mm: remove VM_FAULT_WRITE
[linux-block.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f 17#include <linux/mm.h>
36090def 18#include <linux/mm_inline.h>
31dbd01f 19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
58730ab6 45#include "mm_slot.h"
31dbd01f 46
e850dcf5
HD
47#ifdef CONFIG_NUMA
48#define NUMA(x) (x)
49#define DO_NUMA(x) do { (x); } while (0)
50#else
51#define NUMA(x) (0)
52#define DO_NUMA(x) do { } while (0)
53#endif
54
5a2ca3ef
MR
55/**
56 * DOC: Overview
57 *
31dbd01f
IE
58 * A few notes about the KSM scanning process,
59 * to make it easier to understand the data structures below:
60 *
61 * In order to reduce excessive scanning, KSM sorts the memory pages by their
62 * contents into a data structure that holds pointers to the pages' locations.
63 *
64 * Since the contents of the pages may change at any moment, KSM cannot just
65 * insert the pages into a normal sorted tree and expect it to find anything.
66 * Therefore KSM uses two data structures - the stable and the unstable tree.
67 *
68 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
69 * by their contents. Because each such page is write-protected, searching on
70 * this tree is fully assured to be working (except when pages are unmapped),
71 * and therefore this tree is called the stable tree.
72 *
5a2ca3ef
MR
73 * The stable tree node includes information required for reverse
74 * mapping from a KSM page to virtual addresses that map this page.
75 *
76 * In order to avoid large latencies of the rmap walks on KSM pages,
77 * KSM maintains two types of nodes in the stable tree:
78 *
79 * * the regular nodes that keep the reverse mapping structures in a
80 * linked list
81 * * the "chains" that link nodes ("dups") that represent the same
82 * write protected memory content, but each "dup" corresponds to a
83 * different KSM page copy of that content
84 *
85 * Internally, the regular nodes, "dups" and "chains" are represented
21fbd591 86 * using the same struct ksm_stable_node structure.
5a2ca3ef 87 *
31dbd01f
IE
88 * In addition to the stable tree, KSM uses a second data structure called the
89 * unstable tree: this tree holds pointers to pages which have been found to
90 * be "unchanged for a period of time". The unstable tree sorts these pages
91 * by their contents, but since they are not write-protected, KSM cannot rely
92 * upon the unstable tree to work correctly - the unstable tree is liable to
93 * be corrupted as its contents are modified, and so it is called unstable.
94 *
95 * KSM solves this problem by several techniques:
96 *
97 * 1) The unstable tree is flushed every time KSM completes scanning all
98 * memory areas, and then the tree is rebuilt again from the beginning.
99 * 2) KSM will only insert into the unstable tree, pages whose hash value
100 * has not changed since the previous scan of all memory areas.
101 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
102 * colors of the nodes and not on their contents, assuring that even when
103 * the tree gets "corrupted" it won't get out of balance, so scanning time
104 * remains the same (also, searching and inserting nodes in an rbtree uses
105 * the same algorithm, so we have no overhead when we flush and rebuild).
106 * 4) KSM never flushes the stable tree, which means that even if it were to
107 * take 10 attempts to find a page in the unstable tree, once it is found,
108 * it is secured in the stable tree. (When we scan a new page, we first
109 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
110 *
111 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
112 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
113 */
114
115/**
21fbd591 116 * struct ksm_mm_slot - ksm information per mm that is being scanned
58730ab6 117 * @slot: hash lookup from mm to mm_slot
6514d511 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f 119 */
21fbd591 120struct ksm_mm_slot {
58730ab6 121 struct mm_slot slot;
21fbd591 122 struct ksm_rmap_item *rmap_list;
31dbd01f
IE
123};
124
125/**
126 * struct ksm_scan - cursor for scanning
127 * @mm_slot: the current mm_slot we are scanning
128 * @address: the next address inside that to be scanned
6514d511 129 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
130 * @seqnr: count of completed full scans (needed when removing unstable node)
131 *
132 * There is only the one ksm_scan instance of this cursor structure.
133 */
134struct ksm_scan {
21fbd591 135 struct ksm_mm_slot *mm_slot;
31dbd01f 136 unsigned long address;
21fbd591 137 struct ksm_rmap_item **rmap_list;
31dbd01f
IE
138 unsigned long seqnr;
139};
140
7b6ba2c7 141/**
21fbd591 142 * struct ksm_stable_node - node of the stable rbtree
7b6ba2c7 143 * @node: rb node of this ksm page in the stable tree
4146d2d6 144 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 145 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 146 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 147 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 148 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
149 * @chain_prune_time: time of the last full garbage collection
150 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 151 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7 152 */
21fbd591 153struct ksm_stable_node {
4146d2d6
HD
154 union {
155 struct rb_node node; /* when node of stable tree */
156 struct { /* when listed for migration */
157 struct list_head *head;
2c653d0e
AA
158 struct {
159 struct hlist_node hlist_dup;
160 struct list_head list;
161 };
4146d2d6
HD
162 };
163 };
7b6ba2c7 164 struct hlist_head hlist;
2c653d0e
AA
165 union {
166 unsigned long kpfn;
167 unsigned long chain_prune_time;
168 };
169 /*
170 * STABLE_NODE_CHAIN can be any negative number in
171 * rmap_hlist_len negative range, but better not -1 to be able
172 * to reliably detect underflows.
173 */
174#define STABLE_NODE_CHAIN -1024
175 int rmap_hlist_len;
4146d2d6
HD
176#ifdef CONFIG_NUMA
177 int nid;
178#endif
7b6ba2c7
HD
179};
180
31dbd01f 181/**
21fbd591 182 * struct ksm_rmap_item - reverse mapping item for virtual addresses
6514d511 183 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 184 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 185 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
186 * @mm: the memory structure this rmap_item is pointing into
187 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
188 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
189 * @node: rb node of this rmap_item in the unstable tree
190 * @head: pointer to stable_node heading this list in the stable tree
191 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f 192 */
21fbd591
QZ
193struct ksm_rmap_item {
194 struct ksm_rmap_item *rmap_list;
bc56620b
HD
195 union {
196 struct anon_vma *anon_vma; /* when stable */
197#ifdef CONFIG_NUMA
198 int nid; /* when node of unstable tree */
199#endif
200 };
31dbd01f
IE
201 struct mm_struct *mm;
202 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 203 unsigned int oldchecksum; /* when unstable */
31dbd01f 204 union {
7b6ba2c7
HD
205 struct rb_node node; /* when node of unstable tree */
206 struct { /* when listed from stable tree */
21fbd591 207 struct ksm_stable_node *head;
7b6ba2c7
HD
208 struct hlist_node hlist;
209 };
31dbd01f
IE
210 };
211};
212
213#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
214#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
215#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
216
217/* The stable and unstable tree heads */
ef53d16c
HD
218static struct rb_root one_stable_tree[1] = { RB_ROOT };
219static struct rb_root one_unstable_tree[1] = { RB_ROOT };
220static struct rb_root *root_stable_tree = one_stable_tree;
221static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 222
4146d2d6
HD
223/* Recently migrated nodes of stable tree, pending proper placement */
224static LIST_HEAD(migrate_nodes);
2c653d0e 225#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 226
4ca3a69b
SL
227#define MM_SLOTS_HASH_BITS 10
228static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f 229
21fbd591 230static struct ksm_mm_slot ksm_mm_head = {
58730ab6 231 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
31dbd01f
IE
232};
233static struct ksm_scan ksm_scan = {
234 .mm_slot = &ksm_mm_head,
235};
236
237static struct kmem_cache *rmap_item_cache;
7b6ba2c7 238static struct kmem_cache *stable_node_cache;
31dbd01f
IE
239static struct kmem_cache *mm_slot_cache;
240
241/* The number of nodes in the stable tree */
b4028260 242static unsigned long ksm_pages_shared;
31dbd01f 243
e178dfde 244/* The number of page slots additionally sharing those nodes */
b4028260 245static unsigned long ksm_pages_sharing;
31dbd01f 246
473b0ce4
HD
247/* The number of nodes in the unstable tree */
248static unsigned long ksm_pages_unshared;
249
250/* The number of rmap_items in use: to calculate pages_volatile */
251static unsigned long ksm_rmap_items;
252
2c653d0e
AA
253/* The number of stable_node chains */
254static unsigned long ksm_stable_node_chains;
255
256/* The number of stable_node dups linked to the stable_node chains */
257static unsigned long ksm_stable_node_dups;
258
259/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 260static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
261
262/* Maximum number of page slots sharing a stable node */
263static int ksm_max_page_sharing = 256;
264
31dbd01f 265/* Number of pages ksmd should scan in one batch */
2c6854fd 266static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
267
268/* Milliseconds ksmd should sleep between batches */
2ffd8679 269static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 270
e86c59b1
CI
271/* Checksum of an empty (zeroed) page */
272static unsigned int zero_checksum __read_mostly;
273
274/* Whether to merge empty (zeroed) pages with actual zero pages */
275static bool ksm_use_zero_pages __read_mostly;
276
e850dcf5 277#ifdef CONFIG_NUMA
90bd6fd3
PH
278/* Zeroed when merging across nodes is not allowed */
279static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 280static int ksm_nr_node_ids = 1;
e850dcf5
HD
281#else
282#define ksm_merge_across_nodes 1U
ef53d16c 283#define ksm_nr_node_ids 1
e850dcf5 284#endif
90bd6fd3 285
31dbd01f
IE
286#define KSM_RUN_STOP 0
287#define KSM_RUN_MERGE 1
288#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
289#define KSM_RUN_OFFLINE 4
290static unsigned long ksm_run = KSM_RUN_STOP;
291static void wait_while_offlining(void);
31dbd01f
IE
292
293static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 294static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
295static DEFINE_MUTEX(ksm_thread_mutex);
296static DEFINE_SPINLOCK(ksm_mmlist_lock);
297
21fbd591 298#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
31dbd01f
IE
299 sizeof(struct __struct), __alignof__(struct __struct),\
300 (__flags), NULL)
301
302static int __init ksm_slab_init(void)
303{
21fbd591 304 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
31dbd01f
IE
305 if (!rmap_item_cache)
306 goto out;
307
21fbd591 308 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
7b6ba2c7
HD
309 if (!stable_node_cache)
310 goto out_free1;
311
21fbd591 312 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
31dbd01f 313 if (!mm_slot_cache)
7b6ba2c7 314 goto out_free2;
31dbd01f
IE
315
316 return 0;
317
7b6ba2c7
HD
318out_free2:
319 kmem_cache_destroy(stable_node_cache);
320out_free1:
31dbd01f
IE
321 kmem_cache_destroy(rmap_item_cache);
322out:
323 return -ENOMEM;
324}
325
326static void __init ksm_slab_free(void)
327{
328 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 329 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
330 kmem_cache_destroy(rmap_item_cache);
331 mm_slot_cache = NULL;
332}
333
21fbd591 334static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
2c653d0e
AA
335{
336 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
337}
338
21fbd591 339static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
2c653d0e
AA
340{
341 return dup->head == STABLE_NODE_DUP_HEAD;
342}
343
21fbd591
QZ
344static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
345 struct ksm_stable_node *chain)
2c653d0e
AA
346{
347 VM_BUG_ON(is_stable_node_dup(dup));
348 dup->head = STABLE_NODE_DUP_HEAD;
349 VM_BUG_ON(!is_stable_node_chain(chain));
350 hlist_add_head(&dup->hlist_dup, &chain->hlist);
351 ksm_stable_node_dups++;
352}
353
21fbd591 354static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e 355{
b4fecc67 356 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
357 hlist_del(&dup->hlist_dup);
358 ksm_stable_node_dups--;
359}
360
21fbd591 361static inline void stable_node_dup_del(struct ksm_stable_node *dup)
2c653d0e
AA
362{
363 VM_BUG_ON(is_stable_node_chain(dup));
364 if (is_stable_node_dup(dup))
365 __stable_node_dup_del(dup);
366 else
367 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
368#ifdef CONFIG_DEBUG_VM
369 dup->head = NULL;
370#endif
371}
372
21fbd591 373static inline struct ksm_rmap_item *alloc_rmap_item(void)
31dbd01f 374{
21fbd591 375 struct ksm_rmap_item *rmap_item;
473b0ce4 376
5b398e41 377 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
378 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
379 if (rmap_item)
380 ksm_rmap_items++;
381 return rmap_item;
31dbd01f
IE
382}
383
21fbd591 384static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
31dbd01f 385{
473b0ce4 386 ksm_rmap_items--;
cb4df4ca 387 rmap_item->mm->ksm_rmap_items--;
31dbd01f
IE
388 rmap_item->mm = NULL; /* debug safety */
389 kmem_cache_free(rmap_item_cache, rmap_item);
390}
391
21fbd591 392static inline struct ksm_stable_node *alloc_stable_node(void)
7b6ba2c7 393{
6213055f 394 /*
395 * The allocation can take too long with GFP_KERNEL when memory is under
396 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
397 * grants access to memory reserves, helping to avoid this problem.
398 */
399 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
400}
401
21fbd591 402static inline void free_stable_node(struct ksm_stable_node *stable_node)
7b6ba2c7 403{
2c653d0e
AA
404 VM_BUG_ON(stable_node->rmap_hlist_len &&
405 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
406 kmem_cache_free(stable_node_cache, stable_node);
407}
408
a913e182
HD
409/*
410 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
411 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 412 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
413 * a special flag: they can just back out as soon as mm_users goes to zero.
414 * ksm_test_exit() is used throughout to make this test for exit: in some
415 * places for correctness, in some places just to avoid unnecessary work.
416 */
417static inline bool ksm_test_exit(struct mm_struct *mm)
418{
419 return atomic_read(&mm->mm_users) == 0;
420}
421
31dbd01f
IE
422/*
423 * We use break_ksm to break COW on a ksm page: it's a stripped down
424 *
7a9547fd 425 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
31dbd01f
IE
426 * put_page(page);
427 *
428 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
429 * in case the application has unmapped and remapped mm,addr meanwhile.
430 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 431 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126
DH
432 *
433 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
434 * of the process that owns 'vma'. We also do not want to enforce
435 * protection keys here anyway.
