list);
1748 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1749 rb_replace_node(&stable_node_dup->node,
1750 &page_node->node,
2c653d0e
AA
1751 root);
1752 if (is_page_sharing_candidate(page_node))
1753 get_page(page);
1754 else
1755 page = NULL;
1756 } else {
b4fecc67 1757 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1758 page = NULL;
1759 }
4146d2d6 1760 } else {
2c653d0e
AA
1761 VM_BUG_ON(!is_stable_node_chain(stable_node));
1762 __stable_node_dup_del(stable_node_dup);
1763 if (page_node) {
1764 VM_BUG_ON(page_node->head != &migrate_nodes);
1765 list_del(&page_node->list);
1766 DO_NUMA(page_node->nid = nid);
1767 stable_node_chain_add_dup(page_node, stable_node);
1768 if (is_page_sharing_candidate(page_node))
1769 get_page(page);
1770 else
1771 page = NULL;
1772 } else {
1773 page = NULL;
1774 }
4146d2d6 1775 }
2c653d0e
AA
1776 stable_node_dup->head = &migrate_nodes;
1777 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1778 return page;
2c653d0e
AA
1779
1780chain_append:
1781 /* stable_node_dup could be null if it reached the limit */
1782 if (!stable_node_dup)
1783 stable_node_dup = stable_node_any;
b4fecc67
AA
1784 /*
1785 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1786 * stable_node has been updated to be the new regular
1787 * stable_node. A collapse of the chain is indistinguishable
1788 * from the case there was no chain in the stable
1789 * rbtree. Otherwise stable_node is the chain and
1790 * stable_node_dup is the dup to replace.
b4fecc67 1791 */
0ba1d0f7 1792 if (stable_node_dup == stable_node) {
b4fecc67 1793 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1794 /* chain is missing so create it */
1795 stable_node = alloc_stable_node_chain(stable_node_dup,
1796 root);
1797 if (!stable_node)
1798 return NULL;
1799 }
1800 /*
1801 * Add this stable_node dup that was
1802 * migrated to the stable_node chain
1803 * of the current nid for this page
1804 * content.
1805 */
b4fecc67 1806 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1807 VM_BUG_ON(page_node->head != &migrate_nodes);
1808 list_del(&page_node->list);
1809 DO_NUMA(page_node->nid = nid);
1810 stable_node_chain_add_dup(page_node, stable_node);
1811 goto out;
31dbd01f
IE
1812}
1813
1814/*
e850dcf5 1815 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1816 * into the stable tree.
1817 *
7b6ba2c7
HD
1818 * This function returns the stable tree node just allocated on success,
1819 * NULL otherwise.
31dbd01f 1820 */
21fbd591 1821static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1822{
90bd6fd3
PH
1823 int nid;
1824 unsigned long kpfn;
ef53d16c 1825 struct rb_root *root;
90bd6fd3 1826 struct rb_node **new;
f2e5ff85 1827 struct rb_node *parent;
21fbd591 1828 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2c653d0e 1829 bool need_chain = false;
31dbd01f 1830
90bd6fd3
PH
1831 kpfn = page_to_pfn(kpage);
1832 nid = get_kpfn_nid(kpfn);
ef53d16c 1833 root = root_stable_tree + nid;
f2e5ff85
AA
1834again:
1835 parent = NULL;
ef53d16c 1836 new = &root->rb_node;
90bd6fd3 1837
31dbd01f 1838 while (*new) {
4035c07a 1839 struct page *tree_page;
31dbd01f
IE
1840 int ret;
1841
08beca44 1842 cond_resched();
21fbd591 1843 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1844 stable_node_any = NULL;
8dc5ffcd 1845 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1846 if (!stable_node_dup) {
1847 /*
1848 * Either all stable_node dups were full in
1849 * this stable_node chain, or this chain was
1850 * empty and should be rb_erased.
1851 */
1852 stable_node_any = stable_node_dup_any(stable_node,
1853 root);
1854 if (!stable_node_any) {
1855 /* rb_erase just run */
1856 goto again;
1857 }
1858 /*
1859 * Take any of the stable_node dups page of
1860 * this stable_node chain to let the tree walk
1861 * continue. All KSM pages belonging to the
1862 * stable_node dups in a stable_node chain
1863 * have the same content and they're
457aef94 1864 * write protected at all times. Any will work
2c653d0e
AA
1865 * fine to continue the walk.
1866 */
2cee57d1
YS
1867 tree_page = get_ksm_page(stable_node_any,
1868 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1869 }
1870 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1871 if (!tree_page) {
1872 /*
1873 * If we walked over a stale stable_node,
1874 * get_ksm_page() will call rb_erase() and it
1875 * may rebalance the tree from under us. So
1876 * restart the search from scratch. Returning
1877 * NULL would be safe too, but we'd generate
1878 * false negative insertions just because some
1879 * stable_node was stale.
1880 */
1881 goto again;
1882 }
31dbd01f 1883
4035c07a
HD
1884 ret = memcmp_pages(kpage, tree_page);
1885 put_page(tree_page);
31dbd01f
IE
1886
1887 parent = *new;
1888 if (ret < 0)
1889 new = &parent->rb_left;
1890 else if (ret > 0)
1891 new = &parent->rb_right;
1892 else {
2c653d0e
AA
1893 need_chain = true;
1894 break;
31dbd01f
IE
1895 }
1896 }
1897
2c653d0e
AA
1898 stable_node_dup = alloc_stable_node();
1899 if (!stable_node_dup)
7b6ba2c7 1900 return NULL;
31dbd01f 1901
2c653d0e
AA
1902 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1903 stable_node_dup->kpfn = kpfn;
1904 set_page_stable_node(kpage, stable_node_dup);
1905 stable_node_dup->rmap_hlist_len = 0;
1906 DO_NUMA(stable_node_dup->nid = nid);
1907 if (!need_chain) {
1908 rb_link_node(&stable_node_dup->node, parent, new);
1909 rb_insert_color(&stable_node_dup->node, root);
1910 } else {
1911 if (!is_stable_node_chain(stable_node)) {
21fbd591 1912 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
1913 /* chain is missing so create it */
1914 stable_node = alloc_stable_node_chain(orig, root);
1915 if (!stable_node) {
1916 free_stable_node(stable_node_dup);
1917 return NULL;
1918 }
1919 }
1920 stable_node_chain_add_dup(stable_node_dup, stable_node);
1921 }
08beca44 1922
2c653d0e 1923 return stable_node_dup;
31dbd01f
IE
1924}
1925
1926/*
8dd3557a
HD
1927 * unstable_tree_search_insert - search for identical page,
1928 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1929 *
1930 * This function searches for a page in the unstable tree identical to the
1931 * page currently being scanned; and if no identical page is found in the
1932 * tree, we insert rmap_item as a new object into the unstable tree.