31dbd01f 436 */
d952b791 437static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
438{
439 struct page *page;
50a7ca3c 440 vm_fault_t ret = 0;
31dbd01f
IE
441
442 do {
58f595c6
DH
443 bool ksm_page = false;
444
31dbd01f 445 cond_resched();
1b2ee126
DH
446 page = follow_page(vma, addr,
447 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
f7091ed6 448 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
449 break;
450 if (PageKsm(page))
58f595c6 451 ksm_page = true;
31dbd01f 452 put_page(page);
58f595c6
DH
453
454 if (!ksm_page)
455 return 0;
456 ret = handle_mm_fault(vma, addr,
457 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
458 NULL);
459 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791 460 /*
58f595c6
DH
461 * We must loop until we no longer find a KSM page because
462 * handle_mm_fault() may back out if there's any difficulty e.g. if
463 * pte accessed bit gets updated concurrently.
d952b791
HD
464 *
465 * VM_FAULT_SIGBUS could occur if we race with truncation of the
466 * backing file, which also invalidates anonymous pages: that's
467 * okay, that truncation will have unmapped the PageKsm for us.
468 *
469 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
470 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
471 * current task has TIF_MEMDIE set, and will be OOM killed on return
472 * to user; and ksmd, having no mm, would never be chosen for that.
473 *
474 * But if the mm is in a limited mem_cgroup, then the fault may fail
475 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
476 * even ksmd can fail in this way - though it's usually breaking ksm
477 * just to undo a merge it made a moment before, so unlikely to oom.
478 *
479 * That's a pity: we might therefore have more kernel pages allocated
480 * than we're counting as nodes in the stable tree; but ksm_do_scan
481 * will retry to break_cow on each pass, so should recover the page
482 * in due course. The important thing is to not let VM_MERGEABLE
483 * be cleared while any such pages might remain in the area.
484 */
485 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
486}
487
ef694222
BL
488static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
489 unsigned long addr)
490{
491 struct vm_area_struct *vma;
492 if (ksm_test_exit(mm))
493 return NULL;
ff69fb81
LH
494 vma = vma_lookup(mm, addr);
495 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
496 return NULL;
497 return vma;
498}
499
21fbd591 500static void break_cow(struct ksm_rmap_item *rmap_item)
31dbd01f 501{
8dd3557a
HD
502 struct mm_struct *mm = rmap_item->mm;
503 unsigned long addr = rmap_item->address;
31dbd01f
IE
504 struct vm_area_struct *vma;
505
4035c07a
HD
506 /*
507 * It is not an accident that whenever we want to break COW
508 * to undo, we also need to drop a reference to the anon_vma.
509 */
9e60109f 510 put_anon_vma(rmap_item->anon_vma);
4035c07a 511
d8ed45c5 512 mmap_read_lock(mm);
ef694222
BL
513 vma = find_mergeable_vma(mm, addr);
514 if (vma)
515 break_ksm(vma, addr);
d8ed45c5 516 mmap_read_unlock(mm);
31dbd01f
IE
517}
518
21fbd591 519static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
31dbd01f
IE
520{
521 struct mm_struct *mm = rmap_item->mm;
522 unsigned long addr = rmap_item->address;
523 struct vm_area_struct *vma;
524 struct page *page;
525
d8ed45c5 526 mmap_read_lock(mm);
ef694222
BL
527 vma = find_mergeable_vma(mm, addr);
528 if (!vma)
31dbd01f
IE
529 goto out;
530
531 page = follow_page(vma, addr, FOLL_GET);
f7091ed6 532 if (IS_ERR_OR_NULL(page))
31dbd01f 533 goto out;
f7091ed6
HW
534 if (is_zone_device_page(page))
535 goto out_putpage;
f765f540 536 if (PageAnon(page)) {
31dbd01f
IE
537 flush_anon_page(vma, page, addr);
538 flush_dcache_page(page);
539 } else {
f7091ed6 540out_putpage:
31dbd01f 541 put_page(page);
c8f95ed1
AA
542out:
543 page = NULL;
31dbd01f 544 }
d8ed45c5 545 mmap_read_unlock(mm);
31dbd01f
IE
546 return page;
547}
548
90bd6fd3
PH
549/*
550 * This helper is used for getting right index into array of tree roots.
551 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
552 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
553 * every node has its own stable and unstable tree.
554 */
555static inline int get_kpfn_nid(unsigned long kpfn)
556{
d8fc16a8 557 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
558}
559
21fbd591 560static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
2c653d0e
AA
561 struct rb_root *root)
562{
21fbd591 563 struct ksm_stable_node *chain = alloc_stable_node();
2c653d0e
AA
564 VM_BUG_ON(is_stable_node_chain(dup));
565 if (likely(chain)) {
566 INIT_HLIST_HEAD(&chain->hlist);
567 chain->chain_prune_time = jiffies;
568 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
569#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 570 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
571#endif
572 ksm_stable_node_chains++;
573
574 /*
575 * Put the stable node chain in the first dimension of
576 * the stable tree and at the same time remove the old
577 * stable node.
578 */
579 rb_replace_node(&dup->node, &chain->node, root);
580
581 /*
582 * Move the old stable node to the second dimension
583 * queued in the hlist_dup. The invariant is that all
584 * dup stable_nodes in the chain->hlist point to pages
457aef94 585 * that are write protected and have the exact same
2c653d0e
AA
586 * content.
587 */
588 stable_node_chain_add_dup(dup, chain);
589 }
590 return chain;
591}
592
21fbd591 593static inline void free_stable_node_chain(struct ksm_stable_node *chain,
2c653d0e
AA
594 struct rb_root *root)
595{
596 rb_erase(&chain->node, root);
597 free_stable_node(chain);
598 ksm_stable_node_chains--;
599}
600
21fbd591 601static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
4035c07a 602{
21fbd591 603 struct ksm_rmap_item *rmap_item;
4035c07a 604
2c653d0e
AA
605 /* check it's not STABLE_NODE_CHAIN or negative */
606 BUG_ON(stable_node->rmap_hlist_len < 0);
607
b67bfe0d 608 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
609 if (rmap_item->hlist.next)
610 ksm_pages_sharing--;
611 else
612 ksm_pages_shared--;
76093853 613
614 rmap_item->mm->ksm_merging_pages--;
615
2c653d0e
AA
616 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
617 stable_node->rmap_hlist_len--;
9e60109f 618 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
619 rmap_item->address &= PAGE_MASK;
620 cond_resched();
621 }
622
2c653d0e
AA
623 /*
624 * We need the second aligned pointer of the migrate_nodes
625 * list_head to stay clear from the rb_parent_color union
626 * (aligned and different than any node) and also different
627 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 628 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 629 */
2c653d0e
AA
630 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
631 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 632
4146d2d6
HD
633 if (stable_node->head == &migrate_nodes)
634 list_del(&stable_node->list);
635 else
2c653d0e 636 stable_node_dup_del(stable_node);
4035c07a
HD
637 free_stable_node(stable_node);
638}
639
2cee57d1
YS
640enum get_ksm_page_flags {
641 GET_KSM_PAGE_NOLOCK,
642 GET_KSM_PAGE_LOCK,
643 GET_KSM_PAGE_TRYLOCK
644};
645
4035c07a
HD
646/*
647 * get_ksm_page: checks if the page indicated by the stable node
648 * is still its ksm page, despite having held no reference to it.
649 * In which case we can trust the content of the page, and it
650 * returns the gotten page; but if the page has now been zapped,
651 * remove the stale node from the stable tree and return NULL.
c8d6553b 652 * But beware, the stable node's page might be being migrated.
4035c07a
HD
653 *
654 * You would expect the stable_node to hold a reference to the ksm page.
655 * But if it increments the page's count, swapping out has to wait for
656 * ksmd to come around again before it can free the page, which may take
657 * seconds or even minutes: much too unresponsive. So instead we use a
658 * "keyhole reference": access to the ksm page from the stable node peeps
659 * out through its keyhole to see if that page still holds the right key,
660 * pointing back to this stable node. This relies on freeing a PageAnon
661 * page to reset its page->mapping to NULL, and relies on no other use of
662 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
663 * is on its way to being freed; but it is an anomaly to bear in mind.
664 */
21fbd591 665static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
2cee57d1 666 enum get_ksm_page_flags flags)
4035c07a
HD
667{
668 struct page *page;
669 void *expected_mapping;
c8d6553b 670 unsigned long kpfn;
4035c07a 671
bda807d4
MK
672 expected_mapping = (void *)((unsigned long)stable_node |
673 PAGE_MAPPING_KSM);
c8d6553b 674again:
08df4774 675 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 676 page = pfn_to_page(kpfn);
4db0c3c2 677 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 678 goto stale;
c8d6553b
HD
679
680 /*
681 * We cannot do anything with the page while its refcount is 0.
682 * Usually 0 means free, or tail of a higher-order page: in which
683 * case this node is no longer referenced, and should be freed;
1c4c3b99 684 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 685 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606 686 * the same is in reuse_ksm_page() case; but if page is swapcache
9800562f 687 * in folio_migrate_mapping(), it might still be our page,
52d1e606 688 * in which case it's essential to keep the node.
c8d6553b
HD
689 */
690 while (!get_page_unless_zero(page)) {
691 /*
692 * Another check for page->mapping != expected_mapping would
693 * work here too. We have chosen the !PageSwapCache test to
694 * optimize the common case, when the page is or is about to
695 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 696 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
697 * page->mapping reset to NULL later, in free_pages_prepare().
698 */
699 if (!PageSwapCache(page))
700 goto stale;
701 cpu_relax();
702 }
703
4db0c3c2 704 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
705 put_page(page);
706 goto stale;
707 }
c8d6553b 708
2cee57d1
YS
709 if (flags == GET_KSM_PAGE_TRYLOCK) {
710 if (!trylock_page(page)) {
711 put_page(page);
712 return ERR_PTR(-EBUSY);
713 }
714 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 715 lock_page(page);
2cee57d1
YS
716
717 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 718 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
719 unlock_page(page);
720 put_page(page);
721 goto stale;
722 }
723 }
4035c07a 724 return page;
c8d6553b 725
4035c07a 726stale:
c8d6553b
HD
727 /*
728 * We come here from above when page->mapping or !PageSwapCache
729 * suggests that the node is stale; but it might be under migration.
19138349 730 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
c8d6553b
HD
731 * before checking whether node->kpfn has been changed.
732 */
733 smp_rmb();
4db0c3c2 734 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 735 goto again;
4035c07a
HD
736 remove_node_from_stable_tree(stable_node);
737 return NULL;
738}
739
31dbd01f
IE
740/*
741 * Removing rmap_item from stable or unstable tree.
742 * This function will clean the information from the stable/unstable tree.
743 */
21fbd591 744static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
31dbd01f 745{
7b6ba2c7 746 if (rmap_item->address & STABLE_FLAG) {
21fbd591 747 struct ksm_stable_node *stable_node;
5ad64688 748 struct page *page;
31dbd01f 749
7b6ba2c7 750 stable_node = rmap_item->head;
62862290 751 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
752 if (!page)
753 goto out;
5ad64688 754
7b6ba2c7 755 hlist_del(&rmap_item->hlist);
62862290 756 unlock_page(page);
4035c07a 757 put_page(page);
08beca44 758
98666f8a 759 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
760 ksm_pages_sharing--;
761 else
7b6ba2c7 762 ksm_pages_shared--;
76093853 763
764 rmap_item->mm->ksm_merging_pages--;
765
2c653d0e
AA
766 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
767 stable_node->rmap_hlist_len--;
31dbd01f 768
9e60109f 769 put_anon_vma(rmap_item->anon_vma);
c89a384e 770 rmap_item->head = NULL;
93d17715 771 rmap_item->address &= PAGE_MASK;
31dbd01f 772
7b6ba2c7 773 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
774 unsigned char age;
775 /*
9ba69294 776 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 777 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
778 * But be careful when an mm is exiting: do the rb_erase
779 * if this rmap_item was inserted by this scan, rather
780 * than left over from before.
31dbd01f
IE
781 */
782 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 783 BUG_ON(age > 1);
31dbd01f 784 if (!age)
90bd6fd3 785 rb_erase(&rmap_item->node,
ef53d16c 786 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 787 ksm_pages_unshared--;
93d17715 788 rmap_item->address &= PAGE_MASK;
31dbd01f 789 }
4035c07a 790out:
31dbd01f
IE
791 cond_resched(); /* we're called from many long loops */
792}
793
21fbd591 794static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
31dbd01f 795{
6514d511 796 while (*rmap_list) {
21fbd591 797 struct ksm_rmap_item *rmap_item = *rmap_list;
6514d511 798 *rmap_list = rmap_item->rmap_list;
31dbd01f 799 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
800 free_rmap_item(rmap_item);
801 }
802}
803
804/*
e850dcf5 805 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
806 * than check every pte of a given vma, the locking doesn't quite work for
807 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 808 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
809 * rmap_items from parent to child at fork time (so as not to waste time
810 * if exit comes before the next scan reaches it).
81464e30
HD
811 *
812 * Similarly, although we'd like to remove rmap_items (so updating counts
813 * and freeing memory) when unmerging an area, it's easier to leave that
814 * to the next pass of ksmd - consider, for example, how ksmd might be
815 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 816 */
d952b791
HD
817static int unmerge_ksm_pages(struct vm_area_struct *vma,
818 unsigned long start, unsigned long end)
31dbd01f
IE
819{
820 unsigned long addr;
d952b791 821 int err = 0;
31dbd01f 822
d952b791 823 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
824 if (ksm_test_exit(vma->vm_mm))
825 break;
d952b791
HD
826 if (signal_pending(current))
827 err = -ERESTARTSYS;
828 else
829 err = break_ksm(vma, addr);
830 }
831 return err;
31dbd01f
IE
832}
833
21fbd591 834static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
19138349
MWO
835{
836 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
837}
838
21fbd591 839static inline struct ksm_stable_node *page_stable_node(struct page *page)
88484826 840{
19138349 841 return folio_stable_node(page_folio(page));
88484826
MR
842}
843
844static inline void set_page_stable_node(struct page *page,
21fbd591 845 struct ksm_stable_node *stable_node)
88484826 846{
6c287605 847 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
88484826
MR
848 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
849}
850
2ffd8679
HD
851#ifdef CONFIG_SYSFS
852/*
853 * Only called through the sysfs control interface:
854 */
21fbd591 855static int remove_stable_node(struct ksm_stable_node *stable_node)
cbf86cfe
HD
856{
857 struct page *page;
858 int err;
859
2cee57d1 860 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
861 if (!page) {
862 /*
863 * get_ksm_page did remove_node_from_stable_tree itself.
864 */
865 return 0;
866 }
867
9a63236f
AR
868 /*
869 * Page could be still mapped if this races with __mmput() running in
870 * between ksm_exit() and exit_mmap(). Just refuse to let
871 * merge_across_nodes/max_page_sharing be switched.
872 */
873 err = -EBUSY;
874 if (!page_mapped(page)) {
cbf86cfe 875 /*
8fdb3dbf
HD
876 * The stable node did not yet appear stale to get_ksm_page(),
877 * since that allows for an unmapped ksm page to be recognized
878 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
879 * This page might be in a pagevec waiting to be freed,
880 * or it might be PageSwapCache (perhaps under writeback),
881 * or it might have been removed from swapcache a moment ago.
882 */
883 set_page_stable_node(page, NULL);
884 remove_node_from_stable_tree(stable_node);
885 err = 0;
886 }
887
888 unlock_page(page);
889 put_page(page);
890 return err;
891}
892
21fbd591 893static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
2c653d0e
AA
894 struct rb_root *root)
895{
21fbd591 896 struct ksm_stable_node *dup;
2c653d0e
AA
897 struct hlist_node *hlist_safe;
898
899 if (!is_stable_node_chain(stable_node)) {
900 VM_BUG_ON(is_stable_node_dup(stable_node));
901 if (remove_stable_node(stable_node))
902 return true;
903 else
904 return false;
905 }
906
907 hlist_for_each_entry_safe(dup, hlist_safe,
908 &stable_node->hlist, hlist_dup) {
909 VM_BUG_ON(!is_stable_node_dup(dup));
910 if (remove_stable_node(dup))
911 return true;
912 }
913 BUG_ON(!hlist_empty(&stable_node->hlist));
914 free_stable_node_chain(stable_node, root);
915 return false;
916}
917
cbf86cfe
HD
918static int remove_all_stable_nodes(void)
919{
21fbd591 920 struct ksm_stable_node *stable_node, *next;
cbf86cfe
HD
921 int nid;
922 int err = 0;
923
ef53d16c 924 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
925 while (root_stable_tree[nid].rb_node) {
926 stable_node = rb_entry(root_stable_tree[nid].rb_node,
21fbd591 927 struct ksm_stable_node, node);
2c653d0e
AA
928 if (remove_stable_node_chain(stable_node,
929 root_stable_tree + nid)) {
cbf86cfe
HD
930 err = -EBUSY;
931 break; /* proceed to next nid */
932 }
933 cond_resched();
934 }
935 }
03640418 936 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
937 if (remove_stable_node(stable_node))
938 err = -EBUSY;
939 cond_resched();
940 }
cbf86cfe
HD
941 return err;
942}
943
d952b791 944static int unmerge_and_remove_all_rmap_items(void)
31dbd01f 945{
21fbd591 946 struct ksm_mm_slot *mm_slot;
58730ab6 947 struct mm_slot *slot;
31dbd01f
IE
948 struct mm_struct *mm;
949 struct vm_area_struct *vma;
d952b791
HD
950 int err = 0;
951
952 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
953 slot = list_entry(ksm_mm_head.slot.mm_node.next,
954 struct mm_slot, mm_node);
955 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
d952b791 956 spin_unlock(&ksm_mmlist_lock);
31dbd01f 957
a5f18ba0
MWO
958 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
959 mm_slot = ksm_scan.mm_slot) {
58730ab6 960 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
a5f18ba0 961
58730ab6 962 mm = mm_slot->slot.mm;
d8ed45c5 963 mmap_read_lock(mm);
a5f18ba0 964 for_each_vma(vmi, vma) {
9ba69294
HD
965 if (ksm_test_exit(mm))
966 break;
31dbd01f
IE
967 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
968 continue;
d952b791
HD
969 err = unmerge_ksm_pages(vma,
970 vma->vm_start, vma->vm_end);
9ba69294
HD
971 if (err)
972 goto error;
31dbd01f 973 }
9ba69294 974
420be4ed 975 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 976 mmap_read_unlock(mm);
d952b791
HD
977
978 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
979 slot = list_entry(mm_slot->slot.mm_node.next,
980 struct mm_slot, mm_node);
981 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 982 if (ksm_test_exit(mm)) {
58730ab6
QZ
983 hash_del(&mm_slot->slot.hash);
984 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
985 spin_unlock(&ksm_mmlist_lock);
986
58730ab6 987 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294 988 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 989 mmdrop(mm);
7496fea9 990 } else
9ba69294 991 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
992 }
993
cbf86cfe
HD
994 /* Clean up stable nodes, but don't worry if some are still busy */
995 remove_all_stable_nodes();
d952b791 996 ksm_scan.seqnr = 0;
9ba69294
HD
997 return 0;
998
999error:
d8ed45c5 1000 mmap_read_unlock(mm);
31dbd01f 1001 spin_lock(&ksm_mmlist_lock);
d952b791 1002 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1003 spin_unlock(&ksm_mmlist_lock);
d952b791 1004 return err;
31dbd01f 1005}
2ffd8679 1006#endif /* CONFIG_SYSFS */
31dbd01f 1007
31dbd01f
IE
1008static u32 calc_checksum(struct page *page)
1009{
1010 u32 checksum;
9b04c5fe 1011 void *addr = kmap_atomic(page);
59e1a2f4 1012 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1013 kunmap_atomic(addr);
31dbd01f
IE
1014 return checksum;
1015}
1016
31dbd01f
IE
1017static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1018 pte_t *orig_pte)
1019{
1020 struct mm_struct *mm = vma->vm_mm;
eed05e54 1021 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
31dbd01f
IE
1022 int swapped;
1023 int err = -EFAULT;
ac46d4f3 1024 struct mmu_notifier_range range;
6c287605 1025 bool anon_exclusive;
31dbd01f 1026
36eaff33
KS
1027 pvmw.address = page_address_in_vma(page, vma);
1028 if (pvmw.address == -EFAULT)
31dbd01f
IE
1029 goto out;
1030
29ad768c 1031 BUG_ON(PageTransCompound(page));
6bdb913f 1032
7269f999 1033 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 1034 pvmw.address,
ac46d4f3
JG
1035 pvmw.address + PAGE_SIZE);
1036 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1037
36eaff33 1038 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1039 goto out_mn;
36eaff33
KS
1040 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1041 goto out_unlock;
31dbd01f 1042
6c287605 1043 anon_exclusive = PageAnonExclusive(page);
595cd8f2 1044 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
6c287605 1045 anon_exclusive || mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1046 pte_t entry;
1047
1048 swapped = PageSwapCache(page);
36eaff33 1049 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1050 /*
25985edc 1051 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1052 * take any lock, therefore the check that we are going to make
f0953a1b 1053 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1054 * O_DIRECT can happen right after the check.
1055 * So we clear the pte and flush the tlb before the check
1056 * this assure us that no O_DIRECT can happen after the check
1057 * or in the middle of the check.
0f10851e
JG
1058 *
1059 * No need to notify as we are downgrading page table to read
1060 * only not changing it to point to a new page.
1061 *
ee65728e 1062 * See Documentation/mm/mmu_notifier.rst
31dbd01f 1063 */
0f10851e 1064 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1065 /*
1066 * Check that no O_DIRECT or similar I/O is in progress on the
1067 * page
1068 */
31e855ea 1069 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1070 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1071 goto out_unlock;
1072 }
6c287605 1073
088b8aa5 1074 /* See page_try_share_anon_rmap(): clear PTE first. */
6c287605
DH
1075 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1076 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1077 goto out_unlock;
1078 }
1079
4e31635c
HD
1080 if (pte_dirty(entry))
1081 set_page_dirty(page);
6a56ccbc
DH
1082 entry = pte_mkclean(entry);
1083
1084 if (pte_write(entry))
1085 entry = pte_wrprotect(entry);
595cd8f2 1086
36eaff33 1087 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1088 }
36eaff33 1089 *orig_pte = *pvmw.pte;
31dbd01f
IE
1090 err = 0;
1091
1092out_unlock:
36eaff33 1093 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1094out_mn:
ac46d4f3 1095 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1096out:
1097 return err;
1098}
1099
1100/**
1101 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1102 * @vma: vma that holds the pte pointing to page
1103 * @page: the page we are replacing by kpage
1104 * @kpage: the ksm page we replace page by
31dbd01f
IE
1105 * @orig_pte: the original value of the pte
1106 *
1107 * Returns 0 on success, -EFAULT on failure.
1108 */
8dd3557a
HD
1109static int replace_page(struct vm_area_struct *vma, struct page *page,
1110 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1111{
1112 struct mm_struct *mm = vma->vm_mm;
b4e6f66e 1113 struct folio *folio;
31dbd01f 1114 pmd_t *pmd;
50722804 1115 pmd_t pmde;
31dbd01f 1116 pte_t *ptep;
e86c59b1 1117 pte_t newpte;
31dbd01f
IE
1118 spinlock_t *ptl;
1119 unsigned long addr;
31dbd01f 1120 int err = -EFAULT;
ac46d4f3 1121 struct mmu_notifier_range range;
31dbd01f 1122
8dd3557a 1123 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1124 if (addr == -EFAULT)
1125 goto out;
1126
6219049a
BL
1127 pmd = mm_find_pmd(mm, addr);
1128 if (!pmd)
31dbd01f 1129 goto out;
50722804
ZK
1130 /*
1131 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1132 * without holding anon_vma lock for write. So when looking for a
1133 * genuine pmde (in which to find pte), test present and !THP together.
1134 */
1135 pmde = *pmd;
1136 barrier();
1137 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1138 goto out;
31dbd01f 1139
7269f999 1140 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
6f4f13e8 1141 addr + PAGE_SIZE);
ac46d4f3 1142 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1143
31dbd01f
IE
1144 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1145 if (!pte_same(*ptep, orig_pte)) {
1146 pte_unmap_unlock(ptep, ptl);
6bdb913f 1147 goto out_mn;
31dbd01f 1148 }
6c287605
DH
1149 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1150 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
31dbd01f 1151
e86c59b1
CI
1152 /*
1153 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1154 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1155 */
1156 if (!is_zero_pfn(page_to_pfn(kpage))) {
1157 get_page(kpage);
f1e2db12 1158 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
e86c59b1
CI
1159 newpte = mk_pte(kpage, vma->vm_page_prot);
1160 } else {
1161 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1162 vma->vm_page_prot));
a38c015f
CI
1163 /*
1164 * We're replacing an anonymous page with a zero page, which is
1165 * not anonymous. We need to do proper accounting otherwise we
1166 * will get wrong values in /proc, and a BUG message in dmesg
1167 * when tearing down the mm.
1168 */
1169 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1170 }
31dbd01f
IE
1171
1172 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1173 /*
1174 * No need to notify as we are replacing a read only page with another
1175 * read only page with the same content.
1176 *
ee65728e 1177 * See Documentation/mm/mmu_notifier.rst
0f10851e
JG
1178 */
1179 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1180 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1181
b4e6f66e 1182 folio = page_folio(page);
cea86fe2 1183 page_remove_rmap(page, vma, false);
b4e6f66e
MWO
1184 if (!folio_mapped(folio))
1185 folio_free_swap(folio);
1186 folio_put(folio);
31dbd01f
IE
1187
1188 pte_unmap_unlock(ptep, ptl);
1189 err = 0;
6bdb913f 1190out_mn:
ac46d4f3 1191 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1192out:
1193 return err;
1194}
1195
1196/*
1197 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1198 * @vma: the vma that holds the pte pointing to page
1199 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1200 * @kpage: the PageKsm page that we want to map instead of page,
1201 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1202 *
1203 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1204 */
1205static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1206 struct page *page, struct page *kpage)
31dbd01f
IE
1207{
1208 pte_t orig_pte = __pte(0);
1209 int err = -EFAULT;
1210
db114b83
HD
1211 if (page == kpage) /* ksm page forked */
1212 return 0;
1213
8dd3557a 1214 if (!PageAnon(page))
31dbd01f
IE
1215 goto out;
1216
31dbd01f
IE
1217 /*
1218 * We need the page lock to read a stable PageSwapCache in
1219 * write_protect_page(). We use trylock_page() instead of
1220 * lock_page() because we don't want to wait here - we
1221 * prefer to continue scanning and merging different pages,
1222 * then come back to this page when it is unlocked.
1223 */
8dd3557a 1224 if (!trylock_page(page))
31e855ea 1225 goto out;
f765f540
KS
1226
1227 if (PageTransCompound(page)) {
a7306c34 1228 if (split_huge_page(page))
f765f540
KS
1229 goto out_unlock;
1230 }
1231
31dbd01f
IE
1232 /*
1233 * If this anonymous page is mapped only here, its pte may need
1234 * to be write-protected. If it's mapped elsewhere, all of its
1235 * ptes are necessarily already write-protected. But in either
1236 * case, we need to lock and check page_count is not raised.
1237 */
80e14822
HD
1238 if (write_protect_page(vma, page, &orig_pte) == 0) {
1239 if (!kpage) {
1240 /*
1241 * While we hold page lock, upgrade page from
1242 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1243 * stable_tree_insert() will update stable_node.
1244 */
1245 set_page_stable_node(page, NULL);
1246 mark_page_accessed(page);
337ed7eb
MK
1247 /*
1248 * Page reclaim just frees a clean page with no dirty
1249 * ptes: make sure that the ksm page would be swapped.