1933 *
1934 * This function returns pointer to rmap_item found to be identical
1935 * to the currently scanned page, NULL otherwise.
1936 *
1937 * This function does both searching and inserting, because they share
1938 * the same walking algorithm in an rbtree.
1939 */
8dd3557a 1940static
21fbd591 1941struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
1942 struct page *page,
1943 struct page **tree_pagep)
31dbd01f 1944{
90bd6fd3
PH
1945 struct rb_node **new;
1946 struct rb_root *root;
31dbd01f 1947 struct rb_node *parent = NULL;
90bd6fd3
PH
1948 int nid;
1949
1950 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1951 root = root_unstable_tree + nid;
90bd6fd3 1952 new = &root->rb_node;
31dbd01f
IE
1953
1954 while (*new) {
21fbd591 1955 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 1956 struct page *tree_page;
31dbd01f
IE
1957 int ret;
1958
d178f27f 1959 cond_resched();
21fbd591 1960 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 1961 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1962 if (!tree_page)
31dbd01f
IE
1963 return NULL;
1964
1965 /*
8dd3557a 1966 * Don't substitute a ksm page for a forked page.
31dbd01f 1967 */
8dd3557a
HD
1968 if (page == tree_page) {
1969 put_page(tree_page);
31dbd01f
IE
1970 return NULL;
1971 }
1972
8dd3557a 1973 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1974
1975 parent = *new;
1976 if (ret < 0) {
8dd3557a 1977 put_page(tree_page);
31dbd01f
IE
1978 new = &parent->rb_left;
1979 } else if (ret > 0) {
8dd3557a 1980 put_page(tree_page);
31dbd01f 1981 new = &parent->rb_right;
b599cbdf
HD
1982 } else if (!ksm_merge_across_nodes &&
1983 page_to_nid(tree_page) != nid) {
1984 /*
1985 * If tree_page has been migrated to another NUMA node,
1986 * it will be flushed out and put in the right unstable
1987 * tree next time: only merge with it when across_nodes.
1988 */
1989 put_page(tree_page);
1990 return NULL;
31dbd01f 1991 } else {
8dd3557a 1992 *tree_pagep = tree_page;
31dbd01f
IE
1993 return tree_rmap_item;
1994 }
1995 }
1996
7b6ba2c7 1997 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1998 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1999 DO_NUMA(rmap_item->nid = nid);
31dbd01f 2000 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 2001 rb_insert_color(&rmap_item->node, root);
31dbd01f 2002
473b0ce4 2003 ksm_pages_unshared++;
31dbd01f
IE
2004 return NULL;
2005}
2006
2007/*
2008 * stable_tree_append - add another rmap_item to the linked list of
2009 * rmap_items hanging off a given node of the stable tree, all sharing
2010 * the same ksm page.
2011 */
21fbd591
QZ
2012static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2013 struct ksm_stable_node *stable_node,
2c653d0e 2014 bool max_page_sharing_bypass)
31dbd01f 2015{
2c653d0e
AA
2016 /*
2017 * rmap won't find this mapping if we don't insert the
2018 * rmap_item in the right stable_node
2019 * duplicate. page_migration could break later if rmap breaks,
2020 * so we can as well crash here. We really need to check for
2021 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 2022 * for other negative values as an underflow if detected here
2c653d0e
AA
2023 * for the first time (and not when decreasing rmap_hlist_len)
2024 * would be sign of memory corruption in the stable_node.
2025 */
2026 BUG_ON(stable_node->rmap_hlist_len < 0);
2027
2028 stable_node->rmap_hlist_len++;
2029 if (!max_page_sharing_bypass)
2030 /* possibly non fatal but unexpected overflow, only warn */
2031 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2032 ksm_max_page_sharing);
2033
7b6ba2c7 2034 rmap_item->head = stable_node;
31dbd01f 2035 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2036 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2037
7b6ba2c7
HD
2038 if (rmap_item->hlist.next)
2039 ksm_pages_sharing++;
2040 else
2041 ksm_pages_shared++;
76093853 2042
2043 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2044}
2045
2046/*
81464e30
HD
2047 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2048 * if not, compare checksum to previous and if it's the same, see if page can
2049 * be inserted into the unstable tree, or merged with a page already there and
2050 * both transferred to the stable tree.
31dbd01f
IE
2051 *
2052 * @page: the page that we are searching identical page to.
2053 * @rmap_item: the reverse mapping into the virtual address of this page
2054 */
21fbd591 2055static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2056{
4b22927f 2057 struct mm_struct *mm = rmap_item->mm;
21fbd591 2058 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2059 struct page *tree_page = NULL;
21fbd591 2060 struct ksm_stable_node *stable_node;
8dd3557a 2061 struct page *kpage;
31dbd01f
IE
2062 unsigned int checksum;
2063 int err;
2c653d0e 2064 bool max_page_sharing_bypass = false;
31dbd01f 2065
4146d2d6
HD
2066 stable_node = page_stable_node(page);
2067 if (stable_node) {
2068 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2069 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2070 NUMA(stable_node->nid)) {
2071 stable_node_dup_del(stable_node);
4146d2d6
HD
2072 stable_node->head = &migrate_nodes;
2073 list_add(&stable_node->list, stable_node->head);
2074 }
2075 if (stable_node->head != &migrate_nodes &&
2076 rmap_item->head == stable_node)
2077 return;
2c653d0e
AA
2078 /*
2079 * If it's a KSM fork, allow it to go over the sharing limit
2080 * without warnings.
2081 */
2082 if (!is_page_sharing_candidate(stable_node))
2083 max_page_sharing_bypass = true;
4146d2d6 2084 }
31dbd01f
IE
2085
2086 /* We first start with searching the page inside the stable tree */
62b61f61 2087 kpage = stable_tree_search(page);
4146d2d6
HD
2088 if (kpage == page && rmap_item->head == stable_node) {
2089 put_page(kpage);
2090 return;
2091 }
2092
2093 remove_rmap_item_from_tree(rmap_item);
2094
62b61f61 2095 if (kpage) {
2cee57d1
YS
2096 if (PTR_ERR(kpage) == -EBUSY)
2097 return;
2098
08beca44 2099 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2100 if (!err) {
2101 /*
2102 * The page was successfully merged:
2103 * add its rmap_item to the stable tree.