1250 */
1251 if (!PageDirty(page))
1252 SetPageDirty(page);
80e14822
HD
1253 err = 0;
1254 } else if (pages_identical(page, kpage))
1255 err = replace_page(vma, page, kpage, orig_pte);
1256 }
31dbd01f 1257
f765f540 1258out_unlock:
8dd3557a 1259 unlock_page(page);
31dbd01f
IE
1260out:
1261 return err;
1262}
1263
81464e30
HD
1264/*
1265 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1266 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1267 *
1268 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1269 */
21fbd591 1270static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
8dd3557a 1271 struct page *page, struct page *kpage)
81464e30 1272{
8dd3557a 1273 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1274 struct vm_area_struct *vma;
1275 int err = -EFAULT;
1276
d8ed45c5 1277 mmap_read_lock(mm);
85c6e8dd
AA
1278 vma = find_mergeable_vma(mm, rmap_item->address);
1279 if (!vma)
81464e30
HD
1280 goto out;
1281
8dd3557a 1282 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1283 if (err)
1284 goto out;
1285
bc56620b
HD
1286 /* Unstable nid is in union with stable anon_vma: remove first */
1287 remove_rmap_item_from_tree(rmap_item);
1288
c1e8d7c6 1289 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1290 rmap_item->anon_vma = vma->anon_vma;
1291 get_anon_vma(vma->anon_vma);
81464e30 1292out:
d8ed45c5 1293 mmap_read_unlock(mm);
81464e30
HD
1294 return err;
1295}
1296
31dbd01f
IE
1297/*
1298 * try_to_merge_two_pages - take two identical pages and prepare them
1299 * to be merged into one page.
1300 *
8dd3557a
HD
1301 * This function returns the kpage if we successfully merged two identical
1302 * pages into one ksm page, NULL otherwise.
31dbd01f 1303 *
80e14822 1304 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1305 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1306 */
21fbd591 1307static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
8dd3557a 1308 struct page *page,
21fbd591 1309 struct ksm_rmap_item *tree_rmap_item,
8dd3557a 1310 struct page *tree_page)
31dbd01f 1311{
80e14822 1312 int err;
31dbd01f 1313
80e14822 1314 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1315 if (!err) {
8dd3557a 1316 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1317 tree_page, page);
31dbd01f 1318 /*
81464e30
HD
1319 * If that fails, we have a ksm page with only one pte
1320 * pointing to it: so break it.
31dbd01f 1321 */
4035c07a 1322 if (err)
8dd3557a 1323 break_cow(rmap_item);
31dbd01f 1324 }
80e14822 1325 return err ? NULL : page;
31dbd01f
IE
1326}
1327
2c653d0e 1328static __always_inline
21fbd591 1329bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
2c653d0e
AA
1330{
1331 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1332 /*
1333 * Check that at least one mapping still exists, otherwise
1334 * there's no much point to merge and share with this
1335 * stable_node, as the underlying tree_page of the other
1336 * sharer is going to be freed soon.
1337 */
1338 return stable_node->rmap_hlist_len &&
1339 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1340}
1341
1342static __always_inline
21fbd591 1343bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
2c653d0e
AA
1344{
1345 return __is_page_sharing_candidate(stable_node, 0);
1346}
1347
21fbd591
QZ
1348static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1349 struct ksm_stable_node **_stable_node,
c01f0b54
CIK
1350 struct rb_root *root,
1351 bool prune_stale_stable_nodes)
2c653d0e 1352{
21fbd591 1353 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1354 struct hlist_node *hlist_safe;
8dc5ffcd 1355 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1356 int nr = 0;
1357 int found_rmap_hlist_len;
1358
1359 if (!prune_stale_stable_nodes ||
1360 time_before(jiffies, stable_node->chain_prune_time +
1361 msecs_to_jiffies(
1362 ksm_stable_node_chains_prune_millisecs)))
1363 prune_stale_stable_nodes = false;
1364 else
1365 stable_node->chain_prune_time = jiffies;
1366
1367 hlist_for_each_entry_safe(dup, hlist_safe,
1368 &stable_node->hlist, hlist_dup) {
1369 cond_resched();
1370 /*
1371 * We must walk all stable_node_dup to prune the stale
1372 * stable nodes during lookup.
1373 *
1374 * get_ksm_page can drop the nodes from the
1375 * stable_node->hlist if they point to freed pages
1376 * (that's why we do a _safe walk). The "dup"
1377 * stable_node parameter itself will be freed from
1378 * under us if it returns NULL.
1379 */
2cee57d1 1380 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1381 if (!_tree_page)
1382 continue;
1383 nr += 1;
1384 if (is_page_sharing_candidate(dup)) {
1385 if (!found ||
1386 dup->rmap_hlist_len > found_rmap_hlist_len) {
1387 if (found)
8dc5ffcd 1388 put_page(tree_page);
2c653d0e
AA
1389 found = dup;
1390 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1391 tree_page = _tree_page;
2c653d0e 1392
8dc5ffcd 1393 /* skip put_page for found dup */
2c653d0e
AA
1394 if (!prune_stale_stable_nodes)
1395 break;
2c653d0e
AA
1396 continue;
1397 }
1398 }
1399 put_page(_tree_page);
1400 }
1401
80b18dfa
AA
1402 if (found) {
1403 /*
1404 * nr is counting all dups in the chain only if
1405 * prune_stale_stable_nodes is true, otherwise we may
1406 * break the loop at nr == 1 even if there are
1407 * multiple entries.
1408 */
1409 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1410 /*
1411 * If there's not just one entry it would
1412 * corrupt memory, better BUG_ON. In KSM
1413 * context with no lock held it's not even
1414 * fatal.
1415 */
1416 BUG_ON(stable_node->hlist.first->next);
1417
1418 /*
1419 * There's just one entry and it is below the
1420 * deduplication limit so drop the chain.
1421 */
1422 rb_replace_node(&stable_node->node, &found->node,
1423 root);
1424 free_stable_node(stable_node);
1425 ksm_stable_node_chains--;
1426 ksm_stable_node_dups--;
b4fecc67 1427 /*
0ba1d0f7
AA
1428 * NOTE: the caller depends on the stable_node
1429 * to be equal to stable_node_dup if the chain
1430 * was collapsed.
b4fecc67 1431 */
0ba1d0f7
AA
1432 *_stable_node = found;
1433 /*
f0953a1b 1434 * Just for robustness, as stable_node is
0ba1d0f7
AA
1435 * otherwise left as a stable pointer, the
1436 * compiler shall optimize it away at build
1437 * time.
1438 */
1439 stable_node = NULL;
80b18dfa
AA
1440 } else if (stable_node->hlist.first != &found->hlist_dup &&
1441 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1442 /*
80b18dfa
AA
1443 * If the found stable_node dup can accept one
1444 * more future merge (in addition to the one
1445 * that is underway) and is not at the head of
1446 * the chain, put it there so next search will
1447 * be quicker in the !prune_stale_stable_nodes
1448 * case.
1449 *
1450 * NOTE: it would be inaccurate to use nr > 1
1451 * instead of checking the hlist.first pointer
1452 * directly, because in the
1453 * prune_stale_stable_nodes case "nr" isn't
1454 * the position of the found dup in the chain,
1455 * but the total number of dups in the chain.
2c653d0e
AA
1456 */
1457 hlist_del(&found->hlist_dup);
1458 hlist_add_head(&found->hlist_dup,
1459 &stable_node->hlist);
1460 }
1461 }
1462
8dc5ffcd
AA
1463 *_stable_node_dup = found;
1464 return tree_page;
2c653d0e
AA
1465}
1466
21fbd591 1467static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
2c653d0e
AA
1468 struct rb_root *root)
1469{
1470 if (!is_stable_node_chain(stable_node))
1471 return stable_node;
1472 if (hlist_empty(&stable_node->hlist)) {
1473 free_stable_node_chain(stable_node, root);
1474 return NULL;
1475 }
1476 return hlist_entry(stable_node->hlist.first,
1477 typeof(*stable_node), hlist_dup);
1478}
1479
8dc5ffcd
AA
1480/*
1481 * Like for get_ksm_page, this function can free the *_stable_node and
1482 * *_stable_node_dup if the returned tree_page is NULL.
1483 *
1484 * It can also free and overwrite *_stable_node with the found
1485 * stable_node_dup if the chain is collapsed (in which case
1486 * *_stable_node will be equal to *_stable_node_dup like if the chain
1487 * never existed). It's up to the caller to verify tree_page is not
1488 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1489 *
1490 * *_stable_node_dup is really a second output parameter of this
1491 * function and will be overwritten in all cases, the caller doesn't
1492 * need to initialize it.
1493 */
21fbd591
QZ
1494static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1495 struct ksm_stable_node **_stable_node,
8dc5ffcd
AA
1496 struct rb_root *root,
1497 bool prune_stale_stable_nodes)
2c653d0e 1498{
21fbd591 1499 struct ksm_stable_node *stable_node = *_stable_node;
2c653d0e
AA
1500 if (!is_stable_node_chain(stable_node)) {
1501 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1502 *_stable_node_dup = stable_node;
2cee57d1 1503 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1504 }
8dc5ffcd
AA
1505 /*
1506 * _stable_node_dup set to NULL means the stable_node
1507 * reached the ksm_max_page_sharing limit.
1508 */
1509 *_stable_node_dup = NULL;
2c653d0e
AA
1510 return NULL;
1511 }
8dc5ffcd 1512 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1513 prune_stale_stable_nodes);
1514}
1515
21fbd591
QZ
1516static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1517 struct ksm_stable_node **s_n,
8dc5ffcd 1518 struct rb_root *root)
2c653d0e 1519{
8dc5ffcd 1520 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1521}
1522
21fbd591
QZ
1523static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1524 struct ksm_stable_node *s_n,
8dc5ffcd 1525 struct rb_root *root)
2c653d0e 1526{
21fbd591 1527 struct ksm_stable_node *old_stable_node = s_n;
8dc5ffcd
AA
1528 struct page *tree_page;
1529
1530 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1531 /* not pruning dups so s_n cannot have changed */
1532 VM_BUG_ON(s_n != old_stable_node);
1533 return tree_page;
2c653d0e
AA
1534}
1535
31dbd01f 1536/*
8dd3557a 1537 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1538 *
1539 * This function checks if there is a page inside the stable tree
1540 * with identical content to the page that we are scanning right now.
1541 *
7b6ba2c7 1542 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1543 * NULL otherwise.
1544 */
62b61f61 1545static struct page *stable_tree_search(struct page *page)
31dbd01f 1546{
90bd6fd3 1547 int nid;
ef53d16c 1548 struct rb_root *root;
4146d2d6
HD
1549 struct rb_node **new;
1550 struct rb_node *parent;
21fbd591
QZ
1551 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1552 struct ksm_stable_node *page_node;
31dbd01f 1553
4146d2d6
HD
1554 page_node = page_stable_node(page);
1555 if (page_node && page_node->head != &migrate_nodes) {
1556 /* ksm page forked */
08beca44 1557 get_page(page);
62b61f61 1558 return page;
08beca44
HD
1559 }
1560
90bd6fd3 1561 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1562 root = root_stable_tree + nid;
4146d2d6 1563again:
ef53d16c 1564 new = &root->rb_node;
4146d2d6 1565 parent = NULL;
90bd6fd3 1566
4146d2d6 1567 while (*new) {
4035c07a 1568 struct page *tree_page;
31dbd01f
IE
1569 int ret;
1570
08beca44 1571 cond_resched();
21fbd591 1572 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1573 stable_node_any = NULL;
8dc5ffcd 1574 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1575 /*
1576 * NOTE: stable_node may have been freed by
1577 * chain_prune() if the returned stable_node_dup is
1578 * not NULL. stable_node_dup may have been inserted in
1579 * the rbtree instead as a regular stable_node (in
1580 * order to collapse the stable_node chain if a single
0ba1d0f7 1581 * stable_node dup was found in it). In such case the
3413b2c8 1582 * stable_node is overwritten by the callee to point
0ba1d0f7
AA
1583 * to the stable_node_dup that was collapsed in the
1584 * stable rbtree and stable_node will be equal to
1585 * stable_node_dup like if the chain never existed.
b4fecc67 1586 */
2c653d0e
AA
1587 if (!stable_node_dup) {
1588 /*
1589 * Either all stable_node dups were full in
1590 * this stable_node chain, or this chain was
1591 * empty and should be rb_erased.
1592 */
1593 stable_node_any = stable_node_dup_any(stable_node,
1594 root);
1595 if (!stable_node_any) {
1596 /* rb_erase just run */
1597 goto again;
1598 }
1599 /*
1600 * Take any of the stable_node dups page of
1601 * this stable_node chain to let the tree walk
1602 * continue. All KSM pages belonging to the
1603 * stable_node dups in a stable_node chain
1604 * have the same content and they're
457aef94 1605 * write protected at all times. Any will work
2c653d0e
AA
1606 * fine to continue the walk.
1607 */
2cee57d1
YS
1608 tree_page = get_ksm_page(stable_node_any,
1609 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1610 }
1611 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1612 if (!tree_page) {
1613 /*
1614 * If we walked over a stale stable_node,
1615 * get_ksm_page() will call rb_erase() and it
1616 * may rebalance the tree from under us. So
1617 * restart the search from scratch. Returning
1618 * NULL would be safe too, but we'd generate
1619 * false negative insertions just because some
1620 * stable_node was stale.
1621 */
1622 goto again;
1623 }
31dbd01f 1624
4035c07a 1625 ret = memcmp_pages(page, tree_page);
c8d6553b 1626 put_page(tree_page);
31dbd01f 1627
4146d2d6 1628 parent = *new;
c8d6553b 1629 if (ret < 0)
4146d2d6 1630 new = &parent->rb_left;
c8d6553b 1631 else if (ret > 0)
4146d2d6 1632 new = &parent->rb_right;
c8d6553b 1633 else {
2c653d0e
AA
1634 if (page_node) {
1635 VM_BUG_ON(page_node->head != &migrate_nodes);
1636 /*
1637 * Test if the migrated page should be merged
1638 * into a stable node dup. If the mapcount is
1639 * 1 we can migrate it with another KSM page
1640 * without adding it to the chain.
1641 */
1642 if (page_mapcount(page) > 1)
1643 goto chain_append;
1644 }
1645
1646 if (!stable_node_dup) {
1647 /*
1648 * If the stable_node is a chain and
1649 * we got a payload match in memcmp
1650 * but we cannot merge the scanned
1651 * page in any of the existing
1652 * stable_node dups because they're
1653 * all full, we need to wait the
1654 * scanned page to find itself a match
1655 * in the unstable tree to create a
1656 * brand new KSM page to add later to
1657 * the dups of this stable_node.