2104 */
5ad64688 2105 lock_page(kpage);
2c653d0e
AA
2106 stable_tree_append(rmap_item, page_stable_node(kpage),
2107 max_page_sharing_bypass);
5ad64688 2108 unlock_page(kpage);
31dbd01f 2109 }
8dd3557a 2110 put_page(kpage);
31dbd01f
IE
2111 return;
2112 }
2113
2114 /*
4035c07a
HD
2115 * If the hash value of the page has changed from the last time
2116 * we calculated it, this page is changing frequently: therefore we
2117 * don't want to insert it in the unstable tree, and we don't want
2118 * to waste our time searching for something identical to it there.
31dbd01f
IE
2119 */
2120 checksum = calc_checksum(page);
2121 if (rmap_item->oldchecksum != checksum) {
2122 rmap_item->oldchecksum = checksum;
2123 return;
2124 }
2125
e86c59b1
CI
2126 /*
2127 * Same checksum as an empty page. We attempt to merge it with the
2128 * appropriate zero page if the user enabled this via sysfs.
2129 */
2130 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2131 struct vm_area_struct *vma;
2132
d8ed45c5 2133 mmap_read_lock(mm);
4b22927f 2134 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2135 if (vma) {
2136 err = try_to_merge_one_page(vma, page,
2137 ZERO_PAGE(rmap_item->address));
2138 } else {
2139 /*
2140 * If the vma is out of date, we do not need to
2141 * continue.
2142 */
2143 err = 0;
2144 }
d8ed45c5 2145 mmap_read_unlock(mm);
e86c59b1
CI
2146 /*
2147 * In case of failure, the page was not really empty, so we
2148 * need to continue. Otherwise we're done.
2149 */
2150 if (!err)
2151 return;
2152 }
8dd3557a
HD
2153 tree_rmap_item =
2154 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2155 if (tree_rmap_item) {
77da2ba0
CI
2156 bool split;
2157
8dd3557a
HD
2158 kpage = try_to_merge_two_pages(rmap_item, page,
2159 tree_rmap_item, tree_page);
77da2ba0
CI
2160 /*
2161 * If both pages we tried to merge belong to the same compound
2162 * page, then we actually ended up increasing the reference
2163 * count of the same compound page twice, and split_huge_page
2164 * failed.
2165 * Here we set a flag if that happened, and we use it later to
2166 * try split_huge_page again. Since we call put_page right
2167 * afterwards, the reference count will be correct and
2168 * split_huge_page should succeed.
2169 */
2170 split = PageTransCompound(page)
2171 && compound_head(page) == compound_head(tree_page);
8dd3557a 2172 put_page(tree_page);
8dd3557a 2173 if (kpage) {
bc56620b
HD
2174 /*
2175 * The pages were successfully merged: insert new
2176 * node in the stable tree and add both rmap_items.
2177 */
5ad64688 2178 lock_page(kpage);
7b6ba2c7
HD
2179 stable_node = stable_tree_insert(kpage);
2180 if (stable_node) {
2c653d0e
AA
2181 stable_tree_append(tree_rmap_item, stable_node,
2182 false);
2183 stable_tree_append(rmap_item, stable_node,
2184 false);
7b6ba2c7 2185 }
5ad64688 2186 unlock_page(kpage);
7b6ba2c7 2187
31dbd01f
IE
2188 /*
2189 * If we fail to insert the page into the stable tree,
2190 * we will have 2 virtual addresses that are pointing
2191 * to a ksm page left outside the stable tree,
2192 * in which case we need to break_cow on both.
2193 */
7b6ba2c7 2194 if (!stable_node) {
8dd3557a
HD
2195 break_cow(tree_rmap_item);
2196 break_cow(rmap_item);
31dbd01f 2197 }
77da2ba0
CI
2198 } else if (split) {
2199 /*
2200 * We are here if we tried to merge two pages and
2201 * failed because they both belonged to the same
2202 * compound page. We will split the page now, but no
2203 * merging will take place.
2204 * We do not want to add the cost of a full lock; if
2205 * the page is locked, it is better to skip it and
2206 * perhaps try again later.
2207 */
2208 if (!trylock_page(page))
2209 return;
2210 split_huge_page(page);
2211 unlock_page(page);
31dbd01f 2212 }
31dbd01f
IE
2213 }
2214}
2215
21fbd591
QZ
2216static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2217 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2218 unsigned long addr)
2219{
21fbd591 2220 struct ksm_rmap_item *rmap_item;
31dbd01f 2221
6514d511
HD
2222 while (*rmap_list) {
2223 rmap_item = *rmap_list;
93d17715 2224 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2225 return rmap_item;
31dbd01f
IE
2226 if (rmap_item->address > addr)
2227 break;
6514d511 2228 *rmap_list = rmap_item->rmap_list;
31dbd01f 2229 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2230 free_rmap_item(rmap_item);
2231 }
2232
2233 rmap_item = alloc_rmap_item();
2234 if (rmap_item) {
2235 /* It has already been zeroed */
58730ab6 2236 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2237 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2238 rmap_item->address = addr;
6514d511
HD
2239 rmap_item->rmap_list = *rmap_list;
2240 *rmap_list = rmap_item;
31dbd01f
IE
2241 }
2242 return rmap_item;
2243}
2244
21fbd591 2245static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2246{
2247 struct mm_struct *mm;
58730ab6
QZ
2248 struct ksm_mm_slot *mm_slot;
2249 struct mm_slot *slot;
31dbd01f 2250 struct vm_area_struct *vma;
21fbd591 2251 struct ksm_rmap_item *rmap_item;
a5f18ba0 2252 struct vma_iterator vmi;
90bd6fd3 2253 int nid;
31dbd01f 2254
58730ab6 2255 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2256 return NULL;
2257
58730ab6
QZ
2258 mm_slot = ksm_scan.mm_slot;
2259 if (mm_slot == &ksm_mm_head) {
2919bfd0
HD
2260 /*
2261 * A number of pages can hang around indefinitely on per-cpu
2262 * pagevecs, raised page count preventing write_protect_page
2263 * from merging them. Though it doesn't really matter much,
2264 * it is puzzling to see some stuck in pages_volatile until
2265 * other activity jostles them out, and they also prevented
2266 * LTP's KSM test from succeeding deterministically; so drain
2267 * them here (here rather than on entry to ksm_do_scan(),
2268 * so we don't IPI too often when pages_to_scan is set low).
2269 */
2270 lru_add_drain_all();
2271
4146d2d6
HD
2272 /*
2273 * Whereas stale stable_nodes on the stable_tree itself
2274 * get pruned in the regular course of stable_tree_search(),
2275 * those moved out to the migrate_nodes list can accumulate:
2276 * so prune them once before each full scan.