1658 */
1659 return NULL;
1660 }
1661
c8d6553b
HD
1662 /*
1663 * Lock and unlock the stable_node's page (which
1664 * might already have been migrated) so that page
1665 * migration is sure to notice its raised count.
1666 * It would be more elegant to return stable_node
1667 * than kpage, but that involves more changes.
1668 */
2cee57d1
YS
1669 tree_page = get_ksm_page(stable_node_dup,
1670 GET_KSM_PAGE_TRYLOCK);
1671
1672 if (PTR_ERR(tree_page) == -EBUSY)
1673 return ERR_PTR(-EBUSY);
1674
2c653d0e
AA
1675 if (unlikely(!tree_page))
1676 /*
1677 * The tree may have been rebalanced,
1678 * so re-evaluate parent and new.
1679 */
4146d2d6 1680 goto again;
2c653d0e
AA
1681 unlock_page(tree_page);
1682
1683 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1684 NUMA(stable_node_dup->nid)) {
1685 put_page(tree_page);
1686 goto replace;
1687 }
1688 return tree_page;
c8d6553b 1689 }
31dbd01f
IE
1690 }
1691
4146d2d6
HD
1692 if (!page_node)
1693 return NULL;
1694
1695 list_del(&page_node->list);
1696 DO_NUMA(page_node->nid = nid);
1697 rb_link_node(&page_node->node, parent, new);
ef53d16c 1698 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1699out:
1700 if (is_page_sharing_candidate(page_node)) {
1701 get_page(page);
1702 return page;
1703 } else
1704 return NULL;
4146d2d6
HD
1705
1706replace:
b4fecc67
AA
1707 /*
1708 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1709 * stable_node has been updated to be the new regular
1710 * stable_node. A collapse of the chain is indistinguishable
1711 * from the case there was no chain in the stable
1712 * rbtree. Otherwise stable_node is the chain and
1713 * stable_node_dup is the dup to replace.
b4fecc67 1714 */
0ba1d0f7 1715 if (stable_node_dup == stable_node) {
b4fecc67
AA
1716 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1717 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1718 /* there is no chain */
1719 if (page_node) {
1720 VM_BUG_ON(page_node->head != &migrate_nodes);
1721 list_del(&page_node->list);
1722 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1723 rb_replace_node(&stable_node_dup->node,
1724 &page_node->node,
2c653d0e
AA
1725 root);
1726 if (is_page_sharing_candidate(page_node))
1727 get_page(page);
1728 else
1729 page = NULL;
1730 } else {
b4fecc67 1731 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1732 page = NULL;
1733 }
4146d2d6 1734 } else {
2c653d0e
AA
1735 VM_BUG_ON(!is_stable_node_chain(stable_node));
1736 __stable_node_dup_del(stable_node_dup);
1737 if (page_node) {
1738 VM_BUG_ON(page_node->head != &migrate_nodes);
1739 list_del(&page_node->list);
1740 DO_NUMA(page_node->nid = nid);
1741 stable_node_chain_add_dup(page_node, stable_node);
1742 if (is_page_sharing_candidate(page_node))
1743 get_page(page);
1744 else
1745 page = NULL;
1746 } else {
1747 page = NULL;
1748 }
4146d2d6 1749 }
2c653d0e
AA
1750 stable_node_dup->head = &migrate_nodes;
1751 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1752 return page;
2c653d0e
AA
1753
1754chain_append:
1755 /* stable_node_dup could be null if it reached the limit */
1756 if (!stable_node_dup)
1757 stable_node_dup = stable_node_any;
b4fecc67
AA
1758 /*
1759 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1760 * stable_node has been updated to be the new regular
1761 * stable_node. A collapse of the chain is indistinguishable
1762 * from the case there was no chain in the stable
1763 * rbtree. Otherwise stable_node is the chain and
1764 * stable_node_dup is the dup to replace.
b4fecc67 1765 */
0ba1d0f7 1766 if (stable_node_dup == stable_node) {
b4fecc67 1767 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1768 /* chain is missing so create it */
1769 stable_node = alloc_stable_node_chain(stable_node_dup,
1770 root);
1771 if (!stable_node)
1772 return NULL;
1773 }
1774 /*
1775 * Add this stable_node dup that was
1776 * migrated to the stable_node chain
1777 * of the current nid for this page
1778 * content.
1779 */
b4fecc67 1780 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1781 VM_BUG_ON(page_node->head != &migrate_nodes);
1782 list_del(&page_node->list);
1783 DO_NUMA(page_node->nid = nid);
1784 stable_node_chain_add_dup(page_node, stable_node);
1785 goto out;
31dbd01f
IE
1786}
1787
1788/*
e850dcf5 1789 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1790 * into the stable tree.
1791 *
7b6ba2c7
HD
1792 * This function returns the stable tree node just allocated on success,
1793 * NULL otherwise.
31dbd01f 1794 */
21fbd591 1795static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1796{
90bd6fd3
PH
1797 int nid;
1798 unsigned long kpfn;
ef53d16c 1799 struct rb_root *root;
90bd6fd3 1800 struct rb_node **new;
f2e5ff85 1801 struct rb_node *parent;
21fbd591 1802 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2c653d0e 1803 bool need_chain = false;
31dbd01f 1804
90bd6fd3
PH
1805 kpfn = page_to_pfn(kpage);
1806 nid = get_kpfn_nid(kpfn);
ef53d16c 1807 root = root_stable_tree + nid;
f2e5ff85
AA
1808again:
1809 parent = NULL;
ef53d16c 1810 new = &root->rb_node;
90bd6fd3 1811
31dbd01f 1812 while (*new) {
4035c07a 1813 struct page *tree_page;
31dbd01f
IE
1814 int ret;
1815
08beca44 1816 cond_resched();
21fbd591 1817 stable_node = rb_entry(*new, struct ksm_stable_node, node);
2c653d0e 1818 stable_node_any = NULL;
8dc5ffcd 1819 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1820 if (!stable_node_dup) {
1821 /*
1822 * Either all stable_node dups were full in
1823 * this stable_node chain, or this chain was
1824 * empty and should be rb_erased.
1825 */
1826 stable_node_any = stable_node_dup_any(stable_node,
1827 root);
1828 if (!stable_node_any) {
1829 /* rb_erase just run */
1830 goto again;
1831 }
1832 /*
1833 * Take any of the stable_node dups page of
1834 * this stable_node chain to let the tree walk
1835 * continue. All KSM pages belonging to the
1836 * stable_node dups in a stable_node chain
1837 * have the same content and they're
457aef94 1838 * write protected at all times. Any will work
2c653d0e
AA
1839 * fine to continue the walk.
1840 */
2cee57d1
YS
1841 tree_page = get_ksm_page(stable_node_any,
1842 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1843 }
1844 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1845 if (!tree_page) {
1846 /*
1847 * If we walked over a stale stable_node,
1848 * get_ksm_page() will call rb_erase() and it
1849 * may rebalance the tree from under us. So
1850 * restart the search from scratch. Returning
1851 * NULL would be safe too, but we'd generate
1852 * false negative insertions just because some
1853 * stable_node was stale.
1854 */
1855 goto again;
1856 }
31dbd01f 1857
4035c07a
HD
1858 ret = memcmp_pages(kpage, tree_page);
1859 put_page(tree_page);
31dbd01f
IE
1860
1861 parent = *new;
1862 if (ret < 0)
1863 new = &parent->rb_left;
1864 else if (ret > 0)
1865 new = &parent->rb_right;
1866 else {
2c653d0e
AA
1867 need_chain = true;
1868 break;
31dbd01f
IE
1869 }
1870 }
1871
2c653d0e
AA
1872 stable_node_dup = alloc_stable_node();
1873 if (!stable_node_dup)
7b6ba2c7 1874 return NULL;
31dbd01f 1875
2c653d0e
AA
1876 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1877 stable_node_dup->kpfn = kpfn;
1878 set_page_stable_node(kpage, stable_node_dup);
1879 stable_node_dup->rmap_hlist_len = 0;
1880 DO_NUMA(stable_node_dup->nid = nid);
1881 if (!need_chain) {
1882 rb_link_node(&stable_node_dup->node, parent, new);
1883 rb_insert_color(&stable_node_dup->node, root);
1884 } else {
1885 if (!is_stable_node_chain(stable_node)) {
21fbd591 1886 struct ksm_stable_node *orig = stable_node;
2c653d0e
AA
1887 /* chain is missing so create it */
1888 stable_node = alloc_stable_node_chain(orig, root);
1889 if (!stable_node) {
1890 free_stable_node(stable_node_dup);
1891 return NULL;
1892 }
1893 }
1894 stable_node_chain_add_dup(stable_node_dup, stable_node);
1895 }
08beca44 1896
2c653d0e 1897 return stable_node_dup;
31dbd01f
IE
1898}
1899
1900/*
8dd3557a
HD
1901 * unstable_tree_search_insert - search for identical page,
1902 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1903 *
1904 * This function searches for a page in the unstable tree identical to the
1905 * page currently being scanned; and if no identical page is found in the
1906 * tree, we insert rmap_item as a new object into the unstable tree.
1907 *
1908 * This function returns pointer to rmap_item found to be identical
1909 * to the currently scanned page, NULL otherwise.
1910 *
1911 * This function does both searching and inserting, because they share
1912 * the same walking algorithm in an rbtree.
1913 */
8dd3557a 1914static
21fbd591 1915struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
8dd3557a
HD
1916 struct page *page,
1917 struct page **tree_pagep)
31dbd01f 1918{
90bd6fd3
PH
1919 struct rb_node **new;
1920 struct rb_root *root;
31dbd01f 1921 struct rb_node *parent = NULL;
90bd6fd3
PH
1922 int nid;
1923
1924 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1925 root = root_unstable_tree + nid;
90bd6fd3 1926 new = &root->rb_node;
31dbd01f
IE
1927
1928 while (*new) {
21fbd591 1929 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 1930 struct page *tree_page;
31dbd01f
IE
1931 int ret;
1932
d178f27f 1933 cond_resched();
21fbd591 1934 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
8dd3557a 1935 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1936 if (!tree_page)
31dbd01f
IE
1937 return NULL;
1938
1939 /*
8dd3557a 1940 * Don't substitute a ksm page for a forked page.
31dbd01f 1941 */
8dd3557a
HD
1942 if (page == tree_page) {
1943 put_page(tree_page);
31dbd01f
IE
1944 return NULL;
1945 }
1946
8dd3557a 1947 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1948
1949 parent = *new;
1950 if (ret < 0) {
8dd3557a 1951 put_page(tree_page);
31dbd01f
IE
1952 new = &parent->rb_left;
1953 } else if (ret > 0) {
8dd3557a 1954 put_page(tree_page);
31dbd01f 1955 new = &parent->rb_right;
b599cbdf
HD
1956 } else if (!ksm_merge_across_nodes &&
1957 page_to_nid(tree_page) != nid) {
1958 /*
1959 * If tree_page has been migrated to another NUMA node,
1960 * it will be flushed out and put in the right unstable
1961 * tree next time: only merge with it when across_nodes.
1962 */
1963 put_page(tree_page);
1964 return NULL;
31dbd01f 1965 } else {
8dd3557a 1966 *tree_pagep = tree_page;
31dbd01f
IE
1967 return tree_rmap_item;
1968 }
1969 }
1970
7b6ba2c7 1971 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1972 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1973 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1974 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1975 rb_insert_color(&rmap_item->node, root);
31dbd01f 1976
473b0ce4 1977 ksm_pages_unshared++;
31dbd01f
IE
1978 return NULL;
1979}
1980
1981/*
1982 * stable_tree_append - add another rmap_item to the linked list of
1983 * rmap_items hanging off a given node of the stable tree, all sharing
1984 * the same ksm page.
1985 */
21fbd591
QZ
1986static void stable_tree_append(struct ksm_rmap_item *rmap_item,
1987 struct ksm_stable_node *stable_node,
2c653d0e 1988 bool max_page_sharing_bypass)
31dbd01f 1989{
2c653d0e
AA
1990 /*
1991 * rmap won't find this mapping if we don't insert the
1992 * rmap_item in the right stable_node
1993 * duplicate. page_migration could break later if rmap breaks,
1994 * so we can as well crash here. We really need to check for
1995 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 1996 * for other negative values as an underflow if detected here
2c653d0e
AA
1997 * for the first time (and not when decreasing rmap_hlist_len)
1998 * would be sign of memory corruption in the stable_node.
1999 */
2000 BUG_ON(stable_node->rmap_hlist_len < 0);
2001
2002 stable_node->rmap_hlist_len++;
2003 if (!max_page_sharing_bypass)
2004 /* possibly non fatal but unexpected overflow, only warn */
2005 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2006 ksm_max_page_sharing);
2007
7b6ba2c7 2008 rmap_item->head = stable_node;
31dbd01f 2009 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2010 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2011
7b6ba2c7
HD
2012 if (rmap_item->hlist.next)
2013 ksm_pages_sharing++;
2014 else
2015 ksm_pages_shared++;
76093853 2016
2017 rmap_item->mm->ksm_merging_pages++;
31dbd01f
IE
2018}
2019
2020/*
81464e30
HD
2021 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2022 * if not, compare checksum to previous and if it's the same, see if page can
2023 * be inserted into the unstable tree, or merged with a page already there and
2024 * both transferred to the stable tree.
31dbd01f
IE
2025 *
2026 * @page: the page that we are searching identical page to.