2277 */
2278 if (!ksm_merge_across_nodes) {
21fbd591 2279 struct ksm_stable_node *stable_node, *next;
4146d2d6
HD
2280 struct page *page;
2281
03640418
GT
2282 list_for_each_entry_safe(stable_node, next,
2283 &migrate_nodes, list) {
2cee57d1
YS
2284 page = get_ksm_page(stable_node,
2285 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2286 if (page)
2287 put_page(page);
2288 cond_resched();
2289 }
2290 }
2291
ef53d16c 2292 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2293 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2294
2295 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2296 slot = list_entry(mm_slot->slot.mm_node.next,
2297 struct mm_slot, mm_node);
2298 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2299 ksm_scan.mm_slot = mm_slot;
31dbd01f 2300 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2301 /*
2302 * Although we tested list_empty() above, a racing __ksm_exit
2303 * of the last mm on the list may have removed it since then.
2304 */
58730ab6 2305 if (mm_slot == &ksm_mm_head)
2b472611 2306 return NULL;
31dbd01f
IE
2307next_mm:
2308 ksm_scan.address = 0;
58730ab6 2309 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2310 }
2311
58730ab6 2312 slot = &mm_slot->slot;
31dbd01f 2313 mm = slot->mm;
a5f18ba0
MWO
2314 vma_iter_init(&vmi, mm, ksm_scan.address);
2315
d8ed45c5 2316 mmap_read_lock(mm);
9ba69294 2317 if (ksm_test_exit(mm))
a5f18ba0 2318 goto no_vmas;
9ba69294 2319
a5f18ba0 2320 for_each_vma(vmi, vma) {
31dbd01f
IE
2321 if (!(vma->vm_flags & VM_MERGEABLE))
2322 continue;
2323 if (ksm_scan.address < vma->vm_start)
2324 ksm_scan.address = vma->vm_start;
2325 if (!vma->anon_vma)
2326 ksm_scan.address = vma->vm_end;
2327
2328 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2329 if (ksm_test_exit(mm))
2330 break;
31dbd01f 2331 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2332 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2333 ksm_scan.address += PAGE_SIZE;
2334 cond_resched();
2335 continue;
2336 }
f7091ed6
HW
2337 if (is_zone_device_page(*page))
2338 goto next_page;
f765f540 2339 if (PageAnon(*page)) {
31dbd01f
IE
2340 flush_anon_page(vma, *page, ksm_scan.address);
2341 flush_dcache_page(*page);
58730ab6 2342 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2343 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2344 if (rmap_item) {
6514d511
HD
2345 ksm_scan.rmap_list =
2346 &rmap_item->rmap_list;
31dbd01f
IE
2347 ksm_scan.address += PAGE_SIZE;
2348 } else
2349 put_page(*page);
d8ed45c5 2350 mmap_read_unlock(mm);
31dbd01f
IE
2351 return rmap_item;
2352 }
f7091ed6 2353next_page:
21ae5b01 2354 put_page(*page);
31dbd01f
IE
2355 ksm_scan.address += PAGE_SIZE;
2356 cond_resched();
2357 }
2358 }
2359
9ba69294 2360 if (ksm_test_exit(mm)) {
a5f18ba0 2361no_vmas:
9ba69294 2362 ksm_scan.address = 0;
58730ab6 2363 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2364 }
31dbd01f
IE
2365 /*
2366 * Nuke all the rmap_items that are above this current rmap:
2367 * because there were no VM_MERGEABLE vmas with such addresses.
2368 */
420be4ed 2369 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2370
2371 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2372 slot = list_entry(mm_slot->slot.mm_node.next,
2373 struct mm_slot, mm_node);
2374 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2375 if (ksm_scan.address == 0) {
2376 /*
c1e8d7c6 2377 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2378 * throughout, and found no VM_MERGEABLE: so do the same as
2379 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2380 * This applies either when cleaning up after __ksm_exit
2381 * (but beware: we can reach here even before __ksm_exit),
2382 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2383 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2384 */
58730ab6
QZ
2385 hash_del(&mm_slot->slot.hash);
2386 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2387 spin_unlock(&ksm_mmlist_lock);
2388
58730ab6 2389 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2390 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d8ed45c5 2391 mmap_read_unlock(mm);
9ba69294
HD
2392 mmdrop(mm);
2393 } else {
d8ed45c5 2394 mmap_read_unlock(mm);
7496fea9 2395 /*
3e4e28c5 2396 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2397 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2398 * already have been freed under us by __ksm_exit()
2399 * because the "mm_slot" is still hashed and
2400 * ksm_scan.mm_slot doesn't point to it anymore.
2401 */
2402 spin_unlock(&ksm_mmlist_lock);
cd551f97 2403 }
31dbd01f
IE
2404
2405 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2406 mm_slot = ksm_scan.mm_slot;
2407 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2408 goto next_mm;
2409
31dbd01f
IE
2410 ksm_scan.seqnr++;
2411 return NULL;
2412}
2413
2414/**
2415 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2416 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2417 */
2418static void ksm_do_scan(unsigned int scan_npages)
2419{
21fbd591 2420 struct ksm_rmap_item *rmap_item;
3f649ab7 2421 struct page *page;
31dbd01f 2422
878aee7d 2423 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2424 cond_resched();
2425 rmap_item = scan_get_next_rmap_item(&page);
2426 if (!rmap_item)
2427 return;
4146d2d6 2428 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2429 put_page(page);
2430 }
2431}
2432
6e158384
HD
2433static int ksmd_should_run(void)
2434{
58730ab6 2435 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2436}
2437
31dbd01f
IE
2438static int ksm_scan_thread(void *nothing)
2439{
fcf9a0ef
KT
2440 unsigned int sleep_ms;
2441
878aee7d 2442 set_freezable();
339aa624 2443 set_user_nice(current, 5);
31dbd01f
IE
2444
2445 while (!kthread_should_stop()) {
6e158384 2446 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2447 wait_while_offlining();
6e158384 2448 if (ksmd_should_run())
31dbd01f 2449 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2450 mutex_unlock(&ksm_thread_mutex);
2451
878aee7d
AA
2452 try_to_freeze();
2453
6e158384 2454 if (ksmd_should_run()) {
fcf9a0ef
KT
2455 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2456 wait_event_interruptible_timeout(ksm_iter_wait,
2457 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2458 msecs_to_jiffies(sleep_ms));
31dbd01f 2459 } else {
878aee7d 2460 wait_event_freezable(ksm_thread_wait,
6e158384 2461 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2462 }
2463 }
2464 return 0;
2465}
2466
f8af4da3
HD
2467int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2468 unsigned long end, int advice, unsigned long *vm_flags)
2469{
2470 struct mm_struct *mm = vma->vm_mm;
d952b791 2471 int err;
f8af4da3
HD
2472
2473 switch (advice) {
2474 case MADV_MERGEABLE:
2475 /*
2476 * Be somewhat over-protective for now!
2477 */
2478 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2479 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2480 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2481 return 0; /* just ignore the advice */
2482
e1fb4a08
DJ
2483 if (vma_is_dax(vma))
2484 return 0;
2485
12564485
SA
2486#ifdef VM_SAO
2487 if (*vm_flags & VM_SAO)
2488 return 0;
2489#endif
74a04967
KA
2490#ifdef VM_SPARC_ADI
2491 if (*vm_flags & VM_SPARC_ADI)
2492 return 0;
2493#endif
cc2383ec 2494
d952b791
HD
2495 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2496 err = __ksm_enter(mm);
2497 if (err)
2498 return err;
2499 }
f8af4da3
HD
2500
2501 *vm_flags |= VM_MERGEABLE;
2502 break;
2503
2504 case MADV_UNMERGEABLE:
2505 if (!(*vm_flags & VM_MERGEABLE))
2506 return 0; /* just ignore the advice */
2507
d952b791
HD
2508 if (vma->anon_vma) {
2509 err = unmerge_ksm_pages(vma, start, end);
2510 if (err)
2511 return err;
2512 }
f8af4da3
HD
2513
2514 *vm_flags &= ~VM_MERGEABLE;
2515 break;
2516 }
2517
2518 return 0;
2519}
33cf1707 2520EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2521
2522int __ksm_enter(struct mm_struct *mm)
2523{
21fbd591 2524 struct ksm_mm_slot *mm_slot;
58730ab6 2525 struct mm_slot *slot;
6e158384
HD
2526 int needs_wakeup;
2527
58730ab6 2528 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2529 if (!mm_slot)
2530 return -ENOMEM;
2531
58730ab6
QZ
2532 slot = &mm_slot->slot;
2533
6e158384 2534 /* Check ksm_run too? Would need tighter locking */
58730ab6 2535 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2536
31dbd01f 2537 spin_lock(&ksm_mmlist_lock);
58730ab6 2538 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2539 /*
cbf86cfe
HD
2540 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2541 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2542 * down a little; when fork is followed by immediate exec, we don't
2543 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2544 *
2545 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2546 * scanning cursor, otherwise KSM pages in newly forked mms will be
2547 * missed: then we might as well insert at the end of the list.
31dbd01f 2548 */
cbf86cfe 2549 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 2550 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 2551 else
58730ab6 2552 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
2553 spin_unlock(&ksm_mmlist_lock);
2554
f8af4da3 2555 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2556 mmgrab(mm);
6e158384
HD
2557
2558 if (needs_wakeup)
2559 wake_up_interruptible(&ksm_thread_wait);
2560
f8af4da3
HD
2561 return 0;
2562}
2563
1c2fb7a4 2564void __ksm_exit(struct mm_struct *mm)
f8af4da3 2565{
21fbd591 2566 struct ksm_mm_slot *mm_slot;
58730ab6 2567 struct mm_slot *slot;
9ba69294 2568 int easy_to_free = 0;
cd551f97 2569
31dbd01f 2570 /*
9ba69294
HD
2571 * This process is exiting: if it's straightforward (as is the
2572 * case when ksmd was never running), free mm_slot immediately.
2573 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2574 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2575 * are freed, and leave the mm_slot on the list for ksmd to free.
2576 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2577 */
9ba69294 2578
cd551f97 2579 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2580 slot = mm_slot_lookup(mm_slots_hash, mm);
2581 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 2582 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2583 if (!mm_slot->rmap_list) {
58730ab6
QZ
2584 hash_del(&slot->hash);
2585 list_del(&slot->mm_node);
9ba69294
HD
2586 easy_to_free = 1;
2587 } else {
58730ab6
QZ
2588 list_move(&slot->mm_node,
2589 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 2590 }
cd551f97 2591 }
cd551f97
HD
2592 spin_unlock(&ksm_mmlist_lock);
2593
9ba69294 2594 if (easy_to_free) {
58730ab6 2595 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294
HD
2596 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2597 mmdrop(mm);
2598 } else if (mm_slot) {
d8ed45c5
ML
2599 mmap_write_lock(mm);
2600 mmap_write_unlock(mm);
9ba69294 2601 }
31dbd01f
IE
2602}
2603
cbf86cfe 2604struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2605 struct vm_area_struct *vma, unsigned long address)
2606{
e05b3453
MWO
2607 struct folio *folio = page_folio(page);
2608 struct anon_vma *anon_vma = folio_anon_vma(folio);
5ad64688
HD
2609 struct page *new_page;
2610
cbf86cfe
HD
2611 if (PageKsm(page)) {
2612 if (page_stable_node(page) &&
2613 !(ksm_run & KSM_RUN_UNMERGE))
2614 return page; /* no need to copy it */
2615 } else if (!anon_vma) {
2616 return page; /* no need to copy it */
e1c63e11
NS
2617 } else if (page->index == linear_page_index(vma, address) &&
2618 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2619 return page; /* still no need to copy it */
2620 }
2621 if (!PageUptodate(page))
2622 return page; /* let do_swap_page report the error */
2623
5ad64688 2624 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2625 if (new_page &&
2626 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2627 put_page(new_page);
2628 new_page = NULL;
2629 }
5ad64688 2630 if (new_page) {
6b970599
KW
2631 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2632 put_page(new_page);
2633 memory_failure_queue(page_to_pfn(page), 0);
2634 return ERR_PTR(-EHWPOISON);
2635 }
5ad64688
HD
2636 SetPageDirty(new_page);
2637 __SetPageUptodate(new_page);
48c935ad 2638 __SetPageLocked(new_page);
4d45c3af
YY
2639#ifdef CONFIG_SWAP
2640 count_vm_event(KSM_SWPIN_COPY);
2641#endif
5ad64688
HD
2642 }
2643
5ad64688
HD
2644 return new_page;
2645}
2646
6d4675e6 2647void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 2648{
21fbd591
QZ
2649 struct ksm_stable_node *stable_node;
2650 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
2651 int search_new_forks = 0;
2652
2f031c6f 2653 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
2654
2655 /*
2656 * Rely on the page lock to protect against concurrent modifications
2657 * to that page's node of the stable tree.