2027 * @rmap_item: the reverse mapping into the virtual address of this page
2028 */
21fbd591 2029static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
31dbd01f 2030{
4b22927f 2031 struct mm_struct *mm = rmap_item->mm;
21fbd591 2032 struct ksm_rmap_item *tree_rmap_item;
8dd3557a 2033 struct page *tree_page = NULL;
21fbd591 2034 struct ksm_stable_node *stable_node;
8dd3557a 2035 struct page *kpage;
31dbd01f
IE
2036 unsigned int checksum;
2037 int err;
2c653d0e 2038 bool max_page_sharing_bypass = false;
31dbd01f 2039
4146d2d6
HD
2040 stable_node = page_stable_node(page);
2041 if (stable_node) {
2042 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2043 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2044 NUMA(stable_node->nid)) {
2045 stable_node_dup_del(stable_node);
4146d2d6
HD
2046 stable_node->head = &migrate_nodes;
2047 list_add(&stable_node->list, stable_node->head);
2048 }
2049 if (stable_node->head != &migrate_nodes &&
2050 rmap_item->head == stable_node)
2051 return;
2c653d0e
AA
2052 /*
2053 * If it's a KSM fork, allow it to go over the sharing limit
2054 * without warnings.
2055 */
2056 if (!is_page_sharing_candidate(stable_node))
2057 max_page_sharing_bypass = true;
4146d2d6 2058 }
31dbd01f
IE
2059
2060 /* We first start with searching the page inside the stable tree */
62b61f61 2061 kpage = stable_tree_search(page);
4146d2d6
HD
2062 if (kpage == page && rmap_item->head == stable_node) {
2063 put_page(kpage);
2064 return;
2065 }
2066
2067 remove_rmap_item_from_tree(rmap_item);
2068
62b61f61 2069 if (kpage) {
2cee57d1
YS
2070 if (PTR_ERR(kpage) == -EBUSY)
2071 return;
2072
08beca44 2073 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2074 if (!err) {
2075 /*
2076 * The page was successfully merged:
2077 * add its rmap_item to the stable tree.
2078 */
5ad64688 2079 lock_page(kpage);
2c653d0e
AA
2080 stable_tree_append(rmap_item, page_stable_node(kpage),
2081 max_page_sharing_bypass);
5ad64688 2082 unlock_page(kpage);
31dbd01f 2083 }
8dd3557a 2084 put_page(kpage);
31dbd01f
IE
2085 return;
2086 }
2087
2088 /*
4035c07a
HD
2089 * If the hash value of the page has changed from the last time
2090 * we calculated it, this page is changing frequently: therefore we
2091 * don't want to insert it in the unstable tree, and we don't want
2092 * to waste our time searching for something identical to it there.
31dbd01f
IE
2093 */
2094 checksum = calc_checksum(page);
2095 if (rmap_item->oldchecksum != checksum) {
2096 rmap_item->oldchecksum = checksum;
2097 return;
2098 }
2099
e86c59b1
CI
2100 /*
2101 * Same checksum as an empty page. We attempt to merge it with the
2102 * appropriate zero page if the user enabled this via sysfs.
2103 */
2104 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2105 struct vm_area_struct *vma;
2106
d8ed45c5 2107 mmap_read_lock(mm);
4b22927f 2108 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2109 if (vma) {
2110 err = try_to_merge_one_page(vma, page,
2111 ZERO_PAGE(rmap_item->address));
2112 } else {
2113 /*
2114 * If the vma is out of date, we do not need to
2115 * continue.
2116 */
2117 err = 0;
2118 }
d8ed45c5 2119 mmap_read_unlock(mm);
e86c59b1
CI
2120 /*
2121 * In case of failure, the page was not really empty, so we
2122 * need to continue. Otherwise we're done.
2123 */
2124 if (!err)
2125 return;
2126 }
8dd3557a
HD
2127 tree_rmap_item =
2128 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2129 if (tree_rmap_item) {
77da2ba0
CI
2130 bool split;
2131
8dd3557a
HD
2132 kpage = try_to_merge_two_pages(rmap_item, page,
2133 tree_rmap_item, tree_page);
77da2ba0
CI
2134 /*
2135 * If both pages we tried to merge belong to the same compound
2136 * page, then we actually ended up increasing the reference
2137 * count of the same compound page twice, and split_huge_page
2138 * failed.
2139 * Here we set a flag if that happened, and we use it later to
2140 * try split_huge_page again. Since we call put_page right
2141 * afterwards, the reference count will be correct and
2142 * split_huge_page should succeed.
2143 */
2144 split = PageTransCompound(page)
2145 && compound_head(page) == compound_head(tree_page);
8dd3557a 2146 put_page(tree_page);
8dd3557a 2147 if (kpage) {
bc56620b
HD
2148 /*
2149 * The pages were successfully merged: insert new
2150 * node in the stable tree and add both rmap_items.
2151 */
5ad64688 2152 lock_page(kpage);
7b6ba2c7
HD
2153 stable_node = stable_tree_insert(kpage);
2154 if (stable_node) {
2c653d0e
AA
2155 stable_tree_append(tree_rmap_item, stable_node,
2156 false);
2157 stable_tree_append(rmap_item, stable_node,
2158 false);
7b6ba2c7 2159 }
5ad64688 2160 unlock_page(kpage);
7b6ba2c7 2161
31dbd01f
IE
2162 /*
2163 * If we fail to insert the page into the stable tree,
2164 * we will have 2 virtual addresses that are pointing
2165 * to a ksm page left outside the stable tree,
2166 * in which case we need to break_cow on both.
2167 */
7b6ba2c7 2168 if (!stable_node) {
8dd3557a
HD
2169 break_cow(tree_rmap_item);
2170 break_cow(rmap_item);
31dbd01f 2171 }
77da2ba0
CI
2172 } else if (split) {
2173 /*
2174 * We are here if we tried to merge two pages and
2175 * failed because they both belonged to the same
2176 * compound page. We will split the page now, but no
2177 * merging will take place.
2178 * We do not want to add the cost of a full lock; if
2179 * the page is locked, it is better to skip it and
2180 * perhaps try again later.
2181 */
2182 if (!trylock_page(page))
2183 return;
2184 split_huge_page(page);
2185 unlock_page(page);
31dbd01f 2186 }
31dbd01f
IE
2187 }
2188}
2189
21fbd591
QZ
2190static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2191 struct ksm_rmap_item **rmap_list,
31dbd01f
IE
2192 unsigned long addr)
2193{
21fbd591 2194 struct ksm_rmap_item *rmap_item;
31dbd01f 2195
6514d511
HD
2196 while (*rmap_list) {
2197 rmap_item = *rmap_list;
93d17715 2198 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2199 return rmap_item;
31dbd01f
IE
2200 if (rmap_item->address > addr)
2201 break;
6514d511 2202 *rmap_list = rmap_item->rmap_list;
31dbd01f 2203 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2204 free_rmap_item(rmap_item);
2205 }
2206
2207 rmap_item = alloc_rmap_item();
2208 if (rmap_item) {
2209 /* It has already been zeroed */
58730ab6 2210 rmap_item->mm = mm_slot->slot.mm;
cb4df4ca 2211 rmap_item->mm->ksm_rmap_items++;
31dbd01f 2212 rmap_item->address = addr;
6514d511
HD
2213 rmap_item->rmap_list = *rmap_list;
2214 *rmap_list = rmap_item;
31dbd01f
IE
2215 }
2216 return rmap_item;
2217}
2218
21fbd591 2219static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
31dbd01f
IE
2220{
2221 struct mm_struct *mm;
58730ab6
QZ
2222 struct ksm_mm_slot *mm_slot;
2223 struct mm_slot *slot;
31dbd01f 2224 struct vm_area_struct *vma;
21fbd591 2225 struct ksm_rmap_item *rmap_item;
a5f18ba0 2226 struct vma_iterator vmi;
90bd6fd3 2227 int nid;
31dbd01f 2228
58730ab6 2229 if (list_empty(&ksm_mm_head.slot.mm_node))
31dbd01f
IE
2230 return NULL;
2231
58730ab6
QZ
2232 mm_slot = ksm_scan.mm_slot;
2233 if (mm_slot == &ksm_mm_head) {
2919bfd0
HD
2234 /*
2235 * A number of pages can hang around indefinitely on per-cpu
2236 * pagevecs, raised page count preventing write_protect_page
2237 * from merging them. Though it doesn't really matter much,
2238 * it is puzzling to see some stuck in pages_volatile until
2239 * other activity jostles them out, and they also prevented
2240 * LTP's KSM test from succeeding deterministically; so drain
2241 * them here (here rather than on entry to ksm_do_scan(),
2242 * so we don't IPI too often when pages_to_scan is set low).
2243 */
2244 lru_add_drain_all();
2245
4146d2d6
HD
2246 /*
2247 * Whereas stale stable_nodes on the stable_tree itself
2248 * get pruned in the regular course of stable_tree_search(),
2249 * those moved out to the migrate_nodes list can accumulate:
2250 * so prune them once before each full scan.
2251 */
2252 if (!ksm_merge_across_nodes) {
21fbd591 2253 struct ksm_stable_node *stable_node, *next;
4146d2d6
HD
2254 struct page *page;
2255
03640418
GT
2256 list_for_each_entry_safe(stable_node, next,
2257 &migrate_nodes, list) {
2cee57d1
YS
2258 page = get_ksm_page(stable_node,
2259 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2260 if (page)
2261 put_page(page);
2262 cond_resched();
2263 }
2264 }
2265
ef53d16c 2266 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2267 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2268
2269 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2270 slot = list_entry(mm_slot->slot.mm_node.next,
2271 struct mm_slot, mm_node);
2272 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2273 ksm_scan.mm_slot = mm_slot;
31dbd01f 2274 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2275 /*
2276 * Although we tested list_empty() above, a racing __ksm_exit
2277 * of the last mm on the list may have removed it since then.
2278 */
58730ab6 2279 if (mm_slot == &ksm_mm_head)
2b472611 2280 return NULL;
31dbd01f
IE
2281next_mm:
2282 ksm_scan.address = 0;
58730ab6 2283 ksm_scan.rmap_list = &mm_slot->rmap_list;
31dbd01f
IE
2284 }
2285
58730ab6 2286 slot = &mm_slot->slot;
31dbd01f 2287 mm = slot->mm;
a5f18ba0
MWO
2288 vma_iter_init(&vmi, mm, ksm_scan.address);
2289
d8ed45c5 2290 mmap_read_lock(mm);
9ba69294 2291 if (ksm_test_exit(mm))
a5f18ba0 2292 goto no_vmas;
9ba69294 2293
a5f18ba0 2294 for_each_vma(vmi, vma) {
31dbd01f
IE
2295 if (!(vma->vm_flags & VM_MERGEABLE))
2296 continue;
2297 if (ksm_scan.address < vma->vm_start)
2298 ksm_scan.address = vma->vm_start;
2299 if (!vma->anon_vma)
2300 ksm_scan.address = vma->vm_end;
2301
2302 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2303 if (ksm_test_exit(mm))
2304 break;
31dbd01f 2305 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
f7091ed6 2306 if (IS_ERR_OR_NULL(*page)) {
21ae5b01
AA
2307 ksm_scan.address += PAGE_SIZE;
2308 cond_resched();
2309 continue;
2310 }
f7091ed6
HW
2311 if (is_zone_device_page(*page))
2312 goto next_page;
f765f540 2313 if (PageAnon(*page)) {
31dbd01f
IE
2314 flush_anon_page(vma, *page, ksm_scan.address);
2315 flush_dcache_page(*page);
58730ab6 2316 rmap_item = get_next_rmap_item(mm_slot,
6514d511 2317 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2318 if (rmap_item) {
6514d511
HD
2319 ksm_scan.rmap_list =
2320 &rmap_item->rmap_list;
31dbd01f
IE
2321 ksm_scan.address += PAGE_SIZE;
2322 } else
2323 put_page(*page);
d8ed45c5 2324 mmap_read_unlock(mm);
31dbd01f
IE
2325 return rmap_item;
2326 }
f7091ed6 2327next_page:
21ae5b01 2328 put_page(*page);
31dbd01f
IE
2329 ksm_scan.address += PAGE_SIZE;
2330 cond_resched();
2331 }
2332 }
2333
9ba69294 2334 if (ksm_test_exit(mm)) {
a5f18ba0 2335no_vmas:
9ba69294 2336 ksm_scan.address = 0;
58730ab6 2337 ksm_scan.rmap_list = &mm_slot->rmap_list;
9ba69294 2338 }
31dbd01f
IE
2339 /*
2340 * Nuke all the rmap_items that are above this current rmap:
2341 * because there were no VM_MERGEABLE vmas with such addresses.
2342 */
420be4ed 2343 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2344
2345 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2346 slot = list_entry(mm_slot->slot.mm_node.next,
2347 struct mm_slot, mm_node);
2348 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
cd551f97
HD
2349 if (ksm_scan.address == 0) {
2350 /*
c1e8d7c6 2351 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2352 * throughout, and found no VM_MERGEABLE: so do the same as
2353 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2354 * This applies either when cleaning up after __ksm_exit
2355 * (but beware: we can reach here even before __ksm_exit),
2356 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2357 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2358 */
58730ab6
QZ
2359 hash_del(&mm_slot->slot.hash);
2360 list_del(&mm_slot->slot.mm_node);
9ba69294
HD
2361 spin_unlock(&ksm_mmlist_lock);
2362
58730ab6 2363 mm_slot_free(mm_slot_cache, mm_slot);
cd551f97 2364 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d8ed45c5 2365 mmap_read_unlock(mm);
9ba69294
HD
2366 mmdrop(mm);
2367 } else {
d8ed45c5 2368 mmap_read_unlock(mm);
7496fea9 2369 /*
3e4e28c5 2370 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2371 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2372 * already have been freed under us by __ksm_exit()
2373 * because the "mm_slot" is still hashed and
2374 * ksm_scan.mm_slot doesn't point to it anymore.