2658 */
2f031c6f 2659 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 2660
2f031c6f 2661 stable_node = folio_stable_node(folio);
e9995ef9 2662 if (!stable_node)
1df631ae 2663 return;
e9995ef9 2664again:
b67bfe0d 2665 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2666 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2667 struct anon_vma_chain *vmac;
e9995ef9
HD
2668 struct vm_area_struct *vma;
2669
ad12695f 2670 cond_resched();
6d4675e6
MK
2671 if (!anon_vma_trylock_read(anon_vma)) {
2672 if (rwc->try_lock) {
2673 rwc->contended = true;
2674 return;
2675 }
2676 anon_vma_lock_read(anon_vma);
2677 }
bf181b9f
ML
2678 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2679 0, ULONG_MAX) {
1105a2fc
JH
2680 unsigned long addr;
2681
ad12695f 2682 cond_resched();
5beb4930 2683 vma = vmac->vma;
1105a2fc
JH
2684
2685 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2686 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2687
2688 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2689 continue;
2690 /*
2691 * Initially we examine only the vma which covers this
2692 * rmap_item; but later, if there is still work to do,
2693 * we examine covering vmas in other mms: in case they
2694 * were forked from the original since ksmd passed.
2695 */
2696 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2697 continue;
2698
0dd1c7bb
JK
2699 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2700 continue;
2701
2f031c6f 2702 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 2703 anon_vma_unlock_read(anon_vma);
1df631ae 2704 return;
e9995ef9 2705 }
2f031c6f 2706 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 2707 anon_vma_unlock_read(anon_vma);
1df631ae 2708 return;
0dd1c7bb 2709 }
e9995ef9 2710 }
b6b19f25 2711 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2712 }
2713 if (!search_new_forks++)
2714 goto again;
e9995ef9
HD
2715}
2716
52629506 2717#ifdef CONFIG_MIGRATION
19138349 2718void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 2719{
21fbd591 2720 struct ksm_stable_node *stable_node;
e9995ef9 2721
19138349
MWO
2722 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2723 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2724 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2725
19138349 2726 stable_node = folio_stable_node(folio);
e9995ef9 2727 if (stable_node) {
19138349
MWO
2728 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2729 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2730 /*
19138349 2731 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2732 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2733 * to get_ksm_page() before it can see that folio->mapping
2734 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2735 */
2736 smp_wmb();
19138349 2737 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2738 }
2739}
2740#endif /* CONFIG_MIGRATION */
2741
62b61f61 2742#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2743static void wait_while_offlining(void)
2744{
2745 while (ksm_run & KSM_RUN_OFFLINE) {
2746 mutex_unlock(&ksm_thread_mutex);
2747 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2748 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2749 mutex_lock(&ksm_thread_mutex);
2750 }
2751}
2752
21fbd591 2753static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2754 unsigned long start_pfn,
2755 unsigned long end_pfn)
2756{
2757 if (stable_node->kpfn >= start_pfn &&
2758 stable_node->kpfn < end_pfn) {
2759 /*
2760 * Don't get_ksm_page, page has already gone:
2761 * which is why we keep kpfn instead of page*
2762 */
2763 remove_node_from_stable_tree(stable_node);
2764 return true;
2765 }
2766 return false;
2767}
2768
21fbd591 2769static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2770 unsigned long start_pfn,
2771 unsigned long end_pfn,
2772 struct rb_root *root)
2773{
21fbd591 2774 struct ksm_stable_node *dup;
2c653d0e
AA
2775 struct hlist_node *hlist_safe;
2776
2777 if (!is_stable_node_chain(stable_node)) {
2778 VM_BUG_ON(is_stable_node_dup(stable_node));
2779 return stable_node_dup_remove_range(stable_node, start_pfn,
2780 end_pfn);
2781 }
2782
2783 hlist_for_each_entry_safe(dup, hlist_safe,
2784 &stable_node->hlist, hlist_dup) {
2785 VM_BUG_ON(!is_stable_node_dup(dup));
2786 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2787 }
2788 if (hlist_empty(&stable_node->hlist)) {
2789 free_stable_node_chain(stable_node, root);
2790 return true; /* notify caller that tree was rebalanced */
2791 } else
2792 return false;
2793}
2794
ee0ea59c
HD
2795static void ksm_check_stable_tree(unsigned long start_pfn,
2796 unsigned long end_pfn)
62b61f61 2797{
21fbd591 2798 struct ksm_stable_node *stable_node, *next;
62b61f61 2799 struct rb_node *node;
90bd6fd3 2800 int nid;
62b61f61 2801
ef53d16c
HD
2802 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2803 node = rb_first(root_stable_tree + nid);
ee0ea59c 2804 while (node) {
21fbd591 2805 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
2806 if (stable_node_chain_remove_range(stable_node,
2807 start_pfn, end_pfn,
2808 root_stable_tree +
2809 nid))
ef53d16c 2810 node = rb_first(root_stable_tree + nid);
2c653d0e 2811 else
ee0ea59c
HD
2812 node = rb_next(node);
2813 cond_resched();
90bd6fd3 2814 }
ee0ea59c 2815 }
03640418 2816 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2817 if (stable_node->kpfn >= start_pfn &&
2818 stable_node->kpfn < end_pfn)
2819 remove_node_from_stable_tree(stable_node);
2820 cond_resched();
2821 }
62b61f61
HD
2822}
2823
2824static int ksm_memory_callback(struct notifier_block *self,
2825 unsigned long action, void *arg)
2826{
2827 struct memory_notify *mn = arg;
62b61f61
HD
2828
2829 switch (action) {
2830 case MEM_GOING_OFFLINE:
2831 /*
ef4d43a8
HD
2832 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2833 * and remove_all_stable_nodes() while memory is going offline:
2834 * it is unsafe for them to touch the stable tree at this time.
2835 * But unmerge_ksm_pages(), rmap lookups and other entry points
2836 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2837 */
ef4d43a8
HD
2838 mutex_lock(&ksm_thread_mutex);
2839 ksm_run |= KSM_RUN_OFFLINE;
2840 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2841 break;
2842
2843 case MEM_OFFLINE:
2844 /*
2845 * Most of the work is done by page migration; but there might
2846 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2847 * pages which have been offlined: prune those from the tree,
2848 * otherwise get_ksm_page() might later try to access a
2849 * non-existent struct page.
62b61f61 2850 */
ee0ea59c
HD
2851 ksm_check_stable_tree(mn->start_pfn,
2852 mn->start_pfn + mn->nr_pages);
e4a9bc58 2853 fallthrough;
62b61f61 2854 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2855 mutex_lock(&ksm_thread_mutex);
2856 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2857 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2858
2859 smp_mb(); /* wake_up_bit advises this */
2860 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2861 break;
2862 }
2863 return NOTIFY_OK;
2864}
ef4d43a8
HD
2865#else
2866static void wait_while_offlining(void)
2867{
2868}
62b61f61
HD
2869#endif /* CONFIG_MEMORY_HOTREMOVE */
2870
2ffd8679
HD
2871#ifdef CONFIG_SYSFS
2872/*
2873 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2874 */
2875
31dbd01f
IE
2876#define KSM_ATTR_RO(_name) \
2877 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2878#define KSM_ATTR(_name) \
1bad2e5c 2879 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
2880
2881static ssize_t sleep_millisecs_show(struct kobject *kobj,
2882 struct kobj_attribute *attr, char *buf)
2883{
ae7a927d 2884 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
2885}
2886
2887static ssize_t sleep_millisecs_store(struct kobject *kobj,
2888 struct kobj_attribute *attr,
2889 const char *buf, size_t count)
2890{
dfefd226 2891 unsigned int msecs;
31dbd01f
IE
2892 int err;
2893
dfefd226
AD
2894 err = kstrtouint(buf, 10, &msecs);
2895 if (err)
31dbd01f
IE
2896 return -EINVAL;
2897
2898 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2899 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2900
2901 return count;
2902}
2903KSM_ATTR(sleep_millisecs);
2904
2905static ssize_t pages_to_scan_show(struct kobject *kobj,
2906 struct kobj_attribute *attr, char *buf)
2907{
ae7a927d 2908 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
2909}
2910
2911static ssize_t pages_to_scan_store(struct kobject *kobj,
2912 struct kobj_attribute *attr,
2913 const char *buf, size_t count)
2914{
dfefd226 2915 unsigned int nr_pages;
31dbd01f 2916 int err;
31dbd01f 2917
dfefd226
AD
2918 err = kstrtouint(buf, 10, &nr_pages);
2919 if (err)
31dbd01f
IE
2920 return -EINVAL;
2921
2922 ksm_thread_pages_to_scan = nr_pages;
2923
2924 return count;
2925}
2926KSM_ATTR(pages_to_scan);
2927
2928static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2929 char *buf)
2930{
ae7a927d 2931 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
2932}
2933
2934static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2935 const char *buf, size_t count)
2936{
dfefd226 2937 unsigned int flags;
31dbd01f 2938 int err;
31dbd01f 2939
dfefd226
AD
2940 err = kstrtouint(buf, 10, &flags);
2941 if (err)
31dbd01f
IE
2942 return -EINVAL;
2943 if (flags > KSM_RUN_UNMERGE)
2944 return -EINVAL;
2945
2946 /*
2947 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2948 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2949 * breaking COW to free the pages_shared (but leaves mm_slots
2950 * on the list for when ksmd may be set running again).
31dbd01f
IE
2951 */
2952
2953 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2954 wait_while_offlining();
31dbd01f
IE
2955 if (ksm_run != flags) {
2956 ksm_run = flags;
d952b791 2957 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2958 set_current_oom_origin();
d952b791 2959 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2960 clear_current_oom_origin();
d952b791
HD
2961 if (err) {
2962 ksm_run = KSM_RUN_STOP;
2963 count = err;
2964 }
2965 }
31dbd01f
IE
2966 }
2967 mutex_unlock(&ksm_thread_mutex);
2968
2969 if (flags & KSM_RUN_MERGE)
2970 wake_up_interruptible(&ksm_thread_wait);
2971
2972 return count;
2973}
2974KSM_ATTR(run);
2975
90bd6fd3
PH
2976#ifdef CONFIG_NUMA
2977static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 2978 struct kobj_attribute *attr, char *buf)
90bd6fd3 2979{
ae7a927d 2980 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
2981}
2982
2983static ssize_t merge_across_nodes_store(struct kobject *kobj,
2984 struct kobj_attribute *attr,
2985 const char *buf, size_t count)
2986{
2987 int err;
2988 unsigned long knob;
2989
2990 err = kstrtoul(buf, 10, &knob);
2991 if (err)
2992 return err;
2993 if (knob > 1)
2994 return -EINVAL;
2995
2996 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2997 wait_while_offlining();
90bd6fd3 2998 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2999 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 3000 err = -EBUSY;
ef53d16c
HD
3001 else if (root_stable_tree == one_stable_tree) {
3002 struct rb_root *buf;
3003 /*
3004 * This is the first time that we switch away from the
3005 * default of merging across nodes: must now allocate
3006 * a buffer to hold as many roots as may be needed.
3007 * Allocate stable and unstable together:
3008 * MAXSMP NODES_SHIFT 10 will use 16kB.
3009 */
bafe1e14
JP
3010 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3011 GFP_KERNEL);
ef53d16c
HD
3012 /* Let us assume that RB_ROOT is NULL is zero */
3013 if (!buf)
3014 err = -ENOMEM;
3015 else {
3016 root_stable_tree = buf;
3017 root_unstable_tree = buf + nr_node_ids;
3018 /* Stable tree is empty but not the unstable */
3019 root_unstable_tree[0] = one_unstable_tree[0];
3020 }
3021 }
3022 if (!err) {
90bd6fd3 3023 ksm_merge_across_nodes = knob;
ef53d16c
HD
3024 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3025 }
90bd6fd3
PH
3026 }
3027 mutex_unlock(&ksm_thread_mutex);
3028
3029 return err ? err : count;
3030}
3031KSM_ATTR(merge_across_nodes);
3032#endif
3033
e86c59b1 3034static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3035 struct kobj_attribute *attr, char *buf)
e86c59b1 3036{
ae7a927d 3037 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3038}
3039static ssize_t use_zero_pages_store(struct kobject *kobj,
3040 struct kobj_attribute *attr,
3041 const char *buf, size_t count)
3042{
3043 int err;
3044 bool value;
3045
3046 err = kstrtobool(buf, &value);
3047 if (err)
3048 return -EINVAL;
3049
3050 ksm_use_zero_pages = value;
3051
3052 return count;
3053}
3054KSM_ATTR(use_zero_pages);
3055
2c653d0e
AA
3056static ssize_t max_page_sharing_show(struct kobject *kobj,
3057 struct kobj_attribute *attr, char *buf)
3058{
ae7a927d 3059 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3060}
3061
3062static ssize_t max_page_sharing_store(struct kobject *kobj,
3063 struct kobj_attribute *attr,
3064 const char *buf, size_t count)
3065{
3066 int err;
3067 int knob;
3068
3069 err = kstrtoint(buf, 10, &knob);
3070 if (err)
3071 return err;
3072 /*
3073 * When a KSM page is created it is shared by 2 mappings. This
3074 * being a signed comparison, it implicitly verifies it's not
3075 * negative.