2375 */
2376 spin_unlock(&ksm_mmlist_lock);
cd551f97 2377 }
31dbd01f
IE
2378
2379 /* Repeat until we've completed scanning the whole list */
58730ab6
QZ
2380 mm_slot = ksm_scan.mm_slot;
2381 if (mm_slot != &ksm_mm_head)
31dbd01f
IE
2382 goto next_mm;
2383
31dbd01f
IE
2384 ksm_scan.seqnr++;
2385 return NULL;
2386}
2387
2388/**
2389 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2390 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2391 */
2392static void ksm_do_scan(unsigned int scan_npages)
2393{
21fbd591 2394 struct ksm_rmap_item *rmap_item;
3f649ab7 2395 struct page *page;
31dbd01f 2396
878aee7d 2397 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2398 cond_resched();
2399 rmap_item = scan_get_next_rmap_item(&page);
2400 if (!rmap_item)
2401 return;
4146d2d6 2402 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2403 put_page(page);
2404 }
2405}
2406
6e158384
HD
2407static int ksmd_should_run(void)
2408{
58730ab6 2409 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
6e158384
HD
2410}
2411
31dbd01f
IE
2412static int ksm_scan_thread(void *nothing)
2413{
fcf9a0ef
KT
2414 unsigned int sleep_ms;
2415
878aee7d 2416 set_freezable();
339aa624 2417 set_user_nice(current, 5);
31dbd01f
IE
2418
2419 while (!kthread_should_stop()) {
6e158384 2420 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2421 wait_while_offlining();
6e158384 2422 if (ksmd_should_run())
31dbd01f 2423 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2424 mutex_unlock(&ksm_thread_mutex);
2425
878aee7d
AA
2426 try_to_freeze();
2427
6e158384 2428 if (ksmd_should_run()) {
fcf9a0ef
KT
2429 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2430 wait_event_interruptible_timeout(ksm_iter_wait,
2431 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2432 msecs_to_jiffies(sleep_ms));
31dbd01f 2433 } else {
878aee7d 2434 wait_event_freezable(ksm_thread_wait,
6e158384 2435 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2436 }
2437 }
2438 return 0;
2439}
2440
f8af4da3
HD
2441int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2442 unsigned long end, int advice, unsigned long *vm_flags)
2443{
2444 struct mm_struct *mm = vma->vm_mm;
d952b791 2445 int err;
f8af4da3
HD
2446
2447 switch (advice) {
2448 case MADV_MERGEABLE:
2449 /*
2450 * Be somewhat over-protective for now!
2451 */
2452 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2453 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2454 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2455 return 0; /* just ignore the advice */
2456
e1fb4a08
DJ
2457 if (vma_is_dax(vma))
2458 return 0;
2459
12564485
SA
2460#ifdef VM_SAO
2461 if (*vm_flags & VM_SAO)
2462 return 0;
2463#endif
74a04967
KA
2464#ifdef VM_SPARC_ADI
2465 if (*vm_flags & VM_SPARC_ADI)
2466 return 0;
2467#endif
cc2383ec 2468
d952b791
HD
2469 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2470 err = __ksm_enter(mm);
2471 if (err)
2472 return err;
2473 }
f8af4da3
HD
2474
2475 *vm_flags |= VM_MERGEABLE;
2476 break;
2477
2478 case MADV_UNMERGEABLE:
2479 if (!(*vm_flags & VM_MERGEABLE))
2480 return 0; /* just ignore the advice */
2481
d952b791
HD
2482 if (vma->anon_vma) {
2483 err = unmerge_ksm_pages(vma, start, end);
2484 if (err)
2485 return err;
2486 }
f8af4da3
HD
2487
2488 *vm_flags &= ~VM_MERGEABLE;
2489 break;
2490 }
2491
2492 return 0;
2493}
33cf1707 2494EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2495
2496int __ksm_enter(struct mm_struct *mm)
2497{
21fbd591 2498 struct ksm_mm_slot *mm_slot;
58730ab6 2499 struct mm_slot *slot;
6e158384
HD
2500 int needs_wakeup;
2501
58730ab6 2502 mm_slot = mm_slot_alloc(mm_slot_cache);
31dbd01f
IE
2503 if (!mm_slot)
2504 return -ENOMEM;
2505
58730ab6
QZ
2506 slot = &mm_slot->slot;
2507
6e158384 2508 /* Check ksm_run too? Would need tighter locking */
58730ab6 2509 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
6e158384 2510
31dbd01f 2511 spin_lock(&ksm_mmlist_lock);
58730ab6 2512 mm_slot_insert(mm_slots_hash, mm, slot);
31dbd01f 2513 /*
cbf86cfe
HD
2514 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2515 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2516 * down a little; when fork is followed by immediate exec, we don't
2517 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2518 *
2519 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2520 * scanning cursor, otherwise KSM pages in newly forked mms will be
2521 * missed: then we might as well insert at the end of the list.
31dbd01f 2522 */
cbf86cfe 2523 if (ksm_run & KSM_RUN_UNMERGE)
58730ab6 2524 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
cbf86cfe 2525 else
58730ab6 2526 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
31dbd01f
IE
2527 spin_unlock(&ksm_mmlist_lock);
2528
f8af4da3 2529 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2530 mmgrab(mm);
6e158384
HD
2531
2532 if (needs_wakeup)
2533 wake_up_interruptible(&ksm_thread_wait);
2534
f8af4da3
HD
2535 return 0;
2536}
2537
1c2fb7a4 2538void __ksm_exit(struct mm_struct *mm)
f8af4da3 2539{
21fbd591 2540 struct ksm_mm_slot *mm_slot;
58730ab6 2541 struct mm_slot *slot;
9ba69294 2542 int easy_to_free = 0;
cd551f97 2543
31dbd01f 2544 /*
9ba69294
HD
2545 * This process is exiting: if it's straightforward (as is the
2546 * case when ksmd was never running), free mm_slot immediately.
2547 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2548 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2549 * are freed, and leave the mm_slot on the list for ksmd to free.
2550 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2551 */
9ba69294 2552
cd551f97 2553 spin_lock(&ksm_mmlist_lock);
58730ab6
QZ
2554 slot = mm_slot_lookup(mm_slots_hash, mm);
2555 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
9ba69294 2556 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2557 if (!mm_slot->rmap_list) {
58730ab6
QZ
2558 hash_del(&slot->hash);
2559 list_del(&slot->mm_node);
9ba69294
HD
2560 easy_to_free = 1;
2561 } else {
58730ab6
QZ
2562 list_move(&slot->mm_node,
2563 &ksm_scan.mm_slot->slot.mm_node);
9ba69294 2564 }
cd551f97 2565 }
cd551f97
HD
2566 spin_unlock(&ksm_mmlist_lock);
2567
9ba69294 2568 if (easy_to_free) {
58730ab6 2569 mm_slot_free(mm_slot_cache, mm_slot);
9ba69294
HD
2570 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2571 mmdrop(mm);
2572 } else if (mm_slot) {
d8ed45c5
ML
2573 mmap_write_lock(mm);
2574 mmap_write_unlock(mm);
9ba69294 2575 }
31dbd01f
IE
2576}
2577
cbf86cfe 2578struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2579 struct vm_area_struct *vma, unsigned long address)
2580{
e05b3453
MWO
2581 struct folio *folio = page_folio(page);
2582 struct anon_vma *anon_vma = folio_anon_vma(folio);
5ad64688
HD
2583 struct page *new_page;
2584
cbf86cfe
HD
2585 if (PageKsm(page)) {
2586 if (page_stable_node(page) &&
2587 !(ksm_run & KSM_RUN_UNMERGE))
2588 return page; /* no need to copy it */
2589 } else if (!anon_vma) {
2590 return page; /* no need to copy it */
e1c63e11
NS
2591 } else if (page->index == linear_page_index(vma, address) &&
2592 anon_vma->root == vma->anon_vma->root) {
cbf86cfe
HD
2593 return page; /* still no need to copy it */
2594 }
2595 if (!PageUptodate(page))
2596 return page; /* let do_swap_page report the error */
2597
5ad64688 2598 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
8f425e4e
MWO
2599 if (new_page &&
2600 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
62fdb163
HD
2601 put_page(new_page);
2602 new_page = NULL;
2603 }
5ad64688
HD
2604 if (new_page) {
2605 copy_user_highpage(new_page, page, address, vma);
2606
2607 SetPageDirty(new_page);
2608 __SetPageUptodate(new_page);
48c935ad 2609 __SetPageLocked(new_page);
4d45c3af
YY
2610#ifdef CONFIG_SWAP
2611 count_vm_event(KSM_SWPIN_COPY);
2612#endif
5ad64688
HD
2613 }
2614
5ad64688
HD
2615 return new_page;
2616}
2617
6d4675e6 2618void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
e9995ef9 2619{
21fbd591
QZ
2620 struct ksm_stable_node *stable_node;
2621 struct ksm_rmap_item *rmap_item;
e9995ef9
HD
2622 int search_new_forks = 0;
2623
2f031c6f 2624 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
9f32624b
JK
2625
2626 /*
2627 * Rely on the page lock to protect against concurrent modifications
2628 * to that page's node of the stable tree.
2629 */
2f031c6f 2630 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
e9995ef9 2631
2f031c6f 2632 stable_node = folio_stable_node(folio);
e9995ef9 2633 if (!stable_node)
1df631ae 2634 return;
e9995ef9 2635again:
b67bfe0d 2636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2637 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2638 struct anon_vma_chain *vmac;
e9995ef9
HD
2639 struct vm_area_struct *vma;
2640
ad12695f 2641 cond_resched();
6d4675e6
MK
2642 if (!anon_vma_trylock_read(anon_vma)) {
2643 if (rwc->try_lock) {
2644 rwc->contended = true;
2645 return;
2646 }
2647 anon_vma_lock_read(anon_vma);
2648 }
bf181b9f
ML
2649 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2650 0, ULONG_MAX) {
1105a2fc
JH
2651 unsigned long addr;
2652
ad12695f 2653 cond_resched();
5beb4930 2654 vma = vmac->vma;
1105a2fc
JH
2655
2656 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2657 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2658
2659 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2660 continue;
2661 /*
2662 * Initially we examine only the vma which covers this
2663 * rmap_item; but later, if there is still work to do,
2664 * we examine covering vmas in other mms: in case they
2665 * were forked from the original since ksmd passed.
2666 */
2667 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2668 continue;
2669
0dd1c7bb
JK
2670 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2671 continue;
2672
2f031c6f 2673 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
b6b19f25 2674 anon_vma_unlock_read(anon_vma);
1df631ae 2675 return;
e9995ef9 2676 }
2f031c6f 2677 if (rwc->done && rwc->done(folio)) {
0dd1c7bb 2678 anon_vma_unlock_read(anon_vma);
1df631ae 2679 return;
0dd1c7bb 2680 }
e9995ef9 2681 }
b6b19f25 2682 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2683 }
2684 if (!search_new_forks++)
2685 goto again;
e9995ef9
HD
2686}
2687
52629506 2688#ifdef CONFIG_MIGRATION
19138349 2689void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
e9995ef9 2690{
21fbd591 2691 struct ksm_stable_node *stable_node;
e9995ef9 2692
19138349
MWO
2693 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2694 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2695 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
e9995ef9 2696
19138349 2697 stable_node = folio_stable_node(folio);
e9995ef9 2698 if (stable_node) {
19138349
MWO
2699 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2700 stable_node->kpfn = folio_pfn(newfolio);
c8d6553b 2701 /*
19138349 2702 * newfolio->mapping was set in advance; now we need smp_wmb()
c8d6553b 2703 * to make sure that the new stable_node->kpfn is visible
19138349
MWO
2704 * to get_ksm_page() before it can see that folio->mapping
2705 * has gone stale (or that folio_test_swapcache has been cleared).
c8d6553b
HD
2706 */
2707 smp_wmb();
19138349 2708 set_page_stable_node(&folio->page, NULL);
e9995ef9
HD
2709 }
2710}
2711#endif /* CONFIG_MIGRATION */
2712
62b61f61 2713#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2714static void wait_while_offlining(void)
2715{
2716 while (ksm_run & KSM_RUN_OFFLINE) {
2717 mutex_unlock(&ksm_thread_mutex);
2718 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2719 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2720 mutex_lock(&ksm_thread_mutex);
2721 }
2722}
2723
21fbd591 2724static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2725 unsigned long start_pfn,
2726 unsigned long end_pfn)
2727{
2728 if (stable_node->kpfn >= start_pfn &&
2729 stable_node->kpfn < end_pfn) {
2730 /*
2731 * Don't get_ksm_page, page has already gone:
2732 * which is why we keep kpfn instead of page*
2733 */
2734 remove_node_from_stable_tree(stable_node);
2735 return true;
2736 }
2737 return false;
2738}
2739
21fbd591 2740static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2c653d0e
AA
2741 unsigned long start_pfn,
2742 unsigned long end_pfn,
2743 struct rb_root *root)
2744{
21fbd591 2745 struct ksm_stable_node *dup;
2c653d0e
AA
2746 struct hlist_node *hlist_safe;
2747
2748 if (!is_stable_node_chain(stable_node)) {
2749 VM_BUG_ON(is_stable_node_dup(stable_node));
2750 return stable_node_dup_remove_range(stable_node, start_pfn,
2751 end_pfn);
2752 }
2753
2754 hlist_for_each_entry_safe(dup, hlist_safe,
2755 &stable_node->hlist, hlist_dup) {
2756 VM_BUG_ON(!is_stable_node_dup(dup));
2757 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2758 }
2759 if (hlist_empty(&stable_node->hlist)) {
2760 free_stable_node_chain(stable_node, root);
2761 return true; /* notify caller that tree was rebalanced */
2762 } else
2763 return false;
2764}
2765
ee0ea59c
HD
2766static void ksm_check_stable_tree(unsigned long start_pfn,
2767 unsigned long end_pfn)
62b61f61 2768{
21fbd591 2769 struct ksm_stable_node *stable_node, *next;
62b61f61 2770 struct rb_node *node;
90bd6fd3 2771 int nid;
62b61f61 2772
ef53d16c
HD
2773 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2774 node = rb_first(root_stable_tree + nid);
ee0ea59c 2775 while (node) {
21fbd591 2776 stable_node = rb_entry(node, struct ksm_stable_node, node);
2c653d0e
AA
2777 if (stable_node_chain_remove_range(stable_node,
2778 start_pfn, end_pfn,
2779 root_stable_tree +
2780 nid))
ef53d16c 2781 node = rb_first(root_stable_tree + nid);
2c653d0e 2782 else
ee0ea59c
HD
2783 node = rb_next(node);
2784 cond_resched();
90bd6fd3 2785 }
ee0ea59c 2786 }
03640418 2787 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2788 if (stable_node->kpfn >= start_pfn &&
2789 stable_node->kpfn < end_pfn)
2790 remove_node_from_stable_tree(stable_node);
2791 cond_resched();
2792 }
62b61f61
HD
2793}
2794
2795static int ksm_memory_callback(struct notifier_block *self,
2796 unsigned long action, void *arg)
2797{
2798 struct memory_notify *mn = arg;
62b61f61
HD
2799
2800 switch (action) {
2801 case MEM_GOING_OFFLINE:
2802 /*
ef4d43a8
HD
2803 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2804 * and remove_all_stable_nodes() while memory is going offline:
2805 * it is unsafe for them to touch the stable tree at this time.