3076 */
3077 if (knob < 2)
3078 return -EINVAL;
3079
3080 if (READ_ONCE(ksm_max_page_sharing) == knob)
3081 return count;
3082
3083 mutex_lock(&ksm_thread_mutex);
3084 wait_while_offlining();
3085 if (ksm_max_page_sharing != knob) {
3086 if (ksm_pages_shared || remove_all_stable_nodes())
3087 err = -EBUSY;
3088 else
3089 ksm_max_page_sharing = knob;
3090 }
3091 mutex_unlock(&ksm_thread_mutex);
3092
3093 return err ? err : count;
3094}
3095KSM_ATTR(max_page_sharing);
3096
b4028260
HD
3097static ssize_t pages_shared_show(struct kobject *kobj,
3098 struct kobj_attribute *attr, char *buf)
3099{
ae7a927d 3100 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3101}
3102KSM_ATTR_RO(pages_shared);
3103
3104static ssize_t pages_sharing_show(struct kobject *kobj,
3105 struct kobj_attribute *attr, char *buf)
3106{
ae7a927d 3107 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3108}
3109KSM_ATTR_RO(pages_sharing);
3110
473b0ce4
HD
3111static ssize_t pages_unshared_show(struct kobject *kobj,
3112 struct kobj_attribute *attr, char *buf)
3113{
ae7a927d 3114 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3115}
3116KSM_ATTR_RO(pages_unshared);
3117
3118static ssize_t pages_volatile_show(struct kobject *kobj,
3119 struct kobj_attribute *attr, char *buf)
3120{
3121 long ksm_pages_volatile;
3122
3123 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3124 - ksm_pages_sharing - ksm_pages_unshared;
3125 /*
3126 * It was not worth any locking to calculate that statistic,
3127 * but it might therefore sometimes be negative: conceal that.
3128 */
3129 if (ksm_pages_volatile < 0)
3130 ksm_pages_volatile = 0;
ae7a927d 3131 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3132}
3133KSM_ATTR_RO(pages_volatile);
3134
2c653d0e
AA
3135static ssize_t stable_node_dups_show(struct kobject *kobj,
3136 struct kobj_attribute *attr, char *buf)
3137{
ae7a927d 3138 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3139}
3140KSM_ATTR_RO(stable_node_dups);
3141
3142static ssize_t stable_node_chains_show(struct kobject *kobj,
3143 struct kobj_attribute *attr, char *buf)
3144{
ae7a927d 3145 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3146}
3147KSM_ATTR_RO(stable_node_chains);
3148
3149static ssize_t
3150stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3151 struct kobj_attribute *attr,
3152 char *buf)
3153{
ae7a927d 3154 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3155}
3156
3157static ssize_t
3158stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3159 struct kobj_attribute *attr,
3160 const char *buf, size_t count)
3161{
584ff0df 3162 unsigned int msecs;
2c653d0e
AA
3163 int err;
3164
584ff0df
ZB
3165 err = kstrtouint(buf, 10, &msecs);
3166 if (err)
2c653d0e
AA
3167 return -EINVAL;
3168
3169 ksm_stable_node_chains_prune_millisecs = msecs;
3170
3171 return count;
3172}
3173KSM_ATTR(stable_node_chains_prune_millisecs);
3174
473b0ce4
HD
3175static ssize_t full_scans_show(struct kobject *kobj,
3176 struct kobj_attribute *attr, char *buf)
3177{
ae7a927d 3178 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3179}
3180KSM_ATTR_RO(full_scans);
3181
31dbd01f
IE
3182static struct attribute *ksm_attrs[] = {
3183 &sleep_millisecs_attr.attr,
3184 &pages_to_scan_attr.attr,
3185 &run_attr.attr,
b4028260
HD
3186 &pages_shared_attr.attr,
3187 &pages_sharing_attr.attr,
473b0ce4
HD
3188 &pages_unshared_attr.attr,
3189 &pages_volatile_attr.attr,
3190 &full_scans_attr.attr,
90bd6fd3
PH
3191#ifdef CONFIG_NUMA
3192 &merge_across_nodes_attr.attr,
3193#endif
2c653d0e
AA
3194 &max_page_sharing_attr.attr,
3195 &stable_node_chains_attr.attr,
3196 &stable_node_dups_attr.attr,
3197 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3198 &use_zero_pages_attr.attr,
31dbd01f
IE
3199 NULL,
3200};
3201
f907c26a 3202static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3203 .attrs = ksm_attrs,
3204 .name = "ksm",
3205};
2ffd8679 3206#endif /* CONFIG_SYSFS */
31dbd01f
IE
3207
3208static int __init ksm_init(void)
3209{
3210 struct task_struct *ksm_thread;
3211 int err;
3212
e86c59b1
CI
3213 /* The correct value depends on page size and endianness */
3214 zero_checksum = calc_checksum(ZERO_PAGE(0));
3215 /* Default to false for backwards compatibility */
3216 ksm_use_zero_pages = false;
3217
31dbd01f
IE
3218 err = ksm_slab_init();
3219 if (err)
3220 goto out;
3221
31dbd01f
IE
3222 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3223 if (IS_ERR(ksm_thread)) {
25acde31 3224 pr_err("ksm: creating kthread failed\n");
31dbd01f 3225 err = PTR_ERR(ksm_thread);
d9f8984c 3226 goto out_free;
31dbd01f
IE
3227 }
3228
2ffd8679 3229#ifdef CONFIG_SYSFS
31dbd01f
IE
3230 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3231 if (err) {
25acde31 3232 pr_err("ksm: register sysfs failed\n");
2ffd8679 3233 kthread_stop(ksm_thread);
d9f8984c 3234 goto out_free;
31dbd01f 3235 }
c73602ad
HD
3236#else
3237 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3238
2ffd8679 3239#endif /* CONFIG_SYSFS */
31dbd01f 3240
62b61f61 3241#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3242 /* There is no significance to this priority 100 */
1eeaa4fd 3243 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3244#endif
31dbd01f
IE
3245 return 0;
3246
d9f8984c 3247out_free:
31dbd01f
IE
3248 ksm_slab_free();
3249out:
3250 return err;
f8af4da3 3251}
a64fb3cd 3252subsys_initcall(ksm_init);