2806 * But unmerge_ksm_pages(), rmap lookups and other entry points
2807 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2808 */
ef4d43a8
HD
2809 mutex_lock(&ksm_thread_mutex);
2810 ksm_run |= KSM_RUN_OFFLINE;
2811 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2812 break;
2813
2814 case MEM_OFFLINE:
2815 /*
2816 * Most of the work is done by page migration; but there might
2817 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2818 * pages which have been offlined: prune those from the tree,
2819 * otherwise get_ksm_page() might later try to access a
2820 * non-existent struct page.
62b61f61 2821 */
ee0ea59c
HD
2822 ksm_check_stable_tree(mn->start_pfn,
2823 mn->start_pfn + mn->nr_pages);
e4a9bc58 2824 fallthrough;
62b61f61 2825 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2826 mutex_lock(&ksm_thread_mutex);
2827 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2828 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2829
2830 smp_mb(); /* wake_up_bit advises this */
2831 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2832 break;
2833 }
2834 return NOTIFY_OK;
2835}
ef4d43a8
HD
2836#else
2837static void wait_while_offlining(void)
2838{
2839}
62b61f61
HD
2840#endif /* CONFIG_MEMORY_HOTREMOVE */
2841
2ffd8679
HD
2842#ifdef CONFIG_SYSFS
2843/*
2844 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2845 */
2846
31dbd01f
IE
2847#define KSM_ATTR_RO(_name) \
2848 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2849#define KSM_ATTR(_name) \
1bad2e5c 2850 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
31dbd01f
IE
2851
2852static ssize_t sleep_millisecs_show(struct kobject *kobj,
2853 struct kobj_attribute *attr, char *buf)
2854{
ae7a927d 2855 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
2856}
2857
2858static ssize_t sleep_millisecs_store(struct kobject *kobj,
2859 struct kobj_attribute *attr,
2860 const char *buf, size_t count)
2861{
dfefd226 2862 unsigned int msecs;
31dbd01f
IE
2863 int err;
2864
dfefd226
AD
2865 err = kstrtouint(buf, 10, &msecs);
2866 if (err)
31dbd01f
IE
2867 return -EINVAL;
2868
2869 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2870 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2871
2872 return count;
2873}
2874KSM_ATTR(sleep_millisecs);
2875
2876static ssize_t pages_to_scan_show(struct kobject *kobj,
2877 struct kobj_attribute *attr, char *buf)
2878{
ae7a927d 2879 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
2880}
2881
2882static ssize_t pages_to_scan_store(struct kobject *kobj,
2883 struct kobj_attribute *attr,
2884 const char *buf, size_t count)
2885{
dfefd226 2886 unsigned int nr_pages;
31dbd01f 2887 int err;
31dbd01f 2888
dfefd226
AD
2889 err = kstrtouint(buf, 10, &nr_pages);
2890 if (err)
31dbd01f
IE
2891 return -EINVAL;
2892
2893 ksm_thread_pages_to_scan = nr_pages;
2894
2895 return count;
2896}
2897KSM_ATTR(pages_to_scan);
2898
2899static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2900 char *buf)
2901{
ae7a927d 2902 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
2903}
2904
2905static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2906 const char *buf, size_t count)
2907{
dfefd226 2908 unsigned int flags;
31dbd01f 2909 int err;
31dbd01f 2910
dfefd226
AD
2911 err = kstrtouint(buf, 10, &flags);
2912 if (err)
31dbd01f
IE
2913 return -EINVAL;
2914 if (flags > KSM_RUN_UNMERGE)
2915 return -EINVAL;
2916
2917 /*
2918 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2919 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2920 * breaking COW to free the pages_shared (but leaves mm_slots
2921 * on the list for when ksmd may be set running again).
31dbd01f
IE
2922 */
2923
2924 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2925 wait_while_offlining();
31dbd01f
IE
2926 if (ksm_run != flags) {
2927 ksm_run = flags;
d952b791 2928 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2929 set_current_oom_origin();
d952b791 2930 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2931 clear_current_oom_origin();
d952b791
HD
2932 if (err) {
2933 ksm_run = KSM_RUN_STOP;
2934 count = err;
2935 }
2936 }
31dbd01f
IE
2937 }
2938 mutex_unlock(&ksm_thread_mutex);
2939
2940 if (flags & KSM_RUN_MERGE)
2941 wake_up_interruptible(&ksm_thread_wait);
2942
2943 return count;
2944}
2945KSM_ATTR(run);
2946
90bd6fd3
PH
2947#ifdef CONFIG_NUMA
2948static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 2949 struct kobj_attribute *attr, char *buf)
90bd6fd3 2950{
ae7a927d 2951 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
2952}
2953
2954static ssize_t merge_across_nodes_store(struct kobject *kobj,
2955 struct kobj_attribute *attr,
2956 const char *buf, size_t count)
2957{
2958 int err;
2959 unsigned long knob;
2960
2961 err = kstrtoul(buf, 10, &knob);
2962 if (err)
2963 return err;
2964 if (knob > 1)
2965 return -EINVAL;
2966
2967 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2968 wait_while_offlining();
90bd6fd3 2969 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2970 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2971 err = -EBUSY;
ef53d16c
HD
2972 else if (root_stable_tree == one_stable_tree) {
2973 struct rb_root *buf;
2974 /*
2975 * This is the first time that we switch away from the
2976 * default of merging across nodes: must now allocate
2977 * a buffer to hold as many roots as may be needed.
2978 * Allocate stable and unstable together:
2979 * MAXSMP NODES_SHIFT 10 will use 16kB.
2980 */
bafe1e14
JP
2981 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2982 GFP_KERNEL);
ef53d16c
HD
2983 /* Let us assume that RB_ROOT is NULL is zero */
2984 if (!buf)
2985 err = -ENOMEM;
2986 else {
2987 root_stable_tree = buf;
2988 root_unstable_tree = buf + nr_node_ids;
2989 /* Stable tree is empty but not the unstable */
2990 root_unstable_tree[0] = one_unstable_tree[0];
2991 }
2992 }
2993 if (!err) {
90bd6fd3 2994 ksm_merge_across_nodes = knob;
ef53d16c
HD
2995 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2996 }
90bd6fd3
PH
2997 }
2998 mutex_unlock(&ksm_thread_mutex);
2999
3000 return err ? err : count;
3001}
3002KSM_ATTR(merge_across_nodes);
3003#endif
3004
e86c59b1 3005static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 3006 struct kobj_attribute *attr, char *buf)
e86c59b1 3007{
ae7a927d 3008 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
3009}
3010static ssize_t use_zero_pages_store(struct kobject *kobj,
3011 struct kobj_attribute *attr,
3012 const char *buf, size_t count)
3013{
3014 int err;
3015 bool value;
3016
3017 err = kstrtobool(buf, &value);
3018 if (err)
3019 return -EINVAL;
3020
3021 ksm_use_zero_pages = value;
3022
3023 return count;
3024}
3025KSM_ATTR(use_zero_pages);
3026
2c653d0e
AA
3027static ssize_t max_page_sharing_show(struct kobject *kobj,
3028 struct kobj_attribute *attr, char *buf)
3029{
ae7a927d 3030 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3031}
3032
3033static ssize_t max_page_sharing_store(struct kobject *kobj,
3034 struct kobj_attribute *attr,
3035 const char *buf, size_t count)
3036{
3037 int err;
3038 int knob;
3039
3040 err = kstrtoint(buf, 10, &knob);
3041 if (err)
3042 return err;
3043 /*
3044 * When a KSM page is created it is shared by 2 mappings. This
3045 * being a signed comparison, it implicitly verifies it's not
3046 * negative.
3047 */
3048 if (knob < 2)
3049 return -EINVAL;
3050
3051 if (READ_ONCE(ksm_max_page_sharing) == knob)
3052 return count;
3053
3054 mutex_lock(&ksm_thread_mutex);
3055 wait_while_offlining();
3056 if (ksm_max_page_sharing != knob) {
3057 if (ksm_pages_shared || remove_all_stable_nodes())
3058 err = -EBUSY;
3059 else
3060 ksm_max_page_sharing = knob;
3061 }
3062 mutex_unlock(&ksm_thread_mutex);
3063
3064 return err ? err : count;
3065}
3066KSM_ATTR(max_page_sharing);
3067
b4028260
HD
3068static ssize_t pages_shared_show(struct kobject *kobj,
3069 struct kobj_attribute *attr, char *buf)
3070{
ae7a927d 3071 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3072}
3073KSM_ATTR_RO(pages_shared);
3074
3075static ssize_t pages_sharing_show(struct kobject *kobj,
3076 struct kobj_attribute *attr, char *buf)
3077{
ae7a927d 3078 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3079}
3080KSM_ATTR_RO(pages_sharing);
3081
473b0ce4
HD
3082static ssize_t pages_unshared_show(struct kobject *kobj,
3083 struct kobj_attribute *attr, char *buf)
3084{
ae7a927d 3085 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3086}
3087KSM_ATTR_RO(pages_unshared);
3088
3089static ssize_t pages_volatile_show(struct kobject *kobj,
3090 struct kobj_attribute *attr, char *buf)
3091{
3092 long ksm_pages_volatile;
3093
3094 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3095 - ksm_pages_sharing - ksm_pages_unshared;
3096 /*
3097 * It was not worth any locking to calculate that statistic,
3098 * but it might therefore sometimes be negative: conceal that.
3099 */
3100 if (ksm_pages_volatile < 0)
3101 ksm_pages_volatile = 0;
ae7a927d 3102 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3103}
3104KSM_ATTR_RO(pages_volatile);
3105
2c653d0e
AA
3106static ssize_t stable_node_dups_show(struct kobject *kobj,
3107 struct kobj_attribute *attr, char *buf)
3108{
ae7a927d 3109 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3110}
3111KSM_ATTR_RO(stable_node_dups);
3112
3113static ssize_t stable_node_chains_show(struct kobject *kobj,
3114 struct kobj_attribute *attr, char *buf)
3115{
ae7a927d 3116 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3117}
3118KSM_ATTR_RO(stable_node_chains);
3119
3120static ssize_t
3121stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3122 struct kobj_attribute *attr,
3123 char *buf)
3124{
ae7a927d 3125 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3126}
3127
3128static ssize_t
3129stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3130 struct kobj_attribute *attr,
3131 const char *buf, size_t count)
3132{
584ff0df 3133 unsigned int msecs;
2c653d0e
AA
3134 int err;
3135
584ff0df
ZB
3136 err = kstrtouint(buf, 10, &msecs);
3137 if (err)
2c653d0e
AA
3138 return -EINVAL;
3139
3140 ksm_stable_node_chains_prune_millisecs = msecs;
3141
3142 return count;
3143}
3144KSM_ATTR(stable_node_chains_prune_millisecs);
3145
473b0ce4
HD
3146static ssize_t full_scans_show(struct kobject *kobj,
3147 struct kobj_attribute *attr, char *buf)
3148{
ae7a927d 3149 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3150}
3151KSM_ATTR_RO(full_scans);
3152
31dbd01f
IE
3153static struct attribute *ksm_attrs[] = {
3154 &sleep_millisecs_attr.attr,
3155 &pages_to_scan_attr.attr,
3156 &run_attr.attr,
b4028260
HD
3157 &pages_shared_attr.attr,
3158 &pages_sharing_attr.attr,
473b0ce4
HD
3159 &pages_unshared_attr.attr,
3160 &pages_volatile_attr.attr,
3161 &full_scans_attr.attr,
90bd6fd3
PH
3162#ifdef CONFIG_NUMA
3163 &merge_across_nodes_attr.attr,
3164#endif
2c653d0e
AA
3165 &max_page_sharing_attr.attr,
3166 &stable_node_chains_attr.attr,
3167 &stable_node_dups_attr.attr,
3168 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3169 &use_zero_pages_attr.attr,
31dbd01f
IE
3170 NULL,
3171};
3172
f907c26a 3173static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3174 .attrs = ksm_attrs,
3175 .name = "ksm",
3176};
2ffd8679 3177#endif /* CONFIG_SYSFS */
31dbd01f
IE
3178
3179static int __init ksm_init(void)
3180{
3181 struct task_struct *ksm_thread;
3182 int err;
3183
e86c59b1
CI
3184 /* The correct value depends on page size and endianness */
3185 zero_checksum = calc_checksum(ZERO_PAGE(0));
3186 /* Default to false for backwards compatibility */
3187 ksm_use_zero_pages = false;
3188
31dbd01f
IE
3189 err = ksm_slab_init();
3190 if (err)
3191 goto out;
3192
31dbd01f
IE
3193 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3194 if (IS_ERR(ksm_thread)) {
25acde31 3195 pr_err("ksm: creating kthread failed\n");
31dbd01f 3196 err = PTR_ERR(ksm_thread);
d9f8984c 3197 goto out_free;
31dbd01f
IE
3198 }
3199
2ffd8679 3200#ifdef CONFIG_SYSFS
31dbd01f
IE
3201 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3202 if (err) {
25acde31 3203 pr_err("ksm: register sysfs failed\n");
2ffd8679 3204 kthread_stop(ksm_thread);
d9f8984c 3205 goto out_free;
31dbd01f 3206 }
c73602ad
HD
3207#else
3208 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3209
2ffd8679 3210#endif /* CONFIG_SYSFS */
31dbd01f 3211
62b61f61 3212#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3213 /* There is no significance to this priority 100 */
1eeaa4fd 3214 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
62b61f61 3215#endif
31dbd01f
IE
3216 return 0;
3217
d9f8984c 3218out_free:
31dbd01f
IE
3219 ksm_slab_free();
3220out:
3221 return err;
f8af4da3 3222}
a64fb3cd 3223subsys_initcall(ksm_init);